WO2014019410A1 - 用壳体内多磁块均匀分布传感器的助力自行车 - Google Patents

用壳体内多磁块均匀分布传感器的助力自行车 Download PDF

Info

Publication number
WO2014019410A1
WO2014019410A1 PCT/CN2013/076810 CN2013076810W WO2014019410A1 WO 2014019410 A1 WO2014019410 A1 WO 2014019410A1 CN 2013076810 W CN2013076810 W CN 2013076810W WO 2014019410 A1 WO2014019410 A1 WO 2014019410A1
Authority
WO
WIPO (PCT)
Prior art keywords
annular groove
permanent magnet
digital
signal
hall
Prior art date
Application number
PCT/CN2013/076810
Other languages
English (en)
French (fr)
Inventor
黄强
Original Assignee
高松
欧阳焱雄
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 高松, 欧阳焱雄 filed Critical 高松
Priority to IN1069DEN2015 priority Critical patent/IN2015DN01069A/en
Priority to US14/417,792 priority patent/US9359043B2/en
Publication of WO2014019410A1 publication Critical patent/WO2014019410A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/45Control or actuating devices therefor
    • B62M6/50Control or actuating devices therefor characterised by detectors or sensors, or arrangement thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/55Rider propelled cycles with auxiliary electric motor power-driven at crank shafts parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/60Rider propelled cycles with auxiliary electric motor power-driven at axle parts
    • B62M6/65Rider propelled cycles with auxiliary electric motor power-driven at axle parts with axle and driving shaft arranged coaxially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/80Accessories, e.g. power sources; Arrangements thereof
    • B62M6/90Batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2451Incremental encoders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/487Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals delivered by rotating magnets
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/22Analogue/digital converters pattern-reading type
    • H03M1/24Analogue/digital converters pattern-reading type using relatively movable reader and disc or strip
    • H03M1/245Constructional details of parts relevant to the encoding mechanism, e.g. pattern carriers, pattern sensors

