WO2014020911A1 - Observation device - Google Patents

Observation device Download PDF

Info

Publication number
WO2014020911A1
WO2014020911A1 PCT/JP2013/004640 JP2013004640W WO2014020911A1 WO 2014020911 A1 WO2014020911 A1 WO 2014020911A1 JP 2013004640 W JP2013004640 W JP 2013004640W WO 2014020911 A1 WO2014020911 A1 WO 2014020911A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser light
imaging
image sensor
observation
period
Prior art date
Application number
PCT/JP2013/004640
Other languages
French (fr)
Japanese (ja)
Inventor
大内 由美子
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2014528003A priority Critical patent/JP5939301B2/en
Publication of WO2014020911A1 publication Critical patent/WO2014020911A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • G02B21/08Condensers
    • G02B21/086Condensers for transillumination only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/74Circuitry for compensating brightness variation in the scene by influencing the scene brightness using illuminating means

Definitions

  • the present invention relates to an observation apparatus that illuminates an observation target region with a laser beam.
  • a structured illumination microscope as one of the microscopes using a laser light source.
  • a plurality of modulated images are acquired while illuminating the sample with interference fringes (structured illumination light) by laser light, and a demodulating operation is performed on these modulated images.
  • a super-resolution image (demodulated image) is generated.
  • the intensity of the interference fringes needs to be uniform at least in the observation target region on the specimen.
  • luminance unevenness in the frame luminance unevenness different from the interference fringe pattern
  • an object of the present invention is to provide a laser observation apparatus capable of reducing not only luminance unevenness in a frame but also luminance unevenness between frames.
  • An example of the observation apparatus of the present invention is an observation apparatus including an illumination optical system that illuminates a sample with a laser beam from a laser light source, and an imaging unit that repeatedly images the sample illuminated by the illumination optical system.
  • the illumination optical system includes a light diffusing element, and further includes a control unit that periodically changes a diffusion pattern of a region irradiated with the laser light in the light diffusing element, and the control unit is configured to capture the image. Settings are made so that changes in the diffusion pattern over time are the same among the plurality of repeated imaging operations.
  • control unit may perform the setting so that a repetition cycle of the imaging is an integral multiple of a change cycle of the diffusion pattern.
  • control unit may adjust a repetition cycle of the imaging according to a change cycle of the diffusion pattern.
  • control unit may adjust a drive signal to the imaging unit in order to adjust a repetition cycle of the imaging.
  • control unit may adjust a change cycle of the diffusion pattern according to a repetition cycle of the imaging.
  • the light diffusing element may be a rotatable light diffusing plate, and the light diffusing plate may be rotationally controlled by the control unit.
  • the light diffusing element may be a light diffusing element having a variable diffusion pattern, and the diffusion pattern may be controlled by the control unit.
  • an example of the observation apparatus of the present invention further includes a multimode optical fiber that relays the laser light between the laser light source and the illumination optical system, and the light diffusing element includes the laser light source and the light. You may arrange
  • the laser light source includes a first laser light source that emits a first laser light, and a second laser light source that emits a second laser light having a wavelength different from that of the first laser light
  • the imaging unit includes: A first image sensor that receives first observation light emitted from the sample in response to the first laser light, and a second image sensor that receives second observation light emitted from the sample in response to the second laser light.
  • the one exposure time of the first image sensor and the one exposure time of the second image sensor may be individually adjustable by the control unit.
  • the illumination optical system may be a structured illumination optical system that illuminates the sample with interference fringes generated by the laser light.
  • FIG. 1 is a configuration diagram of a structured illumination microscope apparatus 1.
  • FIG. 2A is a view of the rotational diffusion plate 109 as viewed from the direction along the optical axis
  • FIG. 2B is a cross-sectional view obtained by cutting the rotational diffusion plate 109 along a plane including the optical axis. is there.
  • 3A is a view of the three-way diffraction grating 131 ′ viewed from the direction along the optical axis
  • FIG. 3B is a view of the light beam selection member 18 viewed from the direction along the optical axis.
  • 4A is a timing signal generated by the sensor 109B
  • FIG. 4B is a diagram showing the exposure timing of the first image sensor 351
  • FIG. 4C is the second image sensor 352.
  • FIG. 5A is a diagram showing a region where the laser spot sweeps on the rotating diffusion plate 109 during the exposure period of the first image sensor 351
  • FIG. 5B shows the laser spot on the rotating diffusion plate 109.
  • FIG. 8 is a diagram showing a region to be swept during the exposure period of the second image sensor 352 (when the frame period Tf is an integral multiple of the rotation period Tr).
  • 6A is a timing signal generated by the sensor 109B
  • FIG. 6B is a diagram showing exposure timing of the first image sensor 351
  • FIG. 6C is a second image sensor 352.
  • FIG. 7A is a diagram showing a region where the laser spot sweeps on the rotary diffusion plate 109 during the exposure period of the first image sensor 351
  • FIG. 7B shows the laser spot on the rotary diffusion plate 109.
  • FIG. 8 is a diagram showing a region to be swept during the exposure period of the second image sensor 352 (when the frame period Tf is a non-integer multiple of the rotation period Tr).
  • FIG. 1 is a configuration diagram of the structured illumination microscope apparatus 1.
  • the structured illumination microscope apparatus 1 includes a laser unit 100, an optical fiber 11, an illumination optical system 10, an imaging optical system 30, a first imaging element 351, a second imaging element 352, A control device 39, an image storage / arithmetic device 40, and an image display device 45 are provided.
  • the illumination optical system 10 is an epi-illumination type and illuminates the specimen 5 via the first dichroic mirror 7 and the objective lens 6 of the imaging optical system 30.
  • the laser unit 100 includes a first laser light source 101, a second laser light source 102, shutters 103 and 104, a mirror 105, a dichroic mirror 106, an acousto-optic variable filter (AOTF) 107, a lens 108, a rotating diffusion plate 109, and a rotating mechanism 109A.
  • Sensor 109B, lenses 110 and 111, and FC connector 112 are provided.
  • Each of the first laser light source 101 and the second laser light source 102 is a coherent light source, and the emission wavelengths thereof are different from each other.
  • the wavelength ⁇ 1 of the first laser light source 101 is longer than the wavelength ⁇ 2 of the second laser light source 102 ( ⁇ 1> ⁇ 2).
  • the dichroic mirror 106 When laser light having a wavelength ⁇ 1 (first laser light) emitted from the first laser light source 101 enters the dichroic mirror 106 through the shutter 103 and the mirror 105, the dichroic mirror 106 is reflected. On the other hand, when the laser beam having the wavelength ⁇ 2 (second laser beam) emitted from the second laser light source 102 enters the beam splitter 106 via the shutter 104, the laser beam passes through the dichroic mirror 106 and is integrated with the first laser beam.
  • first laser light first laser light
  • ⁇ 2 second laser beam
  • Laser light (at least one of the first laser light and the second laser light) emitted from the dichroic mirror 106 is transmitted through the AOTF 107, the lens 108, the rotation diffusion plate 109, the lens 110, the lens 111, and the FC connector 112. Incident at the incident end.
  • the lens 108 has a function of condensing laser light (at least one of the first laser light and the second laser light) on the rotating diffusion plate 109, and the lenses 110 and 110 have the function of focusing on the rotating diffusion plate 109. It functions to project an image of the formed condensing point (laser spot) onto the incident end of the optical fiber 11 at an appropriate magnification.
  • the rotating diffusion plate 109 is a transmission type diffusion plate in which a large number of fine structures (fine lenses, fine particles, etc.) are randomly arranged as shown in FIGS. 2 (A) and 2 (B). Is inserted into the optical path of the laser beam (near the laser spot).
  • the rotation axis 109S of the rotary diffusion plate 109 is parallel to the optical path of the laser beam and is off the condensing point (laser spot) of the laser beam.
  • the rotating diffusion plate 109 rotates around the rotation axis 109S, the diffusion pattern acting on the laser spot changes, and when the rotation is repeated, the diffusion pattern acting on the laser spot changes periodically. Therefore, the rotary diffusion plate 109 has a function of reducing temporal coherency of the laser light toward the optical fiber 11 and suppressing interference fringe intensity unevenness described later.
  • a brushless motor with little vibration is suitable as a motor for the rotation mechanism 109A (FIG. 1) for rotating the rotation diffusion plate 109.
  • the brushless motor can rotate the rotating diffusion plate 109 at a rotational speed of 10,000 rpm to 40000 rpm.
  • the rotational speed of the rotating diffusion plate 109 can be stabilized at about 10,000 rpm. Therefore, in the following, it is assumed that the rotational speed of the rotating diffusion plate 109 is set to 10,000 rpm. By the way, this rotation speed of 10,000 rpm is 6 ms.
  • the rotation period is the time required for the rotation diffusion plate 109 to make one rotation.
  • an impermeable mark 109A is formed at a predetermined position on the outer peripheral side of the rotating diffusion plate 109, and the sensor 109B is arranged in a non-contact state at a predetermined position on the locus of the mark 109A.
  • the sensor 109B is composed of a photo interrupter or the like.
  • the optical fiber 11 is a multimode optical fiber that guides the laser light, and can guide the laser light while maintaining the coherency reduction effect by the rotating diffusion plate 109.
  • the laser light (at least one of the first laser light and the second laser light) incident on the incident end of the optical fiber 11 propagates through the optical fiber 11 to generate a point light source at the output end of the optical fiber 11, The light enters the illumination optical system 10.
  • the illumination optical system 10 includes, in order from the point light source side, a collector lens 12, a polarizing plate 23, a diffractive optical element (diffraction grating) 13, a condenser lens 16, a zero-order light cut mask 14, and a lens 25.
  • the field stop 26, the field lens 27, the excitation filter 28, the first dichroic mirror 7, and the objective lens 6 are disposed.
  • the laser light (at least one of the first laser light and the second laser light) emitted from the point light source is converted into a parallel light beam by the collector lens 12 and enters the diffraction grating 13 via the polarizing plate 23, the diffraction of each order. Branched into luminous flux.
  • the diffracted light beams of these orders are condensed by the condenser lens 16 at different positions on the pupil conjugate plane 6A ′.
  • the pupil conjugate plane 6A ′ is the focal position (rear focal position) of the lens 16, and the lens 27 with respect to the pupil 6A of the objective lens 6 described later (position where ⁇ 1st-order diffracted light is condensed). These positions are conjugate positions via the lens 25 (the concept of these positions is determined by a person skilled in the art in consideration of design necessary matters such as the aberration and vignetting of the objective lens 6 and the lenses 27 and 25).
  • the diffraction grating 13 is a unidirectional diffraction grating having a periodic structure in a direction perpendicular to the optical axis of the illumination optical system 10, and the polarizing plate 23 has the same polarization direction of the laser light as that of the grating lines of the diffraction grating 13. It is a polarizing plate arranged in the direction.
  • the direction of translational movement may be a direction having a component in the same direction as the branching direction even if it does not coincide with the branching direction.
  • both of the diffraction grating 13, the polarizing plate 23, and the translation mechanism 15A can be rotated at a pitch of 120 ° around the optical axis by a rotation mechanism 15B made of an electric motor or the like.
  • a rotation mechanism 15B made of an electric motor or the like.
  • the direction of translation by the translation mechanism 15A is set to a predetermined direction so that the phase of the interference fringes can be shifted regardless of the rotation position of the diffraction grating 13 being 0 °, 120 °, or 240 °. Shall be.
  • the translational movement pitch is set so that the phase shift amount becomes equal regardless of the rotation position of the diffraction grating 13. It is assumed that it is set for each rotation position of the diffraction grating 13.
  • the 0th-order light cut mask 14 is a mask that selectively passes only the necessary diffracted light beam (here, only ⁇ 1st-order diffracted light beam) among the incident diffracted light beams of each order.
  • the 0th-order light cut mask 14 is formed by forming a plurality of openings or transmission parts on a mask substrate, and the positions where the openings or transmission parts are formed on the substrate are ⁇ on the pupil conjugate plane 6A ′. This corresponds to the position where the first-order diffracted light beam enters.
  • the ⁇ 1st-order diffracted light beam that has passed through the 0th-order light cut mask 14 is converted into parallel light by the field lens 27 after forming a plane conjugate with the diffraction grating 13 in the vicinity of the field stop 26 by the lens 25, and further, an excitation filter After passing through 28, the light is reflected by the first dichroic mirror 7 and condensed at different positions on the pupil plane 6A of the objective lens 6.
  • Each of the ⁇ first-order diffracted light beams collected on the pupil plane 6A becomes a parallel light beam when emitted from the tip of the objective lens 6 and overlaps each other on the surface of the sample 5 to form interference fringes.
  • This interference fringe is used as structured illumination light.
  • the periodic structure of the interference fringes and the periodic structure (of the fluorescent region) of the specimen 5 When the specimen 5 is illuminated with such interference fringes, the periodic structure of the interference fringes and the periodic structure (of the fluorescent region) of the specimen 5 generate moire fringes. In the moire fringes, the high-frequency structure of the specimen 5 is generated. Is shifted to a lower frequency side than the original frequency, the light generated according to this structure travels toward the objective lens 6 at an angle smaller than the original angle. Therefore, when the specimen 5 is illuminated by the interference fringes, even the high frequency structural information of the specimen 5 is transmitted by the objective lens 6.
  • the specimen 5 is, for example, a culture solution dropped on a parallel plate-like glass surface, and in the vicinity of the glass interface in the culture solution, there is a fluorescent cell (a cell stained with a fluorescent dye). ) Exists.
  • a fluorescent cell a cell stained with a fluorescent dye.
  • both the first fluorescence region excited by the first laser beam having the wavelength ⁇ 1 and the second fluorescence region excited by the second laser beam having the wavelength ⁇ 2 are expressed.
  • the first fluorescence having the center wavelength ⁇ 1 ' is generated according to the first laser beam
  • the second fluorescence having the center wavelength ⁇ 2' is generated according to the second laser beam.
  • Fluorescence generated in the specimen 5 enters the imaging optical system 30.
  • an objective lens 6, a first dichroic mirror 7, a barrier filter 31, a second objective lens 32, and a second dichroic mirror 35 are arranged in this order from the sample 5 side.
  • the first fluorescence reflected from the second dichroic mirror 35 forms a modulated image of the first fluorescence region on the imaging surface 361 of the first imaging element 351, and the second fluorescence transmitted through the second dichroic mirror 35 is second A modulated image of the second fluorescent region is formed on the imaging surface 362 of the imaging element 352.
  • Each of the first image sensor 351 and the second image sensor 352 is a charge storage type two-dimensional image sensor such as a CCD or a CMOS.
  • the first image sensor 351 captures a modulated image of the first fluorescent region, generates a first modulated image, and sends it to the control device 39.
  • the second image sensor 352 captures a modulated image of the second fluorescent region. As a result, a second modulated image is generated and sent to the control device 39.
  • the control device 39 includes a first laser light source 101, a second laser light source 102, shutters 103 and 104, an AOTF 107, a rotation mechanism 109A, a sensor 109B, a translation mechanism 15A, a rotation mechanism 15B, a first image sensor 351, and a second image sensor.
  • a series of first modulated images and a series of second modulated images are acquired by controlling each of 352, the series of first modulated images and series of second modulated images are provided to the image storage / calculation device 40.
  • control device 39 can control the irradiation intensity of the first laser beam on the specimen 5 by controlling the transmittance of the AOTF 107 with respect to the wavelength ⁇ 1.
  • the brightness of the modulated image in the first fluorescent region can be made appropriate, and the dynamic range of the image sensor 351 can be used effectively.
  • control device 39 can control the irradiation intensity of the second laser beam on the specimen 5 by controlling the transmittance of the AOTF 107 with respect to the wavelength ⁇ 2. Thereby, the brightness of the modulated image in the second fluorescent region can be made appropriate, and the dynamic range of the image sensor 352 can be effectively used.
  • the control device 39 controls the combination of the on / off timing of the first laser light source 101, the opening / closing timing of the shutter 103, and the on / off timing with respect to the wavelength ⁇ 1 of the AOTF 107, whereby the first laser light for the specimen 5 is controlled.
  • the irradiation timing can be controlled.
  • control device 39 controls the combination of the on / off timing of the second laser light source 102, the opening / closing timing of the shutter 104, and the on / off timing with respect to the wavelength ⁇ 2 of the AOTF 107, whereby the second laser light for the specimen 5 is controlled.
  • the irradiation timing can be controlled.
  • control device 39 can control the frame period of the first image sensor 351 by controlling the charge accumulation timing and the charge read timing of the first image sensor 351.
  • control device 39 can control the frame period of the second image sensor 352 by controlling the charge accumulation timing and the charge read timing of the second image sensor 352.
  • the frame period is the time from the start of capturing an image to the start of capturing the next image by the image sensor.
  • the control device 39 also includes a charge accumulation period within the frame period of the first image sensor 351 and an open period within the frame period of a mechanical shutter (not shown) disposed between the first image sensor 351 and the sample 5. By controlling this combination, the exposure time (fluorescence light reception time) within the frame period of the first image sensor 351 can be controlled.
  • the control device 39 also includes a charge accumulation period within the frame period of the second image sensor 352, and an open period within the frame period of the mechanical shutter (not shown) disposed between the second image sensor 352 and the sample 5. By controlling the combination, the exposure time (fluorescence light receiving time) within the frame period of the second image sensor 352 can be controlled.
  • the exposure time of the first imaging element 351 can be controlled by controlling the irradiation period of the first laser light, but the irradiation period of the first laser light and the emission period of the first fluorescence are completely the same. However, it is difficult to maintain control responsiveness. Therefore, in the present embodiment, the exposure time of the first image sensor 351 is controlled by controlling parameters other than the irradiation period of the first laser light as described above. In this case, the irradiation waveform of the first laser light is set to a continuous wave (CW).
  • CW continuous wave
  • the exposure time of the second image sensor 352 can be controlled by controlling the irradiation period of the second laser light, but the irradiation period of the second laser light and the emission period of the second fluorescence are completely the same. However, it is difficult to maintain control responsiveness. Therefore, in the present embodiment, the exposure time of the second image sensor 352 is controlled by controlling parameters other than the irradiation period of the second laser light as described above. In this case, the irradiation waveform of the second laser light is set to a continuous wave (CW).
  • CW continuous wave
  • the exposure time Te 1 within the frame period of the first image sensor 351 and the exposure time Te 2 within the frame period of the second image sensor 352 are individually set, whereas The frame period of the first image sensor 351 and the frame period of the second image sensor 352 are set to a common value Tf.
  • Tf the charge reading time of the first image sensor 351 and the charge reading time of the second image sensor 532 are a common value To (for example, 10 ms).
  • the image storage / arithmetic unit 40 performs a known demodulation calculation on the series of first modulated images given from the control unit 39 to generate a first demodulated image (first super-resolution image), and also the control unit A known demodulation operation is performed on the series of second modulated images given from 39 to generate a second demodulated image (second super-resolution image).
  • a known demodulation operation for example, a method disclosed in US Pat. No. 8,115,806 can be used.
  • the image storage / arithmetic apparatus 40 stores the first super-resolution image and the second super-resolution image in an internal memory (not shown) of the image storage / arithmetic apparatus 40 and sends them to the image display apparatus 45. To do.
  • the control device 39 obtains a series of first modulated images necessary for the demodulation operation and a series of second modulated images necessary for the demodulation operation by the following procedures (1) to (7).
  • the controller 39 sets the rotation position of the diffraction grating 13 (and the polarizing plate 23) to 0 ° (first direction) by driving the rotation mechanism 15B.
  • the control device 39 starts the rotation of the rotating diffusion plate 109 by driving the rotating mechanism 109A.
  • the control device 39 starts the translational movement of the diffraction grating 13 by starting to drive the translation mechanism 15A when the rotational speed of the rotary diffusion plate 109 is stabilized.
  • the control device 39 repeats exposure (imaging) of both the first imaging element 351 and the second imaging element 352 over a plurality of sheets while the diffraction grating 13 is translated.
  • the control device 39 of the present embodiment executes the following procedure (4) during the imaging period for a plurality of images.
  • the control device 39 detects the rotation period Tr of the rotating diffusion plate 109 (the time required for the rotating diffusion plate 109 to make one rotation) by driving the sensor 109B during the imaging period for a plurality of images. As shown in FIGS. 4A, 4B, and 4C, the frame period Tf of the first image sensor 351 and the second image sensor 352 is set to an integral multiple of the rotation period Tr.
  • a slight delay time is generated from the generation of the timing signal to the start of exposure of the first image sensor 352 and the second image sensor 352, but if the delay time does not vary during the imaging period of a plurality of images, the delay There is no problem with the time itself.
  • the laser spot is exposed to the first image sensor 351 on the rotary diffusion plate 109 as shown in FIG. Since a region to be swept during the period (sweep region) can be shared between frames, even if there is unevenness in the transmittance of the rotating diffusion plate 109, unevenness in luminance between frames of a series of first modulated images. It does not occur. This also applies to the second image sensor 352 (that is, the second modulated image) (see FIG. 5B).
  • the control device 39 sets the pitch of the translational movement of the diffraction grating 13 to a pitch corresponding to the above-described frame period Tf during the imaging period of a plurality of frames, thereby adjacent frames of a series of first modulated images.
  • Each of the phase difference of the interference fringes between and the phase difference of the interference fringes between adjacent frames of the series of second modulated images is set to a predetermined value ⁇ less than 2 ⁇ .
  • the control device 39 drives the rotation mechanism 15B to set the rotation position of the diffraction grating 13 (and the polarizing plate 23) to 120 ° (second direction), and in this state, the procedure (2) Execute (5).
  • the controller 39 drives the rotating mechanism 15B to set the rotational position of the diffraction grating 13 (and the polarizing plate 23) to 240 ° (third direction), and in this state, the steps (2) to (2) (5) is executed.
  • the control device 39 causes the interference fringe direction to be in the first direction and the phase of the interference fringe is shifted by ⁇ , and the interference fringe direction.
  • At least three first modulated images whose directions are the second direction and the phase of the interference fringes are shifted by ⁇ , and at least three images whose directions of the interference fringes are the third direction and whose phases are shifted by ⁇ Are obtained in order.
  • These at least nine first modulated images are a series of first modulated images necessary for generating the first super-resolution image.
  • the control device 39 causes the direction of the interference fringes to be the first direction and the phase of the interference fringes to be shifted by ⁇ by at least three second modulated images. And at least three second modulated images in which the interference fringe direction is the second direction and the interference fringe phase is shifted by ⁇ , and the interference fringe direction is the third direction and the interference fringe phase is ⁇ increments. At least three shifted second modulated images are sequentially acquired. These at least nine second modulated images are a series of second modulated images necessary for generating the second super-resolution image.
  • the structured illumination microscope apparatus 1 of the present embodiment includes the illumination optical system (10) that illuminates the sample (specimen 5) with the laser light from the laser light sources (101, 102), and the illumination optical system (10).
  • the illumination optical system (10) includes a light diffusing element (rotating diffusion plate 109), and includes an imaging unit (imaging elements 351 and 352) that repeatedly images the illuminated sample (specimen 5).
  • the device (rotating diffusion plate 109) further includes a control unit (rotating mechanism 109A, control device 39) that periodically changes the diffusion pattern of the region irradiated with the laser light, and the control unit (rotating mechanism 109A, control device). 39) performs the setting so that the change of the diffusion pattern during the imaging time of the imaging is the same among the plurality of repeated imaging.
  • control unit (the rotation mechanism 109A, the control device 39) performs the setting so that the imaging repetition period (Tf) is an integral multiple of the diffusion pattern change period (Tr).
  • the repetition period (Tf) of imaging is the time from the start of imaging of the image (modulated image) of the sample (sample 5) to the start of imaging of the next sample image (modulated image), as in the frame period. That is.
  • the diffusion pattern change period (Tr) is the time required to change a series of diffusion patterns (for one set).
  • the range in which the change of the diffusion pattern is regarded as the same among the plurality of the imaging is as follows. In other words, it is assumed that a plurality of images (image sets) are acquired by repeatedly imaging a sample (specimen 5) having a uniform brightness in the real field of view under common illumination conditions and common imaging conditions. In the image set, an image having the lowest average luminance value of all the pixels constituting the image is set as a reference image.
  • the difference between the luminance value of each pixel of the image other than the reference image and the luminance value of the corresponding pixel of the reference image is ⁇ 7% or less (preferably ⁇ 5% or less)
  • a plurality of the repeated It is assumed that the change in the diffusion pattern was the same during the imaging.
  • the deviation between the position where the light beam passes at the imaging start timing in the light diffusing element (rotating diffusion plate 109) and the rotation reference position of the diffusion pattern is an arc where the light beam sweeps during the imaging time. It may be ⁇ 7% or less (preferably ⁇ 5% or less) with respect to the length.
  • An integer multiple condition is also regarded as an integer multiple within the above range.
  • the structured illumination microscope apparatus 1 of the present embodiment can suppress both luminance unevenness in the frame and luminance unevenness between the frames.
  • the luminance fluctuation amount between frames is 18% of the average luminance between frames.
  • the frame period Tf was set to 12 ms (that is, an integer multiple of the rotation period Tr)
  • the luminance fluctuation amount between frames could be suppressed to 0.6% of the average luminance between frames.
  • the method of the present embodiment is also effective in that the loss of light quantity of laser light can be suppressed.
  • control unit (the rotation mechanism 109A, the control device 39) adjusts the imaging repetition period (Tf) according to the diffusion pattern change period (Tr).
  • control unit (the rotation mechanism 109A, the control device 39) adjusts a drive signal to the image pickup unit (image pickup elements 351 and 352) in order to adjust the repetition period (Tf) of the image pickup.
  • the control unit (the rotation mechanism 109A, the control device 39) can cope with it.
  • the light diffusing element (rotating diffusing plate 109) is a rotatable light diffusing plate.
  • the structured illumination microscope apparatus 1 can easily stabilize the diffusion pattern change period (Tr).
  • the imaging repetition period (Tf) is set to the diffusion pattern change period (Tr). It is easy to maintain an integer multiple of.
  • the structured illumination microscope apparatus 1 of the present embodiment further includes a multimode optical fiber (11) that relays laser light between the laser light source (101, 102) and the illumination optical system (10).
  • the insertion point of the light diffusion element (rotating diffusion plate 109) is between the laser light source (101, 102) and the optical fiber (11).
  • the insertion position of the light diffusing element (rotating diffusion plate 109) that can be a vibration generation source is isolated from the illumination optical system (10), and the light diffusing element It is possible to both maintain the effect of reducing coherency by the (rotating diffusion plate 109).
  • the laser light source (101, 102) includes a first laser light source (101) that emits the first laser light, and the first laser light has a different wavelength.
  • a second laser light source (102) that emits a second laser beam
  • the imaging unit (531, 532) has a first observation beam (sample 5) emitted from the sample (specimen 5) in response to the first laser beam.
  • the structured illumination microscope apparatus 1 of the present embodiment can capture two images having different wavelengths in parallel, and can cope with the difference in brightness between the two images.
  • the structured illumination microscope apparatus 1 of the present embodiment is structured to illuminate the sample (specimen 5) with interference fringes by laser light, and is a series obtained by the imaging unit (imaging elements 351 and 352).
  • the modulated image is used for a demodulation operation for generating a super-resolution image.
  • the accuracy of the demodulation operation can be improved and the super-resolution effect can be enhanced.
  • control apparatus 39 of 1st Embodiment adjusted the repetition period (Tf) of imaging according to the change period (Tr) of the spreading
  • the pattern change period (Tr) may be adjusted.
  • the shortest controller 39 represented by the sum of the longer exposure time and the charge readout time of the exposure time Te 2 of the exposure time Te 1 a second image sensor 352 of the first image sensor 351
  • the rotation period Tr is set according to the frame period Tf so that the frame period Tf matches the frame period Tf of the first image sensor 351 and the second image sensor 352 and the frame period Tf is an integral multiple of the rotation period Tr. . Therefore, for example, when the frame period Tf is 11 ms, the rotation period Tr is set to 5.5 ms or the like. When this rotation cycle is converted into a rotation speed, it is 10909 rpm.
  • adjusting the rotation period Tr according to the frame period Tf makes it possible to make the frame period Tf coincide with the shortest frame period Ts, which is suitable for observing the specimen 5 having a fast movement.
  • a rotatable light diffusion plate is used as the light diffusion element.
  • a light diffusion element having a variable diffusion pattern for example, a liquid crystal element
  • the period of the diffusion pattern may be changed by electrical control.
  • each of the excitation filter 28, the first dichroic mirror 7, and the barrier filter 31 is a dual-band compatible type (a type that acts on two types of laser light or two types of fluorescence).
  • the excitation filter 28 and the barrier filter 31 may not be a dual-band compatible type.
  • the excitation filter 28 can be omitted, and the arrangement place of the barrier filter 31 is not the front stage of the second dichroic mirror 35 but the rear stage (immediately before each of the first image sensor 351 and the second image sensor 352). It does not matter.
  • two modulated images having different wavelengths are imaged in parallel by the two image sensors (the first image sensor 351 and the second image sensor 352), but the wavelengths are different.
  • Two modulated images may be sequentially captured by two image sensors (first image sensor 351 and second image sensor 352).
  • the controller 39 may be a frame period Tf 1 of the first image sensor 351 and a frame period Tf 2 of the second imaging element 352 is set individually.
  • the control device 39 calculates the shortest frame period Ts 1 composed of the sum of the exposure time Te 1 of the first image sensor 351 and the charge readout time To, and is an integral multiple of the rotation period Tr (Tr, 2Tr, 3Tr, 4Tr). , ... of), there is the shortest frame period Ts 1 or more, the value closest to the shortest frame period Ts 1, may be set frame period Tf 1 of the first imaging element 351.
  • the control device 39 calculates the shortest frame period Ts 2 that is the sum of the exposure time Te 2 of the second image sensor 352 and the charge readout time To, and is an integral multiple of the rotation period Tr (Tr, 2Tr, 3Tr, 4Tr). , ... of), there is the shortest frame period Ts 2 or more, the value closest to the shortest frame period Ts 2, may be set frame period Tf 2 of the second imaging element 351.
  • the number of switching of the number of light source wavelengths is 2, but it may be 3 or more. In that case, the number of image sensors may be three or more.
  • the number of imaging elements is plural in order to capture a plurality of modulated images having different wavelengths in parallel, but a plurality of modulated images are sequentially captured.
  • the number of image sensors may be 1.
  • the second dichroic mirror 35 and the image sensor 351 are omitted, and a plurality of units (cubes) including the excitation filter 28, the first dichroic mirror 7, and the barrier filter 31 are prepared, and units arranged in the optical path are prepared.
  • the image sensor 352 may be repeatedly driven while switching between the plurality of units.
  • a rotatable diffraction grating is used to switch the direction of the interference fringes, but a diffraction grating (which can switch the grating direction in accordance with an electrical signal ( A spatial light modulation element) may be used.
  • the one-way diffraction grating 13 that can be rotated at a pitch of 120 °, and the (non-rotated) zero-order light cut mask 14
  • the three-way diffraction grating 131 ′ (FIG. 3A) having a periodic structure in three directions that differ by 120 ° (FIG. 3A) and a light beam selection that can be rotated at a pitch of 120 ° A combination with the member 18 (FIG. 3B) may be used.
  • the diffraction grating 131 ′ has a periodic structure in each of the 0 ° direction V 0 , the 120 ° direction V 120 , and the 240 ° direction V 240 , and the period in each direction.
  • the period (grating pitch) of the structure (grating line) is common.
  • the plurality of grid lines arranged toward the direction V 0 which is a grid line for branching the incident light beam in the direction V 0 which 0 °
  • the plurality of grid lines arranged toward the direction V 120 of the 120 ° a grid line for branching the incident light beam toward the direction V 120 of 120 °
  • the diffraction grating 131 includes a ⁇ 1-order diffracted light beam branching toward the direction V 0, and ⁇ 1-order diffracted light beam branching toward the direction V 120, and ⁇ 1-order diffracted light beam branching toward the direction V 240, simultaneously generates can do.
  • the opening pattern of the light beam selecting member 18 includes the first opening 19 and the first opening portion 19 that allow only one pair of ⁇ 1st order diffracted light beams among these 3 pairs of ⁇ 1st order diffracted light beams. 2 openings 20.
  • the light beam selecting member 18 is rotated at a pitch of 120 ° around the optical axis in conjunction with the polarizing plate 23 described above, and the direction of the interference fringe is set between three directions V 0 , V 120 , and V 240 .
  • the length of each of the first opening 19 and the second opening 20 around the optical axis is set such that a linearly polarized ⁇ first-order diffracted light beam can pass through. That is, the shape of each of the first opening 19 and the second opening 20 is a shape close to a partial ring zone.
  • a plurality of notches 21 are formed on the outer peripheral portion of the light beam selecting member 18 as shown in FIG.
  • a sensor 22 for detecting the presence or absence of these notches 21 is arranged at a position directly opposite the locus of the notches 21 in the vicinity of.
  • the sensor 22 is composed of a photo interrupter or the like. When the notch 21 is directly facing the sensor 22, the value of the detection signal of the sensor 22 is large, and when the notch 21 is not true to the sensor 22, the sensor 22 The value of the detection signal 22 becomes small. Therefore, the detection signal of the sensor 22 can be used as a signal (angle signal) indicating the rotational position of the light beam selection member 18.
  • the relationship between the translation amount and the phase shift amount differs between the three directions V 0, V 120, V 240 , such that the amount of phase shift is equal regardless of the direction of the interference fringes, translation Is set for each direction of the interference fringes.
  • a diffraction grating capable of translational movement is used to shift the phase of the interference fringes, but diffraction that can shift the grating position in accordance with the electrical signal.
  • a grating (spatial light modulation element) or the like may be used.
  • the number of the first modulated images in which the direction of the interference fringes is the same and only the phase of the interference fringes is different is described as “at least three”. However, for example, three or five Is set. In that case, the number of the series of first modulated images used for generating the first super-resolution image is nine or fifteen.
  • the number of the second modulated images in the series in which the direction of the interference fringe is the same and only the phase of the interference fringe is different is described as “at least three”. However, for example, three or five And so on. In that case, the number of the series of second modulated images used for generating the second super-resolution image is nine or fifteen.
  • the structured illumination microscope apparatus 1 is used as a two-dimensional structured illumination microscope apparatus.
  • the structured illumination microscope apparatus 1 is replaced with a three-dimensional structured illumination microscope apparatus (3D-SIM). : 3D-Structured (Illumination (Microscopy)).
  • the 0th-order light cut mask 14 or the light beam selection member 18 is further provided with an opening for passing the 0th-order diffracted light beam.
  • the opening is formed in the vicinity of the optical axis, and the shape of the opening is, for example, a circle. According to the 0th-order light cut mask 14 or the light beam selection member 18 as described above, not only the ⁇ 1st-order diffracted light beam but also the 0th-order diffracted light beam can contribute to the interference fringes.
  • the interference fringes generated by the interference of the three diffracted light beams are spatially modulated not only in the surface direction of the sample 5 but also in the depth direction of the sample 5. Therefore, according to this interference fringe, a three-dimensional super-resolution image of the sample 5 can be generated.
  • the structured illumination microscope apparatus 1 when used as a two-dimensional structured illumination microscope apparatus, a combination of a + 1st order diffracted light beam and a ⁇ 1st order diffracted light beam is used as a diffracted light beam that contributes to interference fringes.
  • a combination of a + 1st order diffracted light beam and a ⁇ 1st order diffracted light beam is used as a diffracted light beam that contributes to interference fringes.
  • other combinations may be used.
  • the structured illumination microscope apparatus 1 when used as a three-dimensional structured illumination microscope apparatus, the + 1st order diffracted light beam, the ⁇ 1st order diffracted light beam, and the 0th order are used as the diffracted light beams contributing to the interference fringes.
  • the combination with the folding light beam is used, it goes without saying that other combinations may be used.
  • a biological specimen has been described as an example of an object to be observed (sample).
  • the present invention is not limited to this, and the present invention is also applicable when an industrial product part is used as an object to be observed (sample). The invention is applicable.
  • DESCRIPTION OF SYMBOLS 1 ... Structured illumination microscope apparatus, 100 ... Laser unit, 109 ... Rotating diffuser plate, 109A ... Rotating mechanism, 109B ... Sensor, 11 ... Optical fiber, 10 ... Illumination optical system, 30 ... Imaging optical system, 35 ... Imaging element , 39 ... control device, 40 ... image storage / arithmetic device, 45 ... image display device, 12 ... collector lens, 23 ... polarizing plate, 13 ... one-way diffraction grating, 14 ... zero-order light cut mask, 131 '... three directions Diffraction grating, 18 ... Light flux selection member, 16 ... Condensing lens, 25 ... Lens, 26 ... Field stop, 27 ... Field lens, 28 ... Excitation filter, 7 ... Dichroic mirror, 6 ... Objective lens, 5 ... Sample

