WO2014020933A1 - Novel fluorescent substance - Google Patents

Novel fluorescent substance Download PDF

Info

Publication number
WO2014020933A1
WO2014020933A1 PCT/JP2013/057206 JP2013057206W WO2014020933A1 WO 2014020933 A1 WO2014020933 A1 WO 2014020933A1 JP 2013057206 W JP2013057206 W JP 2013057206W WO 2014020933 A1 WO2014020933 A1 WO 2014020933A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
fluorescent
modified
amino acid
fluorescence
Prior art date
Application number
PCT/JP2013/057206
Other languages
French (fr)
Japanese (ja)
Inventor
精二 宮谷
Original Assignee
アルバイオ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルバイオ株式会社 filed Critical アルバイオ株式会社
Publication of WO2014020933A1 publication Critical patent/WO2014020933A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8209Selection, visualisation of transformants, reporter constructs, e.g. antibiotic resistance markers
    • C12N15/821Non-antibiotic resistance markers, e.g. morphogenetic, metabolic markers
    • C12N15/8212Colour markers, e.g. beta-glucoronidase [GUS], green fluorescent protein [GFP], carotenoid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • A61K49/0045Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules the fluorescent agent being a peptide or protein used for imaging or diagnosis in vivo
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • C07K14/43595Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from coelenteratae, e.g. medusae
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/582Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/20Fusion polypeptide containing a tag with affinity for a non-protein ligand
    • C07K2319/23Fusion polypeptide containing a tag with affinity for a non-protein ligand containing a GST-tag