Definitions

  • a booster bicycle that evenly distributes sensors with multiple magnetic blocks in the housing
  • the invention belongs to the technical field of assisting bicycles, in particular to an electric assist bicycle which performs multi-point magnetic induction on a rotating component and provides a power assist signal.
  • the Chinese patent 201020295192.0 "Hook-type torque sensing device" applied by Yebao Vehicle Industry (Kunshan) Co., Ltd. discloses a sensing device for assisting bicycles.
  • the sensing device includes a magnetic member and an elastic member to cooperate, and the torque is transmitted.
  • Sensing device After a long period of use, the change in the elastic modulus of the elastic member causes a change in the control effect of the sensing signal and the controlled motor, and the assisting effect becomes incompatible with the human assisting need.
  • the design of the elastic member is complicated and the manufacturing cost is high.
  • the Chinese patent 01201843.0 Automatic assisted bicycle automatic detecting device
  • the magnetic disk has a spring on the inner disc, and the inner and outer discs are spring-reset.
  • the electric signals generated by the two Halls on the inner and outer discs are used to indicate the force, speed and steering. .
  • Elastic parts are not durable: After a long period of use, the change of the elastic modulus of the elastic parts will cause the control signal and the control effect of the controlled motor to change, and the boosting effect becomes incompatible with the human assistance needs. Complex and costly.
  • Disadvantages (2) Output sine wave so that the edge distance of the disk group can not be less than 4 cm, generally 5 cm is preferred, and the number of available magnetic disk groups is too small, the human-machine cooperation is not ideal: each disk group is the same, then Huo The output of the sine wave is used as the control signal. As the control signal, the sine wave must have a certain peak-to-valley difference. Since the patented magnetic disk group requires a certain length to indicate the forward and reverse movement, the circular groove is rotated at a diameter of 20 cm. There are up to 8 disk groups on the circular track, generally 5 is preferred, Hall can have a sine wave signal with control function.
  • the technical solution of the patent 01201843.0 is used to assist the bicycle, the number of the magnetic disk group is limited to 8 or less, the control signal is too small, and the man-machine cooperation is not ideal.
  • the signal pattern of the Hall output is close to a horizontal line. The signal has no control function and cannot control the motor, so that when the power is particularly needed, the power function is lost.
  • the size of the turntable The diameter is less than 20 cm, and the number of disk sets is limited to 8 groups.
  • the number of disk sets cannot be increased arbitrarily, which makes the man-machine coordination unsatisfactory, and the power is not activated at the start.
  • the power demand does not match the power supply.
  • the rider does not match.
  • the comfort is poor; if the number of disk sets is forcibly increased, the sensing signal loses the power control function.
  • Permanent magnet magnet is used to indicate the fixed position of the pedal, and three Halls indicate the position of the pedal: Since the pedal and the moving disc are synchronously rotated, one position is fixed at two positions on the moving disc corresponding to the two pedals. Permanent magnet steel, where is the position of a certain pedal, then the corresponding permanent magnet magnet is also turned to the position; but only when there is a position in the Hall, the control signal can be sent through the Hall to command the motor of the bicycle. The power needed to turn.
  • Disadvantages (2) Cannot use only one Hall, and the three Halls must cause the original control error of the three control signals, so that the power demand model is distorted, and naturally the power output is inconsistent with the power demand: the assist bicycle is either one or two. Motors that control the motor's sensing signal can only be input to the motor controller with a sensing signal to control the motor. Purpose; while the patent uses three Hall control motors, it is necessary to combine the three control signals of the three Halls into one combined control signal before inputting to the motor controller. The sensing parameters of the three Halls cannot be the same, especially since the sensing parameters of the three Halls may vary greatly due to changes in ambient temperature and long usage time. The result is the same boosting demand when different Halls are used.
  • the output is different voltages, which causes the motor to produce different boosting outputs.
  • the boosting output is inconsistent with the boosting demand.
  • the output of different Halls may be the same voltage, which causes the motor to produce the same boosting output. A problem arises in which the boost output is inconsistent with the boost demand.
  • the combined control signal is easy to generate signal drift, so that the combined control signal does not match the motor controller, and the demand model is distorted: the sensing parameters of the three Halls may vary greatly due to changes in ambient temperature and long use time.
  • the three control signal connection points of the three Halls must change, and the combined control signal generated by the same power demand will produce a segmented signal drift, and the combined control signal will generate signal distortion as a whole, that is, the power demand model distortion If the motor controller selects any one of the three control signals as the reference, the problem that the boosting output and the boosting demand are inconsistent will be generated.
  • the sensing site can not be increased arbitrarily, the sensing site is too small, the motor is not stable, making the rider feel very uncomfortable: because of the disadvantages (1) and disadvantages (2) are the most If the number of erres is greater than one, it is obvious that the number of Halls is more and more, and the disadvantages (1) and (2) are more serious. Therefore, the power-assisted bicycle provided by this patent can only be a power-assisted bicycle that makes the rider feel very uncomfortable.
  • the blind area of the signal reaches a 42-degree angle.
  • the start-up requires assistance, it does not get the boost: It is well known that people step on the bicycle pedal with the minimum moment at the apex, and the angle from the apex of 10-45 degrees is the area most in need of assistance. However, the angle between the Halls of the patent is 42.5-43.5 degrees. There is no Hall in the 10-42 degree angle range from the apex of the pedal, and there is no control signal. The result is the most need for assistance. However, the motor that assists the bicycle does not help.
  • this patent is a technical solution for controlling the assist mode with multiple Halls, because only a plurality of Halls can be used to indicate the rotational position of the pedal, and multiple control signals of multiple Halls must have original errors, and the combined control signals are combined. It is easy to generate signal drift, which can cause the distortion of the power demand model, that is, the same power demand at different times, but obtain different power-assising effects; the more the number of Halls, the more serious the distortion of the power-assisted demand model, which limits the number of Halls. When the number of Halls is small and the motor is running, it is not stable, making the rider feel uncomfortable and unable to get help at startup. It is necessary to make the demand demand model undistorted, and the motor must run smoothly.
  • the object of the present invention is to provide a speed signal for a bicycle pedal by rotating a plurality of permanent magnet blocks on a disk by using only one Hall and an annular groove, and digitally processing the signal to become a power assisted bicycle with a model signal sensor;
  • the number of permanent magnet blocks can be increased as much as possible, and the displacement information of the bicycle pedal can be utilized to the utmost.
  • the sensor is a power-assisted bicycle that fixes the Hall and the plurality of permanent magnet blocks with one assembly; on the assist bicycle, the bicycle is used.
  • the human power demand is well matched with the power provided by the motor, and the motor runs smoothly to assist the bicycle.
  • an annular groove rotating disk uses the same plurality of permanent magnet blocks to alternate the south and north magnetic polarities on the side of the Hall, so that the Hall generates
  • the signal is a rectangular wave, which makes the signal control function stronger and more numerous. For assisted bicycles, there is more information about the state of the pedals.
  • the relative position of the sensing element Hall and the plurality of permanent magnet blocks is fixed by a mechanical structural assembly to make the sensing signal stable and reliable.
  • the rectangular wave signal outputted by the Hall is converted into a digital signal, so that the digital signal of the Hall is digitally processed, and a mathematical model for assisting the human body function can be added in the process of digitizing, and the mathematical model can be assisted by human and machine. Make random adjustments. It can overcome the sinusoidal signal outputted by the Hall of the prior art, and it is difficult to carry out digital processing. Only the analog signal processing can be performed, and the assisting model which can be adjusted arbitrarily can be added, and the assisting model which can only extract the condition limited by the speed signal can be overcome and overcome. The problem that makes the man-machine unable to cooperate.
  • the annular groove rotating disk is rotatably coupled with the inner and outer phase sleeves of the annular groove fixing disk, and the annular groove rotating disk and the middle shaft are the same rotation center, so that the groove rotating disk and the foot pedal rotate synchronously, so that The plurality of permanent magnet blocks on the rotating disk of the groove rotate synchronously with the foot pedal, and the Hall can collect the motion state of the foot pedal, so the sensor can feel the power demand of the bicycle.
  • the structure of the invention is:
  • a power assisting bicycle with a plurality of magnetic blocks in the casing including an electric bicycle and a sensor
  • the electric bicycle has a middle shaft 51, and the middle portion 51 is sleeved with a sleeve 52, and the central shaft 51 is rotatably connected with the sleeve 52;
  • the chain plate 53 is fixed on the 51, and the foot pedal 54 is fixed on both ends of the central shaft 51;
  • the battery 55 on the electric bicycle is connected to the motor controller 29, and the motor controller 29 is connected to the motor 30 on the wheel;
  • the sensor comprises a sensing element connected in sequence, a boost model processor 21, a digital to analog converter 27 and an operational amplifier 28;
  • the sensing element is an element that changes the rotational motion of the annular groove rotating disk 1 into a rectangular wave signal output
  • the sensing element comprises an annular groove rotating disk 1, an annular groove fixing plate 40, a Hall 3 and a plurality of permanent magnet blocks 2.
  • the plurality of permanent magnet blocks 2 have the same size, the same shape, the same magnetic flux, and the annular groove.
  • the concave groove of the rotating disk 1 and the annular groove fixing disk 40 are opposite to each other, and the annular groove fixing disk 40 is fitted in the annular groove of the circular groove rotating disk 1, so that the two disks can be rotated relative to each other.
  • the outer casing, the concave surface of the two discs is sandwiched into a hollow ring 41; a plurality of permanent magnet blocks 2 are fixedly disposed on the annular groove rotating disc 1 at the position of the hollow ring 41, and the plurality of permanent magnet blocks 2 are rounded
  • the trajectory distribution that is, the distance between each permanent magnet block 2 to the center of the circle where the circular trajectory line 5 is located is the same, and the distance between the adjacent two permanent magnet blocks 2 is the same;
  • the magnetic pole of each permanent magnet block 2 is magnetic pole N and S
  • the poles are respectively rotated on the two sides of the annular groove, and the magnetic polarities of the adjacent two permanent magnet blocks 2 are opposite.
  • the magnetic polarity distribution of all the permanent magnet blocks 2 on the rotating disk 1 of an annular groove is N. Pole, S pole, N pole, S pole, N pole, S pole ⁇ ;
  • a Hall 3 is fixedly disposed on the annular groove fixing plate 40 of the hollow ring 41.
  • the Hall 3 is disposed near the permanent magnet block 2 and can sense the magnetic flux of each permanent magnet block 2, and the Hall 3 and the permanent magnet block There is a gap between 2;
  • Hall 3 is a Hall that produces a rectangular wave output signal to the opposite magnetic polarity;
  • the assist model processor 21 is a signal form converter that converts the digital signal rotated by the rotating disk 1 into a digital signal of the assisting model;
  • the assist model processor 21 includes an analog to digital conversion and speed calculator 24, a boost model memory 25, and a boost model calculator 26;
  • the analog-to-digital conversion and speed calculator 24 is connected to the Hall 3 of the sensing element; the analog-to-digital conversion and speed calculator 24 calculates the rate of change between the rectangular waves of the rectangular wave signal input from the Hall 3 to represent the rotating disk 1 Rotating speed;
  • the analog-to-digital conversion and speed calculator 24 is coupled to the assist model calculator 26, which is also coupled to the boost model calculator 26; the boost model calculator 26 uses the rotational speed of the rotating disk 1 of the analog-to-digital conversion and speed calculator 24 to select the boost A certain boosting model function in the model memory 25, and substituting the rotating disk 1 rotational speed condition into the assisting model function to calculate a suitable assisting model digital signal, that is, the assisting model calculator 26 outputs the assisting model digital signal; [3]
  • the converter 27 is an analog signal that converts the power assist model digital signal into a power assist model;
  • the boost model calculator 26 is connected to the digital-to-analog converter 27, and the digital-to-analog converter 27 converts the assist model digital signal of the assist model calculator 26 into the assist model analog signal;
  • the operational amplifier 28 is a boost model analog signal that converts the assist model analog signal of the digital-to-analog converter 27 into a rated voltage range.
  • connection relationship between the sensor and the electric bicycle is: the annular groove of the sensor rotates the disk 1 and the annular groove fixed disk
  • the annular groove fixing plate 40 is fixedly connected with the sleeve 52 outside the middle shaft 51, and the annular groove rotating disk 1 of the sensor is fixedly connected with the central shaft 51 of the electric bicycle, and the annular concave
  • the groove rotating disk 1 is synchronously rotated with the middle shaft 51; the annular groove rotating disk 1 is rotatably coupled with the inner and outer phase sleeves of the annular groove fixing disk 40; the annular groove rotating disk 1 and the center shaft 51 are the same rotation center
  • the signal output lead of the operational amplifier 28 in the sensor is connected to the signal input terminal of the motor controller 29 of the electric bicycle.
  • the description of the working principle of the sensor is divided into signal acquisition and signal processing, in order to explain the structural relationship and function of each component of the sensor.
  • the signal acquisition is performed by the annular groove rotating disk 1, the annular groove fixing disk 40, the permanent magnetic block 2 and the Hall 3 of the sensing element to perform a function of acquiring signals;
  • the signal processing is performed by the assist model processor 21, digital-to-analog conversion
  • the comparator 27 and the operational amplifier 28 are sequentially connected to process the signal output from the Hall 3 into an assist model analog signal that can be used by the motor controller 29 of the electric bicycle.
  • the annular groove rotating disk 1 is fitted with the annular groove fixing plate 40, and is relatively rotatable, thereby ensuring that the rotating position of the rotating disk 1 in the annular groove is not changed, and the sensing positions of the Hall 3 and all the permanent magnetic blocks 2 are not changed, so that
  • the output signal of the Hall 3 is only related to the rotation of all the permanent magnet blocks 2, and is independent of the objects of the annular groove rotating disk 1 and the annular groove fixing disk 40; if the annular groove rotates the disk 1 and the annular groove fixing disk 40 is made of a metal material, and may have a shielding effect. Therefore, the ring 3 and the annular groove fixing plate 40 are used to rotate the Hall 3 and all the permanent magnet blocks 2 in the hollow ring 41 for sensing, thereby improving the Hall 3 The reliability and authenticity of the signal.
  • the annular groove fixing plate 40 When the annular groove fixing plate 40 is fixed to an object, the annular groove is rotated to rotate the disk 1, and the respective permanent magnets 2 on the annular groove rotating disk 1 are swept over the Hall 3 on the annular groove fixing plate 40.
  • Each permanent magnet block 2 can cause the Hall 3 to generate an electrical signal. Since the magnetic polarities of the adjacent two permanent magnet blocks 2 are opposite, that is, the magnetic polarities of all the permanent magnet blocks 2 are alternately facing the Hall 3 in the south and the north, the Hall 3 generates an electric signal as a rectangular wave signal, and the rectangular wave signal is convenient. Digitize the signal for digital control.
  • the Hall 3 can only generate a sine wave signal, so it can only be used for analog control; once the Hall 3 changes in the sensing parameters, the simulation Control can be distorted.
  • the present invention realizes digital control by using a rectangular wave signal without causing a problem of controlling distortion.
  • the annular groove rotating plate 1 may be a plastic plate, a high-strength plate, a copper plate, an aluminum plate or the like which is not easily deformed.
  • the annular groove rotates the disk 1 to rotate, and the center of the rotation is the center of the circle in which the plurality of permanent magnet blocks 2 are distributed in a circular shape.
  • the plurality of permanent magnet blocks 2 are arranged in a circular shape in a circular annular shape, so that the movement state of all the permanent magnet blocks 2 on the rotating disk can be felt by only one Hall 3, that is, the annular groove is rotated.
  • the movement speed of all permanent magnet blocks 2 on the disc, and the change in speed, or acceleration, this Hall 3 can express the motion state of the permanent magnet block 2 with a continuous electrical signal, and because all the permanent magnet blocks 2 is fixed on the annular groove rotating disk, that is, the annular groove rotating disk 1, respectively, and the continuous electrical signal generated by the Hall 3 can express the moving state of the annular groove rotating disk. If this continuous electrical signal is used to control other objects, this continuous electrical signal is the control signal.