Abstract

In order to reduce both the luminance irregularity inside a frame and the luminance irregularity between frames, an example of an observation device according to the present invention comprises an illumination optical system for illuminating a sample with laser light from a laser light source, and an imaging unit for repeatedly imaging the sample illuminated by the illumination optical system. The illumination optical system includes a light diffusion element and a control unit for periodically changing the diffusion pattern in the region of the light diffusion element onto which the laser light is irradiated. The control unit performs a setting so that the changes in the diffusion pattern during imaging operation match with each other among a plurality of the repeated imaging operations.

Description

観察装置Observation device
 本発明は、観察対象領域をレーザ光で照明する観察装置に関する。 The present invention relates to an observation apparatus that illuminates an observation target region with a laser beam.
 レーザ光源を使用した顕微鏡の1つに構造化照明顕微鏡がある。或る構造化照明顕微鏡では、レーザ光による干渉縞(構造化照明光)で標本を照明しながら複数枚の変調画像を取得し、それらの変調画像に対して復調演算を施すことにより、標本の超解像画像(復調画像)を生成している。この構造化照明顕微鏡では、復調演算の精度を保つために、干渉縞の強度は標本上の少なくとも観察対象領域内で均一化されている必要がある。 There is a structured illumination microscope as one of the microscopes using a laser light source. In some structured illumination microscopes, a plurality of modulated images are acquired while illuminating the sample with interference fringes (structured illumination light) by laser light, and a demodulating operation is performed on these modulated images. A super-resolution image (demodulated image) is generated. In this structured illumination microscope, in order to maintain the accuracy of the demodulation operation, the intensity of the interference fringes needs to be uniform at least in the observation target region on the specimen.
 しかし、レーザ光の可干渉性に起因し、干渉縞にはノイズ干渉縞やスペックルノイズの重畳される可能性がある。これが原因で変調画像内に干渉縞パターンとは異なる輝度(強度)ムラ(以下、単に「フレーム内の輝度ムラ」と称す。)が発生すると、復調演算の精度に影響を及ぼす。この輝度ムラに対する公知の解決策としては、レーザ光の光路へ回転拡散板を挿入し、レーザ光の時間的コヒーレンシーを下げる方法が挙げられる(特許文献1等を参照。)。 However, due to the coherence of the laser beam, there is a possibility that noise interference fringes and speckle noise are superimposed on the interference fringes. If luminance (intensity) unevenness different from the interference fringe pattern (hereinafter simply referred to as “luminance unevenness in the frame”) occurs in the modulated image due to this, the accuracy of demodulation operation is affected. As a known solution to this luminance unevenness, there is a method of inserting a rotating diffuser plate in the optical path of the laser light to lower the temporal coherency of the laser light (see Patent Document 1 etc.).
米国特許発明第6925225号明細書US Pat. No. 6,925,225
 ところで、観察対象が生体標本である場合などには、撮像期間を短縮する必要があるため、変調画像1枚当たりの露光時間の短縮を図ることがある。しかし、1枚当たりの露光時間が短いと、フレーム間の輝度ムラが目立ち、それが原因で復調演算に失敗する虞のあることが判明した。 By the way, when the observation target is a biological specimen, it is necessary to shorten the imaging period, so that the exposure time per modulated image may be shortened. However, it has been found that when the exposure time per sheet is short, luminance unevenness between frames is conspicuous and the demodulation operation may fail due to this.
 そこで本発明は、フレーム内の輝度ムラだけでなくフレーム間の輝度ムラをも軽減することのできるレーザ観察装置を提供することを目的する。 Therefore, an object of the present invention is to provide a laser observation apparatus capable of reducing not only luminance unevenness in a frame but also luminance unevenness between frames.
 本発明の観察装置の一例は、レーザ光源からのレーザ光で試料を照明する照明光学系と、前記照明光学系により照明された前記試料を繰り返し撮像する撮像部とを備えた観察装置であって、前記照明光学系は、光拡散素子を含み、前記光拡散素子において前記レーザ光が照射される領域の拡散パターンを周期的に変化させる制御部を更に備え、前記制御部は、前記撮像の撮像時間中における前記拡散パターンの変化が、繰り返される複数の前記撮像の間で互いに同じになるように設定を行う。 An example of the observation apparatus of the present invention is an observation apparatus including an illumination optical system that illuminates a sample with a laser beam from a laser light source, and an imaging unit that repeatedly images the sample illuminated by the illumination optical system. The illumination optical system includes a light diffusing element, and further includes a control unit that periodically changes a diffusion pattern of a region irradiated with the laser light in the light diffusing element, and the control unit is configured to capture the image. Settings are made so that changes in the diffusion pattern over time are the same among the plurality of repeated imaging operations.
 なお、前記制御部は、前記撮像の繰り返し周期が前記拡散パターンの変化周期の整数倍になるように前記設定を行ってもよい。 Note that the control unit may perform the setting so that a repetition cycle of the imaging is an integral multiple of a change cycle of the diffusion pattern.
 また、前記制御部は、前記拡散パターンの変化周期に応じて前記撮像の繰り返し周期を調整してもよい。 In addition, the control unit may adjust a repetition cycle of the imaging according to a change cycle of the diffusion pattern.
 また、前記制御部は、前記撮像の繰り返し周期を調整するために前記撮像部への駆動信号を調整してもよい。 Further, the control unit may adjust a drive signal to the imaging unit in order to adjust a repetition cycle of the imaging.
 また、前記制御部は、前記撮像の繰り返し周期に応じて前記拡散パターンの変化周期を調整してもよい。 In addition, the control unit may adjust a change cycle of the diffusion pattern according to a repetition cycle of the imaging.
 また、前記光拡散素子は、回転可能な光拡散板であり、前記光拡散板は前記制御部により回転制御されてもよい。 The light diffusing element may be a rotatable light diffusing plate, and the light diffusing plate may be rotationally controlled by the control unit.
 また、前記光拡散素子は、拡散パターンが可変の光拡散素子であり、前記拡散パターンは前記制御部により制御されてもよい。 The light diffusing element may be a light diffusing element having a variable diffusion pattern, and the diffusion pattern may be controlled by the control unit.
 また、本発明の観察装置の一例は、前記レーザ光源と前記照明光学系との間で前記レーザ光を中継するマルチモードの光ファイバを更に備え、前記光拡散素子は、前記レーザ光源と前記光ファイバとの間に配置されてもよい。 In addition, an example of the observation apparatus of the present invention further includes a multimode optical fiber that relays the laser light between the laser light source and the illumination optical system, and the light diffusing element includes the laser light source and the light. You may arrange | position between fibers.
 また、前記レーザ光源は、第1レーザ光を出射する第1レーザ光源と、前記第1レーザ光とは波長の異なる第2レーザ光を出射する第2レーザ光源とを含み、前記撮像部は、前記第1レーザ光に応じて前記試料から射出した第1観察光を受光する第1撮像素子と、前記第2レーザ光に応じて前記試料から射出した第2観察光を受光する第2撮像素子とを含み、前記第1撮像素子の1回の露光時間と、前記第2撮像素子の1回の露光時間とは、前記制御部により個別に調整可能であってもよい。 The laser light source includes a first laser light source that emits a first laser light, and a second laser light source that emits a second laser light having a wavelength different from that of the first laser light, and the imaging unit includes: A first image sensor that receives first observation light emitted from the sample in response to the first laser light, and a second image sensor that receives second observation light emitted from the sample in response to the second laser light. The one exposure time of the first image sensor and the one exposure time of the second image sensor may be individually adjustable by the control unit.
 また、前記照明光学系は、前記レーザ光により生成された干渉縞で前記試料を照明する構造化照明光学系であってもよい。 Further, the illumination optical system may be a structured illumination optical system that illuminates the sample with interference fringes generated by the laser light.
構造化照明顕微鏡装置1の構成図である。1 is a configuration diagram of a structured illumination microscope apparatus 1. FIG. 図2(A)は、回転拡散板109を光軸に沿った方向から見た図であり、図2(B)は、光軸を含む平面で回転拡散板109を切断してできる断面図である。2A is a view of the rotational diffusion plate 109 as viewed from the direction along the optical axis, and FIG. 2B is a cross-sectional view obtained by cutting the rotational diffusion plate 109 along a plane including the optical axis. is there. 図3(A)は、3方向回折格子131’を光軸に沿った方向から見た図であり、図3(B)は、光束選択部材18を光軸に沿った方向から見た図である。3A is a view of the three-way diffraction grating 131 ′ viewed from the direction along the optical axis, and FIG. 3B is a view of the light beam selection member 18 viewed from the direction along the optical axis. is there. 図4(A)は、センサ109Bの生成するタイミング信号であり、図4(B)は、第1撮像素子351の露光タイミングを示す図であり、図4(C)は、第2撮像素子352の露光タイミングを示す図である(フレーム周期Tfが回転周期Trの整数倍のとき。)。4A is a timing signal generated by the sensor 109B, FIG. 4B is a diagram showing the exposure timing of the first image sensor 351, and FIG. 4C is the second image sensor 352. Is a diagram showing the exposure timing (when the frame period Tf is an integral multiple of the rotation period Tr). 図5(A)は、回転拡散板109上でレーザスポットが第1撮像素子351の露光期間中に掃引する領域を示す図であり、図5(B)は、回転拡散板109上でレーザスポットが第2撮像素子352の露光期間中に掃引する領域を示す図である(フレーム周期Tfが回転周期Trの整数倍のとき。)。FIG. 5A is a diagram showing a region where the laser spot sweeps on the rotating diffusion plate 109 during the exposure period of the first image sensor 351, and FIG. 5B shows the laser spot on the rotating diffusion plate 109. FIG. 8 is a diagram showing a region to be swept during the exposure period of the second image sensor 352 (when the frame period Tf is an integral multiple of the rotation period Tr). 図6(A)は、センサ109Bの生成するタイミング信号であり、図6(B)は、第1撮像素子351の露光タイミングを示す図であり、図6(C)は、第2撮像素子352の露光タイミングを示す図である(フレーム周期Tfが回転周期Trの非整数倍のとき)。6A is a timing signal generated by the sensor 109B, FIG. 6B is a diagram showing exposure timing of the first image sensor 351, and FIG. 6C is a second image sensor 352. Is a diagram showing the exposure timing (when the frame period Tf is a non-integer multiple of the rotation period Tr). 図7(A)は、回転拡散板109上でレーザスポットが第1撮像素子351の露光期間中に掃引する領域を示す図であり、図7(B)は、回転拡散板109上でレーザスポットが第2撮像素子352の露光期間中に掃引する領域を示す図である(フレーム周期Tfが回転周期Trの非整数倍のとき。)。FIG. 7A is a diagram showing a region where the laser spot sweeps on the rotary diffusion plate 109 during the exposure period of the first image sensor 351, and FIG. 7B shows the laser spot on the rotary diffusion plate 109. FIG. 8 is a diagram showing a region to be swept during the exposure period of the second image sensor 352 (when the frame period Tf is a non-integer multiple of the rotation period Tr).
 [第1実施形態]
 以下、本発明の第1実施形態として構造化照明顕微鏡装置を説明する。
[First Embodiment]
Hereinafter, a structured illumination microscope apparatus will be described as a first embodiment of the present invention.
 先ず、構造化照明顕微鏡装置1の構成を説明する。 First, the structure of the structured illumination microscope apparatus 1 will be described.
 図1は、構造化照明顕微鏡装置1の構成図である。図1に示すとおり構造化照明顕微鏡装置1には、レーザユニット100と、光ファイバ11と、照明光学系10と、結像光学系30と、第1撮像素子351、第2撮像素子352と、制御装置39と、画像記憶・演算装置40と、画像表示装置45とが備えられる。なお、照明光学系10は落射型であり、結像光学系30の第1ダイクロイックミラー7及び対物レンズ6を介して標本5の照明を行う。 FIG. 1 is a configuration diagram of the structured illumination microscope apparatus 1. As shown in FIG. 1, the structured illumination microscope apparatus 1 includes a laser unit 100, an optical fiber 11, an illumination optical system 10, an imaging optical system 30, a first imaging element 351, a second imaging element 352, A control device 39, an image storage / arithmetic device 40, and an image display device 45 are provided. The illumination optical system 10 is an epi-illumination type and illuminates the specimen 5 via the first dichroic mirror 7 and the objective lens 6 of the imaging optical system 30.
 レーザユニット100には、第1レーザ光源101、第2レーザ光源102、シャッタ103、104、ミラー105、ダイクロイックミラー106、音響光学可変フィルタ(AOTF)107、レンズ108、回転拡散板109、回転機構109A、センサ109B、レンズ110、111、FCコネクタ112が備えられる。 The laser unit 100 includes a first laser light source 101, a second laser light source 102, shutters 103 and 104, a mirror 105, a dichroic mirror 106, an acousto-optic variable filter (AOTF) 107, a lens 108, a rotating diffusion plate 109, and a rotating mechanism 109A. , Sensor 109B, lenses 110 and 111, and FC connector 112 are provided.
 第1レーザ光源101及び第2レーザ光源102の各々は可干渉光源であって、互いの出射波長は異なる。ここでは、第1レーザ光源101の波長λ1は、第2レーザ光源102の波長λ2よりも長いと仮定する(λ1>λ2)。 Each of the first laser light source 101 and the second laser light source 102 is a coherent light source, and the emission wavelengths thereof are different from each other. Here, it is assumed that the wavelength λ1 of the first laser light source 101 is longer than the wavelength λ2 of the second laser light source 102 (λ1> λ2).
 第1レーザ光源101から射出した波長λ1のレーザ光(第1レーザ光)は、シャッタ103、ミラー105を介してダイクロイックミラー106へ入射すると、そのダイクロイックミラー106を反射する。一方、第2レーザ光源102から射出した波長λ2のレーザ光(第2レーザ光)は、シャッタ104を介してビームスプリッタ106へ入射すると、そのダイクロイックミラー106を透過し、第1レーザ光と統合される。 When laser light having a wavelength λ 1 (first laser light) emitted from the first laser light source 101 enters the dichroic mirror 106 through the shutter 103 and the mirror 105, the dichroic mirror 106 is reflected. On the other hand, when the laser beam having the wavelength λ2 (second laser beam) emitted from the second laser light source 102 enters the beam splitter 106 via the shutter 104, the laser beam passes through the dichroic mirror 106 and is integrated with the first laser beam. The
 ダイクロイックミラー106から射出したレーザ光(第1レーザ光及び第2レーザ光の少なくとも一方)は、AOTF107、レンズ108、回転拡散板109、レンズ110、レンズ111、FCコネクタ112を介して光ファイバ11の入射端に入射する。 Laser light (at least one of the first laser light and the second laser light) emitted from the dichroic mirror 106 is transmitted through the AOTF 107, the lens 108, the rotation diffusion plate 109, the lens 110, the lens 111, and the FC connector 112. Incident at the incident end.
 このうちレンズ108には、レーザ光(第1レーザ光及び第2レーザ光の少なくとも一方)を回転拡散板109上に集光させる機能があり、レンズ110、110には、回転拡散板109上に形成された集光点(レーザスポット)の像を、光ファイバ11の入射端に適当な倍率で投影する働きがある。 Among these, the lens 108 has a function of condensing laser light (at least one of the first laser light and the second laser light) on the rotating diffusion plate 109, and the lenses 110 and 110 have the function of focusing on the rotating diffusion plate 109. It functions to project an image of the formed condensing point (laser spot) onto the incident end of the optical fiber 11 at an appropriate magnification.
 ここで、回転拡散板109は、図2(A)、(B)に示すとおり多数の微細な構造物(微細レンズや微細粒子など)をランダムに配列した透過型の拡散板であり、その基板の一部をレーザ光の光路(レーザスポットの近傍)へ挿入させている。この回転拡散板109の回転軸109Sは、レーザ光の光路に対して平行であって、レーザ光の集光点(レーザスポット)から外れている。この回転軸109Sの周りに回転拡散板109が回転すると、レーザスポットに作用する拡散パターンが変化し、その回転が繰り返されると、レーザスポットに作用する拡散パターンが周期変化する。よって、この回転拡散板109には、光ファイバ11に向かうレーザ光の時間的コヒーレンシーを低減し、後述する干渉縞の強度ムラを抑えるという働きがある。 Here, the rotating diffusion plate 109 is a transmission type diffusion plate in which a large number of fine structures (fine lenses, fine particles, etc.) are randomly arranged as shown in FIGS. 2 (A) and 2 (B). Is inserted into the optical path of the laser beam (near the laser spot). The rotation axis 109S of the rotary diffusion plate 109 is parallel to the optical path of the laser beam and is off the condensing point (laser spot) of the laser beam. When the rotating diffusion plate 109 rotates around the rotation axis 109S, the diffusion pattern acting on the laser spot changes, and when the rotation is repeated, the diffusion pattern acting on the laser spot changes periodically. Therefore, the rotary diffusion plate 109 has a function of reducing temporal coherency of the laser light toward the optical fiber 11 and suppressing interference fringe intensity unevenness described later.
 なお、回転拡散板109を回転させる回転機構109A(図1)のモータとしては、振動の少ないブラシレスモータなどが適している。ブラシレスモータは、10000rpm~40000rpmの回転数で回転拡散板109を回転させることが可能であり、現状では、10000rpm程度であれば回転拡散板109の回転速度を安定させることができる。よって、以下では回転拡散板109の回転数は10000rpmに設定されたと仮定する。因みにこの回転数10000rpmを回転周期に換算すると、6msである。
ここで、回転周期とは、回転拡散板109が1回転するのに要する時間のことである。