Definitions

  • the present invention relates to a novel fluorescent material obtained by modifying a gene originally possessed by organisms including humans.
  • fluorescent genes have been isolated and identified from various lower organisms.
  • lower organisms whose fluorescent genes have been isolated and identified include, for example, Owan jellyfish (Non-patent Document 1), flower worms (Patent Document 1), tropical Renilla (Patent Document 2), thrip coral (Patent Document 3), Examples include Okawari sea anemone (Patent Document 4), non-Owan jellyfish hydroworm (Patent Document 5), co-poda (Patent Document 6), Suboikuikumeishi (Patent Document 7) and the like.
  • fluorescent genes label target genes, compounds, cells, organisms, etc. as tracer genes and reporter genes that can be easily detected in vivo or in vitro as biochemistry, molecular biology, cell It is frequently used in fields such as biology and pharmaceutical research.
  • Specific applications used in known fluorescent genes include, for example, cell identification, selection and purification applications described in Patent Document 8, gene expression analysis described in Patent Document 9, and target substances (cells) Labeling of proteins, compounds, etc.), traces of target substance behavior (pharmacokinetics, etc.), use as reporter or tracer protein for in vivo imaging, use as molecular weight markers on protein gels and Western blots, calibration of FACS equipment Can also be used as a marker for microinjection into cells and tissues, and can be used for intracellular traces of target genes described in Patent Document 10, transplanted cells described in Patent Document 11 As a biosensor that applies fluorescence resonance energy transfer (FRET) described in Patent Document 12
  • FRET fluorescence resonance energy transfer
  • biopharmaceuticals such as cell therapy using stem cells such as ES cells, iPS cells, and somatic stem cells, nucleic acid drugs such as siRNA, and protein drugs such as antibodies have made remarkable progress.
  • stem cells such as ES cells, iPS cells, and somatic stem cells
  • nucleic acid drugs such as siRNA
  • protein drugs such as antibodies
  • the cells, tissues, nucleic acids, and proteins used in these biopharmaceuticals are engrafted and functioning in the recipient's body, and the in vivo kinetics such as transport and metabolic pathways.
  • a fluorescent gene as a highly safe reporter and tracer that can be confirmed in vivo such as how it is and whether it has side effects.
  • non-biopharmaceuticals that is, low-molecular-weight pharmaceuticals
  • fluorescent genes are highly functional reporters and tracers.
  • stem cells such as ES cells and iPS cells
  • these stem cells are usually not directly used for treatment, but are differentiated into target cells in vitro or ex vivo. Differentiated cells are used for treatment.
  • the problem of canceration risk caused by the mixture of cells that cannot be differentiated in this process that is, undifferentiated cells, hinders practical application.
  • it is essential to prevent contamination of undifferentiated stem cells in target cells used for treatment.
  • it is also important for the practical application of cell therapy to remove unnecessary cells other than the target cells and obtain high-purity target cells. Needless to say.
  • Non-Patent Document 22 As a useful means for purifying such target cells, currently, cell sorting methods using flow cytometry such as FACS, dielectric cytometry, fully automatic single cell isolation analyzer and the like are used (Patent Document 22). 23, 24, Non-Patent Document 2).
  • a general cell sorting method by FACS is a labeled binding molecule in which a binding molecule such as an antibody against a cell surface marker is labeled with a fluorescent substance such as a low molecular weight organic compound (for example, FITC) or a fluorescent gene product (for example, GFP derived from Aequorea jellyfish). Is a method in which only cells that emit fluorescence are selected and purified by associating them with cells (Non-patent Documents 3 and 4).
  • Non-Patent Documents 5 and 6 describe the practical application of cell therapy using stem cells that are not labeled outside the cell, but express the fluorescent substance inside the cell and select only the target cells by FACS. Studies have been described.
  • the fluorescent protein which is the gene product of the fluorescent gene, is recognized as a foreign substance by a biological immune reaction. Therefore, it is considered that an adverse event such as a rejection reaction is caused (see, for example, Patent Document 25, Paragraph [0004], Non-Patent Documents 7, 8, 9, and 10). Furthermore, since it has been reported that an antibody against a fluorescent gene is produced (for example, see Non-Patent Document 11), the fluorescent gene described in the above document has a risk of anaphylactic shock, and When used for the second time and thereafter, the fluorescence intensity is significantly reduced and it cannot be used repeatedly. Therefore, the fluorescent gene described in the above document is not preferable as a substance to be administered in vivo.
  • the fluorescent genes described in the above documents were administered to subjects because not all substances, including those considered to have low toxicity, are derived from subjects who undergo cell therapy (including human patients). There is a problem of causing an adverse event.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a nucleic acid-derived fluorescent substance that is highly safe even when administered to a living body.
  • the present inventor has found through experiments that bacterial-derived DHODH® (Dihydroorotate® dehydrogenase) emits stable detectable fluorescence in cells derived from multicellular organisms.
  • DHODH® Dihydroorotate® dehydrogenase
  • fluorescence could not be detected stably even when introduced into cells derived from multicellular organisms. Therefore, in order to obtain a highly safe fluorescent protein even when administered to a living body, further breakthrough is necessary.
  • the present inventor decided to further modify the amino acid sequence of the human homolog.
  • the result was that when a human homologue cofactor or substrate with a modified interaction region was introduced into the cell, the cell fluoresced. This fluorescence is considered to be generated as a result of the stable formation of a complex with the cofactor or substrate by the modified human homolog.
  • the present inventors have found that similar results can be obtained for other proteins capable of interacting with a cofactor or substrate by modifying the interaction region with the cofactor or substrate.
  • the inventors have found that similar results can be obtained with proteins derived from other animals.
  • the present invention includes the following as one aspect thereof. (1) (a) a modified protein or a fusion protein thereof, wherein the amino acid in the interaction region for the cofactor or substrate is modified, (b) a nucleic acid encoding the modified protein of the above (a) or a fusion protein thereof, (c) a fluorescent protein complex that is a complex of the modified protein of (a) or a fusion protein thereof and a cofactor or substrate, and (d) the modified protein of (a) or a fusion protein thereof, A cell having at least one substance selected from the group consisting of the nucleic acid of (b) above, the fluorescent protein complex of (c) above, A fluorescence test material comprising at least one biological substance selected from the group consisting of:
  • the modified protein (a) can emit stable detectable fluorescence in the presence of a cofactor or substrate. Therefore, the modified protein (a) can be used as a material for fluorescence examination as described above (for example, for cell identification) in animal or plant cells or in vivo.
  • the nucleic acid (b) can express the modified protein (a) in cells of animals and plants. Therefore, the nucleic acid of (b) can be used as a material for fluorescence examination as described above in animal or plant cells or in vivo for the same reason as the modified protein of (a).
  • the fluorescent protein complex (c) can emit fluorescence in the cells of animals and plants.
  • the fluorescent protein complex of the above (c) can be used as a material for fluorescence examination as described above in animal or plant cells or in vivo.
  • the cell (d) has at least one of the substances (a) to (c). Therefore, the cells of (d) above can be used as a material for fluorescence examination as described above (for example, confirmation of cell pharmacokinetics) in the living body of animals and plants.
  • a method for detecting fluorescence comprising: (a) a modified protein or a fusion protein thereof, wherein the amino acid in the interaction region for the cofactor or substrate is modified, (b) a nucleic acid encoding the modified protein of the above (a) or a fusion protein thereof, (c) a fluorescent protein complex that is a complex of the modified protein of (a) or a fusion protein thereof and a cofactor or substrate, and (d) the modified protein of (a) or a fusion protein thereof, A cell having at least one substance selected from the group consisting of the nucleic acid of (b) and the fluorescent protein complex of (c), A method comprising the step of applying excitation light to at least one biological substance selected from the group consisting of:
  • the modified protein (a) can form a stable complex with a cofactor or a substrate in animal and plant cells.
  • the complex can emit fluorescence by applying excitation light. Therefore, the method (a) for detecting the fluorescence of soot can be applied to a technique (for example, cell identification) using the fluorescence test as described above.
  • the nucleic acid (b) can express the modified protein (a).
  • the fluorescent protein complex of (c) can emit fluorescence when irradiated with excitation light.
  • the cell (d) has at least one of the substances (a) to (c). Therefore, even when at least one of the substances (b) to (d) is used, a technique using the fluorescence test as described above for the same reason as when the modified protein (a) is used. It can be applied to.
  • a method for detecting fluorescence in a living body (a) a modified protein in which an amino acid in an interaction region for a cofactor or a substrate is modified, (b) a nucleic acid encoding the modified protein of (a) above, (c) a fluorescent protein complex that is a complex of the modified protein of (a) and a cofactor or substrate, and (d) the modified protein of (a), the nucleic acid of (b), and A cell having at least one substance selected from the group consisting of the fluorescent protein complex of (d) above, Introducing at least one biological substance selected from the group consisting of: Including the method.
  • an animal or plant-derived material can be used as the biological substance.
  • the biological material derived from animals and plants is administered into animals and plants, adverse events are unlikely to occur. From the viewpoint of further suppressing adverse events, it is preferable that the animal or plant from which the biological substance is derived and the organism to be administered are of the same species.
  • the modified protein described in (4) above can emit fluorescence that can be stably detected in the presence of a cofactor or a substrate. For this reason, the modified protein described in (4) above can be used as a material for fluorescent examination as described above (for example, for cell identification) in cells or in vivo.
  • the nucleic acid described in (4) above can express the modified protein described in (4) above in a cell. Therefore, the nucleic acid described in (4) above can be used as a material for fluorescence examination as described above in cells or in vivo.
  • a modified protein comprising the nucleic acid translation product according to (4) above.
  • a nucleic acid that encodes a protein that forms a fluorescent protein complex with a cofactor or substrate, or a fluorescent protein (9) A method of fluorescentizing a protein, comprising a step of modifying an amino acid in an interaction region of a protein with a cofactor or a substrate. (10) A method for producing a modified protein that forms a fluorescent protein complex together with a cofactor or substrate, the method comprising a step of modifying an amino acid in an interaction region of the protein with respect to the cofactor or substrate .
  • nucleic acid-derived fluorescent substance that is highly safe even when administered to a living body can be obtained.
  • the base sequence and amino acid sequence of isolated Bacillus DHODH are shown.
  • the upper row shows the base sequence, and the lower row shows the deduced amino acid sequence encoded by the base sequence.
  • An asterisk (*) indicates a start codon.
  • Amino acid sequence comparison of isolated bDHODH, Bacillus methanolicus MGA3, and Bacillus cereus G9241 is shown. When these three amino acid sequences were compared, isolated bDHODH showed a high homology of 81% with Bacillus derived DHODH.
  • the expression of isolated bDHODH (bDHODH) in DH5 ⁇ cells of E. coli cell line and HEK293 cells of human cell line is shown.
  • the upper panel shows expression with DH5 ⁇
  • the lower panel shows expression with HEK293.
  • a control in DH5 ⁇ only the pGEX4T-1 vector was used, and as a control in HEK293, only the pCS2 + vector was used.
  • Expression in DH5 ⁇ was photographed with a fluorescence microscope (macro zoom microscope MVX10 for research, Olympus) using a GFP filter unit, and expression in HEK293 was fluorescence microscope (inverted microscope for research ECLIPSE TE2000-U standard phase difference set, Nikon Corporation) using a GFP filter unit.
  • the base sequence Genbank Accession No. NP_001352
  • amino acid sequence Genbank Accession No.
  • FIG. 4B is a continuation of FIG. 4A.
  • the upper panel shows expression with DH5 ⁇
  • the lower panel shows expression with HEK293.
  • As a control in DH5 ⁇ only the pGEX4T-1 vector was used, and as a control in HEK293, only the pCS2 + vector was used.
  • DH5 ⁇ was photographed with a fluorescence microscope (macro zoom microscope MVX10 for research, Olympus) using a GFP filter unit, and expression in HEK293 was fluorescence microscope (inverted microscope for research ECLIPSE TE2000-U standard phase difference set, Nikon Corporation) using a GFP filter unit.
  • a homology comparison between the amino acid sequence of wild-type hDHODH and the amino acid sequence of isolated bDHODH is shown.
  • An asterisk (*) indicates the same amino acid
  • a colon (:) indicates an amino acid that is very similar
  • a dot (.) Indicates an amino acid that is somewhat similar in nature.
  • region which interacts with FMN in wild type hDHODH by molecular simulation software is shown.
  • the center compound indicates FMN, the circle indicates the amino acid of wild-type hDHODH and its position, and the circle directly connected to FMN with an arrow indicates the amino acid of wild-type hDHODH that interacts.
  • region which interacts with DHO in wild type hDHODH by molecular simulation software is shown.
  • the center compound indicates DHO, the circle indicates the amino acid of wild-type hDHODH and its position, and the circle directly connected with DHO by an arrow indicates the amino acid of wild-type hDHODH that interacts.
  • bDHODH indicates isolated bDHODH
  • EGFP Enhanced Green Fluorescent Protein
  • ⁇ 1-74hDHODH indicates ⁇ 1-74 wild-type hDHODH
  • Table 4 One of the 2 + 5 + 6 + 8 fluorescent hDHODH in the region No./combination is shown, and five modifications-1 indicates one of the 2 + 5 + 6 + 8 + 11 fluorescent hDHODH in the interaction region No./combination described in Table 4, and five modifications -2 represents one of the 2 + 5 + 6 + 8 + 12 fluorescent hDHODH in the interaction region No./combination described in Table 4.
  • pCS2 + vector was used as a control.
  • Expression in HEK293 was photographed using a GFP filter unit with a fluorescence microscope (inverted microscope for research ECLIPSE TE2000-U standard phase difference set, manufactured by Nikon Corporation). 2 shows expression of N-terminal deletion type fluorescent hDHODH and granular expression of full length fluorescent hDHODH including mitochondrial signal in HEK293 cells.
  • WT full length wild type hDHODH, ⁇ 1-28WT: ⁇ 1-28 wild type hDHODH, ⁇ 1-41WT: ⁇ 1-41 wild type hDHODH, ⁇ 1-50WT: ⁇ 1-50 wild type hDHODH, ⁇ 1-74WT: ⁇ 1-74 wild type hDHODH, Full Fluor-D: full length fluorescent hDHODH, ⁇ 1-28 Fluor-D: ⁇ 1-28 fluorescent hDHODH, ⁇ 1-41 Fluor-D: ⁇ 1-41 fluorescent hDHODH, ⁇ 1-50 Fluor-D: ⁇ 1- 50 fluorescent hDHODH, ⁇ 1-741-Fluor-D: ⁇ 1-74 fluorescent hDHODH.
  • the vector used was pCS2 +.
  • Expression in HEK293 was photographed using a GFP filter unit with a fluorescence microscope (inverted microscope for research ECLIPSE TE2000-U standard phase difference set, manufactured by Nikon Corporation). The flow cytometry analysis result of the fluorescence hDHODH introduction cell is shown.
  • HEK293 cells were used as cells, and pCS2 + was used as a vector.
  • the flow cytometer uses a FACS Calibur (Becton, Dickinson and Company), the excitation wavelength is 488 nm with an argon laser, and the fluorescence wavelength is 530 ⁇ 15 nm with the detector FL-1.
  • A shows the flow cytometry analysis result of the mixed cell of the cell into which only the pCS2 + vector is introduced and the non-introduced cell
  • B shows the flow cytometry analysis result of the mixed cell of the wild type hDHODH-introduced cell and the non-introduced cell
  • C shows the results of flow cytometry analysis of mixed cells of non-introduced cells and cells introduced with fluorinated hDHODH modified at 4 locations of 2 + 5 + 6 + 8 in the interaction region No./combination shown in Table 4.
  • region No./ combination of description is shown.
  • the horizontal axis of the graph indicates relative fluorescence, and the vertical axis indicates cell count.
  • a.u. represents an arbitrary unit.
  • C and D it shows that the fluorescence peak of the fluorescent human DHOHD-introduced cells (right side of the peak) and the non-fluorescent peak of the non-introduced cells (left side of the peak) can be clearly distinguished.
  • Fluor-D fluorescent hDHODH
  • mycmyFluor-D myc-His-labeled fused fluorescent hDHODH in which a myc-His label is fused to the C-terminus of fluorescent hDHODH.
  • PcDNA3.1pcmyc-HiscA was used as the vector.
  • Expression in HEK293 was photographed using a GFP filter unit with a fluorescence microscope (inverted microscope for research ECLIPSE TE2000-U standard phase difference set, manufactured by Nikon Corporation).
  • the present inventor has developed a fluorescence that can be stably detected by modifying a protein that is originally possessed by higher organisms such as humans and mice and that cannot stably detect fluorescence.
  • We succeeded in creating a protein modified to emit When this protein (or a nucleic acid encoding this protein, etc.) is administered to an organism, it is considered that adverse events such as rejection are particularly unlikely to occur if the origin of the protein itself is the subject of administration.
  • adverse events such as rejection are particularly unlikely to occur if the origin of the protein itself is the subject of administration.
  • it is thought that the problem that repeated administration cannot be performed due to a decrease in fluorescence intensity due to antibody production can be prevented.
  • the conventional method aims to improve the fluorescence intensity of the fluorescent protein.
  • the present inventor succeeded in changing the non-fluorescent protein to a state in which fluorescence can be stably emitted. That is, if the conventional GFP modification technology is a technology that produces 1 to 1 ′, it can be said that the present inventors have succeeded in producing 0 to 1.
  • the “modified protein” includes a modified protein in which an amino acid in an interaction region for a cofactor or a substrate is modified.
  • the modified protein can stably form a complex with the cofactor or substrate.
  • the complex emits fluorescence that can be stably detected. Therefore, the modified protein can be suitably used as a fluorescent examination material. More specific examples of fluorescence test materials include reporter or tracer for cell identification, isolation, selection, purification, gene expression analysis, target substance labeling, or target substance behavior tracking (such as pharmacokinetics). Materials for use can be mentioned.
  • the target cells can be purified by the following procedure. First, an antibody against an antigen specifically expressed on the cell surface of the target cell is fused with the modified protein. The obtained fusion protein is brought into contact with a cell population containing target cells and non-target cells. Then, if cells that emit fluorescence are selected using a flow cytometer, the target cells can be purified.
  • the target cell can be identified by the following procedure. First, a vector encoding both a target gene to be introduced into a cell and a nucleic acid encoding the modified protein is prepared. Next, if necessary, the cell population and the vector are mixed and cultured in the presence of a transformation reagent. When excitation light is applied to the cultured cell population, only cells in which the vector has been introduced / maintained fluoresce, so that the cells in which the target gene has been introduced / maintained can be identified using this fluorescence as an index. Thereafter, the cells can be purified using a flow cytometer.
  • the modified protein may be, for example, a protein derived from animals or plants. This modified protein is preferably derived from an animal from the viewpoint of suppressing adverse events after in vivo administration of the animal.
  • the modification may be made by introducing a mutation into a gene encoding a wild type protein.
  • the modification may be performed by introducing a mutation into a gene encoding a protein that cannot form a stable complex with a cofactor or a substrate.
  • the protein before modification may contain mutations and deletions.
  • the modified protein also includes an interaction region in a pre-modification protein that interacts with a cofactor, an interaction region in a pre-modification protein that interacts with a substrate, and an interaction in a pre-modification protein that interacts with both the cofactor and the substrate.
  • the modified protein is derived from a protein having an interaction region for a cofactor or a substrate, and the amino acid sequence in the interaction region of the modified protein is different from the amino acid sequence of the interaction region of the wild-type protein. It may be modified to have an amino acid sequence.
  • the modified protein may be a protein that forms a fluorescent protein complex with a cofactor or substrate.
  • a complex that is a complex of a protein and a cofactor or a substrate and that can stably emit fluorescence in a cell is referred to as a fluorescent protein complex.
  • the fluorescent protein complex may contain other components other than the protein, cofactor, and substrate.
  • the cofactor or substrate contained in the fluorescent protein complex may be capable of emitting fluorescence alone, or may not be stable alone but complexed. It may have the ability to emit fluorescence for the first time.
  • An example of the former is FMN.
  • An example of the latter is BV.
  • the modification may be one or more modifications of amino acids in the interaction region.
  • “one or more” is preferably two or more, more preferably four or more, and even more preferably ten or more. is there. This number is not particularly limited, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, or 30 or more, or within the range of any two of them There may be.
  • examples of the “protein” include a protein containing an interaction region for a cofactor or a substrate.
  • a protein can be appropriately selected from, for example, NCBI GenBank.
  • examples of such proteins include DHODH, BVR-A, dihydrothymine dehydrogenase (Q12882), methionine synthase reductase (Q9UBK8), nitric oxide synthase (P29474, P35228, or P29475), phosphopantothenoylcysteine decarboxylase (Q96CD2), FAD synthase (Q8NFF5), hydroxy acid oxidase (Q9UJM8, or Q9NYQ3), iodotyrosine dehalogenase (Q6PHW0), cytochrome P450 reductase (P16435), NADPH-dependent diflavin oxidoreductase (Q9UHB4), NADH dehydrogena
  • the alphabets and numbers in parentheses described after each protein name are examples of UniProt accession numbers.
  • the above protein is preferably a monomer, and preferably has a low molecular weight.
  • the modified protein contained in the fluorescent protein complex is a compound having an FMN, DHO, BV, NAD (P) H, FAD, porphyrin ring from the viewpoint that the fluorescent protein complex emits fluorescence more stably. It is preferably derived from a protein having an interaction region for vitamin A or cobalamin.
  • the “cofactor” includes a coenzyme, a prosthetic group, and a metal ion.
  • coenzymes are loosely bound to enzymes and prosthetic groups are strongly bound.
  • the coenzyme is reversibly bound to the enzyme and the prosthetic group is bound irreversibly.
  • the “substrate” includes a substance that interacts with a protein to a certain degree.
  • Cofactors or substrates include, for example, FMN, DHO, BV, NAD (P) H, cofactors or substrates listed in Tables 11A and B, pyrroloquinoline quinone, topaquinone, tryptophan-tryptophyll quinone, lysine tyrosylquinone , Cysteinyl-tryptophan quinone, thiamine diphosphate, PALP, PLP, NAD, coenzyme A, biotin, folic acid, vitamin B12, adenosine triphosphate, pyridoxal phosphate, uridine diphosphate glucose, copper, manganese, molybdenum, nickel, And one or more selected from the group consisting of selenium.
  • the “interaction region” includes an amino acid in a protein that directly or indirectly interacts with a cofactor or substrate.
  • the interaction region includes amino acids before and after the amino acid that directly or indirectly interacts with the cofactor or substrate.
  • This interaction region can be identified using an existing method, and there is no particular limitation on the method. For example, molecular simulation software (MOE; Integrated Computational Chemistry System) Analysis using software such as Discovery Studio (Accelrys Inc.), LIGPLOT (University College London).
  • the interaction region may be identified based on publicly known literature describing the results of an experiment analyzing the binding with a substrate such as a substrate that interacts with a protein or a ligand such as a coenzyme or the results of an experiment performed by itself. Identification of the interaction region using molecular simulation software is performed by inputting the information of the protein such as the amino acid sequence of the target protein and the ID of the protein structure data bank (PDB), etc., and the substrate or coenzyme that interacts with the protein. By inputting the ligand information such as the ligand structure and CAS registration number, it is possible to automatically identify the interaction region between the protein and the ligand.
  • a substrate such as a substrate that interacts with a protein or a ligand such as a coenzyme or the results of an experiment performed by itself.
  • Identification of the interaction region using molecular simulation software is performed by inputting the information of the protein such as the amino acid sequence of the target protein and the ID of the protein structure data bank (PDB), etc.,
  • the region specified by using any of the existing methods such as the above-described molecular simulation software may not have an interaction ability under an in vitro experiment. Even such a region is included in the interaction region of one embodiment of the present invention as long as it is a region specified by using any existing method such as the molecular simulation software. That is, a region corresponding to the interaction region is included in the interaction region of one embodiment of the present invention. Even if a region identified using any of the existing methods such as the above molecular simulation software does not actually have the ability to interact, it can be stabilized together with the cofactor or substrate by modifying the region. It is possible to produce modified proteins that form complex complexes.
  • front and back amino acids include, for example, a plurality of amino acids that are continuously adjacent on the N-terminal side or C-terminal side of amino acids that directly or indirectly interact with a cofactor or substrate.
  • the number of amino acids is preferably 10 or less, more preferably 7 or less, from the viewpoint of increasing the fluorescence intensity. This number may be, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10.
  • the amino acids before and after this may interact indirectly with the cofactor or substrate.
  • interaction includes a phenomenon in which force acts between two or more substances.
  • the interaction includes, for example, an action in which association or binding occurs between two or more substances.
  • the interaction may be, for example, ionic bond, hydrogen bond, hydrophobic interaction, hydrophilic interaction, intermolecular force, chelate bond, coordination bond, van der Waals bond, electrostatic bond, covalent bond, or non-covalent bond including.
  • the interaction may be direct or indirect. In the following, an embodiment of the interaction will be described, with the cofactors, substrates, and amino acids in the protein being alphabetized for convenience.
  • the amino acid having the effect of assisting or stabilizing the direct interaction is indirectly interacting with the cofactor A or the substrate B.
  • the amino acid D and the amino acid C may interact directly so as to assist or stabilize the direct interaction.
  • the above-mentioned cofactor A or substrate B and the amino acid D in the protein interact indirectly.
  • amino acid F that interacts indirectly with cofactor A or substrate B may be located.
  • modification of amino acid F may cause a structural change of the protein, and amino acid F may directly interact with cofactor A or substrate B.
  • the amino acid F directly interacts with the cofactor A or the substrate B the complex of the protein and the cofactor A or the substrate B is further stabilized.
  • amino acid H that indirectly interacts with cofactor A or substrate B may be located.
  • modification of amino acid C may cause a structural change of the protein, and amino acid H may directly interact with cofactor A or substrate B.
  • the amino acid H directly interacts with the cofactor A or the substrate B since the amino acid H directly interacts with the cofactor A or the substrate B, the complex of the protein and the cofactor A or the substrate B is further stabilized.
  • amino acid G that does not indirectly interact with cofactor A or substrate B may be located.
  • modification of amino acid G may cause a structural change in the protein, and amino acid G may interact directly or indirectly with cofactor A or substrate B.
  • the amino acid G directly or indirectly interacts with the cofactor A or the substrate B, the complex of the protein and the cofactor A or the substrate B is further stabilized.
  • amino acid I that does not indirectly interact with cofactor A or substrate B may be located.
  • modification of amino acid C may cause a structural change of the protein, and amino acid I may interact directly or indirectly with cofactor A or substrate B.
  • the amino acid I interacts directly or indirectly with the cofactor A or the substrate B, so that the complex of the protein and the cofactor A or the substrate B is further stabilized.
  • near amino acid C includes a state where the amino acid C is located near the protein structure or space.
  • the number of amino acids directly or indirectly interacting with the cofactor or substrate is 1 or more, preferably 3 or more, more preferably 7 or more, from the viewpoint of increasing the fluorescence intensity. It is.
  • the number of amino acids is not particularly limited, and may be, for example, 1, 2, 3, 4, 5, 6, 10, or 15 or more, or any two of them. Further, the number of interaction regions to be modified is 1 or more, preferably 3 or more, more preferably 4 or more, from the viewpoint of increasing the fluorescence intensity. The number of the amino acids is not particularly limited, and may be, for example, 1, 2, 3, 4, 5, 6, 10, 12, or 15 or more, or within the range of any two values thereof.
  • the “fluorescent protein” includes a protein capable of stably detecting fluorescence.
  • This fluorescent protein can be obtained, for example, by modifying a gene that encodes a protein that cannot stably detect fluorescence (sometimes referred to herein as “non-fluorescent protein”). This modification may be caused by an interaction region in a protein that interacts with a cofactor, an interaction region in a protein that interacts with a substrate, or one or more amino acids in an interaction region in a protein that interacts with both a cofactor and a substrate. It may be modified.
  • the “fluorescent gene” or “fluorescent gene” includes a nucleic acid encoding a fluorescent protein.
  • fluorescent protein or “fluorescent protein” refer to the formation of a stable complex with a cofactor or substrate due to modification of a non-fluorescent protein, resulting in a stable overall complex. In some cases, it is used for proteins when they become fluorescent. In other words, a fluorescent protein does not necessarily have to emit fluorescence, but only when a complex with a cofactor or a substrate is formed, a protein having such a characteristic that the whole complex emits fluorescence. Including. On the other hand, “non-fluorescent protein” includes a protein having such a characteristic that a complex cannot be stably formed with a cofactor or a substrate, and therefore the fluorescence of the entire complex cannot be stably emitted. .
  • a non-fluorescent protein can stably form a complex with a cofactor or substrate, but has a characteristic that it cannot stably emit fluorescence as a whole complex due to the structural problem of the complex. It may be a protein.
  • the non-fluorescent protein may be a wild type protein or a modified protein as long as the protein cannot stably detect fluorescence.
  • the non-fluorescent protein may be a polypeptide that cannot stably detect fluorescence (non-fluorescent polypeptide). Whether or not the fluorescence emitted from the test substance can be stably detected may be determined by whether or not the fluorescence derived from the test substance can be observed for a certain period using a fluorescence microscope.
  • fluorescence can be observed for a certain period using a fluorescence microscope. Therefore, they may be judged to emit fluorescence that can be stably detected.
  • fluorescence cannot be observed for a certain period with a fluorescence microscope. Therefore, ⁇ 1-74 hDHODH may be determined not to emit stable detectable fluorescence.
  • the fluorescence may be detected using, for example, a green fluorescence detector or a near infrared fluorescence detector as appropriate.
  • animals and plants are organisms classified in the animal kingdom (sometimes referred to as “animals” in this specification), or organisms classified in the plant kingdom (referred to as “plants” in this specification). Is also included.
  • Animals include, for example, organisms classified as mammals or mammals. Examples of animals include humans, mice, guinea pigs, hamsters, rats, mice, rabbits, pigs, sheep, goats, cows, horses, cats, dogs, marmosets, monkeys, chimpanzees, and frogs.
  • Plants include, for example, organisms classified as red plant gates, gray plant gates, green algae plant gates, or streptophores. Plants include organisms classified as, for example, fern planta, gymnospermia or angiosperm. Examples of the plant include Arabidopsis thaliana, rice, corn, and sesame.
  • the “nucleic acid” includes those in which a plurality of nucleotides or equivalents thereof are combined.
  • the nucleic acid, DNA strand or RNA strand is included.
  • the nucleic acid is a cell uptake promoting substance (for example, PEG or a derivative thereof), a labeling tag (for example, a fluorescent labeling tag), a linker (for example, a nucleotide linker), or a chemotherapeutic agent (for example, an antineoplastic substance).
  • Etc. may be combined.
  • Nucleic acids can be synthesized using a nucleic acid synthesizer. In addition, it can also be purchased from a trust company (for example, Invitrogen).
  • nucleic acids may form salts or solvates.
  • in vivo nucleic acids may be chemically modified.
  • the term nucleic acid includes, for example, nucleic acids that form salts or solvates, or nucleic acids that have undergone chemical modification.
  • the nucleic acid may be an analog of nucleic acid.
  • the “salt” is not particularly limited. For example, an anion salt formed with any acidic (eg, carboxyl) group, or a cationic salt formed with any basic (eg, amino) group.
  • Salts include inorganic salts or organic salts, for example, salts described in Berge et al., J J Pharm. Sci., 1977, 66, 1-19.
  • a “solvate” is a compound formed by a solute and a solvent.
  • the solvent for example, J. Honig et al., The Van Nostrand Chemist's Dictionary P650 (1953) can be referred to.
  • the solvent is water, the solvate formed is a hydrate. This solvent is preferably one that does not interfere with the biological activity of the solute. Examples of such preferred solvents include, but are not limited to, water or various buffers.
  • “chemical modification” includes, for example, modification with PEG or a derivative thereof, fluorescein modification, biotin modification, or the like.
  • Nucleic acids also include cDNA, genomic DNA, or chemically synthesized DNA or RNA strands and can be single-stranded or double-stranded.
  • the above “protein” includes those in which a plurality of amino acids or their equivalents are combined.
  • the chain length of the protein is not particularly limited, and may be, for example, 20, 50, 100, 300, 500, 1000, 5000, or 10000 amino acids, or any of those values or a range of any two values. It may be within.
  • the protein includes, for example, an enzyme, a receptor, or a structural protein. Protein is a concept including a polypeptide, and is not limited by the presence or absence of functionality or the chain length.
  • the protein includes, for example, a polypeptide having homology to a protein registered in the NCBI protein database and having an interaction region for a cofactor or a substrate. Whether there is homology can be confirmed by homology search using BLAST or the like.
  • the homology at this time may be, for example, 80, 90, 95, 98, 99, or 100%, or a range of any two of them.
  • the term protein includes, for example, a protein that forms a salt or a solvate, or a protein that has undergone chemical modification.
  • a synthesizer for example, PSSM-8 (SHIMADZU CORPORATION)
  • PSSM-8 SHIMADZU CORPORATION
  • the protein includes a wild type protein or a mutant protein. In this specification, when “in the range of two values” is specified, the range includes the two values themselves.
  • the modified protein may be a protein fragment of the modified protein that forms a fluorescent protein complex with a cofactor or substrate.
  • This protein fragment can fluoresce by forming a fluorescent protein complex with a cofactor or substrate.
  • the length of this protein fragment is not limited as long as it can form a fluorescent protein complex with a cofactor or substrate.
  • This protein fragment can be bound or fused with a compound other than the protein fragment.
  • amino acid is a general term for organic compounds having an amino group and a carboxyl group.
  • any amino acid in the amino acid sequence may be chemically modified. Any amino acid in the amino acid sequence may form a salt or a solvate. Further, any amino acid in the amino acid sequence may be L-type or D-type. Even in such a case, it can be said that the protein according to the embodiment of the present invention includes the above-mentioned “specific amino acid sequence”. That is, for example, R in the amino acid sequence may be arginine, or a chemically modified product, salt, or solvate thereof.
  • Examples of chemical modifications that amino acids contained in proteins undergo in vivo include, for example, N-terminal modification (for example, acetylation, myristoylation, etc.), C-terminal modification (for example, amidation, glycosylphosphatidylinositol addition, etc.), or side chain Modifications (for example, phosphorylation, sugar chain addition, etc.) are known.
  • N-terminal modification for example, acetylation, myristoylation, etc.
  • C-terminal modification for example, amidation, glycosylphosphatidylinositol addition, etc.
  • side chain Modifications for example, phosphorylation, sugar chain addition, etc.
  • the modified protein stably emits fluorescence with a cofactor or substrate, (i) an amino acid sequence encoding one or more proteins selected from the group consisting of DHODH and the like, (ii) ⁇ described in (i) above An amino acid sequence in which one or more amino acids are deleted, substituted, inserted, or added, (iii) 80% or more homology to the amino acid sequence described in (i) above And (iv) a nucleic acid that specifically hybridizes under stringent conditions to a nucleic acid consisting of a base sequence complementary to the base sequence encoding the amino acid sequence described in (i) above.
  • At least one amino acid modification may be included. This modification may be at least one of the modifications shown in Table 2, Table 3, Table 4, Table 5, Table 6, or Table 7. Further, the modified protein is (ix) amino acid sequence encoding BVR-A, (x) ⁇ ⁇ ⁇ ⁇ one or more amino acids are deleted, substituted, inserted from the amino acid sequence described in (ix), Or (xi) amino acid sequence having 80% or more homology to the amino acid sequence described in (ix) above, and (xii) amino acid sequence described in (ix) above.
  • One or more amino acid sequences selected from the group consisting of an amino acid sequence encoded by a nucleic acid that specifically hybridizes under stringent conditions to a nucleic acid consisting of a base sequence complementary to the base sequence, and At least one region corresponding to the interaction region shown in FIG. 14 may have at least one amino acid modification.
  • This modification may be at least one of the modifications shown in Table 8, Table 9, or Table 10.
  • the modification shown in the table or figure may be modification of any one or more amino acids, and when there are two or more modifications, all possible combinations can be adopted. .
  • the “plurality” may be, for example, 20, 15, 10, 8, 6, 4, 3, or 2, or may be less than any of these values.
  • the “80% or more” is preferably 90% or more, more preferably 95% or more from the viewpoint of reducing antigenicity. This value is not particularly limited, and may be, for example, 80, 85, 90, 95, 97, 98, 99, or 100% or more, and may be in the range of any two of them.
  • the above-mentioned “homology” may be calculated according to a method known in the art, based on the ratio of the number of amino acids homologous in two or more amino acid sequences.
  • the amino acid sequences of the group of amino acid sequences to be compared are aligned, and a gap is introduced into a part of the amino acid sequence when necessary to maximize the ratio of the same amino acids.
  • Methods for alignment, percentage calculation, comparison methods, and related computer programs are well known in the art (eg, BLAST, GENETYX, etc.).
  • “homology” can be expressed by a value measured by NCBI BLAST unless otherwise specified.
  • Blastp can be used as the default algorithm for comparing amino acid sequences with BLAST. Although the measurement result is quantified as Positives or Identities, this embodiment preferably employs Positives.
  • the following conditions can be adopted as the “stringent conditions”.
  • Use low ionic strength and high temperature for washing eg, 50 ° C., 0.015 M sodium chloride / 0.0015 M sodium citrate / 0.1% sodium dodecyl sulfate
  • a denaturing agent such as formamide (eg, at 42 ° C., 50% (v / v) formamide and 0.1% bovine serum albumin / 0.1% ficoll / 0.1% polyvinylpyrrolidone / 50 mM sodium phosphate buffer pH 6.5, And 750 mM sodium chloride, 75 mM sodium citrate) or (3) 20% formamide, 5 ⁇ SSC, 50 mM sodium phosphate (pH 7.6), 5 ⁇ Denhardt's solution, 10% dextran sulfate, and 20 mg / ml denaturation Incubate overnight at 37 ° C.
  • the N-terminal or C-terminal amino acid of the modified protein or the protein before being modified may be deleted.
  • the number of deleted amino acids is preferably 74 or less, more preferably 20 or less, from the viewpoint of reducing the molecular weight. This value is not particularly limited, and may be, for example, 1, 5, 10, 20, 50, 74, 90, or 100 or less, or may be within the range of any two of them.
  • the deletion may be a deletion of a portion that inhibits the main activity inherent in the protein. Even when the protein chain length is shortened as a result of deletion of the N-terminal or C-terminal amino acid, it is included in the concept of the protein of one embodiment of the present invention.
  • the amino acids before being modified are, for example, Met, Ara, Val, Leu, Ile, Pro, Phe, Trp, Cys, Gly, Ser, Thr, Tyr, Asn, Gln, Asp, Glu, It may be Lys, Arg, or His.
  • the amino acid after the modification may be substituted with an amino acid other than the amino acid before the modification.
  • This modification may be performed by modifying the nucleic acid encoding the interaction region of the target protein with the cofactor or substrate. Further, before the step of modifying, there may be a step of determining the interaction region in the target protein. Further, after the modifying step, there may be a step of selecting one having an increased fluorescence intensity.
  • the modification may be replaced with an amino acid having an isoelectric point larger or smaller than the amino acid before modification.
  • the amino acid before modification is a hydrophobic amino acid, a hydrophilic amino acid, an amino acid having an aliphatic side chain, an amino acid having a hydroxyl group-containing side chain, an amino acid having a sulfur atom-containing side chain, a carboxylic acid and an amide-containing side chain.
  • the amino acids may be classified into any of amino acids having a base, amino acids having a base-containing side chain, and aromatic-containing side chains. At this time, the amino acid after modification may be a different class of amino acid from that before modification.
  • the type of “fluorescence” may be green, near infrared, ultraviolet, purple, blue, yellow, orange, red, infrared, or far infrared.
  • the modified protein emits green fluorescence for example, it may have a maximum fluorescence wavelength between 450 nm and 600 nm. This wavelength is not particularly limited, and may be, for example, 450, 500, 550, or 600 nm, and may be in the range of any two values thereof.
  • the modified protein emits green fluorescence for example, it may have a maximum excitation wavelength between 300 nm and 550 nm.
  • This wavelength is not particularly limited, and may be, for example, 300, 350, 400, 450, 500, or 550 nm, and may be in the range of any two values thereof.
  • the modified protein may have a maximum fluorescence wavelength between 650 nm and 2500 nm.
  • This wavelength is not particularly limited and may be, for example, 650, 700, 750, 800, 900, 1000, 1250, 1500, 1750, 2000, 2250, or 2500 nm, and within the range of any two of them. There may be.
  • the modified protein emits near-infrared fluorescence for example, it may have a maximum excitation wavelength between 600 nm and 1100 nm.
  • This wavelength is not particularly limited, and may be, for example, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1050, or 1100 nm, and is within the range of any two of them. Also good.
  • the fluorescence wavelength or the excitation wavelength may be modified so as to shift compared to the protein before modification.
  • the fluorescence is preferably near-infrared fluorescence or fluorescence having a maximum fluorescence wavelength between 650 nm and 2500 nm. Note that the fluorescent color detected by a fluorescence microscope or the like may change depending on the filter. Therefore, the modified protein may have a plurality of detectable fluorescent colors.
  • the fluorescence intensity of the modified protein can be determined, for example, by using a commercially available fluorescence microscope (for example, an inverted microscope for research ECLIPSE TE2000-U standard phase difference set, manufactured by Nikon Corporation), or a fluorescence spectrophotometer (for example, Hitachi High-Tech product). It is preferable that it can be used and stably detected.
  • the fluorescence intensity of the modified protein is substantially or significantly increased with respect to the protein before modification when the protein before modification has such a small fluorescence intensity that it cannot be stably detected. Also good. Note that “significantly” may include a case where, for example, statistical significance is evaluated using Student's t test (one-sided or two-sided) and p ⁇ 0.05.
  • the fluorescence intensity of the modified protein is preferably 50 times or more, more preferably 500 times or more compared to the protein before modification, from the viewpoint of increasing the accuracy or efficiency of the fluorescence test.
  • This number is not particularly limited, for example, 1.5, 2, 3, 4, 5, 10, 50, 100, 500, 1000, 2000, or may be increased more than 10,000 times, any of those two values It may rise to within the range.
  • Whether the modified protein is stably emitting fluorescence or whether the fluorescence intensity of the modified protein can be detected stably is determined by using the software of BD CellQuest Pro in FACS Calibur (Becton, Dickinson and Company). May be used (see, eg, FIG. 12).
  • ODDYSEY® manufactured by LI-COR
  • the “complex” includes a substance in which two or more substances are collected as a group.
  • the complex is, for example, an assembly of a protein and a cofactor or substrate.
  • the protein and the cofactor or substrate may interact.
  • the “biological substance” includes, for example, a protein, a nucleic acid, a cell, a sugar chain, or a lipid.
  • modification includes a phenomenon in which an amino acid is substituted, deleted, inserted, or added.
  • “at least one” may be, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20 or more, or any two values thereof. .
  • “dynamics” includes a state in which a specific object is moving.
  • the pharmacokinetics includes, for example, a mode of movement or change in a living body of a component taken into the body.
  • “excitation light” includes light that causes excitation in a substance such as a fluorescent substance.
  • “modified protein in which an amino acid in an interaction region for a cofactor or a substrate is modified” refers to, for example, modification to an amino acid in an interaction region for a cofactor or substrate of a protein before modification. Including the state after applying.
  • the modified protein may be a modified protein having a modified amino acid in an interaction region for a cofactor or a substrate. Further, the modified protein may be a modified protein having an amino acid sequence in an interaction region with a cofactor or substrate that is different from the amino acid sequence before the modification.
  • the “expression control sequence” includes a nucleic acid sequence that enables transcription control or translation control, such as a promoter, an enhancer, a silencer, a terminator, an operator, and an inducer.
  • “operable” is in the correct position and orientation with respect to the nucleic acid encoding the modified protein, and includes controlling RNA polymerase initiation and gene expression.
  • “operably linked” functions in concert for the purpose, eg, transcription initiation in a promoter, and continues through a DNA sequence encoding the modified protein of the invention. , Including that the segments are arranged.
  • a “flow cytometer” is an apparatus using an analysis technique called flow cytometry.
  • flow cytometry an analysis technique
  • a device having a cell sorting function has only a cell analysis function. It may be a device (cell analyzer).
  • flow cytometers include, but are not limited to, the FACS series (Becton, Dickinson and Company).
  • the method for producing the modified protein is not particularly limited, but a known technique such as a gene recombination technique or chemical synthesis may be used.
  • the modified protein can be bound or fused with a compound other than the protein.
  • the modified protein can be labeled with the above compound.
  • the compound may be, for example, a biopolymer, a low molecular compound, or a high molecular compound.
  • Biopolymers include, for example, proteins, peptides, nucleic acids, sugars, lipids and the like.
  • the low molecular weight compound or the high molecular weight compound includes, for example, a therapeutically effective compound and a radioactive substance.
  • the peptide may be an oligopeptide or a polypeptide.
  • an antibody eg, a tumor-specific antibody, stem cell-specific antibody, nerve-specific antibody, etc.
  • enzyme eg, ligand, receptor, peptide tag (eg, myc tag, HA Tag, GST tag, etc.) and signal peptides (for example, secretory signal peptide, organelle signal peptide, etc.), but are not limited thereto.
  • the peptide may be localized in the cell, on the cell surface, or outside the cell.
  • the compound to be fused with the modified protein can be fused on the N-terminal side or the C-terminal side of the modified protein, and can be appropriately designed based on the purpose of use. Protein fusion or labeling can be performed using known techniques such as chemical synthesis or genetic recombination techniques.
  • nucleic acid encoding modified protein One embodiment of the present invention provides a nucleic acid encoding the modified protein.
  • the nucleic acid according to the embodiment of the present invention can be produced by a known method such as a phosphoramidite method or a polymerase chain reaction (PCR) using a specific primer, but is not limited thereto.
  • One embodiment of the present invention is a protein obtained by a method for producing the modified protein or a fusion protein thereof, a nucleic acid obtained by a method for producing a nucleic acid encoding the modified protein, a recombinant vector containing the nucleic acid, or these Recombinant hosts having at least one are provided. Also provided are compositions comprising at least one of these nucleic acids, recombinant vectors, proteins, or recombinant hosts.
  • the method of fluorinating a wild-type protein or a protein that does not stably emit fluorescence by amino acid modification includes, for example, a nucleic acid sequence encoding an interaction region for a cofactor or a substrate. And a method for introducing a mutation.
  • a method for introducing a mutation for example, a known technique such as a site directed random mutagenesis method for introducing a random mutation or a PCR method using a degenerate oligonucleotide for introducing a desired mutation is appropriately used. However, it is not limited to these.
  • the amino acid sequence to be modified is a modification of one or more amino acids in the interaction region for the cofactor or substrate.
  • This amino acid modification is a modification of at least one of the above interaction regions.
  • the 12 interaction regions confirmed by the simulation are preserved across species as shown in FIG.
  • the above 12 interaction regions are the interaction region between 6 FMN and DHODH, the interaction region between 4 DHO and DHODH, and the interaction region between 2 FMN and DHODH and DHODH. A region having 3 to 7 consecutive amino acids.
  • One embodiment of the present invention includes a nucleic acid encoding a modified protein obtained by the above method, a recombinant vector containing the nucleic acid, a modified protein that is a translation product of the nucleic acid, a fusion protein of the modified protein, or these
  • a recombinant host having at least one of the following is provided: Also provided are compositions comprising at least one of these nucleic acids, recombinant vectors, proteins, and recombinant hosts.
  • the nucleic acid can be used by inserting it into an appropriate vector.
  • the type of “vector” is not particularly limited, and a wide variety of recombinant vectors can be used.
  • This vector is engineered, for example, to express a modified protein, and thereby used to deliver the modified protein to cells.
  • the method for introducing the recombinant vector into the cell is not particularly limited, and may be a known method, and examples thereof include transfection, electroporation, lipofection, and a viral vector.
  • the vector is an expression vector.
  • an “expression vector” comprises a nucleic acid sequence encoding a modified protein, and any gene construct that can be transcribed in animal cells, plant cells, or microorganisms including human cells. including. This expression vector is directed to translation into a modified protein.
  • the expression vector may contain a sequence generally used in the vector such as a restriction enzyme cleavage site used in the vector.
  • the expression vector may also contain an origin of replication and a promoter located in front of the gene to be expressed, such as a polyadenylation sequence (eg, from SV40 or adenovirus 5E1b region), a terminator (eg, human growth hormone terminator).
  • the vector may contain a sequence encoding a cofactor or substrate synthase that can synthesize a cofactor or substrate of the protein.
  • the vector may further contain a selection marker.
  • Selectable markers include, for example, genes lacking complement in host cells such as dihydrofolate reductase and Schizosaccharomyces pombe TPI gene, ⁇ -lactamase and geneticin that give resistance to ampicillin. Examples include, but are not limited to, drug resistance genes such as neomycin resistance gene that give resistance.
  • the vector useful in one embodiment of the present invention is capable of autonomous replication, for example, plasmids and Sendai virus exist outside the chromosome, and the replication is not necessarily directly linked to the replication of the host cell genome.
  • replication of the vector may be replication on the host chromosome, for example, the vector may be integrated into the host cell chromosome, as achieved by a retroviral vector.
  • Vectors useful in one embodiment of the present invention include, but are not limited to, plasmid vectors, viral vectors, cosmid vectors, lambda phage vectors, and artificial chromosome vectors.
  • plasmid vector for example, for bacteria such as pGEX (GE ⁇ helthcare), pQE (Quiagen), pBK-CMV, pESC (Agilent ⁇ Technologies), pCS2, pCMV-SC, pSG (Agilent Technologies), pSVL (GE helthcare), Examples include eukaryotic organisms such as pCDNA3.1 (Life Technologies), but are not limited thereto.
  • viral vectors include, but are not limited to, paramyxovirus vectors (such as Sendai virus vectors), retrovirus vectors, lentivirus vectors, adenovirus vectors, adeno-associated virus vectors, herpes virus vectors, alphaviruses, and the like. Not.
  • cosmid vectors include, but are not limited to, pKS334, pAT2, and pAT3 (Toyobo, JP-A-8-214881).
  • ⁇ phage vectors include, but are not limited to, ⁇ -based vectors such as Lambda ZapII or Lambda-Zap vector (Agilent Technologies) capable of inducibly expressing the polypeptide encoded by the insert.
  • ⁇ -based vectors such as Lambda ZapII or Lambda-Zap vector (Agilent Technologies) capable of inducibly expressing the polypeptide encoded by the insert.
  • Artificial chromosome vectors include human, mouse, and bacterial artificial chromosome (HAC) vectors (for example, Patent No. 4022835, Patent No. 4165532, Patent No. 4293990, Patent No. 3030092, JP 2007-295860, WO2011) / 083870, WO2010 / 038904, WO2008 / 013067, WO2004 / 031385, Special Table 2003-530113), but are not limited thereto.
  • HAC bacterial artificial chromosome
  • a “promoter” includes a DNA sequence necessary to initiate transcription of a particular gene, recognized by the cell's synthetic machinery or by a synthetic machinery introduced into the cell.
  • the promoter used in one embodiment of the present invention may be operable in animal cells including human cells, plant cells, or microorganisms.
  • promoters useful in one embodiment of the present invention include, but are not limited to, constitutive promoters, cell / tissue specific promoters, developmental stage specific promoters, or inducible promoters. Although the following are illustrated as a constitutive promoter, It is not limited to these.
  • Promoters that can operate in prokaryotes
  • promoters operable in yeast host cells include GAL1, GAL4, other glycolytic gene promoters, alcohol dehydrogenase gene promoters, TPI1 promoters, ADH2-4c, etc. .
  • promoters examples include polyhedrin promoter, P10 promoter, autographa calihornica polyhedrossis basic protein promoter, baculovirus immediate early gene promoter, or baculovirus 39K delayed early gene promoter. Can be mentioned.
  • promoters operable in mammalian cells include, for example, actin promoter, EF-1 ⁇ promoter, metallothionein gene promoter, SV40 promoter, cytomegalovirus (CMV) promoter, retrovirus LTR promoter, adenovirus 2 major late promoter, and others Virus promoters, and the like.
  • cell / tissue-specific promoters or developmental stage-specific promoters include, but are not limited to, those described in Tables 1A and 1B below.
  • Inducible promoters include promoters that are controlled in response to chemical (eg, alcohol, steroids, antibiotics, hormones, metal ions, etc.) or physical (eg, heat, light, ionizing radiation, etc.) signals. Is mentioned. Specific examples include, but are not limited to:
  • Tetracycline regulated promoter Tetracycline regulated promoter, rapamycin regulated promoter, glucocorticoid steroid regulated promoter, sex hormone steroid regulated promoter, ecdysone regulated promoter, lipopolysaccharide (LPS) regulated promoter, isopropylthiogalactoside (IPTG) regulated promoter
  • Cytochrome P450 promoter activated by a range of toxic compounds, heat shock protein (hsp) promoter, fos promoter or jun promoter inducible by ionizing radiation, etc.
  • One embodiment of the present invention includes at least one biological substance selected from the group consisting of the above-mentioned modified protein, fusion protein, nucleic acid, fluorescent protein complex, and cell having at least one substance thereof.
  • a material for fluorescence inspection Since this fluorescence inspection material can emit fluorescence by being irradiated with excitation light, it can be used for various applications described above or below.
  • This fluorescent examination material can be used, for example, to measure the dynamics of the biological substance.
  • This fluorescent test material can also be used to identify, isolate, sort or purify cells.
  • this fluorescent test material can be produced by modifying non-fluorescent proteins of animals and plants, it can be suitably used for in vivo use of animals and plants. At this time, if this fluorescent examination material is used for in vivo use of organisms of the same species as the derived organism such as the modified protein, adverse events are particularly unlikely to occur.
  • the term “material” when described with a particular application conceptually includes “material for use in a particular application”. The material at this time may have both the specific application and an application other than the specific application.
  • the term “material” includes, for example, a substance used as a raw material or component of a product or intermediate. This material may contain one or more substances. The shape and material of this material are not particularly limited. This material may be in the form of, for example, a protein, a nucleic acid, or a cell.
  • One embodiment of the present invention provides at least one biological substance selected from the group consisting of the above-mentioned modified protein, fusion protein, nucleic acid, fluorescent protein complex, and cell having at least one substance thereof, or
  • This method can be applied to various uses described above or below by using the detected fluorescence as an index.
  • This method can be applied to reporters or tracers such as cell identification, isolation, selection, purification, gene expression analysis, or behavior tracking (pharmacokinetics, etc.) of a target substance.
  • This method can also be applied to measure the dynamics of the biological material.
  • This method can also be applied to measure the dynamics of the biological material.
  • This method can also be applied to prevent, treat or diagnose a disease.
  • the modified protein can be produced by modifying a non-fluorescent protein of animals and plants, the above method can be suitably used for detecting fluorescence in animals and plants in vivo. At this time, if it is used for detecting fluorescence in the living organism of the same species as the derived organism such as the modified protein, adverse events are particularly unlikely to occur.
  • the method may further include a step of introducing at least one substance selected from the group consisting of the modified protein, the fusion protein, the nucleic acid, and the fluorescent protein complex into the cell.
  • the excitation light may be applied to the biological material or may be applied to the periphery of the biological material.
  • the modified protein when the modified protein is irradiated with excitation light, the modified protein emits fluorescence, thereby enabling a fluorescence test. At this time, even if the excitation light is irradiated to the modified protein and its surroundings, the modified protein emits fluorescence, so that a fluorescence test can be performed.
  • the modified protein existing in the periphery of the nucleic acid is irradiated with excitation light, whereby the modified protein emits fluorescence, thereby enabling a fluorescence test.
  • the periphery of the nucleic acid includes, for example, the inside of the cell where the nucleic acid exists.
  • a method for producing an identified, isolated, sorted, or purified cell comprising the step of performing the above method. For example, identifying, isolating, selecting, or purifying therapeutically effective cells from a cell population containing therapeutically effective cells and non-therapeutic cells using the fluorescence of the fluorescent protein complex as an index Can do.
  • This therapeutically effective cell can be used, for example, for prevention, treatment, diagnosis, or examination of a disease.
  • therapeutically effective cells include cells for cell therapy.
  • cells for cell therapy include stem cells and immune cells.
  • the therapeutically effective cells may be used in the form of a prophylactic composition, pharmaceutical composition, or diagnostic composition after mixing with a carrier.
  • a method for fluorescentizing a complex of a target protein derived from animals and plants, and a cofactor or substrate, wherein the target protein has an interaction region with the cofactor or substrate comprising the step of modifying an amino acid.
  • a method for increasing the fluorescence intensity of a complex of a target protein and a cofactor or substrate comprising a step of modifying an amino acid in an interaction region of the target protein derived from animals or plants with respect to the cofactor or substrate.
  • a method for stably forming a complex of a target protein and a cofactor or substrate comprising a step of modifying an amino acid in an interaction region for the cofactor or substrate of a target protein derived from an animal or plant.
  • a method for trapping a cofactor or a substrate in a target protein which comprises a step of modifying an amino acid in an interaction region for the cofactor or substrate of a target protein derived from an animal or plant.
  • (C-1) a method for screening a target protein modified to emit fluorescence, comprising a step of modifying an amino acid in a region interacting with a cofactor or a substrate of a target protein derived from animals and plants .
  • This method further includes (C-2) a step of bringing the modified target protein into contact with a cofactor or a substrate, and (C-3) a step of applying excitation light to the modified target protein or the target protein and its surroundings. , (C-4) a step of measuring the intensity of fluorescence resulting from the above (C-3), or (C-5) a step of selecting a modified target protein when the fluorescence is stably observed , May be included.
  • the case where fluorescence is observed stably includes, for example, a state in which fluorescence can be visually observed with a fluorescence microscope. Or, when the fluorescence is observed stably, when the protein before modification has a small fluorescence intensity that cannot be stably detected, the protein before modification is substantially or Includes significantly elevated conditions.
  • the “recombinant host” includes a cell into which the nucleic acid or recombinant vector has been introduced, or a tissue or organism containing the cell.
  • the cell may be any exogenous DNA fragment containing the nucleic acid sequence of the modified protein, or any cell that can express a gene. Examples of such cells include, but are not limited to, bacteria, fungi such as yeast, or higher eukaryotic cells such as insect cells and mammalian cells.
  • the cell may express a modified protein.
  • bacterial cells include gram-positive bacteria such as Bacillus bacteria, and Gram-negative bacteria such as Escherichia coli or Streptomyces.
  • the introduction of the nucleic acid or the recombinant vector into bacteria is not particularly limited, and may be a known introduction method, for example, introduction method using competent cells or protoplasts (COHEN, SN et al, Proc Natl Acad Sci U S A, 1972, Vol.69, p.2110-4, DUBNAU, D. et al, J Mol Biol, 1971, Vol.56, p.209-21, CHANG, S. et al, Mol Gen Genet, 1979, Vol. 168, p.111-5).
  • yeast cells include cells belonging to Saccharomyces such as Saccharomyces cerevisiae or Saccharomyces reteyveri, cells belonging to Schizosaccharomyces, cells belonging to the genus Pichia, cells belonging to the genus Krivellomyces, and the like.
  • the introduction of the nucleic acid or the recombinant vector into yeast is not particularly limited, but may be a known introduction method, for example, electroporation method, spheroblast method, lithium acetate method (HINNEN, A. et al, Proc Natl Acad Sci U S A, 1978, Vol.75, p.1929-33, ITO, H. et al, J Bacteriol, 1983, Vol.153, p.163-8).
  • Examples of other fungal cells include cells belonging to the genus Aspergillus, Neurospora, Fusarium, or Trichoderma.
  • a recombinant host cell can usually be obtained by integrating a nucleic acid or a recombinant vector into a host chromosome. Integration of a nucleic acid or a recombinant vector into a host chromosome can be performed by homologous recombination or heterologous recombination according to a known method.
  • a recombinant vector or baculovirus is co-introduced into the insect cells to obtain the recombinant virus in the culture supernatant of the insect cells, and then the recombinant virus is further infected with the insect cells, Protein can be expressed.
  • insect cells include Sf9, Sf21, HiFive (Life Technologies) and the like.
  • baculoviruses include outgrapha, californica, nuclea, polyhedronosis, and virus.
  • the method for co-introducing the recombinant gene introduction vector into the insect cell and the baculovirus for preparing the recombinant virus is not particularly limited, and may be a known introduction method, such as the calcium phosphate method or the lipofection method. It is done.
  • mammalian cells examples include HEK293 cells, VERO cells, HepG2 cells, HeLa cells, COS cells, BHK cells, CHL cells, or CHO cells.
  • cells obtained from animal subjects including humans can also be used as cell preparations that are reintroduced into animals including humans after introduction of nucleic acids or recombinant vectors.
  • Examples of such cells include skin cells, bone marrow cells, nerve cells, hepatocytes, pancreatic cells, somatic cells such as pancreatic cells, retinal cells, ES cells, iPS cells, other stem cells, cells derived from these stem cells, and the like.
  • These mammalian cells include cases where they have a therapeutic effect and cases where they have no therapeutic effect.
  • the targeted in vivo cells can contain a modified protein.
  • transgenic mice All of the above cells, and tissues and organisms (for example, transgenic mice) containing the cells fall within the scope of the description of “recombinant host” used in the present embodiment.
  • All diseased, defective or healthy cells are included in one embodiment of the invention in this manner.
  • ⁇ Recombinant expression> The above recombinant host cells are cultured in an appropriate nutrient medium under conditions that allow expression of exogenous DNA fragments or genes containing the nucleic acid sequence of the introduced modified protein.
  • an appropriate nutrient medium under conditions that allow expression of exogenous DNA fragments or genes containing the nucleic acid sequence of the introduced modified protein.
  • isolating and purifying a modified protein or a fusion protein containing the same from the culture those skilled in the art can use protein isolation and purification methods commonly used.
  • the fluorescent protein complex can emit fluorescence. Therefore, a modified protein or a fusion protein thereof according to an embodiment of the present invention, a nucleic acid encoding the modified protein, a fluorescent protein complex, a fluorescent test material, or a fluorescence-related substance derived from at least one of them ( Hereinafter, it may be referred to as “modified protein or the like”), and can be used for any application utilizing the fluorescence characteristics used in fluorescent substances such as existing fluorescent proteins and fluorescent dyes.
  • reporter or tracer protein for cell identification, cell sorting, cell purification, gene expression analysis, labeling of target substances (cells, proteins, compounds, etc.), behavior tracking of target substances (pharmacokinetics, etc.)
  • target substances cells, proteins, compounds, etc.
  • behavior tracking of target substances pharmacokinetics, etc.
  • Applications can be mentioned, but the invention is not limited to these.
  • This use includes the use described in the literature described in the above-mentioned background art column, for example.
  • modified proteins were created based on proteins originally possessed by organisms including humans, there is a probability that even when administered to organisms including humans, humoral immunity or cellular immunity is not induced. It can be said that it is more useful than known fluorescent genes because of its advantages such as high safety and high safety.
  • the above-mentioned modified protein having high safety can be administered into the body of living organisms including humans, and fluorescent reagents (in vivo tracers, in vivo reporters) in in vivo fluorescent bioimaging and humans
  • the present invention can be used for all purposes such as purification of cells prepared for the purpose of administering to living organisms, such as purification of cells and advantages in utilizing fluorescence properties.
  • Nucleic acid encoding the above modified protein that is highly safe and applicable to the uses described above and below a recombinant vector having the nucleic acid, a modified protein, a fusion protein of the modified protein, and a fluorescent protein complex A body, a fluorescent test material, or a recombinant host containing at least one of these can be applied to a subject including a human and used in a disease prevention / treatment method, a diagnostic method, and a test method.
  • a nucleic acid encoding a modified protein, a recombinant vector having the nucleic acid, a modified protein, for use in disease prevention, treatment, diagnosis, or testing A composition is provided comprising a fusion protein of the modified protein, a fluorescent protein complex, a fluorescent test material, or a recombinant host comprising at least one of these.
  • the use of the above modified protein includes purification of cells. That is, it is possible to purify target cells by selecting target cells and unnecessary cells using the fluorescence derived from the modified protein as an index (ie, purifying target cells by positive selection or negative selection). In particular, it is expected to be useful for isolating and purifying only target cells obtained by inducing differentiation of stem cells such as ES cells and iPS cells. Examples of methods for selecting, sorting, isolating and purifying target cells include flow cytometry including fluorescence activated cell sorting (FACS) and fully automated single cell isolation analyzer (As One cell picking system, manufactured by ASONE) ), Can be performed by a fluorescence microscope or the like, but is not limited thereto.
  • FACS fluorescence activated cell sorting
  • ASONE fully automated single cell isolation analyzer
  • an antibody against an antigen specifically expressed on the cell surface of a target cell or an unnecessary cell is fused with the modified protein, or cells as shown in Tables 1A and 1B above. ⁇ Identify or select target cells or unwanted cells that emit fluorescence by introducing a recombinant vector in which a nucleic acid encoding the modified protein is linked to a tissue-specific promoter or a developmental stage-specific promoter into the cell. It is possible to purify the cells.
  • the target cells purified in this way include cells having therapeutic efficacy, but are not limited thereto.
  • One embodiment of the present invention also provides a method for treating, diagnosing or examining a disease using cells having therapeutic efficacy thus purified, or a pharmaceutical composition for treating, diagnosing or examining a disease. It also includes things.
  • a tracer that tracks the pharmacokinetics of therapeutic agents (including compounds and cells). For example, it is possible to fuse or bind a therapeutic agent to a modified protein and to follow fluorescence as an indicator.
  • fluorescent reagents in in-vitro or in-vivo fluorescent bioimaging for diagnosis.
  • diagnostic applications such as the identification of the presence or absence of tumor cells or pathogenic cells, etc. using fluorescence as an indicator by fusing cells / tissue-specific antibodies such as tumors and pathogenic cells, ligands, receptors, etc. to modified proteins can be used.
  • biosensors in prokaryotic or eukaryotic cells include as biosensors in prokaryotic or eukaryotic cells, eg, Ca 2+ ion indicators, pH indicators, phosphorylation indicators, or other ions (eg, magnesium, sodium, potassium, chloride or halogen).
  • a fluorescent indicator For example, when detecting Ca 2+ ions, a confocal microscope shows the movement from the cytosol to the plasma membrane for a fusion of a protein containing an EF motif such as calmodulin, valve albumin, recoverin, or calcineurin with a modified protein. It is monitored by observation, and the EF hand-containing protein at that time can be used as a fluorescent indicator of intracellular Ca 2+ .
  • the modified protein is used as a marker for whole cells to detect changes in multicellular reorganization and migration, such as changes in cell migration, wound healing, or neurite outgrowth through angiogenesis by endothelial cells. It can be used.
  • the modified protein according to the above embodiment can be used as, for example, a fluorescent indicator of cell activity in signal transduction. It is also used for screening used as a marker fused to a peptide (for example, target sequence) or a protein (for example, antibody, ligand, receptor, etc.) that detects a positional change (transfer of transcription factor, etc.) in a cell. It is possible. High content for detecting co-localization of other fluorescent fusion proteins using the modified protein as a localization marker (for example, as a fluorescent indicator of intracellular fluorescent protein or peptide movement) or as a marker alone It can also be used in screening (HCS).
  • it can be used as a transcription reporter for drug discovery, in which case it is possible to detect promoters (eg, NF ⁇ B, STAT, Smad, ER, etc.) in signal transduction pathways .
  • promoters eg, NF ⁇ B, STAT, Smad, ER, etc.
  • it can be used as a secondary information transmitter by fusing the modified protein to a specific domain such as SH2 domain or SH3 domain.
  • it can be used as an in vivo fluorescent label for organelles and cells and a fluorescent label for tracking their transport, that is, a tracer protein.
  • the modified protein can be used as an in vivo marker in genetically modified organisms.
  • the method can be used in research and development for gene therapy such as examining the expression efficiency of a transgene.
  • FRET fluorescence resonance energy transfer
  • One embodiment of the present invention includes a nucleic acid encoding the modified protein, a recombinant vector containing the nucleic acid, a modified protein that is a translation product of the nucleic acid, a fusion protein of the modified protein, a fluorescent protein complex, a fluorescence Compositions comprising one or more of a test material or a recombinant host having at least one of these are provided. Also provided by one embodiment of the present invention is a composition for use in one or more of the applications described above.
  • the composition according to an embodiment of the present invention can be provided as a reagent composition or a pharmaceutical composition, and in the case of a pharmaceutical composition, a pharmaceutically acceptable carrier, excipient, or dilution.
  • This pharmaceutical composition can be used for humans or animals in human or veterinary medicine.
  • Pharmaceutically acceptable carriers, excipients, or diluents are well known to those skilled in the art, and an appropriate substance can be arbitrarily selected according to the administration route and intended use.
  • the pharmaceutical composition may also include any suitable binder, lubricant, suspending agent, coating agent, solubilizer, etc. as or in addition to the carrier, excipient or diluent.
  • preservatives, stabilizers, dyes, or flavoring agents can be included in the pharmaceutical composition.
  • a composition comprising a pharmaceutical composition can be administered by various modes of administration including systemic administration, local administration, or localized administration, depending on the intended use.
  • Any suitable mode of administration can be employed.
  • subcutaneous injection intradermal injection, intramuscular injection, intravenous injection, intraperitoneal injection, intrathecal injection, intracardiac injection, intratumoral injection, intravaginal injection, intrapulmonary injection, intranasal injection, intratracheal injection, blood vessel Administration by injection, such as internal injection, intraarterial injection, intracoronary injection, intraventricular injection, percutaneous (local) injection, or direct injection into lymph nodes.
  • compositions comprising the above pharmaceutical compositions can also be administered via mucosal routes such as oral / dietary routes, nasal routes, intratracheal routes, intravaginal routes, or rectal routes.
  • a composition containing the above pharmaceutical composition for example, diagnosis of a disease or pharmacokinetics of a test substance can be confirmed.
  • the disease can be treated with the cells, for example, by administering a pharmaceutical composition comprising therapeutically effective cells purified with a flow cytometer.
  • a composition comprising a therapeutically effective amount of the above pharmaceutical composition may be administered to a patient in need of treatment for a disease.
  • the reagent composition may be, for example, a reagent used for a fluorescent examination for research, or may be used for an in vitro test, a cell test, or a tissue test.
  • kits for use in one or more of the applications described above are also provided by one embodiment of the present invention.
  • the kit typically includes a construct constituting a vector containing an element for expressing the modified protein, for example, a nucleic acid sequence encoding the modified protein.
  • the components of the kit are typically present in a suitable storage medium (eg, a buffer solution, etc.) in a suitable container.
  • the kit also includes a number of different vectors that each encode the modified protein.
  • the vector is designed for expression under different circumstances or under different conditions, for example the vector is designed for constitutive expression comprising a strong promoter for expression in mammalian cells, or And a promoter-free vector having a large number of cloning sites for insertion of a promoter and whose expression is uniquely regulated.
  • the vector includes instructions for practicing any embodiment of the invention.
  • Dihydroorotate dehydrogenase is a widely preserved enzyme from Escherichia coli to multicellular organisms, and it converts dihydroorotic acid (DHO) to orotic acid, a pyrimidine biosynthetic pathway (uracil synthesis pathway).
  • DHO dihydroorotic acid
  • FMN flavin mononucleotide
  • LIU flavin of vitamin B2 derivative as a coenzyme
  • Non-patent document 4 describes an in vitro binding assay between FMN and DHODH that utilizes the property of FMN emitting green fluorescence. In vivo, it has not been known that endogenous DHODH and exogenous DHODH emit green fluorescence.
  • the “fluorescent DHODH” is a green fluorescence that can be detected stably by modifying the amino acids of DHODH inherent in all living organisms including humans (including animals, plants, and microorganisms) themselves. Including those that emit. Fluorescent DHODH does not necessarily fluoresce itself, but only when a complex with a cofactor or substrate is formed, a protein having such a characteristic that the complex as a whole fluoresces. Including.
  • the amino acid modification is, for example, modification of one or more amino acids in the interaction region of DHODH that interacts with FMN or DHO.
  • DHODH that interacts with FMN or DHO.
  • the 12 interaction regions confirmed by the simulation are preserved across species as shown in FIG.
  • the above 12 interaction regions are the interaction region between 6 FMN and DHODH, the interaction region between 4 DHO and DHODH, and the interaction region between both FMN and DHO and DHODH.
  • the amino acid modification is, for example, modification of at least one of the interaction regions.
  • the amino acid modification may be, for example, an amino acid modification corresponding to glycine at position 305 of hDHODH.
  • the amino acid corresponding to the 305th glycine can be confirmed by comparing the sequences of hDHODH and other organism-derived DHODH using BLAST or the like.
  • the amino acid corresponding to the glycine at position 305 includes the DHODH amino acid derived from other organisms corresponding to the glycine at position 305 of hDHODH in the comparison with BLAST and the like.
  • “corresponding amino acid” or “corresponding region” may be determined based on the position of the amino acid after sequence comparison, as in the above example.
  • the fluorescent DHODH emits green fluorescence that can be stably detected by the above modification, and preferably has a modified amino acid sequence in each interaction region described in Table 5. More preferably, the modified amino acid sequences of these interaction regions are combined with the modified amino acid sequences of two or more interaction regions, and more preferably the combinations of modified amino acid sequences described in Table 4. It is.
  • the amino acid sequence of DHODH other than the above interaction region may be deleted, substituted, inserted, or added from one to several amino acids as long as it emits green fluorescence.
  • the signal sequence may be deleted.
  • the range of “1 to several” in “deletion, substitution, insertion or addition of 1 to several amino acids” is not particularly limited, but for example, 1 to 20, preferably 1 to 10, More preferably, it means 1 to 7, more preferably 1 to 5, particularly preferably about 1 to 3.
  • Example 3 In Example 3 etc. described later, experimental data when the DHODH gene is modified are described.
  • the modified form of this modified DHODH is a modification of 1 to 3 of 3 to 7 consecutive amino acids in the interaction region with FMN or DHO, and the interaction region is scattered, Antibody production and induction of cytotoxic T cells are thought to be particularly difficult to cause.
  • the antigen is decomposed into peptides and bound to HLA class I and HLA class II molecules and presented to the T cells.
  • This peptide functions as an antigen to produce antibodies and induce cytotoxic T cells. Must meet two conditions.
  • the peptide must be derived from a different species and not an autoantigen.
  • autoantigens all self-proteins, sugars, lipids, etc.
  • immune tolerance does not occur because immune tolerance is established through education within the thymus.
  • the peptide needs to be embedded and bound in the peptide-containing groove within the HLA class I and HLA class II antigens.
  • the modified DHODH described in the examples below when only one to three consecutive amino acids in the interaction region of DHODH, which is a self protein, are mutated, the antigenicity is remarkably increased. Low. Furthermore, the modified DHODH described in the Examples below includes a peptide structure that binds to HLA class I molecules and HLA class II molecules in the nearby 9 to 30 amino acid sequences including the mutated amino acids.
  • ⁇ fluorinated DHODH '' and ⁇ fluorinated DHODH '' are an interaction region in DHODH that interacts with FMN, an interaction region in DHODH that interacts with DHO, or both FMN and DHO.
  • Fluorescent DHODH was able to create a fluorescent gene by modifying mDHODH not only in humans, but also in mice, using the same principle, other animals, It is possible to create a fluorescent gene from DHODH possessed by organisms such as plants and microorganisms.
  • the wild-type DHODH derived from fluorescent DHODH may be derived from any species.
  • the amino acid sequence and base sequence of DHODH derived from such a biological species for example, in the case of animal origin, human (Homo sapiens, Genbank Accession No. NP_001352, NM_001361), monkey (Macaca mulatta, Genbank Accession No. XP_001104448, XM_001104448), chimpanzees (Pan troglodytes, Genbank Accession No. XP_001171601, XM_00117160), cattle (Bos taurus, Genbank Accession No.
  • NP_001015650, NM_001015650 rabbits (Oryctolagus cuniculus, Genbank_Accession Matt Genbank Accession No. NP_001008553, NM_001008553), mice (Mus musculus, Genbank Accession No. XP_064430, XM_020046), frogs (Xenopus laevis, Genbank Accession No. NP_001085026, NM_001091557), etc. thaliana, Genbank Accession No. NP_568428, NM_122236), rice (Oryza sativa) Japonica Group, Genbank Accession No.
  • NP_001054255, NM_001060790 Corn (Zea maymay, Genbank Accession No. NP_001152058, NM_001158586), Sesame (Ricinus communis, Genbank Accession No.
  • cloning may be performed by a method known to those skilled in the art based on the known DHODH base sequence or amino acid sequence.
  • a fluorescent gene having a detectable fluorescence intensity can be created by modifying the amino acid in the interaction region of the test protein.
  • Candidate genes include, but are not limited to, the proteins listed in Table 11A or B.
  • flavoproteins that interact with FMN for example, Dihydrolipoamide dehydrogenase, Acyl CoA dehydrogenase, etc. can be mentioned, but are not limited thereto.
  • A-2) The nucleic acid according to (A-1), wherein at least one region of the interaction regions is modified.
  • A-3) The nucleic acid according to any one of (A-1) to (A-2), wherein there are twelve interaction regions.
  • A-4) The above 12 interaction regions are the interaction region between 6 FMNs and DHODH, the interaction region between 4 DHOs and DHODH, and the two interaction regions between FMN and DHO and DHODH.
  • the above 12 interaction regions are any of the above (A-3) to (A-4), which is a region having 12 to 3 consecutive amino acids as shown in FIG.
  • the amino acid modification is any one or more of the modified amino acid sequences in each interaction region described in Table 5, according to any one of (A-1) to (A-5) above Nucleic acid.
  • the amino acid modification is a combination of the modified amino acids in each interaction region shown in Table 5 with the modified amino acid sequences in two or more interaction regions.
  • the nucleic acid according to any one of (A-8) The nucleic acid according to any one of (A-6) to (A-7) above, wherein the amino acid sequence is a combination of modified amino acid sequences described in Table 4.
  • the wild type DHODH is one or more wild type DHODH selected from animal origin, plant origin, and microorganism origin, any one of (A-1) to (A-8) above Nucleic acids.
  • the animal-derived wild-type DHODH is one or more wild-type DHODH selected from human-derived, monkey-derived, bovine-derived, rabbit-derived, dog-derived, rat-derived, mouse-derived, and frog-derived,
  • A-12 The nucleic acid according to (A-11) above, wherein the peptide is one or more peptides selected from those localized in the cell, on the cell surface, and outside the cell.
  • A-13 The nucleic acid according to any one of (A-11) to (A-12) above, wherein the peptide is one or more selected from an antibody, an enzyme, a ligand, a receptor, and a peptide tag .
  • a recombinant vector comprising the nucleic acid according to any one of (A-1) to (A-13) above.
  • A-15 A recombinant vector comprising an expression control sequence operably linked to the nucleic acid described in (A-1) to (A-13) above.
  • A-18 The recombinant vector according to (A-17) above, wherein the constitutive promoter is one or more promoters selected from viral promoters and gene promoters derived from animals and plants.
  • the inducible promoter is one or more promoters selected from chemical promoters such as alcohol, steroids, and tetracycline, and physical promoters such as heat, light, and ionizing radiation,
  • A-17 A recombinant vector according to 1.
  • A-20 The recombinant vector according to (A-17) above, wherein the cell / tissue-specific promoter and the developmental stage-specific promoter are one or more promoters selected from the promoters described in Table 1A or 1B.
  • (A-22) Translation product of nucleic acid according to any one of (A-1) to (A-13) above and translation produced by the recombinant vector according to any one of claims 1 to 21 Fluorescent DHODH or fusion protein containing one or more translation products selected from the products.
  • (A-23) The fluorescent DHODH protein or fusion protein thereof according to (A-19), which is bound to one or more substances selected from nucleic acids other than the fluorescent DHODH, compounds, and other substances .
  • A-24 The fluorescent DHODH or fusion protein thereof according to (A-23) above, wherein the nucleic acid, compound, or other substance labels the protein according to (A-23).
  • A-25 the nucleic acid according to any one of (A-1) to (A-13) above, the recombinant vector according to any one of (A-14) to (A-21) above, And a recombinant host comprising one or more proteins selected from the proteins described in any one of (A-22) to (A-24) above.
  • A-26 The recombinant host according to (A-25) above, wherein the recombinant host is one or more hosts selected from cells, tissues, organisms, and their progeny.
  • A-27 The recombinant host according to (A-26) above, wherein the tissue or its progeny contains the cell.
  • A-28 The recombinant host according to (A-27) above, wherein the organism comprises one or more selected from the cells and the tissue.
  • A-29 The above cell or its progeny is one or more cells selected from ES cells, iPS cells, somatic stem cells, other stem cells, and cells derived therefrom or progeny thereof (A- 26) A recombinant host according to any one of (A-28).
  • the method comprising the step of introducing into the cell one or more substances.
  • A-31) The method according to (A-30) above, further comprising a step of identifying, sorting, or purifying cells by a flow cytometer including fluorescence activated cell sorting (FACS).
  • FACS fluorescence activated cell sorting
  • A-32) The above cells (A-30) to (A-), wherein the cells are one or more cells selected from ES cells, iPS cells, somatic stem cells, other stem cells, and cells derived therefrom.
  • A-33) The method according to any one of (A-30) to (A-32), wherein the cell is one or more cells selected from plants and microorganisms.
  • the animal-derived cell is one or more cells selected from human origin, monkey origin, bovine origin, rabbit origin, dog origin, rat origin, mouse origin, and frog origin, and plant origin is derived from Arabidopsis thaliana
  • (A-36) The nucleic acid according to any one of (A-1) to (A-13) above, for identifying, sorting, or purifying cells using the fluorescence of green fluorescent DHODH as an index, 1 selected from the recombinant vector according to any one of (A-14) to (A-21) above and the protein according to any one of (A-22) to (A-24) above A composition comprising the above substances.
  • (A-37) The cell is the nucleic acid according to any one of (A-1) to (A-13) above, or the nucleic acid according to any one of (A-14) to (A-21) above.
  • composition Any one of (A-36) to (A-37) above, wherein the cells are identified, sorted, or purified by a flow cytometer including fluorescence activated cell sorting (FACS).
  • FACS fluorescence activated cell sorting
  • the animal-derived cell is one or more cells selected from human origin, monkey origin, cow origin, rabbit origin, dog origin, rat origin, mouse origin, and frog origin, and plant origin is derived from Arabidopsis thaliana
  • the composition according to (A-40) above which is one or more cells selected from rice, corn, and castor bean.
  • A-42 A composition comprising cells identified, sorted, or purified by the method according to any one of (A-30) to (A-34) above.
  • A-43 A prophylactic / therapeutic method using cells identified, selected, or purified by the method according to any one of (A-30) to (A-34) above.
  • A-44) A diagnostic method using cells identified, selected, or purified by the method according to any one of (A-30) to (A-34) above.
  • A-45 A test method using cells identified, sorted, or purified by the method according to any one of (A-30) to (A-34) above.
  • A-46) The composition according to any one of (A-35) to (A-42), wherein the composition further comprises a pharmaceutically acceptable carrier or excipient.
  • A-47 The composition according to any one of (A-35) to (A-42) and (A-46) above for preventing / treating a disease.
  • A-48 The composition according to any one of (A-35) to (A-42) and (A-46) above for diagnosing a disease.
  • A-49 The composition according to any one of the above (A-35) to (A-42) and (A-46) for examining a disease.
  • A-50 A method for producing the composition according to any one of (A-35) to (A-42) and (A-46) to (A-49).
  • A-51) For producing the composition according to any one of (A-35) to (A-42) and (A-46) to (A-49) above, (A-1 ) To (A-13). Use of the nucleic acid according to any one of (A-13).
  • A-52 For producing the composition according to any one of (A-35) to (A-42) and (A-46) to (A-49) above, (A-14 Use of the recombinant vector according to any one of (A) to (A-21).
  • A-53 For producing the composition according to any one of (A-35) to (A-42) and (A-46) to (A-49) above, (A-22 Use of the protein according to any one of (A-24).
  • (A-54) (A-25) to (A-29) for producing the composition according to any one of (A-35) and (A-46) to (A-49) ) Use of a recombinant host according to any one of (A-55) The above (A-30) to (A-34) for producing the composition according to any one of (A-35), (A-46) to (A-49) ) Use of cells identified, sorted, or purified by the method according to any one of (1).
  • (A-56) A method for fluorescentizing DHODH by modifying one or more amino acids present in the interaction region of wild-type DHODH with FMN or DHO.
  • A-58 The method according to any one of (A-56) to (A-57) above, wherein the amino acid modification is modification of at least one of the interaction regions.
  • A-59 The method according to any one of (A-56) to (A-58), wherein the interaction region is present at 12 sites.
  • the above 12 interaction regions are the interaction region between 6 FMNs and DHODH, the interaction region between 4 DHOs and DHODH, and the two interaction regions between FMN and DHO and DHODH.
  • (A-61) Any of the above (A-59) to (A-60), wherein the 12 interaction regions are regions having 12 to 3 consecutive amino acids shown in FIG.
  • the method according to one.
  • (A-62) The amino acid modification described in any one of (A-56) to (A-61) above, which is any one or more of the modified amino acid sequences in each interaction region described in Table 5.
  • Method. (A-63) The amino acid modification described above is a combination of the modified amino acids in each interaction region described in Table 5 with the modified amino acid sequences in two or more interaction regions, (A-56) to (A-62) ).
  • (A-64) The method according to any one of (A-62) to (A-63) above, wherein the amino acid sequence is a combination of modified amino acid sequences described in Table 4.
  • wild-type DHODH is one or more wild-type DHODH selected from animal origin, plant origin, and microorganism origin the method of.
  • the animal-derived wild-type DHODH is one or more wild-type DHODH selected from human-derived, monkey-derived, bovine-derived, rabbit-derived, dog-derived, rat-derived, mouse-derived, and frog-derived, The method according to (A-64) above, wherein the plant is one or more wild-type DHODH selected from Arabidopsis thaliana, rice, corn, and castor bean.
  • A-68 A nucleic acid encoding fluorescent DHODH produced by the method according to any one of (A-57) to (A-66) above.
  • A-69 Any one of (A-67) to (A-68) above, wherein the nucleic acid is operably linked to a nucleic acid encoding an oligopeptide or polypeptide other than fluorescent DHODH. The nucleic acid described in 1.
  • A-70 The nucleic acid according to (A-69) above, wherein the peptide is one or more peptides selected from those localized in the cell, on the cell surface, and outside the cell.
  • A-71 The nucleic acid according to any one of (A-69) to (A-70), wherein the peptide is one or more selected from an antibody, an enzyme, a ligand, a receptor, and a peptide tag. .
  • A-72 A recombinant vector comprising the nucleic acid according to any one of (A-67) to (A-71) above.
  • A-73 A recombinant vector comprising an expression control sequence operably linked to the nucleic acid described in (A-67) to (A-71) above.
  • A-76 The recombinant vector according to (A-75) above, wherein the constitutive promoter is one or more promoters selected from viral promoters and gene promoters derived from animals and plants.
  • the inducible promoter is one or more promoters selected from chemical promoters such as alcohol, steroids, and tetracycline, and physical promoters such as heat, light, and ionizing radiation.
  • a recombinant vector according to 1. (A-78) The recombinant vector according to (A-75) above, wherein the cell / tissue-specific promoter and the developmental stage-specific promoter are one or more promoters selected from the promoters described in Table 1A or 1B .
  • A-81 The fluorescent DHODH or a fusion protein thereof according to (A-80), which is bound to one or more substances selected from nucleic acids, compounds, and other substances other than the fluorescent DHODH.
  • A-82) The fluorescent DHODH or fusion protein thereof according to (A-81) above, wherein the nucleic acid, compound, or other substance labels the protein according to (A-80).
  • A-83) the nucleic acid according to any one of (A-67) to (A-71) above, the recombinant vector according to any one of (A-72) to (A-79) above, And a recombinant host comprising one or more proteins selected from the proteins according to any one of (A-80) to (A-82) above.
  • A-84 The recombinant host according to (A-83) above, wherein the recombinant host is one or more hosts selected from cells, tissues, organisms, and their progeny.
  • A-85 The recombinant host according to (A-84) above, wherein the tissue or its progeny contains the cell.
  • A-86 The recombinant host according to (A-84) above, wherein the organism comprises one or more selected from the cells and the tissue.
  • A-87 The cell or its progeny is one or more cells selected from ES cells, iPS cells, somatic stem cells, other stem cells, and cells derived therefrom or progeny thereof (A-87).
  • the fluorescent protein is not limited to DHODH, and may be, for example, one or more proteins selected from the group consisting of the above-mentioned DHODH and the like.
  • the FMN described in (A-1) to (A-87) may be a cofactor other than FMN, and DHO may be a substrate other than DHO.
  • the interaction regions described in (A-3) to (A-8) can be specified for each protein using any of the existing methods such as the above-described molecular simulation software.
  • Biliverdin reductase is an enzyme present in animals, and generally reduces biliverdin (BV), a heme degradation product decomposed by heme oxygenase, using NAD (P) H as a coenzyme. It is an enzyme that converts to bilirubin (BR). BVR is known to have BVR-A, which is expressed and functioning in adults, and BVR-B, which is expressed and functioning in fetuses. Both convert heme into BR and excrete it from the body. It is thought to function in the process (Cunningham, O. et al, J Biol Chem, 2000, Vol. 275, No. 25, p. 19009-17). It has not been conventionally known that endogenous BVR and exogenous BVR emit near-infrared fluorescence in vivo.
  • fluorescent BVR is a near-reduce that can be stably detected by modifying the amino acids of BVR inherent in all living organisms including humans (including animals, plants, and microorganisms) themselves. Including those that emit external fluorescence. Fluorescent BVR does not necessarily fluoresce itself, but only when a complex with a cofactor or substrate is formed, a protein having such a characteristic that the complex as a whole emits fluorescence. Including.
  • the amino acid modification is, for example, modification of one or more amino acids in the interaction region of BVR that interacts with NAD (P) H or BV.
  • NAD NAD
  • BV NAD
  • the amino acid modification is, for example, modification of one or more amino acids in the interaction region of BVR that interacts with NAD (P) H or BV.
  • the 10 interaction regions confirmed in the prior art document are conserved across species as shown in FIG.
  • the above 10 interaction regions are 6 amino acid regions interacting with NAD (P) H, 3 amino acid regions interacting with BV, and 1 NAD (P) H and BV.
  • the amino acid modification is, for example, modification of at least one of the interaction regions. When modifying a protein that interacts with BV, it is prefer
  • the fluorescent BVR emits near-infrared fluorescence that can be stably detected by the above modification.
  • the modified amino acid sequence is within each interaction region shown in FIG. More preferably, two or more interaction regions are modified, more preferably a combination of modified amino acid sequences described in Table 9 or 10.
  • Example 9 describes experimental data when the BVR-A gene was modified.
  • the amino acid sequence other than the interaction region may be deleted, substituted, inserted, or added as long as it emits near-infrared fluorescence.
  • a signal sequence such as a nuclear translocation signal sequence or a sequence that does not participate in fluorescence generation such as a DNA binding region is included, these sequences may be appropriately deleted or substituted.
  • BVR-A fluorescent in the near-infrared in Example 9 is located at a position where each interaction region is distant, and only a mutation is introduced into 1 to 4 amino acids. The antigenicity is considered to be extremely low.
  • fluorescent BVR and “fluorescent BVR” are an interaction region in BVR that interacts with NAD (P) H, an interaction region in BVR that interacts with BV, or NAD.
  • P NAD
  • P Fluorescence that can stably detect wild-type BVR that cannot stably detect fluorescence by modifying one or more amino acids in the interaction region in BVR that interacts with both H and BVR BVR modified to emit
  • the wild-type BVR derived from the fluorescent BVR may be derived from any biological species.
  • the amino acid sequence and base sequence of BVR derived from such biological species include human (Homo sapiens, Genbank Accession No. NP_000703, NM_000712), monkey (Macaca mulatta, Genbank Accession No. NP_001245073, NM_001258144), chimpanzee (Pan troglodytes, Genbank Accession No. JAA33413, GABE01011326), cattle (Bos taurus, Genbank Accession No.
  • NP_001091040, NM_001097571 rabbits (Oryctolagus cuniculus, Genbank 27 Accession ⁇ ⁇ ⁇ No. XP. NM_053850), mice (Mus musculus, Genbank Accession No. NP_080954, NM_026678), frogs (Xenopus laevis, Genbank Accession No. NP_001108283, NM_001114811), and the like.
  • cloning may be performed by a technique known to those skilled in the art based on the known BVR base sequence or amino acid sequence.
  • One embodiment of the present invention is a modified BVR.
  • This modified BVR preferably has a mutation in, for example, E96A and Y97F.
  • E96A and Y97F the reaction in which BVR reacts with BV to generate BR (red fluorescent material) is suppressed. Therefore, the modified BVR having a mutation in E96A and Y97F can easily detect near-infrared fluorescence stably.
  • B-1 A nucleic acid encoding BVR that has been fluorescentized by modifying one or more amino acids present in the interaction region of wild-type BVR with NAD (P) H or BV.
  • B-2) The nucleic acid according to (B-1), wherein at least one region of the interaction region is modified.
  • B-3) The nucleic acid according to any one of (B-1) to (B-2), wherein there are ten interaction regions.
  • B-4) The above 10 interaction areas are the interaction area between 6 NAD (P) H and BVR, the interaction area between 3 BV and BVR, and 1 NAD (P) H.
  • nucleic acid according to (B-3) above which comprises an interaction region between BV and BVR.
  • the 10 interaction regions are any one of the above (B-3) to (B-4), which is a region having 10 to 3 consecutive amino acids shown in FIG.
  • the nucleic acid according to one is any one of the above (B-1) to (B-5), wherein two or more of the interaction regions described in FIG. 14 are modified.
  • Nucleic acid. (B-7) The nucleic acid according to (B-6), wherein the amino acid sequence is a combination of modified amino acid sequences described in Table 9 or 10.
  • DHODH Dihydroorotate dehydrogenase gene was isolated from a Bacillus strain which is a green fluorescent soil bacterium by wild-type Bacillus DHODH , and the base sequence was determined (FIG. 1, SEQ ID NO: 1).
  • the amino acid sequence obtained from the nucleotide sequence shows about 81% homology with DHODH of Bacillus methanolicus MGA3 and Bacillus cereus G9241. (FIG. 2, SEQ ID NO: 3 and SEQ ID NO: 4, respectively).
  • the Bacillus DHODH (bDHODH) gene was subcloned into the bacterial expression vector pGEX4T-1 and the eukaryotic expression vector pCS2 +, and expressed in E. coli DH5 ⁇ strain and human cell HEK293 strain, respectively. As a result, it was confirmed that when Bacillus DHODH was expressed in DH5 ⁇ strain and HEK293 strain, green fluorescence was emitted in both strains (FIG. 3). This result indicates that Bacillus DHODH is a protein that emits green fluorescence.
  • Non-green fluorescent wild-type human DHODH The following experiment was conducted for the purpose of confirming whether wild-type human DHODH (hDHODH) emits green fluorescence similarly to Bacillus DHODH.
  • Example 2 In order to investigate the difference in green fluorescence between Bacillus DHODH and hDHODH, the region of interaction with 12 FMNs or dihydroorotic acid present in DHODH, we compared the homology of the amino acid sequence of Bacillus DHODH with that of hDHODH. (Fig. 6). As a result, humans had 74 amino acids on the N-terminal side that were longer than Bacillus, and although there were few identical amino acids, there were many places where they were substituted with homologous amino acids.
  • FMN dihydroorotate
  • DHO dihydroorotate
  • Example 3 Green fluorescence by amino acid modification of wild-type hDHODH
  • Example 3A Wild-type hDHODH green fluorescence by amino acid modification of the interaction region with FMN or DHO
  • the structure of the interaction region is considered to be important and directly interacts with FMN or DHO.
  • site-directed random mutagenesis was performed one by one in 12 interaction areas. At that time, wild type hDHODH / pGEX4T-1 or ⁇ 1-74 wild type hDHODH / pGEX4T-1 prepared in Reference Example was used. The site-directed random mutagenesis used Takara's prime star mutagenesis basal kit.
  • PCR uses the following primers, and a part of the PCR product is confirmed on an agarose gel band.
  • the annealing temperature was raised by 5 ° C., and when the band did not appear or was thin, the reaction was carried out by lowering the temperature by 5 ° C.
  • the remaining PCR product was transformed into DH5 ⁇ competent cells and overnight at 37 ° C on AmpAL-Broth plates. Fluorescent colonies were screened with a stereoscopic fluorescence microscope, green fluorescent colonies were grown and miniprepped, and plasmid DNA was extracted.
  • Primers used for 12 site-directed random mutagenesis are as follows. Primer for interaction region No.1 HDH-118mu120-U1 (SEQ ID NO: 12), HDH-118mu120-D1 (SEQ ID NO: 13) Primer for interaction region No.2 HDH-143mu145-U1 (SEQ ID NO: 14), HDH-143mu145-D1 (SEQ ID NO: 15) Primer for interaction region No.3 HDH-210mu212-U11 (SEQ ID NO: 16), HDH-210mu212-D1 (SEQ ID NO: 17) Primer for interaction region No.4 HDH-253mu255-U1 (SEQ ID NO: 18), HDH-253mu255-D1 (SEQ ID NO: 19) Primer for interaction region No.5 HDH-282mu284-U1 (SEQ ID NO: 20), HDH-282mu284-D1 (SEQ ID NO: 21) Primer for interaction region No.6 HDH-304mu30
  • Interaction region No.” indicates the site of the interaction region with FMN or DHO shown in FIG. 9, and “Directly interacting amino acids (positions)” indicates FMN shown in FIG. 7 and FIG. The amino acid directly interacting with DHO and the position of the amino acid are shown.
  • the “amino acid sequence of the interaction region” shows the amino acid sequence of each interaction region shown in FIG. 9, and the “amino acid sequence of the interaction region after modification” is The amino acid sequence of the interaction region of the clone that was green-fluorescent by amino acid modification of one interaction region is shown.
  • Table 2 it is shown that any amino acid sequence may be used for a plurality of interaction region amino acid sequences after modification in one interaction region No.
  • hDHODH emits green fluorescence by amino acid modification in at least one of the 12 interaction regions with the FMN or DHO.
  • the amino acid modification also indicates that hDHODH emits green fluorescence by modifying one or more amino acids out of 3 to 7 amino acids in each of the interaction regions.
  • hDHODH This fluorescence of hDHODH is closely related to fluorescence by cofactors or substrates, and the fluorescence mechanism is different from that of the conventionally known GFP family. Moreover, hDHODH has no homology with the GFP family. That is, the fluorescence mechanism found by the present inventors is classified into a category different from the fluorescence mechanism to which the GFP family belongs.
  • Example 3B In order to confirm whether the fluorescence intensity is enhanced by increasing the number of the interaction regions that perform the amino acid modification that enhances the fluorescence intensity, it was obtained from the colony emitting green fluorescence obtained in Example 3A. A mutant plasmid was extracted, and a second site-directed random mutagenesis was performed in the same manner as in Example 3A. The mutant plasmid was extracted from the clone with enhanced fluorescence intensity, and the process of performing the third site-directed random mutagenesis was repeated.
  • “Number of modification sites” indicates the number of interaction regions modified with amino acids
  • “Interaction region No.” indicates the site of the interaction region with FMN or DHO shown in FIG. ”Indicates the combination of the modified interaction region numbers
  • “ Amino acid sequence of the interaction region after modification ” indicates the amino acid sequence of each interaction region of the clone that has been green-fluorinated by amino acid modification of multiple interaction regions.
  • “Fluorescence intensity” indicates the intensity of fluorescence of fluorescent DHODH. Table 4 shows that any one of the interaction regions after modification in one interaction region No. may have any amino acid sequence.
  • interaction regions No. 6 and No. 8 are amino acids that interact with FMN
  • No. 2, No. 11, and No. 12 are amino acids that interact with DHO
  • No. 5 is Contains amino acids that interact with both. Since No.5, No.6, and No.8 interact directly with FMN, which is a green fluorescent substance, the mutated amino acid has strong interaction with FMN that does not naturally emit green fluorescence in hDHODH. It is thought that the FMN is stabilized and the green fluorescence intensity is enhanced.
  • No.2, No.3, No.11, and No.12 are amino acids that interact directly with DHO, not FMN, so they directly affect FMN and participate in green fluorescence. It is hard to think. However, when site-directed random mutagenesis of these 12 interaction regions was performed, mutants emitting green fluorescence with hDHODH could be obtained at all locations.
  • FMN dehydrogenates as a coenzyme to convert DHO to orotic acid FMN and DHO are closest in structure. From these data, the following four possibilities can be considered as the reason why the green fluorescence intensity is enhanced by introducing a mutation in the amino acid in the amino acid region that interacts with DHO. 1. Because FMN and DHO exist in the vicinity, when the amino acid in the amino acid region that interacts with DHO is mutated, the position of DHO in hDHODH is slightly shifted, so the interaction with FMN is strong. Thus, the enhancement of green fluorescence intensity can occur because the FMN is stabilized. 2.
  • Table 5 shows a list of modified amino acid sequences involved in green fluorescence identified by a series of experiments in Example 3.
  • Interaction region No.” indicates the site of the interaction region with FMN or DHO shown in FIG. 9, and “Directly interacting amino acids (positions)” indicates FMN shown in FIG. 7 and FIG. The amino acid directly interacting with DHO and the position of the amino acid are shown.
  • the “amino acid sequence of the interaction region” shows the amino acid sequence of each interaction region shown in FIG. 9, and the “amino acid sequence of the interaction region after modification” is The amino acid sequence of the interaction region of a clone that is green-fluorescent by amino acid modification of one or more interaction regions is shown. Table 5 shows that any one of the interaction regions after modification in one interaction region No. may have any amino acid sequence.
  • Example 3 From the results of Example 3 above, it was revealed that hDHODH emits green fluorescence by amino acid modification in at least one of the 12 interaction regions.
  • the amino acid modification revealed that hDHODH emits green fluorescence by modifying one or more amino acids out of 3 to 7 amino acids in each of the interaction regions. Furthermore, it has been clarified that the fluorescence intensity is enhanced when the number of interaction regions for amino acid modification is increased.
  • wild-type mouse DHODH® did not emit fluorescence.
  • fluorescence intensity was enhanced by increasing the number of interaction regions for green amino acid modification and amino acid modification by amino acid modification at the above 12 sites in mDHODH (Table 6).
  • “number of modified sites” indicates the number of sites of interaction regions modified with amino acids
  • “interaction region No.” indicates the site of the interaction region with FMN or DHO in mDHODH shown in FIG.
  • “Modified amino acid sequence” indicates an amino acid sequence obtained by modifying the amino acid sequence of the interaction region for green fluorescence
  • “Combination” indicates a combination of the modified interaction region numbers
  • “Fluorescence intensity” indicates fluorescence DHODH The intensity of fluorescence is shown.
  • N-terminal deletion region indicates the amino acid region deleted from the N-terminal side of the fluorescent hDHODH
  • Fluorescence intensity indicates the fluorescence intensity of the fluorescent DHODH.
  • the fluorescent hDHODH used was obtained by modifying the interaction region No. 2 with CDP, No. 5 with VGSNT, No. 6 with MVD, and No. 8 with LFSA.
  • full-length fluorescent hDHODH, ⁇ 1-28 fluorescent hDHODH, ⁇ 1-41 fluorescent hDHODH, ⁇ 1-50 fluorescent hDHODH, and ⁇ 1-74 fluorescent hDHODH produced by changing the vector to pCS2 + are expressed in HEK293 cells.
  • the same fluorescence intensity was obtained as when expressed in the DH5 ⁇ strain.
  • green fluorescence was expressed in a granular form in HEK293 cells (FIG. 11). The reason why it is expressed in a granular form is considered to be that this granular green fluorescence is expressed in the outer mitochondrial membrane because the hDHODH protein is originally expressed in the outer mitochondrial membrane.
  • Example 6 Cell selection and cell purification using fluorescent DHODH
  • fluorescent DHODH In order to verify whether target cells can be selected and purified using green fluorescent DHODH, only HEK293 cells and PCS2 + with green fluorescent hDHODH / PCS2 + were introduced. The mixed cells were analyzed using a FACS Calibur (Becton, Dickinson and Company), excitation wavelength 488 nm, fluorescence wavelength 530 ⁇ 15 nm (FL1).
  • fluorescent hDHODH can be used for cell sorting and purification applications.
  • fluorescent hDHODH / pcDNA3.1 myc-His A was prepared, and myc-His tag fusion fluorescent hDHODH was expressed in HEK293 cells. It was confirmed that there was no effect and fluorescence was emitted (FIG. 13).
  • fluorescent hDHODH / pGEX4T-1 was prepared, and GST fusion fluorescent DHODH was expressed with DH5 ⁇ . As a result, green fluorescence was confirmed (data Is not shown).
  • Example 8 As described above, it has been clarified that DHODH emits fluorescence that can be stably detected by modifying the interaction region with FMN or DHO. If this principle is used, it is considered that a fluorescent protein can be prepared for other proteins as long as the protein interacts with a cofactor or a substrate. Therefore, in the following examples, it was examined whether or not the fluorescence that can be stably detected would be generated by modifying the interaction region for the cofactor or substrate of another protein.
  • Example 9 Near-infrared fluorescence by amino acid modification of BVR-A By introducing mutation into the amino acid in the interaction region identified in Example 8, whether or not near-infrared fluorescence is emitted was examined.
  • E96A and Y97F mutant genes of BVR-A were prepared and cloned into pGEX4T-1 vector together with heme oxygenase1 (E96A_Y97F / pGEX4T-1).
  • heme oxygenase1 was introduced to synthesize BVR-A substrate BV from heme present in bacteria.
  • E96A_Y97F / pGEX4T-1 was transformed into bacteria DH5 ⁇ .
  • Random mutation was performed using the E96A_Y97F / pGEX4T-1 as a template. Random mutation was performed by site-directed random mutagenesis using the Takara prime star mutagenesis basal kit in the same manner as the green fluorescence of DHODH shown in Example 3. Random mutation PCR products were transformed into DH5 ⁇ competent cells, and single clones were cultured in L-Broth + Amp liquid medium until stationary phase. Resuspended in 5 mM Tris-HCl (pH 6.8).
  • This suspension was placed in a 96-well plate, and near-infrared fluorescence was detected at an excitation wavelength of 680 nm and a fluorescence wavelength of 720 nm using a near-infrared fluorescence detector ODYSSEY (manufactured by LI-COR).
  • ODYSSEY manufactured by LI-COR
  • “Number of modified sites” in Table 9 indicates the number of interaction regions modified with amino acids, and “Interaction region No.” indicates the site of the interaction region with BV or NAD (P) H shown in FIG.
  • “Modified amino acid sequence” indicates an amino acid sequence obtained by modifying the amino acid sequence of the interaction region for near-infrared fluorescence, and “combination” indicates the modified interaction region No.
  • the “fluorescence intensity” indicates the fluorescence intensity of the fluorescent BVR-A.
  • FIG. 15, and FIG. 16 show that BVR-A is near-infrared fluorescent by altering at least one of the interaction regions with substrate BV or coenzyme NAD (P) H. This indicates that increasing the number of interaction regions for amino acid modification increases the near-infrared fluorescence intensity.
  • Table 10 it is clear that near-infrared fluorescence of BVR-A is possible by modifying other interaction regions.
  • NAD (P) H a coenzyme
  • Tables 11A and B exemplify candidate proteins that can be fluorescentized, but these are merely examples, and are not limited thereto. Proteins that interact with FMN can be converted into fluorescent proteins by modifying amino acids that interact with FMN or cofactor / substrate, as FMN originally emits green fluorescence. Examples of such proteins that interact with FMN are listed in Table 11A or B as examples. FAD emits green fluorescence in the same way as FMN.
  • compounds having a porphyrin ring such as heme also emit fluorescence. Since vitamin A emits yellow-green fluorescence, it interacts with FAD, a compound having a porphyrin ring, and vitamin A.
  • the acting protein is also a candidate protein that can be fluorescentized. Examples of such candidate proteins are listed in Table 11A or B.
  • a protein that interacts with BV does not fluoresce, although BV itself has a porphyrin ring, but, like the near-infrared fluorescent BVR-A produced this time, alters the amino acid that interacts with BV or a cofactor / substrate. These can be converted into fluorescent proteins, and candidates for such proteins that interact with BV are listed in Table 11A or B as examples.
  • cobalamin has a porphyrin ring like BV, it does not fluoresce, but it can be converted into a fluorescent protein by altering the amino acid that interacts with cobalamin or cofactor / substrate. Examples of interacting protein candidates are listed in Table 11A or B.
  • a fluorescent gene derived from a living organism that is, a fluorescent gene derived from a subject can be provided by modifying a gene originally possessed by a living organism including human.
  • the fluorescent gene according to an embodiment of the present invention can be used for known uses used in fluorescent substances such as existing fluorescent genes and fluorescent compounds.
  • the fluorescent gene derived from the subject according to one embodiment of the present invention is very safe and less likely to cause immunotoxicity compared to existing fluorescent genes derived from other species, and is applied to living bodies. It is useful for the application. For example, it can be used as a marker gene when purifying cells such as stem cells.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biochemistry (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Pathology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Zoology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Food Science & Technology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Plant Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Epidemiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

Provided is a fluorescent substance which is highly safe when administered to a living body and is derived from a nucleic acid. A material for testing for fluorescence is used, which comprises at least one biological substance selected from the group consisting of: (a) a modified protein which is produced by modifying an amino acid residue located in an interaction region with a cofactor or a substrate, or a fusion protein thereof; (b) a nucleic acid which encodes the modified protein or the fusion protein thereof mentioned in item (a); (c) a fluorescence-imparted protein complex of the modified protein or the fusion protein thereof mentioned in item (a) and a cofactor or a substrate; and (d) a cell which carries at least one substance selected from the group consisting of the modified protein mentioned in item (a), the nucleic acid mentioned in item (b) and the fluorescence-imparted protein complex mentioned in item (c).