  • the sensor signal processor If it is used to control the motor of the bicycle, it is also necessary to use a single-chip computer or other electronic components as the sensor signal processor to convert the speed and acceleration signals in the control signal into the power signal that needs much assistance.
  • the function of the conversion is the power demand model. , or the help model.
  • the Hall 3 is located close to the permanent magnet block 2 and can sense the magnetic flux of the permanent magnet block 2, and aims to sense the motion state of the permanent magnet block 2 by using the Hall 3, thereby feeling the motion state of the ring groove rotating disk 1, that is, the motion. Speed, acceleration.
  • the opposite magnetic polarity of the adjacent permanent magnet block 2 is an important technical feature.
  • the magnetic polarity distribution pattern of all the permanent magnet blocks 2 is N pole, S pole, N pole, S pole, N pole, S pole... 3 outputs a rectangular wave signal of high and low phase. Because the ring groove is a limited size rotation disk, it is necessary to obtain as many accurate change signals as possible in one rotation. Of course, a rectangular wave should be selected. The peak-to-valley value of the rectangular wave signal changes for a short period of time, and can generate as many control signals as possible within a certain period of time.
  • the structure of the adjacent permanent magnet block 2 having opposite magnetic polarities produces a rectangular wave, and the magnetic poles of the adjacent permanent magnet block 2
  • the same structure produces a sine wave, especially when used to assist bicycles, the annular groove rotating disk as the sensing component is generally limited to a diameter of 10-15 cm, in which a control signal is obtained, and the rotation is performed.
  • the generation of a rectangular wave produces 7-9 times more pulses than a sine wave can provide.
  • the structure with the opposite magnetic polarity of the adjacent permanent magnet block 2 has a better control effect on the assisting bicycle, and the person and the vehicle cooperate better, and the rider feels more comfortable.
  • the assist model processor 21 is a signal form converter that converts the digital signal rotated by the rotating disk 1 into a digital signal of the assist model;
  • the assist model processor 21 includes an analog-to-digital conversion and speed calculator 24, a boost model memory 25, and a boost model calculator 26; the rectangular wave signal of the Hall 3 in the sensing element is converted into an analog-to-digital conversion and speed calculator 24 A digital signal indicating the rotational speed of the rotating disk 1, and then using the rotational speed digital signal to select a power assisted mathematical model suitable for a certain rotational speed from the assist model memory 25; finally, the rotational speed digital signal is substituted into the assisting model calculator 26 to calculate a speed suitable for the speed.
  • Power model digital signal That is, the assist model calculator 26 can output the boost model digital signal.
  • the digital-to-analog converter 27 is an analog signal that converts the power-assisted model digital signal into a power-assisted model.
  • the assist model calculator 26 is connected to the digital-to-analog converter 27, which converts the assist model digital signal of the assist model calculator 26 into a boost model analog signal. In order to output an analog signal of the boost model to the motor controller 29 which can only process the analog signal.
  • the operational amplifier 28 is an assist model analog signal that converts the assist model analog signal of the digital-to-analog converter 27 into a rated voltage range.
  • the digital-to-analog converter 27 is connected to the operational amplifier 28.
  • the power-assisted model analog signal of the digital-to-analog converter 27 solves the power-assisted model problem, but the voltage of the power-assisted model signal cannot meet the needs of the motor controller 29, so an operational amplifier is also used.
  • the 28 assisted model analog signal required to convert the boost model analog signal into the rated voltage range can be transmitted to the motor controller 29.
  • the senor is divided into a mechanical component and a sensing component from the physical aspect to illustrate the structural relationship between each physical object of the sensor and the physical object of the electric bicycle.
  • the mechanical component is in a rotationally coupled relationship by the annular groove rotating disk 1 and the annular groove fixing disk 40, and is formed into a ring-shaped inner casing structure.
  • a sensing component is mounted in the annular space of the housing, and the plurality of permanent magnet blocks 2 of the sensing component are fixed on the inner surface of the annular groove rotating disk 1 in the annular inner space of the housing, and the permanent magnet block 2 and the annular groove rotating disk 1 Synchronous rotation causes the plurality of permanent magnet blocks 2 to rotate in synchronization with the bicycle footrest 54 to achieve the purpose of using the plurality of permanent magnet blocks 2 to represent the cyclist's mechanical action for the assisting demand.
  • the Hall 3 of the sensing member, the assist model processor 21, the digital-to-analog converter 27 and the operational amplifier 28 are fixed to the inner surface of the annular annular groove fixing disk 40 in the annular inner casing of the casing, the annular groove fixing plate 40 and the bicycle frame
  • the sleeve 52 is fixed to fix the annular groove 40 does not rotate with the annular groove rotating disk 1
  • the sensing member Hall 3 the assist model processor 21, the digital-to-analog converter 27, and the operational amplifier 28 fixed to the annular groove fixing disk 40 do not rotate the disk 1 with the annular groove.
  • the digital-to-analog converter 27 and the operational amplifier 28 convert the power demand signal of the Hall 3 into a power-assisted model electrical signal matched by the human-machine, and the operational amplifier 28 transmits the power-assisted model electric signal of the human-machine matching to the motor controller 29, the motor
  • the controller 29 controls the motor 30 to rotate in a manner matching with the human machine, and finally realizes that the assist bicycle can be moved according to the demand of the person, that is, the effect of man-machine matching is realized.
  • the signals output by the signal processing components in the sensor of the present invention are:
  • Hall 3 outputs a rectangular wave signal
  • the assist model processor 21 outputs the assist model digital signal
  • the analog-to-digital conversion and speed calculator 24 converts the rectangular wave signal into a digital signal, and calculates and outputs the digital signal of the rotational speed of the circular groove rotating disk 1;
  • the assist model memory 25 stores a plurality of boost model function spares, and outputs a digital signal of the selected boost model function;
  • the boost model calculator 26 calculates and outputs a boost model digital signal to be used for the control function;
  • the digital-to-analog converter 27 outputs an assist model analog signal that converts the power model digital signal into a power model
  • the operational amplifier 28 outputs an assist model analog signal that converts the assist model analog signal into a rated voltage range
  • the thermistor R6 ensures that the operational amplifier 28 outputs a boost model analog signal of the rated voltage range, that is, the standard boost model analog signal.
  • a thermistor R6 is provided to solve the problem of the analog model analog signal drift, and the thermistor R6 is connected between the input terminal and the output terminal of the operational amplifier 28.
  • Hall 3 digital-to-analog converter 27 and operational amplifier 28 are both semiconductor devices and have the function of processing analog signals. It is easy to drift signal parameters with temperature changes, especially in summer and winter, and the bicycles are all outdoors. The effect of temperature variation on the signal parameter drift is obvious. Therefore, it is better to perform signal drift correction on the signal output from the operational amplifier 28 to obtain a standard power assist model analog signal that is not affected by temperature changes, and pass the standard assist model analog signal to the motor controller 29
  • the motor 30 is controlled to operate, and the person riding the bicycle does not feel the difference in the summer and winter power assist effects.
  • the boost model processor 21 is a single chip microcomputer 31 to which a clock circuit 32 is connected.
  • the functions of the analog-to-digital conversion and speed calculator 24, the boost model memory 25, and the boost model calculator 26 are completed by the single chip microcomputer 31.
  • the clock signal of the clock circuit 32 is for distinguishing the rectangular wave signals input from the Hall 3, and it is preferable that the length of each clock signal is 0.001 second.
  • the mechanical components of the sensor include an annular groove rotating disk 1 And a matching annular groove fixing plate 40, the sensing component of the sensor comprises a plurality of permanent magnet blocks 2, a Hall 3, a single chip microcomputer 31, a digital to analog converter 27 and an operational amplifier 28; 3.
  • the four electronic components of the single chip microcomputer 31, the digital to analog converter 27 and the operational amplifier 28 are disposed on a circuit board 59; a plurality of permanent magnet blocks 2 are fixed on the inner wall of the annular groove rotating disk 1 of the hollow ring 41, in the hollow ring
  • the inner wall of the annular groove fixing disk 40 of 41 fixes the circuit board 59.
  • the Hall 3 on the circuit board 59 is provided to sense the magnetic flux of the permanent magnet block 2, and the Hall 3 can output the position of the varying electrical signal according to the change of the magnetic flux.
  • the sensing component is the sensing function of the sensor; the mechanical component has two functions. The first is to fix the relative position of each component in the sensing component, so that each component can form a sensing functional whole, and the second is to This sensing function is fixed on the electric bicycle as a whole, and makes the sensing function as a whole to sense the movement state of the electric bicycle.
  • the four electronic components of the sequentially connected Hall 3, the single chip microcomputer 31, the digital-to-analog converter 27 and the operational amplifier 28 are arranged on a circuit board 59, which is advantageous for integration, modularization and miniaturization of the four electronic components.
  • the four electronic components are integrally fixed to the inner wall of the annular groove fixing disk 40 of the hollow ring 41, which simplifies the process of manufacturing the sensor.
  • Hall 3 is UGN3075
  • power model processor 21 is AT89S52 single chip
  • digital to analog converter 27 is ADC-C8E
  • operational amplifier 28 is OF-17F
  • OF A thermistor R6 is connected between the input terminal 2 of the -17F operational amplifier 28 and the output terminal 6; the connection relationship of each component is as follows:
  • the signal output terminal 3 of Hall 3 is connected to the 12-pin INTO [P32] of the single chip microcomputer 31 ;
  • MCU 31's 39-pin P00 is connected to the digital-to-analog converter 27's 12-pin B8;
  • Mp 31 of the MCU 31 pin P01 is connected to the digital-to-analog converter 27 of the 11-pin B7;
  • MCU 31's 37-pin P02 is connected to the digital-to-analog converter 27's 10 feet B6;
  • the 36-pin P03 of the MCU 31 is connected to the 9-pin B5 of the digital-to-analog converter 27;
  • MCU 31's 35-pin P04 is connected to the digital-to-analog converter 27's 8-pin B4;
  • the 34-pin P05 of the MCU 31 is connected to the 7-pin B3 of the digital-to-analog converter 27;
  • the 32-pin P06 of the MCU 31 is connected to the 6-pin B2 of the digital-to-analog converter 27;
  • the 32-pin P07 of the MCU 31 is connected to the digital-to-analog converter 27 of the 5 pin B1;
  • the 4-pin of the digital-to-analog converter 27 is connected to the 2 pin of the operational amplifier 28;
  • the 2-pin of the digital-to-analog converter 27 is connected to the 3 pin of the operational amplifier 28;
  • the 6th pin of the operational amplifier 28 is the analog signal output.
  • a thermistor R6 is connected between the input terminal 2 pin and the output terminal 6 of the OF-17F operational amplifier 28, and a capacitor C6 is also connected in parallel across the thermistor R6.
  • the thermistor R6 is 5K
  • the capacitor C6 is 8 ⁇
  • the 4 pin of the digital-to-analog converter 27 and the 2 pin of the operational amplifier 28 are grounded by 1.25k R5.
  • a bearing 42 is provided between the outer surface of the inner ring of the annular groove fixing disk 40 and the inner surface of the inner ring of the annular groove rotating disk 1.
  • the bearing 42 maintains a good relative rotation between the annular groove fixing disk 40 and the annular groove rotating disk 1 for a long time.
  • the outer surface of the annular groove fixing plate 40 of the sensor is provided with a circular recess 58; the circular recess 58 is engaged with the sleeve 52 outside the shaft 51 of the electric bicycle, and the sleeve 52 is sleeved and fixedly connected in the circular recess 58. .
  • the circular recess 58 of the fixing plate 40 is fixed to the sleeve 52 outside the shaft 51 of the electric bicycle, and has the advantages of simple assembly, convenient cleaning and beautiful appearance.
  • the Hall 3 is disposed at a position facing the circular trajectory 5 of the plurality of permanent magnet blocks 2. Since the Hall 3 is a component capable of sensing the magnetic flux of the permanent magnet block 2 and outputting an electric signal, and in order to minimize the volume of the permanent magnet block 2, the permanent magnet block is disposed as much as possible on the annular groove rotating disk 1. 2.
  • the permanent magnet block 2 which is minimized can be induced by the Hall 3; the Hall 3 should be placed at the position facing the circular trajectory 5, and preferably placed close to the circle which can penetrate all the permanent magnet blocks 2 The position of the shape trajectory.
  • the annular groove rotating disk 1 is provided with a center hole in a circle in which the circular track line 5 of the plurality of permanent magnet blocks 2 is located. If the annular groove rotating disk 1 is to be worn over a rotating shaft, the annular groove rotating disk 1 is provided with a hole for threading the rotating shaft; to ensure that the annular groove rotates the disk 1 while rotating with the rotating shaft, The Hall 3 can sense the motion signal of each permanent magnet block 2 on the rotating disk 1 of the annular groove, and the through hole on the rotating disk 1 of the annular groove should be disposed on the circular trajectory 5 of the plurality of permanent magnet blocks 2.
  • the center of the circle is the center hole.
  • the center hole is not necessarily circular, and may be a square, a triangle or the like so as to be sleeved with a rotating shaft of a square shape, a triangle shape, etc., but the inner space of the center hole must include the circle of the circular trajectory line 5
  • the center can use a Hall 3 to sense the motion signal of all the permanent magnet blocks 2 on the rotating disk of the annular groove rotating disk 1 to rotate the disk.
  • the annular groove rotating disk 1 is a plastic plate, an aluminum plate, or a copper plate of a non-magnetic material. Since the present invention is a structure in which the magnetic polarities of the adjacent permanent magnet blocks 2 are opposite to each other, the edges of the adjacent permanent magnet blocks 2 can be made to be close to each other, and the Hall 3 can output an electric signal having a control function.
  • the invention has the advantages of simple structure, low cost, unlimited number of permanent magnet blocks on the permanent magnet block ring, output of standard pulse signals, no signal dead zone, and complete representation of only one Hall of output signals.
  • the entire motion state of the moving plate and the output signal are not distorted and drifted, which is used to assist the bicycle, so that the assisting output and the assisting requirement can be highly matched to make the rider feel comfortable.
  • the magnetic polarity of adjacent permanent magnet blocks is opposite, and the number of permanent magnet blocks is not limited.
  • the sensing points can be increased as much as possible: Since the magnetic polarity is opposite, the rectangular wave signal is output, and the adjacent permanent magnet blocks have no gap even if they are The output signal is still a number, distinguishable rectangular wave signal, and still has a control function, that is, it does not output a non-changing linear signal without control function.
  • the number of permanent magnets can be increased as much as possible on the rotating disk of the ring groove of a predetermined size, and the sensing point can be increased as much as possible. As many sensor signals as possible indicate the speed of the pedal movement of the bicycle, accurately indicating the state of motion.
  • the magnetic polarity of adjacent permanent magnet blocks is opposite. There may be more permanent magnet blocks and more sensing points.
  • the motion state of the rotating disk of the annular groove is accurate: for the bicycle used to assist the bicycle, the ring of the permanent magnet block is fixed.
  • the size of the rotating disk of the groove is strictly limited. Generally, the diameter of the rotating disk of the annular groove can only be within 10-15 cm. In order for the Hall to obtain the magnetic pole signal of the permanent magnetic block under the condition of spacing, the diameter of the permanent magnetic block is at least For the ⁇ 0. 6-0.
  • the adjacent permanent magnet blocks have the same magnetic polarity, the adjacent permanent magnet blocks are spaced by 5 cm, and on the rotating disk of the diameter of 10-15 cm, only 5-8 permanent magnets can be set.
  • the motor control accuracy of the assist bicycle is naturally increased by 7-9 times, which makes the rider's assistance demand accuracy also improved by 7-9 times.
  • the degree of cooperation between the vehicle and the person is greatly improved, and the rider's comfort is greatly increased. It is no longer a quick and uncomfortable feeling of the prior art moped.
  • this patent can set up to 35-73 permanent magnet blocks around the ring groove rotating disk with a diameter of 10-15 cm. The average angle between the 5-10 degree.
  • the pedals used to assist bicycles, when starting or running, the pedals have 4-7 permanent magnet blocks from a range of 10 degrees from the apex of 10-45 degrees (a signal at a 10 degree angle from the apex) ), Hall can output 4-7 control signals to respond to the power demand, and it can achieve excellent technical effects that can be obtained at any position and at any time with help, so that the car and people can cooperate well, and the rider feels labor-saving. Comfortable.
  • Only one Hall is used.
  • One control signal indicates the entire motion state of the rotating disk of the annular groove.
  • the control signal is completely consistent with the motion state of the rotating disk of the annular groove.
  • the control signal is exactly the same as the human demand:
  • the block is fixed on the rotating disk of the annular groove, and the permanent magnet block rotates synchronously with the rotating disk of the annular groove, and the motion signal of all the permanent magnetic blocks is sensed by one Hall, and the control signal of the Hall output and the rotating groove of the annular groove are rotated.