As a motor for the rotation mechanism 109A (FIG. 1) for rotating the rotation diffusion plate 109, a brushless motor with little vibration is suitable. The brushless motor can rotate the rotating diffusion plate 109 at a rotational speed of 10,000 rpm to 40000 rpm. At present, the rotational speed of the rotating diffusion plate 109 can be stabilized at about 10,000 rpm. Therefore, in the following, it is assumed that the rotational speed of the rotating diffusion plate 109 is set to 10,000 rpm. By the way, this rotation speed of 10,000 rpm is 6 ms.
Here, the rotation period is the time required for the rotation diffusion plate 109 to make one rotation.
 また、回転拡散板109の外周側の所定位置には、非透過性のマーク109Aが形成されており、マーク109Aの軌跡上の所定箇所には、センサ109Bが非接触の状態で配置される。このセンサ109Bはフォトインタラプタなどで構成されており、センサ109Bにマーク109Aが正対しているときには、センサ109Bの検出信号の値は小さくなり、センサ109Bにマーク190Aが正対していないときには、センサ109Bの検出信号の値は大きくなる。よって、センサ109Bの検出信号は、回転拡散板109の回転タイミングを示す信号(タイミング信号)として使用可能である。 Further, an impermeable mark 109A is formed at a predetermined position on the outer peripheral side of the rotating diffusion plate 109, and the sensor 109B is arranged in a non-contact state at a predetermined position on the locus of the mark 109A. The sensor 109B is composed of a photo interrupter or the like. When the mark 109A is facing the sensor 109B, the value of the detection signal of the sensor 109B is small, and when the mark 190A is not facing the sensor 109B, the sensor 109B is detected. The value of the detection signal becomes larger. Therefore, the detection signal of the sensor 109B can be used as a signal (timing signal) indicating the rotation timing of the rotation diffusion plate 109.
 図1に戻り、光ファイバ11は、レーザ光を導光するマルチモード光ファイバであり、回転拡散板109によるコヒーレンシー低減効果を維持したままレーザ光を導光することができる。この光ファイバ11の入射端に入射したレーザ光(第1レーザ光及び第2レーザ光の少なくとも一方)は、光ファイバ11の内部を伝搬して光ファイバ11の出射端に点光源を生成し、照明光学系10へ入射する。 Referring back to FIG. 1, the optical fiber 11 is a multimode optical fiber that guides the laser light, and can guide the laser light while maintaining the coherency reduction effect by the rotating diffusion plate 109. The laser light (at least one of the first laser light and the second laser light) incident on the incident end of the optical fiber 11 propagates through the optical fiber 11 to generate a point light source at the output end of the optical fiber 11, The light enters the illumination optical system 10.
 照明光学系10には、点光源の側から順に、コレクタレンズ12と、偏光板23と、回折光学素子(回折格子)13と、集光レンズ16と、0次光カットマスク14と、レンズ25と、視野絞り26と、フィールドレンズ27と、励起フィルタ28と、第1ダイクロイックミラー7と、対物レンズ6とが配置される。 The illumination optical system 10 includes, in order from the point light source side, a collector lens 12, a polarizing plate 23, a diffractive optical element (diffraction grating) 13, a condenser lens 16, a zero-order light cut mask 14, and a lens 25. The field stop 26, the field lens 27, the excitation filter 28, the first dichroic mirror 7, and the objective lens 6 are disposed.
 点光源から射出したレーザ光(第1レーザ光及び第2レーザ光の少なくとも一方)は、コレクタレンズ12によって平行光束に変換され、偏光板23を介して回折格子13へ入射すると、各次数の回折光束に分岐される。これら各次数の回折光束は、集光レンズ16によって瞳共役面6A’の互いに異なる位置に集光される。 When the laser light (at least one of the first laser light and the second laser light) emitted from the point light source is converted into a parallel light beam by the collector lens 12 and enters the diffraction grating 13 via the polarizing plate 23, the diffraction of each order. Branched into luminous flux. The diffracted light beams of these orders are condensed by the condenser lens 16 at different positions on the pupil conjugate plane 6A ′.
 ここで、瞳共役面6A’とは、レンズ16の焦点位置(後ろ側焦点位置)であって、後述する対物レンズ6の瞳6A(±1次回折光が集光する位置)に対してレンズ27、レンズ25を介して共役な位置のことである(これらの位置の概念には、当業者が対物レンズ6、レンズ27、25の収差、ビネッティング等の設計上必要な事項を考慮して決定した位置も含まれる。)。
また、回折格子13は、照明光学系10の光軸と垂直な方向にかけて周期構造を有した1方向回折格子であり、偏光板23は、レーザ光の偏光方向を回折格子13の格子線と同じ方向に整える偏光板である。
Here, the pupil conjugate plane 6A ′ is the focal position (rear focal position) of the lens 16, and the lens 27 with respect to the pupil 6A of the objective lens 6 described later (position where ± 1st-order diffracted light is condensed). These positions are conjugate positions via the lens 25 (the concept of these positions is determined by a person skilled in the art in consideration of design necessary matters such as the aberration and vignetting of the objective lens 6 and the lenses 27 and 25). The position was also included.)
The diffraction grating 13 is a unidirectional diffraction grating having a periodic structure in a direction perpendicular to the optical axis of the illumination optical system 10, and the polarizing plate 23 has the same polarization direction of the laser light as that of the grating lines of the diffraction grating 13. It is a polarizing plate arranged in the direction.
 このうち回折格子13は、ピエゾモータ等からなる並進機構15Aによって回折光束の分岐方向(=瞳共役面6A’における±1次回折光束の集光点の配列方向)にかけて並進移動が可能である。なお、並進移動の方向は、分岐方向に一致していなくとも、分岐方向と同方向の成分を有した方向であればよい。この方向に回折格子13が並進移動すると、後述する干渉縞の位相がシフトする。 Among these, the diffraction grating 13 can be translated in the branching direction of the diffracted light beam (= the arrangement direction of the condensing points of ± first-order diffracted light beams on the pupil conjugate plane 6A ′) by a translation mechanism 15A made of a piezo motor or the like. Note that the direction of translational movement may be a direction having a component in the same direction as the branching direction even if it does not coincide with the branching direction. When the diffraction grating 13 is translated in this direction, the phase of interference fringes described later shifts.
 また、回折格子13及び偏光板23及び並進機構15Aの双方は、電気モータ等からななる回動機構15Bによって光軸の周りに120°のピッチで回動可能である。回折格子13が回動すると、後述する干渉縞の方向が0°、120°、240°の間で切り替わり、回折格子13と共に偏光板23が回動すれば、干渉縞の方向と偏光方向との関係は維持される。 Further, both of the diffraction grating 13, the polarizing plate 23, and the translation mechanism 15A can be rotated at a pitch of 120 ° around the optical axis by a rotation mechanism 15B made of an electric motor or the like. When the diffraction grating 13 is rotated, the direction of interference fringes described later is switched between 0 °, 120 °, and 240 °. When the polarizing plate 23 is rotated together with the diffraction grating 13, the direction of the interference fringes and the polarization direction are changed. The relationship is maintained.
 なお、並進機構15Aによる並進移動の方向は、回折格子13の回動位置が0°、120°、240°の何れであった場合にも干渉縞の位相をシフトできるような所定方向に設定されるものとする。但し、この場合、並進移動量と位相シフト量との関係は回折格子13の回動位置によって異なるので、回折格子13の回動位置に依らず位相シフト量が等しくなるよう、並進移動のピッチは回折格子13の回動位置毎に設定されるものとする。 The direction of translation by the translation mechanism 15A is set to a predetermined direction so that the phase of the interference fringes can be shifted regardless of the rotation position of the diffraction grating 13 being 0 °, 120 °, or 240 °. Shall be. However, in this case, since the relationship between the translational movement amount and the phase shift amount differs depending on the rotation position of the diffraction grating 13, the translational movement pitch is set so that the phase shift amount becomes equal regardless of the rotation position of the diffraction grating 13. It is assumed that it is set for each rotation position of the diffraction grating 13.
 回折格子13から射出し、瞳共役面6A’に向かった各次数の回折光束は、瞳共役面6A’の近傍に配置された0次光カットマスク14へ入射する。0次光カットマスク14は、入射した各次数の回折光束のうち必要な回折光束のみ(ここでは±1次回折光束のみとする。)を選択的に通過させるマスクである。なお、0次光カットマスク14は、マスク用の基板に複数の開口部又は透過部を形成したものであり、基板において開口部又は透過部の形成される位置は、瞳共役面6A’において±1次回折光束が入射する位置に対応する。 The diffracted light beams of the respective orders emitted from the diffraction grating 13 and directed toward the pupil conjugate plane 6A ′ enter the 0th-order light cut mask 14 disposed in the vicinity of the pupil conjugate plane 6A ′. The 0th-order light cut mask 14 is a mask that selectively passes only the necessary diffracted light beam (here, only ± 1st-order diffracted light beam) among the incident diffracted light beams of each order. The 0th-order light cut mask 14 is formed by forming a plurality of openings or transmission parts on a mask substrate, and the positions where the openings or transmission parts are formed on the substrate are ± on the pupil conjugate plane 6A ′. This corresponds to the position where the first-order diffracted light beam enters.
 この0次光カットマスク14を通過した±1次回折光束は、レンズ25によって視野絞り26付近で回折格子13と共役な面を形成した後に、フィールドレンズ27により平行光に変換され、さらに励起フィルタ28を経てから第1ダイクロイックミラー7で反射し、対物レンズ6の瞳面6A上の互いに異なる位置に集光される。 The ± 1st-order diffracted light beam that has passed through the 0th-order light cut mask 14 is converted into parallel light by the field lens 27 after forming a plane conjugate with the diffraction grating 13 in the vicinity of the field stop 26 by the lens 25, and further, an excitation filter After passing through 28, the light is reflected by the first dichroic mirror 7 and condensed at different positions on the pupil plane 6A of the objective lens 6.
 瞳面6A上に集光した±1次回折光束の各々は、対物レンズ6の先端から射出される際には平行光束となり、標本5の表面で互いに重なり合い、干渉縞を形成する。この干渉縞が、構造化照明光として使用される。 Each of the ± first-order diffracted light beams collected on the pupil plane 6A becomes a parallel light beam when emitted from the tip of the objective lens 6 and overlaps each other on the surface of the sample 5 to form interference fringes. This interference fringe is used as structured illumination light.
 このような干渉縞により標本5を照明すると、干渉縞の周期構造と標本5の(蛍光領域の)周期構造とがモアレ縞を生成するが、このモアレ縞においては、標本5の高周波数の構造が元の周波数より低周波数側にシフトしているため、この構造に応じて発生した光は、元の角度よりも小さい角度で対物レンズ6へ向かうことになる。よって、干渉縞により標本5を照明すると、標本5の有する高周波数の構造情報までもが対物レンズ6によって伝達される。 When the specimen 5 is illuminated with such interference fringes, the periodic structure of the interference fringes and the periodic structure (of the fluorescent region) of the specimen 5 generate moire fringes. In the moire fringes, the high-frequency structure of the specimen 5 is generated. Is shifted to a lower frequency side than the original frequency, the light generated according to this structure travels toward the objective lens 6 at an angle smaller than the original angle. Therefore, when the specimen 5 is illuminated by the interference fringes, even the high frequency structural information of the specimen 5 is transmitted by the objective lens 6.
 ここで、標本5は、例えば、平行平板状のガラス表面に滴下された培養液であって、その培養液におけるガラス界面の近傍には、蛍光性を有した細胞(蛍光色素で染色された細胞)が存在している。この細胞には、波長λ1の第1レーザ光によって励起される第1蛍光領域と、波長λ2の第2レーザ光によって励起される第2蛍光領域との双方が発現している。第1蛍光領域では、第1レーザ光に応じて中心波長λ1’の第1蛍光が発生し、第2蛍光領域では、第2レーザ光に応じて中心波長λ2’の第2蛍光が発生する。 Here, the specimen 5 is, for example, a culture solution dropped on a parallel plate-like glass surface, and in the vicinity of the glass interface in the culture solution, there is a fluorescent cell (a cell stained with a fluorescent dye). ) Exists. In this cell, both the first fluorescence region excited by the first laser beam having the wavelength λ1 and the second fluorescence region excited by the second laser beam having the wavelength λ2 are expressed. In the first fluorescence region, the first fluorescence having the center wavelength λ1 'is generated according to the first laser beam, and in the second fluorescence region, the second fluorescence having the center wavelength λ2' is generated according to the second laser beam.
 標本5で発生した蛍光(第1蛍光及び第2蛍光の少なくとも一方)は、結像光学系30へ入射する。結像光学系30には、標本5の側から順に、対物レンズ6と、第1ダイクロイックミラー7と、バリアフィルタ31と、第2対物レンズ32と、第2ダイクロイックミラー35とが配置される。 Fluorescence generated in the specimen 5 (at least one of the first fluorescence and the second fluorescence) enters the imaging optical system 30. In the imaging optical system 30, an objective lens 6, a first dichroic mirror 7, a barrier filter 31, a second objective lens 32, and a second dichroic mirror 35 are arranged in this order from the sample 5 side.
 標本5で発生した蛍光(第1蛍光及び第2蛍光の少なくとも一方)は、対物レンズ6に入射すると、対物レンズ6で平行光に変換された後、第1ダイクロイックミラー7、バリアフィルタ31、第2対物レンズ32を介して第2ダイクロイックミラー35へ入射する。第2ダイクロイックミラー35へ入射した第1蛍光は、第2ダイクロイックミラー35を反射し、第2ダイクロイックミラー35へ入射した第2蛍光は、第2ダイクロイックミラー35を透過する。 When fluorescence (at least one of the first fluorescence and the second fluorescence) generated in the sample 5 is incident on the objective lens 6, it is converted into parallel light by the objective lens 6, and then the first dichroic mirror 7, the barrier filter 31, The light enters the second dichroic mirror 35 through the two objective lens 32. The first fluorescence incident on the second dichroic mirror 35 reflects the second dichroic mirror 35, and the second fluorescence incident on the second dichroic mirror 35 passes through the second dichroic mirror 35.
 第2ダイクロイックミラー35を反射した第1蛍光は、第1撮像素子351の撮像面361上に第1蛍光領域の変調像を形成し、第2ダイクロイックミラー35を透過した第2蛍光は、第2撮像素子352の撮像面362上に第2蛍光領域の変調像を形成する。 The first fluorescence reflected from the second dichroic mirror 35 forms a modulated image of the first fluorescence region on the imaging surface 361 of the first imaging element 351, and the second fluorescence transmitted through the second dichroic mirror 35 is second A modulated image of the second fluorescent region is formed on the imaging surface 362 of the imaging element 352.
 第1撮像素子351、第2撮像素子352の各々は、CCD、CMOS等の電荷蓄積型の二次元撮像素子である。第1撮像素子351は、第1蛍光領域の変調像を撮像することで第1変調画像を生成して制御装置39へ送出し、第2撮像素子352は、第2蛍光領域の変調像を撮像することで第2変調画像を生成して制御装置39へ送出する。 Each of the first image sensor 351 and the second image sensor 352 is a charge storage type two-dimensional image sensor such as a CCD or a CMOS. The first image sensor 351 captures a modulated image of the first fluorescent region, generates a first modulated image, and sends it to the control device 39. The second image sensor 352 captures a modulated image of the second fluorescent region. As a result, a second modulated image is generated and sent to the control device 39.
 制御装置39は、第1レーザ光源101、第2レーザ光源102、シャッタ103、104、AOTF107、回転機構109A、センサ109B、並進機構15A、回動機構15B、第1撮像素子351、第2撮像素子352の各々を制御することで一連の第1変調画像及び一連の第2変調画像を取得すると、それら一連の第1変調画像及び一連の第2変調画像を画像記憶・演算装置40へ与える。 The control device 39 includes a first laser light source 101, a second laser light source 102, shutters 103 and 104, an AOTF 107, a rotation mechanism 109A, a sensor 109B, a translation mechanism 15A, a rotation mechanism 15B, a first image sensor 351, and a second image sensor. When a series of first modulated images and a series of second modulated images are acquired by controlling each of 352, the series of first modulated images and series of second modulated images are provided to the image storage / calculation device 40.
 ここで、制御装置39は、AOTF107の波長λ1に対する透過率を制御することにより、標本5に対する第1レーザ光の照射強度を制御することができる。これによって、第1蛍光領域の変調像の明るさを適正にし、撮像素子351のダイナミックレンジを有効利用することができる。 Here, the control device 39 can control the irradiation intensity of the first laser beam on the specimen 5 by controlling the transmittance of the AOTF 107 with respect to the wavelength λ1. As a result, the brightness of the modulated image in the first fluorescent region can be made appropriate, and the dynamic range of the image sensor 351 can be used effectively.
 また、制御装置39は、AOTF107の波長λ2に対する透過率を制御することにより、標本5に対する第2レーザ光の照射強度を制御することができる。これによって、第2蛍光領域の変調像の明るさを適正にし、撮像素子352のダイナミックレンジを有効利用することができる。 Further, the control device 39 can control the irradiation intensity of the second laser beam on the specimen 5 by controlling the transmittance of the AOTF 107 with respect to the wavelength λ2. Thereby, the brightness of the modulated image in the second fluorescent region can be made appropriate, and the dynamic range of the image sensor 352 can be effectively used.