Description

新規蛍光物質New fluorescent material
 本発明は、ヒトを含む生物自身が元来有する遺伝子を改変させて得られる新規蛍光物質に関する。 The present invention relates to a novel fluorescent material obtained by modifying a gene originally possessed by organisms including humans.
 現在までに、種々の下等生物から蛍光遺伝子が単離、同定されている。蛍光遺伝子が単離、同定されている下等生物としては、例えば、オワンクラゲ(非特許文献1)、花虫類(特許文献1)、熱帯ウミシイタケ(特許文献2)、アザミサンゴ(特許文献3)、オオカワリイソギンチャク(特許文献4)、非オワンクラゲヒドロ虫(特許文献5)、コペポーダ(特許文献6)、スボミキクメイシ(特許文献7)等を挙げることができる。 To date, fluorescent genes have been isolated and identified from various lower organisms. Examples of lower organisms whose fluorescent genes have been isolated and identified include, for example, Owan jellyfish (Non-patent Document 1), flower worms (Patent Document 1), tropical Renilla (Patent Document 2), thrip coral (Patent Document 3), Examples include Okawari sea anemone (Patent Document 4), non-Owan jellyfish hydroworm (Patent Document 5), co-poda (Patent Document 6), Suboikuikumeishi (Patent Document 7) and the like.
 これら既存の蛍光遺伝子は、目的の遺伝子や、化合物、細胞、生物等を標識し、生体内でも生体外でも容易に検出することができるトレーサー遺伝子やレポーター遺伝子として、生化学や分子生物学、細胞生物学、医薬研究等の分野において頻繁に利用されている。既知の蛍光遺伝子で使用されている具体的な用途としては、例えば、特許文献8に記載される細胞の同定、選別、純化用途や、特許文献9に記載される遺伝子発現解析、目的物質(細胞、蛋白質、化合物等)の標識、目的物質の挙動トレース(体内動態等)、in vivoイメージング等のレポーター又はトレーサー蛋白質としての用途、蛋白質ゲル及びウェスタンブロット上の分子量マーカーとしての用途、FACS装置のキャリブレーションとしての用途、細胞及び組織への微小注入におけるマーカーとしての用途に使用することも可能であり、特許文献10に記載される目的遺伝子の細胞内トレース用途、特許文献11に記載される移植細胞の生体内トレース用途、特許文献12に記載される蛍光共鳴エネルギー移動(FRET)を応用したバイオセンサーとしての用途、特許文献13に記載される抗菌活性化合物のスクリーニング用途、特許文献14に記載されるDNA損傷物質の検出用途、特許文献15に記載される蛍光標識蛋白質と相互作用するリガンド(治療物質等)を同定する用途、特許文献16に記載される幹細胞分化後に起動するプロモーターに蛍光蛋白質をコードする核酸を連結した核酸を導入した幹細胞を用いた試験物質の毒理学的検査用途、特許文献17に記載される不死化ケラチノサイトの細胞マーカー用途や癌細胞マーカー用途、特許文献18に記載される腫瘍転移マーカー用途、特許文献19に記載される内視鏡蛍光観察における蛍光遺伝子としての用途、特許文献20に記載される遺伝子発現の全身外部光学イメージング用途、特許文献21に記載されるトランスジェニック動物を作製する際のマーカー遺伝子としての用途などを挙げることができる。 These existing fluorescent genes label target genes, compounds, cells, organisms, etc. as tracer genes and reporter genes that can be easily detected in vivo or in vitro as biochemistry, molecular biology, cell It is frequently used in fields such as biology and pharmaceutical research. Specific applications used in known fluorescent genes include, for example, cell identification, selection and purification applications described in Patent Document 8, gene expression analysis described in Patent Document 9, and target substances (cells) Labeling of proteins, compounds, etc.), traces of target substance behavior (pharmacokinetics, etc.), use as reporter or tracer protein for in vivo imaging, use as molecular weight markers on protein gels and Western blots, calibration of FACS equipment Can also be used as a marker for microinjection into cells and tissues, and can be used for intracellular traces of target genes described in Patent Document 10, transplanted cells described in Patent Document 11 As a biosensor that applies fluorescence resonance energy transfer (FRET) described in Patent Document 12 On the other hand, screening applications for antibacterial active compounds described in Patent Document 13, detection applications for DNA damaging substances described in Patent Document 14, ligands that interact with fluorescently labeled proteins described in Patent Document 15 (therapeutic substances, etc.) , For the toxicological examination of a test substance using a stem cell into which a nucleic acid encoding a fluorescent protein is linked to a promoter activated after stem cell differentiation described in Patent Document 16, described in Patent Document 17 Cell marker use and cancer cell marker use of immortalized keratinocytes, use as a tumor metastasis marker described in Patent Document 18, use as a fluorescent gene in endoscopic fluorescence observation described in Patent Document 19, Use of whole-body external optical imaging of described gene expression, marker marker for producing transgenic animals described in Patent Document 21 And the like can be mentioned use of as a child.
 近年、ES細胞やiPS細胞、体性幹細胞等の幹細胞を用いた細胞治療、siRNA等の核酸医薬、及び抗体等の蛋白質医薬、といったバイオ医薬が目覚ましい発展を遂げている。そして、研究レベル及び臨床レベルにおいて、これらバイオ医薬に用いられる細胞、組織、核酸、蛋白質が、レシピアントの生体内で生着、機能しているか否か、輸送経路、代謝経路等の生体内動態はどのようになっているのか、副作用を生じているのか、等を生体内で確認することが可能な安全性の高いレポーター、トレーサーとしての蛍光遺伝子の創出が求められている。 Recently, biopharmaceuticals such as cell therapy using stem cells such as ES cells, iPS cells, and somatic stem cells, nucleic acid drugs such as siRNA, and protein drugs such as antibodies have made remarkable progress. At the research level and clinical level, the cells, tissues, nucleic acids, and proteins used in these biopharmaceuticals are engrafted and functioning in the recipient's body, and the in vivo kinetics such as transport and metabolic pathways. There is a demand for the creation of a fluorescent gene as a highly safe reporter and tracer that can be confirmed in vivo such as how it is and whether it has side effects.
 バイオ医薬品以外、即ち低分子化合物医薬品についても、同様に、低分子化合物の生体内での挙動(局在、機能、輸送経路、代謝経路、副作用等)を生体内で確認することが可能な安全性の高いレポーター、トレーサーとしての蛍光遺伝子の創出が求められている。 Similarly, for non-biopharmaceuticals, that is, low-molecular-weight pharmaceuticals, it is also possible to confirm the behavior (localization, function, transport route, metabolic pathway, side effects, etc.) of low-molecular compounds in vivo. There is a demand for the creation of fluorescent genes as highly functional reporters and tracers.
 さらに、近年、特に注目されているES細胞やiPS細胞等の幹細胞を用いた細胞治療においては、通常これら幹細胞をそのまま治療に用いるのではなく、in vitro又はex vivoで目的細胞へ分化させ、この分化細胞を治療に利用する。しかしながら、この過程で分化しきれない細胞、即ち未分化細胞が混在することによって生じる癌化リスクの問題が、実用化への妨げとなっている。この癌化リスクを排除するためには、治療に用いる目的細胞中に、未分化な幹細胞の混入を防ぐことが必須条件とされている。また、癌化リスクを有する未分化細胞の除去だけでなく、目的細胞以外の不要な細胞を除去し、純度の高い目的細胞を得ることも細胞治療の実用化に向けて、重要な事項であること言うまでもない。 Furthermore, in cell therapy using stem cells such as ES cells and iPS cells, which have attracted particular attention in recent years, these stem cells are usually not directly used for treatment, but are differentiated into target cells in vitro or ex vivo. Differentiated cells are used for treatment. However, the problem of canceration risk caused by the mixture of cells that cannot be differentiated in this process, that is, undifferentiated cells, hinders practical application. In order to eliminate this risk of canceration, it is essential to prevent contamination of undifferentiated stem cells in target cells used for treatment. In addition to removing undifferentiated cells that are at risk of canceration, it is also important for the practical application of cell therapy to remove unnecessary cells other than the target cells and obtain high-purity target cells. Needless to say.
 そして、このような目的細胞の純化を行う有用な手段として、現在FACS等のフローサイトメトリーや誘電サイトメトリー、全自動1細胞単離解析装置等による細胞選別法が利用されている(特許文献22、23、24、非特許文献2)。一般的なFACSによる細胞選別法は、細胞表面マーカーに対する抗体等の結合分子に、低分子有機化合物(例えばFITC)や蛍光遺伝子産物(例えばオワンクラゲ由来GFP)等の蛍光物質で標識した標識化結合分子を、細胞と会合させることにより、蛍光を発する細胞のみを選別、純化する方法である(非特許文献3、4)。 As a useful means for purifying such target cells, currently, cell sorting methods using flow cytometry such as FACS, dielectric cytometry, fully automatic single cell isolation analyzer and the like are used (Patent Document 22). 23, 24, Non-Patent Document 2). A general cell sorting method by FACS is a labeled binding molecule in which a binding molecule such as an antibody against a cell surface marker is labeled with a fluorescent substance such as a low molecular weight organic compound (for example, FITC) or a fluorescent gene product (for example, GFP derived from Aequorea jellyfish). Is a method in which only cells that emit fluorescence are selected and purified by associating them with cells (Non-patent Documents 3 and 4).
 しかし、一般的なFACSによる細胞選別法を細胞治療に用いる場合に、安全性の観点から、標識化結合分子を細胞から解離する場合には、作業工程が増加するためにコスト高になったり、コンタミネーションの確率が高まる欠点があった。さらには、解離過程で少なからず細胞にダメージを与えるという欠点があった。一方で、非特許文献5、6には、細胞外で標識せずに、蛍光物質を細胞内で発現させてFACSにより目的細胞のみを選別、純化した幹細胞を用いた細胞治療の実用化に向けた研究が記載されている。 However, when a general FACS cell sorting method is used for cell therapy, from the viewpoint of safety, when the labeled binding molecule is dissociated from the cell, the cost increases due to an increase in work steps, There was a drawback that the probability of contamination increased. Furthermore, there was a drawback that the cells were damaged in the dissociation process. On the other hand, Non-Patent Documents 5 and 6 describe the practical application of cell therapy using stem cells that are not labeled outside the cell, but express the fluorescent substance inside the cell and select only the target cells by FACS. Studies have been described.
WO2000/034526WO2000 / 034526 WO2002/057451WO2002 / 057451 WO2003/033693WO2003 / 033693 WO2003/070952WO2003 / 070952 WO2004/044203WO2004 / 044203 WO2004/058973WO2004 / 058973 WO2004/111236WO2004 / 111236 WO95/07463WO95 / 07463 特許第4229469号Patent No. 4229469 WO95/07463WO95 / 07463 WO97/018841WO97 / 018841 特開2002-153279JP2002-153279 WO97/44481WO97 / 44481 WO98/044149WO98 / 044149 WO98/055873WO98 / 055873 WO1999/001552WO1999 / 001552 WO2000/003244WO2000 / 003244 WO2000/040274WO2000 / 040274 特開2000-300509号公報JP 2000-300509 A WO2001/071009WO2001 / 071009 特開2001-309736号公報JP 2001-309736 A 特開平5-76354号公報JP-A-5-76354 WO96/28732WO96 / 28732 特開2012-098063号公報JP 2012-098063 A WO2007/007777WO2007 / 007777
 しかしながら、上記文献に記載の蛍光遺伝子はすべて下等生物由来のものであるため、ヒトやマウス等の被検体に投与すると、生体免疫反応により、蛍光遺伝子の遺伝子産物である蛍光蛋白質を異物と認識し、拒絶反応等の有害事象が惹起されると考えられる(例えば、特許文献25, 段落[0004]、非特許文献7、8、9、10、参照)。さらには、蛍光遺伝子に対する抗体が産生されるとの報告もなされているため(例えば、非特許文献11、参照)、上記文献に記載の蛍光遺伝子はアナフィラキシーショックの危険性を有しており、また、2回目以降使用する際には蛍光強度が著しく減少して繰り返し使用することもできない。そのため、上記文献に記載の蛍光遺伝子は、生体内に投与する物質としては好ましいものとはいえない。 However, since all of the fluorescent genes described in the above documents are derived from lower organisms, when administered to a subject such as a human or mouse, the fluorescent protein, which is the gene product of the fluorescent gene, is recognized as a foreign substance by a biological immune reaction. Therefore, it is considered that an adverse event such as a rejection reaction is caused (see, for example, Patent Document 25, Paragraph [0004], Non-Patent Documents 7, 8, 9, and 10). Furthermore, since it has been reported that an antibody against a fluorescent gene is produced (for example, see Non-Patent Document 11), the fluorescent gene described in the above document has a risk of anaphylactic shock, and When used for the second time and thereafter, the fluorescence intensity is significantly reduced and it cannot be used repeatedly. Therefore, the fluorescent gene described in the above document is not preferable as a substance to be administered in vivo.
 上記文献に記載の蛍光遺伝子は、毒性が低いと考えられているものも含めて、全ての物質が細胞治療を行う被検体(ヒト患者を含む)由来のものではないため、被検体に投与した際に有害事象を惹起するという問題がある。 The fluorescent genes described in the above documents were administered to subjects because not all substances, including those considered to have low toxicity, are derived from subjects who undergo cell therapy (including human patients). There is a problem of causing an adverse event.
 本発明は上記事情に鑑みてなされたものであり、生体に投与しても安全性の高い、核酸由来の蛍光物質を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a nucleic acid-derived fluorescent substance that is highly safe even when administered to a living body.
 本発明者は、細菌由来のDHODH (Dihydroorotate dehydrogenase)が、多細胞生物由来の細胞内において、安定的に検出可能な蛍光を発することを実験により見出した。しかしながら、その蛋白質のヒトホモログについても実験を行ってみたところ、多細胞生物由来の細胞に導入しても、蛍光を安定的に検出できないことに気付いた。そのため、生体に投与しても安全性の高い蛍光化蛋白質を得るには、さらなるブレイクスルーが必要であった。 The present inventor has found through experiments that bacterial-derived DHODH® (Dihydroorotate® dehydrogenase) emits stable detectable fluorescence in cells derived from multicellular organisms. However, as a result of experiments on human homologues of the protein, it was found that fluorescence could not be detected stably even when introduced into cells derived from multicellular organisms. Therefore, in order to obtain a highly safe fluorescent protein even when administered to a living body, further breakthrough is necessary.
 そこで、本発明者は鋭意検討の結果、さらにヒトホモログのアミノ酸配列の改変を行うことにした。その結果は驚くべきことに、ヒトホモログの補因子又は基質と相互作用領域を改変したものを細胞に導入した場合に、その細胞が蛍光を発するという結果となった。この蛍光は、改変型ヒトホモログが補因子又は基質と安定的に複合体を形成した結果、生じたものであると考えられる。さらには、補因子又は基質と相互作用可能な他の蛋白質についても、補因子又は基質と相互作用領域の改変を行ったところ、同様の結果が得られることを見いだした。また、他の動物由来の蛋白質においても、同様の結果が得られることを見いだした。 Therefore, as a result of intensive studies, the present inventor decided to further modify the amino acid sequence of the human homolog. Surprisingly, the result was that when a human homologue cofactor or substrate with a modified interaction region was introduced into the cell, the cell fluoresced. This fluorescence is considered to be generated as a result of the stable formation of a complex with the cofactor or substrate by the modified human homolog. Furthermore, the present inventors have found that similar results can be obtained for other proteins capable of interacting with a cofactor or substrate by modifying the interaction region with the cofactor or substrate. In addition, the inventors have found that similar results can be obtained with proteins derived from other animals.
 即ち本発明は、その一態様として以下を含むものである。
(1)  (a)補因子又は基質に対する相互作用領域内のアミノ酸が改変されている、改変型蛋白質又はその融合蛋白質、
  (b)上記(a)の改変型蛋白質又はその融合蛋白質をコードする核酸、
  (c)上記(a)の改変型蛋白質又はその融合蛋白質と、補因子又は基質との複合体である蛍光化蛋白質複合体、及び
  (d)上記(a)の改変型蛋白質又はその融合蛋白質、上記(b)の核酸、上記(c)の蛍光化蛋白質複合体、からなる群から選ばれる少なくとも1つの物質を有する細胞、
 からなる群から選ばれる少なくとも1つの生物学的物質を含む、蛍光検査用材料。
That is, the present invention includes the following as one aspect thereof.
(1) (a) a modified protein or a fusion protein thereof, wherein the amino acid in the interaction region for the cofactor or substrate is modified,
(b) a nucleic acid encoding the modified protein of the above (a) or a fusion protein thereof,
(c) a fluorescent protein complex that is a complex of the modified protein of (a) or a fusion protein thereof and a cofactor or substrate, and (d) the modified protein of (a) or a fusion protein thereof, A cell having at least one substance selected from the group consisting of the nucleic acid of (b) above, the fluorescent protein complex of (c) above,
A fluorescence test material comprising at least one biological substance selected from the group consisting of:
 上記(a)の改変型蛋白質は、補因子又は基質の存在下で、安定的に検出可能な蛍光を発することが可能である。そのため、上記(a)の改変型蛋白質は、動植物の細胞又は生体内において、上述したような蛍光検査用(例えば、細胞の同定用等)の材料として使用できる。上記(b)の核酸は、動植物の細胞内で上記(a)の改変型蛋白質を発現することができる。そのため、上記(b)の核酸は、上記(a)の改変型蛋白質と同様の理由で、動植物の細胞又は生体内において、上述したような蛍光検査用の材料として使用できる。上記(c)の蛍光化蛋白質複合体は、動植物の細胞内で蛍光を発することが可能である。そのため、上記(c)の蛍光化蛋白質複合体は、動植物の細胞又は生体内において、上述したような蛍光検査用の材料として使用できる。上記(d)の細胞は、上記(a)~(c)の物質の少なくとも1つを有する。そのため、上記(d)の細胞は、動植物の生体内において、上述したような蛍光検査用(例えば、細胞の体内動態の確認用等)の材料として使用できる。 The modified protein (a) can emit stable detectable fluorescence in the presence of a cofactor or substrate. Therefore, the modified protein (a) can be used as a material for fluorescence examination as described above (for example, for cell identification) in animal or plant cells or in vivo. The nucleic acid (b) can express the modified protein (a) in cells of animals and plants. Therefore, the nucleic acid of (b) can be used as a material for fluorescence examination as described above in animal or plant cells or in vivo for the same reason as the modified protein of (a). The fluorescent protein complex (c) can emit fluorescence in the cells of animals and plants. Therefore, the fluorescent protein complex of the above (c) can be used as a material for fluorescence examination as described above in animal or plant cells or in vivo. The cell (d) has at least one of the substances (a) to (c). Therefore, the cells of (d) above can be used as a material for fluorescence examination as described above (for example, confirmation of cell pharmacokinetics) in the living body of animals and plants.
(2) 蛍光を検出する方法であって、
  (a)補因子又は基質に対する相互作用領域内のアミノ酸が改変されている、改変型蛋白質又はその融合蛋白質、
  (b)上記(a)の改変型蛋白質又はその融合蛋白質をコードする核酸、
  (c)上記(a)の改変型蛋白質又はその融合蛋白質と、補因子又は基質との複合体である蛍光化蛋白質複合体、及び
  (d)上記(a)の改変型蛋白質又はその融合蛋白質、上記(b)の核酸、及び上記(c)の蛍光化蛋白質複合体、からなる群から選ばれる少なくとも1つの物質を有する細胞、
 からなる群から選ばれる少なくとも1つの生物学的物質又はその周辺に、励起光をあてる工程を含む、方法。
(2) A method for detecting fluorescence, comprising:
(a) a modified protein or a fusion protein thereof, wherein the amino acid in the interaction region for the cofactor or substrate is modified,
(b) a nucleic acid encoding the modified protein of the above (a) or a fusion protein thereof,
(c) a fluorescent protein complex that is a complex of the modified protein of (a) or a fusion protein thereof and a cofactor or substrate, and (d) the modified protein of (a) or a fusion protein thereof, A cell having at least one substance selected from the group consisting of the nucleic acid of (b) and the fluorescent protein complex of (c),
A method comprising the step of applying excitation light to at least one biological substance selected from the group consisting of:
 上記(a)の改変型蛋白質は、動植物の細胞内で補因子又は基質とともに安定的な複合体を形成することができる。その複合体は、励起光をあてることによって蛍光を発することが可能である。そのため、上記(a) の蛍光を検出する方法は、上述したような蛍光検査を利用した技術(例えば、細胞の同定等)に応用可能である。また、上記(b)の核酸は、上記(a)の改変型蛋白質を発現することができる。また、上記(c)の蛍光化蛋白質複合体は励起光をあてることによって蛍光を発することが可能である。また、上記(d)の細胞は、上記(a)~(c)の物質の少なくとも1つを有する。そのため、上記(b)~(d) の物質の少なくとも1つを利用した場合も、上記(a)の改変型蛋白質を利用した場合と同様の理由で、上述したような蛍光検査を利用した技術に応用可能である。 The modified protein (a) can form a stable complex with a cofactor or a substrate in animal and plant cells. The complex can emit fluorescence by applying excitation light. Therefore, the method (a) for detecting the fluorescence of soot can be applied to a technique (for example, cell identification) using the fluorescence test as described above. The nucleic acid (b) can express the modified protein (a). In addition, the fluorescent protein complex of (c) can emit fluorescence when irradiated with excitation light. The cell (d) has at least one of the substances (a) to (c). Therefore, even when at least one of the substances (b) to (d) is used, a technique using the fluorescence test as described above for the same reason as when the modified protein (a) is used. It can be applied to.
(3) 生体内の蛍光を検出する方法であって、
  (a)補因子又は基質に対する相互作用領域内のアミノ酸が改変されている、改変型蛋白質、
  (b)上記(a)の改変型蛋白質をコードする核酸、
  (c)上記(a)の改変型蛋白質と、補因子又は基質との複合体である蛍光化蛋白質複合体、及び
  (d)上記(a)の改変型蛋白質、上記(b)の核酸、及び上記(d)の蛍光化蛋白質複合体、からなる群から選ばれる少なくとも1つの物質を有する細胞、
 からなる群から選ばれる少なくとも1つの生物学的物質を、生体内に導入する工程、
 を含む、方法。
(3) A method for detecting fluorescence in a living body,
(a) a modified protein in which an amino acid in an interaction region for a cofactor or a substrate is modified,
(b) a nucleic acid encoding the modified protein of (a) above,
(c) a fluorescent protein complex that is a complex of the modified protein of (a) and a cofactor or substrate, and (d) the modified protein of (a), the nucleic acid of (b), and A cell having at least one substance selected from the group consisting of the fluorescent protein complex of (d) above,
Introducing at least one biological substance selected from the group consisting of:
Including the method.
 上記(3)に記載の方法は、上記生物学的物質として動植物由来のものを使用できる。この動植物由来の上記生物学的物質は、動植物の生体内に投与した場合に、有害事象が発生しにくい。有害事象をさらに押さえる観点からは、生物学的物質の由来動植物と、投与対象生物は同じ種であることが好ましい。 In the method described in (3) above, an animal or plant-derived material can be used as the biological substance. When the biological material derived from animals and plants is administered into animals and plants, adverse events are unlikely to occur. From the viewpoint of further suppressing adverse events, it is preferable that the animal or plant from which the biological substance is derived and the organism to be administered are of the same species.
(4) 改変型蛋白質をコードする核酸であって、上記改変型蛋白質は、補因子又は基質に対する相互作用領域内のアミノ酸が改変されている、核酸。 (4) A nucleic acid encoding a modified protein, wherein the modified protein is a nucleic acid in which an amino acid in an interaction region with a cofactor or a substrate is modified.
 上記(4)に記載の改変型蛋白質は、補因子又は基質の存在下で、安定的に検出可能な蛍光を発することが可能である。そのため、上記(4)に記載の改変型蛋白質は、細胞又は生体内において、上述したような蛍光検査用(例えば、細胞の同定用等)の材料として使用できる。また、上記(4)に記載の核酸は、細胞内で上記(4)に記載の改変型蛋白質を発現することができる。そのため、上記(4)に記載の核酸は、細胞又は生体内において、上述したような蛍光検査用の材料として使用できる。 The modified protein described in (4) above can emit fluorescence that can be stably detected in the presence of a cofactor or a substrate. For this reason, the modified protein described in (4) above can be used as a material for fluorescent examination as described above (for example, for cell identification) in cells or in vivo. In addition, the nucleic acid described in (4) above can express the modified protein described in (4) above in a cell. Therefore, the nucleic acid described in (4) above can be used as a material for fluorescence examination as described above in cells or in vivo.
(5) 上記(4)に記載の核酸の翻訳産物を含む、改変型蛋白質。
(6) 上記(5)に記載の改変型蛋白質と、補因子又は基質との蛍光化蛋白質複合体。
(7) 上記(5)に記載の改変型蛋白質と、その改変型蛋白質以外の化合物とが融合している、融合蛋白質。
(5) A modified protein comprising the nucleic acid translation product according to (4) above.
(6) A fluorescent protein complex of the modified protein according to (5) above and a cofactor or substrate.
(7) A fusion protein in which the modified protein according to (5) is fused with a compound other than the modified protein.
(8) 補因子又は基質とともに蛍光化蛋白質複合体を形成する蛋白質、又は蛍光蛋白質、をコードする核酸。
(9) 蛋白質を蛍光化する方法であって、蛋白質の、補因子又は基質に対する相互作用領域内のアミノ酸を改変する工程を含む、方法。
(10) 補因子又は基質とともに蛍光化蛋白質複合体を形成する、改変型蛋白質の生産方法であって、蛋白質の、補因子又は基質に対する相互作用領域内のアミノ酸を改変する工程を含む、生産方法。
(8) A nucleic acid that encodes a protein that forms a fluorescent protein complex with a cofactor or substrate, or a fluorescent protein.
(9) A method of fluorescentizing a protein, comprising a step of modifying an amino acid in an interaction region of a protein with a cofactor or a substrate.
(10) A method for producing a modified protein that forms a fluorescent protein complex together with a cofactor or substrate, the method comprising a step of modifying an amino acid in an interaction region of the protein with respect to the cofactor or substrate .
 本発明によれば、生体に投与しても安全性の高い、核酸由来の蛍光物質が得られる。 According to the present invention, a nucleic acid-derived fluorescent substance that is highly safe even when administered to a living body can be obtained.
単離したバチルスDHODH (bDHODH)の塩基配列、アミノ酸配列を示す。上段は塩基配列を示し、下段は該塩基配列がコードする推定アミノ酸配列を示す。アスタリスク(*)は終始コドンを示す。The base sequence and amino acid sequence of isolated Bacillus DHODH (bDHODH) are shown. The upper row shows the base sequence, and the lower row shows the deduced amino acid sequence encoded by the base sequence. An asterisk (*) indicates a start codon. 単離bDHODH、バチルス・メタノリカスMGA3、及びバチルス・セレウスG9241のアミノ酸配列比較を示す。これら3つのアミノ酸配列を比較すると、単離bDHODHは、バチルス属由来DHODHと81%という高い相同性を示した。Amino acid sequence comparison of isolated bDHODH, Bacillus methanolicus MGA3, and Bacillus cereus G9241 is shown. When these three amino acid sequences were compared, isolated bDHODH showed a high homology of 81% with Bacillus derived DHODH. E.coli細胞株のDH5α細胞及びヒト細胞株のHEK293細胞における単離bDHODH(bDHODH)の発現を示す。上段はDH5αでの発現を示し、下段はHEK293での発現を示す。DH5αにおけるコントロールはpGEX4T-1ベクターのみを用い、HEK293におけるコントロールはpCS2+ベクターのみを用いた。DH5αでの発現は蛍光顕微鏡(研究用マクロズーム顕微鏡MVX10、オリンパス社製)でGFPフィルターユニットを用いて撮影し、HEK293での発現は蛍光顕微鏡(研究用倒立顕微鏡ECLIPSE TE2000-U標準位相差セット、ニコン社製)でGFPフィルターユニットを用いて撮影した。The expression of isolated bDHODH (bDHODH) in DH5α cells of E. coli cell line and HEK293 cells of human cell line is shown. The upper panel shows expression with DH5α, and the lower panel shows expression with HEK293. As a control in DH5α, only the pGEX4T-1 vector was used, and as a control in HEK293, only the pCS2 + vector was used. Expression in DH5α was photographed with a fluorescence microscope (macro zoom microscope MVX10 for research, Olympus) using a GFP filter unit, and expression in HEK293 was fluorescence microscope (inverted microscope for research ECLIPSE TE2000-U standard phase difference set, Nikon Corporation) using a GFP filter unit. ヒトDHODH (hDHODH)の塩基配列(Genbank Accession No. NP_001352)、アミノ酸配列(Genbank Accession No. NM_001361)を示す。上段は塩基配列を示し、下段は該塩基配列がコードするアミノ酸配列を示す。The base sequence (Genbank Accession No. NP_001352) and amino acid sequence (Genbank Accession No. NM_001361) of human DHODH® (hDHODH) are shown. The upper row shows the base sequence, and the lower row shows the amino acid sequence encoded by the base sequence. 図4Aのつづきの配列を示す。FIG. 4B is a continuation of FIG. 4A. E.coli細胞株であるDH5α細胞及びHEK293細胞における単離bDHODH(bDHODH)、野生型hDHODH、及びΔ1-74野生型hDHODHの発現を示す。上段はDH5αでの発現を示し、下段はHEK293での発現を示す。DH5αにおけるコントロールはpGEX4T-1ベクターのみを用い、HEK293におけるコントロールはpCS2+ベクターのみを用いた。DH5αでの発現は蛍光顕微鏡(研究用マクロズーム顕微鏡MVX10、オリンパス社製)でGFPフィルターユニットを用いて撮影し、HEK293での発現は蛍光顕微鏡(研究用倒立顕微鏡ECLIPSE TE2000-U標準位相差セット、ニコン社製)でGFPフィルターユニットを用いて撮影した。The expression of isolated bDHODH (bDHODH), wild type hDHODH, and Δ1-74 wild type hDHODH in DH5α cells and HEK293 cells, which are E. coli cell lines, is shown. The upper panel shows expression with DH5α, and the lower panel shows expression with HEK293. As a control in DH5α, only the pGEX4T-1 vector was used, and as a control in HEK293, only the pCS2 + vector was used. Expression in DH5α was photographed with a fluorescence microscope (macro zoom microscope MVX10 for research, Olympus) using a GFP filter unit, and expression in HEK293 was fluorescence microscope (inverted microscope for research ECLIPSE TE2000-U standard phase difference set, Nikon Corporation) using a GFP filter unit. 野生型hDHODHのアミノ酸配列と単離bDHODHのアミノ酸配列との相同性比較を示す。アスタリスク(*)は同一のアミノ酸を示し、コロン(:)は非常に良く似たアミノ酸を示し、ドット(.)は性質がやや似たアミノ酸を示す。A homology comparison between the amino acid sequence of wild-type hDHODH and the amino acid sequence of isolated bDHODH is shown. An asterisk (*) indicates the same amino acid, a colon (:) indicates an amino acid that is very similar, and a dot (.) Indicates an amino acid that is somewhat similar in nature. 野生型hDHODHにおけるFMNと相互作用する相互作用領域を分子シミュレーションソフトにより解析した結果を示す。中央の化合物はFMNを示し、円は野生型hDHODHのアミノ酸及びその位置を示し、FMNと矢印で直接結ばれた円は相互作用を示す野生型hDHODHのアミノ酸を示す。The result of having analyzed the interaction area | region which interacts with FMN in wild type hDHODH by molecular simulation software is shown. The center compound indicates FMN, the circle indicates the amino acid of wild-type hDHODH and its position, and the circle directly connected to FMN with an arrow indicates the amino acid of wild-type hDHODH that interacts. 野生型hDHODHにおけるDHOと相互作用する相互作用領域を分子シミュレーションソフトにより解析した結果を示す。中央の化合物はDHOを示し、円は野生型hDHODHのアミノ酸及びその位置を示し、DHOと矢印で直接結ばれた円は相互作用を示す野生型hDHODHのアミノ酸を示す。The result of having analyzed the interaction area | region which interacts with DHO in wild type hDHODH by molecular simulation software is shown. The center compound indicates DHO, the circle indicates the amino acid of wild-type hDHODH and its position, and the circle directly connected with DHO by an arrow indicates the amino acid of wild-type hDHODH that interacts. ヒト、サル、ラビット、ラット、マウス、カエルの各野生型DHODHのアミノ酸配列比較を示すとともに、各野生型DHODHにおけるFMN又はDHOとの相互作用領域とそのナンバーを示す。四角囲いはFMN又はDHOとの相互作用領域を示し、No.1~12は各相互作用領域をナンバリングしたものである。The amino acid sequence comparison of each wild type DHODH of human, monkey, rabbit, rat, mouse and frog is shown, and the interaction region and the number of each wild type DHODH with FMN or DHO are shown. A square box indicates an interaction region with FMN or DHO, and Nos. 1 to 12 number each interaction region. HEK293細胞における蛍光化hDHODHの発現を示す。bDHODHは単離bDHODHを示し、EGFP(Enhanced Green Fluorescent Protein)はオワンクラゲ由来の蛍光増強型GFPを示し、Δ1-74hDHODHはΔ1-74野生型hDHODHを示し、4ヶ所改変は表4に記載の相互作用領域No./組合せにおける2+5+6+8の蛍光化hDHODHの1つを示し、5ヶ所改変-1は表4に記載の相互作用領域No./組合せにおける2+5+6+8+11の蛍光化hDHODHの1つを示し、5ヶ所改変-2は表4に記載の相互作用領域No./組合せにおける2+5+6+8+12の蛍光化hDHODHの1つを示す。コントロールはpCS2+ベクターのみを用いた。HEK293での発現は蛍光顕微鏡(研究用倒立顕微鏡ECLIPSE TE2000-U標準位相差セット、ニコン社製)でGFPフィルターユニットを用いて撮影した。Fig. 2 shows the expression of fluorescent hDHODH in HEK293 cells. bDHODH indicates isolated bDHODH, EGFP (Enhanced Green Fluorescent Protein) indicates fluorescence enhanced GFP derived from Aequorea jellyfish, Δ1-74hDHODH indicates Δ1-74 wild-type hDHODH, and the four modifications described in Table 4 One of the 2 + 5 + 6 + 8 fluorescent hDHODH in the region No./combination is shown, and five modifications-1 indicates one of the 2 + 5 + 6 + 8 + 11 fluorescent hDHODH in the interaction region No./combination described in Table 4, and five modifications -2 represents one of the 2 + 5 + 6 + 8 + 12 fluorescent hDHODH in the interaction region No./combination described in Table 4. As a control, only pCS2 + vector was used. Expression in HEK293 was photographed using a GFP filter unit with a fluorescence microscope (inverted microscope for research ECLIPSE TE2000-U standard phase difference set, manufactured by Nikon Corporation). HEK293細胞におけるN末端欠失型蛍光化hDHODHの発現及びミトコンドリアシグナルを含む全長蛍光化hDHODHの顆粒状の発現を示す。WT:全長の野生型hDHODH、Δ1-28WT:Δ1-28野生型hDHODH、Δ1-41WT:Δ1-41野生型hDHODH、Δ1-50WT:Δ1-50野生型hDHODH、Δ1-74WT:Δ1-74野生型hDHODH、Full Fluor-D:全長の蛍光化hDHODH、Δ1-28 Fluor-D:Δ1-28蛍光化hDHODH、Δ1-41 Fluor-D:Δ1-41蛍光化hDHODH、Δ1-50 Fluor-D:Δ1-50蛍光化hDHODH、Δ1-74 Fluor-D:Δ1-74蛍光化hDHODH。ベクターはpCS2+を用いた。HEK293での発現は蛍光顕微鏡(研究用倒立顕微鏡ECLIPSE TE2000-U標準位相差セット、ニコン社製)でGFPフィルターユニットを用いて撮影した。2 shows expression of N-terminal deletion type fluorescent hDHODH and granular expression of full length fluorescent hDHODH including mitochondrial signal in HEK293 cells. WT: full length wild type hDHODH, Δ1-28WT: Δ1-28 wild type hDHODH, Δ1-41WT: Δ1-41 wild type hDHODH, Δ1-50WT: Δ1-50 wild type hDHODH, Δ1-74WT: Δ1-74 wild type hDHODH, Full Fluor-D: full length fluorescent hDHODH, Δ1-28 Fluor-D: Δ1-28 fluorescent hDHODH, Δ1-41 Fluor-D: Δ1-41 fluorescent hDHODH, Δ1-50 Fluor-D: Δ1- 50 fluorescent hDHODH, Δ1-741-Fluor-D: Δ1-74 fluorescent hDHODH. The vector used was pCS2 +. Expression in HEK293 was photographed using a GFP filter unit with a fluorescence microscope (inverted microscope for research ECLIPSE TE2000-U standard phase difference set, manufactured by Nikon Corporation). 蛍光化hDHODH導入細胞のフローサイトメトリー解析結果を示す。細胞はHEK293細胞を用い、ベクターはpCS2+を用いた。フローサイトメーターはFACS Calibur(Becton, Dickinson and Company製)を用い、励起波長はアルゴンレーザーによる488nmであり、蛍光波長は検出器FL-1による530±15nmである。AはpCS2+ベクターのみを導入した細胞と非導入細胞との混合細胞のフローサイトメトリー解析結果を示し、Bは野生型hDHODH導入細胞と非導入細胞との混合細胞のフローサイトメトリー解析結果を示し、Cは表4に記載の相互作用領域No./組合せにおける2+5+6+8の4ヶ所改変した蛍光化hDHODHを導入した細胞と非導入細胞との混合細胞のフローサイトメトリー解析結果を示し、Cは表4に記載の相互作用領域No./組合せにおける2+5+6+8+11の5ヶ所改変した蛍光化hDHODHを導入した細胞と非導入細胞との混合細胞のフローサイトメトリー解析結果を示す。グラフの横軸は相対蛍光を示し、縦軸は細胞計数を示す。a.u.は任意単位を示す。C及びDのとおり、蛍光化ヒトDHOHD導入細胞の蛍光ピーク(ピークの右側)と非導入細胞の非蛍光ピーク(ピークの左側)は明確に区別可能であることを示す。The flow cytometry analysis result of the fluorescence hDHODH introduction cell is shown. HEK293 cells were used as cells, and pCS2 + was used as a vector. The flow cytometer uses a FACS Calibur (Becton, Dickinson and Company), the excitation wavelength is 488 nm with an argon laser, and the fluorescence wavelength is 530 ± 15 nm with the detector FL-1. A shows the flow cytometry analysis result of the mixed cell of the cell into which only the pCS2 + vector is introduced and the non-introduced cell, B shows the flow cytometry analysis result of the mixed cell of the wild type hDHODH-introduced cell and the non-introduced cell, C shows the results of flow cytometry analysis of mixed cells of non-introduced cells and cells introduced with fluorinated hDHODH modified at 4 locations of 2 + 5 + 6 + 8 in the interaction region No./combination shown in Table 4. The flow cytometry analysis result of the mixed cell of the cell which introduce | transduced the fluorescence hDHODH which modified | denatured five places of 2 + 5 + 6 + 8 + 11 in the interaction area | region No./ combination of description is shown. The horizontal axis of the graph indicates relative fluorescence, and the vertical axis indicates cell count. a.u. represents an arbitrary unit. As shown in C and D, it shows that the fluorescence peak of the fluorescent human DHOHD-introduced cells (right side of the peak) and the non-fluorescent peak of the non-introduced cells (left side of the peak) can be clearly distinguished. HEK293細胞におけるC末端にMyc-His標識を融合させた蛍光化DHODHの発現を示す。Fluor-D:蛍光化hDHODH、myc Fluor-D:蛍光化hDHODHのC末端にmyc-His標識を融合させたmyc-His標識融合蛍光化hDHODH。ベクターはpcDNA3.1 myc-His Aを用いた。HEK293での発現は蛍光顕微鏡(研究用倒立顕微鏡ECLIPSE TE2000-U標準位相差セット、ニコン社製)でGFPフィルターユニットを用いて撮影した。The expression of fluorescence DHODH which fused Myc-His label | marker to the C terminal in HEK293 cell is shown. Fluor-D: fluorescent hDHODH, mycmyFluor-D: myc-His-labeled fused fluorescent hDHODH in which a myc-His label is fused to the C-terminus of fluorescent hDHODH. PcDNA3.1pcmyc-HiscA was used as the vector. Expression in HEK293 was photographed using a GFP filter unit with a fluorescence microscope (inverted microscope for research ECLIPSE TE2000-U standard phase difference set, manufactured by Nikon Corporation). ヒト、サル、ウサギ、ラット、マウス、カエルの各BVR-Aの相同性を比較した結果である。It is the result of comparing the homology of each human, monkey, rabbit, rat, mouse, and frog BVR-A. BVR-AのE96A及びY97Fの変異体について、近赤外蛍光を測定した結果である。It is the result of measuring near-infrared fluorescence about the E96A and Y97F mutants of BVR-A. 表9に記載の変異体について、近赤外蛍光を測定した結果である。It is the result of having measured near-infrared fluorescence about the variant of Table 9.
 以下、本発明の実施の形態について詳細に説明する。なお、同様な内容については繰り返しの煩雑を避けるために、適宜説明を省略する。 Hereinafter, embodiments of the present invention will be described in detail. In addition, in order to avoid the repetition complexity about the same content, description is abbreviate | omitted suitably.
 本発明者は、後述の実施例に記載のように、ヒトやマウス等の高等生物が元来有し、かつ安定して蛍光を検出できない蛋白質を改変することによって、安定して検出可能な蛍光を発するように改変された蛋白質をを創出することに成功した。この蛋白質(又はこの蛋白質をコードする核酸等)を生物に投与する場合、蛋白質の由来が投与対象となる生物自身であれば、拒絶反応等の有害事象が特に生じ難いと考えられる。また、抗体産生による蛍光強度減弱のため繰り返し投与ができないという問題を防ぐことができると考えられる。 As described in Examples below, the present inventor has developed a fluorescence that can be stably detected by modifying a protein that is originally possessed by higher organisms such as humans and mice and that cannot stably detect fluorescence. We succeeded in creating a protein modified to emit When this protein (or a nucleic acid encoding this protein, etc.) is administered to an organism, it is considered that adverse events such as rejection are particularly unlikely to occur if the origin of the protein itself is the subject of administration. Moreover, it is thought that the problem that repeated administration cannot be performed due to a decrease in fluorescence intensity due to antibody production can be prevented.
 なお、従来、GFPファミリー等の蛍光蛋白質に対してアミノ酸を改変する試みは存在していた。但し、従来の方法は、蛍光蛋白質の蛍光強度を向上させることを目的とするものである。一方で、本発明者は、非蛍光蛋白質に対して改変を施し、安定的に蛍光を発することが可能な状態に変化させることに成功した。即ち、従来のGFP改変技術が1から1'を生み出す技術とすれば、本発明者は、0から1を生み出すことに成功したといえる。 Conventionally, there have been attempts to modify amino acids for fluorescent proteins such as the GFP family. However, the conventional method aims to improve the fluorescence intensity of the fluorescent protein. On the other hand, the present inventor succeeded in changing the non-fluorescent protein to a state in which fluorescence can be stably emitted. That is, if the conventional GFP modification technology is a technology that produces 1 to 1 ′, it can be said that the present inventors have succeeded in producing 0 to 1.
 <改変型蛋白質>
 本発明の一実施形態において「改変型蛋白質」は、補因子又は基質に対する相互作用領域内のアミノ酸が改変されている、改変型蛋白質を含む。この場合、改変型蛋白質は、補因子又は基質とともに安定的に複合体を形成することができる。その結果、上記複合体は、安定的に検出可能な蛍光を発する。そのため、改変型蛋白質は、蛍光検査用材料として好適に使用できる。蛍光検査用材料のより具体的な例としては、細胞の同定、単離、選別、純化、遺伝子発現の解析、目的物質の標識、又は目的物質の挙動追跡(体内動態等)等のレポーターもしくはトレーサー用材料等を挙げることができる。
<Modified protein>
In one embodiment of the present invention, the “modified protein” includes a modified protein in which an amino acid in an interaction region for a cofactor or a substrate is modified. In this case, the modified protein can stably form a complex with the cofactor or substrate. As a result, the complex emits fluorescence that can be stably detected. Therefore, the modified protein can be suitably used as a fluorescent examination material. More specific examples of fluorescence test materials include reporter or tracer for cell identification, isolation, selection, purification, gene expression analysis, target substance labeling, or target substance behavior tracking (such as pharmacokinetics). Materials for use can be mentioned.
 上記改変型蛋白質を、目的細胞の純化用材料として使用する場合、例えば、以下の手順で目的細胞の純化を行うことができる。まず、目的細胞の細胞表面に特異的に発現する抗原に対する抗体と、上記改変型蛋白質を融合させる。得られた融合蛋白質を、目的細胞と非目的細胞を含む細胞集団に接触させる。その後、フローサイトメーターで蛍光を発する細胞を選抜すれば、目的細胞の純化ができる。 When the modified protein is used as a material for purifying target cells, for example, the target cells can be purified by the following procedure. First, an antibody against an antigen specifically expressed on the cell surface of the target cell is fused with the modified protein. The obtained fusion protein is brought into contact with a cell population containing target cells and non-target cells. Then, if cells that emit fluorescence are selected using a flow cytometer, the target cells can be purified.
 上記改変型蛋白質を、標的遺伝子が導入・維持された目的細胞の同定用材料として使用する場合、例えば、以下の手順で目的細胞の同定を行うことができる。まず、細胞に導入したい標的遺伝子と、上記改変型蛋白質をコードする核酸との両方をコードするベクターを作成する。次に、必要に応じて形質転換用の試薬の存在下で、細胞集団と上記ベクターとを混合し、培養する。培養後の細胞集団に励起光をあてると、上記ベクターが導入・維持された細胞だけが蛍光を発するため、この蛍光を指標にして、標的遺伝子が導入・維持された細胞を同定できる。その後、フローサイトメーターを用いて、細胞を純化することができる。 When the modified protein is used as a material for identifying a target cell in which a target gene is introduced and maintained, for example, the target cell can be identified by the following procedure. First, a vector encoding both a target gene to be introduced into a cell and a nucleic acid encoding the modified protein is prepared. Next, if necessary, the cell population and the vector are mixed and cultured in the presence of a transformation reagent. When excitation light is applied to the cultured cell population, only cells in which the vector has been introduced / maintained fluoresce, so that the cells in which the target gene has been introduced / maintained can be identified using this fluorescence as an index. Thereafter, the cells can be purified using a flow cytometer.
 上記改変型蛋白質は、例えば、動植物由来の蛋白質であってもよい。この改変型蛋白質は、動物の生体内投与後の有害事象を抑えられる観点からは、動物由来であることが好ましい。上記改変は、野生型蛋白質をコードする遺伝子に対して、変異を導入することによってなされてもよい。また上記改変は、補因子又は基質とともに安定的な複合体を形成できない蛋白質をコードする遺伝子に対して、変異を導入することによってなされてもよい。改変前の蛋白質は、変異や欠失等を含んでいてもよい。 The modified protein may be, for example, a protein derived from animals or plants. This modified protein is preferably derived from an animal from the viewpoint of suppressing adverse events after in vivo administration of the animal. The modification may be made by introducing a mutation into a gene encoding a wild type protein. In addition, the modification may be performed by introducing a mutation into a gene encoding a protein that cannot form a stable complex with a cofactor or a substrate. The protein before modification may contain mutations and deletions.
 また改変型蛋白質は、補因子と相互作用する改変前蛋白質における相互作用領域、基質と相互作用する改変前蛋白質における相互作用領域、並びに補因子及び基質の両者と相互作用する改変前蛋白質における相互作用領域の、1つ以上のアミノ酸を改変することにより、安定して蛍光を検出することができない改変前蛋白質を、安定して検出可能な蛍光を発するように改変した改変型蛋白質を含む。 The modified protein also includes an interaction region in a pre-modification protein that interacts with a cofactor, an interaction region in a pre-modification protein that interacts with a substrate, and an interaction in a pre-modification protein that interacts with both the cofactor and the substrate. A modified protein in which one or more amino acids in the region is modified to modify a pre-modified protein that cannot stably detect fluorescence so as to emit stable detectable fluorescence.
 また改変型蛋白質は、補因子又は基質に対する相互作用領域を有する蛋白質由来であり、改変型蛋白質の上記相互作用領域内のアミノ酸配列が、野生型蛋白質の有する上記相互作用領域のアミノ酸配列とは異なるアミノ酸配列を有するように改変されていてもよい。また改変型蛋白質は、補因子又は基質とともに蛍光化蛋白質複合体を形成する蛋白質であってもよい。 The modified protein is derived from a protein having an interaction region for a cofactor or a substrate, and the amino acid sequence in the interaction region of the modified protein is different from the amino acid sequence of the interaction region of the wild-type protein. It may be modified to have an amino acid sequence. The modified protein may be a protein that forms a fluorescent protein complex with a cofactor or substrate.
 なお本明細書では、蛋白質と、補因子又は基質との複合体であり、細胞内で安定的に蛍光を発することが可能な複合体を、蛍光化蛋白質複合体と称する。この蛍光化蛋白質複合体は、蛋白質、補因子、及び基質以外の、他の成分が含まれていてもよい。また蛍光化蛋白質複合体に含まれる補因子又は基質は、単独で蛍光を発する能力を有しているものであってもよく、又は単独では安定的な蛍光を発しないが、複合体化することによってはじめて蛍光を発する能力を有しているものであってもよい。前者の例としては、例えば、FMNを挙げることができる。後者の例としては、例えば、BVを挙げることができる。 In the present specification, a complex that is a complex of a protein and a cofactor or a substrate and that can stably emit fluorescence in a cell is referred to as a fluorescent protein complex. The fluorescent protein complex may contain other components other than the protein, cofactor, and substrate. In addition, the cofactor or substrate contained in the fluorescent protein complex may be capable of emitting fluorescence alone, or may not be stable alone but complexed. It may have the ability to emit fluorescence for the first time. An example of the former is FMN. An example of the latter is BV.
 また上記改変は、上記相互作用領域内のアミノ酸の1つ以上の改変であってもよい。ここで、「1つ以上」とは、蛍光化蛋白質複合体の蛍光強度を上昇させる観点からは、好ましくは2つ以上であり、より好ましくは4つ以上であり、さらに好ましくは10つ以上である。この数値は特に限定されず、例えば、1、2、3、4、5、6、7、8、9、10、15、20、又は30個以上、又はそれらいずれか2つの値の範囲内であってもよい。 Also, the modification may be one or more modifications of amino acids in the interaction region. Here, from the viewpoint of increasing the fluorescence intensity of the fluorescent protein complex, “one or more” is preferably two or more, more preferably four or more, and even more preferably ten or more. is there. This number is not particularly limited, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, or 30 or more, or within the range of any two of them There may be.
 本発明の一実施形態において「蛋白質」の種類は、例えば、補因子又は基質に対する相互作用領域を含む蛋白質を挙げることができる。そのような蛋白質は、例えば、NCBIのGenBankから適宜選択することができる。またそのような蛋白質としては、例えば、DHODH、BVR-A、ジヒドロチミンデヒドロゲナーゼ(Q12882)、メチオニンシンターゼレダクターゼ(Q9UBK8)、一酸化窒素シンターゼ(P29474, P35228, 又はP29475)、ホスホパントテノイルシステインデカルボキシラーゼ(Q96CD2)、FADシンターゼ(Q8NFF5)、ヒドロキシ酸オキシダーゼ(Q9UJM8, 又はQ9NYQ3)、ヨードチロシンデハロゲナーゼ(Q6PHW0)、シトクロムP450レダクターゼ(P16435)、NADPH依存性ジフラビンオキシドレダクターゼ(Q9UHB4)、NADHデヒドロゲナーゼフラボプロテイン(P56181)、ピリドキシン-5'-リン酸オキシダーゼ(Q9NVS9)、リボフラビンキナーゼ(Q969G6)、サルコシンデヒドロゲナーゼ(Q9UL12)、(S)-2-ヒドロキシ酸オキシダーゼ(Q9UJM8, 又はQ9NYQ3)、アシルCoAデヒドロゲナーゼ(P11310, P49748, P16219, 又はP28330)、アシルCoAオキシダーゼ(Q15067, 又はO15254)、アポトーシスインデューシングファクター(O95831, Q9BRQ8, 又はQ96NN9)、モノアミンオキシダーゼ(P21397, 又はP27338)、シトクロムb-245重鎖(P04839)、コハク酸デヒドロゲナーゼ(P31040)、ジヒドロリポアミドデヒドロゲナーゼ(P09622)、デュアルオキシダーゼ(Q9NRD9, 又はQ9NRD9)、小胞体オキシドレダクチン-1-様プロテイン(Q96HE7, 又はQ86YB8)、電子伝達フラボプロテインサブユニットアルファ/ベータ(P13804, 又はP38117)、フラビン含有モノオキシゲナーゼ(Q01740, Q99518, P31513, P31512, P49326, 又はO60774)、グルタリルCoAデヒドロゲナーゼ(Q92947)、グルタチオンジスルフィドレダクターゼ(P00390)、イソバレリルCoAデヒドロゲナーゼ(P26440)、リジン特異的ヒストンデメチラーゼ1(O60341, 又はQ8NB78)、プロテイン-メチオニンスルホキシドオキシダーゼMICAL(Q8TDZ2, O94851, 又はQ7RTP6)、メチレンテトラヒドロ葉酸レダクターゼ(P42898)、シトクロム-b5レダクターゼ(Q9UHQ9, Q6BCY4, P00387, 又はQ7L1T6)、NADPHオキシダーゼ5(Q96PH1)、NAD(P)Hデヒドロゲナーゼ(P15559)、リボシルジヒドロニコチンアミドデヒドロゲナーゼ(P16083)、スルフヒドリルオキシダーゼ(O00391, 又はQ6ZRP7)、スペルミンオキシダーゼ(Q9NWM0)、メタロレダクターゼSTEAP(Q9UHE8, Q8NFT2, Q658P3, 又はQ687X5)、チオレドキシンレダクターゼ(Q16881, Q9NNW7, 又はQ86VQ6)、キサンチンデヒドロゲナーゼ/オキシダーゼ(P47989)、イソブチリル-CoAデヒドロゲナーゼ(Q9UKU7)、アルキルジヒドロキシアセトンホスフェイトシンターゼ(O00116)、アルデヒドオキシダーゼ(Q06278)、アドレノドキシンレダクターゼ(P22570)、FAD-リンクスルフヒドリルオキシダーゼALR(P55789)、ユビキノン生合成モノオキシゲナーゼCOQ6(Q9Y2Z9)、クリプトクロム(Q16526, 又はQ49AN0)、2-ヒドロキシグルタル酸デヒドロゲナーゼ(Q8N465, 又はQ9H9P8)、二官能性ATP依存性ジヒドロキシアセトンキナーゼ/ FAD-AMPリアーゼ(Q3LXA3)、デルタ(24)-ステロールレダクターゼ(Q15392)、tRNA-ジヒドロウリジンシンターゼ(Q6P1R4, Q9NX74, Q96G46, 又はO95620)、スクアレンモノオキシゲナーゼ(Q14534)、電子伝達フラボプロテイン-ユビキノンオキシドレダクターゼ(Q16134)、FAD依存性オキシドレダクターゼドメイン含有プロテイン(Q96CU9, 又はQ8IWF2)、キヌレニン3-モノオキシゲナーゼ(O15229)、ジメチルグリシンデヒドロゲナーゼ(Q9UI17)、ミトコンドリア翻訳最適化ホモログ(Q9Y2Z2)、D-アミノ酸オキシダーゼ(P14920)、D-アスパラギン酸オキシダーゼ(Q99489)、L-アミノ酸オキシダーゼ(Q96RQ9)、プレニルシステインオキシダーゼ(Q9UHG3, 又はQ8NBM8)、プロトポルフィリノーゲンオキシダーゼ(P50336)、プロリンデヒドロゲナーゼ(O43272, 又はQ9UF12)、オールトランスレチノール13,14-レダクターゼ(Q6NUM9)、レナラーゼ(Q5VYX0)、サルコシンオキシダーゼ(Q9P0Z9)、コリンデヒドロゲナーゼ(Q8NE62)、D-乳酸脱水素酵素(Q86WU2)、NADH:ユビキノンオキシドレダクターゼ(Q16795, 又はO95299)、BVR-B(P30043)、レチノール結合プロテイン(P09455, P50120, P10745, P02753, P82980, 又はQ96R05)、細胞レチノイン酸結合プロテイン(P29762, 又はP29373)、シトクロムc(P99999)、シトクロムb(P00156)、シトクロムb5(P00167, 又はO43169)、ミオグロビン(P02144)、ヘモグロビン(P69905, P68871, P02042, P02100, P69891, P69892, Q6B0K9, P09105, 又はP02008)、ヘムオキシゲナーゼ(P09601, 又はP30519)、フェロケラーゼ(P22830)、コプロポルフィリノーゲン-IIIオキシダーゼ(P36551)、プロトヘムIXファルネシルトランスフェラーゼ(Q12887)、キュブリン(O60494)、メチルマロニルCoAムターゼ(P22033)、核外輸送シグナル相互作用プロテイン(Q9NUN5)、及びメチオニンシンターゼ(Q99707)(以下、ここに記載した蛋白質を「DHODH等」と称することがある)からなる群から選ばれる1つ以上の蛋白質を挙げることができる。なお、各蛋白質名の後に記載した括弧内のアルファベット及び番号は、UniProtのアクセッション番号の一例である。上記蛋白質は、利便性の観点からは、単量体が好ましく、また分子量の小さいものが好ましい。蛍光化蛋白質複合体に含まれる改変型蛋白質は、蛍光化蛋白質複合体がより安定的に蛍光を発する観点からは、FMN、DHO、BV、NAD(P)H、FAD、ポルフィリン環を有する化合物、ビタミンA、又はコバラミンに対する相互作用領域を有する蛋白質由来であることが好ましい。 In one embodiment of the present invention, examples of the “protein” include a protein containing an interaction region for a cofactor or a substrate. Such a protein can be appropriately selected from, for example, NCBI GenBank. Examples of such proteins include DHODH, BVR-A, dihydrothymine dehydrogenase (Q12882), methionine synthase reductase (Q9UBK8), nitric oxide synthase (P29474, P35228, or P29475), phosphopantothenoylcysteine decarboxylase (Q96CD2), FAD synthase (Q8NFF5), hydroxy acid oxidase (Q9UJM8, or Q9NYQ3), iodotyrosine dehalogenase (Q6PHW0), cytochrome P450 reductase (P16435), NADPH-dependent diflavin oxidoreductase (Q9UHB4), NADH dehydrogenase Protein (P56181), pyridoxine-5'-phosphate oxidase (Q9NVS9), riboflavin kinase (Q969G6), sarcosine dehydrogenase (Q9UL12), (S) -2-hydroxy acid oxidase (Q9UJM8, Q or Q9NYQ3), acyl CoA dehydrogenase (P11310) , P49748, P16 219, or P28330), acyl CoA oxidase (Q15067, or O15254), apoptosis inducing factor (O95831, Q9BRQ8, or Q96NN9), monoamine oxidase (P21397, or P27338), cytochrome b-245 heavy chain (P04839), amber Acid dehydrogenase (P31040), dihydrolipoamide dehydrogenase (P09622), dual oxidase (Q9NRD9, or Q9NRD9), endoplasmic reticulum oxidoreductin-1-like protein (Q96HE7, or Q86YB8), electron transfer flavoprotein subunit alpha / beta ( P13804, or P38117), flavin-containing monooxygenase (Q01740, Q99518, P31513, P31512, P49326, or O60774), glutaryl-CoA dehydrogenase (Q92947), glutathione disulfide reductase (P00390), isovaleryl-CoA dehydrogenase (P26440), specific lysine Demethylase 1 (O60341, or Q8NB78), protein-methionine sulfoxide oxidase MICAL (Q8TDZ2, O94851, or Q7RTP6), methylenetetrahydrofolate reductase (P42898), cytochrome-b5 reductase (Q9UHQ9, Q6BCY4, P00387, or Q7NAP1T5) ), NAD (P) H dehydrogenase (P15559), ribosyl dihydronicotinamide dehydrogenase (P16083), sulfhydryl oxidase (O00391, or Q6ZRP7), spermine oxidase (Q9NWM0), metalloreductase STEAP (Q9UHE8, Q8NFT2, Q658P3, or Q687X Thioredoxin reductase (Q16881, Q9NNW7, or Q86VQ6), xanthine dehydrogenase / oxidase (P47989), isobutyryl-CoA dehydrogenase (Q9UKU7), alkyl dihydroxyacetone phosphate synthase (O00116), aldehyde oxidase Q06278), adrenodoxin reductase (P22570), FAD-linksulfhydryl oxidase ALR (P55789), ubiquinone biosynthesis monooxygenase COQ6 (Q9Y2Z9), cryptochrome (Q16526, or Q49AN0), 2-hydroxyglutarate dehydrogenase (Q8N465, or Q9H9P8), bifunctional ATP-dependent dihydroxyacetone kinase / FAD-AMP lyase (Q3LXA3), delta (24) -sterol reductase (Q15392), tRNA-dihydrouridine synthase (Q6P1R4, Q9NX74, Q96G46, or O95620), squalene mono Oxygenase (Q14534), electron transfer flavoprotein-ubiquinone oxidoreductase (Q16134), FAD-dependent oxidoreductase domain-containing protein (Q96CU9, or Q8IWF2), kynurenine 3-monooxygenase (O15229), dimethylglycine dehydrogenase (Q9UI17), mitoco Doria translation optimization homolog (Q9Y2Z2), D-amino acid oxidase (P14920), D-aspartate oxidase (Q99489), L-amino acid oxidase (Q96RQ9), prenylcysteine oxidase (Q9UHG3, or Q8NBM8), protoporphyrinogen oxidase ( P50336), proline dehydrogenase (O43272, or Q9UF12), all-trans retinol 13,14-reductase (Q6NUM9), lenalase (Q5VYX0), sarcosine oxidase (Q9P0Z9), choline dehydrogenase (Q8NE62), D-lactate dehydrogenase (Q86WU2) NADH: ubiquinone oxidoreductase (Q16795, or O95299), BVR-B (P30043), retinol binding protein (P09455, P50120, P10745, P02753, P82980, or Q96R05), cellular retinoic acid binding protein (P29762, or P29373), Cytochrome c (P99999), cytochrome b (P00156), cyto Rom b5 (P00167, or O43169), myoglobin (P02144), hemoglobin (P69905, P68871, P02042, P02100, P69891, P69892, Q6B0K9, P09105, or P02008), heme oxygenase (P09601, or Pke Coproporphyrinogen-III oxidase (P36551), protoheme IX farnesyltransferase (Q12887), cubulin (O60494), methylmalonyl CoA mutase (P22033), nuclear transport signal interacting protein (Q9NUN5), and methionine synthase (Q99707) ( Hereinafter, one or more proteins selected from the group consisting of the proteins described herein may be referred to as “DHODH etc.” may be mentioned. The alphabets and numbers in parentheses described after each protein name are examples of UniProt accession numbers. From the viewpoint of convenience, the above protein is preferably a monomer, and preferably has a low molecular weight. The modified protein contained in the fluorescent protein complex is a compound having an FMN, DHO, BV, NAD (P) H, FAD, porphyrin ring from the viewpoint that the fluorescent protein complex emits fluorescence more stably. It is preferably derived from a protein having an interaction region for vitamin A or cobalamin.
 本発明の一実施形態において「補因子」は、補酵素、補欠分子族、金属イオンを含む。一般的に、補酵素は酵素に緩く結合していて、補欠分子族は強く結合している。又は、補酵素は酵素に可逆的に結合していて、補欠分子族は非可逆的に結合している。本発明の一実施形態において「基質」は、蛋白質に対してある程度特異的に相互作用する物質を含む。補因子又は基質としては、例えば、FMN、DHO、BV、NAD(P)H、表11A及びBに記載の補因子又は基質、ピロロキノリンキノン、トパキノン、トリプトファン-トリプトフィルキノン、リシンチロシルキノン、システニル-トリプトファンキノン、チアミン二リン酸、PALP、PLP、NAD、コエンザイムA、ビオチン、葉酸、ビタミンB12、アデノシン三リン酸、ピリドキサールリン酸、ウリジン二リン酸グルコース、銅、マンガン、モリブデン、ニッケル、及びセレンからなる群から選ばれる1つ以上を挙げることができる。 In one embodiment of the present invention, the “cofactor” includes a coenzyme, a prosthetic group, and a metal ion. In general, coenzymes are loosely bound to enzymes and prosthetic groups are strongly bound. Alternatively, the coenzyme is reversibly bound to the enzyme and the prosthetic group is bound irreversibly. In one embodiment of the present invention, the “substrate” includes a substance that interacts with a protein to a certain degree. Cofactors or substrates include, for example, FMN, DHO, BV, NAD (P) H, cofactors or substrates listed in Tables 11A and B, pyrroloquinoline quinone, topaquinone, tryptophan-tryptophyll quinone, lysine tyrosylquinone , Cysteinyl-tryptophan quinone, thiamine diphosphate, PALP, PLP, NAD, coenzyme A, biotin, folic acid, vitamin B12, adenosine triphosphate, pyridoxal phosphate, uridine diphosphate glucose, copper, manganese, molybdenum, nickel, And one or more selected from the group consisting of selenium.
 本発明の一実施形態において「相互作用領域」は、補因子又は基質と直接相互作用又は間接相互作用する蛋白質内のアミノ酸を含む。また相互作用領域は、補因子又は基質と直接相互作用又は間接相互作用するアミノ酸の前後のアミノ酸を含む。この相互作用領域は、既存の手法を用いて同定することが可能であり、その手法としては、特に制限はないが、例えば、分子シミュレーションソフト(MOE;統合計算化学システム (株式会社 菱化システム)、Discovery Studio (Accelrys Inc.)、LIGPLOT (University College London))などのソフトを用いた解析が挙げられる。また、蛋白質と相互作用する基質や補酵素などのリガンドとの結合を解析した実験結果を記載した公知文献や自身で行った実験結果を基に当該相互作用領域を同定しても良い。分子シミュレーションソフトを用いた相互作用領域の同定は、目的蛋白質のアミノ酸配列や蛋白質構造データバンク(PDB)のID等といった当該蛋白質の情報を入力し、当該蛋白質と相互作用する基質や補酵素などのリガンドに関する構造やCAS登録ナンバーといった当該リガンドの情報を入力することにより、当該蛋白質と当該リガンドとの相互作用領域を自動的に同定することが可能である。なお、改変前の蛋白質においては、上記分子シミュレーションソフト等のいずれかの既存の方法を用いて特定された領域が、in vitro実験下では相互作用能を有していない場合もありうる。そのような領域であっても、上記分子シミュレーションソフト等のいずれかの既存の方法を用いて特定された領域である限り、本発明の一実施形態の相互作用領域に含まれる。即ち、相互作用領域に相当する領域は、本発明の一実施形態の相互作用領域に含まれる。上記分子シミュレーションソフト等のいずれかの既存の方法を用いて特定された領域が、実際には相互作用能を有していなかったとしても、その領域を改変することによって、補因子又は基質とともに安定的な複合体を形成する改変型蛋白質を生産可能である。また上記「前後のアミノ酸」は、例えば、補因子又は基質と直接相互作用又は間接相互作用するアミノ酸のN末端側又はC末端側において、連続的に隣接する複数個のアミノ酸を含む。このアミノ酸の数は、蛍光強度を上げる観点からは、好ましくは10個以下であり、より好ましくは7個以下である。この数は、例えば、1、2、3、4、5、6、7、8、9、又は10個であってもよい。この前後のアミノ酸は、補因子又は基質に対して、間接的に相互作用していてもよい。 In one embodiment of the present invention, the “interaction region” includes an amino acid in a protein that directly or indirectly interacts with a cofactor or substrate. The interaction region includes amino acids before and after the amino acid that directly or indirectly interacts with the cofactor or substrate. This interaction region can be identified using an existing method, and there is no particular limitation on the method. For example, molecular simulation software (MOE; Integrated Computational Chemistry System) Analysis using software such as Discovery Studio (Accelrys Inc.), LIGPLOT (University College London). Alternatively, the interaction region may be identified based on publicly known literature describing the results of an experiment analyzing the binding with a substrate such as a substrate that interacts with a protein or a ligand such as a coenzyme or the results of an experiment performed by itself. Identification of the interaction region using molecular simulation software is performed by inputting the information of the protein such as the amino acid sequence of the target protein and the ID of the protein structure data bank (PDB), etc., and the substrate or coenzyme that interacts with the protein. By inputting the ligand information such as the ligand structure and CAS registration number, it is possible to automatically identify the interaction region between the protein and the ligand. In addition, in the protein before modification, the region specified by using any of the existing methods such as the above-described molecular simulation software may not have an interaction ability under an in vitro experiment. Even such a region is included in the interaction region of one embodiment of the present invention as long as it is a region specified by using any existing method such as the molecular simulation software. That is, a region corresponding to the interaction region is included in the interaction region of one embodiment of the present invention. Even if a region identified using any of the existing methods such as the above molecular simulation software does not actually have the ability to interact, it can be stabilized together with the cofactor or substrate by modifying the region. It is possible to produce modified proteins that form complex complexes. The above-mentioned “front and back amino acids” include, for example, a plurality of amino acids that are continuously adjacent on the N-terminal side or C-terminal side of amino acids that directly or indirectly interact with a cofactor or substrate. The number of amino acids is preferably 10 or less, more preferably 7 or less, from the viewpoint of increasing the fluorescence intensity. This number may be, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10. The amino acids before and after this may interact indirectly with the cofactor or substrate.
 本発明の一実施形態において「相互作用」は、2つ以上の物質間で力が働く現象を含む。相互作用は、例えば、2つ以上の物質間で、会合又は結合が生じる作用を含む。相互作用は、例えば、イオン結合、水素結合、疎水性相互作用、親水性相互作用、分子間力、キレート結合、配位結合、ファンデルワールス結合、静電力による結合、共有結合、又は非共有結合を含む。相互作用は、直接又は間接であってもよい。以下、補因子、基質、及び蛋白質内のアミノ酸に便宜的にアルファベットを付した上で、相互作用の一実施形態を説明する。 In one embodiment of the present invention, “interaction” includes a phenomenon in which force acts between two or more substances. The interaction includes, for example, an action in which association or binding occurs between two or more substances. The interaction may be, for example, ionic bond, hydrogen bond, hydrophobic interaction, hydrophilic interaction, intermolecular force, chelate bond, coordination bond, van der Waals bond, electrostatic bond, covalent bond, or non-covalent bond including. The interaction may be direct or indirect. In the following, an embodiment of the interaction will be described, with the cofactors, substrates, and amino acids in the protein being alphabetized for convenience.
 補因子A又は基質Bと、蛋白質内のアミノ酸Cとの間でイオン結合、水素結合、疎水性相互作用、親水性相互作用、分子間力、キレート結合、配位結合、ファンデルワールス結合、静電力による結合、共有結合、又は非共有結合が生じているとき、それらは直接相互作用しているといえる。この直接相互作用は、アミノ酸C以外のアミノ酸によって、補助又は安定化されていてもよい。 Ionic bond, hydrogen bond, hydrophobic interaction, hydrophilic interaction, intermolecular force, chelate bond, coordination bond, van der Waals bond, static bond between cofactor A or substrate B and amino acid C in protein When power coupling, covalent coupling, or non-covalent coupling occurs, they are said to interact directly. This direct interaction may be aided or stabilized by amino acids other than amino acid C.
 このとき、上記直接相互作用を補助又は安定化する効果を有しているアミノ酸は、上記補因子A又は基質Bと間接相互作用しているといえる。例えば、上記直接相互作用を補助又は安定化するように、アミノ酸Dと上記アミノ酸Cとが直接相互作用していてもよい。このとき、上記補因子A又は基質Bと、蛋白質内のアミノ酸Dは間接相互作用しているといえる。 At this time, it can be said that the amino acid having the effect of assisting or stabilizing the direct interaction is indirectly interacting with the cofactor A or the substrate B. For example, the amino acid D and the amino acid C may interact directly so as to assist or stabilize the direct interaction. At this time, it can be said that the above-mentioned cofactor A or substrate B and the amino acid D in the protein interact indirectly.
 上記アミノ酸Cの近傍には、補因子A又は基質Bに対して間接相互作用するアミノ酸Fが位置していてもよい。このとき、アミノ酸Fを改変することによって、蛋白質の構造変化が起こり、アミノ酸Fが補因子A又は基質Bに対して直接相互作用してもよい。この場合、アミノ酸Fが補因子A又は基質Bと直接相互作用することによって、蛋白質と補因子A又は基質Bとの複合体がより安定化する。 In the vicinity of amino acid C, amino acid F that interacts indirectly with cofactor A or substrate B may be located. At this time, modification of amino acid F may cause a structural change of the protein, and amino acid F may directly interact with cofactor A or substrate B. In this case, when the amino acid F directly interacts with the cofactor A or the substrate B, the complex of the protein and the cofactor A or the substrate B is further stabilized.
 上記アミノ酸Cの近傍には、補因子A又は基質Bに対して間接相互作用するアミノ酸Hが位置していてもよい。このとき、アミノ酸Cを改変することによって、蛋白質の構造変化が起こり、アミノ酸Hが補因子A又は基質Bに対して直接相互作用してもよい。この場合、アミノ酸Hが、補因子A又は基質Bと直接相互作用することによって、蛋白質と補因子A又は基質Bとの複合体がより安定化する。 In the vicinity of amino acid C, amino acid H that indirectly interacts with cofactor A or substrate B may be located. At this time, modification of amino acid C may cause a structural change of the protein, and amino acid H may directly interact with cofactor A or substrate B. In this case, since the amino acid H directly interacts with the cofactor A or the substrate B, the complex of the protein and the cofactor A or the substrate B is further stabilized.
 上記アミノ酸Cの近傍には、補因子A又は基質Bに対して間接相互作用していないアミノ酸Gが位置していてもよい。このとき、アミノ酸Gを改変することによって、蛋白質の構造変化が起こり、アミノ酸Gが補因子A又は基質Bに対して直接又は間接相互作用してもよい。この場合、アミノ酸Gが、補因子A又は基質Bと直接又は間接相互作用することによって、蛋白質と補因子A又は基質Bとの複合体がより安定化する。 In the vicinity of amino acid C, amino acid G that does not indirectly interact with cofactor A or substrate B may be located. At this time, modification of amino acid G may cause a structural change in the protein, and amino acid G may interact directly or indirectly with cofactor A or substrate B. In this case, when the amino acid G directly or indirectly interacts with the cofactor A or the substrate B, the complex of the protein and the cofactor A or the substrate B is further stabilized.
 上記アミノ酸Cの近傍には、補因子A又は基質Bに対して間接相互作用していないアミノ酸Iが位置していてもよい。このとき、アミノ酸Cを改変することによって、蛋白質の構造変化が起こり、アミノ酸Iが補因子A又は基質Bに対して直接又は間接相互作用してもよい。この場合、アミノ酸Iが補因子A又は基質Bと直接又は間接相互作用することよって、蛋白質と補因子A又は基質Bとの複合体がより安定化する。なお、「アミノ酸Cの近傍」は、アミノ酸Cに対して、蛋白質の構造上又は空間上近くに位置している状態を含む。また、補因子又は基質に対して直接又は間接相互作用しているアミノ酸の数は、蛍光強度を上げる観点からは、1つ以上であり、好ましくは3つ以上であり、より好ましくは7つ以上である。このアミノ酸の数は特に限定されず、例えば、1、2、3、4、5、6、10、又は15個以上、又はそれらいずれか2つの値の範囲内であってもよい。また、改変させる相互作用領域の数は、蛍光強度を上げる観点からは、1箇所以上であり、好ましくは3箇所以上であり、より好ましくは4箇所以上である。このアミノ酸の数は特に限定されず、例えば、1、2、3、4、5、6、10、12、又は15箇所以上、又はそれらいずれか2つの値の範囲内であってもよい。 In the vicinity of amino acid C, amino acid I that does not indirectly interact with cofactor A or substrate B may be located. At this time, modification of amino acid C may cause a structural change of the protein, and amino acid I may interact directly or indirectly with cofactor A or substrate B. In this case, the amino acid I interacts directly or indirectly with the cofactor A or the substrate B, so that the complex of the protein and the cofactor A or the substrate B is further stabilized. The term “near amino acid C” includes a state where the amino acid C is located near the protein structure or space. Further, the number of amino acids directly or indirectly interacting with the cofactor or substrate is 1 or more, preferably 3 or more, more preferably 7 or more, from the viewpoint of increasing the fluorescence intensity. It is. The number of amino acids is not particularly limited, and may be, for example, 1, 2, 3, 4, 5, 6, 10, or 15 or more, or any two of them. Further, the number of interaction regions to be modified is 1 or more, preferably 3 or more, more preferably 4 or more, from the viewpoint of increasing the fluorescence intensity. The number of the amino acids is not particularly limited, and may be, for example, 1, 2, 3, 4, 5, 6, 10, 12, or 15 or more, or within the range of any two values thereof.