  • the motion state is completely consistent, and the human demand is exactly the same, and the control signal does not have the original segmentation error and signal drift problem. Even if the Hall sensing parameter changes, the entire control signal moves in parallel.
  • the Hall signal can be digitized, the digital signal is converted into a power-assisted model digital signal with a rotating disk speed element, and the power-assisted model digital signal is converted into a power-assisted model analog signal, and finally the power-assisted model analog signal is changed.
  • the signal of the rotation of the magnetic block is digitized.
  • a mathematical assisting model is added, so that the control signal finally outputted by the sensor contains the added assisting model. Since the mathematical assist model is artificially set, the mathematical assist model can always be set to a model that is suitable for human-machine cooperation as much as possible.
  • the sensor of the present invention can output a control signal that can realize human-machine coordination.
  • the magnetic poles of the existing bicycle-assisted bicycle sensors have the same magnetic pole on the same side, and the Hall cannot obtain the rectangular wave signal, so that the Hall signal cannot be digitized, and the control model can only partially modify the Hall signal, so A control signal for outputting human-machine cooperation is realized.
  • the final output control signal will not have signal drift:
  • the thermistor R6 feedback adjustment of the output signal of the operational amplifier can solve the drift of the analog model analog signal by semiconductor devices such as Hall, digital-to-analog converter and operational amplifier. The problem is that the sensor finally outputs a standard boost model analog signal that is not subject to ambient temperature changes.
  • the working mode of the motor that can realize the man-machine cooperation uses the assisting mathematical model in the model memory to cooperate with the assisting demand, and substitutes the speed parameter provided by the magnetic block speed calculator into the assisting mathematical model to assist the model calculator.
  • the digital signal of the power assist model is to enable people to match with electric bicycles.
  • the power model calculator is a digital processor that can accept any digitized mathematical model.
  • the power model memory can provide any artificially set mathematical model to the power model calculator. It is possible to set up a mathematical model that enables people to work with electric bicycles.
  • the mathematical model set by the help model memory which can make people and electric bicycles match, can realize the working mode of the motor with the electric bicycle.
  • the mathematical model can also make the motor have the most reasonable starting and running. Model, the most energy-efficient way of working. Therefore, the assist bicycle of the present invention is a power-saving bicycle that is matched with an electric bicycle.
  • the power-assisted bicycle of the present invention is compared with the commercially available power-assisted bicycle with the same magnetic pole as the sensing component on the same magnetic pole block, and the same electric bicycle is used for replacement.
  • the same rider rides on the same road section and the result is: After riding the 110 km of the assisted bicycle of the invention, the battery still has a small amount of electricity; but with the booster bicycle purchased in the city After riding for 45 kilometers, there is no battery left.
  • the significance of the power saving is that the fully-powered bicycle of the present invention can satisfy the whole day riding without charging, and solves the big problem that the bicycle is unable to assist the existing assist bicycle on the way.
  • FIG. 1 is a schematic structural view of a sensing element of a plurality of N-S alternating permanent magnet blocks of an annular groove rotating disk;
  • FIG. 2 is a schematic structural view of a sensing element of a high density plurality of N-S alternating permanent magnet blocks on an annular groove rotating disk;
  • FIG. 3 is a schematic cross-sectional structural view showing a relationship between a center axis of a bicycle and a sleeve and a sensor;
  • FIG. 4 is a block diagram of signal flow of a Hall, a power assist model processor, a digital to analog converter, and an operational amplifier;
  • Figure 5 is a circuit diagram of a Hall, a microcontroller, a digital-to-analog converter, and an operational amplifier;
  • Fig. 6 is a schematic view showing the connection relationship of the sensor provided on the center shaft of the electric bicycle to constitute the assist bicycle of the present invention.
  • 1 is an annular groove rotating disk
  • 2 is a permanent magnet block
  • 3 is a Hall
  • 5 is a circular trajectory line
  • 21 is a power assist model processor
  • 24 is an analog to digital conversion and speed calculator
  • 25 is a power assist model memory.
  • 26 is the power model calculator
  • 27 is the digital-to-analog converter
  • 28 is the operational amplifier
  • 29 is the motor controller
  • 30 is the motor
  • 31 is the single-chip microcomputer
  • 32 is the clock circuit
  • 40 is the annular groove fixed disk
  • 41 is hollow Ring
  • 42 is the bearing
  • 51 is the center shaft
  • 52 is the bushing
  • 53 is the chain plate
  • 54 is the foot pedal
  • 55 is the battery
  • 58 is the circular recess
  • 59 is the circuit board.
  • Embodiment 1 A booster bicycle with a multi-magnetic block in a housing and a sensor
  • the sensor of the present invention is mounted on the center shaft 51 of the existing electric bicycle, and the sensor is The signal output line is connected to the motor controller 29 of the electric bicycle to obtain the assist bicycle of the present invention.
  • the electric bicycle has a middle shaft 51, the middle portion 51 has a sleeve 52 in the middle portion, and the middle shaft 51 is rotatably connected with the sleeve 52; the chain shaft 53 is fixed on the central shaft 51.
  • the inner shaft 51 is respectively fixed with a foot pedal 54; the inner surface of the sleeve 52 is rotatably connected with the central shaft 51, and the outer surface of the sleeve 52 is fixedly connected with the frame of the electric bicycle; the electric battery 55 is connected to the motor control
  • the motor controller 29 is coupled to the motor 30 on the wheel.
  • the sensor comprises a sensing element connected in sequence, a boost model processor 21, a digital to analog converter 27 and an operational amplifier 28;
  • the sensing element is an element that converts the rotational motion of the rotating disk 1 into a rectangular wave signal output
  • the annular groove rotating disk 1 and the annular groove fixing disk 40 are sized so that the annular groove fixing disk 40 can be fitted in the ring shape.
  • the concave groove rotates the annular groove of the disk 1 to form a fitting inner hollow outer casing of two disks, the concave surfaces of the two disks are sandwiched into a hollow ring 41; the annular groove at the position of the hollow ring 41 rotates the disk 1
  • the annular groove rotating disk 1 and the annular groove fixing disk 40 are injection molded from high-strength plastic.
  • the magnetic flux is 0. 8cm, the magnetic flux is 0. 8cm, the magnetic flux is 0. 8cm, the magnetic flux is 0. 8cm, the magnetic flux is 0. 8cm, the magnetic flux It is a value of 146---279(B ⁇ H)max/KJ ⁇ m" 3.
  • the structure of the ring groove rotating disk 1, permanent magnet block 2, and Hall 3 is as follows:
  • All the permanent magnet blocks 2 are distributed in a circular trajectory, and each permanent magnet block 2 is fixed on a circular trajectory line 5 having a diameter of 9.0 cm, that is, the distance from the center of each circular portion of the permanent magnet block 2 to the circular trajectory line 5. The distance between the same, adjacent permanent magnet blocks 2 is the same.
  • All the permanent magnet blocks 2 disposed on one surface of the rotating disk 1 are arranged in such a manner that the magnetic polarities of the adjacent permanent magnetic blocks 2 are opposite, that is, the magnetic polarity distribution pattern of all the permanent magnet blocks 2 on one surface of the rotating disk 1 is N pole, S Pole, N pole, S pole, N pole, S pole...
  • a Hall 3 is fixedly disposed on the annular groove fixing plate 40 in the hollow ring 41.
  • the signal output line of the Hall 3 passes through the annular groove fixing plate 40, and the Hall 3 is disposed close to the permanent magnet block 2.
  • the Hall 3 is disposed in the range of the circular trajectory line 5 where each of the permanent magnet blocks 2 is located, and the Hall 3 maintains a distance of 0.3 cm from each of the permanent magnet blocks 2 in the rotating state, so that each permanent magnet block that rotates 2 When passing through Hall 3, Hall 3 can generate a corresponding rectangular wave electrical signal output.
  • the rotating disk 1 is provided with a center hole in the center of the circular trajectory 5 where the permanent magnet block 2 is located, and the center hole is fitted over the pedal center shaft 51 of the assist bicycle.
  • the assist model processor 21 is a converter that converts the digital signal rotated by the rotating disk 1 into a signal form of the assist model digital signal;
  • the assist model processor 21 includes an analog to digital conversion and speed calculator 24, a boost model memory 25 and a boost model calculator 26;
  • the analog-to-digital conversion and speed calculator 24 is connected to the Hall 3 of the sensing element; the analog-to-digital conversion and speed calculator 24 calculates the rate of change between the rectangular waves of the rectangular wave signal input from the Hall 3 to represent the rotating disk 1 Rotating speed;
  • the analog to digital conversion and speed calculator 24 is coupled to the boost model calculator 26, which is also coupled to the boost model calculator 26; the boost model calculator 26 is rotated by the analog to digital conversion and speed calculator 24
  • the digital signal selects one of the assist model functions in the model memory 25, and finally substitutes the rotational speed digital signal into the assist model calculator 26 to calculate a boost model digital signal suitable for the rotational speed of the rotating disk 1. That is, the assist model calculator 26 can output the boost model digital signal.
  • the digital-to-analog converter 27 is an analog signal that converts the power-assisted model digital signal into a power-assisted model.
  • the assist model calculator 26 is connected to the digital-to-analog converter 27, which converts the assist model digital signal of the assist model calculator 26 into a boost model analog signal. In order to output an analog signal of the assist model to the motor controller 29 which can only process the analog signal.
  • the operational amplifier 28 is a boost model analog signal that converts the assist model analog signal of the digital-to-analog converter 27 into a rated voltage range.
  • the digital-to-analog converter 27 is connected to the operational amplifier 28.
  • the power-assisted model analog signal of the digital-to-analog converter 27 solves the power-assisted model problem, but the voltage of the power-assisted model signal cannot meet the needs of the motor controller 29, so an operational amplifier is also used.
  • the auxiliary model analog signal required to convert the assist model analog signal into the rated voltage range can be transmitted to the motor controller 29 to achieve the purpose of the motor controller 29 controlling the motor 30 for the purpose of assisting.
  • the annular groove rotating disk 1 and the annular groove fixing plate 40 of the sensor are sleeved outside the middle shaft 51 of the electric bicycle, and the annular groove fixing plate 40 and the central shaft 51 are externally
  • the sleeve 52 is fixedly connected, the annular groove rotating disk 1 of the sensor is fixedly connected with the middle shaft 51 of the electric bicycle, the annular groove rotating disk 1 is synchronously rotated with the middle shaft 51; the annular groove rotating disk 1 and the annular groove fixing plate 40 inner and outer phase sleeves are fitted into a rotational connection; the annular groove rotating disk 1 and the central axis 51 are the same center of rotation, and the signal output wire of the operational amplifier 28 in the sensor is connected to the signal input end of the motor controller 29 of the electric bicycle.
  • the permanent magnet block 2 on the annular groove rotating disk 1 rotates synchronously with the center shaft 51, and the permanent magnet block 2 rotates synchronously with the bicycle foot pedal 54, and the rotation of the permanent magnet block 2 rotates at the same angle as the foot pedal 54.
  • the Hall 3 on the annular groove fixing disk 40 senses the rotation angle and speed of the foot pedal 54 by sensing the rotation of the permanent magnet block 2.
  • the Hall 3 transmits a speed electric signal that senses the rotation of the permanent magnet block 2, that is, a speed electric signal representing the rotation of the foot pedal 54, to the electronic component assist model processor 21, the digital-to-analog converter 27, and the operational amplifier 28 on the circuit board 59. Perform signal processing.
  • the operational amplifier 28 is connected to the motor controller 29 of the electric bicycle, and realizes the purpose of controlling the electric bicycle by the electric signal of the sensor, that is, using the operational amplifier 28 assisted model analog signals, or standard assisted model analog signals to control electric bicycles, get assisted bicycles. Since the assist model analog signal output from the operational amplifier 28 is a signal that can assist the bicycle motor 30 to move in accordance with the assisting needs of the rider, the assist bicycle of the present embodiment is a assist bicycle in which the human function is matched.
  • Embodiment 2 A booster bicycle with a multi-magnetic block and a hook-distributing sensor in a high-density housing
  • the annular groove in the hollow ring 41 rotates the disk 1 surface diameter of 10. 0 cm, in the ring groove rotating disk 1 set 40 permanent magnet blocks 2, 40 permanent magnet blocks 2
  • the diameter is 0.6 cm
  • the magnetic flux is one of 146-279 (B ⁇ H)max/KJ ⁇ m- 3 .
  • the Hall 3 maintains a separation distance of 0.2 cm from each of the permanent magnet blocks 2 in the rotating state, so that each of the rotating permanent magnet blocks 2 passes through the Hall 3, and the Hall 3 can generate a corresponding rectangular wave electric signal output.
  • the structures of the other rotating disk 1, permanent magnet block 2, and Hall 3 are the same as those in the first embodiment.
  • Embodiment 3 A power assisting bicycle with a specific circuit for multi-magnetic blocks in a housing
  • the senor includes a sensor element, a boost model processor 21, a digital-to-analog converter 27, and an operational amplifier 28;
  • Hall 3 in the sensing element is UGN3075; the other components and components in the sensing element have the same structure as in Embodiment 1;
  • Power model processor 21 Selecting the single-chip microcomputer 31 to complete all functions, the single-chip 31 selects AT89S52. That is, the AT89S52 MCU 31 performs all functions of the analog-to-digital conversion and speed calculator 24, the assist model memory 25, and the boost model calculator 26.
  • Digital-to-analog converter 27 uses ADC-C8E.
  • the operational amplifier 28 selects OF-17F, the OF-17F operational amplifier 28 has a 5k thermistor R6 connected between the input 2 pin and the output 6 pin; and the thermistor R6 is also connected with 8P capacitor in parallel. C6.
  • the 4 pin of the digital-to-analog converter 27 is grounded to the 2 pin of the operational amplifier 28 with 1.25k of R5. It can be used with thermistor R6 to adjust the operational amplifier.
  • the analog signal voltage range of the 286 pin output is stable between 0.8--4.2V.
  • connection relationship of each electronic component is as follows:
  • the signal output terminal 3 of Hall 3 is connected to the 12-pin INTO [P32] of the single chip microcomputer 31 ;
  • MCU 31's 39-pin P00 is connected to the digital-to-analog converter 27's 12-pin B8;
  • Mp 31 of the MCU 31 pin P01 is connected to the digital-to-analog converter 27 of the 11-pin B7;
  • MCU 31's 37-pin P02 is connected to the digital-to-analog converter 27's 10 feet B6;
  • the 36-pin P03 of the MCU 31 is connected to the 9-pin B5 of the digital-to-analog converter 27;
  • MCU 31's 35-pin P04 is connected to the digital-to-analog converter 27's 8-pin B4;
  • the 34-pin P05 of the MCU 31 is connected to the 7-pin B3 of the digital-to-analog converter 27;
  • the pin 33 of the single chip 31 is connected to the 6 pin B2 of the digital to analog converter 27;
  • the 32-pin P07 of the single chip microcomputer 31 is connected to the 5-pin B1 of the digital-to-analog converter 27;
  • the 4-pin of the digital-to-analog converter 27 is connected to the 2 pin of the operational amplifier 28;
  • the 2-pin of the digital-to-analog converter 27 is connected to the 3 pin of the operational amplifier 28;
  • the 6th pin of the operational amplifier 28 is the analog signal output.
  • the mechanical component of the sensor comprises an annular groove rotating disk 1 and a fitting annular groove fixing disk 40
  • the sensing component of the sensor comprises a plurality of permanent magnet blocks 2 Hall 3, single chip microcomputer 31, digital to analog converter 27 and operational amplifier 28
  • four electronic components of Hall 3, single chip microcomputer 31, digital to analog converter 27 and operational amplifier 28 which are sequentially connected in the sensing unit are provided on one circuit board 59
  • a plurality of permanent magnet blocks 2 are fixed on the inner wall of the annular groove rotating disk 1 of the hollow ring 41, and the circuit board 59 is fixed on the inner wall of the annular groove fixing disk 40 of the hollow ring 41.
  • the Hall 3 on the circuit board 59 is disposed in the upper wall.
  • the magnetic flux of the permanent magnet block 2 is sensed, and the Hall 3 can output the position of the varying electrical signal according to the change in the magnetic flux.
  • the sensing component is the sensing function of the sensor; the mechanical component has two functions. The first is to fix the relative position of each component in the sensing component, so that each component can form a sensing functional whole, and the second is to This sensing function is fixed on the electric bicycle as a whole, and makes the sensing function as a whole to sense the movement state of the electric bicycle.
  • the four electronic components of the sequentially connected Hall 3, the single chip microcomputer 31, the digital-to-analog converter 27 and the operational amplifier 28 are arranged on a circuit board 59, which is advantageous for integration, modularization and miniaturization of the four electronic components.
  • the four electronic components are integrally fixed to the inner wall of the annular groove fixing disk 40 of the hollow ring 41, which simplifies the process of manufacturing the sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Control Of Electric Motors In General (AREA)
  • Measuring Magnetic Variables (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种用壳体内多磁块均匀分布传感器的助力自行车,属于多点位磁感应提供助力信号的电动助力自行车。传感器包括依次连接的传感元件、助力模型处理器(21)、数模转换器(27)、运算放大器(28),传感元件包括相嵌合的转动盘(1)和固定盘(40),以及在转动盘(1)和固定盘(40)内空中的永磁块(2)和霍尔(3),转动盘(1)上设置有多个相邻磁极性相反的多个永磁块(2),固定盘(1)上的霍尔(3)设在接近永磁块(2)的位置。传感器套在自行车的中轴(51)外,运算放大器(28)与电机控制器(29)连接。永磁块(2)与霍尔(3)的相对位置固定,霍尔(3)可获得矩形波信号,便于传感器经数字处理输出,控制信号中加入人为设定、并可调节的助力模型,使人机能最佳配合且能省电。

