WO2014020695A1 - Linear motor - Google Patents

Linear motor Download PDF

Info

Publication number
WO2014020695A1
WO2014020695A1 PCT/JP2012/069443 JP2012069443W WO2014020695A1 WO 2014020695 A1 WO2014020695 A1 WO 2014020695A1 JP 2012069443 W JP2012069443 W JP 2012069443W WO 2014020695 A1 WO2014020695 A1 WO 2014020695A1
Authority
WO
WIPO (PCT)
Prior art keywords
teeth
end portion
linear motor
tooth
cross
Prior art date
Application number
PCT/JP2012/069443
Other languages
French (fr)
Japanese (ja)
Inventor
憲昭 吉村
Original Assignee
株式会社安川電機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社安川電機 filed Critical 株式会社安川電機
Priority to PCT/JP2012/069443 priority Critical patent/WO2014020695A1/en
Priority to KR1020157000476A priority patent/KR20150027790A/en
Priority to JP2012554139A priority patent/JP5472489B1/en
Priority to CN201290001289.3U priority patent/CN204334284U/en
Publication of WO2014020695A1 publication Critical patent/WO2014020695A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type

Definitions

  • the present invention relates to a linear motor.
  • linear motors are used for table feed in semiconductor manufacturing equipment and machine tools.
  • the linear motor has a field in which a plurality of permanent magnets are linearly arranged, and an armature facing the field, and one of the field and armature functions as a stator, When the other functions as a mover, the field and the armature move relative to each other.
  • the armature has a plurality of teeth that face each other via a field and a gap, and a yoke portion that connects rear end portions of the plurality of teeth.
  • a linear motor having an armature in which a recess is formed at the tip of a central tooth has been proposed (see, for example, Patent Document 1).
  • cogging is required to be further reduced. If the teeth of the armature of the linear motor are made thin (that is, the cross-sectional area of the teeth is reduced), cogging can be reduced, but the thrust is reduced instead. In order to improve the thrust, it is effective to make the teeth thicker, but then cogging will increase. Therefore, it is desired to provide a linear motor with low cogging and high thrust.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a linear motor that achieves both low cogging and high thrust.
  • a linear motor as an exemplary aspect of the present invention includes a field in which a plurality of permanent magnets are arranged in rows so as to have different polarities, and a field and a gap.
  • a plurality of teeth arranged so as to face each other, a yoke portion connecting the plurality of teeth, and an armature having a winding wound around each of the plurality of teeth.
  • the plurality of teeth are opposed to the field through the air gap at the front end portion, and are connected to the yoke portion at the rear end portion.
  • One of the non-end teeth that is not located at both ends of the plurality of teeth is arranged such that a gap between the teeth is larger than that of the teeth located at both ends.
  • the cross-sectional area in the vicinity of the front end portion of all of the plurality of teeth or the non-end portion teeth is smaller than the cross-sectional area in the vicinity of the rear end portion of the teeth.
  • All of the plurality of teeth or the non-end teeth may have a stepped portion whose cross-sectional area changes sharply at any position from the rear end to the front end.
  • the length from the rear end portion to the stepped portion may be in the range of 1/6 or more and 2/3 or less of the length from the rear end portion to the front end portion.
  • the length from the rear end portion to the stepped portion may be the same in the plurality of teeth having the stepped portion.
  • All of the plurality of teeth or the non-end portion teeth may have a tapered portion whose cross-sectional area changes gently at any position from the rear end portion to the front end portion.
  • the length of the non-end teeth from the rear end portion to the front end portion may be shorter than the teeth located at both ends.
  • the cross-sectional area of the tip portion of the non-end teeth may be smaller than the cross-sectional area of the tip portion of the teeth positioned at both ends.
  • the shape at the rear end of the plurality of teeth may be the same.
  • the end surface of the front end portion of the non-end tooth may be a curved surface. Further, the total number of the plurality of teeth may be three.
  • both low cogging and high thrust can be achieved. Therefore, a linear motor that can be smoothly and powerfully driven can be provided.
  • FIG. 2 is a structural diagram illustrating an outline of an internal structure of an armature and a field of the linear motor illustrated in FIG. 1. It is an internal structure figure of the armature of the conventional linear motor.
  • 6 is an internal structure diagram of an armature according to Embodiment 2.
  • FIG. 6 is an internal structure diagram of an armature according to Embodiment 3.
  • FIG. 6 is an internal structure diagram of an armature according to a fourth embodiment. 6 is an internal structure diagram of an armature according to Modification 1.
  • FIG. 10 is an internal structure diagram of an armature according to Modification 2.
  • FIG. 10 is an internal structure diagram of an armature according to Modification 3.
  • FIG. It is an internal structure figure of the armature which concerns on the comparison type A. It is an internal structure figure of the armature concerning comparative type B. It is a graph which shows the relationship between the electric current in an Example, and thrust. It is a graph which shows the relationship between the position of the needle
  • FIG. 1 is an external perspective view and a side view of a linear motor 1 according to the first embodiment.
  • the linear motor 1 has an armature 2 and a field 3.
  • the armature 2 functions as a mover, and the field 3 functions as a stator.
  • the armature 2 can move relative to the field 3 in the direction of arrow A.
  • the field 3 may extend linearly along the direction of arrow A, for example.
  • the field 3 may have a curved portion within a range in which the armature 2 can be relatively moved.
  • the armature 2 has an armature coil 21 inside.
  • the field 3 has a plurality of permanent magnets 31 (see FIG. 2) having different polarities inside.
  • the armature 2 and the field 3 are arranged so that the armature core 22 of the armature coil 21 and the permanent magnet 31 are opposed to each other via a gap (magnetic gap).
  • the armature 2 is guided by a guide structure (not shown) of the field 3 so that a gap is secured even during relative movement.
  • FIG. 2 is a structural diagram showing an outline of the internal structure of the armature 2 and the field 3.
  • FIG. 2 is a view of the linear motor 1 cut along a plane X shown in FIG. For ease of explanation, only the main configuration is shown in FIG. 2, and the other components are not shown.
  • a plurality of permanent magnets 31 are arranged in a row.
  • the permanent magnets 31 are alternately arranged so as to have different polarities, that is, as “ ⁇ S ⁇ N ⁇ S ⁇ N ⁇ ”.
  • the armature coil 21 of the armature 2 is configured by winding a winding 23 around an armature core 22. Specifically, a winding 23 is wound around a bobbin (not shown), and the bobbin is inserted into a tooth 24 as a part of the armature core 22. 24 (or armature core 22) may be expressed as “winding 23 is wound around”.
  • the armature core 22 has a plurality of teeth 24 that project in a tooth shape toward the field 3 and a yoke portion 25 that connects the teeth with a rear end portion 24e. The tip 24t of the tooth 24 is opposed to the field 3 via the air gap P.
  • the armature core 22 is generally made of a magnetic material. Although the number of teeth 24 in the armature core 22 is not particularly limited, in the first embodiment, the armature core 22 has three teeth 24.
  • the winding 23 wound around the three teeth is connected to a three-phase AC power source.
  • currents having different phases U-phase, V-phase, W-phase
  • the magnetic field generated by the armature 2 and the magnetic field generated by the permanent magnet 31 of the field 3 are used.
  • the armature 2 relatively moves on the field 3.
  • the three teeth 24 have end teeth 24a disposed at both ends and non-end teeth 24b not positioned at both ends.
  • the non-end portion tooth 24b is a central one.
  • the end teeth 124a and the non-end teeth 124b have the same shape and size.
  • both the end teeth 124a and the non-end teeth 124b have the same shape and the same cross-sectional area from the rear end portion connected to the yoke portion 125 to the front end portion facing the field.
  • the end teeth 24a and the non-end teeth 24b have different shapes.
  • the teeth 24 according to the first embodiment will be described assuming that the cross-sectional shape is a quadrangular shape.