 本発明の一実施形態において「蛍光化蛋白質」は、安定して蛍光を検出可能な蛋白質を含む。この蛍光化蛋白質は、例えば、安定的に蛍光を検出できない蛋白質(本明細書では「非蛍光蛋白質」と称することもある)をコードする遺伝子を改変して得られる。この改変は、補因子と相互作用する蛋白質における相互作用領域、基質と相互作用する蛋白質における相互作用領域、又は補因子及び基質の両者と相互作用する蛋白質における相互作用領域の1つ以上のアミノ酸の改変であってもよい。本発明の一実施形態において「蛍光化遺伝子」又は「蛍光遺伝子」は、蛍光化蛋白質をコードする核酸を含む。また、「蛍光化蛋白質」又は「蛍光化した蛋白質」の用語は、非蛍光蛋白質が改変されたことにより、補因子又は基質と安定的な複合体を形成し、その結果、複合体全体として安定的に蛍光を発するようになった場合の蛋白質に対して使用されることがある。即ち、蛍光化蛋白質は必ずしもそれ自身が蛍光を発していなくてもよく、補因子又は基質との複合体を形成したときにはじめて、その複合体全体として蛍光を発するような特性を持った蛋白質を含む。逆に、「非蛍光蛋白質」は、補因子又は基質と安定的に複合体を形成できず、そのため、複合体全体としての蛍光も安定的に発することができないような特性を持った蛋白質を含む。又は、非蛍光蛋白質は、補因子又は基質と安定的に複合体を形成できるが、複合体の構造的な問題で、複合体全体としての蛍光を安定的に発することができないような特性を持った蛋白質であってもよい。非蛍光蛋白質は、安定的に蛍光を検出できない蛋白質であれば、野生型蛋白質又は改変されている蛋白質であってもよい。非蛍光蛋白質は、安定的に蛍光を検出できないポリペプチド(非蛍光ポリペプチド)であってもよい。なお、被験物質が発する蛍光が、安定的に蛍光を検出可能なものかどうかは、蛍光顕微鏡を用いて被験物質由来の蛍光を一定期間観察できるかどうかで判断してもよい。例えば、図10の4ヶ所改変、5ヶ所改変-1、5ヶ所改変-2では、蛍光顕微鏡を用いて蛍光を一定期間観察できている。そのため、それらは、安定的に検出可能な蛍光を発していると判断してもよい。一方で、図10のΔ1-74 hDHODHの場合は、蛍光顕微鏡で蛍光を一定期間観察できていない。そのため、Δ1-74 hDHODHは、安定的に検出可能な蛍光を発していないと判断してもよい。また蛍光は、例えば、適宜緑色蛍光検出器、又は近赤外蛍光検出器等を用いて検出してもよい。 In one embodiment of the present invention, the “fluorescent protein” includes a protein capable of stably detecting fluorescence. This fluorescent protein can be obtained, for example, by modifying a gene that encodes a protein that cannot stably detect fluorescence (sometimes referred to herein as “non-fluorescent protein”). This modification may be caused by an interaction region in a protein that interacts with a cofactor, an interaction region in a protein that interacts with a substrate, or one or more amino acids in an interaction region in a protein that interacts with both a cofactor and a substrate. It may be modified. In one embodiment of the present invention, the “fluorescent gene” or “fluorescent gene” includes a nucleic acid encoding a fluorescent protein. In addition, the terms “fluorescent protein” or “fluorescent protein” refer to the formation of a stable complex with a cofactor or substrate due to modification of a non-fluorescent protein, resulting in a stable overall complex. In some cases, it is used for proteins when they become fluorescent. In other words, a fluorescent protein does not necessarily have to emit fluorescence, but only when a complex with a cofactor or a substrate is formed, a protein having such a characteristic that the whole complex emits fluorescence. Including. On the other hand, “non-fluorescent protein” includes a protein having such a characteristic that a complex cannot be stably formed with a cofactor or a substrate, and therefore the fluorescence of the entire complex cannot be stably emitted. . Alternatively, a non-fluorescent protein can stably form a complex with a cofactor or substrate, but has a characteristic that it cannot stably emit fluorescence as a whole complex due to the structural problem of the complex. It may be a protein. The non-fluorescent protein may be a wild type protein or a modified protein as long as the protein cannot stably detect fluorescence. The non-fluorescent protein may be a polypeptide that cannot stably detect fluorescence (non-fluorescent polypeptide). Whether or not the fluorescence emitted from the test substance can be stably detected may be determined by whether or not the fluorescence derived from the test substance can be observed for a certain period using a fluorescence microscope. For example, in the four modification, five modification-1, and five modification-2 in FIG. 10, fluorescence can be observed for a certain period using a fluorescence microscope. Therefore, they may be judged to emit fluorescence that can be stably detected. On the other hand, in the case of Δ1-74 hDHODH in FIG. 10, fluorescence cannot be observed for a certain period with a fluorescence microscope. Therefore, Δ1-74 hDHODH may be determined not to emit stable detectable fluorescence. The fluorescence may be detected using, for example, a green fluorescence detector or a near infrared fluorescence detector as appropriate.
 上記蛋白質の由来は、動植物由来であることが好ましい。ここで、動植物とは、動物界に分類される生物(本明細書においては「動物」と称することもある)、又は植物界に分類される生物(本明細書においては「植物」と称することもある)を含む。動物は、例えば、哺乳類又は哺乳綱に分類される生物を含む。また動物は、例えば、ヒト、マウス、モルモット、ハムスター、ラット、ネズミ、ウサギ、ブタ、ヒツジ、ヤギ、ウシ、ウマ、ネコ、イヌ、マーモセット、サル、チンパンジー、又はカエル等を挙げることができる。植物は、例えば、紅色植物門、灰色植物門、緑藻植物門、又はストレプト植物門に分類される生物を含む。また植物は、例えば、シダ植物門、裸子植物門、又は被子植物門に分類される生物を含む。また植物は、例えば、シロイヌナズナ、イネ、トウモロコシ、又はトウゴマ等を挙げることができる。 It is preferable that the protein is derived from animals and plants. Here, animals and plants are organisms classified in the animal kingdom (sometimes referred to as “animals” in this specification), or organisms classified in the plant kingdom (referred to as “plants” in this specification). Is also included. Animals include, for example, organisms classified as mammals or mammals. Examples of animals include humans, mice, guinea pigs, hamsters, rats, mice, rabbits, pigs, sheep, goats, cows, horses, cats, dogs, marmosets, monkeys, chimpanzees, and frogs. Plants include, for example, organisms classified as red plant gates, gray plant gates, green algae plant gates, or streptophores. Plants include organisms classified as, for example, fern planta, gymnospermia or angiosperm. Examples of the plant include Arabidopsis thaliana, rice, corn, and sesame.
 本発明の一実施形態において「核酸」は、ヌクレオチド又はその等価物が、複数結合した形態で構成されているものを含む。また上記核酸、DNA鎖又はRNA鎖を含む。核酸は、細胞取込促進物質(例えば、PEG又はその誘導体)、標識タグ(例えば、蛍光標識タグ等)、リンカー(例えば、ヌクレオチドドリンカー等)、又は化学療法剤(例えば、抗悪性腫瘍物質等)等と結合していてもよい。核酸は、核酸合成装置を用いて合成可能である。その他、受託会社(例えば、インビトロジェン社等)から購入することもできる。生体内の核酸は、塩又は溶媒和物を形成することがある。また、生体内の核酸は、化学修飾を受けることがある。核酸の用語は、例えば、塩もしくは溶媒和物を形成している核酸、又は化学修飾を受けている核酸等を含む。また核酸は、核酸のアナログであってもよい。本発明の一実施形態において「塩」は、特に限定されないが、例えば任意の酸性(例えばカルボキシル)基で形成されるアニオン塩、又は任意の塩基性(例えばアミノ)基で形成されるカチオン塩を含む。塩類には無機塩又は有機塩を含み、例えば、Berge et al., J.Pharm.Sci., 1977, 66, 1-19に記載されている塩が含まれる。また例えば、金属塩、アンモニウム塩、有機塩基との塩、無機酸との塩、有機酸との塩等が挙げられる。本発明の一実施形態において「溶媒和物」は、溶質及び溶媒によって形成される化合物である。溶媒和物については例えば、J.Honig et al., The Van Nostrand Chemist's Dictionary P650 (1953)を参照できる。溶媒が水であれば形成される溶媒和物は水和物である。この溶媒は、溶質の生物活性を妨げないものが好ましい。そのような好ましい溶媒の例として、特に限定するものではないが、水、又は各種バッファーが挙げられる。本発明の一実施形態において「化学修飾」としては、例えば、PEGもしくはその誘導体による修飾、フルオレセイン修飾、又はビオチン修飾等が挙げられる。また核酸は、cDNA、ゲノムDNA、又は化学的に合成されたDNA鎖又はRNA鎖を含み、1本鎖または2本鎖でありうる。 In one embodiment of the present invention, the “nucleic acid” includes those in which a plurality of nucleotides or equivalents thereof are combined. In addition, the nucleic acid, DNA strand or RNA strand is included. The nucleic acid is a cell uptake promoting substance (for example, PEG or a derivative thereof), a labeling tag (for example, a fluorescent labeling tag), a linker (for example, a nucleotide linker), or a chemotherapeutic agent (for example, an antineoplastic substance). Etc. may be combined. Nucleic acids can be synthesized using a nucleic acid synthesizer. In addition, it can also be purchased from a trust company (for example, Invitrogen). In vivo nucleic acids may form salts or solvates. In addition, in vivo nucleic acids may be chemically modified. The term nucleic acid includes, for example, nucleic acids that form salts or solvates, or nucleic acids that have undergone chemical modification. The nucleic acid may be an analog of nucleic acid. In one embodiment of the present invention, the “salt” is not particularly limited. For example, an anion salt formed with any acidic (eg, carboxyl) group, or a cationic salt formed with any basic (eg, amino) group. Including. Salts include inorganic salts or organic salts, for example, salts described in Berge et al., J J Pharm. Sci., 1977, 66, 1-19. Examples thereof include metal salts, ammonium salts, salts with organic bases, salts with inorganic acids, salts with organic acids, and the like. In one embodiment of the present invention, a “solvate” is a compound formed by a solute and a solvent. As for the solvate, for example, J. Honig et al., The Van Nostrand Chemist's Dictionary P650 (1953) can be referred to. If the solvent is water, the solvate formed is a hydrate. This solvent is preferably one that does not interfere with the biological activity of the solute. Examples of such preferred solvents include, but are not limited to, water or various buffers. In one embodiment of the present invention, “chemical modification” includes, for example, modification with PEG or a derivative thereof, fluorescein modification, biotin modification, or the like. Nucleic acids also include cDNA, genomic DNA, or chemically synthesized DNA or RNA strands and can be single-stranded or double-stranded.
 上記「蛋白質」は、アミノ酸又はその等価物が、複数個以上結合した形態で構成されているものを含む。蛋白質の鎖長は特に限定されず、例えば、20、50、100、300、500、1000、5000、又は10000アミノ酸であってもよく、それらいずれかの値以上、又はいずれか2つの値の範囲内であってもよい。蛋白質は、例えば、酵素、受容体、又は構造蛋白質等を含む。また蛋白質は、ポリペプチドを含む概念であり、その機能性の有無や鎖長によって限定されるものではない。蛋白質は、例えば、NCBIの蛋白質データベースに登録されている蛋白質に対して相同性を有し、且つ補因子又は基質に対する相互作用領域を有するポリペプチドを含む。相同性を有するかどうかは、BLAST等で相同性検索することによって確認できる。相同性検索の結果1つ以上の蛋白質が表示されれば、相同性があると判断してもよい。このときの相同性は、例えば、80、90、95、98、99、又は100%、又はそれらいずれか2つの値の範囲内であってもよい。蛋白質の用語は、例えば、塩もしくは溶媒和物を形成している蛋白質、又は化学修飾を受けている蛋白質等を含む。蛋白質の作製は、例えば、合成装置(例えば、PSSM-8(SHIMADZU CORPORATION))を使用してもよいし、受託会社(例えば、GenScript USA Inc.等)に委託してもよい。また蛋白質は、野生型蛋白質、又は変異型蛋白質を含む。本明細書において「2つの値の範囲内」と明記した場合、その範囲には2つの値自体も含む。 The above “protein” includes those in which a plurality of amino acids or their equivalents are combined. The chain length of the protein is not particularly limited, and may be, for example, 20, 50, 100, 300, 500, 1000, 5000, or 10000 amino acids, or any of those values or a range of any two values. It may be within. The protein includes, for example, an enzyme, a receptor, or a structural protein. Protein is a concept including a polypeptide, and is not limited by the presence or absence of functionality or the chain length. The protein includes, for example, a polypeptide having homology to a protein registered in the NCBI protein database and having an interaction region for a cofactor or a substrate. Whether there is homology can be confirmed by homology search using BLAST or the like. If one or more proteins are displayed as a result of the homology search, it may be determined that there is homology. The homology at this time may be, for example, 80, 90, 95, 98, 99, or 100%, or a range of any two of them. The term protein includes, for example, a protein that forms a salt or a solvate, or a protein that has undergone chemical modification. For the production of the protein, for example, a synthesizer (for example, PSSM-8 (SHIMADZU CORPORATION)) may be used, or it may be entrusted to a trust company (for example, GenScript USA Inc.). The protein includes a wild type protein or a mutant protein. In this specification, when “in the range of two values” is specified, the range includes the two values themselves.
 上記改変型蛋白質は、補因子又は基質とともに蛍光化蛋白質複合体を形成する、上記改変型蛋白質の蛋白質断片であってもよい。この蛋白質断片は、補因子又は基質とともに蛍光化蛋白質複合体を形成することによって、蛍光を発することができる。この蛋白質断片は、補因子又は基質とともに蛍光化蛋白質複合体を形成できる限り、その長さは限定されない。この蛋白質断片は、その蛋白質断片以外の化合物と結合又は融合することが可能である。 The modified protein may be a protein fragment of the modified protein that forms a fluorescent protein complex with a cofactor or substrate. This protein fragment can fluoresce by forming a fluorescent protein complex with a cofactor or substrate. The length of this protein fragment is not limited as long as it can form a fluorescent protein complex with a cofactor or substrate. This protein fragment can be bound or fused with a compound other than the protein fragment.
 本発明の一実施形態において「アミノ酸」は、アミノ基とカルボキシル基を持つ有機化合物の総称である。本発明の実施形態に係る蛋白質が「特定のアミノ酸配列」を含むとき、そのアミノ酸配列中のいずれかのアミノ酸が化学修飾を受けていてもよい。また、そのアミノ酸配列中のいずれかのアミノ酸が塩、又は溶媒和物を形成していてもよい。また、そのアミノ酸配列中のいずれかのアミノ酸がL型、又はD型であってもよい。それらのような場合でも、本発明の実施形態に係る蛋白質は、上記「特定のアミノ酸配列」を含むといえる。即ち、例えばアミノ酸配列中のRは、アルギニン、又はその化学修飾体、塩、もしくは溶媒和物であってもよい。蛋白質に含まれるアミノ酸が生体内で受ける化学修飾としては、例えば、N末端修飾(例えば、アセチル化、ミリストイル化等)、C末端修飾(例えば、アミド化、グリコシルホスファチジルイノシトール付加等)、又は側鎖修飾(例えば、リン酸化、糖鎖付加等)等が知られている。 In one embodiment of the present invention, “amino acid” is a general term for organic compounds having an amino group and a carboxyl group. When the protein according to the embodiment of the present invention includes a “specific amino acid sequence”, any amino acid in the amino acid sequence may be chemically modified. Any amino acid in the amino acid sequence may form a salt or a solvate. Further, any amino acid in the amino acid sequence may be L-type or D-type. Even in such a case, it can be said that the protein according to the embodiment of the present invention includes the above-mentioned “specific amino acid sequence”. That is, for example, R in the amino acid sequence may be arginine, or a chemically modified product, salt, or solvate thereof. Examples of chemical modifications that amino acids contained in proteins undergo in vivo include, for example, N-terminal modification (for example, acetylation, myristoylation, etc.), C-terminal modification (for example, amidation, glycosylphosphatidylinositol addition, etc.), or side chain Modifications (for example, phosphorylation, sugar chain addition, etc.) are known.
 上記改変型蛋白質は、補因子又は基質とともに安定的に蛍光を発する限り、(i) DHODH等からなる群から選ばれる1つ以上の蛋白質をコードするアミノ酸配列、(ii) 上記(i)に記載のアミノ酸配列に対して、1又は複数個のアミノ酸が欠失、置換、挿入、もしくは付加しているアミノ酸配列、(iii) 上記(i)に記載のアミノ酸配列に対して、80%以上の相同性を有するアミノ酸配列、及び(iv) 上記(i)に記載のアミノ酸配列をコードする塩基配列に相補的な塩基配列からなる核酸に、ストリンジェントな条件下で特異的にハイブリダイズする核酸がコードするアミノ酸配列、からなる群から選ばれる1つ以上のアミノ酸配列を含んでいてもよい。このアミノ酸配列において、補因子又は基質に対する相互作用領域に相当する領域が、野生型のときと比較して改変されていてもよい。 As long as the modified protein stably emits fluorescence with a cofactor or substrate, (i) an amino acid sequence encoding one or more proteins selected from the group consisting of DHODH and the like, (ii) 記載 described in (i) above An amino acid sequence in which one or more amino acids are deleted, substituted, inserted, or added, (iii) 80% or more homology to the amino acid sequence described in (i) above And (iv) a nucleic acid that specifically hybridizes under stringent conditions to a nucleic acid consisting of a base sequence complementary to the base sequence encoding the amino acid sequence described in (i) above. One or more amino acid sequences selected from the group consisting of: In this amino acid sequence, a region corresponding to a region interacting with a cofactor or a substrate may be modified as compared with the wild type.
 上記改変型蛋白質は、(v) DHODHをコードするアミノ酸配列、(vi) 上記(v)に記載のアミノ酸配列に対して、1又は複数個のアミノ酸が欠失、置換、挿入、もしくは付加しているアミノ酸配列、(vii) 上記(v)に記載のアミノ酸配列に対して、80%以上の相同性を有するアミノ酸配列、及び(viii) 上記(v)に記載のアミノ酸配列をコードする塩基配列に相補的な塩基配列からなる核酸に、ストリンジェントな条件下で特異的にハイブリダイズする核酸がコードするアミノ酸配列、からなる群から選ばれる1つ以上のアミノ酸配列を含み、且つ、図9に示される相互作用領域に相当する領域の少なくとも1つの領域において、少なくとも1つのアミノ酸の改変を有していてもよい。この改変は、表2、表3、表4、表5、表6、又は表7内に示される改変の少なくとも1つであってもよい。また、上記改変型蛋白質は、(ix) BVR-Aをコードするアミノ酸配列、(x) 上記(ix)に記載のアミノ酸配列に対して、1又は複数個のアミノ酸が欠失、置換、挿入、もしくは付加しているアミノ酸配列、(xi) 上記(ix)に記載のアミノ酸配列に対して、80%以上の相同性を有するアミノ酸配列、及び(xii) 上記(ix)に記載のアミノ酸配列をコードする塩基配列に相補的な塩基配列からなる核酸に、ストリンジェントな条件下で特異的にハイブリダイズする核酸がコードするアミノ酸配列、からなる群から選ばれる1つ以上のアミノ酸配列を含み、且つ、図14に示される相互作用領域に相当する領域の少なくとも1つの領域において、少なくとも1つのアミノ酸の改変を有していてもよい。この改変は、表8、表9、又は表10内に示される改変の少なくとも1つであってもよい。ここで、表又は図に示す改変は、いずれか1つ以上のアミノ酸の改変であればよく、2つ以上の改変がある場合、改変の組合わせは取り得る全ての組合わせが採用可能である。 In the modified protein, (v) ア ミ ノ 酸 DHODH-encoding amino acid sequence, (vi) ア ミ ノ 酸 one or more amino acids are deleted, substituted, inserted or added to the amino acid sequence described in (v) above. (Vii) an amino acid sequence having 80% or more homology to the amino acid sequence described in (v) above, and (viii) a base sequence encoding the amino acid sequence described in (v) above. Including at least one amino acid sequence selected from the group consisting of an amino acid sequence encoded by a nucleic acid that specifically hybridizes under stringent conditions to a nucleic acid comprising a complementary base sequence, and shown in FIG. In at least one region corresponding to the interaction region, at least one amino acid modification may be included. This modification may be at least one of the modifications shown in Table 2, Table 3, Table 4, Table 5, Table 6, or Table 7. Further, the modified protein is (ix) amino acid sequence encoding BVR-A, (x) ア ミ ノ 酸 one or more amino acids are deleted, substituted, inserted from the amino acid sequence described in (ix), Or (xi) amino acid sequence having 80% or more homology to the amino acid sequence described in (ix) above, and (xii) amino acid sequence described in (ix) above. One or more amino acid sequences selected from the group consisting of an amino acid sequence encoded by a nucleic acid that specifically hybridizes under stringent conditions to a nucleic acid consisting of a base sequence complementary to the base sequence, and At least one region corresponding to the interaction region shown in FIG. 14 may have at least one amino acid modification. This modification may be at least one of the modifications shown in Table 8, Table 9, or Table 10. Here, the modification shown in the table or figure may be modification of any one or more amino acids, and when there are two or more modifications, all possible combinations can be adopted. .
 上記「複数個」は、例えば、20、15、10、8、6、4、3、又は2個であってもよく、それらいずれかの値以下であってもよい。上記「80%以上」は、抗原性を下げる観点からは、好ましくは90%以上であり、より好ましくは95%以上である。この値は特に限定されず、例えば、80、85、90、95、97、98、99、又は100%以上であってもよく、それらいずれか2つの値の範囲内であってもよい。上記「相同性」は、2つもしくは複数間のアミノ酸配列において相同なアミノ酸数の割合を、当該技術分野で公知の方法に従って算定してもよい。割合を算定する前には、比較するアミノ酸配列群のアミノ酸配列を整列させ、同一アミノ酸の割合を最大にするために必要である場合はアミノ酸配列の一部に間隙を導入する。整列のための方法、割合の算定方法、比較方法、及びそれらに関連するコンピュータプログラムは、当該技術分野で従来からよく知られている(例えば、BLAST、GENETYX等)。本明細書において「相同性」は、特に断りのない限りNCBIのBLASTによって測定された値で表すことができる。BLASTでアミノ酸配列を比較するときのアルゴリズムには、Blastpをデフォルト設定で使用できる。測定結果はPositives又はIdentitiesとして数値化されるが、本実施形態では好ましくはPositivesを採用する。 The “plurality” may be, for example, 20, 15, 10, 8, 6, 4, 3, or 2, or may be less than any of these values. The “80% or more” is preferably 90% or more, more preferably 95% or more from the viewpoint of reducing antigenicity. This value is not particularly limited, and may be, for example, 80, 85, 90, 95, 97, 98, 99, or 100% or more, and may be in the range of any two of them. The above-mentioned “homology” may be calculated according to a method known in the art, based on the ratio of the number of amino acids homologous in two or more amino acid sequences. Before calculating the ratio, the amino acid sequences of the group of amino acid sequences to be compared are aligned, and a gap is introduced into a part of the amino acid sequence when necessary to maximize the ratio of the same amino acids. Methods for alignment, percentage calculation, comparison methods, and related computer programs are well known in the art (eg, BLAST, GENETYX, etc.). In the present specification, “homology” can be expressed by a value measured by NCBI BLAST unless otherwise specified. Blastp can be used as the default algorithm for comparing amino acid sequences with BLAST. Although the measurement result is quantified as Positives or Identities, this embodiment preferably employs Positives.
 上記「ストリンジェントな条件」は、例えば、以下の条件を採用することができる。(1)洗浄のために低イオン強度及び高温度を用いる(例えば、50℃で、0.015Mの塩化ナトリウム/0.0015Mのクエン酸ナトリウム/0.1%のドデシル硫酸ナトリウム)、(2)ハイブリダイゼーション中にホルムアミド等の変性剤を用いる(例えば、42℃で、50%(v/v)ホルムアミドと0.1%ウシ血清アルブミン/0.1%フィコール/0.1%のポリビニルピロリドン/50mMのpH6.5のリン酸ナトリウムバッファー、及び750mMの塩化ナトリウム、75mMクエン酸ナトリウム)、又は(3)20%ホルムアミド、5×SSC、50mMリン酸ナトリウム(pH7.6)、5×デンハード液、10%硫酸デキストラン、及び20mg/mlの変性剪断サケ精子DNAを含む溶液中で、37℃で一晩インキュベーションし、次に約37-50℃で1×SSCでフィルターを洗浄する。なお、ホルムアミド濃度は50%又はそれ以上であってもよい。洗浄時間は、5、15、30、60、もしくは120分、又はそれら以上であってもよい。ハイブリダイゼーション反応のストリンジェンシーに影響する要素としては温度、塩濃度など複数の要素が考えられ、詳細はAusubel et al., Current Protocols in Molecular Biology, Wiley Interscience Publishers, (1995)を参照することができる。 For example, the following conditions can be adopted as the “stringent conditions”. (1) Use low ionic strength and high temperature for washing (eg, 50 ° C., 0.015 M sodium chloride / 0.0015 M sodium citrate / 0.1% sodium dodecyl sulfate), (2) during hybridization Use a denaturing agent such as formamide (eg, at 42 ° C., 50% (v / v) formamide and 0.1% bovine serum albumin / 0.1% ficoll / 0.1% polyvinylpyrrolidone / 50 mM sodium phosphate buffer pH 6.5, And 750 mM sodium chloride, 75 mM sodium citrate) or (3) 20% formamide, 5 × SSC, 50 mM sodium phosphate (pH 7.6), 5 × Denhardt's solution, 10% dextran sulfate, and 20 mg / ml denaturation Incubate overnight at 37 ° C. in a solution containing sheared salmon sperm DNA, then wash the filter with 1 × SSC at approximately 37-50 ° C. The formamide concentration may be 50% or higher. The wash time may be 5, 15, 30, 60, or 120 minutes, or longer. Multiple factors such as temperature and salt concentration can be considered as factors affecting the stringency of hybridization reaction. For details, see Ausubel et al., Current Protocols in Molecular Biology, Wiley Interscience Publishers, (1995) .
 上記改変型蛋白質、又は改変される前の蛋白質は、N末端又はC末端のアミノ酸が欠失していてもよい。このとき、欠失しているアミノ酸の数は、低分子量化する観点からは、好ましくは74個以下であり、より好ましくは20個以下である。この値は特に限定されず、例えば、1、5、10、20、50、74、90、又は100個以下であってもよく、それらいずれか2つの値の範囲内であってもよい。また欠失は、蛋白質が本来有している主要な活性を阻害する部分の欠失であってもよい。N末端又はC末端のアミノ酸が欠失した結果、蛋白質の鎖長が短くなった場合でも、本発明の一実施形態の蛋白質の概念に含まれる。 The N-terminal or C-terminal amino acid of the modified protein or the protein before being modified may be deleted. In this case, the number of deleted amino acids is preferably 74 or less, more preferably 20 or less, from the viewpoint of reducing the molecular weight. This value is not particularly limited, and may be, for example, 1, 5, 10, 20, 50, 74, 90, or 100 or less, or may be within the range of any two of them. The deletion may be a deletion of a portion that inhibits the main activity inherent in the protein. Even when the protein chain length is shortened as a result of deletion of the N-terminal or C-terminal amino acid, it is included in the concept of the protein of one embodiment of the present invention.
 上記改変型蛋白質において、改変される前のアミノ酸は、例えば、Met、Ara、Val、Leu、Ile、Pro、Phe、Trp、Cys、Gly、Ser、Thr、Tyr、Asn、Gln、Asp、Glu、Lys、Arg、又はHisであってもよい。改変された後のアミノ酸は、改変される前のアミノ酸以外のアミノ酸に置換されていてもよい。この改変は、標的蛋白質の、補因子又は基質に対する相互作用領域をコードする核酸を改変することによって行われてもよい。また、改変する工程の前に、標的蛋白質内の前記相互作用領域を決定する工程があってもよい。また、改変する工程の後に、蛍光強度が上昇したものを選抜する工程があってもよい。また改変は、改変前のアミノ酸より大きい等電点、又は小さい等電点を有するアミノ酸に置換しても良い。また改変は、改変前のアミノ酸が、疎水性アミノ酸、親水性アミノ酸、脂肪族側鎖を有するアミノ酸、水酸基含有側鎖を有するアミノ酸、硫黄原子含有側鎖を有するアミノ酸、カルボン酸及びアミド含有側鎖を有するアミノ酸、塩基含有側鎖を有するアミノ酸、又は芳香族含有側鎖のいずれかに分類されるアミノ酸であってもよい。このとき、改変後のアミノ酸は、改変前とは異なる分類のアミノ酸であってもよい。 In the modified protein, the amino acids before being modified are, for example, Met, Ara, Val, Leu, Ile, Pro, Phe, Trp, Cys, Gly, Ser, Thr, Tyr, Asn, Gln, Asp, Glu, It may be Lys, Arg, or His. The amino acid after the modification may be substituted with an amino acid other than the amino acid before the modification. This modification may be performed by modifying the nucleic acid encoding the interaction region of the target protein with the cofactor or substrate. Further, before the step of modifying, there may be a step of determining the interaction region in the target protein. Further, after the modifying step, there may be a step of selecting one having an increased fluorescence intensity. In addition, the modification may be replaced with an amino acid having an isoelectric point larger or smaller than the amino acid before modification. In addition, the amino acid before modification is a hydrophobic amino acid, a hydrophilic amino acid, an amino acid having an aliphatic side chain, an amino acid having a hydroxyl group-containing side chain, an amino acid having a sulfur atom-containing side chain, a carboxylic acid and an amide-containing side chain. The amino acids may be classified into any of amino acids having a base, amino acids having a base-containing side chain, and aromatic-containing side chains. At this time, the amino acid after modification may be a different class of amino acid from that before modification.
 本実施形態において「蛍光」の種類は、緑色、近赤外、紫外、紫色、青色、黄色、オレンジ色、赤色、赤外、又は遠赤外であってもよい。改変型蛋白質が緑色蛍光を発する場合、例えば、450nm~600nmの間に最大蛍光波長を有していてもよい。この波長は特に限定されず、例えば、450、500、550、又は600nmであってもよく、それらいずれか2つの値の範囲内であってもよい。改変型蛋白質が緑色蛍光を発する場合、例えば、300nm~550nmの間に最大励起波長を有していてもよい。この波長は特に限定されず、例えば、300、350、400、450、500、又は550nmであってもよく、それらいずれか2つの値の範囲内であってもよい。改変型蛋白質が近赤外蛍光を発する場合、例えば、650nm~2500nmの間に最大蛍光波長を有していてもよい。この波長は特に限定されず、例えば、650、700、750、800、900、1000、1250、1500、1750、2000、2250、又は2500nmであってもよく、それらいずれか2つの値の範囲内であってもよい。改変型蛋白質が近赤外蛍光を発する場合、例えば、600nm~1100nmの間に最大励起波長を有していてもよい。この波長は特に限定されず、例えば、600、650、700、750、800、850、900、950、1000、1050、又は1100nmであってもよく、それらいずれか2つの値の範囲内であってもよい。改変型蛋白質において、蛍光波長又は励起波長が、改変前蛋白質に比べてシフトするように改変されていてもよい。生体透過性の観点からは、蛍光は近赤外蛍光、又は650nm~2500nmの間に最大蛍光波長を有する蛍光であることが好ましい。なお、蛍光顕微鏡等で検出される蛍光色は、フィルターによって変化することがある。そのため、改変型蛋白質は検出可能な蛍光色を複数有していてもよい。 In this embodiment, the type of “fluorescence” may be green, near infrared, ultraviolet, purple, blue, yellow, orange, red, infrared, or far infrared. When the modified protein emits green fluorescence, for example, it may have a maximum fluorescence wavelength between 450 nm and 600 nm. This wavelength is not particularly limited, and may be, for example, 450, 500, 550, or 600 nm, and may be in the range of any two values thereof. When the modified protein emits green fluorescence, for example, it may have a maximum excitation wavelength between 300 nm and 550 nm. This wavelength is not particularly limited, and may be, for example, 300, 350, 400, 450, 500, or 550 nm, and may be in the range of any two values thereof. When the modified protein emits near-infrared fluorescence, for example, it may have a maximum fluorescence wavelength between 650 nm and 2500 nm. This wavelength is not particularly limited and may be, for example, 650, 700, 750, 800, 900, 1000, 1250, 1500, 1750, 2000, 2250, or 2500 nm, and within the range of any two of them. There may be. When the modified protein emits near-infrared fluorescence, for example, it may have a maximum excitation wavelength between 600 nm and 1100 nm. This wavelength is not particularly limited, and may be, for example, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1050, or 1100 nm, and is within the range of any two of them. Also good. In the modified protein, the fluorescence wavelength or the excitation wavelength may be modified so as to shift compared to the protein before modification. From the viewpoint of biopermeability, the fluorescence is preferably near-infrared fluorescence or fluorescence having a maximum fluorescence wavelength between 650 nm and 2500 nm. Note that the fluorescent color detected by a fluorescence microscope or the like may change depending on the filter. Therefore, the modified protein may have a plurality of detectable fluorescent colors.
 改変型蛋白質の蛍光強度は、例えば、市販の蛍光顕微鏡(例えば、研究用倒立顕微鏡ECLIPSE TE2000-U標準位相差セット、ニコン社製等)、又は蛍光分光光度計(例えば、日立ハイテク製品等)を用いて安定的に検出できる程度であることが好ましい。改変型蛋白質の蛍光強度は、改変前の蛋白質が安定的に検出できない程度の小さな蛍光強度を有している場合は、その改変前の蛋白質に対して、実質的に又は有意に上昇していてもよい。なお「有意に」は、例えば統計学的有意差をスチューデントのt検定(片側又は両側)を使用して評価し、p<0.05であるときを含んでいてもよい。また改変型蛋白質の蛍光強度は、蛍光検査の精度又は効率を挙げる観点からは、改変前の蛋白質に比べて、好ましくは50倍以上であり、より好ましくは500倍以上である。この数値は特に限定されず、例えば、1.5、2、3、4、5、10、50、100、500、1000、2000、又は10000倍以上に上昇していてもよくそれらいずれか2つの値の範囲内にまで上昇していてもよい。また、改変型蛋白質が安定的に蛍光を発しているかどうか、又は改変型蛋白質の蛍光強度が安定的に検出できる程度かどうかは、FACS Calibur (Becton, Dickinson and Company) でBD CellQuest Proのソフトウェアを用いて測定してもよい(例えば、図12参照)。又は、ODDYSEY (LI-COR社製)でApplication Software Version 2.1のソフトウェアを用いて測定してもよい(例えば、図16参照)。 The fluorescence intensity of the modified protein can be determined, for example, by using a commercially available fluorescence microscope (for example, an inverted microscope for research ECLIPSE TE2000-U standard phase difference set, manufactured by Nikon Corporation), or a fluorescence spectrophotometer (for example, Hitachi High-Tech product). It is preferable that it can be used and stably detected. The fluorescence intensity of the modified protein is substantially or significantly increased with respect to the protein before modification when the protein before modification has such a small fluorescence intensity that it cannot be stably detected. Also good. Note that “significantly” may include a case where, for example, statistical significance is evaluated using Student's t test (one-sided or two-sided) and p <0.05. In addition, the fluorescence intensity of the modified protein is preferably 50 times or more, more preferably 500 times or more compared to the protein before modification, from the viewpoint of increasing the accuracy or efficiency of the fluorescence test. This number is not particularly limited, for example, 1.5, 2, 3, 4, 5, 10, 50, 100, 500, 1000, 2000, or may be increased more than 10,000 times, any of those two values It may rise to within the range. Whether the modified protein is stably emitting fluorescence or whether the fluorescence intensity of the modified protein can be detected stably is determined by using the software of BD CellQuest Pro in FACS Calibur (Becton, Dickinson and Company). May be used (see, eg, FIG. 12). Alternatively, ODDYSEY® (manufactured by LI-COR) may be used for measurement using software of Application® Software Version 2.1 (for example, see FIG. 16).
 本実施形態において「複合体」は、2つ以上の物質が、ひとまとまりの集合体となっているものを含む。複合体は、例えば、蛋白質と、補因子又は基質との集合体である。このとき、蛋白質と、補因子又は基質とは相互作用していてもよい。本実施形態において「生物学的物質」は、例えば、蛋白質、核酸、細胞、糖鎖、又は脂質を含む。本実施形態において「改変」は、アミノ酸が置換、欠失、挿入、付加される現象を含む。本実施形態において「少なくとも1つ」は、例えば、1、2、3、4、5、6、7、8、9、10、20以上又はそれらいずれか2つの値の範囲内であってもよい。本実施形態において「動態」は、特定のものが動いている状態を含む。体内動態は、例えば、体内に取り込まれた成分の生体内における移動又は変化の態様を含む。本実施形態において「励起光」は、蛍光物質などの物質に励起を引き起こす光を含む。本実施形態において「補因子又は基質に対する相互作用領域内のアミノ酸が改変されている改変型蛋白質」は、例えば、改変前の蛋白質の補因子又は基質に対する相互作用領域内のアミノ酸に対して、改変を施した後の状態を含む。またこの改変型蛋白質は、補因子又は基質に対する相互作用領域内に、改変されたアミノ酸を有する改変型蛋白質であってもよい。またこの改変型蛋白質は、補因子又は基質に対する相互作用領域内のアミノ酸配列が、改変前のアミノ酸配列とは異なるアミノ酸配列を有する改変型蛋白質であってもよい。 In the present embodiment, the “complex” includes a substance in which two or more substances are collected as a group. The complex is, for example, an assembly of a protein and a cofactor or substrate. At this time, the protein and the cofactor or substrate may interact. In the present embodiment, the “biological substance” includes, for example, a protein, a nucleic acid, a cell, a sugar chain, or a lipid. In the present embodiment, “modification” includes a phenomenon in which an amino acid is substituted, deleted, inserted, or added. In the present embodiment, “at least one” may be, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20 or more, or any two values thereof. . In the present embodiment, “dynamics” includes a state in which a specific object is moving. The pharmacokinetics includes, for example, a mode of movement or change in a living body of a component taken into the body. In this embodiment, “excitation light” includes light that causes excitation in a substance such as a fluorescent substance. In the present embodiment, “modified protein in which an amino acid in an interaction region for a cofactor or a substrate is modified” refers to, for example, modification to an amino acid in an interaction region for a cofactor or substrate of a protein before modification. Including the state after applying. The modified protein may be a modified protein having a modified amino acid in an interaction region for a cofactor or a substrate. Further, the modified protein may be a modified protein having an amino acid sequence in an interaction region with a cofactor or substrate that is different from the amino acid sequence before the modification.
 本発明の一実施形態において「発現制御配列」は、例えば、プロモーター、エンハンサー、サイレンサー、ターミネーター、オペレーター、インデューサーなど、転写制御又は翻訳制御を可能にする核酸配列を含む。 In one embodiment of the present invention, the “expression control sequence” includes a nucleic acid sequence that enables transcription control or translation control, such as a promoter, an enhancer, a silencer, a terminator, an operator, and an inducer.
 本発明の一実施形態において「作動可能な」は、改変型蛋白質をコードする核酸に関して正しい位置及び方向にあり、RNAポリメラーゼの開始及び遺伝子の発現を制御することを含む。 In one embodiment of the present invention, “operable” is in the correct position and orientation with respect to the nucleic acid encoding the modified protein, and includes controlling RNA polymerase initiation and gene expression.
 本発明の一実施形態において「作動可能なように連結」は、目的、例えばプロモーターにおける転写開始のため、一斉に機能し、本発明の改変型蛋白質をコードするDNA配列を介して続行するように、セグメントが配列されることを含む。 In one embodiment of the invention, “operably linked” functions in concert for the purpose, eg, transcription initiation in a promoter, and continues through a DNA sequence encoding the modified protein of the invention. , Including that the segments are arranged.
 本発明の一実施形態において「フローサイトメーター」は、フローサイトメトリーという分析手法を用いた装置のことであり、例えば、細胞選別機能を持つ装置(セルソーター)であっても、細胞分析機能のみを持つ装置(セルアナライザー)であってもよい。例えば、フローサイトメーターとしては、FACSシリーズ (Becton, Dickinson and Company)が挙げられるが、これらに限定されない。 In one embodiment of the present invention, a “flow cytometer” is an apparatus using an analysis technique called flow cytometry. For example, even a device having a cell sorting function (cell sorter) has only a cell analysis function. It may be a device (cell analyzer). Examples of flow cytometers include, but are not limited to, the FACS series (Becton, Dickinson and Company).
<改変型蛋白質を製造する方法>
 上記改変型蛋白質を製造する方法は、特に制限はないが、遺伝子組み換え技術や化学合成等の公知の手法を用いてもよい。
<Method for producing modified protein>
The method for producing the modified protein is not particularly limited, but a known technique such as a gene recombination technique or chemical synthesis may be used.
<融合蛋白質、標識化>
 上記改変型蛋白質は、その蛋白質以外の化合物と結合又は融合することが可能である。場合によっては、上記化合物により改変型蛋白質を標識化することも可能である。上記化合物としては、例えば、生体高分子、低分子化合物、又は高分子化合物であってもよい。生体高分子は、例えば、蛋白質、ペプチド、核酸、糖、脂質等を含む。低分子化合物又は高分子化合物は、例えば、治療有効性化合物や、放射性物質等を含む。
<Fusion protein, labeling>
The modified protein can be bound or fused with a compound other than the protein. In some cases, the modified protein can be labeled with the above compound. The compound may be, for example, a biopolymer, a low molecular compound, or a high molecular compound. Biopolymers include, for example, proteins, peptides, nucleic acids, sugars, lipids and the like. The low molecular weight compound or the high molecular weight compound includes, for example, a therapeutically effective compound and a radioactive substance.
 上記ペプチドは、オリゴペプチドでもポリペプチドでもよく、例えば、抗体(例えば、腫瘍特異的抗体、幹細胞特異的抗体、神経特異的抗体等)、酵素、リガンド、レセプター、ペプチドタグ(例えば、mycタグ、HAタグ、GSTタグ等)、シグナルペプチド(例えば、分泌シグナルペプチド、細胞小器官シグナルペプチド等)が挙げられるが、これらに限定されない。また、ペプチドは、細胞内、細胞表面、細胞外に局在するものでもよい。 The peptide may be an oligopeptide or a polypeptide. For example, an antibody (eg, a tumor-specific antibody, stem cell-specific antibody, nerve-specific antibody, etc.), enzyme, ligand, receptor, peptide tag (eg, myc tag, HA Tag, GST tag, etc.) and signal peptides (for example, secretory signal peptide, organelle signal peptide, etc.), but are not limited thereto. The peptide may be localized in the cell, on the cell surface, or outside the cell.
 改変型蛋白質と融合する化合物は、改変型蛋白質のN末端側でもC末端側でも融合することが可能であり、使用目的等に基づいて適宜設計できる。蛋白質の融合化又は標識化は、化学合成や、遺伝子組み換え技術など、公知の手法を用いて行うことができる。 The compound to be fused with the modified protein can be fused on the N-terminal side or the C-terminal side of the modified protein, and can be appropriately designed based on the purpose of use. Protein fusion or labeling can be performed using known techniques such as chemical synthesis or genetic recombination techniques.
<改変型蛋白質をコードする核酸>
 本発明の一実施形態は、上記改変型蛋白質をコードする核酸を提供する。本発明の実施形態に係る核酸は、例えば、ホスホアミダイト法や、特異的プライマーを用いたポリメラーゼ連鎖反応(PCR)などの公知の方法により製造することができるが、これらに限定されない。
<Nucleic acid encoding modified protein>
One embodiment of the present invention provides a nucleic acid encoding the modified protein. The nucleic acid according to the embodiment of the present invention can be produced by a known method such as a phosphoramidite method or a polymerase chain reaction (PCR) using a specific primer, but is not limited thereto.
 本発明の一実施形態は、上記改変型蛋白質又はその融合蛋白質の製造方法により得られる蛋白質、上記改変型蛋白質をコードする核酸の製造方法により得られる核酸、その核酸を含む組み換えベクター、又はこれらの少なくとも1つを有する組み換え宿主を提供する。また、これら核酸、組み換えベクター、蛋白質、又は組み換え宿主の少なくとも1つを含む組成物も提供する。 One embodiment of the present invention is a protein obtained by a method for producing the modified protein or a fusion protein thereof, a nucleic acid obtained by a method for producing a nucleic acid encoding the modified protein, a recombinant vector containing the nucleic acid, or these Recombinant hosts having at least one are provided. Also provided are compositions comprising at least one of these nucleic acids, recombinant vectors, proteins, or recombinant hosts.
<蛋白質を蛍光化する方法>
 本発明の一実施形態において、野生型蛋白質、又は安定的に蛍光を発しない蛋白質をアミノ酸改変することによって蛍光化する方法としては、例えば、補因子又は基質に対する相互作用領域をコードする核酸配列に、変異を導入する方法が挙げられる。変異を導入する方法としては、例えば、ランダムミューテーションを導入するサイトディレクティドランダムミュータジェネシス法や、所望の変異を導入する縮重オリゴヌクレオチドを用いるPCR法などの公知の技術を適宜使用することが挙げられるが、これらに限定されない。
<Method of fluorescentizing protein>
In one embodiment of the present invention, the method of fluorinating a wild-type protein or a protein that does not stably emit fluorescence by amino acid modification includes, for example, a nucleic acid sequence encoding an interaction region for a cofactor or a substrate. And a method for introducing a mutation. As a method for introducing a mutation, for example, a known technique such as a site directed random mutagenesis method for introducing a random mutation or a PCR method using a degenerate oligonucleotide for introducing a desired mutation is appropriately used. However, it is not limited to these.
 改変するアミノ酸配列は、補因子又は基質に対する相互作用領域の1つ以上のアミノ酸の改変である。また、このアミノ酸改変は、上記相互作用領域のうち、少なくとも1ヶ所の領域の改変である。hDHODHがFMN又はDHOと相互作用する領域は、後述の実施例に示すシミュレーションにより12ヶ所存在するが、それ以上存在する場合はそれらの箇所をも含む。また、シミュレーションにより確認された12ヶ所の相互作用領域は、図9に示すとおり、種を超えて保存されている。上記12ヶ所の相互作用領域は、6ヶ所のFMNとDHODHとの相互作用領域、4ヶ所のDHOとDHODHとの相互作用領域、2ヶ所のFMN及びDHOの両者とDHODHとの相互作用領域であって、連続する3~7個のアミノ酸を有する領域である。 The amino acid sequence to be modified is a modification of one or more amino acids in the interaction region for the cofactor or substrate. This amino acid modification is a modification of at least one of the above interaction regions. There are 12 regions where hDHODH interacts with FMN or DHO according to the simulation shown in the examples described later. If there are more regions, these regions are also included. In addition, the 12 interaction regions confirmed by the simulation are preserved across species as shown in FIG. The above 12 interaction regions are the interaction region between 6 FMN and DHODH, the interaction region between 4 DHO and DHODH, and the interaction region between 2 FMN and DHODH and DHODH. A region having 3 to 7 consecutive amino acids.
 本発明の一実施形態は、上記の方法により得られる改変型蛋白質をコードする核酸、その核酸を含む組み換えベクター、その核酸の翻訳産物である改変型蛋白質、その改変型蛋白質の融合蛋白質、又はこれらの少なくとも1つを有する組み換え宿主を提供する。また、これら核酸、組み換えベクター、蛋白質、組み換え宿主の少なくとも1つを含む組成物も提供する。 One embodiment of the present invention includes a nucleic acid encoding a modified protein obtained by the above method, a recombinant vector containing the nucleic acid, a modified protein that is a translation product of the nucleic acid, a fusion protein of the modified protein, or these A recombinant host having at least one of the following is provided: Also provided are compositions comprising at least one of these nucleic acids, recombinant vectors, proteins, and recombinant hosts.
<組み換えベクター>
 上記核酸は、適当なベクター中に挿入して使用することができる。本発明の一実施形態において「ベクター」の種類は特に限定されず、広範な種々の組換えベクターを使用できる。このベクターは、例えば、改変型蛋白質を発現するために操作され、それにより細胞に改変型蛋白質を送達するために使用される。組み換えベクターの細胞への導入方法は、特に制限はないが、公知の方法であってよく、例えばトランスフェクション、エレクトロポレーション、リポフェクション、ウイルスベクターなどを挙げることができる。
<Recombinant vector>
The nucleic acid can be used by inserting it into an appropriate vector. In one embodiment of the present invention, the type of “vector” is not particularly limited, and a wide variety of recombinant vectors can be used. This vector is engineered, for example, to express a modified protein, and thereby used to deliver the modified protein to cells. The method for introducing the recombinant vector into the cell is not particularly limited, and may be a known method, and examples thereof include transfection, electroporation, lipofection, and a viral vector.
 好ましくは、上記ベクターは発現ベクターである。本発明の一実施形態において「発現ベクター」は、改変型蛋白質をコードする核酸配列を含み、その核酸配列がヒト細胞を含む動物細胞、植物細胞、又は微生物において転写され得るような任意の遺伝子構築物を含む。またこの発現ベクターは、改変型蛋白質への翻訳を指向するものである。 Preferably, the vector is an expression vector. In one embodiment of the present invention, an “expression vector” comprises a nucleic acid sequence encoding a modified protein, and any gene construct that can be transcribed in animal cells, plant cells, or microorganisms including human cells. including. This expression vector is directed to translation into a modified protein.
 発現ベクターは、その構築及び使用を容易にするために、改変型蛋白質をコードする核酸配列に加えて、ベクターに用いられる制限酵素切断部位などの一般にベクターに用いられる配列を含み得る。また、発現ベクターは、複製起点及び発現されるべき遺伝子の前に位置するプロモーターを含んでいてもよく、ポリアデニル化配列(例えばSV40またはアデノウイルス5E1b領域由来のもの)、ターミネーター(例えばヒト成長ホルモンターミネーター、TPI1ターミネーター、ADH3ターミネーター)、転写エンハンサー(例えばSV40エンハンサー)、翻訳エンハンサー(例えばアデノウイルスVA RNAをコードするもの)、リボソーム結合配列、RNAスプライシング配列、IRES配列、Kozak配列なども含まれ得る。また上記ベクターは、上記蛋白質の補因子又は基質を合成可能な、補因子又は基質合成酵素をコードする配列を含んでいてもよい。 In order to facilitate the construction and use of the expression vector, in addition to the nucleic acid sequence encoding the modified protein, the expression vector may contain a sequence generally used in the vector such as a restriction enzyme cleavage site used in the vector. The expression vector may also contain an origin of replication and a promoter located in front of the gene to be expressed, such as a polyadenylation sequence (eg, from SV40 or adenovirus 5E1b region), a terminator (eg, human growth hormone terminator). , TPI1 terminator, ADH3 terminator), transcription enhancer (eg, SV40 enhancer), translation enhancer (eg, encoding adenovirus VA RNA), ribosome binding sequence, RNA splicing sequence, IRES sequence, Kozak sequence, and the like. The vector may contain a sequence encoding a cofactor or substrate synthase that can synthesize a cofactor or substrate of the protein.
 上記ベクターは、さらに選択マーカーを含有してもよい。選択マーカーとしては、例えば、ジヒドロ葉酸レダクターゼやシゾサッカロマイセス・ポンベTPI遺伝子などのようなその補体が宿主細胞に欠損している遺伝子、アンピシリンに対して耐性を与えるβ-ラクタマーゼやジェネティシンに対して耐性を与えるネオマイシン耐性遺伝子などの薬剤耐性遺伝子、などが例示されるが、これらに限定されない。 The vector may further contain a selection marker. Selectable markers include, for example, genes lacking complement in host cells such as dihydrofolate reductase and Schizosaccharomyces pombe TPI gene, β-lactamase and geneticin that give resistance to ampicillin. Examples include, but are not limited to, drug resistance genes such as neomycin resistance gene that give resistance.
 上記改変型蛋白質をコードする核酸配列のライゲーションに使用する手順、プロモーター、又は要すればポリアデニル化配列、ターミネーターなどの配列をそれぞれ連結し、これらを適当なベクターに挿入する方法は、当業者に周知の方法を採用できる。 Procedures used for ligation of nucleic acid sequences encoding the above-mentioned modified proteins, promoters, or, if necessary, sequences such as polyadenylation sequences and terminators, and methods for inserting them into appropriate vectors are well known to those skilled in the art. Can be adopted.
 本発明の一実施形態において有用なベクターは自律複製可能であり、例えば、プラスミドやセンダイウイルスは、染色体外に存在し、その複製は必ずしも、宿主細胞のゲノムの複製と直接結合していない。あるいは、ベクターの複製は、宿主の染色体での複製とされ、例えば、ベクターは、レトロウイルスベクターにより達成されるように、宿主細胞の染色体の中に組み込まれてもよい。 The vector useful in one embodiment of the present invention is capable of autonomous replication, for example, plasmids and Sendai virus exist outside the chromosome, and the replication is not necessarily directly linked to the replication of the host cell genome. Alternatively, replication of the vector may be replication on the host chromosome, for example, the vector may be integrated into the host cell chromosome, as achieved by a retroviral vector.
 本発明の一実施形態において有用なベクターとしては、プラスミドベクター、ウイルスベクター、コスミドベクター、λファージベクター、人工染色体ベクターが含まれるが、これらに限定されない。 Vectors useful in one embodiment of the present invention include, but are not limited to, plasmid vectors, viral vectors, cosmid vectors, lambda phage vectors, and artificial chromosome vectors.
 プラスミドベクターとしては、例えば、pGEX(GE helthcare)、pQE(Quiagen)、pBK-CMV、pESC(Agilent Technologies)等の細菌用、pCS2、pCMV-SC、pSG(Agilent Technologies)、pSVL(GE helthcare)、pCDNA3.1(Life Technologies)、などの真核生物用が挙げられるが、これらに限定されない。 As a plasmid vector, for example, for bacteria such as pGEX (GE 、 helthcare), pQE (Quiagen), pBK-CMV, pESC (Agilent 細菌 Technologies), pCS2, pCMV-SC, pSG (Agilent Technologies), pSVL (GE helthcare), Examples include eukaryotic organisms such as pCDNA3.1 (Life Technologies), but are not limited thereto.
 ウイルスベクターとしては、例えば、パラミクソウイルスベクター(センダイウイルスベクターなど)、レトロウイルスベクター、レンチウイルスベクター、アデノウイルスベクター、アデノ随伴ウイルスベクター、ヘルペスウイルスベクター、アルファウイルスなどが含まれるが、これらに限定されない。 Examples of viral vectors include, but are not limited to, paramyxovirus vectors (such as Sendai virus vectors), retrovirus vectors, lentivirus vectors, adenovirus vectors, adeno-associated virus vectors, herpes virus vectors, alphaviruses, and the like. Not.
 コスミドベクターとしては、pKS334、pAT2、pAT3(東洋紡、特開平8-214881号公報)などが含まれるが、これらに限定されない。 Examples of cosmid vectors include, but are not limited to, pKS334, pAT2, and pAT3 (Toyobo, JP-A-8-214881).
 λファージベクターとしては、挿入物によりコードされたポリペプチドを誘発性発現できるLambda ZapIIまたはLambda-Zap Express vector(Agilent Technologies)のようなλに基づくベクター等が含まれるが、これらに限定されない。 Λ phage vectors include, but are not limited to, λ-based vectors such as Lambda ZapII or Lambda-Zap vector (Agilent Technologies) capable of inducibly expressing the polypeptide encoded by the insert.
 人工染色体ベクターとしては、ヒトやマウス、細菌の人工染色体(HAC)ベクター(例えば、特許第4022835号、特許第4164532号、特許第4293990号、特許第3030092号、特開2007-295860号公報、WO2011/083870、WO2010/038904、WO2008/013067、WO2004/031385、特表2003-530113号公報)が挙げられるが、これらに限定されない。 Artificial chromosome vectors include human, mouse, and bacterial artificial chromosome (HAC) vectors (for example, Patent No. 4022835, Patent No. 4165532, Patent No. 4293990, Patent No. 3030092, JP 2007-295860, WO2011) / 083870, WO2010 / 038904, WO2008 / 013067, WO2004 / 031385, Special Table 2003-530113), but are not limited thereto.
<プロモーター>
 「プロモーター」は、細胞の合成機構又は細胞に導入された合成機構により認識される、特定の遺伝子の転写を開始するために必要なDNA配列を含む。本発明の一実施形態で用いられるプロモーターは、ヒト細胞を含む動物細胞、植物細胞、又は微生物において作動可能なものであってもよい。
<Promoter>
A “promoter” includes a DNA sequence necessary to initiate transcription of a particular gene, recognized by the cell's synthetic machinery or by a synthetic machinery introduced into the cell. The promoter used in one embodiment of the present invention may be operable in animal cells including human cells, plant cells, or microorganisms.
 本発明の一実施形態において有用なプロモーターとしては、構成性プロモーター、細胞・組織特異的プロモーター、発生段階特異的プロモーター、又は誘導性プロモーターが例示されるが、これらに限定されない。構成性プロモーターとして、以下のものが例示されるが、これらに限定されない。 Examples of promoters useful in one embodiment of the present invention include, but are not limited to, constitutive promoters, cell / tissue specific promoters, developmental stage specific promoters, or inducible promoters. Although the following are illustrated as a constitutive promoter, It is not limited to these.
(i)原核生物で作動可能なプロモーター
 例えば、バクテリオファージのT7、T3、Sp6プロモーター、大腸菌のlac、tac、もしくはtrpプロモーター、ラムダファージのPRもしくはPLプロモーター、又は枯草菌のアルカリプロテアーゼなどが挙げられる。
(I) Promoters that can operate in prokaryotes For example, bacteriophage T7, T3, Sp6 promoter, E. coli lac, tac, or trp promoter, lambda phage PR or PL promoter, or Bacillus subtilis alkaline protease .
(ii)真核生物発現用プロモーター
 酵母宿主細胞で作動可能なプロモーターとしては、例えば、GAL1、GAL4、その他の解糖系遺伝子プロモーター、アルコールデヒドロゲナーゼ遺伝子プロモーター、TPI1プロモーター、又はADH2-4c等が挙げられる。
(Ii) Promoter for Eukaryotic Expression Examples of promoters operable in yeast host cells include GAL1, GAL4, other glycolytic gene promoters, alcohol dehydrogenase gene promoters, TPI1 promoters, ADH2-4c, etc. .
 昆虫細胞で作動可能なプロモーターとしては、例えば、ポリヘドリンプロモーター、P10プロモーター、オートグラファ・カリホルニカ・ポリヘドロシス塩基性タンパクプロモーター、バキュロウイルス即時型初期遺伝子プロモーター、又はバキュロウイルス39K遅延型初期遺伝子プロモーター等が挙げられる。 Examples of promoters that can operate in insect cells include polyhedrin promoter, P10 promoter, autographa calihornica polyhedrossis basic protein promoter, baculovirus immediate early gene promoter, or baculovirus 39K delayed early gene promoter. Can be mentioned.
 哺乳動物細胞で作動可能なプロモーターとしては、例えば、アクチンプロモーター、EF-1αプロモーター、メタロチオネイン遺伝子プロモーター、SV40プロモーター、サイトメガロウイルス(CMV)プロモーター、レトロウイルスLTRプロモーター、アデノウイルス2主後期プロモーター、又はその他のウイルスプロモーター、等が挙げられる。 Examples of promoters operable in mammalian cells include, for example, actin promoter, EF-1α promoter, metallothionein gene promoter, SV40 promoter, cytomegalovirus (CMV) promoter, retrovirus LTR promoter, adenovirus 2 major late promoter, and others Virus promoters, and the like.
 細胞・組織特異的プロモーター、又は発生段階特異的プロモーターとしては、以下の表1A及び1Bに記載のものが例示されるが、これらに限定されない。 Examples of cell / tissue-specific promoters or developmental stage-specific promoters include, but are not limited to, those described in Tables 1A and 1B below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 誘導性プロモーターとしては、化学的(例えば、アルコール、ステロイド、抗生物質、ホルモン、金属イオン等)、又は物理的(例えば、熱、光、電離放射線等)シグナルに対して応答して制御されるプロモーターが挙げられる。具体例としては、以下のものが挙げられるが、これらに限定されない。 Inducible promoters include promoters that are controlled in response to chemical (eg, alcohol, steroids, antibiotics, hormones, metal ions, etc.) or physical (eg, heat, light, ionizing radiation, etc.) signals. Is mentioned. Specific examples include, but are not limited to:
 テトラサイクリン制御性プロモーター、ラパマイシン制御性プロモーター、グルココルチコイドステロイド制御性プロモーター、性ホルモンステロイド制御性プロモーター、エクジソン制御性プロモーター、リポ多糖類(LPS)制御性プロモーター、イソプロピルチオガラクトシド(IPTG) 制御性プロモーター、ある範囲の毒性化合物により活性化されるシトクロームP450プロモーター、熱ショック蛋白質(hsp)プロモーター、又は電離放射線により誘導可能なfosプロモーターやjunプロモーター、など。 Tetracycline regulated promoter, rapamycin regulated promoter, glucocorticoid steroid regulated promoter, sex hormone steroid regulated promoter, ecdysone regulated promoter, lipopolysaccharide (LPS) regulated promoter, isopropylthiogalactoside (IPTG) regulated promoter Cytochrome P450 promoter activated by a range of toxic compounds, heat shock protein (hsp) promoter, fos promoter or jun promoter inducible by ionizing radiation, etc.
<蛍光検査用材料>
 本発明の一実施形態は、上記の改変型蛋白質、融合蛋白質、核酸、蛍光化蛋白質複合体、及びそれらの少なくとも1つの物質を有する細胞、からなる群から選ばれる少なくとも1つの生物学的物質を含む、蛍光検査用材料である。この蛍光検査用材料は、励起光をあてることによって蛍光を発することができるため、上述の又は後述の各種用途に使用できる。この蛍光検査用材料は、例えば、上記生物学的物質の動態を測定するために使用できる。またこの蛍光検査用材料は、細胞を同定、単離、選別、又は純化するために使用できる。
<Fluorescence inspection material>
One embodiment of the present invention includes at least one biological substance selected from the group consisting of the above-mentioned modified protein, fusion protein, nucleic acid, fluorescent protein complex, and cell having at least one substance thereof. A material for fluorescence inspection. Since this fluorescence inspection material can emit fluorescence by being irradiated with excitation light, it can be used for various applications described above or below. This fluorescent examination material can be used, for example, to measure the dynamics of the biological substance. This fluorescent test material can also be used to identify, isolate, sort or purify cells.
 この蛍光検査用材料は、動植物の非蛍光蛋白質を改変することによって生産できるため、動植物の生体内用として好適に使用できる。このとき、この蛍光検査用材料を、上記改変型蛋白質等の由来生物と同じ種の生物の生体内用として使用すれば、特に有害事象が発生しにくい。本発明の一実施形態において、特定の用途と一緒に記載されているときの「用材料」の用語は、「特定の用途に用いるための材料」を概念的に含むものである。このときの材料は、上記特定の用途と、上記特定の用途以外の用途とを併せ持っていてもよい。本発明の一実施形態において「材料」の用語は、例えば、製品又は中間体の原料又は成分として用いられる物質を含む。この材料は、1種又は2種以上の物質を含んでいてもよい。この材料の形状、材質は特に限定されない。この材料は、例えば、蛋白質、核酸、細胞の形態であってもよい。 Since this fluorescent test material can be produced by modifying non-fluorescent proteins of animals and plants, it can be suitably used for in vivo use of animals and plants. At this time, if this fluorescent examination material is used for in vivo use of organisms of the same species as the derived organism such as the modified protein, adverse events are particularly unlikely to occur. In one embodiment of the present invention, the term “material” when described with a particular application conceptually includes “material for use in a particular application”. The material at this time may have both the specific application and an application other than the specific application. In one embodiment of the present invention, the term “material” includes, for example, a substance used as a raw material or component of a product or intermediate. This material may contain one or more substances. The shape and material of this material are not particularly limited. This material may be in the form of, for example, a protein, a nucleic acid, or a cell.
<蛍光を検出する方法>
 本発明の一実施形態は、上記の改変型蛋白質、融合蛋白質、核酸、蛍光化蛋白質複合体、及びそれらの少なくとも1つの物質を有する細胞、からなる群から選ばれる少なくとも1つの生物学的物質又はその周辺に、励起光をあてる工程を含む、蛍光を検出する方法又は蛍光検査方法である。この方法は、検出した蛍光を指標とすることで、上述の又は後述の各種用途に応用できる。この方法は、例えば、細胞の同定、単離、選別、純化、遺伝子発現の解析、又は目的物質の挙動追跡(体内動態等)等のレポーターもしくはトレーサーのために応用できる。またこの方法は、上記生物学的物質の動態を測定するために応用できる。またこの方法は、上記生物学的物質の動態を測定するために応用できる。またこの方法は、疾病を予防、治療、又は診断するために応用できる。
<Method of detecting fluorescence>
One embodiment of the present invention provides at least one biological substance selected from the group consisting of the above-mentioned modified protein, fusion protein, nucleic acid, fluorescent protein complex, and cell having at least one substance thereof, or This is a method for detecting fluorescence or a fluorescence inspection method including a step of applying excitation light to the periphery. This method can be applied to various uses described above or below by using the detected fluorescence as an index. This method can be applied to reporters or tracers such as cell identification, isolation, selection, purification, gene expression analysis, or behavior tracking (pharmacokinetics, etc.) of a target substance. This method can also be applied to measure the dynamics of the biological material. This method can also be applied to measure the dynamics of the biological material. This method can also be applied to prevent, treat or diagnose a disease.
 上記改変型蛋白質は、動植物の非蛍光蛋白質を改変することによって生産できるため、上記の方法は、動植物の生体内の蛍光を検出するために好適に利用できる。このとき、上記改変型蛋白質等の由来生物と同じ種の生物の生体内の蛍光を検出するために利用すれば、特に有害事象が発生しにくい。また上記の方法は、上記の改変型蛋白質、融合蛋白質、核酸、及び蛍光化蛋白質複合体、からなる群から選ばれる少なくとも1つの物質を細胞に導入する工程、をさらに含んでいてもよい。 Since the modified protein can be produced by modifying a non-fluorescent protein of animals and plants, the above method can be suitably used for detecting fluorescence in animals and plants in vivo. At this time, if it is used for detecting fluorescence in the living organism of the same species as the derived organism such as the modified protein, adverse events are particularly unlikely to occur. The method may further include a step of introducing at least one substance selected from the group consisting of the modified protein, the fusion protein, the nucleic acid, and the fluorescent protein complex into the cell.
 本発明の一実施形態において、励起光は生物学的物質に照射されてもよく、生物学的物質の周辺に照射されてもよい。例えば、励起光が改変型蛋白質に照射されれば、改変型蛋白質が蛍光を発するため、それにより蛍光検査が可能となる。このとき励起光は、改変型蛋白質及びその周辺に照射されていても、改変型蛋白質が蛍光を発するため、それにより蛍光検査が可能となる。また例えば、核酸の周辺に照射すれば、核酸の周辺に存在する改変型蛋白質に励起光があたることによって、改変型蛋白質が蛍光を発するため、それにより蛍光検査が可能となる。核酸の周辺は、例えば、その核酸の存在する細胞内を含む。 In one embodiment of the present invention, the excitation light may be applied to the biological material or may be applied to the periphery of the biological material. For example, when the modified protein is irradiated with excitation light, the modified protein emits fluorescence, thereby enabling a fluorescence test. At this time, even if the excitation light is irradiated to the modified protein and its surroundings, the modified protein emits fluorescence, so that a fluorescence test can be performed. In addition, for example, if the periphery of the nucleic acid is irradiated, the modified protein existing in the periphery of the nucleic acid is irradiated with excitation light, whereby the modified protein emits fluorescence, thereby enabling a fluorescence test. The periphery of the nucleic acid includes, for example, the inside of the cell where the nucleic acid exists.
 また本発明の一実施形態によれば、上記方法を行う工程を含む、同定、単離、選別、又は純化された細胞の生産方法が提供される。例えば、治療有効性の細胞と、細胞非治療性の細胞とを含む細胞集団から、蛍光化蛋白質複合体の蛍光を指標として、治療有効性の細胞を同定、単離、選別、又は純化することができる。この治療有効性の細胞は、例えば、疾患の予防、治療、診断、又は検査に用いることができる。治療有効性の細胞としては、例えば、細胞治療用の細胞が挙げられる。細胞治療用の細胞としては、例えば、幹細胞、又は免疫細胞を挙げることができる。治療有効性の細胞は、担体と混合後、予防用組成物、医薬組成物、又は診断用組成物の形態で使用してもよい。 Also, according to one embodiment of the present invention, there is provided a method for producing an identified, isolated, sorted, or purified cell comprising the step of performing the above method. For example, identifying, isolating, selecting, or purifying therapeutically effective cells from a cell population containing therapeutically effective cells and non-therapeutic cells using the fluorescence of the fluorescent protein complex as an index Can do. This therapeutically effective cell can be used, for example, for prevention, treatment, diagnosis, or examination of a disease. Examples of therapeutically effective cells include cells for cell therapy. Examples of cells for cell therapy include stem cells and immune cells. The therapeutically effective cells may be used in the form of a prophylactic composition, pharmaceutical composition, or diagnostic composition after mixing with a carrier.
 また本発明の一実施形態によれば、動植物由来の標的蛋白質と、補因子又は基質との複合体を蛍光化させる方法であって、上記標的蛋白質の、補因子又は基質に対する相互作用領域内のアミノ酸を改変する工程を含む、方法が提供される。又は、動植物由来の標的蛋白質の、補因子又は基質に対する相互作用領域内のアミノ酸を改変する工程を含む、標的蛋白質と、補因子又は基質との複合体の蛍光強度を上昇させる方法が提供される。又は、動植物由来の標的蛋白質の、補因子又は基質に対する相互作用領域内のアミノ酸を改変する工程を含む、標的蛋白質と、補因子又は基質との複合体を安定的に形成する方法が提供される。又は、動植物由来の標的蛋白質の、補因子又は基質に対する相互作用領域内のアミノ酸を改変する工程を含む、標的蛋白質に、補因子又は基質をトラップする方法が提供される。又は、(C-1)動植物由来の標的蛋白質の、補因子又は基質に対する相互作用領域内のアミノ酸を改変する工程、を含む、蛍光を発するように改変された標的蛋白質のスクリーニング方法が提供される。この方法はさらに、(C-2)改変後の標的蛋白質と、補因子又は基質とを接触させる工程、(C-3)改変後の標的蛋白質、又は標的蛋白質及びその周辺に励起光をあてる工程、(C-4)上記(C-3)の結果生じる蛍光の強度を測定する工程、又は(C-5)上記蛍光が安定的に観察される場合の、改変後の標的蛋白質を選抜する工程、を含んでいてもよい。蛍光が安定的に観察される場合とは、例えば、蛍光顕微鏡で視覚的に蛍光が観察可能な状態を含む。又は、蛍光が安定的に観察される場合とは、改変前の蛋白質が安定的に検出できない程度の小さな蛍光強度を有している場合は、その改変前の蛋白質に対して、実質的に又は有意に上昇している状態を含む。 Further, according to one embodiment of the present invention, there is provided a method for fluorescentizing a complex of a target protein derived from animals and plants, and a cofactor or substrate, wherein the target protein has an interaction region with the cofactor or substrate. A method is provided comprising the step of modifying an amino acid. Alternatively, there is provided a method for increasing the fluorescence intensity of a complex of a target protein and a cofactor or substrate, comprising a step of modifying an amino acid in an interaction region of the target protein derived from animals or plants with respect to the cofactor or substrate. . Alternatively, there is provided a method for stably forming a complex of a target protein and a cofactor or substrate, comprising a step of modifying an amino acid in an interaction region for the cofactor or substrate of a target protein derived from an animal or plant. . Alternatively, there is provided a method for trapping a cofactor or a substrate in a target protein, which comprises a step of modifying an amino acid in an interaction region for the cofactor or substrate of a target protein derived from an animal or plant. Or (C-1) a method for screening a target protein modified to emit fluorescence, comprising a step of modifying an amino acid in a region interacting with a cofactor or a substrate of a target protein derived from animals and plants . This method further includes (C-2) a step of bringing the modified target protein into contact with a cofactor or a substrate, and (C-3) a step of applying excitation light to the modified target protein or the target protein and its surroundings. , (C-4) a step of measuring the intensity of fluorescence resulting from the above (C-3), or (C-5) a step of selecting a modified target protein when the fluorescence is stably observed , May be included. The case where fluorescence is observed stably includes, for example, a state in which fluorescence can be visually observed with a fluorescence microscope. Or, when the fluorescence is observed stably, when the protein before modification has a small fluorescence intensity that cannot be stably detected, the protein before modification is substantially or Includes significantly elevated conditions.
<組み換え宿主>
 本発明の一実施形態において「組み換え宿主」は、上記核酸、組み換えベクターが導入されている細胞、又はその細胞を含む組織もしくは生物体を含む。上記細胞は改変型蛋白質の核酸配列を含む外因性DNA断片、又は遺伝子を発現可能であれば任意の細胞でよい。そのような細胞としては、細菌、酵母等の真菌、又は昆虫細胞や哺乳動物細胞等の高等真核細胞が例示されるが、これらに限定されない。この細胞は、改変型蛋白質を発現していてもよい。
<Recombinant host>
In one embodiment of the present invention, the “recombinant host” includes a cell into which the nucleic acid or recombinant vector has been introduced, or a tissue or organism containing the cell. The cell may be any exogenous DNA fragment containing the nucleic acid sequence of the modified protein, or any cell that can express a gene. Examples of such cells include, but are not limited to, bacteria, fungi such as yeast, or higher eukaryotic cells such as insect cells and mammalian cells. The cell may express a modified protein.