Description

用壳体内多磁块均匀分布传感器的助力自行车
技术领域
本发明属于助力自行车的技术领域,特别是涉及在一个转动部件上进行多点位磁感应 提供助力信号的电动助力自行车。
背景技术
野宝车料工业(昆山)有限公司申请的中国专利 201020295192.0《勾爪式力矩传感装 置》公开了一种助力自行车用传感装置, 传感装置包括磁性件和弹性件配合, 感受力矩的 传感装置。使用时间长后,弹性件的弹性系数变化就会导致传感信号与被控电机的控制效 果发生变化, 助力效果变得与人的助力需要不配合。而且用弹性件的设计结构复杂, 制造 成本高。
北京科技大学申请的中国专利 01201843.0《电动助力自行车自动检测装置》公开了一 种电动助力自行车自动检测装置,无接触检测蹬力、速度和转向,该装置在相对运动的内、 外轮盘上分别设磁片, 内轮盘上有弹簧, 内、外轮盘之间用弹簧复位, 用支架上的两个霍 尔测内、 外轮盘上相对运动的磁片产生的电信号表示蹬力、 速度和转向。
缺点 (1 ) 用弹性件不耐久: 使用时间长后, 弹性件的弹性系数变化就会导致传感信 号与被控电机的控制效果发生变化, 助力效果变得与人的助力需要不配合, 结构复杂, 成 本高。
缺点 (2) 输出正弦波使磁片组边缘距离不能小于 4厘米, 一般以 5厘米为佳, 而使 可设磁片组数太少, 人机配合不理想: 各磁片组相同, 则霍尔输出的是正弦波作为控制信 号,作为控制信号正弦波必需有一定峰谷差值, 由于该专利的磁片组需要一定长度表示正 反向运动, 在直径为 20厘米的环形凹槽转动盘圆形轨迹上最多设 8个磁片组, 一般以 5 个为佳,霍尔才能有控制功能的正弦波信号。也就是说, 01201843.0专利的这种技术方案, 用于助力自行车, 磁片组数量受限止在 8个以内, 控制信号太少, 人机配合不理想。但如 果多于 8个磁片组, 在人踏车较快时, 霍尔输出的信号图形接近为一条水平线, 该信号没 有控制功能, 不能控制电动机, 使其特别需要助力时, 失去助力功能。
缺点 (3 )信号盲区达 45度角, 启动时需要助力的时候确得不到助力: 众所周知, 人 踩自行车脚踏板在顶点力矩最小, 从离开顶点 10-45度角是最需要助力的区域, 但该专利 各磁片组之间的夹角为 45度, 在脚踏板离开顶点 10-45度角区域没有一个磁片组, 也就 没有一个控制信号, 其结果是最需要助力的时候, 但助力自行车的电机确不能助力。
总之, 除用弹性件不耐久又结构复杂外, 因霍尔与磁片组的配合结构特点, 转盘大小 直径为 20厘米以内, 限止了磁片组数量为 8组, 磁片组数不能随意增加, 使人机配合不 理想, 而且启动时得不到助力, 助力需求与提供助力不匹配, 骑车人的舒适性差; 如强行 增加磁片组数量, 其传感信号又失去助力控制功能。
王乃康申请的中国专利 03264387.X《时间型电动助力自行车传感器》 公开了不用弹 性件, 只用动、 定两个转盘, 动盘上面镶嵌两个永磁磁钢, 定盘上面镶嵌三个霍尔元件, 自行车踏板转一周, 每个霍尔产生两个脉冲, 则三个霍尔元件产生六个脉冲。分折可得三 个特点, 四个缺点如下:
特点 (1 ) 为获得六个脉冲信号, 只能是各永磁磁钢相同磁极在一面: 每个霍尔要产 生两个脉冲, 则只能是两个永磁磁钢的相同磁极设在动盘的同一面, 即在动盘的某一面, 两个永磁磁钢都是北极或都是南极。假如在动盘的同一面, 一个永磁磁钢为北极, 另一个 为南极, 则踏板转一周, 每个霍尔就只能产生一个脉冲, 三个霍尔就只有三个脉冲, 这就 不合乎该专利说明书记载了。为了增加脉冲数, 提高控制效果, 只能是各永磁磁钢相同磁 极在一面。
特点 (2) 永磁磁钢用于表示踏板固定位置, 三个霍尔表示踏板运动位置: 由于踏板 与动盘是同步转动,所以在与两个踏板对应的动盘上两个位置分别固定一个永磁磁钢,某 一个踏板转在什么位置, 则对应的永磁磁钢也转在什么位置; 但只有转在有霍尔的位置, 才能通过霍尔发出控制信号, 指挥助力自行车的电机产生需要的助力转动。
特点 (3 ) 因为一个霍尔不能表示转一周中不同时段踏板运动的位置, 则就不能只用 一个霍尔: 踏板在转一周中的不同时段, 对助力需求是有很大差别的, 要体现这种助力需 求的变化,该专利用三个霍尔分别设在 180度角以内的三个位置,两个永磁磁钢分别设在 两个踏板位置,踏板转在有霍尔的位置,该霍尔就输出信号表示踏板到达了该霍元的位置。 但用多个霍尔又存在下面的缺点。
作为助力自行车传感器的这些特点会有三个缺点:
缺点 (1 ) 用两个没有差异性的永磁磁钢分别表示两个踏板的固定位置, 就只能用多 个霍尔来表示踏板的转动位置:两个永磁磁钢没有差异性,优点是可以不分左右脚的分别 表示两个踏板的固定位置, 使其左右脚发生助力需求, 可产生相同的电机助力效果; 但缺 点是永磁磁钢本身就不能表示踏板的转动位置,而只能用多个霍尔设在不同的转角位置来 表示踏板的转动位置, 所以不能只用一个霍尔, 而必需用多个霍尔。
缺点 (2) 不能只用一个霍尔, 而三个霍尔必然造成三个控制信号有原始分段误差, 使助力需求模型失真, 自然产生助力输出与助力需求不一致:助力自行车不论是一个或两 个电机,其控制电机的传感信号只能用一个传感信号输入电机控制器才能达到控制电机的 目的;而该专利用三个霍尔控制电机,则必需把三个霍尔的三个控制信号合并为一个合并 控制信号后才能输入电机控制器。三个霍尔的传感参数不可能一样,特别是由于环境温度 变化、使用时间长后,三个霍尔的传感参数可能差异很大,其结果造成相同的助力需求时, 不同霍尔的输出的是不同电压,导致电机产生不同的助力输出,助力输出与助力需求不一 致; 同理相同的助力需求时, 不同霍尔的输出的又可能是相同电压, 导致电机产生同一种 助力输出, 也产生助力输出与助力需求不一致的问题。
缺点 (3 ) 合并控制信号易产生信号漂移, 使合并控制信号与电机控制器不匹配, 助 力需求模型失真:由于环境温度变化、使用时间长后,三个霍尔的传感参数可能差异很大, 三个霍尔的三个控制信号连接点必然变化,则相同的助力需求产生的合并控制信号就会产 生分段性的信号漂移, 合并控制信号作为一整体产生信号失真, 即助力需求模型失真, 造 成电机控制器选用三个控制信号的任何一个作为基准都会产生助力输出与助力需求不一 致的问题。
缺点 (4) 传感位点不能随意增加, 传感位点太少, 电机运行就不平稳, 使骑车的人 感觉很不舒服: 由于有缺点 (1 )和缺点 (2)都最因为霍尔数量大于一个造成的, 很明显 霍尔数量越量越多, 缺点 (1 )和缺点 (2)表现越严重。 所以, 该专利提供的助力自行车 只能是使骑车的人感觉舒适性很不好的助力自行车。
缺点 (5 )信号盲区达 42度角, 启动时需要助力的时候确得不到助力: 众所周知, 人 踩自行车脚踏板在顶点力矩最小, 从离开顶点 10-45度角是最需要助力的区域, 但该专利 各霍尔之间的夹角为 42.5-43.5度, 在脚踏板离开顶点 10-42度角区域没有一个霍尔, 也 就没有一个控制信号, 其结果是最需要助力的时候, 但助力自行车的电机确不能助力。
总之,该专利是用多个霍尔控制助力模式的技术方案, 因为只能用多个霍尔来表示踏 板的转动位置,多个霍尔的多个控制信号必然有原始误差,其合并控制信号又易产生信号 漂移,都可造成助力需求模型失真,即不同时间的相同助力需求,但获得不同的助力效果; 霍尔数量越量越多, 助力需求模型失真越严重, 限止了霍尔了数量, 霍尔少数量了又产生 电机运行就不平稳, 使骑车的人感觉很不舒服, 而且启动时得不到助力。使其要助力需求 模型不失真, 和要电机运行平稳这两个问题上总是顾此失彼, 不可兼得。
发明内容
本发明的目的是提供只用一个霍尔和环形凹槽转动盘上各个永磁块转动获得自行车 踏板的速度信号、并对信号进行数字化处理成为有助力模型信号传感器的助力自行车;是 一种在霍尔可感应区域内, 能尽量增加永磁块数量, 最大限度利用自行车踏板位移信息, 传感器是用一个组合件固定霍尔和多个永磁块的助力自行车;在使用助力自行车上,骑车 人的助力需求与电机提供的助力匹配良好, 电机运行平稳的助力自行车。
本发明的构思是:在一个霍尔可感受范围内,一个环形凹槽转动盘上用相同的多个永 磁块向霍尔的那一面进行南、北磁极性交替变化, 使霍尔产生的信号为矩形波, 使信号的 控制功能更强、 数量更多。 对于助力自行车, 表达脚踏板运动状态的信息量更多。
用一个机械结构的组合件固定传感元件霍尔和多个永磁块的相对位置,使其传感信号 稳定可靠。
把霍尔输出的矩形波信号变为数字信号,方使对霍尔的数字信号进行数字化处理,在 数字化处理过程中可加入使人机能配合的助力数学模型,助力数学模型是可按人机配合进 行随意调整的。可以克服现有技术霍尔输出的正弦波信号难以进行数字化处理,只能进行 模拟化信号处理而不能加入可随意调整的助力模型、克服了只能提取受速度信号条件限止 的助力模型、 克服了使人机不能配合的问题。
环形凹槽转动盘与环形凹槽固定盘内外相套的嵌合成转动连接,环形凹槽转动盘和中 轴两者为相同的转动中心,使凹槽转动盘与脚踏板同步转动,则使凹槽转动盘上的多枚永 磁块与脚踏板同步转动, 霍尔就能采集到脚踏板的运动状态, 所以, 传感器就能感受到骑 车的助力需求。
本发明的结构是:
用壳体内多磁块均勾分布传感器的助力自行车,包括电动自行车和传感器, 电动自行 车有中轴 51, 中轴 51中间段套有套管 52, 中轴 51与套管 52转动连接; 中轴 51上固定 有链盘 53,中轴 51两端分别固定有脚踏板 54;电动自行车上电池 55连接电机控制器 29, 电机控制器 29连接车轮上的电机 30; 其特征在于:
传感器的结构和部件的连接关系如下:
传感器包括依次连接的传感元件、 助力模型处理器 21、 数模转换器 27和运算放大器 28;
[ 1 ] 传感元件是把环形凹槽转动盘 1的转动运动变为矩形波信号输出的元件;
传感元件包括一块环形凹槽转动盘 1、环形凹槽固定盘 40、一个霍尔 3和多枚永磁块 2, 多枚永磁块 2的大小相同、 形状相同、 磁通量相同, 环形凹槽转动盘 1和环形凹槽固 定盘 40两者的凹面相对, 环形凹槽固定盘 40嵌合在环形凹槽转动盘 1的环形凹槽之中, 成两个盘能相对转动的嵌合内空外壳, 两个盘的凹面夹成一个空心环 41 ; 在空心环 41位 置的环形凹槽转动盘 1上固定设置有多枚永磁块 2,该多枚永磁块 2均勾地呈圆形轨迹分 布, 即每枚永磁块 2到圆形轨迹线 5所在圆中心的距离相同、相邻两枚永磁块 2之间的距 离相同; 每枚永磁块 2磁极性的 N极和 S极分别在环形凹槽转动盘 1的两面, 相邻两枚 永磁块 2的磁极性相反, 一块环形凹槽转动盘 1上全部永磁块 2的磁极性分布方式是 N 极、 S极、 N极、 S极、 N极、 S极 ······;
在空心环 41的环形凹槽固定盘 40上固定设置有一个霍尔 3,霍尔 3设在接近永磁块 2并能感受每个永磁块 2磁通量的位置, 霍尔 3与永磁块 2之间有间距; 霍尔 3是对相反 磁极性产生矩形波输出信号的霍尔;
[2]助力模型处理器 21是把转动盘 1转动的数字信号变为助力模型数字信号的信号形式 转换器;
助力模型处理器 21包括模数转换和速度计算器 24、 助力模型存储器 25和助力模型 计算器 26;
模数转换和速度计算器 24与传感元件的霍尔 3连接;模数转换和速度计算器 24把霍 尔 3输入的矩形波信号计算出各矩形波之间的变化速度表示转动盘 1的转速;
模数转换和速度计算器 24与助力模型计算器 26连接, 助力模型存储器 25也与助力 模型计算器 26连接; 助力模型计算器 26用模数转换和速度计算器 24的转动盘 1转速选 择助力模型存储器 25中的某一种助力模型函数, 并将转动盘 1转速条件代入助力模型函 数, 计算出适合的助力模型数字信号, 即助力模型计算器 26输出助力模型数字信号; [3 ] 数模转换器 27是把助力模型数字信号转换成助力模型的模拟信号;
助力模型计算器 26与数模转换器 27连接,数模转换器 27把助力模型计算器 26的助 力模型数字信号转换成助力模型模拟信号;
[4] 运算放大器 28是把数模转换器 27的助力模型模拟信号转换成额定电压范围的助力 模型模拟信号。
传感器与电动自行车的连接关系是: 传感器的环形凹槽转动盘 1 和环形凹槽固定盘
40套在电动自行车的中轴 51外, 并且环形凹槽固定盘 40与中轴 51外的套管 52固定连 接, 传感器的环形凹槽转动盘 1与电动自行车的中轴 51固定连接, 环形凹槽转动盘 1伴 随中轴 51同步转动;环形凹槽转动盘 1与环形凹槽固定盘 40内外相套的嵌合成转动连接; 环形凹槽转动盘 1和中轴 51两者为相同的转动中心,传感器中运算放大器 28的信号输出 导线与电动自行车的电机控制器 29的信号输入端连接。
一、对传感器工作原理的说明: 以工作原理把传感器分为信号获取和信号处理, 以便 说明传感器的各个部件的结构关系和作用。信号获取由传感元件的环形凹槽转动盘 1、环 形凹槽固定盘 40、 永磁块 2和霍尔 3进行合理设置而执行获取信号功能; 信号处理由助 力模型处理器 21、 数模转换器 27和运算放大器 28依次连接把霍尔 3输出的信号处理成 电动自行车的电机控制器 29能使用的助力模型模拟信号。
[一] 对传感元件的说明: 环形凹槽转动盘 1与环形凹槽固定盘 40即嵌合, 又能相对转动, 保证了在环形凹槽 转动盘 1转动状态,霍尔 3与全部永磁块 2的感应位置不变化,使霍尔 3的输出信号只与 全部永磁块 2的转动有关,而与环形凹槽转动盘 1与环形凹槽固定盘 40以下的物件无关; 如果环形凹槽转动盘 1与环形凹槽固定盘 40用金属材料, 又可有屏蔽作用, 所以, 用环 形凹槽转动盘 1与环形凹槽固定盘 40将霍尔 3与全部永磁块 2置于空心环 41进行感应, 提高了霍尔 3信号的可靠性、 真实性。
当把环形凹槽固定盘 40固定在某一物件上, 转动环形凹槽转动盘 1, 环形凹槽转动 盘 1上的各个永磁块 2扫过环形凹槽固定盘 40上的霍尔 3时, 每个永磁块 2都能使霍尔 3产生电信号。 由于相邻两枚永磁块 2的磁极性相反, 即全部永磁块 2的磁极性南、 北交 替的面对霍尔 3, 则霍尔 3产生电信号为矩形波信号, 矩形波信号方便进行数字化处理信 号, 用于实现数字化控制。 现有技术是全部永磁块 2的用同一个磁极性面向霍尔 3, 霍尔 3就只能产生正弦波信号, 所以只能用于模拟控制; 一但霍尔 3的感应参数变化, 模拟控 制就可能失真。 而本发明用矩形波信号实现数字化控制, 不会产生控制失真的问题。
环形凹槽转动盘 1可以是塑料板、 高强度绝板、铜板、铝板等不易变形的材料板。使 用传感元件时,环形凹槽转动盘 1要转动,转动的中心就是多个永磁块 2成圆环形分布所 在圆的中心。