  • the non-end portion teeth 24b have a shorter protruding length (length from the rear end portion 24e to the front end portion 24t) than the end teeth 24a.
  • the gap P in the non-end portion tooth 24b is larger than the gap P in the end portion tooth 24a.
  • the magnetic resistance between the armature 2 and the field 3 in the non-end tooth 24b becomes larger than the magnetic resistance in the end tooth 24a, and cogging (vibration) occurs when the armature 2 moves along the extending direction of the field 3. ) Is reduced.
  • Both the end teeth 24 a and the non-end teeth 24 b have stepped portions 26.
  • the stepped portion 26 is a portion where the cross-sectional area of the tooth 24 changes sharply at any position from the rear end portion 24e to the front end portion 24t.
  • the cross-sectional area (tooth width Te ⁇ teeth stacking thickness) in the portion from the rear end portion 24e to the stepped portion 26 is greater than the cross-sectional area (teeth width Tt ⁇ tooth stacking thickness) in the portion from the stepped portion 26 to the tip end portion 24t.
  • Tt ⁇ tooth stacking thickness cross-sectional area
  • the position of the stepped portion 26 is not limited, but the length from the rear end 24e to the stepped portion 26 is preferably in the range of 1/6 to 2/3 of the protruding length of the tooth 24. It is also preferable that the position of the stepped portion 26 in the end tooth 24a (the length from the rear end portion 24e to the stepped portion 26) and the position of the stepped portion 26 in the non-end portion tooth 24b are the same.
  • the bobbin for the winding 23 is inserted into the rear end 24e side of each tooth 24. It is preferable that the cross-sectional shape and size in the vicinity of the rear end portion 24e of the end tooth 24a are the same as the cross-sectional shape and size in the vicinity of the rear end portion 24e of the non-end portion tooth 24b. Thereby, the bobbin of the same dimension can be used for the end teeth 24a and the non-end teeth 24b. In the first embodiment, the cross-sectional shape and size in the vicinity of the tip portion 24t of the end tooth 24a are the same as the cross-sectional shape and size in the vicinity of the tip portion 24t of the non-end portion tooth 24b.
  • the three teeth 24 are configured to have two end teeth 24a and one non-end portion tooth 24b.
  • Each tooth 24 corresponds to three phases of U phase, V phase, and W phase.
  • the non-end portion teeth 24b are shorter than the end portion teeth 24a.
  • the gap P in the non-end tooth 24b is larger than the gap P in the end tooth 24a.
  • the end teeth 24a and the non-end teeth 24b have a large cross-sectional area (tooth width Te x teeth stacking thickness) on the rear end 24e side and a small cross-sectional area (tooth width Tt x teeth stacking thickness) on the front end 24t side.
  • a stepped portion 26 whose cross-sectional area changes sharply in the middle of the protruding length is provided.
  • the end teeth 24a and the non-end teeth 24b are common in the position of the stepped portion 26, the cross-sectional area and shape in the vicinity of the rear end portion 24e, and the cross-sectional area and shape in the front end portion 24t.
  • the length from the rear end portion 24e to the stepped portion 26 is 1/6 to 2/3 of the protruding length of the tooth 24.
  • the linear motor 1 solves the difficult problem of achieving both sufficiently large thrust characteristics and low cogging.
  • the cross-sectional area in the vicinity of the rear end portion 24e of the non-end portion teeth 24b is made smaller than the cross-sectional area in the vicinity of the rear end portion 24e of the end portion teeth 24a, thereby reducing the magnetic resistance in the non-end portion teeth 24b. It can be made larger than the magnetoresistance in Making the cross-sectional area in the vicinity of the tip 24t of the non-end tooth 24b smaller than the cross-sectional area in the vicinity of the tip 24t of the end tooth 24a also contributes to an increase in magnetic resistance in the non-end tooth 24b.
  • the position of the stepped portion 26 in the end tooth 24a and the position of the stepped portion 26 in the non-end tooth 24b are not necessarily the same. It is sufficient that the gap P in the non-end tooth 24b is larger than the gap P in the end tooth 24a, and the protruding length of the non-end tooth 24b is not necessarily shorter than the protruding length of the end tooth 24a.
  • FIG. 4 is an internal structure diagram of the armature 202 of the linear motor according to the second embodiment.
  • the teeth 224 (224a, 224b) have a tapered portion 226 instead of a stepped portion.
  • the tapered portion 226 is a portion where the cross-sectional area of the teeth 224 changes gently at any position from the rear end portion 224e to the front end portion 224t.
  • the taper portion 226 gradually reduces the cross-sectional area of the teeth 224 from the rear end 224e to the front end 224t, and the cross-sectional area in the vicinity of the front end 224t is reduced.
  • the linear motor according to the second embodiment Similar to the linear motor 1 of the first embodiment, the linear motor according to the second embodiment also achieves both high thrust and low cogging.
  • Embodiment 2 since it is the same as that of Embodiment 1, description is abbreviate
  • FIG. 5 is an internal structure diagram of the armature 302 of the linear motor according to the third embodiment.
  • the tip end portion 324t of the non-end portion teeth 324b (324) has a concave (curved) shape.
  • the magnetic resistance in the non-end tooth 324b can be further increased than the magnetic resistance in the end tooth 324a (324).
  • Embodiment 3 since it is the same as that of Embodiment 1, description is abbreviate
  • FIG. 6 shows the internal structure of the armature 402 of the linear motor according to the fourth embodiment.
  • the armature 402 has a total of six teeth 424 including two end teeth 424a and four non-end teeth 424b.
  • two non-end teeth 424b1 closer to the center among the plurality of non-end teeth 424b have the same configuration as the non-end teeth 24b in the first embodiment.
  • the other two, that is, the non-end portion teeth 424b2 positioned outside the two non-end portion teeth 424b1 closer to the center have the same configuration as the end portion teeth 424a.
  • the end teeth 424a have the same configuration as the end teeth 24a in the first embodiment.
  • the end teeth 424a and the two non-end teeth 424b1 closer to the center have the same configuration as that of the fourth embodiment, and are arranged outside the non-end teeth 424b1.
  • the gap Pb2 between the two non-end teeth 424b2 positioned may be intermediate between the gap Pa in the end teeth 424a and the gap Pb1 in the non-end teeth 424b1 closer to the center.
  • the end teeth 424 a have the same configuration as the end teeth 24 a in the first embodiment, and two ends teeth are positioned outside the two non-end teeth 424 b 1 closer to the center.
  • the non-end portion teeth 424b2 have the same configuration as the non-end portion teeth 24b in the first embodiment. It may be an intermediate size.
  • the end teeth 424a and the two non-end teeth 424b1 closer to the center have the same configuration as the end teeth 424a in the first embodiment, and the non-end teeth 424b1
  • the two non-end portion teeth 424b2 located outside may have the same configuration as the non-end portion teeth 24b in the first embodiment. That is, the gap Pa in the end teeth 424a and the gap Pb1 in the non-end teeth 424b1 may be the same size, and the gap Pb2 in the non-end teeth 424b2 may be larger than them.
  • the gap in the non-end teeth is selected according to design circumstances such as which phase (U phase, V phase, W phase) is assigned to each tooth.
  • phase U phase, V phase, W phase
  • the number of the non-end portion teeth 424b may be one in the first embodiment, four in the fourth embodiment, or more.
  • Comparison type A As in the first embodiment, the non-end tooth A1 was shortened to make the gap P1 in the non-end tooth A1 larger than the gap P2 in the end tooth A2. No stepped portion is provided, and each of the teeth A1 and A2 has a quadrangular shape with no change in cross-sectional area.
  • the cross-sectional area is the cross-sectional area at the tip 24t of the tooth 24 in the first embodiment (tooth width Tt ⁇ tooth stacking thickness). ) (See FIG. 10).
  • Comparison type B As in the first embodiment, the non-end tooth B1 was shortened so that the gap P1 in the non-end tooth B1 was larger than the gap P2 in the end tooth B2. No stepped portion is provided, and each of the teeth B1 and B2 has a quadrangular shape with no change in cross-sectional area.
  • the cross-sectional area is the cross-sectional area at the rear end portion 24e of the tooth 24 in the first embodiment (tooth width Te ⁇ tooth stack). Thickness) (see FIG. 11).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Linear Motors (AREA)