 細菌細胞としての例は、バチルス属細菌等のグラム陽性細菌、大腸菌又はストレプトマイセス属等のグラム陰性菌等が挙げられる。細菌への核酸又は組み換えベクターの導入は、特に制限されないが、公知の導入法でよく、例えば、コンピテント細胞又はプロトプラストを用いた導入法(COHEN, S.N. et al, Proc Natl Acad Sci U S A, 1972, Vol.69, p.2110-4、DUBNAU, D. et al, J Mol Biol, 1971, Vol.56, p.209-21、CHANG, S. et al, Mol Gen Genet, 1979, Vol.168, p.111-5など)が挙げられる。 Examples of bacterial cells include gram-positive bacteria such as Bacillus bacteria, and Gram-negative bacteria such as Escherichia coli or Streptomyces. The introduction of the nucleic acid or the recombinant vector into bacteria is not particularly limited, and may be a known introduction method, for example, introduction method using competent cells or protoplasts (COHEN, SN et al, Proc Natl Acad Sci U S A, 1972, Vol.69, p.2110-4, DUBNAU, D. et al, J Mol Biol, 1971, Vol.56, p.209-21, CHANG, S. et al, Mol Gen Genet, 1979, Vol. 168, p.111-5).
 酵母細胞としての例は、サッカロマイセス・セレビシエ又はサッカロマイセス・クルイベリ等のサッカロマイセスに属する細胞、シゾサッカロマイセスに属する細胞、ピキア属に属する細胞、クリベロマイセス属に属する細胞等が挙げられる。酵母への核酸または組み換えベクターの導入は、特に制限されないが、公知の導入法でよく、例えば、エレクトロポレーション法、スフェロブラスト法、酢酸リチウム法(HINNEN, A. et al, Proc Natl Acad Sci U S A, 1978, Vol.75, p.1929-33、ITO, H. et al, J Bacteriol, 1983, Vol.153, p.163-8など)が挙げられる。 Examples of yeast cells include cells belonging to Saccharomyces such as Saccharomyces cerevisiae or Saccharomyces kluyveri, cells belonging to Schizosaccharomyces, cells belonging to the genus Pichia, cells belonging to the genus Krivellomyces, and the like. The introduction of the nucleic acid or the recombinant vector into yeast is not particularly limited, but may be a known introduction method, for example, electroporation method, spheroblast method, lithium acetate method (HINNEN, A. et al, Proc Natl Acad Sci U S A, 1978, Vol.75, p.1929-33, ITO, H. et al, J Bacteriol, 1983, Vol.153, p.163-8).
 他の真菌細胞としての例は、アスペルギルス属、ニューロスポラ属、フザリウム属、又はトリコデルマ属に属する細胞が挙げられる。これらの細胞を宿主細胞として用いる場合には、通常、核酸又は組み換えベクターを宿主染色体に組み込んで組換え宿主細胞を得ることができる。核酸又は組み換えベクターの宿主染色体への組み込みは、公知の方法に従い、相同組換え又は異種組換えにより行うことができる。 Examples of other fungal cells include cells belonging to the genus Aspergillus, Neurospora, Fusarium, or Trichoderma. When these cells are used as host cells, a recombinant host cell can usually be obtained by integrating a nucleic acid or a recombinant vector into a host chromosome. Integration of a nucleic acid or a recombinant vector into a host chromosome can be performed by homologous recombination or heterologous recombination according to a known method.
 昆虫細胞を宿主とする場合には、組み換えベクター又はバキュロウイルスを昆虫細胞に共導入して昆虫細胞の培養上清中に組換えウイルスを得た後、さらに組換えウイルスを昆虫細胞に感染させ、蛋白質を発現させることができる。昆虫細胞としての例は、Sf9、Sf21、HiFive(Life Technologies)等を挙げることができる。バキュロウイルスとして例は、アウトグラファ・カリフォルニカ・ヌクレアー・ポリヘドロシス・ウイルス等を挙げることができる。組換えウイルスを調製するための、昆虫細胞への組換え遺伝子導入ベクターと上記バキュロウイルスの共導入方法は、特に制限されないが、公知の導入法でよく、例えば、リン酸カルシウム法、又はリポフェクション法が挙げられる。 When using insect cells as a host, a recombinant vector or baculovirus is co-introduced into the insect cells to obtain the recombinant virus in the culture supernatant of the insect cells, and then the recombinant virus is further infected with the insect cells, Protein can be expressed. Examples of insect cells include Sf9, Sf21, HiFive (Life Technologies) and the like. Examples of baculoviruses include outgrapha, californica, nuclea, polyhedronosis, and virus. The method for co-introducing the recombinant gene introduction vector into the insect cell and the baculovirus for preparing the recombinant virus is not particularly limited, and may be a known introduction method, such as the calcium phosphate method or the lipofection method. It is done.
 哺乳動物細胞としての例は、HEK293細胞、VERO細胞、HepG2細胞、HeLa細胞、COS細胞、BHK細胞、CHL細胞、又はCHO細胞等が挙げられる。また、ヒトを含む動物の被検体から得られた細胞は、核酸又は組み換えベクターを導入した後、自家又は他家細胞として、ヒトを含む動物へ再導入する細胞製剤として使用することも可能である。このような細胞としての例は、皮膚細胞や、骨髄細胞、神経細胞、肝細胞、膵細胞、網膜細胞といった体細胞、ES細胞、iPS細胞、その他の幹細胞、それら幹細胞由来の細胞などが挙げられる。これらの哺乳動物細胞は、それ自身が治療効果を有する場合もそれ自身が治療効果を有さない場合も含む。また、より直接的な遺伝子療法における使用においては、標的とされる生体内の細胞が改変型蛋白質を含み得る。 Examples of mammalian cells include HEK293 cells, VERO cells, HepG2 cells, HeLa cells, COS cells, BHK cells, CHL cells, or CHO cells. In addition, cells obtained from animal subjects including humans can also be used as cell preparations that are reintroduced into animals including humans after introduction of nucleic acids or recombinant vectors. . Examples of such cells include skin cells, bone marrow cells, nerve cells, hepatocytes, pancreatic cells, somatic cells such as pancreatic cells, retinal cells, ES cells, iPS cells, other stem cells, cells derived from these stem cells, and the like. . These mammalian cells include cases where they have a therapeutic effect and cases where they have no therapeutic effect. Also, for use in more direct gene therapy, the targeted in vivo cells can contain a modified protein.
 上記細胞、及びその細胞を含む組織や生物体(例えばトランスジェニックマウス)のすべてが、本実施形態において使用される「組換え宿主」の記載の範囲に入る。これは、細胞が遺伝子を獲得する様式(例えば、トランスフェクション、感染等)に関わらず、上記核酸又は組み換えベクターの1つ以上のコピーを含む、ヒトを含む動物被験体中の任意の細胞を含む。疾患細胞、欠損細胞又は健常細胞すべてが、この様式において本発明の一実施形態に含まれる。 All of the above cells, and tissues and organisms (for example, transgenic mice) containing the cells fall within the scope of the description of “recombinant host” used in the present embodiment. This includes any cell in an animal subject, including a human, that contains one or more copies of the nucleic acid or recombinant vector, regardless of the manner in which the cell acquires the gene (eg, transfection, infection, etc.). . All diseased, defective or healthy cells are included in one embodiment of the invention in this manner.
<組み換え発現>
 上記の組み換え宿主細胞は、導入された改変型蛋白質の核酸配列を含む外因性DNA断片又は遺伝子の発現を可能にする条件下で適切な栄養培地中で培養する。その培養物から、改変型蛋白質、又はそれを含む融合蛋白質を単離、精製する場合には、当業者が通常用いる蛋白質の単離、精製法を用いて行い得る。
<Recombinant expression>
The above recombinant host cells are cultured in an appropriate nutrient medium under conditions that allow expression of exogenous DNA fragments or genes containing the nucleic acid sequence of the introduced modified protein. In the case of isolating and purifying a modified protein or a fusion protein containing the same from the culture, those skilled in the art can use protein isolation and purification methods commonly used.
<用途>
 上記蛍光化蛋白質複合体は、蛍光を発することができる。そのため、本発明の一実施形態に係る改変型蛋白質もしくはその融合蛋白質、改変型蛋白質をコードする核酸、蛍光化蛋白質複合体、蛍光検査用材料、又はそれらの少なくとも1つから派生した蛍光関連物質(以下、「改変型蛋白質等」と称することもある)は、既存蛍光蛋白質や蛍光色素等の蛍光物質で使用されている蛍光特性を利用したあらゆる用途に使用することが可能である。例えば、細胞の同定、細胞の選別、細胞の純化、遺伝子発現の解析、目的物質(細胞、蛋白質、化合物等)の標識、目的物質の挙動追跡(体内動態等)等のレポーター又はトレーサー蛋白質としての用途を挙げることができるが、これらに限定されるわけではない。この用途は、例えば、上述の背景技術の欄に記載した文献に記載されている用途を含む。そして、上記改変型蛋白質等は、ヒトを含む生物が元来有する蛋白質を基に創出されたものであるため、ヒトを含む生物に投与しても、液性免疫又は細胞性免疫を惹起しない蓋然性が高く、安全性が高い等の利点から、既知の蛍光遺伝子よりも有用なものと言える。
<Application>
The fluorescent protein complex can emit fluorescence. Therefore, a modified protein or a fusion protein thereof according to an embodiment of the present invention, a nucleic acid encoding the modified protein, a fluorescent protein complex, a fluorescent test material, or a fluorescence-related substance derived from at least one of them ( Hereinafter, it may be referred to as “modified protein or the like”), and can be used for any application utilizing the fluorescence characteristics used in fluorescent substances such as existing fluorescent proteins and fluorescent dyes. For example, as a reporter or tracer protein for cell identification, cell sorting, cell purification, gene expression analysis, labeling of target substances (cells, proteins, compounds, etc.), behavior tracking of target substances (pharmacokinetics, etc.) Applications can be mentioned, but the invention is not limited to these. This use includes the use described in the literature described in the above-mentioned background art column, for example. And since the above-mentioned modified proteins were created based on proteins originally possessed by organisms including humans, there is a probability that even when administered to organisms including humans, humoral immunity or cellular immunity is not induced. It can be said that it is more useful than known fluorescent genes because of its advantages such as high safety and high safety.
 特に、安全性の高い本上記改変型蛋白質等は、ヒトを含む生物の体内に投与することが可能であり、in vivo蛍光バイオイメージングにおける蛍光試薬(生体内トレーサー、生体内レポーター)や、ヒトを含む生物に投与することを目的として調製される細胞の純化等、生体に適用することを目的とし、かつ、蛍光特性を利用することに利点を有する、あらゆる用途に用いることが可能である。このような安全性が高く、上記及び下記に示す用途に適用可能な上記改変型蛋白質をコードする核酸、その核酸を有する組み換えベクター、改変型蛋白質、その改変型蛋白質の融合蛋白質、蛍光化蛋白質複合体、蛍光検査用材料、又はこれらの少なくとも1つを含む組み換え宿主は、ヒトを含む被検体に適用して、疾患の予防・治療方法や、診断方法、検査方法に用いることができる。即ち本発明の一実施形態によれば、疾患の予防用途、治療用途、診断用途、又は検査用途に使用するための、改変型蛋白質をコードする核酸、その核酸を有する組み換えベクター、改変型蛋白質、その改変型蛋白質の融合蛋白質、蛍光化蛋白質複合体、蛍光検査用材料、又はこれらの少なくとも1つを含む組み換え宿主を含む、組成物が提供される。 In particular, the above-mentioned modified protein having high safety can be administered into the body of living organisms including humans, and fluorescent reagents (in vivo tracers, in vivo reporters) in in vivo fluorescent bioimaging and humans The present invention can be used for all purposes such as purification of cells prepared for the purpose of administering to living organisms, such as purification of cells and advantages in utilizing fluorescence properties. Nucleic acid encoding the above modified protein that is highly safe and applicable to the uses described above and below, a recombinant vector having the nucleic acid, a modified protein, a fusion protein of the modified protein, and a fluorescent protein complex A body, a fluorescent test material, or a recombinant host containing at least one of these can be applied to a subject including a human and used in a disease prevention / treatment method, a diagnostic method, and a test method. That is, according to one embodiment of the present invention, a nucleic acid encoding a modified protein, a recombinant vector having the nucleic acid, a modified protein, for use in disease prevention, treatment, diagnosis, or testing A composition is provided comprising a fusion protein of the modified protein, a fluorescent protein complex, a fluorescent test material, or a recombinant host comprising at least one of these.
 例えば、上記改変型蛋白質等の用途としては、細胞の純化が挙げられる。すなわち、上記改変型蛋白質等に由来する蛍光を指標にして、目的細胞と不要細胞を選別し目的細胞を純化すること(即ちポジティブセレクションによってもネガティブセレクションによっても目的細胞を純化すること)が可能であり、特に、ES細胞やiPS細胞等の幹細胞を分化誘導した目的細胞のみを単離、純化するのに有用であると想定される。目的細胞を選別、分取、単離、純化する方法としては、例えば蛍光活性化セルソーティング(FACS)を含むフローサイトメトリーや全自動1細胞単離解析装置(As One cell picking system、アズワン社製)、蛍光顕微鏡などによって行うことができるが、これらに限定されない。フローサイトメトリーを用いる場合には、例えば、目的細胞または不要細胞の細胞表面に特異的に発現する抗原に対する抗体と、上記改変型蛋白質を融合したり、上記表1A及び1Bに示したような細胞・組織特異的プロモーター又は発生段階特異的プロモーターに上記改変型蛋白質をコードする核酸を連結した組み換えベクターを細胞に導入したりすることによって、蛍光を発する目的細胞又は不要細胞を同定又は選別し、目的細胞を純化することが可能である。 For example, the use of the above modified protein includes purification of cells. That is, it is possible to purify target cells by selecting target cells and unnecessary cells using the fluorescence derived from the modified protein as an index (ie, purifying target cells by positive selection or negative selection). In particular, it is expected to be useful for isolating and purifying only target cells obtained by inducing differentiation of stem cells such as ES cells and iPS cells. Examples of methods for selecting, sorting, isolating and purifying target cells include flow cytometry including fluorescence activated cell sorting (FACS) and fully automated single cell isolation analyzer (As One cell picking system, manufactured by ASONE) ), Can be performed by a fluorescence microscope or the like, but is not limited thereto. In the case of using flow cytometry, for example, an antibody against an antigen specifically expressed on the cell surface of a target cell or an unnecessary cell is fused with the modified protein, or cells as shown in Tables 1A and 1B above.・ Identify or select target cells or unwanted cells that emit fluorescence by introducing a recombinant vector in which a nucleic acid encoding the modified protein is linked to a tissue-specific promoter or a developmental stage-specific promoter into the cell. It is possible to purify the cells.
 このようにして純化される目的細胞としては、治療有効性を有する細胞が挙げられるが、これらに限定されない。本発明の一実施形態はまた、このようにして純化される治療有効性を有する細胞を用いて疾患を治療、診断、もしくは検査する方法、又は疾病を治療、診断、もしくは検査するための医薬組成物をも包含する。 The target cells purified in this way include cells having therapeutic efficacy, but are not limited thereto. One embodiment of the present invention also provides a method for treating, diagnosing or examining a disease using cells having therapeutic efficacy thus purified, or a pharmaceutical composition for treating, diagnosing or examining a disease. It also includes things.
 他の用途としては、治療薬(化合物、細胞を含む)の体内動態を追跡するトレーサーとしての用途が挙げられる。例えば、治療薬を改変型蛋白質に融合又は結合し、蛍光を指標に追跡することが可能である。 Other uses include use as a tracer that tracks the pharmacokinetics of therapeutic agents (including compounds and cells). For example, it is possible to fuse or bind a therapeutic agent to a modified protein and to follow fluorescence as an indicator.
 他の用途としては、診断のためのin vitro又はin vivo蛍光バイオイメージングにおける蛍光試薬としての用途が挙げられる。例えば、腫瘍や病原細胞などの細胞・組織特異的な抗体、リガンド、レセプターなどを改変型蛋白質に融合し、蛍光を指標に腫瘍細胞や病原細胞などの有無やそれら細胞の位置の特定といった診断用途に用いることが可能である。 Other uses include use as a fluorescent reagent in in-vitro or in-vivo fluorescent bioimaging for diagnosis. For example, diagnostic applications such as the identification of the presence or absence of tumor cells or pathogenic cells, etc. using fluorescence as an indicator by fusing cells / tissue-specific antibodies such as tumors and pathogenic cells, ligands, receptors, etc. to modified proteins Can be used.
 他の用途としては、原核生物細胞又は真核生物細胞におけるバイオセンサーとして、例えば、Ca2+イオン指示薬、pH指示薬、リン酸化指示薬、又は他のイオン(例えば、マグネシウム、ナトリウム、カリウム、塩化物又はハロゲン化物等)の蛍光指示薬等として使用され得る。例えば、Ca2+イオンを検出する場合、カルモジュリン、バルブアルブミン、リカバリン、又はカルシニューリン等のEFモチーフを含有する蛋白質と、改変型蛋白質との融合物について、細胞質ゾルから形質膜への移動を共焦点顕微鏡観察によりモニターし、そのときのEFハンド含有蛋白質を細胞内Ca2+の蛍光指示薬とすることができる。 Other uses include as biosensors in prokaryotic or eukaryotic cells, eg, Ca 2+ ion indicators, pH indicators, phosphorylation indicators, or other ions (eg, magnesium, sodium, potassium, chloride or halogen). For example, a fluorescent indicator. For example, when detecting Ca 2+ ions, a confocal microscope shows the movement from the cytosol to the plasma membrane for a fusion of a protein containing an EF motif such as calmodulin, valve albumin, recoverin, or calcineurin with a modified protein. It is monitored by observation, and the EF hand-containing protein at that time can be used as a fluorescent indicator of intracellular Ca 2+ .
 他の用途としては、薬物探索又は機能的ゲノミクスの分野において、蛍光を発する細胞を解析する自動スクリーニング用途に用いることができる。上記改変型蛋白質等は、例えば、内皮細胞による血管形成を介する細胞の遊走、創傷治癒、あるいは神経突起伸長における変化といった多細胞性の再編成や遊走における変化を検出するための細胞全体のマーカーとして使用可能である。上記実施形態に係る改変型蛋白質を、例えば、シグナル伝達における細胞活性の蛍光指示薬として用いることが可能である。また、細胞内での位置変化(転写因子の移動など)を検出するペプチド(例えば、標的配列等)又は蛋白質(例えば、抗体、リガンド、レセプターなど)に融合されたマーカーとして使用するスクリーニングにも用いることが可能である。上記改変型蛋白質を、局在化マーカーとして(例えば、細胞内蛍光蛋白質又はペプチドの移動の蛍光指示薬として)、又はマーカー単独として他の蛍光性融合蛋白質の同時局在化を検出するためのハイコンテントスクリーニング(HCS)において用いることも可能である。 As another application, in the field of drug discovery or functional genomics, it can be used for an automatic screening application for analyzing cells that emit fluorescence. The modified protein is used as a marker for whole cells to detect changes in multicellular reorganization and migration, such as changes in cell migration, wound healing, or neurite outgrowth through angiogenesis by endothelial cells. It can be used. The modified protein according to the above embodiment can be used as, for example, a fluorescent indicator of cell activity in signal transduction. It is also used for screening used as a marker fused to a peptide (for example, target sequence) or a protein (for example, antibody, ligand, receptor, etc.) that detects a positional change (transfer of transcription factor, etc.) in a cell. It is possible. High content for detecting co-localization of other fluorescent fusion proteins using the modified protein as a localization marker (for example, as a fluorescent indicator of intracellular fluorescent protein or peptide movement) or as a marker alone It can also be used in screening (HCS).
 他の用途としては、薬物探索のための転写レポーターとして使用することができ、その場合には、シグナル伝達経路におけるプロモーター(例えば、NFκB、STAT、Smad、ER等)を検出することが可能である。 In other applications, it can be used as a transcription reporter for drug discovery, in which case it is possible to detect promoters (eg, NFκB, STAT, Smad, ER, etc.) in signal transduction pathways .
 他の用途としては、SH2ドメインやSH3ドメインなどの特異的ドメインに上記改変型蛋白質を融合することで、二次情報伝達物質として用いることも可能である。 As another use, it can be used as a secondary information transmitter by fusing the modified protein to a specific domain such as SH2 domain or SH3 domain.
 他の用途としては、上記改変型蛋白質に分泌シグナル配列を融合し、分泌型の改変型蛋白質を調製し、種々の用途に用いることも可能である。 As other uses, it is also possible to prepare a secreted modified protein by fusing a secretory signal sequence to the modified protein and use it for various purposes.
 他の用途としては、細胞小器官や細胞のin vivo蛍光標識とその輸送を追跡するための蛍光標識、即ちトレーサー蛋白質として使用することができる。 As other uses, it can be used as an in vivo fluorescent label for organelles and cells and a fluorescent label for tracking their transport, that is, a tracer protein.
 他の用途としては、遺伝子組換え生物における生体内マーカーとして用いることが可能である。これは、例えば、改変型蛋白質の発現を細胞・組織特異的プロモーターまたは発生段階特異的プロモーターによって行う方法が挙げられる。該方法は、導入遺伝子の発現効率を調べるなどの遺伝子治療のための研究開発において用いることが可能である。 As other uses, it can be used as an in vivo marker in genetically modified organisms. This includes, for example, a method in which the modified protein is expressed by a cell / tissue-specific promoter or a developmental stage-specific promoter. The method can be used in research and development for gene therapy such as examining the expression efficiency of a transgene.
 他の用途としては、蛍光共鳴エネルギー転移(FRET) 法において使用する用途も挙げられる。この方法において、上記改変型蛋白質を、他の蛍光蛋白質又は蛍光色素と組合せてドナー又はアクセプターとして利用可能である。 Other applications include applications used in the fluorescence resonance energy transfer (FRET) method. In this method, the modified protein can be used as a donor or acceptor in combination with another fluorescent protein or fluorescent dye.
<組成物>
 本発明の一実施形態は、上記改変型蛋白質をコードする核酸、その核酸を含む組み換えベクター、その核酸の翻訳産物である改変型蛋白質、その改変型蛋白質の融合蛋白質、蛍光化蛋白質複合体、蛍光検査用材料、又はこれらの少なくとも1つを有する組み換え宿主の、1つ以上を含む組成物が提供される。また、先に記載された1つ以上の用途に使用される組成物も、本発明の一実施形態によって提供される。本発明の一実施形態に係る組成物は、試薬組成物としても医薬組成物としても提供することができ、医薬組成物の場合には、薬学的に許容される担体、賦形剤、もしくは希釈剤、又はそれらの組み合わせを含む。この医薬組成物は、ヒト又は動物医療において、ヒト又は動物に用いることができる。薬学的に許容される担体、賦形剤、又は希釈剤は、当業者に周知であり、投与経路や使用目的に応じて任意に適切な物質を選択することができる。医薬組成物は、担体、賦形剤、又は希釈剤として、あるいはそれに加えて、任意の適切な結合剤、潤滑剤、懸濁化剤、被覆剤、又は可溶化剤等を含むこともできる。さらに、保存剤、安定剤、色素、又は香料添加剤も医薬組成物に含むことができる。
<Composition>
One embodiment of the present invention includes a nucleic acid encoding the modified protein, a recombinant vector containing the nucleic acid, a modified protein that is a translation product of the nucleic acid, a fusion protein of the modified protein, a fluorescent protein complex, a fluorescence Compositions comprising one or more of a test material or a recombinant host having at least one of these are provided. Also provided by one embodiment of the present invention is a composition for use in one or more of the applications described above. The composition according to an embodiment of the present invention can be provided as a reagent composition or a pharmaceutical composition, and in the case of a pharmaceutical composition, a pharmaceutically acceptable carrier, excipient, or dilution. Agents, or combinations thereof. This pharmaceutical composition can be used for humans or animals in human or veterinary medicine. Pharmaceutically acceptable carriers, excipients, or diluents are well known to those skilled in the art, and an appropriate substance can be arbitrarily selected according to the administration route and intended use. The pharmaceutical composition may also include any suitable binder, lubricant, suspending agent, coating agent, solubilizer, etc. as or in addition to the carrier, excipient or diluent. In addition, preservatives, stabilizers, dyes, or flavoring agents can be included in the pharmaceutical composition.
 本発明の一実施形態において医薬組成物を含む組成物は、全身投与、局所投与、又は局在化投与をはじめとする様々な投与様式により投与することが可能であって、使用目的に応じて任意に適切な投与様式を採用することができる。例えば、皮下注射、皮内注射、筋肉注射、静脈注射、腹腔内注射、髄腔内注射、心腔内注射、腫瘍内注射、腟内注射、肺内注射、鼻腔内注射、気管内注射、血管内注射、動脈内注射、冠動脈内注射、脳室内注射、経皮的(局所的)注射、又はリンパ節内への直接注射などの注射による投与が挙げられる。また、上記医薬組成物を含む組成物を、経口/食事性経路、経鼻経路、気管内経路、腟内経路、又は直腸内経路のような粘膜経路を介して投与することも可能である。上記医薬組成物を含む組成物の投与によって、例えば、疾病の診断や被検物質の体内動態を確認することができる。疾病の治療のための医薬組成物の場合には、例えばフローサイトメーターで純化された治療有効性細胞を含む医薬組成物を投与することによって、該細胞により疾病を治療することができる。また、疾病の治療を必要としている患者に、治療有効量の上記医薬組成物を含む組成物を投与してもよい。上記試薬組成物は、例えば、研究用の蛍光検査に用いられる試薬であってもよく、in vitro試験、細胞試験、又は組織試験に使用してもよい。 In one embodiment of the present invention, a composition comprising a pharmaceutical composition can be administered by various modes of administration including systemic administration, local administration, or localized administration, depending on the intended use. Any suitable mode of administration can be employed. For example, subcutaneous injection, intradermal injection, intramuscular injection, intravenous injection, intraperitoneal injection, intrathecal injection, intracardiac injection, intratumoral injection, intravaginal injection, intrapulmonary injection, intranasal injection, intratracheal injection, blood vessel Administration by injection, such as internal injection, intraarterial injection, intracoronary injection, intraventricular injection, percutaneous (local) injection, or direct injection into lymph nodes. Compositions comprising the above pharmaceutical compositions can also be administered via mucosal routes such as oral / dietary routes, nasal routes, intratracheal routes, intravaginal routes, or rectal routes. By administering a composition containing the above pharmaceutical composition, for example, diagnosis of a disease or pharmacokinetics of a test substance can be confirmed. In the case of a pharmaceutical composition for the treatment of a disease, the disease can be treated with the cells, for example, by administering a pharmaceutical composition comprising therapeutically effective cells purified with a flow cytometer. In addition, a composition comprising a therapeutically effective amount of the above pharmaceutical composition may be administered to a patient in need of treatment for a disease. The reagent composition may be, for example, a reagent used for a fluorescent examination for research, or may be used for an in vitro test, a cell test, or a tissue test.
<キット>
 先に記載された1つ以上の用途に使用されるキットも本発明の一実施形態によって提供される。この場合、キットは、典型的には、上記改変型蛋白質を発現させるための要素、例えば、上記改変型蛋白質をコードする核酸配列を含むベクターを構成する構築物を含む。キットの構成要素は、典型的に、適切な容器において適当な貯蔵媒体(例えば、緩衝溶液等) に存在する。また、キットは、上記改変型蛋白質をそれぞれがコードする多数の異なるベクターを含む。この場合、ベクターは、種々の環境又は種々の条件下での発現のために、例えば、ベクターが哺乳動物細胞における発現のために強力なプロモーターを含む構成的発現のために設計されているか、あるいは、プロモーターを独自に挿入するための多数のクローニング部位を有し、発現が独自に調節される無プロモーターベクターなどが挙げられる。上記の構成要素に加えて、本発明のいずれかの実施形態を実施するための説明書を含む。
<Kit>
Kits for use in one or more of the applications described above are also provided by one embodiment of the present invention. In this case, the kit typically includes a construct constituting a vector containing an element for expressing the modified protein, for example, a nucleic acid sequence encoding the modified protein. The components of the kit are typically present in a suitable storage medium (eg, a buffer solution, etc.) in a suitable container. The kit also includes a number of different vectors that each encode the modified protein. In this case, the vector is designed for expression under different circumstances or under different conditions, for example the vector is designed for constitutive expression comprising a strong promoter for expression in mammalian cells, or And a promoter-free vector having a large number of cloning sites for insertion of a promoter and whose expression is uniquely regulated. In addition to the components described above, it includes instructions for practicing any embodiment of the invention.
<蛍光化DHODH>
 ジヒドロオロト酸脱水素酵素(Dihydroorotate dehydrogenase, DHODH)は、大腸菌から多細胞生物に至るまで広く保存された酵素であり、ジヒドロオロト酸 (DHO)をオロト酸に変換する、ピリミジン生合成経路(ウラシル合成経路)のde novo合成の4番目の化学反応を触媒する酸化還元酵素として、基質としてのDHOと補酵素としてのビタミンB2誘導体のフラビンであるフラビンモノヌクレオチド(Flavin mononucleotide,FMN)と結合することで知られている(LIU,S. et al, Structure, 2000, Vol.8, No.1, p.25-33、ULLRICH,A. et al, Eur J Biochem, 2001, Vol.268, No.6, p.1861-8、PHILLIPS, M.A. et al, Infect Disord Drug Targets, 2010, Vol.10, No.3, p.226-39)。このFMNは、蛍光を発することが、WO2002/057451及びWO2003/033693に記載されている。また非特許文献4には、FMNの緑色蛍光を発するという性質を利用した、生体外でのFMNとDHODHとの結合アッセイが記載されている。生体内において、内在性DHODH及び外来性DHODHが緑色蛍光を発することについては、従来知られていなかった。
<Fluorescence DHODH>
Dihydroorotate dehydrogenase (DHODH) is a widely preserved enzyme from Escherichia coli to multicellular organisms, and it converts dihydroorotic acid (DHO) to orotic acid, a pyrimidine biosynthetic pathway (uracil synthesis pathway). Known as an oxidoreductase that catalyzes the fourth chemical reaction of de novo synthesis of flavin by combining DHO as a substrate and flavin mononucleotide (FMN), a flavin of vitamin B2 derivative as a coenzyme (LIU, S. et al, Structure, 2000, Vol.8, No.1, p.25-33, ULLRICH, A. et al, Eur J Biochem, 2001, Vol.268, No.6, p .1861-8, PHILLIPS, MA et al, Infect Disord Drug Targets, 2010, Vol. 10, No. 3, p.226-39). It is described in WO2002 / 057451 and WO2003 / 033693 that this FMN emits fluorescence. Non-patent document 4 describes an in vitro binding assay between FMN and DHODH that utilizes the property of FMN emitting green fluorescence. In vivo, it has not been known that endogenous DHODH and exogenous DHODH emit green fluorescence.
 本発明の一実施形態において「蛍光化DHODH」は、ヒトを含む生物全般(動物、植物、微生物を含む)自身が元来有するDHODHのアミノ酸を改変することにより、安定して検出可能な緑色蛍光を発するようにしたものを含む。なお、蛍光化DHODHは必ずしもそれ自身が蛍光を発していなくてもよく、補因子又は基質との複合体を形成したときにはじめて、その複合体全体として蛍光を発するような特性を持った蛋白質を含む。 In one embodiment of the present invention, the “fluorescent DHODH” is a green fluorescence that can be detected stably by modifying the amino acids of DHODH inherent in all living organisms including humans (including animals, plants, and microorganisms) themselves. Including those that emit. Fluorescent DHODH does not necessarily fluoresce itself, but only when a complex with a cofactor or substrate is formed, a protein having such a characteristic that the complex as a whole fluoresces. Including.
 当該アミノ酸改変は、例えば、FMN又はDHOと相互作用するDHODHの相互作用領域の1以上のアミノ酸の改変である。hDHODHがFMN又はDHOと相互作用する領域は、後述の実施例に示すシミュレーションでは12ヶ所存在するが、それ以上存在する場合はそれらの箇所をも含む。また、シミュレーションにより確認された12ヶ所の相互作用領域は、図9に示すとおり、種を超えて保存されている。上記12ヶ所の相互作用領域は、6ヶ所のFMNとDHODHとの相互作用領域、4ヶ所のDHOとDHODHとの相互用領域、2ヶ所のFMN及びDHOの両者とDHODHとの相互作用領域であって、連続する3~7個のアミノ酸を有する領域である。そして、当該アミノ酸改変は、例えば、上記相互作用領域のうち、少なくとも1ヶ所の領域の改変である。当該アミノ酸改変は、例えば、hDHODHの305位のグリシンに相当するアミノ酸の改変であってもよい。ここで、上記305位のグリシンに相当するアミノ酸は、hDHODHと他生物由来DHODHについてBLAST等で配列比較を行うことで確認できる。上記305位のグリシンに相当するアミノ酸は、このBLAST等での比較において、hDHODHの305位のグリシンに対応する他生物由来DHODHのアミノ酸を含む。本発明に一実施形態において「相当するアミノ酸」又は「相当する領域」は、上記の例のように、配列比較後のアミノ酸の位置に基づいて決定してもよい。 The amino acid modification is, for example, modification of one or more amino acids in the interaction region of DHODH that interacts with FMN or DHO. There are 12 regions where hDHODH interacts with FMN or DHO in the simulation shown in the examples described later, but when there are more regions, these regions are also included. In addition, the 12 interaction regions confirmed by the simulation are preserved across species as shown in FIG. The above 12 interaction regions are the interaction region between 6 FMN and DHODH, the interaction region between 4 DHO and DHODH, and the interaction region between both FMN and DHO and DHODH. A region having 3 to 7 consecutive amino acids. The amino acid modification is, for example, modification of at least one of the interaction regions. The amino acid modification may be, for example, an amino acid modification corresponding to glycine at position 305 of hDHODH. Here, the amino acid corresponding to the 305th glycine can be confirmed by comparing the sequences of hDHODH and other organism-derived DHODH using BLAST or the like. The amino acid corresponding to the glycine at position 305 includes the DHODH amino acid derived from other organisms corresponding to the glycine at position 305 of hDHODH in the comparison with BLAST and the like. In one embodiment of the present invention, “corresponding amino acid” or “corresponding region” may be determined based on the position of the amino acid after sequence comparison, as in the above example.
 本発明の一実施形態において蛍光化DHODHは、上記の改変により安定して検出可能な緑色の蛍光を発するものであるが、好ましくは、表5に記載の各相互作用領域における改変アミノ酸配列を有するものであり、より好ましくは、これら各相互作用領域の改変アミノ酸配列を2以上の相互作用領域における改変アミノ酸配列と組合せたものであり、さらに好ましくは表4に記載の改変アミノ酸配列の組み合わせのものである。 In one embodiment of the present invention, the fluorescent DHODH emits green fluorescence that can be stably detected by the above modification, and preferably has a modified amino acid sequence in each interaction region described in Table 5. More preferably, the modified amino acid sequences of these interaction regions are combined with the modified amino acid sequences of two or more interaction regions, and more preferably the combinations of modified amino acid sequences described in Table 4. It is.
 また、上記相互作用領域以外のDHODHのアミノ酸配列については、緑色蛍光を発しさえすれば、1から数個のアミノ酸の欠失、置換、挿入、又は付加してもよい。ミトコンドリアシグナル配列を有するDHODHの場合には、該シグナル配列を欠失させてもよい。なお、「1から数個のアミノ酸の欠失、置換、挿入、又は付加」における「1から数個」の範囲は特には限定されないが、例えば、1から20個、好ましくは1から10個、より好ましくは1から7個、さらに好ましくは1から5個、特に好ましくは1から3個程度を意味する。 In addition, the amino acid sequence of DHODH other than the above interaction region may be deleted, substituted, inserted, or added from one to several amino acids as long as it emits green fluorescence. In the case of DHODH having a mitochondrial signal sequence, the signal sequence may be deleted. The range of “1 to several” in “deletion, substitution, insertion or addition of 1 to several amino acids” is not particularly limited, but for example, 1 to 20, preferably 1 to 10, More preferably, it means 1 to 7, more preferably 1 to 5, particularly preferably about 1 to 3.
 後述の実施例3等には、DHODHの遺伝子を改変したときの実験データを記載している。この改変型DHODHの改変形態は、FMN又はDHOとの相互作用領域における連続する3~7個のアミノ酸のうち1~3個の改変であり、且つ該相互作用領域が点在しているため、抗体産生及び細胞傷害性T細胞の誘導が特に引き起こされにくいと考えられる。 In Example 3 etc. described later, experimental data when the DHODH gene is modified are described. The modified form of this modified DHODH is a modification of 1 to 3 of 3 to 7 consecutive amino acids in the interaction region with FMN or DHO, and the interaction region is scattered, Antibody production and induction of cytotoxic T cells are thought to be particularly difficult to cause.
 抗原は、ペプチドに分解されHLAクラスI分子、HLAクラスII分子と結合してT細胞に抗原提示されるが、このペプチドが抗原として機能し、抗体産生や細胞傷害性T細胞の誘導を行なうには2つの条件を満たしていなければならない。 The antigen is decomposed into peptides and bound to HLA class I and HLA class II molecules and presented to the T cells. This peptide functions as an antigen to produce antibodies and induce cytotoxic T cells. Must meet two conditions.
 1つは、ペプチドが異種由来のもので自己抗原ではないこと。自己の抗原(すべての自己の蛋白質、糖、脂質など)については、胸腺内における教育によって免疫寛容が成立しているため、免疫反応は起こらない。2つは、ペプチドがHLAクラスI抗原及びHLAクラスII抗原内のペプチド収容溝に埋め込まれ結合する必要があることである。 First, the peptide must be derived from a different species and not an autoantigen. For self-antigens (all self-proteins, sugars, lipids, etc.), immune tolerance does not occur because immune tolerance is established through education within the thymus. Second, the peptide needs to be embedded and bound in the peptide-containing groove within the HLA class I and HLA class II antigens.
 したがって、後述の実施例に記載の改変型DHODHのように、自己の蛋白質であるDHODHの離れた相互作用領域の1~3個の連続したアミノ酸に変異を入れただけの場合、抗原性が著しく低い。さらに、後述の実施例に記載の改変型DHODHには、変異を入れたアミノ酸を含む近傍の9~30個のアミノ酸配列の中にHLAクラスI分子及びHLAクラスII分子と結合するようなペプチド構造を持つモチーフは、現時点で同定できなかったことから、抗体産生及び細胞傷害性T細胞の誘導を実質的に引き起こすことはないと考えられる(笹月建彦編,'Newメディカルサイエンス MHC・ペプチドと疾患',羊土社,1995年11月25日発行,p47の表1,p57の表1、多田富雄編,'免疫学イラストレイテッド 原書第5版',南光堂,2000年1月20日発行,p116の図9.22,p117の図9.23、参照)。 Therefore, as in the modified DHODH described in the examples below, when only one to three consecutive amino acids in the interaction region of DHODH, which is a self protein, are mutated, the antigenicity is remarkably increased. Low. Furthermore, the modified DHODH described in the Examples below includes a peptide structure that binds to HLA class I molecules and HLA class II molecules in the nearby 9 to 30 amino acid sequences including the mutated amino acids. Since the motifs with phenotypes could not be identified at the present time, it is thought that they do not substantially cause antibody production and induction of cytotoxic T cells (Takehiko Uzuki, 'New Medical Sciences MHC / peptides and diseases ', Yodosha, November 25, 1995, p47 table 1, p57 table 1, Tada Tomio edition,' Immunology Illustrated Sakakibara Fifth Edition ', Nankodo, January 20, 2000 , p116, Fig. 9.22, p117, Fig. 9.23).
 本発明の一実施形態において「蛍光化したDHODH」及び「蛍光化DHODH」は、FMNと相互作用するDHODHにおける相互作用領域、DHOと相互作用するDHODHにおける相互作用領域、又は、FMN及びDHOの両者と相互作用するDHODHにおける相互作用領域の1以上のアミノ酸を改変することにより、安定して蛍光を検出することができない野生型DHODHを、安定して検出可能な蛍光を発するように改変したDHODHを含む。 In one embodiment of the present invention, `` fluorinated DHODH '' and `` fluorinated DHODH '' are an interaction region in DHODH that interacts with FMN, an interaction region in DHODH that interacts with DHO, or both FMN and DHO. By modifying one or more amino acids in the interaction region of DHODH that interacts with wild-type DHODH that cannot stably detect fluorescence, DHODH that has been modified to emit stable detectable fluorescence Including.
 蛍光化DHODHは、後述の実施例で示すとおり、ヒトのみならず、マウスにおいてもmDHODHを改変することによって蛍光化遺伝子を創出可能であったことから、同じ原理を用いれば、その他の動物や、植物、微生物などの生物自体が有するDHODHから蛍光遺伝子を創出することが可能である。 Fluorescent DHODH, as shown in the examples below, was able to create a fluorescent gene by modifying mDHODH not only in humans, but also in mice, using the same principle, other animals, It is possible to create a fluorescent gene from DHODH possessed by organisms such as plants and microorganisms.
 本発明の一実施形態において蛍光化DHODHの由来の野生型DHODHは、いかなる生物種由来のものであってよい。そのような生物種由来のDHODHのアミノ酸配列及び塩基配列としては、例えば、動物由来の場合は、ヒト(Homo sapiens、Genbank Accession No. NP_001352、NM_001361)、サル(Macaca mulatta、Genbank Accession No. XP_001104448、XM_001104448)、チンパンジー(Pan troglodytes、Genbank Accession No. XP_001171601、XM_00117160)、ウシ(Bos taurus、Genbank Accession No. NP_001015650、NM_001015650)、ラビット(Oryctolagus cuniculus、Genbank Accession No. XP_002711734、XM_002711688)、ラット(Rattus norvegicus、Genbank Accession No. NP_001008553、NM_001008553)、マウス(Mus musculus、Genbank Accession No. XP_064430、XM_020046)、カエル(Xenopus laevis、Genbank Accession No. NP_001085026、NM_001091557)などが挙げられ、植物由来の場合は、シロイヌナズナ(Arabidopsis thaliana、Genbank Accession No. NP_568428、NM_122236)、イネ(Oryza sativa Japonica Group、Genbank Accession No. NP_001054255、NM_001060790)、トウモロコシ(Zea mays、Genbank Accession No. NP_001152058、NM_001158586)、トウゴマ(Ricinus communis、Genbank Accession No. EEF35606)、などが挙げられるが、これらに限定されない。また、同定されていない生物種の場合には、既知のDHODHの塩基配列又はアミノ酸配列を基に、当業者に公知の手法により、クローニングすればよい。 In one embodiment of the present invention, the wild-type DHODH derived from fluorescent DHODH may be derived from any species. As the amino acid sequence and base sequence of DHODH derived from such a biological species, for example, in the case of animal origin, human (Homo sapiens, Genbank Accession No. NP_001352, NM_001361), monkey (Macaca mulatta, Genbank Accession No. XP_001104448, XM_001104448), chimpanzees (Pan troglodytes, Genbank Accession No. XP_001171601, XM_00117160), cattle (Bos taurus, Genbank Accession No. NP_001015650, NM_001015650), rabbits (Oryctolagus cuniculus, Genbank_Accession Nous Genbank Accession No. NP_001008553, NM_001008553), mice (Mus musculus, Genbank Accession No. XP_064430, XM_020046), frogs (Xenopus laevis, Genbank Accession No. NP_001085026, NM_001091557), etc. thaliana, Genbank Accession No. NP_568428, NM_122236), rice (Oryza sativa) Japonica Group, Genbank Accession No. NP_001054255, NM_001060790), Corn (Zea maymay, Genbank Accession No. NP_001152058, NM_001158586), Sesame (Ricinus communis, Genbank Accession No. In the case of an unidentified biological species, cloning may be performed by a method known to those skilled in the art based on the known DHODH base sequence or amino acid sequence.
 また、DHODH遺伝子以外の遺伝子についても、DHODHの蛍光化と同様の原理を用いれば、被験蛋白質の相互作用領域のアミノ酸を改変することによって、検出可能な蛍光輝度を有する蛍光化遺伝子を創出し得る。候補遺伝子としては、特に限定されるわけではないが、表11A又はBに記載の蛋白質を挙げることができる。また、FMNと相互作用するフラボプロテイン(例えば、Dihydrolipoamide dehydrogenaseや、Acyl CoA dehydrogenase等)が挙げられるが、これらに限定されない。 For genes other than the DHODH gene, if the same principle as the DHODH fluorescence is used, a fluorescent gene having a detectable fluorescence intensity can be created by modifying the amino acid in the interaction region of the test protein. . Candidate genes include, but are not limited to, the proteins listed in Table 11A or B. In addition, flavoproteins that interact with FMN (for example, Dihydrolipoamide dehydrogenase, Acyl CoA dehydrogenase, etc.) can be mentioned, but are not limited thereto.
 また本発明の一実施形態として、例えば、以下の実施形態を挙げることができる。
(A-1) 野生型DHODHのFMN又はDHOとの相互作用領域内に存在する1以上のアミノ酸を改変することにより、蛍光化したDHODHをコードする核酸。
(A-2) 上記相互作用領域のうち、少なくとも1ヶ所の領域を改変させた、上記(A-1)に記載の核酸。
(A-3) 上記相互作用領域は、12ヶ所存在する、上記(A-1)~(A-2)のいずれか1つに記載の核酸。
(A-4) 上記12ヶ所の相互作用領域は、6ヶ所のFMNとDHODHとの相互作用領域、4ヶ所のDHOとDHODHとの相互用領域、2ヶ所のFMN及びDHOの両者とDHODHとの相互作用領域からなる、上記(A-3)に記載の核酸。
(A-5) 上記12ヶ所の相互作用領域は、図9に示す12ヶ所の連続する3~7個のアミノ酸を有する領域である、上記(A-3)~(A-4)のいずれか1つに記載の核酸。
(A-6) 上記アミノ酸改変は、表5記載の各相互作用領域における改変アミノ酸配列のいずれか1以上である、上記(A-1)~(A-5)のいずれか1つに記載の核酸。
(A-7) 上記アミノ酸改変は、表5記載の各相互作用領域の改変アミノ酸を2以上の相互作用領域における改変アミノ酸配列と組合せたものである、上記(A-1)~(A-6)のいずれか1つに記載の核酸。
(A-8) 上記アミノ酸配列は、表4記載の改変アミノ酸配列の組合せである、上記(A-6)~(A-7)のいずれか1つに記載の核酸。
(A-9) 野生型DHODHが動物由来、植物由来、及び微生物由来から選択される1以上の野生型DHODHである、上記(A-1)~(A-8)のいずれか1つに記載の核酸。
(A-10) 上記動物由来の野生型DHODHがヒト由来、サル由来、ウシ由来、ラビット由来、イヌ由来、ラット由来、マウス由来、及びカエル由来から選択される1以上の野生型DHODHであり、植物由来がシロイヌナズナ由来、イネ由来、トウモロコシ由来、及びトウゴマ由来から選択される1以上の野生型DHODHである、上記(A-9)に記載の核酸。
(A-11) 上記核酸が、蛍光化DHODH以外のオリゴペプチド又はポリペプチドをコードする核酸に作動可能なように連結している、上記(A-1)~(A-10)のいずれか1つに記載の核酸。
(A-12) 上記ペプチドが、細胞内、細胞表面、及び細胞外に局在するものから選択される1以上ペプチドである、上記(A-11)に記載の核酸。
(A-13) 上記ペプチドが、抗体、酵素、リガンド、レセプター、及びペプチドタグから選択される1以上である、上記(A-11)~(A-12)のいずれか1つに記載の核酸。
(A-14) 上記(A-1)~(A-13)のいずれか1つに記載の核酸を含む組み換えベクター。
(A-15) 上記(A-1)~(A-13)に記載の核酸に作動可能なように連結された発現制御配列を含む組み換えベクター。
(A-16) 上記発現制御配列は、プロモーター、エンハンサー、ターミネーター、及びサイレンサーから選択される1以上の発現制御配列を含む、上記(A-15)に記載の組み換えベクター。
(A-17) 上記プロモーターが、構成性プロモーター、誘導性プロモーター、細胞・組織特異的プロモーター、及び発生段階特異的プロモーターから選択される1以上のプロモーターである、上記(A-16)に記載の組み換えベクター。
(A-18) 上記構成性プロモーターがウイルスプロモーター、及び動植物に由来する遺伝子プロモーターから選択される1以上のプロモーターである、上記(A-17)に記載の組み換えベクター。
(A-19) 上記誘導性プロモーターがアルコール、ステロイド、テトラサイクリンなどの化学的プロモーター、及び熱、光、電離放射線などの物理的プロモーターから選択される1以上のプロモーターである、上記(A-17)に記載の組み換えベクター。
(A-20) 上記細胞・組織特異的プロモーター及び発生段階特異的プロモーターが表1A又は1Bに記載のプロモーターから選択される1以上のプロモーターである、上記(A-17)に記載の組み換えベクター。
(A-21) 上記組み換えベクターが、ウイルスベクター、プラスミドベクター、コスミドベクター、及び人工染色体ベクターから選択される1以上のベクターである、上記(A-14)~(A-20)のいずれか1つに記載の組み換えベクター。
(A-22) 上記(A-1)~(A-13)のいずれか1つに記載の核酸の翻訳産物及び請求項1~21のいずれか1つに記載の組み換えベクターにより産生される翻訳産物から選択される1以上の翻訳産物を含む蛍光化DHODHまたはその融合蛋白質。
(A-23) 上記蛍光化DHODH以外の核酸、化合物、及びその他の物質から選択される1以上の物質と結合している、上記(A-19)に記載の蛍光化DHODH蛋白質またはその融合蛋白質。
(A-24) 上記核酸、化合物、及びその他の物質が、上記(A-23)に記載の蛋白質を標識するものである、上記(A-23)に記載の蛍光化DHODHまたはその融合蛋白質。
(A-25) 上記(A-1)~(A-13)のいずれか1つに記載の核酸、上記(A-14)~(A-21)のいずれか1つに記載の組み換えベクター、及び上記(A-22)~(A-24)のいずれか1つに記載の蛋白質から選択される1以上を有する、組み換え宿主。
(A-26) 上記組み換え宿主が、細胞、組織、生物体、及びそれらの子孫から選択される1以上の宿主である、上記(A-25)に記載の組み換え宿主。
(A-27) 上記組織またはその子孫が、上記細胞を含むものである、上記(A-26)に記載の組み換え宿主。
(A-28) 上記生物体が、上記細胞及び上記組織から選択される1以上を含むものである、上記(A-27)に記載の組み換え宿主。
(A-29) 上記細胞またはその子孫が、ES細胞、iPS細胞、体性幹細胞、その他の幹細胞、及びそれらに由来する細胞から選択される1以上の細胞またはその子孫である、上記(A-26)~(A-28)のいずれか1つに記載の組み換え宿主。
(A-30) 蛍光化DHODHの蛍光を指標にして、細胞を同定、選別、又は純化するための方法であって、上記(A-1)~(A-13)のいずれか1つに記載の核酸、上記(A-14)~(A-21)のいずれか1つに記載の組み換えベクター、及び上記(A-22)~(A-24)のいずれか1つに記載の蛋白質から選択される1以上の物質を細胞に導入する工程を含む、上記方法。
(A-31) 蛍光活性化セルソーティング(FACS)を含むフローサイトメーターによって、細胞を同定、選別、又は純化する工程をさらに含む、上記(A-30)に記載の方法。
(A-32) 上記細胞が、ES細胞、iPS細胞、体性幹細胞、その他の幹細胞、及びそれらに由来する細胞から選択される1以上の細胞である、上記(A-30)~(A-31)のいずれか1つに記載の方法。
(A-33) 上記細胞が、植物由来、及び微生物由来から選択される1以上の細胞である、上記(A-30)~(A-32)に記載のいずれか1つに記載の方法。
(A-34) 上記動物由来の細胞がヒト由来、サル由来、ウシ由来、ラビット由来、イヌ由来、ラット由来、マウス由来、及びカエル由来から選択される1以上の細胞あり、植物由来がシロイヌナズナ由来、イネ由来、トウモロコシ由来、及びトウゴマ由来から選択される1以上の細胞である、上記(A-30)~(A-33)のいずれか1つに記載の方法。
(A-35) 上記(A-1)~(A-13)のいずれか1つに記載の核酸、上記(A-14)~(A-21)のいずれか1つに記載の組み換えベクター、上記(A-22)~(A-24)のいずれか1つに記載の蛋白質、及び上記(A-25)~(A-29)のいずれか1つに記載の組み換え宿主から選択される1以上の物質を含む組成物。
(A-36) 緑色蛍光化DHODHの蛍光を指標にして、細胞を同定、選別、又は純化するための、上記(A-1)~(A-13)のいずれか1つに記載の核酸、上記(A-14)~(A-21)のいずれか1つに記載の組み換えベクター、及び上記(A-22)~(A-24)のいずれか1つに記載の蛋白質から選択される1以上の物質を含む組成物。
(A-37) 上記細胞は、上記(A-1)~(A-13)のいずれか1つに記載の核酸、上記(A-14)~(A-21)のいずれか1つに記載の組み換えベクター、及び上記(A-22)~(A-24)のいずれか1つに記載の蛋白質から選択される1以上の物質を導入したものである、上記(A-36)に記載の組成物。
(A-38) 上記細胞を同定、選別、又は純化は、蛍光活性化セルソーティング(FACS)を含むフローサイトメーターによって行われる、上記(A-36)~(A-37)のいずれか1つに記載の組成物。
(A-39) 上記細胞が、ES細胞、iPS細胞、体性幹細胞、その他の幹細胞、及びそれらに由来する細胞から選択される1以上の細胞である、上記(A-36)~(A-38)のいずれか1つに記載の組成物。
(A-40) 上記細胞が、植物由来、及び微生物由来から選択される1以上の細胞である、上記(A-36)~(A-39)に記載のいずれか1つに記載の組成物。
(A-41) 上記動物由来の細胞がヒト由来、サル由来、ウシ由来、ラビット由来、イヌ由来、ラット由来、マウス由来、及びカエル由来から選択される1以上の細胞あり、植物由来がシロイヌナズナ由来、イネ由来、トウモロコシ由来、及びトウゴマ由来から選択される1以上の細胞である、上記(A-40)に記載の組成物。
(A-42) 上記(A-30)~(A-34)のいずれか1つに記載の方法により同定、選別、又は純化された細胞を含む組成物。
(A-43) 上記(A-30)~(A-34)のいずれか1つに記載の方法により同定、選別、又は純化された細胞を用いた予防・治療方法。
(A-44) 上記(A-30)~(A-34)のいずれか1つに記載の方法により同定、選別、又は純化された細胞を用いた診断方法。
(A-45) 上記(A-30)~(A-34)のいずれか1つに記載の方法により同定、選別、又は純化された細胞を用いた検査方法。
(A-46) 上記組成物が、薬学的に許容可能な担体又は賦形剤をさらに含む、上記(A-35)~(A-42)のいずれか1つに記載の組成物。
(A-47) 疾病を予防・治療するための、上記(A-35)~(A-42)、(A-46)のいずれか1つに記載の組成物。
(A-48) 疾病を診断するための、上記(A-35)~(A-42)、(A-46)のいずれか1つに記載の組成物。
(A-49) 疾病を検査するための、上記(A-35)~(A-42)、(A-46)のいずれか1つに記載の組成物。
(A-50) 上記(A-35)~(A-42)、(A-46)~(A-49)のいずれか1つに記載の組成物を製造するための方法。
(A-51) 上記(A-35)~(A-42)、(A-46)~(A-49)のいずれか1つに記載の組成物を製造するための、上記(A-1)~(A-13)のいずれか1つに記載の核酸の使用。
(A-52) 上記(A-35)~(A-42)、(A-46)~(A-49)のいずれか1つに記載の組成物を製造するための、上記(A-14)~(A-21)のいずれか1つに記載の組み換えベクターの使用。
(A-53) 上記(A-35)~(A-42)、(A-46)~(A-49)のいずれか1つに記載の組成物を製造するための、上記(A-22)~(A-24)のいずれか1つに記載の蛋白質の使用。
(A-54) 上記(A-35)、(A-46)~(A-49)のいずれか1つに記載の組成物を製造するための、上記(A-25)~(A-29)のいずれか1つに記載の組み換え宿主の使用。
(A-55) 上記(A-35)、(A-46)~(A-49)のいずれか1つに記載の組成物を製造するための、上記(A-30)~(A-34)のいずれか1つに記載の方法により同定、選別、又は純化された細胞の使用。
(A-56) 野生型DHODHのFMN又はDHOとの相互作用領域内に存在する1以上のアミノ酸を改変することにより、DHODHを蛍光化する方法。
(A-57) 野生型DHODHのFMN又はDHOとの相互作用領域内に存在する1以上のアミノ酸を改変することにより、蛍光化DHODHを製造する方法。
(A-58) 上記アミノ酸改変は、上記相互作用領域のうち、少なくとも1ヶ所の領域の改変である、上記(A-56)~(A-57)のいずれか1つに記載の方法。
(A-59) 上記相互作用領域は、12ヶ所存在する、上記(A-56)~(A-58)のいずれか1つに記載の方法。
(A-60) 上記12ヶ所の相互作用領域は、6ヶ所のFMNとDHODHとの相互作用領域、4ヶ所のDHOとDHODHとの相互用領域、2ヶ所のFMN及びDHOの両者とDHODHとの相互作用領域である、上記(A-59)に記載の方法。
(A-61) 上記12ヶ所の相互作用領域は、図9に示す12ヶ所の連続する3~7個のアミノ酸を有する領域である、上記(A-59)~(A-60)のいずれか1つに記載の方法。
(A-62)上記アミノ酸改変は、表5記載の各相互作用領域における改変アミノ酸配列のいずれか1以上である、上記(A-56)~(A-61)のいずれか1つに記載の方法。
(A-63) 上記アミノ酸改変は、表5記載の各相互作用領域の改変アミノ酸を2以上の相互作用領域における改変アミノ酸配列と組合せたものである、上記(A-56)~(A-62)のいずれか1つに記載の方法。
(A-64) 上記アミノ酸配列は、表4記載の改変アミノ酸配列の組合せである、上記(A-62)~(A-63)のいずれか1つに記載の方法。
(A-65) 野生型DHODHが動物由来、植物由来、及び微生物由来から選択される1以上の野生型DHODHである、上記(A-56)~(A-63)のいずれか1つに記載の方法。
(A-66) 上記動物由来の野生型DHODHがヒト由来、サル由来、ウシ由来、ラビット由来、イヌ由来、ラット由来、マウス由来、及びカエル由来から選択される1以上の野生型DHODHであり、植物由来がシロイヌナズナ由来、イネ由来、トウモロコシ由来、及びトウゴマ由来から選択される1以上の野生型DHODHである、上記(A-64)に記載の方法。
(A-67) 上記(A-56)、(A-58)~(A-66)のいずれか1つに記載の方法によって得られる蛍光化したDHODHをコードする核酸。
(A-68) 上記(A-57)~(A-66)のいずれか1つに記載の方法によって製造した蛍光化DHODHをコードする核酸。
(A-69) 上記核酸が、蛍光化DHODH以外のオリゴペプチド又はポリペプチドをコードする核酸に作動可能なように連結している、上記(A-67)~(A-68)のいずれか1つに記載の核酸。
(A-70) 上記ペプチドが、細胞内、細胞表面、及び細胞外に局在するものから選択される1以上ペプチドである、上記(A-69)に記載の核酸。
(A-71) 上記ペプチドが、抗体、酵素、リガンド、レセプター、及びペプチドタグから選択される1以上である、上記(A-69)~(A-70)のいずれか1つに記載の核酸。
(A-72) 上記(A-67)~(A-71)のいずれか1つに記載の核酸を含む組み換えベクター。
(A-73) 上記(A-67)~(A-71)に記載の核酸に作動可能なように連結された発現制御配列を含む組み換えベクター。
(A-74) 上記発現制御配列は、プロモーター、エンハンサー、ターミネーター、及びサイレンサーから選択される1以上の発現制御配列を含む、上記(A-73)に記載の組み換えベクター。
(A-75) 上記プロモーターが、構成性プロモーター、誘導性プロモーター、細胞・組織特異的プロモーター、及び発生段階特異的プロモーターから選択される1以上のプロモーターである、上記(A-74)に記載の組み換えベクター。
(A-76) 上記構成性プロモーターがウイルスプロモーター、及び動植物に由来する遺伝子プロモーターから選択される1以上のプロモーターである、上記(A-75)に記載の組み換えベクター。
(A-77) 上記誘導性プロモーターがアルコール、ステロイド、テトラサイクリンなどの化学的プロモーター、及び熱、光、電離放射線などの物理的プロモーターから選択される1以上のプロモーターである、上記(A-75)に記載の組み換えベクター。
(A-78) 上記細胞・組織特異的プロモーター及び発生段階特異的プロモーターが表1 A又は1Bに記載のプロモーターから選択される1以上のプロモーターである、上記(A-75)に記載の組み換えベクター。
(A-79)上記組み換えベクターが、ウイルスベクター、プラスミドベクター、コスミドベクター、及び人工染色体ベクターから選択される1以上のベクターである、上記(A-72)~(A-78)のいずれか1つに記載の組み換えベクター。
(A-80) 上記(A-67)~(A-71)のいずれか1つに記載の核酸の翻訳産物及び請求項72~79のいずれか1つに記載の組み換えベクターにより産生される翻訳産物から選択される1以上の翻訳産物を含む蛍光化DHODHまたはその融合蛋白質。
(A-81) 上記蛍光化DHODH以外の核酸、化合物、及びその他の物質から選択される1以上の物質と結合している、上記(A-80)に記載の蛍光化DHODHまたはその融合蛋白質。
(A-82) 上記核酸、化合物、及びその他の物質が、上記(A-80)に記載の蛋白質を標識するものである、上記(A-81)に記載の蛍光化DHODHまたはその融合蛋白質。
(A-83) 上記(A-67)~(A-71)のいずれか1つに記載の核酸、上記(A-72)~(A-79)のいずれか1つに記載の組み換えベクター、及び上記(A-80)~(A-82)のいずれか1つに記載の蛋白質から選択される1以上を有する、組み換え宿主。
(A-84) 上記組み換え宿主が、細胞、組織、生物体、及びそれらの子孫から選択される1以上の宿主である、上記(A-83)に記載の組み換え宿主。
(A-85) 上記組織またはその子孫が、上記細胞を含むものである、上記(A-84)に記載の組み換え宿主。
(A-86) 上記生物体が、上記細胞及び上記組織から選択される1以上を含むものである、上記(A-84)に記載の組み換え宿主。
(A-87) 上記細胞またはその子孫が、ES細胞、iPS細胞、体性幹細胞、その他の幹細胞、及びそれらに由来する細胞から選択される1以上の細胞またはその子孫である、上記(A-84)~(A-86)のいずれか1つに記載の組み換え宿主。
Moreover, as an embodiment of the present invention, for example, the following embodiment can be cited.
(A-1) A nucleic acid encoding DHODH that has been fluorescentized by modifying one or more amino acids present in the interaction region of wild-type DHODH with FMN or DHO.
(A-2) The nucleic acid according to (A-1), wherein at least one region of the interaction regions is modified.
(A-3) The nucleic acid according to any one of (A-1) to (A-2), wherein there are twelve interaction regions.
(A-4) The above 12 interaction regions are the interaction region between 6 FMNs and DHODH, the interaction region between 4 DHOs and DHODH, and the two interaction regions between FMN and DHO and DHODH. The nucleic acid according to (A-3) above, comprising an interaction region.
(A-5) The above 12 interaction regions are any of the above (A-3) to (A-4), which is a region having 12 to 3 consecutive amino acids as shown in FIG. The nucleic acid according to one.
(A-6) The amino acid modification is any one or more of the modified amino acid sequences in each interaction region described in Table 5, according to any one of (A-1) to (A-5) above Nucleic acid.
(A-7) The amino acid modification is a combination of the modified amino acids in each interaction region shown in Table 5 with the modified amino acid sequences in two or more interaction regions. ) The nucleic acid according to any one of
(A-8) The nucleic acid according to any one of (A-6) to (A-7) above, wherein the amino acid sequence is a combination of modified amino acid sequences described in Table 4.
(A-9) The wild type DHODH is one or more wild type DHODH selected from animal origin, plant origin, and microorganism origin, any one of (A-1) to (A-8) above Nucleic acids.
(A-10) The animal-derived wild-type DHODH is one or more wild-type DHODH selected from human-derived, monkey-derived, bovine-derived, rabbit-derived, dog-derived, rat-derived, mouse-derived, and frog-derived, The nucleic acid according to (A-9) above, wherein the plant is one or more wild-type DHODH selected from Arabidopsis, rice, corn, and castor bean.
(A-11) Any one of (A-1) to (A-10) above, wherein the nucleic acid is operably linked to a nucleic acid encoding an oligopeptide or polypeptide other than fluorescent DHODH. The nucleic acid described in 1.
(A-12) The nucleic acid according to (A-11) above, wherein the peptide is one or more peptides selected from those localized in the cell, on the cell surface, and outside the cell.
(A-13) The nucleic acid according to any one of (A-11) to (A-12) above, wherein the peptide is one or more selected from an antibody, an enzyme, a ligand, a receptor, and a peptide tag .
(A-14) A recombinant vector comprising the nucleic acid according to any one of (A-1) to (A-13) above.
(A-15) A recombinant vector comprising an expression control sequence operably linked to the nucleic acid described in (A-1) to (A-13) above.
(A-16) The recombinant vector according to (A-15), wherein the expression control sequence includes one or more expression control sequences selected from a promoter, an enhancer, a terminator, and a silencer.
(A-17) The promoter according to (A-16), wherein the promoter is one or more promoters selected from a constitutive promoter, an inducible promoter, a cell / tissue-specific promoter, and a developmental stage-specific promoter. Recombinant vector.
(A-18) The recombinant vector according to (A-17) above, wherein the constitutive promoter is one or more promoters selected from viral promoters and gene promoters derived from animals and plants.
(A-19) The inducible promoter is one or more promoters selected from chemical promoters such as alcohol, steroids, and tetracycline, and physical promoters such as heat, light, and ionizing radiation, (A-17) A recombinant vector according to 1.
(A-20) The recombinant vector according to (A-17) above, wherein the cell / tissue-specific promoter and the developmental stage-specific promoter are one or more promoters selected from the promoters described in Table 1A or 1B.
(A-21) Any one of the above (A-14) to (A-20), wherein the recombinant vector is one or more vectors selected from a viral vector, a plasmid vector, a cosmid vector, and an artificial chromosome vector. The recombinant vector described in 1.
(A-22) Translation product of nucleic acid according to any one of (A-1) to (A-13) above and translation produced by the recombinant vector according to any one of claims 1 to 21 Fluorescent DHODH or fusion protein containing one or more translation products selected from the products.
(A-23) The fluorescent DHODH protein or fusion protein thereof according to (A-19), which is bound to one or more substances selected from nucleic acids other than the fluorescent DHODH, compounds, and other substances .
(A-24) The fluorescent DHODH or fusion protein thereof according to (A-23) above, wherein the nucleic acid, compound, or other substance labels the protein according to (A-23).
(A-25) the nucleic acid according to any one of (A-1) to (A-13) above, the recombinant vector according to any one of (A-14) to (A-21) above, And a recombinant host comprising one or more proteins selected from the proteins described in any one of (A-22) to (A-24) above.
(A-26) The recombinant host according to (A-25) above, wherein the recombinant host is one or more hosts selected from cells, tissues, organisms, and their progeny.
(A-27) The recombinant host according to (A-26) above, wherein the tissue or its progeny contains the cell.
(A-28) The recombinant host according to (A-27) above, wherein the organism comprises one or more selected from the cells and the tissue.
(A-29) The above cell or its progeny is one or more cells selected from ES cells, iPS cells, somatic stem cells, other stem cells, and cells derived therefrom or progeny thereof (A- 26) A recombinant host according to any one of (A-28).
(A-30) A method for identifying, sorting, or purifying cells using fluorescence of fluorescent DHODH as an index, described in any one of (A-1) to (A-13) above Selected from the nucleic acid according to any one of (A-14) to (A-21) above, and the protein according to any one of (A-22) to (A-24) above The method comprising the step of introducing into the cell one or more substances.
(A-31) The method according to (A-30) above, further comprising a step of identifying, sorting, or purifying cells by a flow cytometer including fluorescence activated cell sorting (FACS).
(A-32) The above cells (A-30) to (A-), wherein the cells are one or more cells selected from ES cells, iPS cells, somatic stem cells, other stem cells, and cells derived therefrom. The method according to any one of 31).
(A-33) The method according to any one of (A-30) to (A-32), wherein the cell is one or more cells selected from plants and microorganisms.
(A-34) The animal-derived cell is one or more cells selected from human origin, monkey origin, bovine origin, rabbit origin, dog origin, rat origin, mouse origin, and frog origin, and plant origin is derived from Arabidopsis thaliana The method according to any one of (A-30) to (A-33) above, wherein the cell is one or more cells selected from rice, maize, and castor bean.
(A-35) the nucleic acid according to any one of (A-1) to (A-13) above, the recombinant vector according to any one of (A-14) to (A-21) above, 1 selected from the protein described in any one of (A-22) to (A-24) above and the recombinant host described in any one of (A-25) to (A-29) above A composition comprising the above substances.
(A-36) The nucleic acid according to any one of (A-1) to (A-13) above, for identifying, sorting, or purifying cells using the fluorescence of green fluorescent DHODH as an index, 1 selected from the recombinant vector according to any one of (A-14) to (A-21) above and the protein according to any one of (A-22) to (A-24) above A composition comprising the above substances.
(A-37) The cell is the nucleic acid according to any one of (A-1) to (A-13) above, or the nucleic acid according to any one of (A-14) to (A-21) above. The recombinant vector according to (A-36), wherein the recombinant vector is introduced, and one or more substances selected from the proteins described in any one of (A-22) to (A-24) above are introduced. Composition.
(A-38) Any one of (A-36) to (A-37) above, wherein the cells are identified, sorted, or purified by a flow cytometer including fluorescence activated cell sorting (FACS). A composition according to 1.
(A-39) The above cells (A-36) to (A-), wherein the cells are one or more cells selected from ES cells, iPS cells, somatic stem cells, other stem cells, and cells derived therefrom. The composition according to any one of 38).
(A-40) The composition according to any one of (A-36) to (A-39), wherein the cell is one or more cells selected from plants and microorganisms. .
(A-41) The animal-derived cell is one or more cells selected from human origin, monkey origin, cow origin, rabbit origin, dog origin, rat origin, mouse origin, and frog origin, and plant origin is derived from Arabidopsis thaliana The composition according to (A-40) above, which is one or more cells selected from rice, corn, and castor bean.
(A-42) A composition comprising cells identified, sorted, or purified by the method according to any one of (A-30) to (A-34) above.
(A-43) A prophylactic / therapeutic method using cells identified, selected, or purified by the method according to any one of (A-30) to (A-34) above.
(A-44) A diagnostic method using cells identified, selected, or purified by the method according to any one of (A-30) to (A-34) above.
(A-45) A test method using cells identified, sorted, or purified by the method according to any one of (A-30) to (A-34) above.
(A-46) The composition according to any one of (A-35) to (A-42), wherein the composition further comprises a pharmaceutically acceptable carrier or excipient.
(A-47) The composition according to any one of (A-35) to (A-42) and (A-46) above for preventing / treating a disease.
(A-48) The composition according to any one of (A-35) to (A-42) and (A-46) above for diagnosing a disease.
(A-49) The composition according to any one of the above (A-35) to (A-42) and (A-46) for examining a disease.
(A-50) A method for producing the composition according to any one of (A-35) to (A-42) and (A-46) to (A-49).
(A-51) For producing the composition according to any one of (A-35) to (A-42) and (A-46) to (A-49) above, (A-1 ) To (A-13). Use of the nucleic acid according to any one of (A-13).
(A-52) For producing the composition according to any one of (A-35) to (A-42) and (A-46) to (A-49) above, (A-14 Use of the recombinant vector according to any one of (A) to (A-21).
(A-53) For producing the composition according to any one of (A-35) to (A-42) and (A-46) to (A-49) above, (A-22 Use of the protein according to any one of (A-24).
(A-54) (A-25) to (A-29) for producing the composition according to any one of (A-35) and (A-46) to (A-49) ) Use of a recombinant host according to any one of
(A-55) The above (A-30) to (A-34) for producing the composition according to any one of (A-35), (A-46) to (A-49) ) Use of cells identified, sorted, or purified by the method according to any one of (1).
(A-56) A method for fluorescentizing DHODH by modifying one or more amino acids present in the interaction region of wild-type DHODH with FMN or DHO.
(A-57) A method for producing fluorescent DHODH by modifying one or more amino acids present in the interaction region of wild-type DHODH with FMN or DHO.
(A-58) The method according to any one of (A-56) to (A-57) above, wherein the amino acid modification is modification of at least one of the interaction regions.
(A-59) The method according to any one of (A-56) to (A-58), wherein the interaction region is present at 12 sites.
(A-60) The above 12 interaction regions are the interaction region between 6 FMNs and DHODH, the interaction region between 4 DHOs and DHODH, and the two interaction regions between FMN and DHO and DHODH. The method according to (A-59) above, which is an interaction region.
(A-61) Any of the above (A-59) to (A-60), wherein the 12 interaction regions are regions having 12 to 3 consecutive amino acids shown in FIG. The method according to one.
(A-62) The amino acid modification described in any one of (A-56) to (A-61) above, which is any one or more of the modified amino acid sequences in each interaction region described in Table 5. Method.
(A-63) The amino acid modification described above is a combination of the modified amino acids in each interaction region described in Table 5 with the modified amino acid sequences in two or more interaction regions, (A-56) to (A-62) ).
(A-64) The method according to any one of (A-62) to (A-63) above, wherein the amino acid sequence is a combination of modified amino acid sequences described in Table 4.
(A-65) As described in any one of (A-56) to (A-63) above, wherein the wild-type DHODH is one or more wild-type DHODH selected from animal origin, plant origin, and microorganism origin the method of.
(A-66) The animal-derived wild-type DHODH is one or more wild-type DHODH selected from human-derived, monkey-derived, bovine-derived, rabbit-derived, dog-derived, rat-derived, mouse-derived, and frog-derived, The method according to (A-64) above, wherein the plant is one or more wild-type DHODH selected from Arabidopsis thaliana, rice, corn, and castor bean.
(A-67) A nucleic acid encoding fluorescent DHODH obtained by the method according to any one of (A-56) and (A-58) to (A-66) above.
(A-68) A nucleic acid encoding fluorescent DHODH produced by the method according to any one of (A-57) to (A-66) above.
(A-69) Any one of (A-67) to (A-68) above, wherein the nucleic acid is operably linked to a nucleic acid encoding an oligopeptide or polypeptide other than fluorescent DHODH. The nucleic acid described in 1.
(A-70) The nucleic acid according to (A-69) above, wherein the peptide is one or more peptides selected from those localized in the cell, on the cell surface, and outside the cell.
(A-71) The nucleic acid according to any one of (A-69) to (A-70), wherein the peptide is one or more selected from an antibody, an enzyme, a ligand, a receptor, and a peptide tag. .
(A-72) A recombinant vector comprising the nucleic acid according to any one of (A-67) to (A-71) above.
(A-73) A recombinant vector comprising an expression control sequence operably linked to the nucleic acid described in (A-67) to (A-71) above.
(A-74) The recombinant vector according to (A-73), wherein the expression control sequence includes one or more expression control sequences selected from a promoter, an enhancer, a terminator, and a silencer.
(A-75) The promoter according to (A-74), wherein the promoter is one or more promoters selected from a constitutive promoter, an inducible promoter, a cell / tissue-specific promoter, and a developmental stage-specific promoter. Recombinant vector.
(A-76) The recombinant vector according to (A-75) above, wherein the constitutive promoter is one or more promoters selected from viral promoters and gene promoters derived from animals and plants.
(A-77) The inducible promoter is one or more promoters selected from chemical promoters such as alcohol, steroids, and tetracycline, and physical promoters such as heat, light, and ionizing radiation. A recombinant vector according to 1.
(A-78) The recombinant vector according to (A-75) above, wherein the cell / tissue-specific promoter and the developmental stage-specific promoter are one or more promoters selected from the promoters described in Table 1A or 1B .
(A-79) Any one of the above (A-72) to (A-78), wherein the recombinant vector is one or more vectors selected from a viral vector, a plasmid vector, a cosmid vector, and an artificial chromosome vector. The recombinant vector described in 1.
(A-80) Translation product of nucleic acid according to any one of (A-67) to (A-71) above and translation produced by the recombinant vector according to any one of claims 72 to 79 Fluorescent DHODH or fusion protein containing one or more translation products selected from the products.