多个永磁块 2在圆环形范围内,成圆环形分布的目的在于可以只用一个霍尔 3感受环 形凹槽转动盘上全部永磁块 2的运动状态,即感受环形凹槽转动盘上全部永磁块 2的运动 速度, 以及速度的变化, 或称加速度, 这一个霍尔 3就能把永磁块 2的运动状态用一个连 续的电信号来表达,又因为全部永磁块 2是分别固定在环形凹槽转动盘即环形凹槽转动盘 1上的, 则霍尔 3产生的连续电信号就能表达环形凹槽转动盘的运动状态。如果把这个连 续电信号用于控制其它物体,这个连续电信号就是控制信号。如果用于控制助力自行车的 电机, 还需要用单片机或其它电子元件作为传感信号处理器, 把控制信号中的速度、加速 度要索转换成需要助力多少的助力信号, 换算的函数就是助力需求模型, 或称助力模型。
霍尔 3设在接近永磁块 2并能感受永磁块 2磁通量的位置,目的在于用霍尔 3感受永 磁块 2的运动状态, 从而感受环形凹槽转动盘 1的运动状态, 即运动速度、 加速度。
相邻永磁块 2的磁极性相反是很重要的技术特征,全部永磁块 2的磁极性分布方式是 N极、 S极、 N极、 S极、 N极、 S极……, 使霍尔 3输出高、 低相间的矩形波信号, 因为作为大小受限止的环形凹槽转动盘,转动一周要获得尽量多的精确变化信号, 当然应 是选用矩形波。矩形波信号的峰谷值变化的时间短, 可在一定的时间内, 产生尽量多的有 控制意义的信号。相邻永磁块 2的磁极性相反的结构产生矩形波,而相邻永磁块 2的磁极 性相同的结构产生正弦波,特别是用于助力自行车时,作为传感部件的环形凹槽转动盘一 般限止在直径为 10-15厘米, 在这种限范围要获得有控制功能的信号, 转动一周, 产生矩 形波比产生正弦波可提供的脉冲个数多 7-9倍。 自然, 相邻永磁块 2的磁极性相反的结构 对助力自行车的控制效果更的, 人与车配合更好, 乘骑人感觉更舒服。
[二]助力模型处理器 21的说明:助力模型处理器 21是把转动盘 1转动的数字信号变为 助力模型数字信号的信号形式转换器;
助力模型处理器 21包括模数转换和速度计算器 24、 助力模型存储器 25和助力模型 计算器 26; 把传感元件中霍尔 3的矩形波信号, 用模数转换和速度计算器 24变为表示转 动盘 1转动速度的数字信号, 再用转速数字信号从助力模型存储器 25中选择适合某种转 速的助力数学模型; 最后把转速数字信号代入助力模型计算器 26, 计算出适合这种速度 的助力模型数字信号。 即助力模型计算器 26就能输出助力模型数字信号。
[三]对数模转换器 27的说明:数模转换器 27是把助力模型数字信号转换成助力模型的 模拟信号。
助力模型计算器 26与数模转换器 27连接,数模转换器 27把助力模型计算器 26的助 力模型数字信号转换成助力模型模拟信号。 以便向只能处理模拟信号的电机控制器 29输 出助力模型的模拟信号。
[四] 对运算放大器 28的说明: 运算放大器 28是把数模转换器 27的助力模型模拟信号 转换成额定电压范围的助力模型模拟信号。
数模转换器 27与运算放大器 28连接, 数模转换器 27的助力模型模拟信号虽然解决 了助力模型问题, 但助力模型信号的电压还不能满足电机控制器 29的需要, 所以还要用 运算放大器 28把助力模型模拟信号转换成额定电压范围需要的助力模型模拟信号, 才能 传输给电机控制器 29。
二、 对传感器与电动自行车连接组成助力自行车的说明:
为说明实物安装,从实物方面传感器分为机械部件和传感部件, 以说明传感器的各个 实物与电动自行车各有关实物的结构关系。机械部件由环形凹槽转动盘 1和环形凹槽固定 盘 40相卡接相嵌成转动连接关系, 组成有环形内空的壳体结构。 壳体环形内空中装有传 感部件, 传感部件的多个永磁块 2固定在壳体环形内空中的环形凹槽转动盘 1的内表面, 永磁块 2与环形凹槽转动盘 1同步转动, 使多个永磁块 2与自行车脚踏板 54同步转动, 达到用多个永磁块 2表示骑自行车人对助力需求的机械动作的目的。 传感部件的霍尔 3、 助力模型处理器 21、 数模转换器 27和运算放大器 28固定在壳体环形内空中环形凹槽固 定盘 40的内表面, 环形凹槽固定盘 40与自行车车架的套管 52固定, 使环形凹槽固定盘 40不随环形凹槽转动盘 1转动, 固定在环形凹槽固定盘 40上的传感部件霍尔 3、 助力模 型处理器 21、数模转换器 27和运算放大器 28也不随环形凹槽转动盘 1转动,使其霍尔 3 能用一个固定位置感受全部永磁块 2的转动位置,从而可以把骑自行车人对助力需求的机 械动作全部变为电信号, 再通过传感部件助力模型处理器 21、数模转换器 27和运算放大 器 28, 把霍尔 3的助力需求电信号变为人机匹配的助力模型电信号, 运算放大器 28把人 机匹配的助力模型电信号传给电机控制器 29, 电机控制器 29控制电机 30按人机匹配的 方式转动, 最终实现助力自行车按人的需求方式运动, 即实现人机匹配的效果。
本发明传感器中各信号处理部件输出的信号为:
霍尔 3输出矩形波信号;
助力模型处理器 21输出助力模型数字信号;
模数转换和速度计算器 24把矩形波信号变为数字信号, 计算并输出环形凹槽转动盘 1的 转速数字信号;
助力模型存储器 25存有多种助力模型函数备用,输出已选定的助力模型函数的数字信号; 助力模型计算器 26计算并输出将用于控制功能的助力模型数字信号;
数模转换器 27输出把助力模型数字信号转换成的助力模型模拟信号;
运算放大器 28输出把助力模型模拟信号转换成额定电压范围的助力模型模拟信号;
热敏电阻 R6保证运算放大器 28输出的是额定电压范围的助力模型模拟信号, 即标 准助力模型模拟信号。
为解决助力模型模拟信号漂移问题设有热敏电阻 R6, 热敏电阻 R6连接在运算放大 器 28的输入端和输出端之间。
霍尔 3、 数模转换器 27和运算放大器 28都是半导体器件, 又有处理模拟信号功能, 很易随温度变化而使信号参数产生漂移, 特别是夏天和冬天, 助力自行车又都在室外,温 度变化产生信号参数漂移的效果明显, 所以, 最好对运算放大器 28输出的信号进行信号 漂移修正,获得不受温度变化影响的标准助力模型模拟信号,将标准助力模型模拟信号通 过电机控制器 29控制电机 30运行,骑助力自行车的人就不会感到夏天和冬天助力效果不 同的问题。
助力模型处理器 21是单片机 31,单片机 31上连接有时钟电路 32。用单片机 31完成 模数转换和速度计算器 24、 助力模型存储器 25和助力模型计算器 26的功能。 时钟电路 32的时钟信号是用于对霍尔 3输入的矩形波信号进行区分的作用, 优选每个时钟信号的 长度为 0.001秒。
传感器的机械部件与传感部件结构关系: 传感器的机械部件包括环形凹槽转动盘 1 和相嵌合的环形凹槽固定盘 40,传感器的传感部件包括多个永磁块 2、霍尔 3、单片机 31、 数模转换器 27和运算放大器 28; 传感部件中依次相连的霍尔 3、 单片机 31、 数模转换器 27和运算放大器 28四个电子元件设在一块电路板 59上;在空心环 41的环形凹槽转动盘 1内壁固定多个永磁块 2, 在空心环 41的环形凹槽固定盘 40内壁固定电路板 59, 电路板 59上的霍尔 3设在能感受永磁块 2的磁通量, 并且霍尔 3能根据磁通量变化输出变化电 信号的位置。传感部件是传感器的传感功能部件; 机械部件是有两个功能, 第一是固定传 感部件中的各个元件的相对位置,使各个元件能组成一个传感功能性整体,第二是把这一 个传感功能性整体固定在电动自行车上,并使这个传感功能性整体能传感电动自行车的运 动状态。把依次相连的霍尔 3、单片机 31、数模转换器 27和运算放大器 28四个电子元件 设在一块电路板 59上, 有利这四个电子元件集成化、 模块化、 小型化, 方便把这四个电 子元件整体统一固定在空心环 41的环形凹槽固定盘 40内壁,使生产制造传感器的工艺简 化。
本发明的传感器各部件的优选型号和具体连接方式为: 霍尔 3是 UGN3075 , 助力模 型处理器 21是 AT89S52单片机 31,数模转换器 27是 ADC-C8E;运算放大器 28是 OF-17F, OF-17F运算放大器 28的输入端 2脚与输出端 6脚之间连接有热敏电阻 R6; 各部件连接 关系如下:
霍尔 3的信号输出端 3脚连接单片机 31的 12脚 INTO [P32];
单片机 31的 39脚 P00连接数模转换器 27的 12脚 B8;
单片机 31的 38脚 P01连接数模转换器 27的 11脚 B7;
单片机 31的 37脚 P02连接数模转换器 27的 10脚 B6;
单片机 31的 36脚 P03连接数模转换器 27的 9脚 B5 ;
单片机 31的 35脚 P04连接数模转换器 27的 8脚 B4;
单片机 31的 34脚 P05连接数模转换器 27的 7脚 B3 ;
单片机 31的 33脚 P06连接数模转换器 27的 6脚 B2;
单片机 31的 32脚 P07连接数模转换器 27的 5脚 B1;
数模转换器 27的 4脚连接运算放大器 28的 2脚;
数模转换器 27的 2脚连接运算放大器 28的 3脚;
运算放大器 28的 6脚为模拟信号输出端。
OF-17F运算放大器 28的输入端 2脚与输出端 6脚之间连接有热敏电阻 R6, 而且热敏电 阻 R6两端还并联有电容 C6。 优选热敏电阻 R6为 5K, 电容 C6为 8Ρ, 数模转换器 27的 4脚与运算放大器 28的 2脚之间用 1.25k的 R5接地。 使其可用热敏电阻 R6调节运算放 大器 286脚输出的模拟信号电压范围稳定在 0.8--4.2V之间。
环形凹槽固定盘 40 内圈的外表面与环形凹槽转动盘 1 内圈的内表面之间设有轴承 42。轴承 42使环形凹槽固定盘 40与环形凹槽转动盘 1之间能长时间保持良好的相对转动。
传感器的环形凹槽固定盘 40外表面设有圆形凹陷 58; 圆形凹陷 58与电动自行车中 轴 51外的套管 52卡接,成套管 52卡套在圆形凹陷 58内固定连接的结构。用环形凹槽固 定盘 40的圆形凹陷 58与电动自行车中轴 51外的套管 52卡接固定有装配简单、方便清洗、 外形美观的效果。
霍尔 3设在正对多枚永磁块 2的圆形轨迹线 5的位置。因为霍尔 3是能有间距感受永 磁块 2磁通量而输出电信号的部件,又为了尽量减小永磁块 2的体积,使其在环形凹槽转 动盘 1上尽量多的设置永磁块 2, 使尽量减小的永磁块 2都能被霍尔 3感应; 霍尔 3应设 在正对圆形轨迹线 5的位置,而且最好设在接近能贯穿全部永磁块 2的圆形轨迹线的位置。
环形凹槽转动盘 1在多枚永磁块 2的圆形轨迹线 5所在圆范围内设有中心孔。如果环 形凹槽转动盘 1要穿套在一个转动轴上使用,环形凹槽转动盘 1上就要设一个穿套转动轴 的孔;为保证环形凹槽转动盘 1在随转动轴转动时,霍尔 3能感受环形凹槽转动盘 1上每 个永磁块 2的运动信号,则环形凹槽转动盘 1上的穿套孔应设在多个永磁块 2的圆形轨迹 线 5所在圆范围的中心, 成为中心孔。 也就是说, 中心孔不一定是圆形, 可以是方形、三 角形等形状, 以便可以与方形、三角形等形状的转动轴相套, 但中心孔的内空一定包括圆 形轨迹线 5所在圆的中心,才能使用一个霍尔 3感受环形凹槽转动盘 1环形凹槽转动盘上 全部永磁块 2的运动信号。
环形凹槽转动盘 1是不导磁材料的塑料板、铝材板、铜材板的某一种。 由于本发明是 相邻永磁块 2的磁极性相反的结构, 能使相邻永磁块 2的边缘几乎可相贴也能使霍尔 3 输出有控制功能的电信号。
本发明的优点: 结构简单、成本低、永磁块环上的永磁块数量不受限止、输出标准的 脉冲信号、没有信号盲区、只用一个霍尔的一组输出信号就能完全表示动盘的全部运动状 态、输出信号不会失真不漂移, 用于助力自行车, 使助力输出与助力需求能高度配合而使 骑车人感觉很舒服。
( 1 ) 结构简单, 不用弹性件, 无机械故障: 用霍尔感受多个永磁块转动输出信号, 用中国专利 01201843.0提供的速度可推算力矩的原理, 可用多种数学模型推算助力自行 车的力矩参数, 用于控制助力自行车的电机, 实现助力。 不用弹性件、 结构简单、 成本低 于用弹性件和机械受力的传感器。 避免了长时间使用后, 各机械部件变形、 无机械故障、 配合不佳的问题。 (2)磁极性相反, 输出矩形波信号, 具有精确控制功能,: 由于相邻两枚永磁块的磁 极性相反,并且霍尔选用对相反磁极性产生矩形波输出信号的霍尔,则相邻两枚永磁块无 论间距多少, 即使相邻两枚永磁块之间没有间隙, 霍尔也同样能输出矩形波信号。如用于 助力自行车,用矩形波的输出信号来控制助力自行车的电机优于用正弦波, 因为矩形波能 作到信号在任何时间点,表示运动速度的信号含义精确,从而可精确表示助力自行车踏板 的运动速度, 以便用踏板精确的速度推算出该运动状态正确的助力需求。
( 3 ) 相邻永磁块的磁极性相反, 永磁块数量不受限止, 可尽量增加传感点位: 由于 磁极性相反, 输出矩形波信号, 相邻永磁块即使无间隙, 其输出的信号仍然是有个数、可 区分的矩形波信号,仍然具有控制功能,也就是说不会输出没有控制功能的无变化直线形 信号。如用于助力自行车, 由于与踏板联动的环形凹槽转动盘直径大小受限止, 就可在规 定大小的环形凹槽转动盘上, 尽量增加永磁块数量、尽量增加传感点位、用尽量多的传感 信号表示自行车踏板运动速度, 精确表示运动状态。
(4) 相邻永磁块的磁极性相反, 可设置永磁块多、 传感点位多, 对环形凹槽转动盘 的运动状态表示精确:对用于助力自行车, 固定永磁块的环形凹槽转动盘大小受到严格限 止, 一般环形凹槽转动盘直径只能在 10-15厘米以内, 为了使霍尔在有间距的条件下获得 永磁块的磁极信号, 其永磁块的直径至少为 Φ 0. 6-0. 8厘米, 则直径 10-15厘米的环形凹 槽转动盘的周边无间隙的可设置 35-73 个永磁块 [ ( 10-1 ) *3.14/0.8=35 ; ( 15-1 ) *3.14/0.6=73 ], 即脚踏板转一周, 霍尔可获得 35-73个信号用于控制助力自行车的电机。 但如果是相邻永磁块磁极性相同的现有技术, 相邻永磁块按 5厘米间距, 则在直径 10-15 厘米环形凹槽转动盘上, 最多只能设置 5-8 个永磁块 [ ( 10-1 ) *3.14/5.8=5 ; ( 15-1 ) *3.14/5.6=8 ]。 可见, 本专利技术比现有技术可以多设置永磁块 7-9倍 [35/5=6; 73/8=9], 多设置 30-65个永磁块 [35-5=30; 73-8=65 ]。 所以, 环形凹槽转动盘转一周, 本专利技 术比现有技术增加了 7-9倍的环形凹槽转动盘转动位点信号。对助力自行车的电机控制精 确度自然提高了 7-9倍, 使骑车人对助力需求精确度也提高了 7-9倍, 车与人的配合程度 大大提高,骑车人的舒适感大大增加,不再是现有技术的助力车那种一快一慢不舒服的感 觉。 本发明请人根据实际的体验, 当环形凹槽转动盘上大致均勾的设置 15个永磁块时, 基本消除了现有技术只设 5-8个永磁块使助力车那种一快一慢不舒服的感觉;当环形凹槽 转动盘上大致均勾的设置 20个永磁块时, 车与人的配合己能满足人的需要, 乘骑助力车 的感觉已很舒服。
( 5 )没有信号盲区,任何时候的助力需求都会获得相匹配的助力:本专利在直径 10-15 厘米的环形凹槽转动盘周边最多可设置 35-73 个永磁块, 各永磁块之间平均夹角为 5-10 度。 用于助力自行车, 在启动或运行时, 脚踏板从离开顶点 10-45度角的 35度区域内, 有 4-7个永磁块(在离开顶点 10度角的位置就有一个信号了), 则霍尔可输出 4-7个控制 信号反应助力需求,能实现任何位置、任何时间有助力就能获得相应助力的优良技术效果, 使车与人的配合良好, 骑车人感到省力又舒适。
(6) 只用一个霍尔, 一个控制信号表示环形凹槽转动盘的全部运动状态, 控制信号 与环形凹槽转动盘的运动状态完全一致,控制信号与人的需求完全一致: 多个永磁块是固 定在环形凹槽转动盘上的,永磁块与环形凹槽转动盘同步转动,用一个霍尔感受全部的永 磁块运动信号,则霍尔输出的控制信号与环形凹槽转动盘的运动状态完全一致,与人的需 求也就完全一致,控制信号不会有原始分段误差和信号漂移问题。即使霍尔传感参数发生 变化,也是整个控制信号平行移动,只要接收霍尔控制信号的电机控制器的接收范围较宽, 变化了的霍尔控制信号的控制效果成系统性改变。如用于助力自行车,助力需求模型不会 失真,助力输出与助力需求仍然保持原来模型的匹配关系,骑车人很容易掌握这种助力性 能的系统性改变。
(7) 用能相对转动的环形凹槽转动盘环形凹槽固定盘合成壳体, 固定了霍尔与全部 永磁块的相对位置, 避免了壳体外的环境干扰, 提高了霍尔信号的可靠性、真实性, 还方 便了安装、 调试、 维修等。
( 8) 可以对霍尔信号进行数字化处理, 把数字信号转换成带有转动盘转速要素的助 力模型数字信号,再把助力模型数字信号转换成助力模型模拟信号,最后把助力模型模拟 信号变为稳定电压范围的、具有额定功率的电机控制器可用的控制信号。总之, 就是把磁 块转动的信号进行数字化处理, 在数字化处理处理过程中, 加入数学的助力模型, 使传感 器最后输出的控制信号中, 含有加入的助力模型。 因为数学的助力模型是人为设定的, 所 以,总可以把数学的助力模型设定成尽量适合人机配合的模型,则本发明的传感器可输出 能实现人机配合的控制信号。而现有助力自行车传感器的磁块相同磁极在同一面,霍尔不 能获得矩形波信号,也就无法对霍尔信号进行数字化处理,其控制模型只能是对霍尔信号 进行局部修改, 所以不能实现输出人机配合的控制信号。
(9) 最后输出的控制信号不会有信号漂移: 用热敏电阻 R6对运算放大器的输出信 号进行反馈调节,可以解决霍尔、数模转换器和运算放大器等半导体器件使助力模型模拟 信号漂移的问题, 使传感器最后输出的是不受环境温度变化的标准助力模型模拟信号。
能实现人机配合的电机工作方式:助力模型计算器用助力模型存储器中的与助力需求 配合的助力数学模型,并把磁块转速计算器提供的速度参数代入助力数学模型,助力模型 计算器就能计算出助力模型数字信号。该助力模型数字信号就是能使人与电动自行车能配 合的、用于控制电机用的控制信号。助力模型计算器是数字处理器, 它能接受任何数字化 的数学模型, 则助力模型存储器就可以向助力模型计算器提供任何人为设定的数学模型, 有了人任意设定数学模型这个条件, 人就可以设定能使人与电动自行车能配合的数学模 型。助力模型存储器有人设定的, 能使人与电动自行车能配合的数学模型, 则就能实现人 与电动自行车配合的电机工作方式;人设定数学模型还可以使电机有最合理的启动和运转 模型、最省电的工作方式。所以, 本发明的助力自行车是人与电动自行车配合的省电助力 自行车。
( 10) 但现有助力自行车脚踏板的一个转动周期内, 霍尔只能输出不到 10个正弦波 信号, 正弦波信号不能变为数字信号, 不能人为加入助力模型控制电动自行车的电机, 这 种助力自行车的助力模型即不能实现人机配合,也不能使电机有最合理、省电的工作方式。
( 11 )省电效果和意义:用本发明的助力自行车与市上购买的有 8个永磁块同面为相 同磁极作为传感部件的助力自行车进行省电比较,用同一个电动自行车换用不同传感器的 方式, 相同的骑车人在相同路段乘骑测实, 结果是: 用本发明的助力自行车乘骑 110公里 后, 电池还余有少量的电; 但用该市上购买的助力自行车乘骑 45公里后, 电池已没有余 电。该省电的意义在于: 充满电的本发明的助力自行车能满足全天乘骑不充电, 解决了人 在途中而车已不能助力这个现有助力自行车的大难题。
附图说明
图 1是环形凹槽转动盘多个 N-S交替永磁块的传感元件结构示意图;
图 2是环形凹槽转动盘上高密度多个 N-S交替永磁块的传感元件结构示意图;
图 3是自行车的中轴和套管与传感器连接关系的剖面结构示意图;
图 4是霍尔、 助力模型处理器、 数模转换器、 运算放大器的信号流向方框图;
图 5是霍尔、 单片机、 数模转换器、 运算放大器的电路图;
图 6是传感器设在电动自行车的中轴上组成本发明助力自行车的连接关系示意图。
图中 1是环形凹槽转动盘、 2是永磁块、 3是霍尔、 5是圆形轨迹线、 21是助力模型处理 器、 24是模数转换和速度计算器、 25是助力模型存储器、 26是助力模型计算器、 27是数 模转换器、 28是运算放大器、 29是电机控制器、 30是电机、 31是单片机、 32是时钟电 路、 40是环形凹槽固定盘、 41是空心环、 42是轴承、 51是中轴、 52是套管、 53是链盘、 54是脚踏板、 55是电池、 58是圆形凹陷、 59是电路板。
具体实施方式
实施例 1、 用壳体内多磁块均勾分布传感器的助力自行车
如图 1、 3、 4、 6, 把本发明中的传感器安装在现有的电动自行车的中轴 51上, 将传感器 的信号输出线与电动自行车的电机控制器 29连接, 就得到本发明的助力自行车。
一、 与安装传感器有关的电动自行车部件和结构: 电动自行车有中轴 51, 中轴 51中间段 套有套管 52, 中轴 51与套管 52转动连接; 中轴 51上固定有链盘 53, 中轴 51两端分别 固定有脚踏板 54; 套管 52的内表面与中轴 51转动连接, 套管 52的外表面与电动自行车 的车架固定连接; 电动自行车上电池 55连接电机控制器 29, 电机控制器 29连接车轮上 的电机 30。
二、 传感器的结构和部件的连接关系如下:
传感器包括依次连接的传感元件、 助力模型处理器 21、 数模转换器 27和运算放大器 28;
[ 1 ] 传感元件是把转动盘 1的转动运动变为矩形波信号输出的元件;
用一个环形凹槽转动盘 1和一个环形凹槽固定盘 40两者的凹面相对, 环形凹槽转动 盘 1和环形凹槽固定盘 40的大小正好使环形凹槽固定盘 40能嵌合在环形凹槽转动盘 1 的环形凹槽之中,合成两个盘能相对转动的嵌合内空外壳,两个盘的凹面夹成一个空心环 41; 在空心环 41位置的环形凹槽转动盘 1上固定设置有 20个永磁块 2。环形凹槽转动盘 1和环形凹槽固定盘 40用高强度塑料注塑成形。
空心环 41内的环形凹槽转动盘 1面直径 10. 0厘米, 在环形凹槽转动盘 1设 20个永 磁块 2, 20个永磁块 2的直径分别为 0. 8厘米的, 磁通量为 146---279(B · H)max/KJ · m"3 中的某一个值。 环形凹槽转动盘 1、 永磁块 2、 霍尔 3的结构如下:
全部永磁块 2均勾地呈圆形轨迹分布,每个永磁块 2固定在直径 9.0厘米圆形轨迹线 5上, 即每个永磁块 2到圆形轨迹线 5所在圆中心的距离相同、相邻永磁块 2之间的距离 相同。
在转动盘 1一个面设置的全部永磁块 2成相邻永磁块 2的磁极性相反的方式排列,即 转动盘 1一个面上全部永磁块 2的磁极性分布方式是 N极、 S极、 N极、 S极、 N极、 S极……。
在空心环 41内的环形凹槽固定盘 40上固定设置有一个霍尔 3,霍尔 3的信号输出线 从环形凹槽固定盘 40穿出, 霍尔 3设在接近永磁块 2的位置, 即霍尔 3设在每个永磁块 2所在圆形轨迹线 5范围内,霍尔 3与转动状态的每个永磁块 2保持 0.3厘米的间隔距离, 使转动的每个永磁块 2在经过霍尔 3时, 霍尔 3能产生一个对应的矩形波电信号输出。
转动盘 1在该全部永磁块 2所在圆形轨迹线 5中心设有中心孔,中心孔用于套在助力 自行车的踏板中轴 51上。
[2 ]助力模型处理器 21是把转动盘 1转动的数字信号变为助力模型数字信号的信号形式 的转换器; 助力模型处理器 21包括模数转换和速度计算器 24、 助力模型存储器 25和助力模型 计算器 26;
模数转换和速度计算器 24与传感元件的霍尔 3连接;模数转换和速度计算器 24把霍 尔 3输入的矩形波信号计算出各矩形波之间的变化速度表示转动盘 1的转速;
模数转换和速度计算器 24与助力模型计算器 26连接, 助力模型存储器 25也与助力 模型计算器 26连接; 助力模型计算器 26用模数转换和速度计算器 24的转动盘 1转动速 度的数字信号选择助力模型存储器 25中的某一种助力模型函数, 最后把转速数字信号代 入助力模型计算器 26, 计算出适合这种转动盘 1转速的助力模型数字信号。 即助力模型 计算器 26就能输出助力模型数字信号。
[3 ] 数模转换器 27是把助力模型数字信号转换成助力模型的模拟信号。
助力模型计算器 26与数模转换器 27连接,数模转换器 27把助力模型计算器 26的助 力模型数字信号转换成助力模型模拟信号。 以便向只能处理模拟信号的电机控制器 29输 出助力模型的模拟信。
[4] 运算放大器 28是把数模转换器 27的助力模型模拟信号转换成额定电压范围的助力 模型模拟信号。
数模转换器 27与运算放大器 28连接, 数模转换器 27的助力模型模拟信号虽然解决 了助力模型问题, 但助力模型信号的电压还不能满足电机控制器 29的需要, 所以还要用 运算放大器 28把助力模型模拟信号转换成额定电压范围需要的助力模型模拟信号, 才能 传输给电机控制器 29, 达到电机控制器 29控制电机 30进行助力为目的的运行。
三、传感器与电动自行车的连接成助力自行车:把传感器的环形凹槽转动盘 1和环形凹槽 固定盘 40套在电动自行车的中轴 51外, 并且环形凹槽固定盘 40与中轴 51外的套管 52 固定连接, 传感器的环形凹槽转动盘 1与电动自行车的中轴 51固定连接, 环形凹槽转动 盘 1伴随中轴 51同步转动;环形凹槽转动盘 1与环形凹槽固定盘 40内外相套的嵌合成转 动连接; 环形凹槽转动盘 1和中轴 51两者为相同的转动中心, 传感器中运算放大器 28 的信号输出导线与电动自行车的电机控制器 29的信号输入端连接。 这样, 环形凹槽转动 盘 1上的永磁块 2伴随中轴 51同步转动,永磁块 2就与自行车脚踏板 54同步转动,永磁 块 2的转动就与脚踏板 54转动相同角度、相同速度。环形凹槽固定盘 40上的霍尔 3就通 过感受永磁块 2的转动而感受到脚踏板 54转动角度和速度。 霍尔 3把感受永磁块 2转动 的速度电信号,即代表脚踏板 54转动的速度电信号传给电路板 59上的电子部件助力模型 处理器 21、数模转换器 27和运算放大器 28进行信号处理。运算放大器 28与电动自行车 的电机控制器 29连接, 实现了传感器用电信号控制电动自行车的目的, 即用运算放大器 28的助力模型模拟信号, 或称标准助力模型模拟信号控制电动自行车, 得到助力自行车。 由于运算放大器 28输出的助力模型模拟信号是能使助力自行车电机 30运动与骑车人 的助力需求相一致的信号, 所以, 本实施例的助力自行车是人机能相配合的助力自行车。 实施例 2、 高密度用壳体内多磁块均勾分布传感器的助力自行车
如图 2、 3、 4、 6, 空心环 41内的环形凹槽转动盘 1面直径 10. 0厘米, 在环形凹槽 转动盘 1 设 40 个永磁块 2, 40 个永磁块 2 的直径分别为 0. 6 厘米的, 磁通量为 146— 279(B · H)max/KJ · m— 3中的某一个值。 霍尔 3与转动状态的每个永磁块 2保持 0.2 厘米的间隔距离,使转动的每个永磁块 2在经过霍尔 3时,霍尔 3能产生一个对应的矩形 波电信号输出。 其它转动盘 1、 永磁块 2、 霍尔 3的结构同于实施例 1。
实施例 3、 有具体电路的用壳体内多磁块均勾分布传感器的助力自行车
如图 1、 3、 5、 6, 如实施例 1, 传感器包括依次连接的传感元件、 助力模型处理器 21、 数模转换器 27和运算放大器 28;
[ 1 ]传感元件中的霍尔 3选用 UGN3075; 传感元件中其它的元件和元件的结构同于实施 例 1 ;
[2] 助力模型处理器 21 选用单片机 31 完成全部功能, 单片机 31 选用 AT89S52。 即 AT89S52单片机 31完成模数转换和速度计算器 24、 助力模型存储器 25和助力模型计算 器 26的全部功能。
[3 ] 数模转换器 27选用 ADC-C8E。
[4] 运算放大器 28选用 OF-17F, OF-17F运算放大器 28的输入端 2脚与输出端 6脚之 间连接有 5k的热敏电阻 R6; 而且热敏电阻 R6两端还并联有 8P电容 C6。数模转换器 27 的 4脚与运算放大器 28的 2脚之间用 1.25k的 R5接地。 使其可用热敏电阻 R6调节运算 放大器 286脚输出的模拟信号电压范围稳定在 0.8--4.2V之间。
各电子部件连接关系如下:
霍尔 3的信号输出端 3脚连接单片机 31的 12脚 INTO [P32];
单片机 31的 39脚 P00连接数模转换器 27的 12脚 B8;
单片机 31的 38脚 P01连接数模转换器 27的 11脚 B7;
单片机 31的 37脚 P02连接数模转换器 27的 10脚 B6;
单片机 31的 36脚 P03连接数模转换器 27的 9脚 B5 ;
单片机 31的 35脚 P04连接数模转换器 27的 8脚 B4;
单片机 31的 34脚 P05连接数模转换器 27的 7脚 B3;
单片机 31的 33脚 P06连接数模转换器 27的 6脚 B2; 单片机 31的 32脚 P07连接数模转换器 27的 5脚 B1 ;
数模转换器 27的 4脚连接运算放大器 28的 2脚;
数模转换器 27的 2脚连接运算放大器 28的 3脚;
运算放大器 28的 6脚为模拟信号输出端。
[5 ] 传感器的机械部件与传感部件结构关系: 传感器的机械部件包括环形凹槽转动 盘 1和相嵌合的环形凹槽固定盘 40, 传感器的传感部件包括多个永磁块 2、 霍尔 3、 单片 机 31、数模转换器 27和运算放大器 28; 传感部件中依次相连的霍尔 3、 单片机 31、数模 转换器 27和运算放大器 28四个电子元件设在一块电路板 59上;在空心环 41的环形凹槽 转动盘 1内壁固定多个永磁块 2, 在空心环 41的环形凹槽固定盘 40内壁固定电路板 59, 电路板 59上的霍尔 3设在能感受永磁块 2的磁通量, 并且霍尔 3能根据磁通量变化输出 变化电信号的位置。传感部件是传感器的传感功能部件; 机械部件是有两个功能, 第一是 固定传感部件中的各个元件的相对位置,使各个元件能组成一个传感功能性整体,第二是 把这一个传感功能性整体固定在电动自行车上,并使这个传感功能性整体能传感电动自行 车的运动状态。把依次相连的霍尔 3、单片机 31、数模转换器 27和运算放大器 28四个电 子元件设在一块电路板 59上, 有利这四个电子元件集成化、 模块化、 小型化, 方便把这 四个电子元件整体统一固定在空心环 41的环形凹槽固定盘 40内壁,使生产制造传感器的 工艺简化。

Claims

权 利 要 求
1、 用壳体内多磁块均勾分布传感器的助力自行车, 包括电动自行车和传感器, 电动自行 车有中轴 (51), 中轴 (51) 中间段套有套管 (52), 中轴 (51) 与套管 (52) 转动连接; 中轴 (51)上固定有链盘(53), 中轴 (51)两端分别固定有脚踏板(54); 电动自行车上 电池 (55)连接电机控制器(29), 电机控制器(29)连接车轮上的电机(30); 其特征在 于:
传感器的结构和部件的连接关系如下:
传感器包括依次连接的传感元件、 助力模型处理器 (21)、 数模转换器 (27) 和运算放大 器 (28);
[1] 传感元件是把环形凹槽转动盘 (1) 的转动运动变为矩形波信号输出的元件;
传感元件包括一块环形凹槽转动盘(1)、 环形凹槽固定盘(40)、 一个霍尔 (3)和多 枚永磁块 (2), 多枚永磁块 (2) 的大小相同、 形状相同、 磁通量相同, 环形凹槽转动盘
(1) 和环形凹槽固定盘 (40) 两者的凹面相对, 环形凹槽固定盘 (40) 嵌合在环形凹槽 转动盘 (1) 的环形凹槽之中, 成两个盘能相对转动的嵌合内空外壳, 两个盘的凹面夹成 一个空心环(41); 在空心环(41)位置的环形凹槽转动盘(1)上固定设置有多枚永磁块
(2), 该多枚永磁块(2)均勾地呈圆形轨迹分布, 即每枚永磁块(2)到圆形轨迹线 (5) 所在圆中心的距离相同、 相邻两枚永磁块(2)之间的距离相同; 每枚永磁块(2)磁极性 的 N极和 S极分别在环形凹槽转动盘 (1) 的两面, 相邻两枚永磁块 (2) 的磁极性相反, 一块环形凹槽转动盘 (1) 上全部永磁块 (2) 的磁极性分布方式是 N极、 S极、 N极、 S极、 N极、 S极 ······;
在空心环 (41) 的环形凹槽固定盘 (40) 上固定设置有一个霍尔 (3), 霍尔 (3) 设 在接近永磁块(2)并能感受每个永磁块(2)磁通量的位置, 霍尔 (3)与永磁块(2)之 间有间距; 霍尔 (3) 是对相反磁极性产生矩形波输出信号的霍尔;
[2]助力模型处理器(21)是把转动盘(1)转动的数字信号变为助力模型数字信号的信 号形式转换器;
助力模型处理器 (21) 包括模数转换和速度计算器 (24)、 助力模型存储器 (25) 和 助力模型计算器 (26);
模数转换和速度计算器 (24) 与传感元件的霍尔 (3) 连接; 模数转换和速度计算器 (24)把霍尔 (3)输入的矩形波信号计算出各矩形波之间的变化速度表示转动盘(1) 的 转速;
模数转换和速度计算器 (24) 与助力模型计算器 (26) 连接, 助力模型存储器 (25) 也与助力模型计算器 (26) 连接; 助力模型计算器 (26) 用模数转换和速度计算器 (24) 的转动盘(1)转速选择助力模型存储器(25)中的某一种助力模型函数, 并将转动盘(1) 转速条件代入助力模型函数, 计算出适合的助力模型数字信号, 即助力模型计算器 (26) 输出助力模型数字信号;
[3] 数模转换器 (27) 是把助力模型数字信号转换成助力模型的模拟信号;
助力模型计算器(26)与数模转换器(27)连接, 数模转换器(27)把助力模型计算 器 (26) 的助力模型数字信号转换成助力模型模拟信号;
[4] 运算放大器 (28) 是把数模转换器 (27) 的助力模型模拟信号转换成额定电压范围 的助力模型模拟信号;
传感器与电动自行车的连接关系是: 传感器的环形凹槽转动盘 (1) 和环形凹槽固定 盘(40)套在电动自行车的中轴 (51)夕卜, 并且环形凹槽固定盘(40)与中轴 (51)外的 套管 (52) 固定连接, 传感器的环形凹槽转动盘 (1) 与电动自行车的中轴 (51) 固定连 接, 环形凹槽转动盘(1)伴随中轴 (51) 同步转动; 环形凹槽转动盘(1)与环形凹槽固 定盘 (40) 内外相套的嵌合成转动连接; 环形凹槽转动盘 (1) 和中轴 (51) 两者为相同 的转动中心,传感器中运算放大器(28)的信号输出导线与电动自行车的电机控制器(29) 的信号输入端连接。
2、 根据权利要求 1所述的用壳体内多磁块均勾分布传感器的助力自行车, 其特征在于: 还包括热敏电阻 R6, 热敏电阻 R6连接在运算放大器 (28) 的输入端和输出端之间。
3、 根据权利要求 2所述的用壳体内多磁块均勾分布传感器的助力自行车, 其特征在于: 助力模型处理器 (21) 是单片机 (31), 单片机 (31) 上连接有时钟电路 (32);
传感器的机械部件与传感部件结构关系:传感器的机械部件包括环形凹槽转动盘(1) 和相嵌合的环形凹槽固定盘 (40), 传感器的传感部件包括多个永磁块 (2)、 霍尔 (3)、 单片机 (31)、 数模转换器 (27) 和运算放大器 (28); 传感部件中依次相连的霍尔 (3)、 单片机(31)、 数模转换器(27)和运算放大器(28) 四个电子元件设在一块电路板(59) 上; 在空心环 (41) 的环形凹槽转动盘 (1) 内壁固定多个永磁块 (2), 在空心环 (41) 的环形凹槽固定盘(40) 内壁固定电路板(59), 电路板(59)上的霍尔 (3)设在能感受 永磁块 (2) 的磁通量, 并且霍尔 (3) 能根据磁通量变化输出变化电信号的位置。
4、 根据权利要求 3所述的用壳体内多磁块均勾分布传感器的助力自行车, 其特征在于: 霍尔(3)是 UGN3075,助力模型处理器(21 )是 AT89S52单片机(31),数模转换器(27) 是 ADC-C8E; 运算放大器 (28) 是 OF-17F, OF-17F运算放大器 (28) 的输入端 2脚与 输出端 6脚之间连接有热敏电阻 R6; 各部件连接关系如下: 霍尔 (3 ) 的信号输出端 3脚连接单片机 (31 ) 的 12脚 INTO [P32];
单片机 (31 ) 的 39脚 P00连接数模转换器 (27) 的 12脚 B8;
单片机 (31 ) 的 38脚 P01连接数模转换器 (27) 的 11脚 B7;
单片机 (31 ) 的 37脚 P02连接数模转换器 (27) 的 10脚 B6;
单片机 (31 ) 的 36脚 P03连接数模转换器 (27) 的 9脚 B5;
单片机 (31 ) 的 35脚 P04连接数模转换器 (27) 的 8脚 B4;
单片机 (31 ) 的 34脚 P05连接数模转换器 (27) 的 7脚 B3;
单片机 (31 ) 的 33脚 P06连接数模转换器 (27) 的 6脚 B2;
单片机 (31 ) 的 32脚 P07连接数模转换器 (27) 的 5脚 B1 ;
数模转换器 (27) 的 4脚连接运算放大器 (28) 的 2脚;
数模转换器 (27) 的 2脚连接运算放大器 (28) 的 3脚;
运算放大器 (28) 的 6脚为模拟信号输出端。
5、 根据权利要求 1-4任何一项所述的用壳体内多磁块均勾分布传感器的助力自行车, 其 特征在于: 环形凹槽固定盘 (40) 内圈的外表面与环形凹槽转动盘 (1 ) 内圈的内表面之 间设有轴承 (42)。
6、 根据权利要求 5所述的用壳体内多磁块均勾分布传感器的助力自行车, 其特征在于: 传感器的环形凹槽固定盘 (40) 外表面设有圆形凹陷 (58); 圆形凹陷 (58) 与电动自行 车中轴 (51 )外的套管 (52)卡接, 成套管 (52)卡套在圆形凹陷 (58) 内固定连接的结 构。
7、 根据权利要求 5所述的用壳体内多磁块均勾分布传感器的助力自行车, 其特征在于: 霍尔 (3 ) 设在正对多枚永磁块 (2) 的圆形轨迹线 (5 ) 的位置。
8、 根据权利要求 5所述的用壳体内多磁块均勾分布传感器的助力自行车, 其特征在于: 环形凹槽转动盘 (1 ) 在多枚永磁块 (2) 的圆形轨迹线 (5 ) 所在圆范围内设有中心孔。
9、 根据权利要求 5所述的用壳体内多磁块均勾分布传感器的助力自行车, 其特征在于: 环形凹槽转动盘 (1 ) 是不导磁材料的塑料板、 铝材板、 铜材板的某一种。
PCT/CN2013/076810 2012-07-28 2013-06-05 用壳体内多磁块均匀分布传感器的助力自行车 WO2014019410A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
IN1069DEN2015 IN2015DN01069A (zh) 2012-07-28 2013-06-05
US14/417,792 US9359043B2 (en) 2012-07-28 2013-06-05 Power assistance bicycle using sensor having multiple magnet blocks evenly distributed in housing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210263521.7 2012-07-28
CN201210263521.7A CN102826180B (zh) 2012-07-28 2012-07-28 用壳体内多磁块均匀分布传感器的助力自行车

Publications (1)

Publication Number Publication Date
WO2014019410A1 true WO2014019410A1 (zh) 2014-02-06

Family

ID=47329542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/076810 WO2014019410A1 (zh) 2012-07-28 2013-06-05 用壳体内多磁块均匀分布传感器的助力自行车

Country Status (4)

Country Link
US (1) US9359043B2 (zh)
CN (1) CN102826180B (zh)
IN (1) IN2015DN01069A (zh)
WO (1) WO2014019410A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113805711A (zh) * 2021-08-31 2021-12-17 复旦大学 一种脚控位移输入装置及其信号驱动方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102826180B (zh) * 2012-07-28 2014-02-05 成都宽和科技有限责任公司 用壳体内多磁块均匀分布传感器的助力自行车
CN102785744B (zh) * 2012-07-28 2014-02-05 成都宽和科技有限责任公司 用壳内多磁块位置和磁通量都不均匀分布传感器的助力车
GB201512713D0 (en) * 2014-08-01 2015-08-26 Ford Global Tech Llc Electric bicycle
ITUB20155621A1 (it) * 2015-11-16 2017-05-16 Piaggio & C Spa Metodo di gestione dell?autonomia energetica di una bicicletta elettrica a pedalata assistita
US10479441B2 (en) * 2016-08-23 2019-11-19 Shimano Inc. Bicycle hub assembly and bicycle control system
CN106809332B (zh) * 2017-03-22 2022-09-16 武汉天腾动力科技有限公司 一种自行车花键中轴以及自行车
US10479445B2 (en) * 2017-10-03 2019-11-19 PalTorc, Inc. Smart crank control for E-bike
US20190100275A1 (en) * 2017-10-03 2019-04-04 PalTorc, Inc. Smart crank control for e-bike
FR3081822B1 (fr) * 2018-06-05 2021-01-29 Ntn Snr Roulements Assemblage instrumente pour cycle

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2462356Y (zh) * 2001-01-18 2001-11-28 北京科技大学 电动助力自行车自动检测装置
CN2675543Y (zh) * 2004-01-29 2005-02-02 黄岩 智能电动自行车的传感装置
DE102010011390A1 (de) * 2010-03-12 2011-09-15 Ansmann Ag Fahrrad mit Hallsensor
CN102826180A (zh) * 2012-07-28 2012-12-19 成都宽和科技有限责任公司 用壳体内多磁块均匀分布传感器的助力自行车
CN102826178A (zh) * 2012-07-28 2012-12-19 成都宽和科技有限责任公司 用壳体内多磁块不均匀分布磁通量传感器的助力自行车
CN202783639U (zh) * 2012-07-28 2013-03-13 成都宽和科技有限责任公司 用壳体内多磁块不均匀分布磁通量传感器的助力自行车
CN202783642U (zh) * 2012-07-28 2013-03-13 成都宽和科技有限责任公司 用壳体内多磁块不均匀分布磁通量传感器的助力自行车
CN202783628U (zh) * 2012-07-28 2013-03-13 成都宽和科技有限责任公司 用壳体内多磁块均匀分布传感器的助力自行车
CN202847954U (zh) * 2012-07-28 2013-04-03 成都宽和科技有限责任公司 用壳体内多磁块均匀分布传感器的助力自行车

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5788007A (en) * 1994-09-29 1998-08-04 Miekka; Fred N. Electromagnet vehicle drive
US6163148A (en) * 1995-10-17 2000-12-19 Seiko Epson Corporation Sensor, drive force auxiliary device using the sensor, and torque sensor zero point adjusting mechanism of the drive force auxiliary device
JP3682590B2 (ja) * 1996-05-24 2005-08-10 ソニー株式会社 移動装置と移動制御方法
US6100615A (en) * 1998-05-11 2000-08-08 Birkestrand; Orville J. Modular motorized electric wheel hub assembly for bicycles and the like
JP2003194194A (ja) * 2001-12-28 2003-07-09 Sunstar Eng Inc ギアボックス及び該ギアボックスを用いた電動アシスト自転車
JP2004038722A (ja) * 2002-07-05 2004-02-05 Sunstar Eng Inc 電動アシスト自転車提供のサーバシステム
US7191861B2 (en) * 2004-09-28 2007-03-20 Phuong Bui Electromagnet propelled wheeled vehicle
US8183726B2 (en) * 2007-03-30 2012-05-22 Norman Rittenhouse Electric motor assist bicyle
EP2452866A1 (en) * 2010-11-11 2012-05-16 Techway Industrial, Co., Ltd. Derailleuer cable detecting assembly for an electric-auxiliary bicycle
JP2012116227A (ja) * 2010-11-29 2012-06-21 Techway Industrial Co Ltd 電動補助自転車に用いる変速用ケーブルの伝動感知装置
CN202225989U (zh) * 2011-08-23 2012-05-23 杨文彬 具有助力传感器装置的电动自行车中轴
JP5237421B2 (ja) * 2011-08-29 2013-07-17 株式会社シマノ 自転車用制御装置
CN102501940A (zh) * 2011-11-17 2012-06-20 尚林山 一种智能五通装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2462356Y (zh) * 2001-01-18 2001-11-28 北京科技大学 电动助力自行车自动检测装置
CN2675543Y (zh) * 2004-01-29 2005-02-02 黄岩 智能电动自行车的传感装置
DE102010011390A1 (de) * 2010-03-12 2011-09-15 Ansmann Ag Fahrrad mit Hallsensor
CN102826180A (zh) * 2012-07-28 2012-12-19 成都宽和科技有限责任公司 用壳体内多磁块均匀分布传感器的助力自行车
CN102826178A (zh) * 2012-07-28 2012-12-19 成都宽和科技有限责任公司 用壳体内多磁块不均匀分布磁通量传感器的助力自行车
CN202783639U (zh) * 2012-07-28 2013-03-13 成都宽和科技有限责任公司 用壳体内多磁块不均匀分布磁通量传感器的助力自行车
CN202783642U (zh) * 2012-07-28 2013-03-13 成都宽和科技有限责任公司 用壳体内多磁块不均匀分布磁通量传感器的助力自行车
CN202783628U (zh) * 2012-07-28 2013-03-13 成都宽和科技有限责任公司 用壳体内多磁块均匀分布传感器的助力自行车
CN202847954U (zh) * 2012-07-28 2013-04-03 成都宽和科技有限责任公司 用壳体内多磁块均匀分布传感器的助力自行车

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113805711A (zh) * 2021-08-31 2021-12-17 复旦大学 一种脚控位移输入装置及其信号驱动方法
CN113805711B (zh) * 2021-08-31 2023-11-24 复旦大学 一种脚控位移输入装置及其信号驱动方法

Also Published As

Publication number Publication date
CN102826180A (zh) 2012-12-19
CN102826180B (zh) 2014-02-05
US20150203172A1 (en) 2015-07-23
IN2015DN01069A (zh) 2015-06-26
US9359043B2 (en) 2016-06-07

Similar Documents

Publication Publication Date Title
WO2014019410A1 (zh) 用壳体内多磁块均匀分布传感器的助力自行车
WO2014019413A1 (zh) 用壳内多磁块位置和磁通量都不均匀分布传感器的助力车
WO2014019404A1 (zh) 在壳体内多磁块不均匀分布的传感器
WO2014019405A1 (zh) 在壳体内多磁块不均匀分布磁通量的传感器
WO2014019412A1 (zh) 用壳体内多磁块不均匀分布磁通量传感器的助力自行车
WO2014019415A1 (zh) 用壳体内磁块位置和磁通量可调节传感器的助力自行车
WO2014019409A1 (zh) 在壳体内多磁块位置和磁通量可调节的传感器
CN202783642U (zh) 用壳体内多磁块不均匀分布磁通量传感器的助力自行车
WO2014019403A1 (zh) 在壳体内多磁块均匀分布的传感器
WO2014019414A1 (zh) 用壳体内多磁块位置可调节传感器的助力自行车
WO2014019411A1 (zh) 用壳体内多磁块不均匀分布传感器的助力自行车
CN202847954U (zh) 用壳体内多磁块均匀分布传感器的助力自行车
CN202783650U (zh) 用壳体内多磁块位置可调节传感器的助力自行车
WO2014019407A1 (zh) 在壳体内多磁块位置可调节的传感器
CN202783662U (zh) 用壳体内多磁块位置可调节传感器的助力自行车
CN202783664U (zh) 用壳体内磁块位置和磁通量可调节传感器的助力自行车
CN202783680U (zh) 用壳体内磁块位置和磁通量可调节传感器的助力自行车
CN202783639U (zh) 用壳体内多磁块不均匀分布磁通量传感器的助力自行车
CN202783645U (zh) 有壳体内多磁块均匀分布传感器的助力自行车
CN202783658U (zh) 用壳体内多磁块不均匀分布传感器的助力自行车
CN202783660U (zh) 用壳体内多磁块不均匀分布传感器的助力自行车
CN202847956U (zh) 用壳内多磁块位置和磁通量都不均匀分布传感器的助力车
CN202783640U (zh) 用壳内多磁块位置和磁通量都不均匀分布传感器的助力车
CN202783657U (zh) 链盘上设多磁块位置和磁通量变化传感器的助力自行车
CN202783683U (zh) 装多磁块均匀分布转盘式传感器的助力自行车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13826523

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14417792

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13826523

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 13826523

Country of ref document: EP

Kind code of ref document: A1