Abstract

The present invention provides a linear motor that simultaneously achieves cogging reduction and high thrust. This linear motor (1) is equipped with: a field magnet (3) wherein multiple permanent magnets (31) are arranged in a row with alternating poles; and an armature (2) which has multiple teeth (24) which are arranged so as to face the field magnet (3) with a space (P) therebetween, a yoke section (25) for connecting the multiple teeth (24) together, and winding wires (23) respectively wound around the multiple teeth (24). The multiple teeth (24) face the field magnet (3) at tip sections (24t) via the space (P) and are connected to the yoke section (25) at rear end sections (24e). Among the multiple teeth (24), a non-end tooth (24b), that is, a tooth not positioned on either end, is positioned such that a space (P) formed between the field magnet (3) and the non-end tooth (24b) is larger than a space (P) formed between the field magnet (3) and teeth (24a) positioned on either end. Cross-sectional areas near the tip sections (24t) of all of the multiple teeth (24) or non-end teeth (24b) are smaller than cross-sectional areas near the rear end sections (24e) thereof.

Description

リニアモータLinear motor
 本発明は、リニアモータに関する。 The present invention relates to a linear motor.
 従来、半導体製造装置や工作機器等におけるテーブル送りにリニアモータが用いられている。リニアモータは、複数個の永久磁石が直線状に配列された界磁と、界磁と対向する電機子とを有しており、界磁と電機子とのうち一方が固定子として機能し、他方が可動子として機能することにより、界磁と電機子とは相対移動する。電機子は、界磁と空隙を介して対向する複数のティースと、複数のティースにおけるそれぞれの後端部を連結する継鉄部とを有している。ティースの個数が3個である場合において、コギングを小さくするために、中央のティースの先端に凹部を形成した電機子を有するリニアモータが提案されている(例えば、特許文献1参照)。 Conventionally, linear motors are used for table feed in semiconductor manufacturing equipment and machine tools. The linear motor has a field in which a plurality of permanent magnets are linearly arranged, and an armature facing the field, and one of the field and armature functions as a stator, When the other functions as a mover, the field and the armature move relative to each other. The armature has a plurality of teeth that face each other via a field and a gap, and a yoke portion that connects rear end portions of the plurality of teeth. In order to reduce cogging when the number of teeth is three, a linear motor having an armature in which a recess is formed at the tip of a central tooth has been proposed (see, for example, Patent Document 1).
特開平7-99767号公報JP-A-7-99767
 リニアモータにおいては、コギングを一層低減することが求められている。リニアモータの電機子のティースを細く(すなわち、ティースの断面積を小さく)すればコギングの低減が期待できるが、その代わりに推力が低下する。推力を向上させるには、ティースを太くすることが効果的であるが、そうするとコギングが大きくなってしまう。したがって、低コギング、かつ、高推力のリニアモータが提供されることが望まれている。 In the linear motor, cogging is required to be further reduced. If the teeth of the armature of the linear motor are made thin (that is, the cross-sectional area of the teeth is reduced), cogging can be reduced, but the thrust is reduced instead. In order to improve the thrust, it is effective to make the teeth thicker, but then cogging will increase. Therefore, it is desired to provide a linear motor with low cogging and high thrust.
 本発明は、上記の事情に鑑みてなされたもので、低コギングと高推力を両立させたリニアモータを提供することを例示的課題とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a linear motor that achieves both low cogging and high thrust.
 上記の課題を解決するために、本発明の例示的側面としてのリニアモータは、交互に異極になるように複数の永久磁石が列状に配列された界磁と、界磁と空隙を介して対向するように配列された複数のティース、複数のティースを連結する継鉄部、及び複数のティースのそれぞれに巻回された巻線を有する電機子と、を備えている。複数のティースは、その先端部で空隙を介して界磁と対向すると共に、その後端部で継鉄部に連結されている。複数のティースのうち両端に位置しないいずれかの非端部ティースは、両端に位置するティースよりも、界磁との間の空隙が大きくなるように配置されている。複数のティースのすべて又は非端部ティースの先端部近傍における断面積は、そのティースの後端部近傍における断面積よりも小さい。 In order to solve the above-described problems, a linear motor as an exemplary aspect of the present invention includes a field in which a plurality of permanent magnets are arranged in rows so as to have different polarities, and a field and a gap. A plurality of teeth arranged so as to face each other, a yoke portion connecting the plurality of teeth, and an armature having a winding wound around each of the plurality of teeth. The plurality of teeth are opposed to the field through the air gap at the front end portion, and are connected to the yoke portion at the rear end portion. One of the non-end teeth that is not located at both ends of the plurality of teeth is arranged such that a gap between the teeth is larger than that of the teeth located at both ends. The cross-sectional area in the vicinity of the front end portion of all of the plurality of teeth or the non-end portion teeth is smaller than the cross-sectional area in the vicinity of the rear end portion of the teeth.
 複数のティースのすべて、又は非端部ティースが、後端部から先端部までのいずれかの位置において、断面積が急峻に変化する段付き部を有していてもよい。 All of the plurality of teeth or the non-end teeth may have a stepped portion whose cross-sectional area changes sharply at any position from the rear end to the front end.
 後端部から段付き部までの長さが、後端部から先端部までの長さの1/6以上かつ2/3以下の範囲であってもよい。 The length from the rear end portion to the stepped portion may be in the range of 1/6 or more and 2/3 or less of the length from the rear end portion to the front end portion.
 後端部から段付き部までの長さが、段付き部を有する複数のティースにおいて同一であってもよい。 The length from the rear end portion to the stepped portion may be the same in the plurality of teeth having the stepped portion.
 複数のティースのすべて、又は非端部ティースが、後端部から先端部までのいずれかの位置において、断面積がなだらかに変化するテーパ部を有していてもよい。 All of the plurality of teeth or the non-end portion teeth may have a tapered portion whose cross-sectional area changes gently at any position from the rear end portion to the front end portion.
 非端部ティースは、両端に位置するティースよりも、後端部から先端部までの長さが短くてもよい。 The length of the non-end teeth from the rear end portion to the front end portion may be shorter than the teeth located at both ends.
 非端部ティースにおける先端部の断面積は、両端に位置するティースにおける先端部の断面積よりも小さくてもよい。 The cross-sectional area of the tip portion of the non-end teeth may be smaller than the cross-sectional area of the tip portion of the teeth positioned at both ends.
 複数のティースの後端部における形状が同一であってもよい。非端部ティースにおける先端部の端面が、曲面であってもよい。また、複数のティースの総個数は3個であってもよい。 The shape at the rear end of the plurality of teeth may be the same. The end surface of the front end portion of the non-end tooth may be a curved surface. Further, the total number of the plurality of teeth may be three.
 本発明の更なる目的又はその他の特徴は、以下添付図面を参照して説明される好ましい実施の形態によって明らかにされるであろう。 Further objects and other features of the present invention will become apparent from the preferred embodiments described below with reference to the accompanying drawings.
 本発明によれば、低コギングと高推力を両立することができる。したがって、滑らかにかつパワフルに駆動することのできるリニアモータを提供することができる。 According to the present invention, both low cogging and high thrust can be achieved. Therefore, a linear motor that can be smoothly and powerfully driven can be provided.
実施形態1に係るリニアモータの外観斜視及び側方を示す図である。It is a figure which shows the external appearance perspective view and side of the linear motor which concerns on Embodiment 1. FIG. 図1に示すリニアモータの電機子及び界磁の内部構造の概略を示す構造図である。FIG. 2 is a structural diagram illustrating an outline of an internal structure of an armature and a field of the linear motor illustrated in FIG. 1. 従来型のリニアモータの電機子の内部構造図である。It is an internal structure figure of the armature of the conventional linear motor. 実施形態2に係る電機子の内部構造図である。6 is an internal structure diagram of an armature according to Embodiment 2. FIG. 実施形態3に係る電機子の内部構造図である。6 is an internal structure diagram of an armature according to Embodiment 3. FIG. 実施形態4に係る電機子の内部構造図である。FIG. 6 is an internal structure diagram of an armature according to a fourth embodiment. 変形例1に係る電機子の内部構造図である。6 is an internal structure diagram of an armature according to Modification 1. FIG. 変形例2に係る電機子の内部構造図である。10 is an internal structure diagram of an armature according to Modification 2. FIG. 変形例3に係る電機子の内部構造図である。10 is an internal structure diagram of an armature according to Modification 3. FIG. 比較タイプAに係る電機子の内部構造図である。It is an internal structure figure of the armature which concerns on the comparison type A. 比較タイプBに係る電機子の内部構造図である。It is an internal structure figure of the armature concerning comparative type B. 実施例における電流と推力との関係を示すグラフである。It is a graph which shows the relationship between the electric current in an Example, and thrust. 実施例における可動子の位置とコギング推力との関係を示すグラフである。It is a graph which shows the relationship between the position of the needle | mover in an Example, and a cogging thrust.
  [実施形態1]
 以下、実施形態1に係るリニアモータを図面に基づき説明する。図1は、実施形態1に係るリニアモータ1の外観斜視及び側方を示す図である。リニアモータ1は、電機子2と界磁3とを有する。電機子2は可動子として機能し、界磁3は固定子として機能している。界磁3に対して、電機子2が矢印A方向に相対移動可能となっている。界磁3は、例えば矢印A方向に沿って直線状に延びるものであってもよい。界磁3は、電機子2の相対移動が可能な範囲で曲線部分を有していてもよい。
[Embodiment 1]
Hereinafter, the linear motor according to the first embodiment will be described with reference to the drawings. FIG. 1 is an external perspective view and a side view of a linear motor 1 according to the first embodiment. The linear motor 1 has an armature 2 and a field 3. The armature 2 functions as a mover, and the field 3 functions as a stator. The armature 2 can move relative to the field 3 in the direction of arrow A. The field 3 may extend linearly along the direction of arrow A, for example. The field 3 may have a curved portion within a range in which the armature 2 can be relatively moved.
 電機子2は、内部に電機子コイル21を有している。界磁3は、内部に相互に極性が異なる複数の永久磁石31(図2参照)を有している。電機子コイル21の電機子コア22と永久磁石31とが空隙(磁気的空隙)を介して対向するように、電機子2と界磁3とが配置される。電機子2は、界磁3が有するガイド構造(不図示)によってガイドされ、相対移動中も空隙が確保されるようになっている。 The armature 2 has an armature coil 21 inside. The field 3 has a plurality of permanent magnets 31 (see FIG. 2) having different polarities inside. The armature 2 and the field 3 are arranged so that the armature core 22 of the armature coil 21 and the permanent magnet 31 are opposed to each other via a gap (magnetic gap). The armature 2 is guided by a guide structure (not shown) of the field 3 so that a gap is secured even during relative movement.
 図2は、電機子2及び界磁3の内部構造の概略を示す構造図である。図2は、リニアモータ1を、図1に示す平面Xで切断した図である。説明容易のため、図2においては要部構成のみを示し、他の構成部分の図示を省略している。 FIG. 2 is a structural diagram showing an outline of the internal structure of the armature 2 and the field 3. FIG. 2 is a view of the linear motor 1 cut along a plane X shown in FIG. For ease of explanation, only the main configuration is shown in FIG. 2, and the other components are not shown.
 界磁3においては、複数個の永久磁石31が列状に配置されている。永久磁石31は、交互に異極になるように、すなわち、”・S・N・S・N・”のように配列されている。 In the field 3, a plurality of permanent magnets 31 are arranged in a row. The permanent magnets 31 are alternately arranged so as to have different polarities, that is, as “· S · N · S · N ·”.
 電機子2の電機子コイル21は、電機子コア22に巻線23が巻回されて構成されている。具体的には、ボビン(不図示)に巻線23が巻回され、そのボビンが電機子コア22の一部としてのティース24に挿入されているが、この実施形態1では、これを”ティース24(又は電機子コア22)に巻線23が巻回されている”と表現する場合がある。電機子コア22は、界磁3に向けて歯状に突出する複数のティース24と、そのティースを後端部24eで連結する継鉄部25とを有している。ティース24の先端部24tは、界磁3と空隙Pを介して対向している。電機子コア22は、一般的に磁性材料で構成される。電機子コア22におけるティース24の本数に特に制限はないが、本実施形態1では電機子コア22は3本のティース24を有している。 The armature coil 21 of the armature 2 is configured by winding a winding 23 around an armature core 22. Specifically, a winding 23 is wound around a bobbin (not shown), and the bobbin is inserted into a tooth 24 as a part of the armature core 22. 24 (or armature core 22) may be expressed as “winding 23 is wound around”. The armature core 22 has a plurality of teeth 24 that project in a tooth shape toward the field 3 and a yoke portion 25 that connects the teeth with a rear end portion 24e. The tip 24t of the tooth 24 is opposed to the field 3 via the air gap P. The armature core 22 is generally made of a magnetic material. Although the number of teeth 24 in the armature core 22 is not particularly limited, in the first embodiment, the armature core 22 has three teeth 24.
 3本のティースに巻回された巻線23は、3相交流電源に接続されている。これら3つの巻線23に各々位相(U相、V相、W相)の異なる電流が通電されることにより、電機子2が生じる磁界と、界磁3の永久磁石31による磁界との作用により、電機子2が界磁3上を相対移動する。 The winding 23 wound around the three teeth is connected to a three-phase AC power source. When currents having different phases (U-phase, V-phase, W-phase) are supplied to these three windings 23, the magnetic field generated by the armature 2 and the magnetic field generated by the permanent magnet 31 of the field 3 are used. The armature 2 relatively moves on the field 3.
 3本のティース24は、両端に配置された端部ティース24aと両端に位置しない非端部ティース24bとを有する。この実施形態1では、非端部ティース24bは中央の1本である。図3に示すように、従来型のリニアモータでは端部ティース124aも非端部ティース124bも同形状、同サイズである。また、端部ティース124aも非端部ティース124bも、継鉄部125に連結する後端部から界磁に対向する先端部まで同形状かつ同断面積である。 The three teeth 24 have end teeth 24a disposed at both ends and non-end teeth 24b not positioned at both ends. In the first embodiment, the non-end portion tooth 24b is a central one. As shown in FIG. 3, in the conventional linear motor, the end teeth 124a and the non-end teeth 124b have the same shape and size. Further, both the end teeth 124a and the non-end teeth 124b have the same shape and the same cross-sectional area from the rear end portion connected to the yoke portion 125 to the front end portion facing the field.
 しかし、本実施形態1に係るリニアモータ1では、端部ティース24aと非端部ティース24bとが異なる形状とされている。実施形態1に係るティース24は、すべて断面形状が四角形状であるとして説明する。非端部ティース24bは、端部ティース24aよりも突出長さ(後端部24eから先端部24tまでの長さ)が短い。非端部ティース24bにおける空隙Pは、端部ティース24aにおける空隙Pよりも大きい。非端部ティース24bにおける電機子2-界磁3間の磁気抵抗が端部ティース24aにおける磁気抵抗よりも大きくなり、電機子2が界磁3の延長方向に沿って移動する際のコギング(振動)が低減される。 However, in the linear motor 1 according to the first embodiment, the end teeth 24a and the non-end teeth 24b have different shapes. The teeth 24 according to the first embodiment will be described assuming that the cross-sectional shape is a quadrangular shape. The non-end portion teeth 24b have a shorter protruding length (length from the rear end portion 24e to the front end portion 24t) than the end teeth 24a. The gap P in the non-end portion tooth 24b is larger than the gap P in the end portion tooth 24a. The magnetic resistance between the armature 2 and the field 3 in the non-end tooth 24b becomes larger than the magnetic resistance in the end tooth 24a, and cogging (vibration) occurs when the armature 2 moves along the extending direction of the field 3. ) Is reduced.
 端部ティース24aも非端部ティース24bも、段付き部26を有している。段付き部26は、後端部24eから先端部24tまでのいずれかの位置において、ティース24の断面積が急峻に変化する部分である。後端部24eから段付き部26までの部分における断面積(ティース幅Te×ティース積み厚)が、段付き部26から先端部24tまでの部分における断面積(ティース幅Tt×ティース積み厚)よりも大きい。後端部24e側の断面積が大きく、先端部24t側の断面積が小さいので、大きなモータ推力の確保と、コギングの低減を両立させることができる。 Both the end teeth 24 a and the non-end teeth 24 b have stepped portions 26. The stepped portion 26 is a portion where the cross-sectional area of the tooth 24 changes sharply at any position from the rear end portion 24e to the front end portion 24t. The cross-sectional area (tooth width Te × teeth stacking thickness) in the portion from the rear end portion 24e to the stepped portion 26 is greater than the cross-sectional area (teeth width Tt × tooth stacking thickness) in the portion from the stepped portion 26 to the tip end portion 24t. Is also big. Since the cross-sectional area on the rear end portion 24e side is large and the cross-sectional area on the front end portion 24t side is small, it is possible to achieve both a large motor thrust and a reduction in cogging.
 段付き部26の位置は限定されないが、後端部24eから段付き部26までの長さが、ティース24の突出長さの1/6~2/3の範囲であることが好ましい。端部ティース24aにおける段付き部26の位置(後端部24eから段付き部26までの長さ)と非端部ティース24bにおける段付き部26の位置とが同一であることも好ましい。 The position of the stepped portion 26 is not limited, but the length from the rear end 24e to the stepped portion 26 is preferably in the range of 1/6 to 2/3 of the protruding length of the tooth 24. It is also preferable that the position of the stepped portion 26 in the end tooth 24a (the length from the rear end portion 24e to the stepped portion 26) and the position of the stepped portion 26 in the non-end portion tooth 24b are the same.
 巻線23用のボビンは、各ティース24の後端部24e側に挿入される。端部ティース24aの後端部24e近傍における断面形状及びサイズと、非端部ティース24bの後端部24e近傍における断面形状及びサイズとが同一であることが好ましい。それにより、端部ティース24aにも非端部ティース24bにも同じ寸法のボビンを使用することができる。なお、この実施形態1では、端部ティース24aの先端部24t近傍における断面形状及びサイズと、非端部ティース24bの先端部24t近傍における断面形状及びサイズも同一である。 The bobbin for the winding 23 is inserted into the rear end 24e side of each tooth 24. It is preferable that the cross-sectional shape and size in the vicinity of the rear end portion 24e of the end tooth 24a are the same as the cross-sectional shape and size in the vicinity of the rear end portion 24e of the non-end portion tooth 24b. Thereby, the bobbin of the same dimension can be used for the end teeth 24a and the non-end teeth 24b. In the first embodiment, the cross-sectional shape and size in the vicinity of the tip portion 24t of the end tooth 24a are the same as the cross-sectional shape and size in the vicinity of the tip portion 24t of the non-end portion tooth 24b.
 以上、この実施形態1に係る電機子2の構成をまとめると、3本のティース24が2本の端部ティース24aと1本の非端部ティース24bを有して構成されている。各々のティース24が、U相、V相、W相の3相に対応している。非端部ティース24bは、端部ティース24aよりも短くされている。非端部ティース24bにおける空隙Pは端部ティース24aにおける空隙Pよりも大きい。端部ティース24a及び非端部ティース24bは、後端部24e側の断面積(ティース幅Te×ティース積み厚)が大きく、先端部24t側の断面積(ティース幅Tt×ティース積み厚)が小さくされ、その突出長さにおける途中に断面積が急峻に変化する段付き部26を有している。端部ティース24aと非端部ティース24bとは、段付き部26の位置、後端部24e近傍における断面積及び形状、先端部24tにおける断面積及び形状において共通する。後端部24eから段付き部26までの長さは、ティース24の突出長さの1/6~2/3である。 As described above, when the configuration of the armature 2 according to the first embodiment is summarized, the three teeth 24 are configured to have two end teeth 24a and one non-end portion tooth 24b. Each tooth 24 corresponds to three phases of U phase, V phase, and W phase. The non-end portion teeth 24b are shorter than the end portion teeth 24a. The gap P in the non-end tooth 24b is larger than the gap P in the end tooth 24a. The end teeth 24a and the non-end teeth 24b have a large cross-sectional area (tooth width Te x teeth stacking thickness) on the rear end 24e side and a small cross-sectional area (tooth width Tt x teeth stacking thickness) on the front end 24t side. In addition, a stepped portion 26 whose cross-sectional area changes sharply in the middle of the protruding length is provided. The end teeth 24a and the non-end teeth 24b are common in the position of the stepped portion 26, the cross-sectional area and shape in the vicinity of the rear end portion 24e, and the cross-sectional area and shape in the front end portion 24t. The length from the rear end portion 24e to the stepped portion 26 is 1/6 to 2/3 of the protruding length of the tooth 24.
 電機子2が、このような構成を有しているので、この実施形態1に係るリニアモータ1は、充分大きい推力特性と低コギングの両立という困難な課題を解決している。 Since the armature 2 has such a configuration, the linear motor 1 according to the first embodiment solves the difficult problem of achieving both sufficiently large thrust characteristics and low cogging.
 なお、非端部ティース24bの後端部24e近傍における断面積を端部ティース24aの後端部24e近傍における断面積よりも小さくすることで、非端部ティース24bにおける磁気抵抗を端部ティース24aにおける磁気抵抗よりも一層大きくすることができる。非端部ティース24bの先端部24t近傍における断面積を端部ティース24aの先端部24t近傍における断面積よりも小さくすることも、非端部ティース24bにおける磁気抵抗の増大に寄与する。 The cross-sectional area in the vicinity of the rear end portion 24e of the non-end portion teeth 24b is made smaller than the cross-sectional area in the vicinity of the rear end portion 24e of the end portion teeth 24a, thereby reducing the magnetic resistance in the non-end portion teeth 24b. It can be made larger than the magnetoresistance in Making the cross-sectional area in the vicinity of the tip 24t of the non-end tooth 24b smaller than the cross-sectional area in the vicinity of the tip 24t of the end tooth 24a also contributes to an increase in magnetic resistance in the non-end tooth 24b.
 端部ティース24aにおける段付き部26の位置と非端部ティース24bにおける段付き部26の位置とは、必ずしも同一でなくてもよい。非端部ティース24bにおける空隙Pが端部ティース24aにおける空隙Pよりも大きければよく、必ずしも非端部ティース24bの突出長さが端部ティース24aの突出長さよりも短くなくてもよい。 The position of the stepped portion 26 in the end tooth 24a and the position of the stepped portion 26 in the non-end tooth 24b are not necessarily the same. It is sufficient that the gap P in the non-end tooth 24b is larger than the gap P in the end tooth 24a, and the protruding length of the non-end tooth 24b is not necessarily shorter than the protruding length of the end tooth 24a.
  [実施形態2]
 図4は、実施形態2に係るリニアモータの電機子202の内部構造図である。この電機子202においては、ティース224(224a,224b)が段付き部でなくテーパ部226を有している。テーパ部226は、後端部224eから先端部224tまでのいずれかの位置において、ティース224の断面積がなだらかに変化する部分である。テーパ部226によってティース224の断面積は後端部224eから先端部224tにかけて徐々に絞られ、先端部224t近傍における断面積が小さくされている。この実施形態2に係るリニアモータも、実施形態1のリニアモータ1と同様に高推力・低コギングを両立している。
[Embodiment 2]
FIG. 4 is an internal structure diagram of the armature 202 of the linear motor according to the second embodiment. In this armature 202, the teeth 224 (224a, 224b) have a tapered portion 226 instead of a stepped portion. The tapered portion 226 is a portion where the cross-sectional area of the teeth 224 changes gently at any position from the rear end portion 224e to the front end portion 224t. The taper portion 226 gradually reduces the cross-sectional area of the teeth 224 from the rear end 224e to the front end 224t, and the cross-sectional area in the vicinity of the front end 224t is reduced. Similar to the linear motor 1 of the first embodiment, the linear motor according to the second embodiment also achieves both high thrust and low cogging.
 なお、実施形態2におけるその他の構成については、実施形態1と同様であるので、説明を省略する。 In addition, about the other structure in Embodiment 2, since it is the same as that of Embodiment 1, description is abbreviate | omitted.
  [実施形態3]
 図5は、実施形態3に係るリニアモータの電機子302の内部構造図である。この電機子302においては、非端部ティース324b(324)の先端部324tが凹面(曲面)形状とされている。これにより、非端部ティース324bにおける磁気抵抗を端部ティース324a(324)における磁気抵抗よりも一層増大させることができる。
[Embodiment 3]
FIG. 5 is an internal structure diagram of the armature 302 of the linear motor according to the third embodiment. In this armature 302, the tip end portion 324t of the non-end portion teeth 324b (324) has a concave (curved) shape. Thereby, the magnetic resistance in the non-end tooth 324b can be further increased than the magnetic resistance in the end tooth 324a (324).
 なお、実施形態3におけるその他の構成については、実施形態1と同様であるので、説明を省略する。 In addition, about the other structure in Embodiment 3, since it is the same as that of Embodiment 1, description is abbreviate | omitted.
  [実施形態4]
 図6は、実施形態4に係るリニアモータの電機子402の内部構造である。この電機子402は、2本の端部ティース424aと4本の非端部ティース424bの合計6本のティース424を有している。この実施形態4では、複数の非端部ティース424bのうちの中央寄りの2本の非端部ティース424b1が、実施形態1における非端部ティース24bと同様の構成を有している。他の2本、すなわち中央寄りの2本の非端部ティース424b1の外側に位置する非端部ティース424b2は、端部ティース424aと同様の構成を有している。その端部ティース424aは、実施形態1における端部ティース24aと同様の構成である。
[Embodiment 4]
FIG. 6 shows the internal structure of the armature 402 of the linear motor according to the fourth embodiment. The armature 402 has a total of six teeth 424 including two end teeth 424a and four non-end teeth 424b. In the fourth embodiment, two non-end teeth 424b1 closer to the center among the plurality of non-end teeth 424b have the same configuration as the non-end teeth 24b in the first embodiment. The other two, that is, the non-end portion teeth 424b2 positioned outside the two non-end portion teeth 424b1 closer to the center have the same configuration as the end portion teeth 424a. The end teeth 424a have the same configuration as the end teeth 24a in the first embodiment.
 なお、実施形態4におけるその他の構成については、実施形態1と同様であるので、説明を省略する。 In addition, about the other structure in Embodiment 4, since it is the same as that of Embodiment 1, description is abbreviate | omitted.
 以上、本発明の好ましい実施の形態を説明したが、本発明はこれらに限定されるものではなく、その要旨の範囲内で様々な変形や変更が可能である。 The preferred embodiments of the present invention have been described above, but the present invention is not limited to these embodiments, and various modifications and changes can be made within the scope of the gist.
 例えば、図7に示す変形例1のように、端部ティース424a及び中央寄りの2本の非端部ティース424b1は、実施形態4と同様の構成を有し、非端部ティース424b1の外側に位置する2本の非端部ティース424b2における空隙Pb2が、端部ティース424aにおける空隙Paと中央寄りの非端部ティース424b1における空隙Pb1との中間的な大きさであってもよい。 For example, as in Modification 1 shown in FIG. 7, the end teeth 424a and the two non-end teeth 424b1 closer to the center have the same configuration as that of the fourth embodiment, and are arranged outside the non-end teeth 424b1. The gap Pb2 between the two non-end teeth 424b2 positioned may be intermediate between the gap Pa in the end teeth 424a and the gap Pb1 in the non-end teeth 424b1 closer to the center.
 図8に示す変形例2のように、端部ティース424aは実施形態1における端部ティース24aと同様の構成を有し、中央寄りの2本の非端部ティース424b1の外側に位置する2本の非端部ティース424b2が実施形態1における非端部ティース24bと同様の構成を有し、非端部ティース424b1における空隙Pb1が、端部ティース424aにおける空隙Paと非端部ティース424b2における空隙Pb2との中間的な大きさであってもよい。 As in Modification 2 shown in FIG. 8, the end teeth 424 a have the same configuration as the end teeth 24 a in the first embodiment, and two ends teeth are positioned outside the two non-end teeth 424 b 1 closer to the center. The non-end portion teeth 424b2 have the same configuration as the non-end portion teeth 24b in the first embodiment. It may be an intermediate size.
 図9に示す変形例3のように、端部ティース424a及び中央寄りの2本の非端部ティース424b1は実施形態1における端部ティース424aと同様の構成を有し、非端部ティース424b1の外側に位置する2本に非端部ティース424b2は実施形態1における非端部ティース24bと同様の構成を有していてもよい。すなわち、端部ティース424aにおける空隙Paと非端部ティース424b1における空隙Pb1とが同じ大きさであり、非端部ティース424b2における空隙Pb2がそれらより大きくてもよい。 As in Modification 3 shown in FIG. 9, the end teeth 424a and the two non-end teeth 424b1 closer to the center have the same configuration as the end teeth 424a in the first embodiment, and the non-end teeth 424b1 The two non-end portion teeth 424b2 located outside may have the same configuration as the non-end portion teeth 24b in the first embodiment. That is, the gap Pa in the end teeth 424a and the gap Pb1 in the non-end teeth 424b1 may be the same size, and the gap Pb2 in the non-end teeth 424b2 may be larger than them.
 いずれの非端部ティースにおける空隙を端部ティースにおける空隙よりどの程度大きくするかについて、非端部ティースにおける空隙をすべて同じにするかについて、また、いずれかの非端部ティースにおける空隙を他の非端部ティースにおける空隙より大きくするかについては、各々どの位相(U相、V相、W相)をどのティースに割り当てるか等の設計事情に応じて最適な構成が選択される。もちろん、非端部ティース424bの本数は、実施形態1における1本、実施形態4における4本の他、更に多数であっても構わない。 How large the gap in the non-end teeth is to be larger than the gap in the end teeth, whether the gaps in the non-end teeth are all the same, and the gap in any non-end teeth As to whether the gap is larger than the non-end tooth, an optimum configuration is selected according to design circumstances such as which phase (U phase, V phase, W phase) is assigned to each tooth. Of course, the number of the non-end portion teeth 424b may be one in the first embodiment, four in the fourth embodiment, or more.
  [実施例]
 実施形態1に係るリニアモータ1を用いた比較実験を行った。比較対象は、以下2つのタイプのリニアモータである。
[Example]
A comparative experiment using the linear motor 1 according to the first embodiment was performed. The comparison targets are the following two types of linear motors.
 比較タイプA:実施形態1と同様に、非端部ティースA1を短くして、非端部ティースA1における空隙P1を端部ティースA2における空隙P2よりも大きくした。段付き部は設けず、いずれのティースA1,A2も断面積変化のない四角形状であり、その断面積は、実施形態1におけるティース24の先端部24tにおける断面積(ティース幅Tt×ティース積み厚)と同一である(図10参照)。 Comparison type A: As in the first embodiment, the non-end tooth A1 was shortened to make the gap P1 in the non-end tooth A1 larger than the gap P2 in the end tooth A2. No stepped portion is provided, and each of the teeth A1 and A2 has a quadrangular shape with no change in cross-sectional area. The cross-sectional area is the cross-sectional area at the tip 24t of the tooth 24 in the first embodiment (tooth width Tt × tooth stacking thickness). ) (See FIG. 10).
 比較タイプB:実施形態1と同様に、非端部ティースB1を短くして、非端部ティースB1における空隙P1を端部ティースB2における空隙P2よりも大きくした。段付き部は設けず、いずれのティースB1,B2も断面積変化のない四角形状であり、その断面積は、実施形態1におけるティース24の後端部24eにおける断面積(ティース幅Te×ティース積み厚)と同一である(図11参照)。 Comparison type B: As in the first embodiment, the non-end tooth B1 was shortened so that the gap P1 in the non-end tooth B1 was larger than the gap P2 in the end tooth B2. No stepped portion is provided, and each of the teeth B1 and B2 has a quadrangular shape with no change in cross-sectional area. The cross-sectional area is the cross-sectional area at the rear end portion 24e of the tooth 24 in the first embodiment (tooth width Te × tooth stack). Thickness) (see FIG. 11).
 上記3つのリニアモータ(実施形態1、比較タイプA、比較タイプB)を駆動したときの、電流と推力との関係を図12のグラフに、可動子の位置とコギング推力との関係を図13のグラフに示した。図12及び図13より、実施形態1のリニアモータが、比較タイプBと同等の大きさの推力特性を有し、比較タイプAと同等のコギング特性を有することがわかる。 The relationship between the current and the thrust when the three linear motors (Embodiment 1, comparison type A, comparison type B) are driven is shown in the graph of FIG. 12, and the relationship between the position of the mover and the cogging thrust is shown in FIG. It was shown in the graph. 12 and 13, it can be seen that the linear motor of the first embodiment has a thrust characteristic equivalent to that of the comparative type B and has a cogging characteristic equivalent to that of the comparative type A.
矢印:A
空隙:P,P1,P2,Pa,Pb1,Pb2
平面:X
リニアモータ:1
電機子:2,202,302,402
電機子コイル:21
電機子コア:22
巻線:23
ティース:24,224,324
端部ティース:24a,124a,224a,324a,424a,A2,B2
非端部ティース:24b,124b,224b,324b,424b,424b1,424b2,A1,B1
後端部:24e,224e 
先端部:24t,224t,324t
継鉄部:25,125
段付き部:26
テーパ部:226
界磁:3
永久磁石:31
 
Arrow: A
Gaps: P, P1, P2, Pa, Pb1, Pb2
Plane: X
Linear motor: 1
Armature: 2,202,302,402
Armature coil: 21
Armature core: 22
Winding: 23
Teeth: 24, 224, 324
End teeth: 24a, 124a, 224a, 324a, 424a, A2, B2
Non-end teeth: 24b, 124b, 224b, 324b, 424b, 424b1, 424b2, A1, B1
Rear end: 24e, 224e
Tip: 24t, 224t, 324t
Relay part: 25, 125
Stepped part: 26
Tapered portion: 226
Field: 3
Permanent magnet: 31

Claims (10)

  1.  交互に異極になるように複数の永久磁石が列状に配列された界磁と、
     前記界磁と空隙を介して対向するように配列された複数のティース、前記複数のティースを連結する継鉄部、及び前記複数のティースのそれぞれに巻回された巻線を有する電機子と、を備え、
     前記複数のティースは、その先端部で前記空隙を介して前記界磁と対向すると共に、その後端部で前記継鉄部に連結され、
     前記複数のティースのうち両端に位置しないいずれかの非端部ティースは、両端に位置するティースよりも、前記界磁との間の空隙が大きくなるように配置され、
     前記複数のティースのすべて、又は前記非端部ティースの前記先端部近傍における断面積は、そのティースの前記後端部近傍における断面積よりも小さい、リニアモータ。
    A magnetic field in which a plurality of permanent magnets are arranged in a row so as to have different polarities alternately;
    A plurality of teeth arranged so as to be opposed to the field through a gap, a yoke portion connecting the plurality of teeth, and an armature having a winding wound around each of the plurality of teeth; With
    The plurality of teeth are opposed to the field through the gap at the front end, and are connected to the yoke portion at the rear end.
    Any of the non-end teeth that are not located at both ends of the plurality of teeth is arranged so that a gap between the teeth is larger than that of the teeth located at both ends,
    A linear motor in which the cross-sectional area of the plurality of teeth or the non-end portion teeth in the vicinity of the front end portion is smaller than the cross-sectional area of the teeth in the vicinity of the rear end portion.
  2.  前記複数のティースのすべて、又は前記非端部ティースが、前記後端部から前記先端部までのいずれかの位置において、断面積が急峻に変化する段付き部を有している、請求項1に記載のリニアモータ。 2. All of the plurality of teeth or the non-end portion teeth have a stepped portion whose cross-sectional area changes sharply at any position from the rear end portion to the tip end portion. The linear motor described in 1.
  3.  前記後端部から前記段付き部までの長さが、前記後端部から前記先端部までの長さの1/6以上かつ2/3以下の範囲である、請求項2に記載のリニアモータ。 The linear motor according to claim 2, wherein a length from the rear end portion to the stepped portion is in a range of 1/6 or more and 2/3 or less of a length from the rear end portion to the tip end portion. .
  4.  前記後端部から前記段付き部までの長さが、該段付き部を有する複数のティースにおいて同一である、請求項2又は請求項3に記載のリニアモータ。 The linear motor according to claim 2 or 3, wherein a length from the rear end portion to the stepped portion is the same in a plurality of teeth having the stepped portion.
  5.  前記複数のティースのすべて、又は前記非端部ティースが、前記後端部から前記先端部までのいずれかの位置において、断面積がなだらかに変化するテーパ部を有している、請求項1に記載のリニアモータ。 All of the plurality of teeth, or the non-end portion teeth, have a tapered portion whose cross-sectional area gradually changes at any position from the rear end portion to the tip end portion. The linear motor described.
  6.  前記非端部ティースは、前記両端に位置するティースよりも、前記後端部から前記先端部までの長さが短い、請求項1から請求項5のうちいずれか1項に記載のリニアモータ。 The linear motor according to any one of claims 1 to 5, wherein the non-end portion teeth are shorter in length from the rear end portion to the tip end portion than teeth positioned at the both ends.
  7.  前記非端部ティースにおける先端部の断面積は、前記両端に位置するティースにおける先端部の断面積よりも小さい、請求項1から請求項6のうちいずれか1項に記載のリニアモータ。 The linear motor according to any one of claims 1 to 6, wherein a cross-sectional area of a tip portion of the non-end tooth is smaller than a cross-sectional area of a tip portion of the teeth positioned at both ends.
  8.  前記複数のティースの後端部における形状が同一である、請求項1から請求項7のうちいずれか1項に記載のリニアモータ。 The linear motor according to any one of claims 1 to 7, wherein shapes of rear ends of the plurality of teeth are the same.
  9.  前記非端部ティースにおける先端部の端面が、曲面である、請求項1から請求項8のうちいずれか1項に記載のリニアモータ。 The linear motor according to any one of claims 1 to 8, wherein an end surface of a tip portion of the non-end tooth is a curved surface.
  10.  前記複数のティースの総個数は3個である、請求項1から請求項9のいずれか1項に記載のリニアモータ。 The linear motor according to any one of claims 1 to 9, wherein a total number of the plurality of teeth is three.
PCT/JP2012/069443 2012-07-31 2012-07-31 Linear motor WO2014020695A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2012/069443 WO2014020695A1 (en) 2012-07-31 2012-07-31 Linear motor
KR1020157000476A KR20150027790A (en) 2012-07-31 2012-07-31 Linear motor
JP2012554139A JP5472489B1 (en) 2012-07-31 2012-07-31 Linear motor
CN201290001289.3U CN204334284U (en) 2012-07-31 2012-07-31 Linear electric motors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/069443 WO2014020695A1 (en) 2012-07-31 2012-07-31 Linear motor

Publications (1)

Publication Number Publication Date
WO2014020695A1 true WO2014020695A1 (en) 2014-02-06

Family

ID=50027426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069443 WO2014020695A1 (en) 2012-07-31 2012-07-31 Linear motor

Country Status (4)

Country Link
JP (1) JP5472489B1 (en)
KR (1) KR20150027790A (en)
CN (1) CN204334284U (en)
WO (1) WO2014020695A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3637600A4 (en) * 2017-11-24 2021-03-03 KYB Corporation Tubular linear motor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0799767A (en) * 1993-09-24 1995-04-11 Moriyama Kogyo Kk Linear motor
JP2011199936A (en) * 2010-03-17 2011-10-06 Hitachi Ltd Linear motor and armature structure thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4800913B2 (en) * 2006-11-30 2011-10-26 三菱電機株式会社 Linear motor armature and linear motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0799767A (en) * 1993-09-24 1995-04-11 Moriyama Kogyo Kk Linear motor
JP2011199936A (en) * 2010-03-17 2011-10-06 Hitachi Ltd Linear motor and armature structure thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3637600A4 (en) * 2017-11-24 2021-03-03 KYB Corporation Tubular linear motor
US11456654B2 (en) 2017-11-24 2022-09-27 Kyb Corporation Tubular linear motor

Also Published As

Publication number Publication date
JPWO2014020695A1 (en) 2016-07-11
KR20150027790A (en) 2015-03-12
CN204334284U (en) 2015-05-13
JP5472489B1 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
KR100596901B1 (en) Stator with teeth formed from a soft magnetic powder material
US10277099B2 (en) Synchronous motor
CN103904807B (en) Electric rotating machine
JP5574173B2 (en) Permanent magnet type synchronous linear motor and table feeding device using the same
JP5421396B2 (en) Electric motor having an iron core having primary teeth and secondary teeth
JP2002136003A (en) Stator for rotating electric machine
WO2009084197A1 (en) Permanent-magnet synchronous motor
JP2014050211A (en) Permanent magnet rotary electric machine
JP2009509491A (en) Tooth module for primary side magnetic pole member of permanent magnet excitation synchronous motor
CN104426315A (en) Three-phase electromagnetic motor
CN103026584A (en) Winding tooth and component for an electrical machine for reducing eddy currents
CN108390476B (en) Motor with a stator having a stator core
JP5472489B1 (en) Linear motor
KR101247683B1 (en) Amorphous Stator, Electric Motor Using the Same, and Producing Method thereof
JP5465866B2 (en) Stator core and rotating electric machine
US20230318382A1 (en) Stator and motor
JP2019170091A (en) Rotary electric machine
JP2018050430A (en) Linear motor
JP6070329B2 (en) Stator core for rotating electrical machines
US20140145542A1 (en) Electric Actuator
JP2019198220A (en) Electric motor
CN211239461U (en) Single-phase permanent magnet synchronous motor and dust collector with same
WO2020261809A1 (en) Linear motor
US11955864B2 (en) Linear motor
JP3740282B2 (en) Reluctance motor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201290001289.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2012554139

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12882062

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157000476

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12882062

Country of ref document: EP

Kind code of ref document: A1