(A-81) The fluorescent DHODH or a fusion protein thereof according to (A-80), which is bound to one or more substances selected from nucleic acids, compounds, and other substances other than the fluorescent DHODH.
(A-82) The fluorescent DHODH or fusion protein thereof according to (A-81) above, wherein the nucleic acid, compound, or other substance labels the protein according to (A-80).
(A-83) the nucleic acid according to any one of (A-67) to (A-71) above, the recombinant vector according to any one of (A-72) to (A-79) above, And a recombinant host comprising one or more proteins selected from the proteins according to any one of (A-80) to (A-82) above.
(A-84) The recombinant host according to (A-83) above, wherein the recombinant host is one or more hosts selected from cells, tissues, organisms, and their progeny.
(A-85) The recombinant host according to (A-84) above, wherein the tissue or its progeny contains the cell.
(A-86) The recombinant host according to (A-84) above, wherein the organism comprises one or more selected from the cells and the tissue.
(A-87) The cell or its progeny is one or more cells selected from ES cells, iPS cells, somatic stem cells, other stem cells, and cells derived therefrom or progeny thereof (A-87). 84) A recombinant host according to any one of (A-86).
 上記(A-1)~(A-87)において、蛍光化蛋白質はDHODHに限られず、例えば、上述のDHODH等からなる群から選ばれる1つ以上の蛋白質であってもよい。このとき、(A-1)~(A-87)に記載のFMNはFMN以外の補因子であってもよく、DHOはDHO以外の基質であってもよい。またこのとき、(A-3)~(A-8)に記載の相互作用領域は、蛋白質毎に上記分子シミュレーションソフト等のいずれかの既存の方法を用いて特定できる。 In the above (A-1) to (A-87), the fluorescent protein is not limited to DHODH, and may be, for example, one or more proteins selected from the group consisting of the above-mentioned DHODH and the like. At this time, the FMN described in (A-1) to (A-87) may be a cofactor other than FMN, and DHO may be a substrate other than DHO. At this time, the interaction regions described in (A-3) to (A-8) can be specified for each protein using any of the existing methods such as the above-described molecular simulation software.
 <蛍光化BVR>
 ビリベルジン還元酵素(Biliverdin reductase、BVR)は、動物に存在する酵素であり、一般的に、ヘムオキシゲナーゼによって分解されたヘム分解物であるビリベルジン(BV)を、NAD(P)Hを補酵素として還元し、ビリルビン(BR)へと変換する酵素である。BVRには、成体で発現し機能しているBVR-Aと胎児で発現し機能しているBVR-Bが存在することが知られており、両者ともヘムをBRへと変換し体外へ排出する過程で機能していると考えられている(Cunningham, O. et al, J Biol Chem, 2000, Vol.275, No.25, p.19009-17)。生体内において、内在性BVR及び外来性BVRが近赤外蛍光を発することについては、従来知られていなかった。
<Fluorescent BVR>
Biliverdin reductase (BVR) is an enzyme present in animals, and generally reduces biliverdin (BV), a heme degradation product decomposed by heme oxygenase, using NAD (P) H as a coenzyme. It is an enzyme that converts to bilirubin (BR). BVR is known to have BVR-A, which is expressed and functioning in adults, and BVR-B, which is expressed and functioning in fetuses. Both convert heme into BR and excrete it from the body. It is thought to function in the process (Cunningham, O. et al, J Biol Chem, 2000, Vol. 275, No. 25, p. 19009-17). It has not been conventionally known that endogenous BVR and exogenous BVR emit near-infrared fluorescence in vivo.
 本発明の一実施形態において「蛍光化BVR」は、ヒトを含む生物全般(動物、植物、微生物を含む)自身が元来有するBVRのアミノ酸を改変することにより、安定して検出可能な近赤外蛍光を発するようにしたものを含む。なお、蛍光化BVRは必ずしもそれ自身が蛍光を発していなくてもよく、補因子又は基質との複合体を形成したときにはじめて、その複合体全体として蛍光を発するような特性を持った蛋白質を含む。 In one embodiment of the present invention, “fluorescent BVR” is a near-reduce that can be stably detected by modifying the amino acids of BVR inherent in all living organisms including humans (including animals, plants, and microorganisms) themselves. Including those that emit external fluorescence. Fluorescent BVR does not necessarily fluoresce itself, but only when a complex with a cofactor or substrate is formed, a protein having such a characteristic that the complex as a whole emits fluorescence. Including.
 当該アミノ酸改変は、例えば、NAD(P)H又はBVはと相互作用するBVRの相互作用領域の1以上のアミノ酸の改変である。ヒトBVRがNAD(P)H又はBVと相互作用する領域は、後述の実施例に示す先行技術文献では10ヶ所存在するが、それ以上存在する場合はそれらの箇所をも含む。また、先行技術文献により確認された10ヶ所の相互作用領域は、図14に示すとおり、種を超えて保存されている。上記10ヶ所の相互作用領域は、6ヶ所のNAD(P)Hと相互作用するアミノ酸領域、3ヶ所のBVと相互作用するアミノ酸領域、及び1ヶ所のNAD(P)HとBVの両者と相互作用するアミノ酸領域であって、連続する3~6個のアミノ酸を有する領域である。そして、当該アミノ酸改変は、例えば、上記相互作用領域のうち、少なくとも1ヶ所の領域の改変である。BVと相互作用する蛋白質を改変する場合、相互作用領域のアミノ酸を、π電子を持つアミノ酸、又は電子供与アミノ酸に置換することが好ましい。 The amino acid modification is, for example, modification of one or more amino acids in the interaction region of BVR that interacts with NAD (P) H or BV. There are 10 regions where human BVR interacts with NAD (P) H or BV in the prior art documents shown in the examples described below, but when there are more regions, these regions are also included. In addition, the 10 interaction regions confirmed in the prior art document are conserved across species as shown in FIG. The above 10 interaction regions are 6 amino acid regions interacting with NAD (P) H, 3 amino acid regions interacting with BV, and 1 NAD (P) H and BV. An amino acid region that acts, and has 3 to 6 consecutive amino acids. The amino acid modification is, for example, modification of at least one of the interaction regions. When modifying a protein that interacts with BV, it is preferable to replace the amino acid in the interaction region with an amino acid having π electrons or an electron-donating amino acid.
 本発明の一実施形態において蛍光化BVRは、上記の改変により安定して検出可能な近赤外蛍光を発するものであるが、好ましくは、図14に記載の各相互作用領域内において改変アミノ酸配列を有するものであり、より好ましくは、2以上の相互作用領域を改変したものであり、さらに好ましくは表9又は10に記載の改変アミノ酸配列の組み合わせのものである。 In one embodiment of the present invention, the fluorescent BVR emits near-infrared fluorescence that can be stably detected by the above modification. Preferably, the modified amino acid sequence is within each interaction region shown in FIG. More preferably, two or more interaction regions are modified, more preferably a combination of modified amino acid sequences described in Table 9 or 10.
 後述の実施例9には、BVR-Aの遺伝子を改変したときの実験データを記載している。このBVR-Aのアミノ酸配列において、相互作用領域以外のアミノ酸配列については、近赤外蛍光を発しさえすれば、1から数個のアミノ酸の欠失、置換、挿入、又は付加してもよい。核移行シグナル配列等のシグナル配列やDNA結合領域等の蛍光発生に関与しない配列を有する場合には、これら配列を適宜欠失又は置換させてもよい。また、実施例9で近赤外蛍光化したBVR-Aは、各相互作用領域が離れた位置にあり、1から4個のアミノ酸に変異を導入したのみであるため、上記蛍光化DHODHと同様、抗原性が著しく低いと考えられる。 Example 9 below describes experimental data when the BVR-A gene was modified. In this amino acid sequence of BVR-A, the amino acid sequence other than the interaction region may be deleted, substituted, inserted, or added as long as it emits near-infrared fluorescence. When a signal sequence such as a nuclear translocation signal sequence or a sequence that does not participate in fluorescence generation such as a DNA binding region is included, these sequences may be appropriately deleted or substituted. Further, BVR-A fluorescent in the near-infrared in Example 9 is located at a position where each interaction region is distant, and only a mutation is introduced into 1 to 4 amino acids. The antigenicity is considered to be extremely low.
 本発明の一実施形態において「蛍光化したBVR」及び「蛍光化BVR」は、NAD(P)Hと相互作用するBVRにおける相互作用領域、BVと相互作用するBVRにおける相互作用領域、又は、NAD(P)H及びBVRの両者と相互作用するBVRにおける相互作用領域の1以上のアミノ酸を改変することにより、安定して蛍光を検出することができない野生型BVRを、安定して検出可能な蛍光を発するように改変したBVR含む。 In one embodiment of the present invention, “fluorescent BVR” and “fluorescent BVR” are an interaction region in BVR that interacts with NAD (P) H, an interaction region in BVR that interacts with BV, or NAD. (P) Fluorescence that can stably detect wild-type BVR that cannot stably detect fluorescence by modifying one or more amino acids in the interaction region in BVR that interacts with both H and BVR BVR modified to emit
 本発明の一実施形態において蛍光化BVRの由来の野生型BVRは、いかなる生物種由来のものであってよい。そのような生物種由来のBVRのアミノ酸配列及び塩基配列としては、例えば、ヒト(Homo sapiens、Genbank Accession No. NP_000703、NM_000712)、サル(Macaca mulatta、Genbank Accession No. NP_001245073、NM_001258144)、チンパンジー(Pan troglodytes、Genbank Accession No. JAA33413、GABE01011326)、ウシ(Bos taurus、Genbank Accession No. NP_001091040、NM_001097571)、ラビット(Oryctolagus cuniculus、Genbank Accession No. XP_002713727、XM_002713681)、ラット(Rattus norvegicus、Genbank Accession No. NP_446302、NM_053850)、マウス(Mus musculus、Genbank Accession No. NP_080954、NM_026678)、カエル(Xenopus laevis、Genbank Accession No. NP_001108283、NM_001114811)などが挙げられるが、これらに限定されない。また、同定されていない生物種の場合には、既知のBVRの塩基配列又はアミノ酸配列を基に、当業者に公知の手法により、クローニングすればよい。 In one embodiment of the present invention, the wild-type BVR derived from the fluorescent BVR may be derived from any biological species. Examples of the amino acid sequence and base sequence of BVR derived from such biological species include human (Homo sapiens, Genbank Accession No. NP_000703, NM_000712), monkey (Macaca mulatta, Genbank Accession No. NP_001245073, NM_001258144), chimpanzee (Pan troglodytes, Genbank Accession No. JAA33413, GABE01011326), cattle (Bos taurus, Genbank Accession No. NP_001091040, NM_001097571), rabbits (Oryctolagus cuniculus, Genbank 27 Accession ラ ッ ト No. XP. NM_053850), mice (Mus musculus, Genbank Accession No. NP_080954, NM_026678), frogs (Xenopus laevis, Genbank Accession No. NP_001108283, NM_001114811), and the like. In the case of an unidentified biological species, cloning may be performed by a technique known to those skilled in the art based on the known BVR base sequence or amino acid sequence.
 本発明の一実施形態は、改変型BVRである。この改変型BVRは、例えば、E96A及びY97Fに変異を有していることが好ましい。この場合、BVRがBVと反応してBR(赤色蛍光物質)を生成する反応が抑制される。そのため、E96A及びY97Fに変異を有している改変型BVRは、近赤外蛍光化が安定的に検出しやすくなる。 One embodiment of the present invention is a modified BVR. This modified BVR preferably has a mutation in, for example, E96A and Y97F. In this case, the reaction in which BVR reacts with BV to generate BR (red fluorescent material) is suppressed. Therefore, the modified BVR having a mutation in E96A and Y97F can easily detect near-infrared fluorescence stably.
 また本発明の一実施形態として、例えば、以下の実施形態を挙げることができる。
(B-1) 野生型BVRのNAD(P)H又はBVとの相互作用領域内に存在する1以上のアミノ酸を改変することにより、蛍光化したBVRをコードする核酸。
(B-2) 上記相互作用領域のうち、少なくとも1ヶ所の領域を改変させた、上記(B-1)に記載の核酸。
(B-3) 上記相互作用領域は、10ヶ所存在する、上記(B-1)~(B-2)のいずれか1つに記載の核酸。
(B-4) 上記10ヶ所の相互作用領域は、6ヶ所のNAD(P)HとBVRとの相互作用領域、3ヶ所のBVとBVRとの相互用領域、1ヶ所のNAD(P)H及びBVの両者とBVRとの相互作用領域からなる、上記(B-3)に記載の核酸。
(B-5) 上記10ヶ所の相互作用領域は、図14に示す10ヶ所の連続する3~6個のアミノ酸を有する領域である、上記(B-3)~(B-4)のいずれか1つに記載の核酸。
(B-6) 上記アミノ酸改変は、図14記載の各相互作用領域の2箇所以上を改変させたものである、上記(B-1)~(B-5)のいずれか1つに記載の核酸。
(B-7) 上記アミノ酸配列は、表9又は10記載の改変アミノ酸配列の組合せである、上記(B-6)に記載の核酸。
Moreover, as an embodiment of the present invention, for example, the following embodiment can be cited.
(B-1) A nucleic acid encoding BVR that has been fluorescentized by modifying one or more amino acids present in the interaction region of wild-type BVR with NAD (P) H or BV.
(B-2) The nucleic acid according to (B-1), wherein at least one region of the interaction region is modified.
(B-3) The nucleic acid according to any one of (B-1) to (B-2), wherein there are ten interaction regions.
(B-4) The above 10 interaction areas are the interaction area between 6 NAD (P) H and BVR, the interaction area between 3 BV and BVR, and 1 NAD (P) H. And the nucleic acid according to (B-3) above, which comprises an interaction region between BV and BVR.
(B-5) The 10 interaction regions are any one of the above (B-3) to (B-4), which is a region having 10 to 3 consecutive amino acids shown in FIG. The nucleic acid according to one.
(B-6) The amino acid modification described above is any one of the above (B-1) to (B-5), wherein two or more of the interaction regions described in FIG. 14 are modified. Nucleic acid.
(B-7) The nucleic acid according to (B-6), wherein the amino acid sequence is a combination of modified amino acid sequences described in Table 9 or 10.
 <表11A又はBに示す蛋白質の蛍光化>
 まず、表11A又はBに示す蛋白質の相互作用領域を同定する。このとき、上述の分子シミュレーションソフト又は公知文献を用いることで同定する。公知文献は、例えばPubmedから入手する。次に、上記相互作用領域をコードするDNA配列に変異を導入する。このとき、上述の変異導入法を用いる。以上の手順により、表11A又はBに示す蛋白質由来の改変型蛋白質を作成する。この改変型蛋白質をコードするベクターを上述の細胞に導入した後、励起光をあてることにより、改変型蛋白質と、補因子又は基質との複合体由来の蛍光が見られる。より詳細な実験条件は、後述の実施例に記載の手順に準じて行う。
<Fluorescence of proteins shown in Table 11A or B>
First, protein interaction regions shown in Table 11A or B are identified. At this time, it identifies by using the above-mentioned molecular simulation software or well-known literature. Known literature is obtained from Pubmed, for example. Next, a mutation is introduced into the DNA sequence encoding the interaction region. At this time, the above-described mutation introduction method is used. By the above procedure, modified proteins derived from the proteins shown in Table 11A or B are prepared. After introducing the vector encoding the modified protein into the above-mentioned cells, fluorescence derived from a complex of the modified protein and a cofactor or substrate is observed by applying excitation light. More detailed experimental conditions are performed in accordance with the procedures described in the examples described later.
 なお、本明細書において「又は」は、文章中に列挙されている事項の「少なくとも1つ以上」を採用できるときに使用される。「もしくは」も同様である。 In this specification, “or” is used when “at least one” of the items listed in the text can be adopted. The same applies to “or”.
 また、本明細書において引用しているあらゆる刊行物、公報類(特許、又は特許出願)は、上述したものも、後述するものも、その全体を参照により援用する。 In addition, all publications and publications (patents or patent applications) cited in the present specification are incorporated by reference in their entirety, both of those described above and those described below.
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。また、上記実施形態に記載の構成を組み合わせて採用することもできる。 As mentioned above, although embodiment of this invention was described, these are illustrations of this invention and various structures other than the above can also be employ | adopted. Moreover, it is also possible to adopt a combination of the configurations described in the above embodiments.
 以下、本発明を実施例によりさらに説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be further described with reference to examples, but the present invention is not limited thereto.
<実施例1>
 野生型バチルスDHODHによる緑色蛍光発光
 土壌細菌であるバチルス株よりDHODH(Dihydroorotate dehydrogenase)遺伝子を単離し、塩基配列を決定した(図1、配列番号1)。その塩基配列より得られたアミノ酸配列(図1、配列番号2)は、バチルス・メタノリカスMGA3(Bacillus methanolicus MGA3)及びバチルス・セレウスG9241(Bacillus cereus G9241)のDHODHとそれぞれ約81%の相同性を示した(図2、それぞれ配列番号3、配列番号4)。
<Example 1>
A DHODH (Dihydroorotate dehydrogenase) gene was isolated from a Bacillus strain which is a green fluorescent soil bacterium by wild-type Bacillus DHODH , and the base sequence was determined (FIG. 1, SEQ ID NO: 1). The amino acid sequence obtained from the nucleotide sequence (Fig. 1, SEQ ID NO: 2) shows about 81% homology with DHODH of Bacillus methanolicus MGA3 and Bacillus cereus G9241. (FIG. 2, SEQ ID NO: 3 and SEQ ID NO: 4, respectively).
 このバチルスDHODH (bDHODH)遺伝子をバクテリア用発現ベクターであるpGEX4T-1と真核生物発現ベクターであるpCS2+にサブクローニングし、それぞれE.coliのDH5α株、ヒト細胞HEK293株で発現させた。その結果、バチルスDHODHをDH5α株及びHEK293株で発現させると、いずれの株においても緑色蛍光を発することが確認された(図3)。この結果は、バチルスDHODHが緑色蛍光を発する蛋白質であることを示すものである。 The Bacillus DHODH (bDHODH) gene was subcloned into the bacterial expression vector pGEX4T-1 and the eukaryotic expression vector pCS2 +, and expressed in E. coli DH5α strain and human cell HEK293 strain, respectively. As a result, it was confirmed that when Bacillus DHODH was expressed in DH5α strain and HEK293 strain, green fluorescence was emitted in both strains (FIG. 3). This result indicates that Bacillus DHODH is a protein that emits green fluorescence.
<参考例>
 非緑色蛍光発光の野生型ヒトDHODH
 野生型ヒトDHODH (hDHODH)が、バチルスDHODHと同様に緑色蛍光を発するか確認することを目的に以下の実験を行った。
<Reference example>
Non-green fluorescent wild-type human DHODH
The following experiment was conducted for the purpose of confirming whether wild-type human DHODH (hDHODH) emits green fluorescence similarly to Bacillus DHODH.
 野生型hDHODH(図4、アミノ酸配列は配列番号5、塩基配列は配列番号6)の5'末端側、及び野生型hDHODHのN末端74アミノ酸(バチルスDHODHに存在せず野生型hDHODHに存在する部位)を欠失させたΔ1-74野生型hDHODHの5'末端側の、それぞれにKozak配列を入れ、pGEX4T-1とpCS2+にサブクローニングし、それぞれDH5α株及びHEK293株で発現させた。 5 'end of wild-type hDHODH (Fig. 4, amino acid sequence is SEQ ID NO: 5, base sequence is SEQ ID NO: 6) and N-terminal 74 amino acids of wild-type hDHODH (site not present in Bacillus DHODH but present in wild-type hDHODH) Kozak sequence was inserted into the 5 ′ end of Δ1-74 wild-type hDHODH from which Δ) was deleted, and subcloned into pGEX4T-1 and pCS2 +, respectively, and expressed in DH5α strain and HEK293 strain, respectively.
 その結果、野生型hDHODH及びΔ1-74野生型hDHODHともに、DH5α株及びHEK293株において、緑色蛍光を発することは確認されなかった(図5)。この結果は、野生型hDHODHは緑色蛍光を発しないのに対して、バチルスDHODHは緑色蛍光を発することを示している。 As a result, it was not confirmed that both wild type hDHODH and Δ1-74 wild type hDHODH emit green fluorescence in the DH5α strain and HEK293 strain (FIG. 5). This result indicates that wild-type hDHODH does not emit green fluorescence, whereas Bacillus DHODH emits green fluorescence.
<実施例2>
 DHODHに存在する12ヶ所のFMN又はジヒドロオロト酸との相互作用領域
 バチルスDHODHとhDHODHとの間における緑色蛍光発光の差異について検討するために、バチルスDHODHのアミノ酸配列とhDHODHのアミノ酸配列の相同性を比較した(図6)。その結果、ヒトではバチルスと比較してN末側のアミノ酸が74個長く、同一のアミノ酸は少ないものの、相同アミノ酸に置換されている箇所が多く存在した。
<Example 2>
In order to investigate the difference in green fluorescence between Bacillus DHODH and hDHODH, the region of interaction with 12 FMNs or dihydroorotic acid present in DHODH, we compared the homology of the amino acid sequence of Bacillus DHODH with that of hDHODH. (Fig. 6). As a result, humans had 74 amino acids on the N-terminal side that were longer than Bacillus, and although there were few identical amino acids, there were many places where they were substituted with homologous amino acids.
 次に、FMN及びジヒドロオロト酸 (DHO)と相互作用する相互作用領域に緑色蛍光を発する鍵が存在するのではないかと考えた。FMNは補酵素、DHOは基質である。FMNは、それ自体が緑色蛍光を発するので、バチルスDHODHが直接相互作用する相互作用領域は、FMNの緑色蛍光を阻害しないのに対し、hDHODHが相互作用する該領域は、FMNの緑色蛍光に阻害的に働いている可能性が高いことが考えられる。 Next, we thought that there might be a key to emit green fluorescence in the interaction region that interacts with FMN and dihydroorotate (DHO). FMN is a coenzyme and DHO is a substrate. Since FMN itself emits green fluorescence, the interaction region directly interacting with Bacillus DHODH does not inhibit the green fluorescence of FMN, whereas the region interacting with hDHODH is inhibited by the green fluorescence of FMN. It is possible that there is a high possibility of working.
 hDHODHにおけるFMN及びDHOとの相互作用に関係する相互作用領域を同定するために、分子シミュレーションソフト(MOE;統合計算化学システム、株式会社 菱化システム)を用いて解析した。その結果、図7に示すようにFMNと直接相互作用する10個のアミノ酸、図8に示すようにDHOと直接相互作用する8個アミノ酸が存在することが判明した。 In order to identify the interaction region related to the interaction with FMN and DHO in hDHODH, analysis was performed using molecular simulation software (MOE; Integrated Computational Chemistry System, Koryo Kasei System Co., Ltd.). As a result, it was found that there are 10 amino acids that interact directly with FMN as shown in FIG. 7, and 8 amino acids that interact directly with DHO as shown in FIG.
 そして、これら直接相互作用するアミノ酸とその両側のアミノ酸が、構造的にFMN又はDHOと相互作用するのに重要であると予想されることから、図9に示すように、FMNと相互作用する6ヶ所のアミノ酸領域、4ヶ所のDHOと相互作用するアミノ酸領域、及び2ヶ所のFMNとDHOの両者と相互作用するアミノ酸領域の計12ヶ所のFMN又はDHOとの相互作用領域として同定した。 Since these directly interacting amino acids and the amino acids on both sides are predicted to be structurally important for interacting with FMN or DHO, as shown in FIG. 9, they interact with FMN. A total of 12 amino acid regions interacting with FMN or DHO were identified: amino acid regions interacting with 4 DHOs, and amino acid regions interacting with both FMN and DHO.
 また、ヒト、サル(配列番号7)、ウサギ(配列番号8)、ラット(配列番号9)、マウス(配列番号10)、カエル(配列番号11)の各DHODHの相同性を比較したところ、上記12ヶ所の相互作用領域は保存されていることが明らかとなった(図9)。ヒトにおいてNo.1~No.12の位置は、順にアミノ酸領域は、順に118~120位、143~145位、210~212位、253~255位、281~285位、304~306位、333~335位、354~357位、179~181位、94~100位、146~149位、215~217位であった。 In addition, when comparing the homology of each DHODH of human, monkey (SEQ ID NO: 7), rabbit (SEQ ID NO: 8), rat (SEQ ID NO: 9), mouse (SEQ ID NO: 10), frog (SEQ ID NO: 11), It was revealed that 12 interaction regions were conserved (Fig. 9). The positions of No.1 to No.12 in humans are the amino acid regions in order 118-120, 143-145, 210-212, 253-255, 281-285, 304-306, 333 in this order. -335, 354-357, 179-181, 94-100, 146-149, 215-217.
<実施例3>
 野生型hDHODHのアミノ酸改変による緑色蛍光化
<実施例3A>
 FMN又はDHOとの相互作用領域のアミノ酸改変による、野生型hDHODHの緑色蛍光化
 hDHODHに緑色蛍光を持たせるためには、上記相互作用領域の構造が重要であると考え、FMN又はDHOと直接相互作用するアミノ酸とその近傍のアミノ酸にランダムミューテーションを重ねていくことによって緑色蛍光を発する変異を同定することを試みた。
<Example 3>
Green fluorescence by amino acid modification of wild-type hDHODH <Example 3A>
Wild-type hDHODH green fluorescence by amino acid modification of the interaction region with FMN or DHO In order to make hDHODH have green fluorescence, the structure of the interaction region is considered to be important and directly interacts with FMN or DHO. We attempted to identify mutations that emit green fluorescence by overlapping random mutations on the acting amino acids and nearby amino acids.
 まず、12ヶ所の相互作用領域において、1ヶ所ずつサイトディレクティドランダムミュータジェネシスを行った。その際、参考例で調製した野生型hDHODH/pGEX4T-1またはΔ1-74野生型hDHODH/pGEX4T-1を使用した。サイトディレクティドランダムミュータジェネシスは、Takara社プライムスターミュータジェネシスベイサルキットを使用した。 First, site-directed random mutagenesis was performed one by one in 12 interaction areas. At that time, wild type hDHODH / pGEX4T-1 or Δ1-74 wild type hDHODH / pGEX4T-1 prepared in Reference Example was used. The site-directed random mutagenesis used Takara's prime star mutagenesis basal kit.
 PCRは、以下のプライマーを使用し、PCR産物の一部をアガロースゲルにてバンドを確認。初回正しいバンドが出ず、スメアになった場合にはannealing温度を5℃上げて反応させ、バンドが出ないか薄い場合には温度を5℃下げて反応を行なった。残りのPCR産物をDH5αコンピテントセルにトランスフォーメーションしてAmp L-Brothプレートにて37℃でオーバーナイト。蛍光を発するコロニーを実体蛍光顕微鏡でスクリーニングし、緑色蛍光コロニーを増殖してミニプレップし、プラスミドDNAを抽出した。 PCR uses the following primers, and a part of the PCR product is confirmed on an agarose gel band. When the correct band did not appear for the first time and smearing occurred, the annealing temperature was raised by 5 ° C., and when the band did not appear or was thin, the reaction was carried out by lowering the temperature by 5 ° C. The remaining PCR product was transformed into DH5α competent cells and overnight at 37 ° C on AmpAL-Broth plates. Fluorescent colonies were screened with a stereoscopic fluorescence microscope, green fluorescent colonies were grown and miniprepped, and plasmid DNA was extracted.
 12ヶ所のサイトディレクティドランダムミュータジェネシスに使用したプライマーは以下の通りである。
相互作用領域No.1用プライマー
HDH-118mu120-U1(配列番号12)、HDH-118mu120-D1(配列番号13)
相互作用領域No.2用プライマー
HDH-143mu145-U1(配列番号14)、HDH-143mu145-D1(配列番号15)
相互作用領域No.3用プライマー
HDH-210mu212-U11(配列番号16)、HDH-210mu212-D1(配列番号17)
相互作用領域No.4用プライマー
HDH-253mu255-U1(配列番号18)、HDH-253mu255-D1(配列番号19)
相互作用領域No.5用プライマー
HDH-282mu284-U1(配列番号20)、HDH-282mu284-D1(配列番号21)
相互作用領域No.6用プライマー
HDH-304mu306-U1(配列番号22)、HDH-304mu306-D1(配列番号23)
相互作用領域No.7用プライマー
HDH-333mu335-U1(配列番号24)、HDH-333mu335-D1(配列番号25)
相互作用領域No.8用プライマー1
HDH-355mu357-U1(配列番号26)、HDH-355mu357-D1(配列番号27)
相互作用領域No.8プライマー2
HDH-355mu356-U1(配列番号28)、HDH-355mu356-D1(配列番号29)
相互作用領域No.9用プライマー
HDH-179mu181-U1(配列番号30)、HDH-179mu181-D1(配列番号31)
相互作用領域No.10用プライマー
HDH-95-97-99mu-U1(配列番号32)、HDH-95-97-99mu-D1(配列番号33)
相互作用領域No.11用プライマー1
HDH-147mu149-UN1(配列番号34)、HDH-147mu149-UD1(配列番号35)
相互作用領域No.11用プライマー2
HDH-147mu149-U1(配列番号36)、HDH-147mu149-D1(配列番号37)
相互作用領域No.12用プライマー
HDH-215mu217-U1(配列番号38)、HDH-215mu217-D1(配列番号39)
Primers used for 12 site-directed random mutagenesis are as follows.
Primer for interaction region No.1
HDH-118mu120-U1 (SEQ ID NO: 12), HDH-118mu120-D1 (SEQ ID NO: 13)
Primer for interaction region No.2
HDH-143mu145-U1 (SEQ ID NO: 14), HDH-143mu145-D1 (SEQ ID NO: 15)
Primer for interaction region No.3
HDH-210mu212-U11 (SEQ ID NO: 16), HDH-210mu212-D1 (SEQ ID NO: 17)
Primer for interaction region No.4
HDH-253mu255-U1 (SEQ ID NO: 18), HDH-253mu255-D1 (SEQ ID NO: 19)
Primer for interaction region No.5
HDH-282mu284-U1 (SEQ ID NO: 20), HDH-282mu284-D1 (SEQ ID NO: 21)
Primer for interaction region No.6
HDH-304mu306-U1 (SEQ ID NO: 22), HDH-304mu306-D1 (SEQ ID NO: 23)
Primer for interaction region No.7
HDH-333mu335-U1 (SEQ ID NO: 24), HDH-333mu335-D1 (SEQ ID NO: 25)
Primer 1 for interaction region No. 8
HDH-355mu357-U1 (SEQ ID NO: 26), HDH-355mu357-D1 (SEQ ID NO: 27)
Interaction region No. 8 primer 2
HDH-355mu356-U1 (SEQ ID NO: 28), HDH-355mu356-D1 (SEQ ID NO: 29)
Primer for interaction region No. 9
HDH-179mu181-U1 (SEQ ID NO: 30), HDH-179mu181-D1 (SEQ ID NO: 31)
Primer for interaction region No. 10
HDH-95-97-99mu-U1 (SEQ ID NO: 32), HDH-95-97-99mu-D1 (SEQ ID NO: 33)
Primer 1 for interaction region No. 11
HDH-147mu149-UN1 (SEQ ID NO: 34), HDH-147mu149-UD1 (SEQ ID NO: 35)
Primer 2 for interaction region No. 11
HDH-147mu149-U1 (SEQ ID NO: 36), HDH-147mu149-D1 (SEQ ID NO: 37)
Primer for interaction region No. 12
HDH-215mu217-U1 (SEQ ID NO: 38), HDH-215mu217-D1 (SEQ ID NO: 39)
 その結果、12ヶ所の相互作用領域のうち、1ヶ所に変異を入れると緑色蛍光を発するクローンが得られ、それらのアミノ酸配列を決定した。その結果の一例を表2に示す。 As a result, clones emitting green fluorescence were obtained when a mutation was introduced in one of the 12 interaction regions, and their amino acid sequences were determined. An example of the results is shown in Table 2.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2中の、「相互作用領域No.」は図9に示すFMN又はDHOとの相互作用領域の部位を示し、「直接相互作用するアミノ酸(位置)」は図7及び図8に示すFMN又はDHOと直接相互作用するアミノ酸及び該アミノ酸の位置を示し、「相互作用領域のアミノ酸配列」は図9に示す各相互作用領域のアミノ酸配列を示し、「改変後の相互作用領域のアミノ酸配列」は1ヶ所の相互作用領域のアミノ酸改変により緑色蛍光化したクローンの相互作用領域のアミノ酸配列を示す。表2において、1つの相互作用領域No.における改変後の相互作用領域のアミノ酸配列が複数あるものについては、いずれのアミノ酸配列であってもよいことを示す。 In Table 2, “Interaction region No.” indicates the site of the interaction region with FMN or DHO shown in FIG. 9, and “Directly interacting amino acids (positions)” indicates FMN shown in FIG. 7 and FIG. The amino acid directly interacting with DHO and the position of the amino acid are shown. The “amino acid sequence of the interaction region” shows the amino acid sequence of each interaction region shown in FIG. 9, and the “amino acid sequence of the interaction region after modification” is The amino acid sequence of the interaction region of the clone that was green-fluorescent by amino acid modification of one interaction region is shown. In Table 2, it is shown that any amino acid sequence may be used for a plurality of interaction region amino acid sequences after modification in one interaction region No.
 これらの結果は、当該FMN又はDHOとの12ヶ所の相互作用領域のうち、少なくとも1ヶ所をアミノ酸改変することにより、hDHODHは緑色蛍光を発することを示すものである。また、そのアミノ酸改変は、上記相互作用領域それぞれの3~7個のアミノ酸のうち、1以上のアミノ酸を改変することによって、hDHODHが緑色蛍光を発することも示すものである。 These results indicate that hDHODH emits green fluorescence by amino acid modification in at least one of the 12 interaction regions with the FMN or DHO. The amino acid modification also indicates that hDHODH emits green fluorescence by modifying one or more amino acids out of 3 to 7 amino acids in each of the interaction regions.
 このhDHODHの蛍光は、補因子又は基質が蛍光に深く関わっており、従来既知のGFPファミリーとは蛍光のメカニズムが異なっている。また、hDHODHはGFPファミリーとは相同性を有しない。即ち、本発明者が見いだした蛍光化メカニズムは、GFPファミリーの属する蛍光化メカニズムとは別のカテゴリーに分類されるものである。 This fluorescence of hDHODH is closely related to fluorescence by cofactors or substrates, and the fluorescence mechanism is different from that of the conventionally known GFP family. Moreover, hDHODH has no homology with the GFP family. That is, the fluorescence mechanism found by the present inventors is classified into a category different from the fluorescence mechanism to which the GFP family belongs.
<実施例3B>
 蛍光強度の増強
 アミノ酸改変を行う当該相互作用領域の数を増加させることにより、蛍光強度が増強されるかを確認するために、実施例3Aで得られた緑色蛍光を発したコロニーより得られたミュータントプラスミドを抽出し、実施例3Aと同様の方法により、2回目のサイトディレクティドランダムミュータジェネシスを行った。そして蛍光強度が増強されたクローンからミュータントプラスミドを抽出し、3回目のサイトディレクティドランダムミュータジェネシスを行うというプロセスを繰り返した。
<Example 3B>
In order to confirm whether the fluorescence intensity is enhanced by increasing the number of the interaction regions that perform the amino acid modification that enhances the fluorescence intensity, it was obtained from the colony emitting green fluorescence obtained in Example 3A. A mutant plasmid was extracted, and a second site-directed random mutagenesis was performed in the same manner as in Example 3A. The mutant plasmid was extracted from the clone with enhanced fluorescence intensity, and the process of performing the third site-directed random mutagenesis was repeated.
 その結果、アミノ酸改変を行う相互作用領域の数を重ねるごとに、蛍光強度が増強するコロニーが確認された。その結果の一例を表3に示す。 As a result, colonies with enhanced fluorescence intensity were confirmed each time the number of interaction regions for amino acid modification was increased. An example of the results is shown in Table 3.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表3中の、「改変箇所数」はアミノ酸改変した相互作用領域の箇所数を示し、「相互作用領域No.」は図9に示すFMN又はDHOとの相互作用領域の部位を示し、「組合せ」は改変した相互作用領域No.の組合せを示し、「蛍光強度」は蛍光化DHODHの蛍光の強さを示す。 In Table 3, “Number of modification sites” indicates the number of interaction regions modified with amino acids, “Interaction region No.” indicates the site of the interaction region with FMN or DHO shown in FIG. "" Indicates a combination of modified interaction region numbers, and "fluorescence intensity" indicates the intensity of fluorescence of fluorescent DHODH.
 これらの結果は、アミノ酸改変を行う相互作用領域の数を増加させると、蛍光強度が増強されることを示すものである。 These results indicate that the fluorescence intensity is enhanced when the number of interaction regions for amino acid modification is increased.
 さらに、hDHODHに存在する補酵素FMNと相互作用する6ヶ所のアミノ酸領域、基質DHOと相互作用する4ヶ所のアミノ酸領域、及びFMNとDHOの両方と相互作用する2ヶ所のアミノ酸領域のサイトディレクテドランダムミュータジェネシスを重ねた結果、蛍光強度が非常に強い緑色蛍光化DHODHが得られた。その一例は、表4及び図10に示す、相互作用領域No.2、No.5、No.6、No.8、及びNo.11と、No.2、No.5、No.6、No.8、及びNo.12の2通りの組み合わせのミューテーションである。 In addition, six amino acid regions that interact with the coenzyme FMN present in hDHODH, four amino acid regions that interact with the substrate DHO, and two amino acid regions that interact with both FMN and DHO. As a result of repeated random mutagenesis, green fluorescent DHODH with very strong fluorescence intensity was obtained. Examples of the interaction regions are No. 2, No. 5, No. 6, No. 8, and No. 11, and No. 2, No. 5, No. 6, No. 11 shown in Table 4 and FIG. .8 and No.12 are two combinations of mutations.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表4中の、「改変箇所数」はアミノ酸改変した相互作用領域の箇所数を示し、「相互作用領域No.」は図9に示すFMN又はDHOとの相互作用領域の部位を示し、「組合せ」は改変した相互作用領域No.の組合せを示し、「改変後の相互作用領域のアミノ酸配列」は複数箇所の相互作用領域のアミノ酸改変により緑色蛍光化したクローンの各相互作用領域のアミノ酸配列を示し、「蛍光強度」は蛍光化DHODHの蛍光の強さを示す。表4において、1つの相互作用領域No.における改変後の相互作用領域のアミノ酸配列が複数あるものについては、いずれのアミノ酸配列であってもよいことを示す。 In Table 4, “Number of modification sites” indicates the number of interaction regions modified with amino acids, “Interaction region No.” indicates the site of the interaction region with FMN or DHO shown in FIG. ”Indicates the combination of the modified interaction region numbers, and“ Amino acid sequence of the interaction region after modification ”indicates the amino acid sequence of each interaction region of the clone that has been green-fluorinated by amino acid modification of multiple interaction regions. “Fluorescence intensity” indicates the intensity of fluorescence of fluorescent DHODH. Table 4 shows that any one of the interaction regions after modification in one interaction region No. may have any amino acid sequence.
 この結果は、アミノ酸改変を行う相互作用領域の数を増加させると、蛍光強度が増強されることをさらに裏付けるものである。 This result further confirms that the fluorescence intensity is enhanced when the number of interaction regions for amino acid modification is increased.
 以下、当該相互作用領域のアミノ酸改変によりDHODHが緑色蛍光化することについて、考えられ得る理由を述べるが、これらはあくまで示唆であって、当該理由を拘束するものではない。 Hereinafter, the possible reasons for the green fluorescence of DHODH by amino acid modification of the interaction region will be described, but these are only suggestions and do not constrain the reason.
 上記2通りの組み合わせのうち、相互作用領域No.6及びNo.8はFMNと相互作用するアミノ酸、No.2、No.11、及びNo.12はDHOと相互作用するアミノ酸、No.5は両方と相互作用するアミノ酸を含んでいる。No.5、No.6、及びNo.8は緑色蛍光物質であるFMNと直接相互作用しているので、その変異したアミノ酸が、本来hDHODH内で緑色蛍光を発しないFMNとの相互作用を強固にし、FMNを安定させて、緑色蛍光強度を増強させると考えられる。 Among the above two combinations, interaction regions No. 6 and No. 8 are amino acids that interact with FMN, No. 2, No. 11, and No. 12 are amino acids that interact with DHO, and No. 5 is Contains amino acids that interact with both. Since No.5, No.6, and No.8 interact directly with FMN, which is a green fluorescent substance, the mutated amino acid has strong interaction with FMN that does not naturally emit green fluorescence in hDHODH. It is thought that the FMN is stabilized and the green fluorescence intensity is enhanced.
 No.2、No.3、No.11、及びNo.12は、FMNではなくDHOと直接相互作用しているアミノ酸なので、直接的にFMNに影響を与えて、緑色蛍光化に関与しているとは考えにくい。しかしながら、この12ヶ所の相互作用領域のサイトディレクティドランダムミュータジェネシスを行なうと、すべての個所でhDHODHにより緑色蛍光を発する変異体を得ることができた。 No.2, No.3, No.11, and No.12 are amino acids that interact directly with DHO, not FMN, so they directly affect FMN and participate in green fluorescence. It is hard to think. However, when site-directed random mutagenesis of these 12 interaction regions was performed, mutants emitting green fluorescence with hDHODH could be obtained at all locations.
 当然ながら、これらの変異体のなかには、DHOと相互作用するNo.2、No.3、No.11、及びNo.12も含まれていることから、DHOと相互作用するアミノ酸領域のアミノ酸に変異を入れれば、hDHODHを緑色蛍光化できることは明らかである。 Of course, among these mutants, No.2, No.3, No.11, and No.12 that interact with DHO are also included. It is clear that hDHODH can be green fluorescent if
 FMNは、補酵素として脱水素を行なってDHOをオロト酸へと変換しているので、FMNとDHOは、構造上、最も近傍に存在している。これらのデータからDHOと相互作用するアミノ酸領域のアミノ酸に変異を入れることによって緑色蛍光強度が増強される理由には以下の4つの可能性が考え得る。
1.FMNとDHOが近傍に存在しているため、DHOと相互作用するアミノ酸領域のアミノ酸に変異を入れると、DHOのhDHODH内での位置がわずかにずれるために、FMNとの相互作用が強固になり、FMNが安定化するために、緑色蛍光強度の増強が起こり得る。
2.DHOと相互作用するアミノ酸領域のアミノ酸に変異を入れると、hDHODHの立体構造に全体的な変化が引き起こされ、その結果、FMNの緑色蛍光強度が増強され得る。
3.FMN又はDHOと相互作用する12ヶ所のアミノ酸領域のアミノ酸に変異を入れると、緑色蛍光クローンが出現することはすでに述べた。これらの塩基配列を決定し、変異したアミノ酸配列を同定したところ、直接相互作用するアミノ酸にも変異が入っていたが、ほとんどのクローンで、その近傍の2個のアミノ酸にも変異が入っていた。この結果は、直接相互作用しない近傍のアミノ酸もFMNの緑色蛍光発現に重要であることを意味している。このことから、DHOと直接相互作用するアミノ酸の近傍に存在するアミノ酸もDHOと接しているため、FMNにも影響を与えるほど十分に近傍に存在していることが予想され、変異によってFMNの安定化が起こり、緑色蛍光強度の増強を引き起し得る。
4.細胞内で強制発現させた変異DHODHは、もともと細胞内に存在している基質であるDHOよりはるかに多いため、細胞内ではFMNとは結合しているが、DHOとは結合していない可能性がある。すなわち、FMNとの相互作用領域に変異を入れて蛍光化したhDHODHの、DHOとの相互作用領域にさらに変異を加えると、DHOが結合していないことにより、hDHODHとDHOとの相互作用領域のアミノ酸の変異が、近傍に存在するFMNを安定化させ、緑色蛍光強度の増強を引き起こし得る。
Since FMN dehydrogenates as a coenzyme to convert DHO to orotic acid, FMN and DHO are closest in structure. From these data, the following four possibilities can be considered as the reason why the green fluorescence intensity is enhanced by introducing a mutation in the amino acid in the amino acid region that interacts with DHO.
1. Because FMN and DHO exist in the vicinity, when the amino acid in the amino acid region that interacts with DHO is mutated, the position of DHO in hDHODH is slightly shifted, so the interaction with FMN is strong. Thus, the enhancement of green fluorescence intensity can occur because the FMN is stabilized.
2. Mutation of amino acids in the amino acid region that interacts with DHO causes an overall change in the three-dimensional structure of hDHODH, and as a result, the green fluorescence intensity of FMN can be enhanced.
3. As already mentioned, green fluorescent clones appear when amino acids in 12 amino acid regions that interact with FMN or DHO are mutated. When these nucleotide sequences were determined and the mutated amino acid sequence was identified, the directly interacting amino acids were also mutated, but in most clones, the two nearby amino acids were also mutated. . This result means that neighboring amino acids that do not interact directly are also important for the green fluorescence expression of FMN. From this, it is expected that the amino acids that are in the vicinity of amino acids that directly interact with DHO are also in contact with DHO, so that they are close enough to affect FMN. Can occur and can cause an increase in green fluorescence intensity.
4. Mutant DHODH forced to be expressed in cells is much more than DHO, which is a substrate originally present in cells, so it binds to FMN in cells but not to DHO. there is a possibility. In other words, when hDHODH, which was fluoresced with a mutation in the interaction region with FMN, was further mutated in the interaction region with DHO, DHO was not bound, so the interaction region between hDHODH and DHO Amino acid mutations can stabilize nearby FMN and cause an increase in green fluorescence intensity.
 実施例3の一連の実験により、同定された緑色蛍光化に関与する改変アミノ酸配列の一覧を表5に示す。 Table 5 shows a list of modified amino acid sequences involved in green fluorescence identified by a series of experiments in Example 3.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表5中の、「相互作用領域No.」は図9に示すFMN又はDHOとの相互作用領域の部位を示し、「直接相互作用するアミノ酸(位置)」は図7及び図8に示すFMN又はDHOと直接相互作用するアミノ酸及び該アミノ酸の位置を示し、「相互作用領域のアミノ酸配列」は図9に示す各相互作用領域のアミノ酸配列を示し、「改変後の相互作用領域のアミノ酸配列」は1ヶ所以上の相互作用領域のアミノ酸改変により緑色蛍光化したクローンの相互作用領域のアミノ酸配列を示す。表5において、1つの相互作用領域No.における改変後の相互作用領域のアミノ酸配列が複数あるものについては、いずれのアミノ酸配列であってもよいことを示す。 In Table 5, “Interaction region No.” indicates the site of the interaction region with FMN or DHO shown in FIG. 9, and “Directly interacting amino acids (positions)” indicates FMN shown in FIG. 7 and FIG. The amino acid directly interacting with DHO and the position of the amino acid are shown. The “amino acid sequence of the interaction region” shows the amino acid sequence of each interaction region shown in FIG. 9, and the “amino acid sequence of the interaction region after modification” is The amino acid sequence of the interaction region of a clone that is green-fluorescent by amino acid modification of one or more interaction regions is shown. Table 5 shows that any one of the interaction regions after modification in one interaction region No. may have any amino acid sequence.
 以上の実施例3の結果から、12ヶ所の相互作用領域のうち、少なくとも1ヶ所をアミノ酸改変することにより、hDHODHは緑色蛍光を発することが明らかとなった。また、そのアミノ酸改変は、上記相互作用領域それぞれの3~7個のアミノ酸のうち、1以上のアミノ酸を改変することによって、hDHODHが緑色蛍光を発することが明らかとなった。さらに、アミノ酸改変を行う相互作用領域の数を増加させると、蛍光強度が増強されることが明らかとなった。 From the results of Example 3 above, it was revealed that hDHODH emits green fluorescence by amino acid modification in at least one of the 12 interaction regions. In addition, the amino acid modification revealed that hDHODH emits green fluorescence by modifying one or more amino acids out of 3 to 7 amino acids in each of the interaction regions. Furthermore, it has been clarified that the fluorescence intensity is enhanced when the number of interaction regions for amino acid modification is increased.
<実施例4>
 ヒト以外の生物由来の野生型DHODHの緑色蛍光化
 ヒトだけでなく、他種のDHODHにおいても、当該相互作用領域の改変によって緑色蛍光化することが可能であるか検討した。
<Example 4>
Not only green fluorescence of human wild-type DHODH from organisms other than human, in other types of DHODH, was investigated whether it is possible to green fluorescence by modification of the interaction region.
 その結果、ヒトと同様に、野生型マウスDHODH (mDHODH)は蛍光を発することはなかった。また、mDHODHにおける上記12ヶ所のサイトにおけるアミノ酸改変によって、緑色蛍光化すること、及びアミノ酸改変を行う相互作用領域の数を増加させると蛍光強度が増強することが確認された(表6)。 As a result, like humans, wild-type mouse DHODH® (mDHODH) did not emit fluorescence. In addition, it was confirmed that the fluorescence intensity was enhanced by increasing the number of interaction regions for green amino acid modification and amino acid modification by amino acid modification at the above 12 sites in mDHODH (Table 6).
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表6中の、「改変箇所数」はアミノ酸改変した相互作用領域の箇所数を示し、「相互作用領域No.」は図9に示すmDHODHにおけるFMN又はDHOとの相互作用領域の部位を示し、「改変アミノ酸配列」は緑色蛍光化のために相互作用領域のアミノ酸配列を改変したアミノ酸配列を示し、「組合せ」は改変した相互作用領域No.の組合せを示し、「蛍光強度」は蛍光化DHODHの蛍光の強さを示す。 In Table 6, “number of modified sites” indicates the number of sites of interaction regions modified with amino acids, “interaction region No.” indicates the site of the interaction region with FMN or DHO in mDHODH shown in FIG. “Modified amino acid sequence” indicates an amino acid sequence obtained by modifying the amino acid sequence of the interaction region for green fluorescence, “Combination” indicates a combination of the modified interaction region numbers, and “Fluorescence intensity” indicates fluorescence DHODH The intensity of fluorescence is shown.
 この結果は、ヒトだけでなく他種のDHODHにおいても、当該相互作用領域のアミノ酸改変により緑色蛍光化が可能であることを示すものである。 This result indicates that green fluorescence is possible not only in humans but also in other types of DHODH by amino acid modification of the interaction region.
<実施例5>
 N末端28アミノ酸の有無によるミトコンドリアあるいは細胞質への局在化
 N末側の長さが緑色蛍光強度に与える影響を調べるために、以下の実験を行った。
<Example 5>
In order to investigate the effect of the length of the localized N-terminal side on the mitochondria or cytoplasm with or without the N-terminal 28 amino acids on the green fluorescence intensity, the following experiment was performed.
 全長の蛍光化hDHODH、N末側1~28番目までのミトコンドリアシグナルペプチドを欠失したΔ1-28蛍光化hDHODH、N末側1~41番目までのアミノ酸配列を欠失したΔ1-41蛍光化hDHODH、N末側1~50番目までのアミノ酸配列を欠失したΔ1-50蛍光化hDHODHを作製し(いずれもpGEX4T-1ベクターに挿入)、ポジティブコントロールとしてN末側1~74番目までのアミノ酸配列を欠失したΔ1-74蛍光化hDHODH/pGEX4T-1をそれぞれDH5α株で発現させて緑色蛍光強度を比較したところ、バクテリアDH5αでは、Δ1-28蛍光化hDHODH、Δ1-41蛍光化hDHODH、及びΔ1-50蛍光化hDHODHの3つは、全長蛍光化hDHODH及びΔ1-74蛍光化hDHODHの2つより緑色蛍光強度が強くなっていた(表7)。 Full length fluorescent hDHODH, Δ1-28 fluorescent hDHODH lacking mitochondrial signal peptide from N-terminal side 1 to 28th, Δ1-41 fluorescent hDHODH lacking amino acid sequence from N-terminal side 1-41 , A Δ1-50 fluorescent hDHODH lacking the amino acid sequence from the 1st to the 50th position of the N-terminal (both inserted into the pGEX4T-1 vector) and the amino acid sequence from the 1st to 74th position as the positive control When Δ1-74 fluorescent hDHODH / pGEX4T-1 lacking the DH5α strain was expressed in a DH5α strain and the green fluorescence intensity was compared, Δ1-28 fluorescent hDHODH, Δ1-41 fluorescent hDHODH, and Δ1 Three of the -50 fluorescent hDHODHs had stronger green fluorescence intensity than the two full length fluorescent hDHODH and Δ1-74 fluorescent hDHODH (Table 7).
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表7中の、「N末端の欠失領域」は蛍光化hDHODHのN末端側から削除したアミノ酸領域を示し、「蛍光強度」は蛍光化DHODHの蛍光の強さを示す。使用した蛍光化hDHODHは相互作用領域No.2がCDPに、No.5がVGSNTに、No.6がMVDに、No.8がLFSAにそれぞれアミノ酸を改変したものである。 In Table 7, “N-terminal deletion region” indicates the amino acid region deleted from the N-terminal side of the fluorescent hDHODH, and “Fluorescence intensity” indicates the fluorescence intensity of the fluorescent DHODH. The fluorescent hDHODH used was obtained by modifying the interaction region No. 2 with CDP, No. 5 with VGSNT, No. 6 with MVD, and No. 8 with LFSA.
 この結果は、ミトコンドリアシグナルペプチドは緑色蛍光を阻害し、緑色蛍光強度は1~28を欠失したものから1~50を欠失したクローンまでは緑色蛍光強度が変化しないことを示すものである。 This result indicates that the mitochondrial signal peptide inhibits green fluorescence, and the green fluorescence intensity does not change from the one lacking 1-28 to the clone lacking 1-50.
 次に、ベクターをpCS2+に変えて作製した全長蛍光化hDHODH、Δ1-28蛍光化hDHODH、Δ1-41蛍光化hDHODH、Δ1-50蛍光化hDHODH、及びΔ1-74蛍光化hDHODHを、HEK293細胞で発現させたところ、蛍光強度に関してはDH5α株で発現させた場合と同じ結果が得られた。また、全長を発現させた場合には、緑色蛍光はHEK293細胞に顆粒状に発現した(図11)。顆粒状に発現する理由は、hDHODH蛋白質は元々ミトコンドリア外膜で発現していることから、この顆粒状の緑色蛍光はミトコンドリア外膜に発現するためであると考えられる。 Next, full-length fluorescent hDHODH, Δ1-28 fluorescent hDHODH, Δ1-41 fluorescent hDHODH, Δ1-50 fluorescent hDHODH, and Δ1-74 fluorescent hDHODH produced by changing the vector to pCS2 + are expressed in HEK293 cells. As a result, the same fluorescence intensity was obtained as when expressed in the DH5α strain. In addition, when the full length was expressed, green fluorescence was expressed in a granular form in HEK293 cells (FIG. 11). The reason why it is expressed in a granular form is considered to be that this granular green fluorescence is expressed in the outer mitochondrial membrane because the hDHODH protein is originally expressed in the outer mitochondrial membrane.
 以上の結果は、ミトコンドリアシグナルペプチドを含む緑色蛍光化hDHODH全長は、ミトコンドリアに限局させることが可能であり、ミトコンドリアシグナルペプチドを欠失させると、細胞質に限局させることが可能であることを示すものである。 The above results indicate that the entire length of green fluorescent hDHODH containing the mitochondrial signal peptide can be localized to the mitochondria, and if the mitochondrial signal peptide is deleted, it can be localized to the cytoplasm. is there.
<実施例6>
 蛍光化DHODHを用いた細胞選別及び細胞純化
 緑色蛍光化DHODHを用いて、目的細胞を選別及び純化可能であるか検証するために、緑色蛍光化hDHODH/PCS2+を導入したHEK293細胞とPCS2+のみを導入した細胞との混合細胞を、FACS Calibur (Becton, Dickinson and Company)、励起波長488nm、蛍光波長530±15nm (FL1)を用いて解析した。
<Example 6>
Cell selection and cell purification using fluorescent DHODH In order to verify whether target cells can be selected and purified using green fluorescent DHODH, only HEK293 cells and PCS2 + with green fluorescent hDHODH / PCS2 + were introduced. The mixed cells were analyzed using a FACS Calibur (Becton, Dickinson and Company), excitation wavelength 488 nm, fluorescence wavelength 530 ± 15 nm (FL1).
 その結果、図12に示すとおり、緑色蛍光化遺伝子導入されていない非蛍光ピークと、遺伝子導入によって緑色蛍光を発光している2つの明確なピークが出現した。また、野生型DHODHを発現させたHEK293細胞は蛍光を示すピークは出現しなかった(図12)。 As a result, as shown in FIG. 12, a non-fluorescent peak in which the green fluorescent gene was not introduced and two distinct peaks that emitted green fluorescence by gene introduction appeared. In addition, HEK293 cells in which wild-type DHODH was expressed did not show a fluorescent peak (FIG. 12).
 この結果は、蛍光化hDHODHが発する緑色蛍光は、フローサイトメーターによる細胞の選別及び純化を行うのに十分な蛍光を発するものであることを示すものである。よって、蛍光化hDHODHは、細胞の選別及び純化用途に使用することが可能である。 This result indicates that the green fluorescence emitted by the fluorescent hDHODH emits sufficient fluorescence to perform cell selection and purification using a flow cytometer. Therefore, fluorescent hDHODH can be used for cell sorting and purification applications.
<実施例7>
 蛍光化hDHODHは、標識物質などを結合または融合可能
 蛍光化hDHODHに標識物質を結合または融合しても、その緑色蛍光が喪失しないことを確認するために、以下の実験を行った。
<Example 7>
Fluorescent hDHODH can be bound or fused with a labeling substance, etc. In order to confirm that the green fluorescence is not lost even if the labeling substance is bound or fused with fluorescent hDHODH, the following experiment was conducted.
 蛍光化hDHODHのC末端に標識物質を融合するために、蛍光化hDHODH/pcDNA3.1 myc-His Aを作製し、HEK293細胞でmyc-Hisタグ融合蛍光化hDHODHを発現させた結果、緑色蛍光に影響はなく蛍光を発することが確認された(図13)。 In order to fuse a labeled substance to the C-terminus of fluorescent hDHODH, fluorescent hDHODH / pcDNA3.1 myc-His A was prepared, and myc-His tag fusion fluorescent hDHODH was expressed in HEK293 cells. It was confirmed that there was no effect and fluorescence was emitted (FIG. 13).
 蛍光化hDHODHのN末端に標識物質を融合するために、蛍光化hDHODH/pGEX4T-1を作製し、DH5αでGST融合蛍光化DHODHを発現させた結果、緑色蛍光を発することが確認された(データは示さず)。 In order to fuse a labeled substance to the N-terminus of fluorescent hDHODH, fluorescent hDHODH / pGEX4T-1 was prepared, and GST fusion fluorescent DHODH was expressed with DH5α. As a result, green fluorescence was confirmed (data Is not shown).
 この結果は、蛍光化hDHODHのN末端とC末端のどちらにも標識物質を結合または融合させても蛍光強度に大きな影響は与えないことを示すものである。よって、蛍光化DHODHは、N末端にもC末端にも標識物質を結合または融合させることが可能である。 This result indicates that even if a labeling substance is bound or fused to both the N-terminus and C-terminus of fluorescent hDHODH, the fluorescence intensity is not greatly affected. Therefore, fluorescent DHODH can bind or fuse a labeling substance to both the N-terminus and C-terminus.
 <実施例8>
 以上の通り、DHODHは、FMN又はDHOとの相互作用領域が改変されることによって、安定的に検出可能な蛍光を発するようになることが明らかになった。この原理を利用すれば、他の蛋白質についても、補因子又は基質と相互作用する蛋白質であれば、蛍光化蛋白質を作成することができると考えられる。そこで、以下の実施例では、他の蛋白質の補因子又は基質に対する相互作用領域を改変することによって、安定的に検出可能な蛍光を発するようになるか調べた。
<Example 8>
As described above, it has been clarified that DHODH emits fluorescence that can be stably detected by modifying the interaction region with FMN or DHO. If this principle is used, it is considered that a fluorescent protein can be prepared for other proteins as long as the protein interacts with a cofactor or a substrate. Therefore, in the following examples, it was examined whether or not the fluorescence that can be stably detected would be generated by modifying the interaction region for the cofactor or substrate of another protein.
 BVR-Aに存在するBV又はNAD(P)Hとの相互作用領域の同定
 マウスBVR-A(Biliverdin reductase A)の基質BV(Biliverdin)及び補酵素NAD(P)Hと相互作用する領域を同定するために、先行技術文献(WHITBY, F.G. et al, J Mol Biol, 2002, Vol.319, No.5, p.1199-210、KIKUCHI, A. et al, Nat Struct Biol, 2001, Vol.8, No.3, p.221-5)を検討した。その結果、表8に示すようにBVと直接または間接に相互作用する5個のアミノ酸、NAD(P)Hと直接または間接に相互作用する13個のアミノ酸、BVとNAD(P)Hの両者と直接または間接に相互作用する1個のアミノ酸が存在した。
Identification of interaction region with BV or NAD (P) H present in BVR-A Identification of region interacting with substrate BV (Biliverdin) and coenzyme NAD (P) H of mouse BVR-A (Biliverdin reductase A) In order to do this, prior art documents (WHITBY, FG et al, J Mol Biol, 2002, Vol. 319, No. 5, p. 1199-210, KIKUCHI, A. et al, Nat Struct Biol, 2001, Vol.8, No.3, p.221-5) was examined. As a result, as shown in Table 8, 5 amino acids that interact directly or indirectly with BV, 13 amino acids that interact directly or indirectly with NAD (P) H, both BV and NAD (P) H There was one amino acid that interacted directly or indirectly with.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
さらに、これら直接または間接に相互作用するアミノ酸とその近傍のアミノ酸とが、構造的にBV又はNAD(P)Hと相互作用するのに重要であると予想されることから、図14で示すように、BVと相互作用する3ヶ所のアミノ酸領域、NAD(P)Hと相互作用する6ヶ所のアミノ酸領域、及び1ヶ所のBVとNAD(P)Hの両者と相互作用するアミノ酸領域の計10ヶ所のBV又はNAD(P)Hとの相互作用領域として同定した。また、ヒト(配列番号40)、サル(配列番号41)、ウサギ(配列番号42)、ラット(配列番号43)、マウス(配列番号44)、カエル(配列番号45)の各BVR-Aの相同性を比較したところ、上記9ヶ所の相互作用領域は保存されていることが明らかとなった(図14)。ヒトにおいてNo.1~No.10の位置は、順にアミノ酸領域は、順に22~25位、123~128位、170~173位、224~228位、253~255位、218~220位、15~20位、43~47位、74~78位、96~99位であった。 Furthermore, since these directly or indirectly interacting amino acids and nearby amino acids are predicted to be structurally important to interact with BV or NAD (P) H, as shown in FIG. 10 amino acid regions interacting with BV, 6 amino acid regions interacting with NAD (P) H, and 1 amino acid region interacting with both BV and NAD (P) H. The region was identified as an interaction region with BV or NAD (P) H. In addition, human (SEQ ID NO: 40), monkey (SEQ ID NO: 41), rabbit (SEQ ID NO: 42), rat (SEQ ID NO: 43), mouse (SEQ ID NO: 44), frog (SEQ ID NO: 45) homology of each BVR-A When the sex was compared, it was revealed that the nine interaction regions were conserved (FIG. 14). In humans, the positions of No.1 to No.10 are the amino acid regions in order 22-22, 123-128, 170-173, 224-228, 253-255, 218-220, 15 -20th, 43th-47th, 74th-78th, 96th-99th.
<実施例9>
 BVR-Aのアミノ酸改変による近赤外蛍光化
 実施例8で同定した相互作用領域のアミノ酸に変異を導入することによって、近赤外蛍光を発するかどうか調べた。まず始めに、BVR-AのE96A及びY97Fの変異体遺伝子を作成し、pGEX4T-1ベクターにheme oxygenase1とともにクローニングした(E96A_Y97F/pGEX4T-1)。heme oxygenase1は、バクテリア内に存在するhemeから、BVR-Aの基質BVを合成させるために導入した。E96A_Y97F/pGEX4T-1をバクテリアDH5αに形質転換した。形質転換体の単一クローンをL-Broth + Amp液体培地で定常期まで培養、集菌後、液体培地の1/5倍量の0.5mM Tris-HCl(pH6.8)に再懸濁した。この懸濁物を96ウェルプレート入れ、近赤外蛍光検出器ODYSSEY(LI-COR社製)を用い、励起波長680nm、蛍光波長720nmにて近赤外蛍光の検出を行った。その結果は図15の通り、近赤外蛍光を発することが確認された。
<Example 9>
Near-infrared fluorescence by amino acid modification of BVR-A By introducing mutation into the amino acid in the interaction region identified in Example 8, whether or not near-infrared fluorescence is emitted was examined. First, E96A and Y97F mutant genes of BVR-A were prepared and cloned into pGEX4T-1 vector together with heme oxygenase1 (E96A_Y97F / pGEX4T-1). heme oxygenase1 was introduced to synthesize BVR-A substrate BV from heme present in bacteria. E96A_Y97F / pGEX4T-1 was transformed into bacteria DH5α. Single clones of transformants were cultured in L-Broth + Amp liquid medium until stationary phase, collected, and then resuspended in 0.5 mM Tris-HCl (pH 6.8), 1/5 volume of liquid medium . This suspension was placed in a 96-well plate, and near-infrared fluorescence was detected at an excitation wavelength of 680 nm and a fluorescence wavelength of 720 nm using a near-infrared fluorescence detector ODYSSEY (manufactured by LI-COR). As a result, as shown in FIG. 15, it was confirmed to emit near-infrared fluorescence.
 次に、上記E96A_Y97F/pGEX4T-1を鋳型にとして用い、ランダムミューテーションを行った。ランダムミューテーションは、実施例3に示すDHODHの緑色蛍光化と同様に、タカラ社のプライムスターミュータジェネシスベイサルキットを使用した、サイトディレクティドランダムミュータジェネシスを行った。ランダムミューテーションを行ったPCR産物をDH5αコンピテントセルにトランスフォーメーションし、単一クローンをL-Broth + Amp液体培地で定常期まで培養、集菌後、液体培地の1/5倍量の0.5mM Tris-HCl(pH6.8)に再懸濁した。この懸濁物を96ウェルプレート入れ、近赤外蛍光検出器ODYSSEY(LI-COR社製)を用い、励起波長680nm、蛍光波長720nmにて近赤外蛍光の検出を行った。その結果の一例を、表9及び図16に示す。 Next, random mutation was performed using the E96A_Y97F / pGEX4T-1 as a template. Random mutation was performed by site-directed random mutagenesis using the Takara prime star mutagenesis basal kit in the same manner as the green fluorescence of DHODH shown in Example 3. Random mutation PCR products were transformed into DH5α competent cells, and single clones were cultured in L-Broth + Amp liquid medium until stationary phase. Resuspended in 5 mM Tris-HCl (pH 6.8). This suspension was placed in a 96-well plate, and near-infrared fluorescence was detected at an excitation wavelength of 680 nm and a fluorescence wavelength of 720 nm using a near-infrared fluorescence detector ODYSSEY (manufactured by LI-COR). An example of the result is shown in Table 9 and FIG.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表9中の「改変個所数」はアミノ酸改変した相互作用領域の個所数を示し、「相互作用領域No.」は図14に示すBV又はNAD(P)Hとの相互作用領域の部位を示し、「改変アミノ酸配列」は近赤外蛍光化のために相互作用領域のアミノ酸配列を改変したアミノ酸配列を示し、「組合せ」は改変した相互作用領域No.の組合せを示し、「蛍光強度」は蛍光化BVR-Aの蛍光の強さを示す。 “Number of modified sites” in Table 9 indicates the number of interaction regions modified with amino acids, and “Interaction region No.” indicates the site of the interaction region with BV or NAD (P) H shown in FIG. “Modified amino acid sequence” indicates an amino acid sequence obtained by modifying the amino acid sequence of the interaction region for near-infrared fluorescence, and “combination” indicates the modified interaction region No. The “fluorescence intensity” indicates the fluorescence intensity of the fluorescent BVR-A.
 表9、図15、及び図16に示す結果は、基質BV又は補酵素NAD(P)Hとの相互作用領域のうち、少なくとも1ヶ所をアミノ酸改変することにより、BVR-Aが近赤外蛍光を発することを示すとともに、アミノ酸改変を行なう相互作用領域の数を増加させると近赤外蛍光強度が増強されることを示すものである。また、表10に示すように、その他の相互作用領域の改変によっても、BVR-Aの近赤外蛍光化が可能であることは明らかである。 The results shown in Table 9, FIG. 15, and FIG. 16 show that BVR-A is near-infrared fluorescent by altering at least one of the interaction regions with substrate BV or coenzyme NAD (P) H. This indicates that increasing the number of interaction regions for amino acid modification increases the near-infrared fluorescence intensity. In addition, as shown in Table 10, it is clear that near-infrared fluorescence of BVR-A is possible by modifying other interaction regions.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 以下に、相互作用領域のアミノ酸改変によりBVR-Aが近赤外蛍光化することについて、考えられ得る理由を述べるが、これらはあくまで示唆であって、当該理由を拘束するものではない。
 BVは、それ自体は強い蛍光を発しない。しかし、BVがBVR-Aによって還元されて、ピロール環の二重結合を失い水素が付加されたBR(Bilirubin)は赤色蛍光を発することから、BVの同位置の二重結合の効果を消失させるようにBVR-Aの相互作用領域のアミノ酸に変異を加えることができれば、蛍光化することが可能なはずである。またこれだけでは赤色蛍光化はするが、より長波長の近赤外蛍光化は起こらないので、蛍光強度の増強、長波長化には次の可能性が考えうる。
1、BVと直接作用するアミノ酸又はその近傍のアミノ酸をフェニルアラニン、チロシン、トリプトファン、ヒスチジンのようなπ電子を持つアミノ酸に変えると、そのπ電子の重ね合わせによって蛍光強度の増強、長波長化が起こる。
2、BVと直接作用するアミノ酸又はその近傍のアミノ酸をリジンやアルギニンのような電子供与体に変えると、供与電子による共鳴構造形成による長波長化が起こる。
3、補酵素であるNAD(P)HはBVと接しているため、NAD(P)Hと直接または間接に相互作用するアミノ酸に変異を加えると、BVとNAD(P)Hとの相互作用に変化が生じるため、蛍光強度の増強、長波長化が行なえる。
4、NAD(P)Hとの相互作用領域のアミノ酸に変異を加えると、BVRの立体構造に全体的な変化が引き起こされ、その結果、蛍光強度の増強、長波長化が行なえる。
The possible reasons for the near infrared fluorescence of BVR-A by amino acid modification of the interaction region are described below, but these are only suggestions and do not constrain the reason.
BV does not fluoresce itself. However, when BV is reduced by BVR-A, BR (Bilirubin), which loses the double bond of the pyrrole ring and has hydrogen added, emits red fluorescence, thus eliminating the effect of the double bond at the same position of BV. Thus, if a mutation can be added to the amino acid in the interaction region of BVR-A, it should be possible to fluoresce. In addition, red fluorescence can be achieved with this alone, but near-infrared fluorescence with a longer wavelength does not occur. Therefore, the following possibilities can be considered for enhancing the fluorescence intensity and increasing the wavelength.
1. When amino acids directly acting on BV or nearby amino acids are changed to amino acids with π-electrons such as phenylalanine, tyrosine, tryptophan, histidine, superposition of the π-electrons increases fluorescence intensity and lengthens the wavelength. .
2. When an amino acid directly acting on BV or an amino acid in the vicinity thereof is changed to an electron donor such as lysine or arginine, the wavelength increases due to the formation of a resonance structure by the donor electron.
3. Since NAD (P) H, a coenzyme, is in contact with BV, if a mutation is added to an amino acid that interacts directly or indirectly with NAD (P) H, the interaction between BV and NAD (P) H Therefore, the fluorescence intensity can be increased and the wavelength can be increased.
4. When a mutation is added to the amino acid in the interaction region with NAD (P) H, the overall structure of the BVR is changed, and as a result, the fluorescence intensity can be enhanced and the wavelength can be increased.
 これらの結果は、表11A及びBに例示するような、基質又は補酵素と相互作用する蛋白質においても、基質又は補酵素との相互作用領域のアミノ酸が改変されることによって、蛍光化することが可能であることを示すものである。表11A及びBに蛍光化可能な候補蛋白質を例示するが、これらはあくまで例示であり、これらに限定されるものではない。FMNと相互作用する蛋白質は、FMNが本来緑色蛍光を発することから、今回作製した緑色蛍光化DHODH同様、FMN又は補因子/基質と相互作用するアミノ酸を改変することにより蛍光蛋白質へと変換することが可能であり、このようなFMNと相互作用する蛋白質の候補を表11 A又はBに例示列挙する。
FADもFMNと同様に緑色蛍光を発すること、一般にヘム等のポルフィリン環を有する化合物も蛍光を発すること、ビタミンAが黄緑蛍光を発することから、FADやポルフィリン環を有する化合物、ビタミンAと相互作用する蛋白質も蛍光化可能な候補蛋白質であり、このような候補蛋白質を表11A又はBに例示列挙する。
BVと相互作用する蛋白質は、BV自体はポルフィリン環を有するものの蛍光を発しないが、今回作製した近赤外蛍光化BVR-Aと同様、BV又は補因子/基質と相互作用するアミノ酸を改変することにより蛍光蛋白質へと変換することが可能であり、このようなBVと相互作用する蛋白質の候補を表11 A又はBに例示列挙する。
コバラミンもBVと同様にポルフィリン環を有するものの蛍光を発しないが、コバラミン又は補因子/基質と相互作用するアミノ酸を改変することにより蛍光蛋白質へと変換することが可能であり、このようなコバラミンと相互作用する蛋白質の候補を表11 A又はBに例示列挙する。
These results indicate that even in the proteins that interact with the substrate or coenzyme, as exemplified in Tables 11A and B, the amino acids in the interaction region with the substrate or coenzyme can be changed to cause fluorescence. It indicates that it is possible. Tables 11A and B exemplify candidate proteins that can be fluorescentized, but these are merely examples, and are not limited thereto. Proteins that interact with FMN can be converted into fluorescent proteins by modifying amino acids that interact with FMN or cofactor / substrate, as FMN originally emits green fluorescence. Examples of such proteins that interact with FMN are listed in Table 11A or B as examples.
FAD emits green fluorescence in the same way as FMN. Generally, compounds having a porphyrin ring such as heme also emit fluorescence. Since vitamin A emits yellow-green fluorescence, it interacts with FAD, a compound having a porphyrin ring, and vitamin A. The acting protein is also a candidate protein that can be fluorescentized. Examples of such candidate proteins are listed in Table 11A or B.
A protein that interacts with BV does not fluoresce, although BV itself has a porphyrin ring, but, like the near-infrared fluorescent BVR-A produced this time, alters the amino acid that interacts with BV or a cofactor / substrate. These can be converted into fluorescent proteins, and candidates for such proteins that interact with BV are listed in Table 11A or B as examples.
Although cobalamin has a porphyrin ring like BV, it does not fluoresce, but it can be converted into a fluorescent protein by altering the amino acid that interacts with cobalamin or cofactor / substrate. Examples of interacting protein candidates are listed in Table 11A or B.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 以上、本発明を実施例に基づいて説明した。この実施例はあくまで例示であり、種々の変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。 In the above, this invention was demonstrated based on the Example. It is to be understood by those skilled in the art that this embodiment is merely an example, and that various modifications are possible and that such modifications are within the scope of the present invention.
 本発明の一実施形態によって、ヒトを含む生物自身が元来有する遺伝子の改変により、当該生物由来の蛍光遺伝子、すなわち被検体由来の蛍光遺伝子を提供できる。本発明の一実施形態に係る蛍光遺伝子は、既存の蛍光遺伝子や蛍光化合物等の蛍光物質において使用される既知の用途に用いることができる。特に、本発明の一実施形態に係る被検体由来の蛍光化遺伝子は、他種由来の既存の蛍光遺伝子と比較して、免疫毒性が生じ難く非常に安全性が高いものであり、生体に適用する用途に有用である。例えば、幹細胞等の細胞の純化の際のマーカー遺伝子としての用途が挙げられる。 According to an embodiment of the present invention, a fluorescent gene derived from a living organism, that is, a fluorescent gene derived from a subject can be provided by modifying a gene originally possessed by a living organism including human. The fluorescent gene according to an embodiment of the present invention can be used for known uses used in fluorescent substances such as existing fluorescent genes and fluorescent compounds. In particular, the fluorescent gene derived from the subject according to one embodiment of the present invention is very safe and less likely to cause immunotoxicity compared to existing fluorescent genes derived from other species, and is applied to living bodies. It is useful for the application. For example, it can be used as a marker gene when purifying cells such as stem cells.