 また、制御装置39は、第1レーザ光源101のオン/オフタイミング、シャッタ103の開/閉タイミング、AOTF107の波長λ1に対するオン/オフタイミングの組み合わせを制御することにより、標本5に対する第1レーザ光の照射タイミングを制御することができる。 The control device 39 controls the combination of the on / off timing of the first laser light source 101, the opening / closing timing of the shutter 103, and the on / off timing with respect to the wavelength λ1 of the AOTF 107, whereby the first laser light for the specimen 5 is controlled. The irradiation timing can be controlled.
 また、制御装置39は、第2レーザ光源102のオン/オフタイミング、シャッタ104の開/閉タイミング、AOTF107の波長λ2に対するオン/オフタイミングの組み合せを制御することにより、標本5に対する第2レーザ光の照射タイミングを制御することができる。 Further, the control device 39 controls the combination of the on / off timing of the second laser light source 102, the opening / closing timing of the shutter 104, and the on / off timing with respect to the wavelength λ2 of the AOTF 107, whereby the second laser light for the specimen 5 is controlled. The irradiation timing can be controlled.
 また、制御装置39は、第1撮像素子351の電荷蓄積タイミング及び電荷読出タイミングを制御することにより、第1撮像素子351のフレーム周期を制御することができる。 Further, the control device 39 can control the frame period of the first image sensor 351 by controlling the charge accumulation timing and the charge read timing of the first image sensor 351.
 また、制御装置39は、第2撮像素子352の電荷蓄積タイミング及び電荷読出タイミングを制御することにより、第2撮像素子352のフレーム周期を制御することができる。
ここで、フレーム周期とは、撮像素子による、ある画像の撮像開始から次の画像の撮像開始までの時間のことである。
Further, the control device 39 can control the frame period of the second image sensor 352 by controlling the charge accumulation timing and the charge read timing of the second image sensor 352.
Here, the frame period is the time from the start of capturing an image to the start of capturing the next image by the image sensor.
 また、制御装置39は、第1撮像素子351のフレーム周期内の電荷蓄積期間と、第1撮像素子351と標本5との間に配置されたメカシャッタ(不図示)のフレーム周期内の開放期間との組み合わせを制御することにより、第1撮像素子351のフレーム周期内の露光時間(蛍光の受光時間)を制御することができる。 The control device 39 also includes a charge accumulation period within the frame period of the first image sensor 351 and an open period within the frame period of a mechanical shutter (not shown) disposed between the first image sensor 351 and the sample 5. By controlling this combination, the exposure time (fluorescence light reception time) within the frame period of the first image sensor 351 can be controlled.
 また、制御装置39は、第2撮像素子352のフレーム周期内の電荷蓄積期間と、第2撮像素子352と標本5との間に配置されたメカシャッタ(不図示)のフレーム周期内の開放期間と組み合わせを制御することにより、第2撮像素子352のフレーム周期内の露光時間(蛍光の受光時間)を制御することができる。 The control device 39 also includes a charge accumulation period within the frame period of the second image sensor 352, and an open period within the frame period of the mechanical shutter (not shown) disposed between the second image sensor 352 and the sample 5. By controlling the combination, the exposure time (fluorescence light receiving time) within the frame period of the second image sensor 352 can be controlled.
 なお、第1撮像素子351の露光時間の制御は、第1レーザ光の照射期間の制御により行うことも可能だが、第1レーザ光の照射期間と第1蛍光の発光期間とは完全に一致するとは限らず、制御の応答性を維持するのが難しい。よって、本実施形態では、第1撮像素子351の露光時間の制御は、上記したとおり、第1レーザ光の照射期間以外のパラメータの制御により行われるものとする。この場合、第1レーザ光の照射波形は連続波(CW)に設定される。 Note that the exposure time of the first imaging element 351 can be controlled by controlling the irradiation period of the first laser light, but the irradiation period of the first laser light and the emission period of the first fluorescence are completely the same. However, it is difficult to maintain control responsiveness. Therefore, in the present embodiment, the exposure time of the first image sensor 351 is controlled by controlling parameters other than the irradiation period of the first laser light as described above. In this case, the irradiation waveform of the first laser light is set to a continuous wave (CW).
 同様に、第2撮像素子352の露光時間の制御は、第2レーザ光の照射期間の制御により行うことも可能だが、第2レーザ光の照射期間と第2蛍光の発光期間とは完全に一致するとは限らず、制御の応答性を維持するのが難しい。よって、本実施形態では、第2撮像素子352の露光時間の制御は、上記したとおり、第2レーザ光の照射期間以外のパラメータの制御により行われるものとする。この場合、第2レーザ光の照射波形は連続波(CW)に設定される。 Similarly, the exposure time of the second image sensor 352 can be controlled by controlling the irradiation period of the second laser light, but the irradiation period of the second laser light and the emission period of the second fluorescence are completely the same. However, it is difficult to maintain control responsiveness. Therefore, in the present embodiment, the exposure time of the second image sensor 352 is controlled by controlling parameters other than the irradiation period of the second laser light as described above. In this case, the irradiation waveform of the second laser light is set to a continuous wave (CW).
 また、本実施形態では、第1撮像素子351のフレーム周期内の露光時間Teと、第2撮像素子352のフレーム周期内の露光時間Teとが個別に設定されるのに対して、第1撮像素子351のフレーム周期と第2撮像素子352のフレーム周期とは、共通の値Tfに設定されるものとする。また、本実施形態では簡単のため、第1撮像素子351の電荷読出時間と、第2撮像素子532の電荷読出時間とは、共通の値To(例えば10ms)であると仮定する。 In the present embodiment, the exposure time Te 1 within the frame period of the first image sensor 351 and the exposure time Te 2 within the frame period of the second image sensor 352 are individually set, whereas The frame period of the first image sensor 351 and the frame period of the second image sensor 352 are set to a common value Tf. In the present embodiment, for simplicity, it is assumed that the charge reading time of the first image sensor 351 and the charge reading time of the second image sensor 532 are a common value To (for example, 10 ms).
 画像記憶・演算装置40は、制御装置39から与えられた一連の第1変調画像に対して公知の復調演算を施し、第1復調画像(第1超解像画像)を生成すると共に、制御装置39から与えられた一連の第2変調画像に対して公知の復調演算を施し、第2復調画像(第2超解像画像)を生成する。なお、公知の復調演算としては、例えば、米国特許8115806に開示された方法を用いることができる。画像記憶・演算装置40は、それらの第1超解像画像及び第2超解像画像を画像記憶・演算装置40の内部メモリ(図示せず)に記憶するとともに、画像表示装置45へと送出する。 The image storage / arithmetic unit 40 performs a known demodulation calculation on the series of first modulated images given from the control unit 39 to generate a first demodulated image (first super-resolution image), and also the control unit A known demodulation operation is performed on the series of second modulated images given from 39 to generate a second demodulated image (second super-resolution image). As a known demodulation operation, for example, a method disclosed in US Pat. No. 8,115,806 can be used. The image storage / arithmetic apparatus 40 stores the first super-resolution image and the second super-resolution image in an internal memory (not shown) of the image storage / arithmetic apparatus 40 and sends them to the image display apparatus 45. To do.
 次に、制御装置39の動作を詳しく説明する。制御装置39は、復調演算に必要な一連の第1変調画像と、復調演算に必要な一連の第2変調画像とを、以下の手順(1)~(7)で取得する。 Next, the operation of the control device 39 will be described in detail. The control device 39 obtains a series of first modulated images necessary for the demodulation operation and a series of second modulated images necessary for the demodulation operation by the following procedures (1) to (7).
 (1)制御装置39は、回動機構15Bを駆動することにより、回折格子13(及び偏光板23)の回動位置を0°(第1方向)に設定する。また、制御装置39は、回転機構109Aを駆動することにより、回転拡散板109の回転を開始する。 (1) The controller 39 sets the rotation position of the diffraction grating 13 (and the polarizing plate 23) to 0 ° (first direction) by driving the rotation mechanism 15B. In addition, the control device 39 starts the rotation of the rotating diffusion plate 109 by driving the rotating mechanism 109A.
 (2)制御装置39は、回転拡散板109の回転数が安定した時点で、並進機構15Aの駆動を開始することにより、回折格子13の並進移動を開始する。 (2) The control device 39 starts the translational movement of the diffraction grating 13 by starting to drive the translation mechanism 15A when the rotational speed of the rotary diffusion plate 109 is stabilized.
 (3)制御装置39は、回折格子13の並進移動中に第1撮像素子351、第2撮像素子352の双方の露光(撮像)を複数枚に亘って繰り返す。 (3) The control device 39 repeats exposure (imaging) of both the first imaging element 351 and the second imaging element 352 over a plurality of sheets while the diffraction grating 13 is translated.
 ここで、標本5が生体標本である場合には、複数枚に亘る撮像期間中に標本5が変化する可能性があり、その場合は、変調画像上に疑似モアレが発生し、復調画像上にアーティファクトノイズの重畳する虞がある。このため、標本5が生体標本である場合は、フレーム周期内の第1撮像素子351の露光時間Teと、フレーム周期内の第2撮像素子532の露光時間Teとをそれぞれ最小限(例えば1ms未満)に抑え、このうち長い方の露光時間(例えばTe=1ms)と電荷読出時間To(例えば10ms)との和によって表される最短フレーム周期Ts=11msに、第1撮像素子351及び第2撮像素子352のフレーム周期Tfを設定することが考えられる。 Here, when the sample 5 is a biological sample, the sample 5 may change during an imaging period of a plurality of images. In this case, a pseudo moiré is generated on the modulated image, and the demodulated image is displayed. There is a risk of artifact noise overlapping. For this reason, when the specimen 5 is a biological specimen, the exposure time Te 1 of the first image sensor 351 within the frame period and the exposure time Te 2 of the second image sensor 532 within the frame period are minimized (for example, The first image sensor 351 and the shortest frame period Ts = 11 ms represented by the sum of the longer exposure time (for example, Te 2 = 1 ms) and the charge readout time To (for example, 10 ms). It is conceivable to set the frame period Tf of the second image sensor 352.
 しかしながら、第1撮像素子351及び第2撮像素子352のフレーム周期Tfを最短フレーム周期Ts=11msに設定すると、一連の第1変調画像のフレーム間及び一連の第2変調画像のフレーム間に輝度ムラの発生することが判明した。そこで、本実施形態の制御装置39は、複数枚に亘る撮像期間中に以下の手順(4)を実行する。 However, if the frame period Tf of the first image sensor 351 and the second image sensor 352 is set to the shortest frame period Ts = 11 ms, uneven luminance between frames of a series of first modulated images and frames of a series of second modulated images. Was found to occur. Therefore, the control device 39 of the present embodiment executes the following procedure (4) during the imaging period for a plurality of images.
 (4)制御装置39は、複数枚に亘る撮像期間中、センサ109Bを駆動することで回転拡散板109の回転周期Tr(回転拡散板109が1回転するのに要する時間)を検知し、第1撮像素子351及び第2撮像素子352のフレーム周期Tfを、図4(A)、(B)、(C)に示すとおり、その回転周期Trの整数倍に設定する。 (4) The control device 39 detects the rotation period Tr of the rotating diffusion plate 109 (the time required for the rotating diffusion plate 109 to make one rotation) by driving the sensor 109B during the imaging period for a plurality of images. As shown in FIGS. 4A, 4B, and 4C, the frame period Tf of the first image sensor 351 and the second image sensor 352 is set to an integral multiple of the rotation period Tr.
 具体的に、制御装置39は、第1撮像素子351の露光時間Teと第2撮像素子352の露光時間Teとのうち長い方の露光時間(例えばTe=1ms)と電荷読出時間To=10msとの和からなる最短フレーム周期Ts=11msを算出し、回転周期Tr=6msの整数倍(Tr=6ms、2Tr=12ms、3Tr=18ms、4Tr=24ms、…)のうち、最短フレーム周期Ts=11ms以上であって、その最短フレーム周期Ts=11msに最も近い値(12ms)に、フレーム周期Tfを設定する。 Specifically, the control unit 39, the longer exposure time (e.g., Te 2 = 1 ms) and a charge readout time To in the exposure time Te 2 of the exposure time Te 1 and the second image sensor 352 of the first image sensor 351 = The shortest frame period Ts = 11 ms, which is the sum of 10 ms, and the shortest frame period among the integral multiples of the rotation period Tr = 6 ms (Tr = 6 ms, 2Tr = 12 ms, 3Tr = 18 ms, 4Tr = 24 ms,. The frame period Tf is set to a value (12 ms) that is Ts = 11 ms or more and is closest to the shortest frame period Ts = 11 ms.
 但し、複数枚に亘る撮像期間中には回転周期Trが揺らぐ虞もある。そこで、この手順(4)における制御装置39は、センサ109Bの生成するタイミング信号をトリガーとして各フレームの露光を行う。つまり、フレーム周期TfがTf=n×Trで表される場合、制御装置39は、タイミング信号がn回生成される毎に第1撮像素子351及び第2撮像素子352を駆動する。このようにすれば、回転周期Trの揺らぎに対処することができる。 However, there is a possibility that the rotation period Tr fluctuates during the imaging period over a plurality of sheets. Therefore, the control device 39 in the procedure (4) performs exposure of each frame using a timing signal generated by the sensor 109B as a trigger. That is, when the frame period Tf is represented by Tf = n × Tr, the control device 39 drives the first image sensor 351 and the second image sensor 352 every time the timing signal is generated n times. In this way, fluctuations in the rotation period Tr can be dealt with.
 因みに、タイミング信号の生成から第1撮像素子352及び第2撮像素子352の露光開始までに多少のディレイ時間が発生するが、複数枚に亘る撮像期間中にディレイ時間が変動しないのであれば、ディレイ時間が発生すること自体には何ら問題が無い。 Incidentally, a slight delay time is generated from the generation of the timing signal to the start of exposure of the first image sensor 352 and the second image sensor 352, but if the delay time does not vary during the imaging period of a plurality of images, the delay There is no problem with the time itself.
 このように、第1撮像素子351のフレーム周期Tfを回転周期Trの整数倍に制御すれば、図5(A)に示すとおり、回転拡散板109上でレーザスポットが第1撮像素子351の露光期間中に掃引する領域(掃引領域)をフレーム間で共通化することができるので、回転拡散板109の透過率にムラがあったとしても、一連の第1変調画像のフレーム間に輝度ムラが発生することは無い。このことは、第2撮像素子352(つまり第2変調画像)についても同様に当てはまる(図5(B)参照。)。 As described above, when the frame period Tf of the first image sensor 351 is controlled to be an integral multiple of the rotation period Tr, the laser spot is exposed to the first image sensor 351 on the rotary diffusion plate 109 as shown in FIG. Since a region to be swept during the period (sweep region) can be shared between frames, even if there is unevenness in the transmittance of the rotating diffusion plate 109, unevenness in luminance between frames of a series of first modulated images. It does not occur. This also applies to the second image sensor 352 (that is, the second modulated image) (see FIG. 5B).
 因みに、図6(A)、(B)、(C)に示すとおり、第1撮像素子351のフレーム周期Tfを回転周期Trの非整数倍にした場合は、図7(A)に示すとおり、回転拡散板109上でレーザスポットが第1撮像素子351の露光期間中に掃引する領域(掃引領域)をフレーム間で共通化することはできないので、回転拡散板109の透過率にムラがあったならば、一連の第1変調画像のフレーム間に輝度ムラが発生する。このことは、第2撮像素子352(つまり第2変調画像)についても同様に当てはまる(図7(B)参照。)。 6A, 6B, and 6C, when the frame period Tf of the first image sensor 351 is a non-integer multiple of the rotation period Tr, as shown in FIG. Since the region (sweep region) where the laser spot sweeps during the exposure period of the first image sensor 351 on the rotary diffusion plate 109 cannot be shared between frames, the transmittance of the rotary diffusion plate 109 is uneven. Then, luminance unevenness occurs between frames of a series of first modulated images. The same applies to the second image sensor 352 (that is, the second modulated image) (see FIG. 7B).
 また、第1変調画像のフレーム間の輝度ムラは、図7(A)に示す掃引領域が短いときほど、つまり露光時間Teが回転周期Trと比較して短いときほど、発生しやすいので、この手順(4)を実行する意義は大きいと考えられる。このことは、第2変調画像(つまり第2撮像素子352)についても同様に当てはまる。 Further, luminance unevenness between frames of the first modulation image, as when the sweep area shown in FIG. 7 (A) is short, i.e. smaller the exposure time Te 1 is shorter than the rotation period Tr, so prone, It is considered that the significance of executing this procedure (4) is great. This also applies to the second modulated image (that is, the second image sensor 352).
 (5)制御装置39は、複数枚に亘る撮像期間中、回折格子13の並進移動のピッチを、前述したフレーム周期Tfに応じたピッチに設定することで、一連の第1変調画像の隣接フレーム間の干渉縞の位相差と、一連の第2変調画像の隣接フレーム間の干渉縞の位相差との各々を、2π未満の所定値Δφに設定する。 (5) The control device 39 sets the pitch of the translational movement of the diffraction grating 13 to a pitch corresponding to the above-described frame period Tf during the imaging period of a plurality of frames, thereby adjacent frames of a series of first modulated images. Each of the phase difference of the interference fringes between and the phase difference of the interference fringes between adjacent frames of the series of second modulated images is set to a predetermined value Δφ less than 2π.
 (6)制御装置39は、回動機構15Bを駆動することにより、回折格子13(及び偏光板23)の回動位置を120°(第2方向)に設定し、その状態で手順(2)~(5)を実行する。 (6) The control device 39 drives the rotation mechanism 15B to set the rotation position of the diffraction grating 13 (and the polarizing plate 23) to 120 ° (second direction), and in this state, the procedure (2) Execute (5).
 (7)制御装置39は、回転機構15Bを駆動することにより、回折格子13(及び偏光板23)の回動位置を240°(第3方向)に設定し、その状態で手順(2)~(5)を実行する。 (7) The controller 39 drives the rotating mechanism 15B to set the rotational position of the diffraction grating 13 (and the polarizing plate 23) to 240 ° (third direction), and in this state, the steps (2) to (2) (5) is executed.
 以上の手順(1)~(7)により、制御装置39は、干渉縞の方向が第1方向であって干渉縞の位相がΔφずつずれた少なくとも3枚の第1変調画像と、干渉縞の方向が第2方向であって干渉縞の位相がΔφずつずれた少なくとも3枚の第1変調画像と、干渉縞の方向が第3方向であって干渉縞の位相がΔφずつずれた少なくとも3枚の第1変調画像とを順に取得する。これらの少なくとも9枚の第1変調画像が、第1超解像画像の生成に必要な一連の第1変調画像である。 Through the above procedures (1) to (7), the control device 39 causes the interference fringe direction to be in the first direction and the phase of the interference fringe is shifted by Δφ, and the interference fringe direction. At least three first modulated images whose directions are the second direction and the phase of the interference fringes are shifted by Δφ, and at least three images whose directions of the interference fringes are the third direction and whose phases are shifted by Δφ Are obtained in order. These at least nine first modulated images are a series of first modulated images necessary for generating the first super-resolution image.
 それと並行して、以上の手順(1)~(7)により、制御装置39は、干渉縞の方向が第1方向であって干渉縞の位相がΔφずつずれた少なくとも3枚の第2変調画像と、干渉縞の方向が第2方向であって干渉縞の位相がΔφずつずれた少なくとも3枚の第2変調画像と、干渉縞の方向が第3方向であって干渉縞の位相がΔφずつずれた少なくとも3枚の第2変調画像とを順に取得する。これらの少なくとも9枚の第2変調画像が、第2超解像画像の生成に必要な一連の第2変調画像である。 In parallel with this, by the above procedures (1) to (7), the control device 39 causes the direction of the interference fringes to be the first direction and the phase of the interference fringes to be shifted by Δφ by at least three second modulated images. And at least three second modulated images in which the interference fringe direction is the second direction and the interference fringe phase is shifted by Δφ, and the interference fringe direction is the third direction and the interference fringe phase is Δφ increments. At least three shifted second modulated images are sequentially acquired. These at least nine second modulated images are a series of second modulated images necessary for generating the second super-resolution image.
 以上、本実施形態の構造化照明顕微鏡装置1は、レーザ光源(101、102)からのレーザ光で試料(標本5)を照明する照明光学系(10)と、前記照明光学系(10)により照明された前記試料(標本5)を繰り返し撮像する撮像部(撮像素子351、352)とを備え、前記照明光学系(10)は、光拡散素子(回転拡散板109)を含み、前記光拡散素子(回転拡散板109)において前記レーザ光が照射される領域の拡散パターンを周期的に変化させる制御部(回転機構109A、制御装置39)を更に備え、前記制御部(回転機構109A、制御装置39)は、前記撮像の撮像時間中における前記拡散パターンの変化が、繰り返される複数の前記撮像の間で互いに同じになるように設定を行う。 As described above, the structured illumination microscope apparatus 1 of the present embodiment includes the illumination optical system (10) that illuminates the sample (specimen 5) with the laser light from the laser light sources (101, 102), and the illumination optical system (10). The illumination optical system (10) includes a light diffusing element (rotating diffusion plate 109), and includes an imaging unit (imaging elements 351 and 352) that repeatedly images the illuminated sample (specimen 5). The device (rotating diffusion plate 109) further includes a control unit (rotating mechanism 109A, control device 39) that periodically changes the diffusion pattern of the region irradiated with the laser light, and the control unit (rotating mechanism 109A, control device). 39) performs the setting so that the change of the diffusion pattern during the imaging time of the imaging is the same among the plurality of repeated imaging.
 また、前記制御部(回転機構109A、制御装置39)は、前記撮像の繰り返し周期(Tf)が拡散パターンの変化周期(Tr)の整数倍になるように前記設定を行う。 Further, the control unit (the rotation mechanism 109A, the control device 39) performs the setting so that the imaging repetition period (Tf) is an integral multiple of the diffusion pattern change period (Tr).
 なお、撮像の繰り返し周期(Tf)とは、フレーム周期と同様に、前記試料(標本5)の像(変調像)の撮像開始から次の標本の像(変調像)の撮像開始までの時間のことである。 The repetition period (Tf) of imaging is the time from the start of imaging of the image (modulated image) of the sample (sample 5) to the start of imaging of the next sample image (modulated image), as in the frame period. That is.
 また、拡散パターンの変化周期(Tr)とは、一連の拡散パターンの(1セット分の)変化に要する時間のことである。 Also, the diffusion pattern change period (Tr) is the time required to change a series of diffusion patterns (for one set).
 また、ここでは、拡散パターンの変化が複数の前記撮像の間で互いに同じとみなす範囲を、次のとおりとする。すなわち、撮像される実視野内が一様な明るさである試料(標本5)を共通の照明条件及び共通の撮像条件で繰り返し撮像することにより複数の画像(画像セット)を取得したと仮定し、その画像セットのうち、画像を構成する全画素の輝度値の平均値が最も低い画像を基準画像とおく。このとき、基準画像以外の画像の各画素の輝度値と基準画像の対応画素の輝度値との差が±7%以下(好ましくは±5%以下)である場合に、繰り返された複数の前記撮像の間で、拡散パターンの変化が同じであったとみなす。これを実現するためには、前記光拡散素子(回転拡散板109)のうち撮像開始タイミングで光束が通過する位置と、拡散パターンの回転基準位置とのズレが、撮像時間に光束が掃引する弧の長さに対して±7%以下(好ましくは±5%以下)であればよい。整数倍の条件についても上記範囲内であれば整数倍とみなす。 In addition, here, the range in which the change of the diffusion pattern is regarded as the same among the plurality of the imaging is as follows. In other words, it is assumed that a plurality of images (image sets) are acquired by repeatedly imaging a sample (specimen 5) having a uniform brightness in the real field of view under common illumination conditions and common imaging conditions. In the image set, an image having the lowest average luminance value of all the pixels constituting the image is set as a reference image. At this time, when the difference between the luminance value of each pixel of the image other than the reference image and the luminance value of the corresponding pixel of the reference image is ± 7% or less (preferably ± 5% or less), a plurality of the repeated It is assumed that the change in the diffusion pattern was the same during the imaging. In order to realize this, the deviation between the position where the light beam passes at the imaging start timing in the light diffusing element (rotating diffusion plate 109) and the rotation reference position of the diffusion pattern is an arc where the light beam sweeps during the imaging time. It may be ± 7% or less (preferably ± 5% or less) with respect to the length. An integer multiple condition is also regarded as an integer multiple within the above range.
 したがって、本実施形態の構造化照明顕微鏡装置1は、フレーム内の輝度ムラとフレーム間の輝度ムラとの双方を抑えることができる。 Therefore, the structured illumination microscope apparatus 1 of the present embodiment can suppress both luminance unevenness in the frame and luminance unevenness between the frames.
 具体的に、上述した手順(4)において、フレーム周期Tfを11ms(つまり回転周期Trの非整数倍)に設定した場合は、フレーム間の輝度変動量がフレーム間の平均輝度の18%もあったのに対し、フレーム周期Tfを12ms(つまり回転周期Trの整数倍)に設定した場合は、フレーム間の輝度変動量がフレーム間の平均輝度の0.6%にまで抑えることができた。 Specifically, in the above-described procedure (4), when the frame period Tf is set to 11 ms (that is, a non-integer multiple of the rotation period Tr), the luminance fluctuation amount between frames is 18% of the average luminance between frames. On the other hand, when the frame period Tf was set to 12 ms (that is, an integer multiple of the rotation period Tr), the luminance fluctuation amount between frames could be suppressed to 0.6% of the average luminance between frames.
 また、フレーム間の輝度ムラを抑える別の方法として、回転拡散板の枚数を複数化する方法もあるが、この方法で本実施形態と同様の効果を得るためには、回転拡散板の枚数を3以上にする必要があり、これではレーザ光の光量ロスが大きい。したがって、本実施形態の方法は、レーザ光の光量ロスが抑えられるという点においても有効である。 In addition, as another method of suppressing the luminance unevenness between the frames, there is a method in which the number of rotating diffusion plates is made plural. In order to obtain the same effect as this embodiment by this method, the number of rotating diffusion plates is reduced. It is necessary to make it 3 or more, and this causes a large loss in the amount of laser light. Therefore, the method of the present embodiment is also effective in that the loss of light quantity of laser light can be suppressed.
 また、前記制御部(回転機構109A、制御装置39)は、前記拡散パターンの変化周期(Tr)に応じて前記撮像の繰り返し周期(Tf)を調整する。 Further, the control unit (the rotation mechanism 109A, the control device 39) adjusts the imaging repetition period (Tf) according to the diffusion pattern change period (Tr).
 また、前記制御部(回転機構109A、制御装置39)は、前記撮像の繰り返し周期(Tf)を調整するために前記撮像部(撮像素子351、352)への駆動信号を調整する。 Further, the control unit (the rotation mechanism 109A, the control device 39) adjusts a drive signal to the image pickup unit (image pickup elements 351 and 352) in order to adjust the repetition period (Tf) of the image pickup.
 したがって、前記制御部(回転機構109A、制御装置39)は、拡散パターンの変化周期(Tr)に揺らぎが生じたとしても、それに対処することができる。 Therefore, even if fluctuations occur in the diffusion pattern change period (Tr), the control unit (the rotation mechanism 109A, the control device 39) can cope with it.
 また、本実施形態の構造化照明顕微鏡装置1において、前記光拡散素子(回転拡散板109)は、回転可能な光拡散板である。 Further, in the structured illumination microscope apparatus 1 of the present embodiment, the light diffusing element (rotating diffusing plate 109) is a rotatable light diffusing plate.
 したがって、本実施形態の構造化照明顕微鏡装置1は、拡散パターンの変化周期(Tr)を安定させることが容易であり、その結果、撮像の繰り返し周期(Tf)を拡散パターンの変化周期(Tr)の整数倍に維持することも容易である。 Therefore, the structured illumination microscope apparatus 1 according to the present embodiment can easily stabilize the diffusion pattern change period (Tr). As a result, the imaging repetition period (Tf) is set to the diffusion pattern change period (Tr). It is easy to maintain an integer multiple of.
 また、本実施形態の構造化照明顕微鏡装置1では、前記レーザ光源(101、102)と前記照明光学系(10)との間でレーザ光を中継するマルチモードの光ファイバ(11)を更に備え、前記光拡散素子(回転拡散板109)の挿入箇所は、レーザ光源(101、102)と光ファイバ(11)との間である。 The structured illumination microscope apparatus 1 of the present embodiment further includes a multimode optical fiber (11) that relays laser light between the laser light source (101, 102) and the illumination optical system (10). The insertion point of the light diffusion element (rotating diffusion plate 109) is between the laser light source (101, 102) and the optical fiber (11).
 したがって、本実施形態の構造化照明顕微鏡装置1では、振動の発生源となりうる前記光拡散素子(回転拡散板109)の挿入箇所を照明光学系(10)から隔離することと、前記光拡散素子(回転拡散板109)によるコヒーレンシーの低減効果を維持することとの双方が可能である。 Therefore, in the structured illumination microscope apparatus 1 of the present embodiment, the insertion position of the light diffusing element (rotating diffusion plate 109) that can be a vibration generation source is isolated from the illumination optical system (10), and the light diffusing element It is possible to both maintain the effect of reducing coherency by the (rotating diffusion plate 109).
 また、本実施形態の構造化照明顕微鏡装置1において、前記レーザ光源(101、102)には、第1レーザ光を出射する第1レーザ光源(101)と、第1レーザ光とは波長の異なる第2レーザ光を出射する第2レーザ光源(102)とがあり、前記撮像部(531、532)には、第1レーザ光に応じて前記試料(標本5)から射出した第1観察光(第1蛍光)を受光する第1撮像素子(531)と、第2レーザ光に応じて前記試料(標本5)から射出した第2観察光(第2蛍光)を受光する第2撮像素子(352)とがあり、第1撮像素子(351)の1回の撮像の露光時間(Te)と、第2撮像素子(352)の1回の撮像の露光時間(Te)とは、前記制御部(制御装置39)により個別に調整可能である。 In the structured illumination microscope apparatus 1 of the present embodiment, the laser light source (101, 102) includes a first laser light source (101) that emits the first laser light, and the first laser light has a different wavelength. There is a second laser light source (102) that emits a second laser beam, and the imaging unit (531, 532) has a first observation beam (sample 5) emitted from the sample (specimen 5) in response to the first laser beam. A first imaging device (531) that receives the first fluorescence) and a second imaging device (352) that receives the second observation light (second fluorescence) emitted from the sample (specimen 5) in response to the second laser light. ) and there is, the first image sensor (351) one imaging exposure time and (Te 1), and once the imaging exposure time of the second image sensor (352) (Te 2), the control It can be adjusted individually by the unit (control device 39).
 したがって、本実施形態の構造化照明顕微鏡装置1は、波長の異なる2つの像を並行して撮像することができ、しかも、それら2つの像の明るさの相違にも対処することができる。 Therefore, the structured illumination microscope apparatus 1 of the present embodiment can capture two images having different wavelengths in parallel, and can cope with the difference in brightness between the two images.
 また、本実施形態の構造化照明顕微鏡装置1は、レーザ光による干渉縞で前記試料(標本5)を構造化照明するものであって、前記撮像部(撮像素子351、352)が取得した一連の変調画像は、超解像画像を生成するための復調演算に使用される。 Further, the structured illumination microscope apparatus 1 of the present embodiment is structured to illuminate the sample (specimen 5) with interference fringes by laser light, and is a series obtained by the imaging unit (imaging elements 351 and 352). The modulated image is used for a demodulation operation for generating a super-resolution image.
 したがって、上述したとおりフレーム間の輝度ムラを抑えれば、復調演算の精度を向上させ、超解像効果を高めることができる。 Therefore, if the luminance unevenness between frames is suppressed as described above, the accuracy of the demodulation operation can be improved and the super-resolution effect can be enhanced.
 [第1実施形態の変形例]
 なお、第1実施形態の制御装置39は、拡散パターンの変化周期(Tr)に応じて撮像の繰り返し周期(Tf)を調整したが、その反対に、撮像の繰り返し周期(Tf)に応じて拡散パターンの変化周期(Tr)を調整してもよい。
[Modification of First Embodiment]
In addition, although the control apparatus 39 of 1st Embodiment adjusted the repetition period (Tf) of imaging according to the change period (Tr) of the spreading | diffusion pattern, on the contrary, it diffuses according to the repetition period (Tf) of imaging. The pattern change period (Tr) may be adjusted.
 具体的に、制御装置39は、第1撮像素子351の露光時間Teと第2撮像素子352の露光時間Teとのうち長い方の露光時間と電荷読出時間との和によって表される最短フレーム周期Tsに第1撮像素子351及び第2撮像素子352のフレーム周期Tfを一致させ、フレーム周期Tfが回転周期Trの整数倍となるよう、そのフレーム周期Tfに応じて回転周期Trを設定する。よって、例えば、フレーム周期Tfが11msである場合は、回転周期Trは5.5msなどに設定される。この回転周期を回転数に換算すると、10909rpmである。 Specifically, the shortest controller 39, represented by the sum of the longer exposure time and the charge readout time of the exposure time Te 2 of the exposure time Te 1 a second image sensor 352 of the first image sensor 351 The rotation period Tr is set according to the frame period Tf so that the frame period Tf matches the frame period Tf of the first image sensor 351 and the second image sensor 352 and the frame period Tf is an integral multiple of the rotation period Tr. . Therefore, for example, when the frame period Tf is 11 ms, the rotation period Tr is set to 5.5 ms or the like. When this rotation cycle is converted into a rotation speed, it is 10909 rpm.
 このように、フレーム周期Tfに応じて回転周期Trの方を調節すれば、フレーム周期Tfを最短フレーム周期Tsに一致させることができるので、動きの速い標本5を観察する場合に好適である。 Thus, adjusting the rotation period Tr according to the frame period Tf makes it possible to make the frame period Tf coincide with the shortest frame period Ts, which is suitable for observing the specimen 5 having a fast movement.
 但し、回転周期Trの調整をするためには、回転機構109Aのモータの回転速度を調整する必要があり、その回転速度が設定速度に安定するまでには時間が掛かるので、撮像期間の前に一定の準備期間が必要となる。 However, in order to adjust the rotation period Tr, it is necessary to adjust the rotation speed of the motor of the rotation mechanism 109A, and it takes time until the rotation speed stabilizes at the set speed. A certain preparation period is required.
 また、第1実施形態の構造化照明顕微鏡装置1では、光拡散素子として回転可能な光拡散板を使用したが、拡散パターンが可変の光拡散素子(例えば、液晶素子など)を使用し、その拡散パターンを電気制御によって周期変化させてもよい。 In the structured illumination microscope apparatus 1 of the first embodiment, a rotatable light diffusion plate is used as the light diffusion element. However, a light diffusion element having a variable diffusion pattern (for example, a liquid crystal element) is used. The period of the diffusion pattern may be changed by electrical control.
 また、第1実施形態の構造化照明顕微鏡装置1では、励起フィルタ28、第1ダイクロイックミラー7、バリアフィルタ31の各々をデュアルバンド対応型(2種類のレーザ光又は2種類の蛍光に作用するタイプ)としたが、このうち励起フィルタ28、バリアフィルタ31については、デュアルバンド対応型でなくても構わない。また、励起フィルタ28は省略することが可能であり、バリアフィルタ31の配置先は、第2ダイクロイックミラー35の前段ではなく後段(第1撮像素子351、第2撮像素子352の各々の直前)であっても構わない。 In the structured illumination microscope apparatus 1 of the first embodiment, each of the excitation filter 28, the first dichroic mirror 7, and the barrier filter 31 is a dual-band compatible type (a type that acts on two types of laser light or two types of fluorescence). However, the excitation filter 28 and the barrier filter 31 may not be a dual-band compatible type. The excitation filter 28 can be omitted, and the arrangement place of the barrier filter 31 is not the front stage of the second dichroic mirror 35 but the rear stage (immediately before each of the first image sensor 351 and the second image sensor 352). It does not matter.
 また、第1実施形態の構造化照明顕微鏡装置1では、波長の異なる2つの変調像を2つの撮像素子(第1撮像素子351、第2撮像素子352)で並行に撮像したが、波長の異なる2つの変調像を2つの撮像素子(第1撮像素子351、第2撮像素子352)で順次に撮像してもよい。その場合、制御装置39は、第1撮像素子351のフレーム周期Tfと第2撮像素子352のフレーム周期Tfとを個別に設定することができる。 Further, in the structured illumination microscope apparatus 1 of the first embodiment, two modulated images having different wavelengths are imaged in parallel by the two image sensors (the first image sensor 351 and the second image sensor 352), but the wavelengths are different. Two modulated images may be sequentially captured by two image sensors (first image sensor 351 and second image sensor 352). In that case, the controller 39 may be a frame period Tf 1 of the first image sensor 351 and a frame period Tf 2 of the second imaging element 352 is set individually.
 例えば、制御装置39は、第1撮像素子351の露光時間Teと電荷読出時間Toとの和からなる最短フレーム周期Tsを算出し、回転周期Trの整数倍(Tr、2Tr、3Tr、4Tr、…)のうち、その最短フレーム周期Ts以上であって、その最短フレーム周期Tsに最も近い値に、第1撮像素子351のフレーム周期Tfを設定すればよい。また、制御装置39は、第2撮像素子352の露光時間Teと電荷読出時間Toとの和からなる最短フレーム周期Tsを算出し、回転周期Trの整数倍(Tr、2Tr、3Tr、4Tr、…)のうち、その最短フレーム周期Ts以上であって、その最短フレーム周期Tsに最も近い値に、第2撮像素子351のフレーム周期Tfを設定すればよい。 For example, the control device 39 calculates the shortest frame period Ts 1 composed of the sum of the exposure time Te 1 of the first image sensor 351 and the charge readout time To, and is an integral multiple of the rotation period Tr (Tr, 2Tr, 3Tr, 4Tr). , ... of), there is the shortest frame period Ts 1 or more, the value closest to the shortest frame period Ts 1, may be set frame period Tf 1 of the first imaging element 351. Further, the control device 39 calculates the shortest frame period Ts 2 that is the sum of the exposure time Te 2 of the second image sensor 352 and the charge readout time To, and is an integral multiple of the rotation period Tr (Tr, 2Tr, 3Tr, 4Tr). , ... of), there is the shortest frame period Ts 2 or more, the value closest to the shortest frame period Ts 2, may be set frame period Tf 2 of the second imaging element 351.
 また、第1実施形態の構造化照明顕微鏡装置1では、光源波長の数の切り替え数を2としたが、3以上としてもよい。また、その場合、撮像素子の数を3以上としてもよい。 Further, in the structured illumination microscope apparatus 1 of the first embodiment, the number of switching of the number of light source wavelengths is 2, but it may be 3 or more. In that case, the number of image sensors may be three or more.
 また、第1実施形態の構造化照明顕微鏡装置1では、波長の異なる複数の変調像を並行して撮像するために、撮像素子の個数を複数としたが、複数の変調像を順次に撮像する場合は、撮像素子の個数を1としてもよい。 Further, in the structured illumination microscope apparatus 1 of the first embodiment, the number of imaging elements is plural in order to capture a plurality of modulated images having different wavelengths in parallel, but a plurality of modulated images are sequentially captured. In this case, the number of image sensors may be 1.
 その場合は、第2ダイクロイックミラー35及び撮像素子351を省略すると共に、励起フィルタ28、第1ダイクロイックミラー7、バリアフィルタ31からなるユニット(キューブ)を複数個用意し、光路に配置されるユニットをそれら複数のユニットの間で切り替えながら、撮像素子352を繰り返し駆動すればよい。 In this case, the second dichroic mirror 35 and the image sensor 351 are omitted, and a plurality of units (cubes) including the excitation filter 28, the first dichroic mirror 7, and the barrier filter 31 are prepared, and units arranged in the optical path are prepared. The image sensor 352 may be repeatedly driven while switching between the plurality of units.
 また、第1実施形態の構造化照明顕微鏡1では、干渉縞の方向を切り替えるために、回動可能な回折格子を使用したが、電気信号に応じて格子方向を切り替えることが可能な回折格子(空間光変調素子)などを使用してもよい。 Further, in the structured illumination microscope 1 of the first embodiment, a rotatable diffraction grating is used to switch the direction of the interference fringes, but a diffraction grating (which can switch the grating direction in accordance with an electrical signal ( A spatial light modulation element) may be used.
 また、第1実施形態では、干渉縞の方向を120°のピッチで切り替えるために、120°のピッチで回動可能な1方向回折格子13と、(非回転の)0次光カットマスク14との組み合わせを使用したが、120°ずつ異なる3方向にかけて周期構造を有した(非回転の)3方向回折格子131’(図3(A))と、120°のピッチで回動可能な光束選択部材18(図3(B))との組み合わせを使用してもよい。 In the first embodiment, in order to switch the direction of the interference fringes at a pitch of 120 °, the one-way diffraction grating 13 that can be rotated at a pitch of 120 °, and the (non-rotated) zero-order light cut mask 14 The three-way diffraction grating 131 ′ (FIG. 3A) having a periodic structure in three directions that differ by 120 ° (FIG. 3A) and a light beam selection that can be rotated at a pitch of 120 ° A combination with the member 18 (FIG. 3B) may be used.
 図3(A)に示すとおり回折格子131’は、0°の方向V、120°の方向V120、240°の方向V240の各々にかけて周期構造を有しており、それら各方向の周期構造(格子線)の周期(格子ピッチ)は共通である。0°の方向Vにかけて配列された複数の格子線は、入射光束を0°の方向Vに分岐するための格子線であり、120°の方向V120にかけて配列された複数の格子線は、入射光束を120°の方向V120にかけて分岐するための格子線であり、240°の方向V240にかけて配列された複数の格子線は、入射光束を240°の方向V240にかけて分岐するための格子線である。よって、回折格子131’は、方向Vにかけて分岐した±1次回折光束と、方向V120にかけて分岐した±1次回折光束と、方向V240にかけて分岐した±1次回折光束とを、同時に生成することができる。 As shown in FIG. 3A, the diffraction grating 131 ′ has a periodic structure in each of the 0 ° direction V 0 , the 120 ° direction V 120 , and the 240 ° direction V 240 , and the period in each direction. The period (grating pitch) of the structure (grating line) is common. 0 ° plurality of grid lines arranged toward the direction V 0 which is a grid line for branching the incident light beam in the direction V 0 which 0 °, the plurality of grid lines arranged toward the direction V 120 of the 120 ° a grid line for branching the incident light beam toward the direction V 120 of 120 °, 240 ° plurality of grid lines arranged toward the direction V 240 of the for branching the incident light beam toward the direction V 240 of the 240 ° It is a grid line. Therefore, the diffraction grating 131 'includes a ± 1-order diffracted light beam branching toward the direction V 0, and ± 1-order diffracted light beam branching toward the direction V 120, and ± 1-order diffracted light beam branching toward the direction V 240, simultaneously generates can do.
 図3(B)に示すとおり光束選択部材18の開口パターンは、これら3対の±1次回折光束のうち何れか1対の±1次回折光束のみを通過させる第1の開口部19及び第2の開口部20からなる。この光束選択部材18は、上述した偏光板23に連動して、光軸の周りに120°のピッチで回動し、干渉縞の方向を3つの方向V、V120、V240の間で切り替える。因みに、これら第1の開口部19と第2の開口部20との各々の光軸周りの長さは、直線偏光した±1次回折光束が通過できるような長さに設定されている。つまり、第1の開口部19及び第2の開口部20の各々の形状は、部分輪帯状に近い形状である。 As shown in FIG. 3B, the opening pattern of the light beam selecting member 18 includes the first opening 19 and the first opening portion 19 that allow only one pair of ± 1st order diffracted light beams among these 3 pairs of ± 1st order diffracted light beams. 2 openings 20. The light beam selecting member 18 is rotated at a pitch of 120 ° around the optical axis in conjunction with the polarizing plate 23 described above, and the direction of the interference fringe is set between three directions V 0 , V 120 , and V 240 . Switch. Incidentally, the length of each of the first opening 19 and the second opening 20 around the optical axis is set such that a linearly polarized ± first-order diffracted light beam can pass through. That is, the shape of each of the first opening 19 and the second opening 20 is a shape close to a partial ring zone.
 また、光束選択部材18の外周部には、図3(B)に示すように複数の(図3(B)に示す例では6個の)切り欠き21が形成されており、光束選択部材18の近傍において切り欠き21の軌跡に正対する位置には、これらの切り欠き21の有無を検出するためのセンサ22が配置される。このセンサ22は、フォトインタラプタなどで構成され、センサ22に切り欠き21が正対しているときには、センサ22の検出信号の値は大きくなり、センサ22に切り欠き21が正体していないときには、センサ22の検出信号の値は小さくなる。よって、センサ22の検出信号は、光束選択部材18の回動位置を示す信号(角度信号)として使用可能である。 Further, a plurality of notches 21 (six in the example shown in FIG. 3B) are formed on the outer peripheral portion of the light beam selecting member 18 as shown in FIG. A sensor 22 for detecting the presence or absence of these notches 21 is arranged at a position directly opposite the locus of the notches 21 in the vicinity of. The sensor 22 is composed of a photo interrupter or the like. When the notch 21 is directly facing the sensor 22, the value of the detection signal of the sensor 22 is large, and when the notch 21 is not true to the sensor 22, the sensor 22 The value of the detection signal 22 becomes small. Therefore, the detection signal of the sensor 22 can be used as a signal (angle signal) indicating the rotational position of the light beam selection member 18.
 また、干渉縞の位相をシフトさせるための回折格子131’(図3(A))の並進方向は、干渉縞の方向(=選択された±次回折光束の分岐方向)が0°、120°、240°の何れであった場合にも干渉縞の位相をシフトできるような所定方向に設定されるものとする。但し、この場合、並進移動量と位相シフト量との関係は3つの方向V、V120、V240の間で異なるので、干渉縞の方向に依らず位相シフト量が等しくなるよう、並進移動のピッチは干渉縞の方向毎に設定されるものとする。 The translation direction of the diffraction grating 131 ′ (FIG. 3A) for shifting the phase of the interference fringe is 0 ° or 120 ° in the direction of the interference fringe (= the branch direction of the selected ± order diffracted light beam). , 240 degrees, it is set in a predetermined direction so that the phase of the interference fringes can be shifted. However, in this case, since the relationship between the translation amount and the phase shift amount differs between the three directions V 0, V 120, V 240 , such that the amount of phase shift is equal regardless of the direction of the interference fringes, translation Is set for each direction of the interference fringes.
 また、第1実施形態の構造化照明顕微鏡1では、干渉縞の位相をシフトさせるために、並進移動可能な回折格子を使用したが、電気信号に応じて格子位置をシフトさせることが可能な回折格子(空間光変調素子)などを使用してもよい。 Moreover, in the structured illumination microscope 1 of the first embodiment, a diffraction grating capable of translational movement is used to shift the phase of the interference fringes, but diffraction that can shift the grating position in accordance with the electrical signal. A grating (spatial light modulation element) or the like may be used.
 また、第1実施形態では、干渉縞の方向が同一であり干渉縞の位相のみが異なる一連の第1変調画像の枚数を「少なくとも3」と説明したが、例えば、3枚、又は5枚などと設定される。その場合、第1超解像画像の生成に使用される一連の第1変調画像の枚数は、9枚又は15枚となる。 In the first embodiment, the number of the first modulated images in which the direction of the interference fringes is the same and only the phase of the interference fringes is different is described as “at least three”. However, for example, three or five Is set. In that case, the number of the series of first modulated images used for generating the first super-resolution image is nine or fifteen.
 同様に、第1実施形態では、干渉縞の方向が同一であり干渉縞の位相のみが異なる一連の第2変調画像の枚数を「少なくとも3」と説明したが、例えば、3枚、又は5枚などと設定される。その場合、第2超解像画像の生成に使用される一連の第2変調画像の枚数は、9枚又は15枚となる。 Similarly, in the first embodiment, the number of the second modulated images in the series in which the direction of the interference fringe is the same and only the phase of the interference fringe is different is described as “at least three”. However, for example, three or five And so on. In that case, the number of the series of second modulated images used for generating the second super-resolution image is nine or fifteen.
 また、第1実施形態では、構造化照明顕微鏡装置1を2次元構造化照明顕微鏡装置として使用される場合を説明したが、構造化照明顕微鏡装置1を3次元構造化照明顕微鏡装置(3D-SIM:3D-Structured Illumination Microscopy)として利用することもできる。 In the first embodiment, the case where the structured illumination microscope apparatus 1 is used as a two-dimensional structured illumination microscope apparatus has been described. However, the structured illumination microscope apparatus 1 is replaced with a three-dimensional structured illumination microscope apparatus (3D-SIM). : 3D-Structured (Illumination (Microscopy)).
 その場合は、0次光カットマスク14又は光束選択部材18には、0次回折光束を通過するための開口部が更に設けられる。なお、この開口部の形成先は、光軸の近傍であって、この開口部の形状は、例えば円形である。このような0次光カットマスク14又は光束選択部材18によると、±1次回折光束だけでなく0次回折光束をも干渉縞に寄与させることができる。 In that case, the 0th-order light cut mask 14 or the light beam selection member 18 is further provided with an opening for passing the 0th-order diffracted light beam. The opening is formed in the vicinity of the optical axis, and the shape of the opening is, for example, a circle. According to the 0th-order light cut mask 14 or the light beam selection member 18 as described above, not only the ± 1st-order diffracted light beam but also the 0th-order diffracted light beam can contribute to the interference fringes.
 このように、3つの回折光束の干渉(3光束干渉)によって生成される干渉縞は、標本5の表面方向だけでなく、標本5の深さ方向にも空間変調されている。よって、この干渉縞によると、標本5の3次元超解像画像を生成することが可能となる。 Thus, the interference fringes generated by the interference of the three diffracted light beams (three-beam interference) are spatially modulated not only in the surface direction of the sample 5 but also in the depth direction of the sample 5. Therefore, according to this interference fringe, a three-dimensional super-resolution image of the sample 5 can be generated.
 また、第1実施形態では、構造化照明顕微鏡装置1を2次元構造化照明顕微鏡装置として使用する際に、干渉縞に寄与する回折光束として、+1次回折光束と-1次回折光束との組み合わせを使用したが、他の組み合わせを使用してもよいことは言うまでもない。 In the first embodiment, when the structured illumination microscope apparatus 1 is used as a two-dimensional structured illumination microscope apparatus, a combination of a + 1st order diffracted light beam and a −1st order diffracted light beam is used as a diffracted light beam that contributes to interference fringes. Of course, other combinations may be used.
 また、第1実施形態では、構造化照明顕微鏡装置1を3次元構造化照明顕微鏡装置として使用する際に、干渉縞に寄与する回折光束として、+1次回折光束と-1次回折光束と0次回折光束との組み合わせを使用したが、他の組み合わせを使用してもよいことは言うまでもない。 In the first embodiment, when the structured illumination microscope apparatus 1 is used as a three-dimensional structured illumination microscope apparatus, the + 1st order diffracted light beam, the −1st order diffracted light beam, and the 0th order are used as the diffracted light beams contributing to the interference fringes. Although the combination with the folding light beam is used, it goes without saying that other combinations may be used.
 また、第1実施形態では、被観察物(試料)の例として生物標本を説明したが、これに限られることはなく、工業製品の部品等を被観察物(試料)とした場合にも本発明は適用可能である。 In the first embodiment, a biological specimen has been described as an example of an object to be observed (sample). However, the present invention is not limited to this, and the present invention is also applicable when an industrial product part is used as an object to be observed (sample). The invention is applicable.
 1…構造化照明顕微鏡装置、100…レーザユニット、109…回転拡散板、109A…回転機構、109B…センサ、11…光ファイバ、10…照明光学系、30…結像光学系、35…撮像素子、39…制御装置、40…画像記憶・演算装置、45…画像表示装置、12…コレクタレンズ、23…偏光板、13…1方向回折格子、14…0次光カットマスク、131’…3方向回折格子、18…光束選択部材、16…集光レンズ、25…レンズ、26…視野絞り、27…フィールドレンズ、28…励起フィルタ、7…ダイクロイックミラー、6…対物レンズ、5…標本 DESCRIPTION OF SYMBOLS 1 ... Structured illumination microscope apparatus, 100 ... Laser unit, 109 ... Rotating diffuser plate, 109A ... Rotating mechanism, 109B ... Sensor, 11 ... Optical fiber, 10 ... Illumination optical system, 30 ... Imaging optical system, 35 ... Imaging element , 39 ... control device, 40 ... image storage / arithmetic device, 45 ... image display device, 12 ... collector lens, 23 ... polarizing plate, 13 ... one-way diffraction grating, 14 ... zero-order light cut mask, 131 '... three directions Diffraction grating, 18 ... Light flux selection member, 16 ... Condensing lens, 25 ... Lens, 26 ... Field stop, 27 ... Field lens, 28 ... Excitation filter, 7 ... Dichroic mirror, 6 ... Objective lens, 5 ... Sample

Claims (10)

  1.  レーザ光源からのレーザ光で試料を照明する照明光学系と、
     前記照明光学系により照明された前記試料を繰り返し撮像する撮像部とを備えた観察装置であって、
     前記照明光学系は、光拡散素子を含み、
     前記光拡散素子において前記レーザ光が照射される領域の拡散パターンを周期的に変化させる制御部を更に備え、
     前記制御部は、
     前記撮像の撮像時間中における前記拡散パターンの変化が、繰り返される複数の前記撮像の間で互いに同じになるように設定を行う
     ことを特徴とする観察装置。
    An illumination optical system that illuminates the sample with laser light from a laser light source;
    An observation device including an imaging unit that repeatedly images the sample illuminated by the illumination optical system,
    The illumination optical system includes a light diffusing element,
    A control unit that periodically changes a diffusion pattern of a region irradiated with the laser light in the light diffusing element;
    The controller is
    An observation apparatus, wherein the setting is performed so that changes in the diffusion pattern during the imaging time of the imaging are the same among the plurality of repeated imaging.
  2.  請求項1に記載の観察装置において、
     前記制御部は、
     前記撮像の繰り返し周期が前記拡散パターンの変化周期の整数倍になるように前記設定を行う
     ことを特徴とする観察装置。
    The observation apparatus according to claim 1,
    The controller is
    The observation apparatus, wherein the setting is performed so that a repetition period of the imaging is an integral multiple of a change period of the diffusion pattern.
  3.  請求項2に記載の観察装置において、
     前記制御部は、
     前記拡散パターンの変化周期に応じて前記撮像の繰り返し周期を調整する
     ことを特徴とする観察装置。
    The observation apparatus according to claim 2,
    The controller is
    The observation apparatus characterized by adjusting a repetition period of the imaging according to a change period of the diffusion pattern.
  4.  請求項3に記載の観察装置において、
     前記制御部は、
     前記撮像の繰り返し周期を調整するために前記撮像部への駆動信号を調整する
     ことを特徴とする観察装置。
    The observation device according to claim 3,
    The controller is
    An observation apparatus that adjusts a drive signal to the imaging unit in order to adjust a repetition period of the imaging.
  5.  請求項2に記載の観察装置において、
     前記制御部は、
     前記撮像の繰り返し周期に応じて前記拡散パターンの変化周期を調整する
     ことを特徴とする観察装置。
    The observation apparatus according to claim 2,
    The controller is
    An observation apparatus, wherein a change cycle of the diffusion pattern is adjusted according to a repetition cycle of the imaging.
  6.  請求項1~請求項5の何れか一項に記載の観察装置において、
     前記光拡散素子は、回転可能な光拡散板であり、
     前記光拡散板は前記制御部により回転制御される
     ことを特徴とする観察装置。
    In the observation apparatus according to any one of claims 1 to 5,
    The light diffusing element is a rotatable light diffusing plate,
    The observation device is characterized in that the light diffusion plate is rotationally controlled by the control unit.
  7.  請求項1~請求項6の何れか一項に記載の観察装置において、
     前記光拡散素子は、拡散パターンが可変の光拡散素子であり、
     前記拡散パターンは前記制御部により制御される
     ことを特徴とする観察装置。
    In the observation device according to any one of claims 1 to 6,
    The light diffusing element is a light diffusing element having a variable diffusion pattern,
    The diffusion device is controlled by the control unit.
  8.  請求項1~請求項7の何れか一項に記載の観察装置において、
     前記レーザ光源と前記照明光学系との間で前記レーザ光を中継するマルチモードの光ファイバを更に備え、
     前記光拡散素子は、前記レーザ光源と前記光ファイバとの間に配置される
     ことを特徴とする観察装置。
    The observation apparatus according to any one of claims 1 to 7,
    A multi-mode optical fiber that relays the laser light between the laser light source and the illumination optical system;
    The light diffusion element is disposed between the laser light source and the optical fiber.
  9.  請求項1~請求項8の何れか一項に記載の観察装置において、
     前記レーザ光源は、
     第1レーザ光を出射する第1レーザ光源と、前記第1レーザ光とは波長の異なる第2レーザ光を出射する第2レーザ光源とを含み、
     前記撮像部は、
     前記第1レーザ光に応じて前記試料から射出した第1観察光を受光する第1撮像素子と、前記第2レーザ光に応じて前記試料から射出した第2観察光を受光する第2撮像素子とを含み、
     前記第1撮像素子の1回の露光時間と、前記第2撮像素子の1回の露光時間とは、前記制御部により個別に調整可能である
     ことを特徴とする観察装置。
    The observation apparatus according to any one of claims 1 to 8,
    The laser light source is
    A first laser light source that emits a first laser light, and a second laser light source that emits a second laser light having a wavelength different from that of the first laser light,
    The imaging unit
    A first image sensor that receives first observation light emitted from the sample in response to the first laser light, and a second image sensor that receives second observation light emitted from the sample in response to the second laser light. Including
    One observation time of the 1st image sensor and one exposure time of the 2nd image sensor can be adjusted individually by the control part. An observation device characterized by things.
  10.  請求項1~請求項9の何れか一項に記載の観察装置において、
     前記照明光学系は、
     前記レーザ光により生成された干渉縞で前記試料を照明する構造化照明光学系である
     ことを特徴とする観察装置。
    In the observation apparatus according to any one of claims 1 to 9,
    The illumination optical system includes:
    An observation apparatus, characterized by being a structured illumination optical system that illuminates the sample with interference fringes generated by the laser light.
PCT/JP2013/004640 2012-08-01 2013-07-31 Observation device WO2014020911A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014528003A JP5939301B2 (en) 2012-08-01 2013-07-31 Structured illumination observation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-171373 2012-08-01
JP2012171373 2012-08-01

Publications (1)

Publication Number Publication Date
WO2014020911A1 true WO2014020911A1 (en) 2014-02-06

Family

ID=50027614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004640 WO2014020911A1 (en) 2012-08-01 2013-07-31 Observation device

Country Status (2)

Country Link
JP (1) JP5939301B2 (en)
WO (1) WO2014020911A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016125281A1 (en) * 2015-02-05 2016-08-11 株式会社ニコン Structured illumination microscope, observation method, and control program
JP2021019729A (en) * 2019-07-25 2021-02-18 国立大学法人 筑波大学 Small-sized imaging device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233544A (en) * 1995-02-28 1996-09-13 Komatsu Ltd Confocal optical apparatus
JP2000275534A (en) * 1999-03-23 2000-10-06 Olympus Optical Co Ltd Confocal microscope
JP3107388U (en) * 2003-08-25 2005-02-03 カデント・リミテツド Equipment for providing high-intensity non-coherent light and reducing speckles
WO2008072597A1 (en) * 2006-12-12 2008-06-19 Nikon Corporation Microscope device and image processing method
WO2009069675A1 (en) * 2007-11-27 2009-06-04 Nikon Corporation Fluorescent microscope
JP2013088808A (en) * 2011-10-19 2013-05-13 Natinal Synchrotron Radiation Research Center Optical imaging system using structural light illumination

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007233371A (en) * 2006-01-31 2007-09-13 National Institute Of Advanced Industrial & Technology Laser illumination device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233544A (en) * 1995-02-28 1996-09-13 Komatsu Ltd Confocal optical apparatus
JP2000275534A (en) * 1999-03-23 2000-10-06 Olympus Optical Co Ltd Confocal microscope
JP3107388U (en) * 2003-08-25 2005-02-03 カデント・リミテツド Equipment for providing high-intensity non-coherent light and reducing speckles
WO2008072597A1 (en) * 2006-12-12 2008-06-19 Nikon Corporation Microscope device and image processing method
WO2009069675A1 (en) * 2007-11-27 2009-06-04 Nikon Corporation Fluorescent microscope
JP2013088808A (en) * 2011-10-19 2013-05-13 Natinal Synchrotron Radiation Research Center Optical imaging system using structural light illumination

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016125281A1 (en) * 2015-02-05 2016-08-11 株式会社ニコン Structured illumination microscope, observation method, and control program
JPWO2016125281A1 (en) * 2015-02-05 2017-11-16 株式会社ニコン Structured illumination microscope, observation method, and control program
US10649196B2 (en) 2015-02-05 2020-05-12 Nikon Corporation Structured illumination microscope, observation method , and control program
JP2021019729A (en) * 2019-07-25 2021-02-18 国立大学法人 筑波大学 Small-sized imaging device
JP7299610B2 (en) 2019-07-25 2023-06-28 国立大学法人 筑波大学 small imaging device

Also Published As

Publication number Publication date
JPWO2014020911A1 (en) 2016-07-21
JP5939301B2 (en) 2016-06-22

Similar Documents

Publication Publication Date Title
US10739574B2 (en) Structured illumination optical system and structured illumination microscope device
JP6264377B2 (en) Structured illumination device and structured illumination microscope device
JP6635052B2 (en) Structured illumination microscope and observation method
JP5915748B2 (en) Structured illumination device and structured illumination microscope
JP6627871B2 (en) Structured illumination microscope system, method and program
US20140118750A1 (en) Method and Configuration for Depth Resolved Optical Detection of an Illuminated Specimen
JP6194710B2 (en) Structured illumination device and structured illumination microscope device
JPWO2011135819A1 (en) Structured illumination optical system and structured illumination microscope apparatus
JP6023147B2 (en) Method and apparatus for optically capturing an illuminated sample
JP6645506B2 (en) Structured illumination microscope, observation method, and microscope control program
JP2007279287A (en) Structured illuminating optical system and structured illuminating microscope having the same
JP6137324B2 (en) Illumination device and structured illumination microscope device
WO2020179036A1 (en) Microscope
JP6364750B2 (en) Structured illumination device and structured illumination microscope device
JP5939301B2 (en) Structured illumination observation device
JP2009169021A (en) Observation apparatus
JP6413364B2 (en) Illumination optical system and microscope apparatus
JP6127451B2 (en) Structured illumination device and structured illumination microscope device
WO2015052920A1 (en) Structured illumination device and structured illumination microscope device
JP4961359B2 (en) Observation device
JP5316883B2 (en) Scanning microscope
JP6409260B2 (en) Structured illumination device and structured illumination microscope device
JP2015049467A (en) Structured illumination device and structured illumination microscope device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13826353

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014528003

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13826353

Country of ref document: EP

Kind code of ref document: A1