Claims (58)

  1.   (a)補因子又は基質に対する相互作用領域内のアミノ酸が改変されている、改変型蛋白質又はその融合蛋白質、
      (b)前記(a)の改変型蛋白質又はその融合蛋白質をコードする核酸、
      (c)前記(a)の改変型蛋白質又はその融合蛋白質と、補因子又は基質との複合体である蛍光化蛋白質複合体、及び
      (d)前記(a)の改変型蛋白質又はその融合蛋白質、前記(b)の核酸、及び前記(c)の蛍光化蛋白質複合体、からなる群から選ばれる少なくとも1つの物質を有する細胞、
     からなる群から選ばれる少なくとも1つの生物学的物質を含む、蛍光検査用材料。
    (a) a modified protein or a fusion protein thereof, wherein the amino acid in the interaction region for the cofactor or substrate is modified,
    (b) a nucleic acid encoding the modified protein of (a) or a fusion protein thereof,
    (c) a fluorescent protein complex which is a complex of the modified protein of (a) or a fusion protein thereof and a cofactor or a substrate, and (d) the modified protein of (a) or a fusion protein thereof, A cell having at least one substance selected from the group consisting of the nucleic acid of (b) and the fluorescent protein complex of (c),
    A fluorescence test material comprising at least one biological substance selected from the group consisting of:
  2.  前記(a)の改変型蛋白質は、動植物由来である、請求項1に記載の蛍光検査用材料。 2. The fluorescent examination material according to claim 1, wherein the modified protein (a) is derived from animals and plants.
  3.  前記(a)の改変型蛋白質は、補因子又は基質に対する相互作用領域を有する蛋白質由来であり、
     前記(a)の改変型蛋白質の前記相互作用領域内のアミノ酸配列が、野生型蛋白質の有する前記相互作用領域のアミノ酸配列とは異なるアミノ酸配列を有するように改変されている、請求項2に記載の蛍光検査用材料。
    The modified protein (a) is derived from a protein having an interaction region for a cofactor or a substrate,
    The amino acid sequence in the interaction region of the modified protein of (a) is modified so as to have an amino acid sequence that is different from the amino acid sequence of the interaction region of a wild-type protein. Fluorescence testing material.
  4.  前記(a)の改変型蛋白質が、補因子又は基質とともに蛍光化蛋白質複合体を形成する蛋白質である、請求項3に記載の蛍光検査用材料。 4. The fluorescence test material according to claim 3, wherein the modified protein (a) is a protein that forms a fluorescent protein complex together with a cofactor or a substrate.
  5.  前記(a)の改変型蛋白質は、非蛍光蛋白質由来である、請求項1~4いずれかに記載の蛍光検査用材料。 5. The fluorescent examination material according to claim 1, wherein the modified protein (a) is derived from a non-fluorescent protein.
  6.  前記(a)の改変が、前記相互作用領域内のアミノ酸の1つ以上の改変である、請求項1~5いずれかに記載の蛍光検査用材料。 6. The fluorescent examination material according to claim 1, wherein the modification (a) is modification of one or more amino acids in the interaction region.
  7.  前記(b)の核酸は、組み換えベクター、又は発現ベクターを含む、請求項1~6いずれかに記載の蛍光検査用材料。 7. The fluorescent examination material according to claim 1, wherein the nucleic acid of (b) includes a recombinant vector or an expression vector.
  8.  前記(a)の改変型蛋白質は、補因子又は基質とともに蛍光化蛋白質複合体を形成する蛋白質断片である、請求項1~7いずれかに記載の蛍光検査用材料。 8. The fluorescence test material according to claim 1, wherein the modified protein (a) is a protein fragment that forms a fluorescent protein complex together with a cofactor or a substrate.
  9.  動植物の生体内用の、請求項1~8いずれかに記載の蛍光検査用材料。 The fluorescent examination material according to any one of claims 1 to 8, which is used in vivo for animals and plants.
  10.  前記(a)~(d)からなる群から選ばれる少なくとも1つの生物学的物質の由来生物と、同じ種の生物の生体内用の、請求項9に記載の蛍光検査用材料。 10. The fluorescent examination material according to claim 9, which is used in the living organism of the same species as the organism derived from at least one biological substance selected from the group consisting of (a) to (d).
  11.  前記(a)~(d)からなる群から選ばれる少なくとも1つの生物学的物質の動態を測定するための、請求項1~10いずれかに記載の蛍光検査用材料。 11. The fluorescent examination material according to claim 1, for measuring the dynamics of at least one biological substance selected from the group consisting of (a) to (d).
  12.  細胞を同定、選別、又は純化するための、請求項1~11いずれかに記載の蛍光検査用材料。 12. The fluorescent examination material according to claim 1, which is used for identifying, sorting, or purifying cells.
  13.  請求項1~12いずれかに記載の蛍光検査用材料を有する、組み換え宿主。 A recombinant host comprising the fluorescent test material according to any one of claims 1 to 12.
  14.  請求項1~12いずれかに記載の蛍光検査用材料を含む、疾病の予防用組成物又は医薬組成物。 A disease prevention composition or a pharmaceutical composition comprising the fluorescent examination material according to any one of claims 1 to 12.
  15.  請求項1~12いずれかに記載の蛍光検査用材料を含む、疾病の診断用組成物。 A composition for diagnosing a disease, comprising the fluorescent examination material according to any one of claims 1 to 12.
  16.  請求項14又は15に記載の組成物を生産するための、請求項1~12いずれかに記載の蛍光検査用材料の使用。 Use of the fluorescent examination material according to any one of claims 1 to 12 for producing the composition according to claim 14 or 15.
  17.  蛍光を検出する方法であって、
      (a)補因子又は基質に対する相互作用領域内のアミノ酸が改変されている、改変型蛋白質又はその融合蛋白質、
      (b)前記(a)の改変型蛋白質又はその融合蛋白質をコードする核酸、
      (c)前記(a)の改変型蛋白質又はその融合蛋白質と、補因子又は基質との複合体である蛍光化蛋白質複合体、及び
      (d)前記(a)の改変型蛋白質又はその融合蛋白質、前記(b)の核酸、及び前記(c)の蛍光化蛋白質複合体、からなる群から選ばれる少なくとも1つの物質を有する細胞、
     からなる群から選ばれる少なくとも1つの生物学的物質又はその周辺に、励起光をあてる工程を含む、方法。
    A method for detecting fluorescence comprising:
    (a) a modified protein or a fusion protein thereof, wherein the amino acid in the interaction region for the cofactor or substrate is modified,
    (b) a nucleic acid encoding the modified protein of (a) or a fusion protein thereof,
    (c) a fluorescent protein complex which is a complex of the modified protein of (a) or a fusion protein thereof and a cofactor or a substrate, and (d) the modified protein of (a) or a fusion protein thereof, A cell having at least one substance selected from the group consisting of the nucleic acid of (b) and the fluorescent protein complex of (c),
    A method comprising the step of applying excitation light to at least one biological substance selected from the group consisting of:
  18.  前記(a)の改変型蛋白質は、動植物由来である、請求項17に記載の方法。 18. The method according to claim 17, wherein the modified protein (a) is derived from animals and plants.
  19.  前記(a)の改変型蛋白質は、補因子又は基質に対する相互作用領域を有する蛋白質由来であり、
     前記(a)の改変型蛋白質の前記相互作用領域内のアミノ酸配列が、野生型蛋白質の有する前記相互作用領域のアミノ酸配列とは異なるアミノ酸配列を有するように改変されている、請求項18に記載の方法。
    The modified protein (a) is derived from a protein having an interaction region for a cofactor or a substrate,
    19. The amino acid sequence in the interaction region of the modified protein of (a) is modified so as to have an amino acid sequence that is different from the amino acid sequence of the interaction region of a wild-type protein. the method of.
  20.  前記(a)の改変型蛋白質が、補因子又は基質とともに蛍光化蛋白質複合体を形成する蛋白質である、請求項19に記載の方法。 20. The method according to claim 19, wherein the modified protein (a) is a protein that forms a fluorescent protein complex together with a cofactor or a substrate.
  21.  前記(a)の改変型蛋白質は、非蛍光蛋白質由来である、請求項17~20いずれかに記載の方法。 21. The method according to claim 17, wherein the modified protein (a) is derived from a non-fluorescent protein.
  22.  前記(a)の改変が、前記相互作用領域内のアミノ酸の1つ以上の改変である、請求項17~21いずれかに記載の方法。 The method according to any one of claims 17 to 21, wherein the modification (a) is modification of one or more amino acids in the interaction region.
  23.  前記(b)の核酸は、組み換えベクター、又は発現ベクターを含む、請求項17~22いずれかに記載の方法。 The method according to any one of claims 17 to 22, wherein the nucleic acid (b) comprises a recombinant vector or an expression vector.
  24.  前記(a)の改変型蛋白質が、補因子又は基質とともに蛍光化蛋白質複合体を形成する蛋白質断片である、請求項17~23いずれかに記載の方法。 The method according to any one of claims 17 to 23, wherein the modified protein (a) is a protein fragment that forms a fluorescent protein complex together with a cofactor or a substrate.
  25.  前記(a)~(c)からなる群から選ばれる少なくとも1つの物質を細胞に導入する工程、をさらに含む、請求項17~24いずれかに記載の方法。 The method according to any one of claims 17 to 24, further comprising the step of introducing at least one substance selected from the group consisting of (a) to (c) into a cell.
  26.  請求項17~25いずれかに記載の方法で検出した蛍光を指標にして、前記(a)~(d)からなる群から選ばれる少なくとも1つの物質の動態を測定する方法。 A method for measuring the kinetics of at least one substance selected from the group consisting of (a) to (d), using as an index the fluorescence detected by the method according to any one of claims 17 to 25.
  27.  請求項17~25いずれかに記載の方法で検出した蛍光を指標にして、細胞を同定、選別、又は純化する方法。 A method for identifying, sorting, or purifying cells using the fluorescence detected by the method according to any one of claims 17 to 25 as an index.
  28.  請求項17~25いずれかに記載の方法で検出した蛍光を指標にして、疾病を予防、又は治療する方法。 A method for preventing or treating a disease using the fluorescence detected by the method according to any one of claims 17 to 25 as an index.
  29.  請求項17~25いずれかに記載の方法で検出した蛍光を指標にして、疾病を診断する方法。 A method for diagnosing a disease using the fluorescence detected by the method according to any one of claims 17 to 25 as an index.
  30.  請求項27の方法を行う工程を含む、同定、選別、又は純化された細胞の生産方法。 A method for producing an identified, sorted or purified cell, comprising a step of performing the method of claim 27.
  31.  請求項30に記載の生産方法を経て得られる、細胞。 A cell obtained through the production method according to claim 30.
  32.  請求項31の細胞を含む、組成物。 32. A composition comprising the cell of claim 31.
  33.  請求項31に記載の細胞と、薬学的に許容可能な担体又は賦形剤とを含む、予防薬又は医薬組成物。 A prophylactic or pharmaceutical composition comprising the cell according to claim 31 and a pharmaceutically acceptable carrier or excipient.
  34.  請求項31に記載の細胞を含む、診断用組成物。 A diagnostic composition comprising the cell according to claim 31.
  35.  請求項31に記載の細胞を用いた、疾病の予防又は治療方法。 A method for preventing or treating a disease using the cell according to claim 31.
  36.  請求項31に記載の細胞を用いた、診断方法。 A diagnostic method using the cell according to claim 31.
  37.  請求項31に記載の細胞を用いた、検査方法。 An inspection method using the cell according to claim 31.
  38.  生体内の蛍光を検出する方法であって、
      (a)補因子又は基質に対する相互作用領域内のアミノ酸が改変されている、改変型蛋白質又はその融合蛋白質、
      (b)前記(a)の改変型蛋白質又はその融合蛋白質をコードする核酸、
      (c)前記(a)の改変型蛋白質又はその融合蛋白質と、補因子又は基質との複合体である蛍光化蛋白質複合体、及び
      (d)前記(a)の改変型蛋白質又はその融合蛋白質、前記(b)の核酸、及び前記(c)の蛍光化蛋白質複合体、からなる群から選ばれる少なくとも1つの物質を有する細胞、
     からなる群から選ばれる少なくとも1つの生物学的物質を、生体内に導入する工程、
     を含む、方法。
    A method for detecting fluorescence in a living body,
    (a) a modified protein or a fusion protein thereof, wherein the amino acid in the interaction region for the cofactor or substrate is modified,
    (b) a nucleic acid encoding the modified protein of (a) or a fusion protein thereof,
    (c) a fluorescent protein complex which is a complex of the modified protein of (a) or a fusion protein thereof and a cofactor or a substrate, and (d) the modified protein of (a) or a fusion protein thereof, A cell having at least one substance selected from the group consisting of the nucleic acid of (b) and the fluorescent protein complex of (c),
    Introducing at least one biological substance selected from the group consisting of:
    Including the method.
  39.  前記(a)の改変型蛋白質は、動植物由来である、請求項38に記載の蛍光検査用材料。 39. The fluorescent examination material according to claim 38, wherein the modified protein (a) is derived from animals and plants.
  40.  前記(a)の改変型蛋白質は、非蛍光蛋白質由来である、請求項38又は39に記載の蛍光検査用材料。 40. The fluorescent examination material according to claim 38 or 39, wherein the modified protein (a) is derived from a non-fluorescent protein.
  41.  生体内に導入された、前記(a)~(d)からなる群から選ばれる少なくとも1つの生物学的物質又はその周辺に、励起光をあてる工程、をさらに含む、請求項39又は40に記載の方法。 41. The method according to claim 39, further comprising a step of applying excitation light to at least one biological substance selected from the group consisting of (a) to (d) or the vicinity thereof introduced into the living body. the method of.
  42.  前記生体が動物であり、且つ前記(a)~(d)からなる群から選ばれる少なくとも1つの生物学的物質の由来生物と、同じ種の生物である、請求項39~41いずれかに記載のに記載の方法。 The organism according to any one of claims 39 to 41, wherein the organism is an animal and is an organism of the same species as the organism derived from at least one biological substance selected from the group consisting of (a) to (d) The method described in 1.
  43.  改変型蛋白質をコードする核酸であって、
     前記改変型蛋白質は、補因子又は基質に対する相互作用領域内のアミノ酸が改変されている、核酸。
    A nucleic acid encoding a modified protein, comprising:
    The modified protein is a nucleic acid in which an amino acid in an interaction region for a cofactor or a substrate is modified.
  44.  前記改変型蛋白質は、非蛍光蛋白質由来である、請求項43に記載の核酸。 44. The nucleic acid according to claim 43, wherein the modified protein is derived from a non-fluorescent protein.
  45.  前記改変型蛋白質は、補因子又は基質の存在下で、補因子又は基質と蛍光化蛋白質複合体を形成可能である、請求項44に記載の核酸。 45. The nucleic acid according to claim 44, wherein the modified protein is capable of forming a fluorescent protein complex with a cofactor or substrate in the presence of the cofactor or substrate.
  46.  前記改変型蛋白質は、補因子又は基質に対する相互作用領域内のアミノ酸配列が、野生型の前記非蛍光蛋白質の有する前記相互作用領域のアミノ酸配列とは異なるアミノ酸配列を有し、且つ、前記改変型蛋白質と、補因子又は基質とが蛍光化蛋白質複合体を形成可能なように改変されている、請求項35に記載の核酸。 The modified protein has an amino acid sequence different from the amino acid sequence of the interaction region of the wild-type non-fluorescent protein in the amino acid sequence in the interaction region for a cofactor or substrate, and the modified protein 36. The nucleic acid according to claim 35, wherein the protein and the cofactor or substrate are modified so that a fluorescent protein complex can be formed.
  47.  前記非蛍光蛋白質は、動植物由来の非蛍光蛋白質である、請求項44~46いずれかに記載の核酸。 47. The nucleic acid according to claim 44, wherein the non-fluorescent protein is a non-fluorescent protein derived from animals or plants.
  48.  前記改変型蛋白質はFMN、DHO、BV、NAD(P)H、FAD、ポルフィリン環を有する化合物、ビタミンA、及びコバラミンからなる群から選ばれる1つ以上の物質に対する相互作用領域を有し、且つその相互作用領域内のアミノ酸が改変されている、請求項43~47いずれかに記載の核酸。 The modified protein has an interaction region for one or more substances selected from the group consisting of FMN, DHO, BV, NAD (P) H, FAD, a compound having a porphyrin ring, vitamin A, and cobalamin, and The nucleic acid according to any of claims 43 to 47, wherein an amino acid in the interaction region is modified.
  49.  前記改変型蛋白質は、DHODH、BVR-A、ジヒドロチミンデヒドロゲナーゼ、メチオニンシンターゼレダクターゼ、一酸化窒素シンターゼ、ホスホパントテノイルシステインデカルボキシラーゼ、FADシンターゼ、ヒドロキシ酸オキシダーゼ、ヨードチロシンデハロゲナーゼ、シトクロムP450レダクターゼ、NADPH依存性ジフラビンオキシドレダクターゼ、NADHデヒドロゲナーゼフラボプロテイン、ピリドキシン-5'-リン酸オキシダーゼ、リボフラビンキナーゼ、サルコシンデヒドロゲナーゼ、(S)-2-ヒドロキシ酸オキシダーゼ、アシルCoAデヒドロゲナーゼ、アシルCoAオキシダーゼ、アポトーシスインデューシングファクター、モノアミンオキシダーゼ、シトクロムb-245重鎖、コハク酸デヒドロゲナーゼ、ジヒドロリポアミドデヒドロゲナーゼ、デュアルオキシダーゼ、小胞体オキシドレダクチン-1-様プロテイン、電子伝達フラボプロテインサブユニットアルファ/ベータ、フラビン含有モノオキシゲナーゼ、グルタリルCoAデヒドロゲナーゼ、グルタチオンジスルフィドレダクターゼ、イソバレリルCoAデヒドロゲナーゼ、リジン特異的ヒストンデメチラーゼ1、プロテイン-メチオニンスルホキシドオキシダーゼMICAL、メチレンテトラヒドロ葉酸レダクターゼ、シトクロム-b5レダクターゼ、NADPHオキシダーゼ5、NAD(P)Hデヒドロゲナーゼ、リボシルジヒドロニコチンアミドデヒドロゲナーゼ、スルフヒドリルオキシダーゼ、スペルミンオキシダーゼ、メタロレダクターゼSTEAP、チオレドキシンレダクターゼ、キサンチンデヒドロゲナーゼ/オキシダーゼ、イソブチリル-CoAデヒドロゲナーゼ、アルキルジヒドロキシアセトンホスフェイトシンターゼ、アルデヒドオキシダーゼ、アドレノドキシンレダクターゼ、FAD-リンクスルフヒドリルオキシダーゼALR、ユビキノン生合成モノオキシゲナーゼCOQ6、クリプトクロム、2-ヒドロキシグルタル酸デヒドロゲナーゼ、二官能性ATP依存性ジヒドロキシアセトンキナーゼ/ FAD-AMPリアーゼ、デルタ(24)-ステロールレダクターゼ、tRNA-ジヒドロウリジンシンターゼ、スクアレンモノオキシゲナーゼ、電子伝達フラボプロテイン-ユビキノンオキシドレダクターゼ、FAD依存性オキシドレダクターゼドメイン含有プロテイン、キヌレニン3-モノオキシゲナーゼ、ジメチルグリシンデヒドロゲナーゼ、ミトコンドリア翻訳最適化ホモログ、D-アミノ酸オキシダーゼ、D-アスパラギン酸オキシダーゼ、L-アミノ酸オキシダーゼ、プレニルシステインオキシダーゼ、プロトポルフィリノーゲンオキシダーゼ、プロリンデヒドロゲナーゼ、オールトランスレチノール13,14-レダクターゼ、レナラーゼ、サルコシンオキシダーゼ、コリンデヒドロゲナーゼ、D-乳酸脱水素酵素、NADH:ユビキノンオキシドレダクターゼ、BVR-B、レチノール結合プロテイン、細胞レチノイン酸結合プロテイン、シトクロムc、シトクロムb、シトクロムb5、ミオグロビン、ヘモグロビン、ヘムオキシゲナーゼ、フェロケラーゼ、コプロポルフィリノーゲン-IIIオキシダーゼ、プロトヘムIXファルネシルトランスフェラーゼ、キュブリン、メチルマロニルCoAムターゼ、核外輸送シグナル相互作用プロテイン、及びメチオニンシンターゼからなる群から選ばれる1つ以上の蛋白質由来である、請求項43~47いずれかに記載の核酸。 The modified protein includes DHODH, BVR-A, dihydrothymine dehydrogenase, methionine synthase reductase, nitric oxide synthase, phosphopantothenoylcysteine decarboxylase, FAD synthase, hydroxy acid oxidase, iodotyrosine dehalogenase, cytochrome P450 reductase, NADPH-dependent diflavin oxidoreductase, NADH dehydrogenase flavoprotein, pyridoxine-5'-phosphate oxidase, riboflavin kinase, sarcosine dehydrogenase, (S) -2-hydroxy acid oxidase, acyl CoA dehydrogenase, acyl CoA oxidase, apoptosis inducing Factor, monoamine oxidase, cytochrome b-245 heavy chain, succinate dehydrogenase, dihydrolipoamide dehydrogenase, dual Sidase, endoplasmic reticulum oxidoreductin-1-like protein, electron transfer flavoprotein subunit alpha / beta, flavin-containing monooxygenase, glutaryl CoA dehydrogenase, glutathione disulfide reductase, isovaleryl CoA dehydrogenase, lysine specific histone demethylase 1, protein- Methionine sulfoxide oxidase MICAL, methylenetetrahydrofolate reductase, cytochrome-b5 reductase, NADPH oxidase 5, NAD (P) H dehydrogenase, ribosyl dihydronicotinamide dehydrogenase, sulfhydryl oxidase, spermine oxidase, metalloreductase STEAP, thioredoxin reductase, xanthine dehydrogenase / oxidase Isobutyryl-CoA dehydrogenase, alkyl dihydride Roxyacetone phosphate synthase, aldehyde oxidase, adrenodoxin reductase, FAD-linksulfhydryl oxidase ALR, ubiquinone biosynthesis monooxygenase COQ6, cryptochrome, 2-hydroxyglutarate dehydrogenase, bifunctional ATP-dependent dihydroxyacetone kinase / キ ナ ー ゼ FAD- AMP lyase, delta (24) -sterol reductase, tRNA-dihydrouridine synthase, squalene monooxygenase, electron transfer flavoprotein-ubiquinone oxidoreductase, FAD-dependent oxidoreductase domain-containing protein, kynurenine 3-monooxygenase, dimethylglycine dehydrogenase, mitochondria Translation optimization homolog, D-amino acid oxidase, D-aspartate oxidase, L-amino acid oxidase, Prenylcysteine oxidase, protoporphyrinogen oxidase, proline dehydrogenase, all-trans retinol 13,14-reductase, lenalase, sarcosine oxidase, choline dehydrogenase, D-lactate dehydrogenase, NADH: ubiquinone oxidoreductase, BVR-B, retinol-binding protein , Cellular retinoic acid binding protein, cytochrome c, cytochrome b, cytochrome b5, myoglobin, hemoglobin, heme oxygenase, ferrochelase, coproporphyrinogen-III oxidase, protoheme IX farnesyltransferase, cuvulin, methylmalonyl CoA mutase, nuclear transport signal reciprocal 48. Any one of claims 43 to 47, which is derived from one or more proteins selected from the group consisting of an action protein and methionine synthase The nucleic acid according to.
  50.  前記非蛍光蛋白質は、野生型又は改変型の非蛍光蛋白質である、請求項43~49いずれかに記載の核酸。 The nucleic acid according to any one of claims 43 to 49, wherein the non-fluorescent protein is a wild-type or modified non-fluorescent protein.
  51.  請求項43~50いずれかに記載の核酸の翻訳産物を含む、改変型蛋白質。 A modified protein comprising the nucleic acid translation product according to any of claims 43 to 50.
  52.  請求項51に記載の改変型蛋白質と、補因子又は基質との蛍光化蛋白質複合体。 A fluorescent protein complex of the modified protein according to claim 51 and a cofactor or substrate.
  53.  非蛍光蛋白質由来の改変型蛋白質を有し、且つ励起光下で安定的に検出可能な蛍光を発している、請求項52に記載の蛍光化蛋白質複合体。 53. The fluorescent protein complex according to claim 52, wherein the fluorescent protein complex has a modified protein derived from a non-fluorescent protein and emits fluorescence that can be stably detected under excitation light.
  54.  請求項51に記載の改変型蛋白質と、前記改変型蛋白質以外の化合物とが融合している、融合蛋白質。 52. A fusion protein, wherein the modified protein according to claim 51 and a compound other than the modified protein are fused.
  55.  請求項43~50いずれかに記載の核酸、請求項51に記載の改変型蛋白質、請求項52又は53に記載の蛍光化蛋白質複合体、及び請求項54に記載の融合蛋白質、からなる群から選ばれる少なくとも1つの生物学的物質を用いて、細胞を同定、選別、又は純化する方法。 A nucleic acid according to any one of claims 43 to 50, a modified protein according to claim 51, a fluorescent protein complex according to claim 52 or 53, and a fusion protein according to claim 54, A method of identifying, sorting or purifying cells using at least one selected biological substance.
  56.  補因子又は基質とともに蛍光化蛋白質複合体を形成する蛋白質、又は蛍光蛋白質、をコードする核酸。 Nucleic acid encoding a protein that forms a fluorescent protein complex with a cofactor or substrate, or a fluorescent protein.
  57.  蛋白質を蛍光化する方法であって、
     蛋白質の、補因子又は基質に対する相互作用領域内のアミノ酸を改変する工程を含む、方法。
    A method of fluorescentizing proteins,
    A method comprising the step of modifying an amino acid in an interaction region of a protein with a cofactor or a substrate.
  58.  補因子又は基質とともに蛍光化蛋白質複合体を形成する、動物由来の改変型蛋白質の生産方法であって、
     蛋白質の、補因子又は基質に対する相互作用領域内のアミノ酸を改変する工程を含む、生産方法。
    A method for producing a modified protein derived from an animal that forms a fluorescent protein complex with a cofactor or substrate,
    A production method comprising a step of modifying an amino acid in an interaction region of a protein with a cofactor or a substrate.
PCT/JP2013/057206 2012-07-31 2013-03-14 Novel fluorescent substance WO2014020933A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-170528 2012-07-31
JP2012170528 2012-07-31

Publications (1)

Publication Number Publication Date
WO2014020933A1 true WO2014020933A1 (en) 2014-02-06

Family

ID=50027630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057206 WO2014020933A1 (en) 2012-07-31 2013-03-14 Novel fluorescent substance

Country Status (1)

Country Link
WO (1) WO2014020933A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105567578A (en) * 2016-01-06 2016-05-11 昆明理工大学 Ganoderic acid high yield engineering strain kmust-SE
CN108192877A (en) * 2017-12-29 2018-06-22 天津市湖滨盘古基因科学发展有限公司 A kind of methionine sulfoxide oxidizing ferment MICAL1 mutains and its application
EP3854803A4 (en) * 2018-09-07 2022-06-29 Keyangle Life Technology Co., Ltd. Polypeptide having immune cell target recognition function and use thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004502410A (en) * 2000-05-19 2004-01-29 ザ ステイト オブ オレゴン, アクティング バイ アンド スルー ザ ステイト ボード オブ ハイヤー エデュケイション オン ビハーフ オブ ザ ユニバーシティー オブ オレゴン Modified fluorescent protein with long wavelength
JP2011121949A (en) * 2009-12-14 2011-06-23 Kyoto Univ Pharmaceutical composition for preventing and treating amyotrophic lateral sclerosis
US20110217279A1 (en) * 2009-11-06 2011-09-08 University Of Rochester Use of human biliverdin reductase and fragments thereof for the treatment of protein kinase c-delta and erk related conditions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004502410A (en) * 2000-05-19 2004-01-29 ザ ステイト オブ オレゴン, アクティング バイ アンド スルー ザ ステイト ボード オブ ハイヤー エデュケイション オン ビハーフ オブ ザ ユニバーシティー オブ オレゴン Modified fluorescent protein with long wavelength
US20110217279A1 (en) * 2009-11-06 2011-09-08 University Of Rochester Use of human biliverdin reductase and fragments thereof for the treatment of protein kinase c-delta and erk related conditions
JP2011121949A (en) * 2009-12-14 2011-06-23 Kyoto Univ Pharmaceutical composition for preventing and treating amyotrophic lateral sclerosis

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JUNE P. DAVIS. ET AL.: "Histidine to alanine mutants of human dihydroorotate dehydrogenase: Identification of a brequinar-resistant mutant enzyme", BIOCHEMICAL PHARMACOLOGY, vol. 54, 1997, pages 459 - 465 *
LIU SHENPING ET AL.: "Structures of human dihydroorotate dehydrogenase in complex with antiproliferative agents", STRUCTURE, vol. 8, 2000, pages 25 - 33 *
SAHA A. ET AL.: "Radiation-induced changes in flavin fluorescence of dihydroorotate dehydrogenase", INT J RADIAT BIOL, vol. 60, no. 5, 1991, pages 769 - 778 *
SUN DANYU ET AL.: "Rat Biliverdin Kangen Koso no Kassei Chushin no Kento", JOURNAL OF JAPANESE BIOCHEMICAL SOCIETY, vol. 72, 2000, pages 868 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105567578A (en) * 2016-01-06 2016-05-11 昆明理工大学 Ganoderic acid high yield engineering strain kmust-SE
CN105567578B (en) * 2016-01-06 2019-02-19 昆明理工大学 A kind of ganoderic acid high-yielding engineering bacterial strain kmust-SE
CN108192877A (en) * 2017-12-29 2018-06-22 天津市湖滨盘古基因科学发展有限公司 A kind of methionine sulfoxide oxidizing ferment MICAL1 mutains and its application
EP3854803A4 (en) * 2018-09-07 2022-06-29 Keyangle Life Technology Co., Ltd. Polypeptide having immune cell target recognition function and use thereof

Similar Documents

Publication Publication Date Title
Mishina et al. Does cellular hydrogen peroxide diffuse or act locally?
EP3158338B1 (en) Optogenetic probes for measuring membrane potential
JP6674687B2 (en) Novel polypeptide exhibiting fluorescent properties and use thereof
Chen et al. Heme utilization in the Caenorhabditis elegans hypodermal cells is facilitated by heme-responsive gene-2
JP7098196B2 (en) Ligand Fluorescence Sensor Protein and Its Use
EP3778650A1 (en) Fluorescent probe for branched chain amino acids and use thereof
JP2013535954A (en) Peptides, structures and uses thereof
WO2014020933A1 (en) Novel fluorescent substance
US9365623B2 (en) Cyanochrome fluorophores
EP3037534B1 (en) Polypeptide exhibiting fluorescent properties, and utilization of same
KR101639859B1 (en) Method for reversible control of mitochondrial activities by light stimulation with spatiotemporal precision
EP2689018B1 (en) Constructs and method for regulating gene expression or for detecting and controlling a dna locus in eukaryotes
US7229762B2 (en) Proteomic screening for redox state dependent protein—protein interactions
WO2020165570A1 (en) Methods relating to disrupting the binding of af9 partner proteins to af9 and/or enl
EP3505625B1 (en) Modified luciferase
JP2005095171A (en) PROBE DETECTING CHANGE OF ENVIRONMENT, PROTEIN, GENE DNA ENCODING THE SAME, mRNA, AND METHOD FOR DETECTING THE CHANGE OF ENVIRONMENT
CN113336856B (en) Tryptophan optical probe and preparation method and application thereof
EP3988562A1 (en) Flavin mononucleotide-binding protein variants having improved fluorescence intensity derived from arabidopsis thaliana
O'Banion Cellular optogenetics for spatiotemporal control of kinase signaling and biological Trojan horses for light-mediated drug release
WO2023049826A1 (en) Genetically encoded voltage indicators and uses thereof
WO2023200745A1 (en) Chemogenetic regulation of peptide function
Antolin Fontes Mitochondrial and cell cycle functions of SLIMP
JP2022069217A (en) Xkr4 polypeptide, xrcc4 polypeptide, and method for identifying gene corresponding to phenotype of interest
CN115960960A (en) Double-promoter eukaryotic expression report plasmid and application thereof
Meah Genetically-encoded photoswitches for controlling apoptosis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13825853

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13825853

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP