WO2014018036A2 - Apparatus and method of operating an injector for an exhaust gas aftertreatment apparatus - Google Patents

Apparatus and method of operating an injector for an exhaust gas aftertreatment apparatus Download PDF

Info

Publication number
WO2014018036A2
WO2014018036A2 PCT/US2012/048277 US2012048277W WO2014018036A2 WO 2014018036 A2 WO2014018036 A2 WO 2014018036A2 US 2012048277 W US2012048277 W US 2012048277W WO 2014018036 A2 WO2014018036 A2 WO 2014018036A2
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
temperature
nozzle
injector
flow
Prior art date
Application number
PCT/US2012/048277
Other languages
French (fr)
Other versions
WO2014018036A3 (en
Inventor
Philip Meier
Walter JACQUES
Qunlong DONG
Original Assignee
Mack Trucks, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mack Trucks, Inc. filed Critical Mack Trucks, Inc.
Priority to JP2015524230A priority Critical patent/JP5909028B2/en
Priority to US14/414,547 priority patent/US20150192050A1/en
Priority to CN201280074916.0A priority patent/CN104541030A/en
Priority to CA2879562A priority patent/CA2879562A1/en
Priority to EP12881703.8A priority patent/EP2893163A4/en
Priority to BR112015001717A priority patent/BR112015001717A2/en
Priority to PCT/US2012/048277 priority patent/WO2014018036A2/en
Priority to RU2015106316/06A priority patent/RU2604405C2/en
Publication of WO2014018036A2 publication Critical patent/WO2014018036A2/en
Publication of WO2014018036A3 publication Critical patent/WO2014018036A3/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2033Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using a fuel burner or introducing fuel into exhaust duct
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/206Adding periodically or continuously substances to exhaust gases for promoting purification, e.g. catalytic material in liquid form, NOx reducing agents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/08Adding substances to exhaust gases with prior mixing of the substances with a gas, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • F01N2610/146Control thereof, e.g. control of injectors or injection valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1493Purging the reducing agent out of the conduits or nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1404Exhaust gas temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention is directed to exhaust gas aftertreatment apparatuses for internal combustion engines and methods for their operation. More particularly, the invention is directed to an apparatus and method for preventing coke fouling of an aftertreatment injector nozzle of an aftertreatment system.
  • Exhaust gas aftertreatment apparatuses in automotive vehicles are used to convert or remove targeted substances from the exhaust gas.
  • Aftertreatment devices include, for example, diesel oxidation catalysts (DOC), which can remove particulate matter and oxidize carbon monoxide and uncombusted hydrocarbons in the exhaust gas, diesel particulate filters (DPF), which remove particulate matter from the exhaust gas, and selective catalytic reduction (SCR) systems, that inject an ammonia-based reductant in the presence of a catalyst to convert oxides of nitrogen (NOx) to nitrogen gas and water.
  • DOC diesel oxidation catalysts
  • DPF diesel particulate filters
  • SCR selective catalytic reduction
  • Certain aftertreatment devices operate only at or above a threshold temperature, for example, the SCR devices.
  • Other devices, such as the DPF require the regular removal of collected particulate matter from the filter body.
  • One such process, known as regeneration occurs by oxidation of the collected particulate matter, which requires the filter body to be at an elevated temperature, typically above 600° C.
  • aftertreatment components may be at or near ambient temperature, which is typically too low for operation of those devices.
  • automotive exhaust, and diesel engine exhaust in particular, is not consistently at temperatures high enough for operation of certain exhaust aftertreatment systems on the vehicle, in particular, regeneration of DPFs.
  • some device or method for increasing the temperature of the exhaust gas when necessary is provided.
  • Exhaust heating methods and devices include engine management for control of exhaust gas temperature, resistive heating coils placed in the exhaust, and burners.
  • One such device is a system for injecting hydrocarbon, typically diesel fuel, into the exhaust gas, including an injector with a nozzle positioned to inject fuel into the exhaust gas flow.
  • a problem with hydrocarbon injectors is fouling of the injector nozzle from decomposed liquid hydrocarbon, particulate matter, and other residue collecting on the nozzle, called "coking".
  • an exhaust gas aftertreatment apparatus having a hydrocarbon injector includes an injector nozzle coated with a catalytic material.
  • the catalytic coating allows hydrocarbon that collects on the nozzle to oxidize at a temperature lower than non-catalyzed oxidation.
  • An apparatus further includes a device for providing and controlling an air flow through the injector responsive to the exhaust gas temperature.
  • a method of the invention for operating the injector has three states: (1) fuel injection for heating the aftertreatment devices, (2) after fuel injection, air flow through the nozzle to purge residual fuel and/or cool the nozzle to prevent carbon deposits when exhaust gas temperature is low, and (3) no (or low) air flow to allow passive heating of the nozzle by the exhaust for oxidation of any accumulated carbon when exhaust temperature is high enough to support
  • the method may include an additional air purge to remove ash.
  • a method of operating an injector for an exhaust gas aftertreatment apparatus to avoid coke deposits, the injector nozzle having a catalyst coating includes the steps of injecting a hydrocarbon fluid into an exhaust gas flow over a selected duration, causing air to flow through the injector nozzle when an exhaust gas temperature is below a threshold temperature, and, substantially stopping the flow of air through the injector nozzle when the exhaust gas temperature is above the threshold temperature.
  • the method includes the steps of monitoring a condition of the aftertreatment apparatus, monitoring an exhaust gas temperature, and, responsive to the condition of the aftertreatment apparatus and responsive to the exhaust gas temperature, controlling the injection of hydrocarbon in the exhaust gas flow.
  • air flow is preferably pulsed, the air flow parameters, volume, frequency, and duration, being controlled responsive to exhaust gas temperature.
  • Figure 1 is a schematic drawing of an internal combustion engine and exhaust system having an aftertreatment system in accord with an exemplary embodiment of the invention
  • Figure 2 is a simplified drawing of an exemplary aftertreatment injector
  • FIG. 3 is a flow diagram of a method according to the invention. Detailed Description of the Invention
  • FIG. 1 illustrates an apparatus including an internal combustion engine 10 with an exhaust gas aftertreatment system 12 according to the invention.
  • the engine 10 is connected to an exhaust gas conduit 14 that receives exhaust gas from the engine.
  • Exhaust gas is carried by the conduit to an aftertreatment system 16, which may include a Diesel Oxidation Catalyst (DOC), a Diesel Particulate Filter (DPF), and a device for treating Nitrogen Oxides, such as a selective catalytic reaction device (SCR) or Lean NOx Catalyst (LNC).
  • SCR selective catalytic reaction device
  • LNC Lean NOx Catalyst
  • the DPF filters the exhaust gas and collects soot and other particulate matter, which must be removed at intervals or the DPF becomes clogged.
  • One common method for removing particulate matter is to raise the temperature of the DPF filter body to a temperature sufficient to oxidize the particulate matter.
  • the temperature of the DPF filter body can be increased in various ways, as is known in the art.
  • One way is to add hydrocarbon (or fuel) to the exhaust gas, which is oxidized, releasing heat energy.
  • An injector 20 connected to a source of hydrocarbon 22 is shown in Figure 1 for such a purpose.
  • the injector 20 includes a nozzle 24 to introduce hydrocarbon into the exhaust gas flow.
  • the injector 20 in the illustrated embodiment is also connected to an air source 26.
  • a controller 28 is programmed to control the flow of hydrocarbon and air through the injector 20, as will be described in more detail below.
  • Temperature sensors 30, 34 are positioned at the entry and exit, respectively, of the aftertreatment device 16 to monitor the temperature of the exhaust gas as it enters and exits the device.
  • temperature sensors may be arranged upstream of the DOC, downstream of the DOC and upstream of the DPF, and downstream of the DPF.
  • pressure sensors 32, 36 are provided at the aftertreatment device 16 entry and exit, respectively, to monitor a pressure change of the exhaust gas across the DPF. The difference between entry and exit exhaust gas pressure is useful to determine the soot loading of the DPF.
  • the injector 20 is upstream of the aftertreatment device 16, it is exposed to exhaust gas carrying particulate matter.
  • the injector nozzle 24 and the hydrocarbon liquid at and exiting the nozzle 24 of the injector are exposed to the heat of the exhaust. This can result in coking of the nozzle as hydrocarbon liquid and particulate matter deposits form on the nozzle.
  • Maintaining the nozzle at a relative low temperature can help avoid, although not eliminate, coking.
  • Coke deposits may be removed by heating the nozzle to a sufficiently high temperature to oxidize the carbon, and devices for heating nozzles are known. However, these add expense and complexity to the injector system.
  • an injector nozzle 24 is provided with a coating of a catalytic material that allows coke deposits to oxidize at a relatively low temperature.
  • Suitable catalytic materials include precious metal catalysts such as platinum and palladium.
  • an injector nozzle 24 includes a nozzle body 40 having a flow channel 42 for a liquid fuel.
  • the flow channel 42 ends in a tip 44, which may include fluid distribution devices to control flow volume or induce swirl or spray angle, for example.
  • the injector 20 may be any suitable fluid injector, and may include an injector body 50 having an interior passage 52 for the injected fluid, a needle 54 movable in the passage 52 operable by a spring 56 and an actuator device (not shown) to control the flow into the nozzle channel 42 and to the tip 44.
  • a catalytic coating is preferably applied to surfaces exposed to exhaust gas heat and the fuel injected by the nozzle 24.
  • Such surfaces include the exterior surface 46 of the nozzle body 24, the tip 44, and a surface 48 defining the flow channel 42.
  • FIG 3 is a diagram of a method according to the invention for preventing coke fouling of an injector.
  • the aftertreatment (AT) device is monitored for operational condition (S100) by monitoring a pressure differential between incoming and outgoing exhaust gas and/or by monitoring a temperature of the device.
  • a temperature of the exhaust gas entering the AT device is also monitored (S102).
  • the method determines if the exhaust gas is above a temperature threshold at which the exhaust gas can heat the catalyst coated nozzle to a temperature sufficient for oxidization of deposited carbon (S104). Using a precious metal as a catalyst, heating the nozzle to about 240°C or higher will promote oxidation.
  • the method of the invention is not performed entirely sequentially; the steps of monitoring the AT device, monitoring the exhaust gas temperature, and determining if the exhaust gas temperature is above the threshold are performed continually or in a repeating sequence as the rest of the method is performed.
  • Step S106 stops air flow through the injector or substantially stops air flow to provide a minimal amount of air flow, for example, to prevent ingress of exhaust gas into the nozzle, but not effectively cool the nozzle.
  • the lack of air flow or low amount of air flow allows the nozzle to heat to the temperature sufficient for oxidizing any carbon deposits.
  • a timer may be started to measure an interval during which the nozzle is heated and oxidation occurs.
  • the air flow will remain off or at a minimum as long as the exhaust gas temperature is above the threshold as determined in Step S104.
  • Step S108 When the heating/oxidizing time interval has elapsed (Step S108) or the exhaust gas temperature falls below the threshold temperature, the method increases air flow through the nozzle (S110), to provide cooling to inhibit coking.
  • Step S104 if the exhaust gas temperature is below the threshold temperature, the condition of the AT device is evaluated to determine if it is necessary to increase the exhaust gas temperature (Step S112).
  • a DPF device may require a regeneration procedure to remove collected particulate matter.
  • the method causes air to flow through the nozzle (Step S114). Air flow will help cool the nozzle to prevent or inhibit coking fouling.
  • hydrocarbon is injected through the injector (Step S116) while the exhaust gas temperature is monitored. An amount of hydrocarbon and a frequency of injections are controlled to the exhaust gas temperature to heat the DPF device to a target temperature and maintain that temperature for a time interval sufficient for regenerating the DPF. Alternatively, the DPF may be heated until the exhaust gas pressure differential between the entry and exit drops below a threshold.
  • Step S114 When the regeneration process is completed, the hydrocarbon injection is stopped and air is caused to flow through the nozzle (Step S114).
  • the flow of air after hydrocarbon injection will help purge the nozzle of residual hydrocarbon and the continued flow of air helps cool the nozzle to help inhibit or prevent coke fouling.
  • air flows continuously through the nozzle to maintain nozzle temperatures as low as possible to slow carbon deposition.
  • air flow through the nozzle is completely or substantially completely shut off to avoid cooling the nozzle and allow oxidation of any coking.

Abstract

A method for operating an exhaust aftertreatment system injector to prevent coking includes steps of injecting fuel for heating the aftertreatment devices, when not injecting fuel, flowing air to purge and cool the nozzle to prevent carbon deposits when exhaust gas temperature is low, and substantially stop air flow to allow passive heating of the nozzle by the exhaust for oxidation of any accumulated carbon when exhaust temperature is high enough to support oxidation. Preferably, the nozzle has a catalytic material coating to reduce the temperature necessary for oxidation of the coking material.

Description

Apparatus and Method of Operating an Injector for
an Exhaust Gas Aftertreatment Apparatus
Field of the Invention The invention is directed to exhaust gas aftertreatment apparatuses for internal combustion engines and methods for their operation. More particularly, the invention is directed to an apparatus and method for preventing coke fouling of an aftertreatment injector nozzle of an aftertreatment system.
Background and Summary of the Invention Exhaust gas aftertreatment apparatuses in automotive vehicles are used to convert or remove targeted substances from the exhaust gas. Aftertreatment devices include, for example, diesel oxidation catalysts (DOC), which can remove particulate matter and oxidize carbon monoxide and uncombusted hydrocarbons in the exhaust gas, diesel particulate filters (DPF), which remove particulate matter from the exhaust gas, and selective catalytic reduction (SCR) systems, that inject an ammonia-based reductant in the presence of a catalyst to convert oxides of nitrogen (NOx) to nitrogen gas and water. Certain aftertreatment devices operate only at or above a threshold temperature, for example, the SCR devices. Other devices, such as the DPF, require the regular removal of collected particulate matter from the filter body. One such process, known as regeneration, occurs by oxidation of the collected particulate matter, which requires the filter body to be at an elevated temperature, typically above 600° C.
At engine start up, aftertreatment components may be at or near ambient temperature, which is typically too low for operation of those devices. In addition, automotive exhaust, and diesel engine exhaust in particular, is not consistently at temperatures high enough for operation of certain exhaust aftertreatment systems on the vehicle, in particular, regeneration of DPFs. Accordingly, some device or method for increasing the temperature of the exhaust gas when necessary is provided. Exhaust heating methods and devices include engine management for control of exhaust gas temperature, resistive heating coils placed in the exhaust, and burners. One such device is a system for injecting hydrocarbon, typically diesel fuel, into the exhaust gas, including an injector with a nozzle positioned to inject fuel into the exhaust gas flow. A problem with hydrocarbon injectors is fouling of the injector nozzle from decomposed liquid hydrocarbon, particulate matter, and other residue collecting on the nozzle, called "coking".
The invention proposes an apparatus and method for solving these problems. According to the invention, an exhaust gas aftertreatment apparatus having a hydrocarbon injector includes an injector nozzle coated with a catalytic material. The catalytic coating allows hydrocarbon that collects on the nozzle to oxidize at a temperature lower than non-catalyzed oxidation.
An apparatus according to the invention further includes a device for providing and controlling an air flow through the injector responsive to the exhaust gas temperature.
A method of the invention for operating the injector has three states: (1) fuel injection for heating the aftertreatment devices, (2) after fuel injection, air flow through the nozzle to purge residual fuel and/or cool the nozzle to prevent carbon deposits when exhaust gas temperature is low, and (3) no (or low) air flow to allow passive heating of the nozzle by the exhaust for oxidation of any accumulated carbon when exhaust temperature is high enough to support
oxidation. Immediately following state (3) the method may include an additional air purge to remove ash.
A method of operating an injector for an exhaust gas aftertreatment apparatus to avoid coke deposits, the injector nozzle having a catalyst coating, includes the steps of injecting a hydrocarbon fluid into an exhaust gas flow over a selected duration, causing air to flow through the injector nozzle when an exhaust gas temperature is below a threshold temperature, and, substantially stopping the flow of air through the injector nozzle when the exhaust gas temperature is above the threshold temperature.
According to another aspect of the invention, the method includes the steps of monitoring a condition of the aftertreatment apparatus, monitoring an exhaust gas temperature, and, responsive to the condition of the aftertreatment apparatus and responsive to the exhaust gas temperature, controlling the injection of hydrocarbon in the exhaust gas flow.
According to another aspect of the invention, air flow is preferably pulsed, the air flow parameters, volume, frequency, and duration, being controlled responsive to exhaust gas temperature.
Brief Description of the Drawings
The invention will be better understood by reference to the following detailed description read in conjunction with the appended drawings, in which: Figure 1 is a schematic drawing of an internal combustion engine and exhaust system having an aftertreatment system in accord with an exemplary embodiment of the invention;
Figure 2 is a simplified drawing of an exemplary aftertreatment injector; and,
Figure 3 is a flow diagram of a method according to the invention. Detailed Description of the Invention
Figure 1 illustrates an apparatus including an internal combustion engine 10 with an exhaust gas aftertreatment system 12 according to the invention. The engine 10 is connected to an exhaust gas conduit 14 that receives exhaust gas from the engine. Exhaust gas is carried by the conduit to an aftertreatment system 16, which may include a Diesel Oxidation Catalyst (DOC), a Diesel Particulate Filter (DPF), and a device for treating Nitrogen Oxides, such as a selective catalytic reaction device (SCR) or Lean NOx Catalyst (LNC). After the exhaust gas is treated, it is released to the environment through an exhaust stack or pipe 18.
The DPF filters the exhaust gas and collects soot and other particulate matter, which must be removed at intervals or the DPF becomes clogged. One common method for removing particulate matter, which is mainly carbon based, is to raise the temperature of the DPF filter body to a temperature sufficient to oxidize the particulate matter. The temperature of the DPF filter body can be increased in various ways, as is known in the art. One way is to add hydrocarbon (or fuel) to the exhaust gas, which is oxidized, releasing heat energy. An injector 20 connected to a source of hydrocarbon 22 is shown in Figure 1 for such a purpose. The injector 20 includes a nozzle 24 to introduce hydrocarbon into the exhaust gas flow. The injector 20 in the illustrated embodiment is also connected to an air source 26. A controller 28 is programmed to control the flow of hydrocarbon and air through the injector 20, as will be described in more detail below. Temperature sensors 30, 34 are positioned at the entry and exit, respectively, of the aftertreatment device 16 to monitor the temperature of the exhaust gas as it enters and exits the device. Alternatively, for aftertreatment apparatuses including a DOC and DPF, temperature sensors may be arranged upstream of the DOC, downstream of the DOC and upstream of the DPF, and downstream of the DPF. In addition, pressure sensors 32, 36 are provided at the aftertreatment device 16 entry and exit, respectively, to monitor a pressure change of the exhaust gas across the DPF. The difference between entry and exit exhaust gas pressure is useful to determine the soot loading of the DPF. Because the injector 20 is upstream of the aftertreatment device 16, it is exposed to exhaust gas carrying particulate matter. In addition, the injector nozzle 24 and the hydrocarbon liquid at and exiting the nozzle 24 of the injector are exposed to the heat of the exhaust. This can result in coking of the nozzle as hydrocarbon liquid and particulate matter deposits form on the nozzle.
Maintaining the nozzle at a relative low temperature can help avoid, although not eliminate, coking. Coke deposits may be removed by heating the nozzle to a sufficiently high temperature to oxidize the carbon, and devices for heating nozzles are known. However, these add expense and complexity to the injector system.
According to the invention, an injector nozzle 24 is provided with a coating of a catalytic material that allows coke deposits to oxidize at a relatively low temperature. Suitable catalytic materials include precious metal catalysts such as platinum and palladium. Referring to Figure 2, an injector nozzle 24 includes a nozzle body 40 having a flow channel 42 for a liquid fuel. The flow channel 42 ends in a tip 44, which may include fluid distribution devices to control flow volume or induce swirl or spray angle, for example. The injector 20 may be any suitable fluid injector, and may include an injector body 50 having an interior passage 52 for the injected fluid, a needle 54 movable in the passage 52 operable by a spring 56 and an actuator device (not shown) to control the flow into the nozzle channel 42 and to the tip 44.
A catalytic coating is preferably applied to surfaces exposed to exhaust gas heat and the fuel injected by the nozzle 24. Such surfaces include the exterior surface 46 of the nozzle body 24, the tip 44, and a surface 48 defining the flow channel 42.
The catalytic coating on these surfaces will reduce the temperature necessary to oxidize carbon deposits on those surfaces. Figure 3 is a diagram of a method according to the invention for preventing coke fouling of an injector. According to the method, the aftertreatment (AT) device is monitored for operational condition (S100) by monitoring a pressure differential between incoming and outgoing exhaust gas and/or by monitoring a temperature of the device. A temperature of the exhaust gas entering the AT device is also monitored (S102).
The method determines if the exhaust gas is above a temperature threshold at which the exhaust gas can heat the catalyst coated nozzle to a temperature sufficient for oxidization of deposited carbon (S104). Using a precious metal as a catalyst, heating the nozzle to about 240°C or higher will promote oxidation.
Although described in a sequential manner, it should be understood that the method of the invention is not performed entirely sequentially; the steps of monitoring the AT device, monitoring the exhaust gas temperature, and determining if the exhaust gas temperature is above the threshold are performed continually or in a repeating sequence as the rest of the method is performed.
If the exhaust gas temperature is above the threshold of Step S104, the method at Step S106 stops air flow through the injector or substantially stops air flow to provide a minimal amount of air flow, for example, to prevent ingress of exhaust gas into the nozzle, but not effectively cool the nozzle. The lack of air flow or low amount of air flow allows the nozzle to heat to the temperature sufficient for oxidizing any carbon deposits. A timer may be started to measure an interval during which the nozzle is heated and oxidation occurs. Alternatively, according to the method, the air flow will remain off or at a minimum as long as the exhaust gas temperature is above the threshold as determined in Step S104.
When the heating/oxidizing time interval has elapsed (Step S108) or the exhaust gas temperature falls below the threshold temperature, the method increases air flow through the nozzle (S110), to provide cooling to inhibit coking.
Returning to Step S104, if the exhaust gas temperature is below the threshold temperature, the condition of the AT device is evaluated to determine if it is necessary to increase the exhaust gas temperature (Step S112). For example, a DPF device may require a regeneration procedure to remove collected particulate matter.
If the AT device does not require heating, the method causes air to flow through the nozzle (Step S114). Air flow will help cool the nozzle to prevent or inhibit coking fouling. If the AT device requires heating, hydrocarbon is injected through the injector (Step S116) while the exhaust gas temperature is monitored. An amount of hydrocarbon and a frequency of injections are controlled to the exhaust gas temperature to heat the DPF device to a target temperature and maintain that temperature for a time interval sufficient for regenerating the DPF. Alternatively, the DPF may be heated until the exhaust gas pressure differential between the entry and exit drops below a threshold.
When the regeneration process is completed, the hydrocarbon injection is stopped and air is caused to flow through the nozzle (Step S114). The flow of air after hydrocarbon injection will help purge the nozzle of residual hydrocarbon and the continued flow of air helps cool the nozzle to help inhibit or prevent coke fouling. It is noted that according to the invention, at low exhaust temperatures where the temperature is not sufficiently high to oxidize carbon, air flows continuously through the nozzle to maintain nozzle temperatures as low as possible to slow carbon deposition. At exhaust temperatures high enough to support oxidation of carbon deposited on the nozzle, air flow through the nozzle is completely or substantially completely shut off to avoid cooling the nozzle and allow oxidation of any coking. In the present application, the use of terms such as "including" is open-ended and is intended to have the same meaning as terms such as "comprising" and not preclude the presence of other structure, material, or acts. Similarly, though the use of terms such as "can" or "may" is intended to be open-ended and to reflect that structure, material, or acts are not necessary, the failure to use such terms is not intended to reflect that structure, material, or acts are essential. To the extent that structure, material, or acts are presently considered to be essential, they are identified as such.
While this invention has been illustrated and described in accordance with a preferred embodiment, it is recognized that variations and changes may be made therein without departing from the invention as set forth in the claims.

Claims

What is claimed is:
1. A method of operating an injector for an exhaust gas aftertreatment apparatus to avoid coke deposits, the injector nozzle having a catalyst coating, the method comprising the steps of: selectively injecting a hydrocarbon fluid into an exhaust gas flow to increase the temperature of the exhaust flow; when not injecting hydrocarbon, causing air to flow through the injector nozzle when an exhaust gas temperature is below a threshold temperature; and, when not injecting hydrocarbon, substantially stopping the flow of air through the injector nozzle when the exhaust gas temperature is above the threshold temperature.
2. The method as in claim 1, further comprising: monitoring a condition of the aftertreatment apparatus; monitoring an exhaust gas temperature; and, responsive to the condition of the aftertreatment apparatus and responsive to the exhaust gas temperature, controlling the injection of hydrocarbon in the exhaust gas flow.
3. The method as in claim 1, comprising the step of causing air to flow through the injector immediately following injecting hydrocarbon to purge residual hydrocarbon from the injector.
4. The method as in claim 1, wherein the flow of air through the injector nozzle when the exhaust gas temperature is above the threshold temperature is substantially stopped until the exhaust gas temperature is below the threshold temperature.
5. The method as in claim 1, wherein the flow of air through the injector nozzle when the exhaust gas temperature is above the threshold temperature is substantially stopped for a predetermined time interval.
PCT/US2012/048277 2012-07-26 2012-07-26 Apparatus and method of operating an injector for an exhaust gas aftertreatment apparatus WO2014018036A2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2015524230A JP5909028B2 (en) 2012-07-26 2012-07-26 Apparatus and method for operating an injector of an exhaust gas aftertreatment device
US14/414,547 US20150192050A1 (en) 2012-07-26 2012-07-26 Apparatus and method of operating an injector for an exhaust gas aftertreatment apparatus
CN201280074916.0A CN104541030A (en) 2012-07-26 2012-07-26 Apparatus and method of operating an injector for an exhaust gas aftertreatment apparatus
CA2879562A CA2879562A1 (en) 2012-07-26 2012-07-26 Apparatus and method of operating an injector for an exhaust gas aftertreatment apparatus
EP12881703.8A EP2893163A4 (en) 2012-07-26 2012-07-26 Apparatus and method of operating an injector for an exhaust gas aftertreatment apparatus
BR112015001717A BR112015001717A2 (en) 2012-07-26 2012-07-26 apparatus and method of operation of an injector for an exhaust gas after-treatment apparatus
PCT/US2012/048277 WO2014018036A2 (en) 2012-07-26 2012-07-26 Apparatus and method of operating an injector for an exhaust gas aftertreatment apparatus
RU2015106316/06A RU2604405C2 (en) 2012-07-26 2012-07-26 Device and method of nozzle controlling of exhaust gas processing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2012/048277 WO2014018036A2 (en) 2012-07-26 2012-07-26 Apparatus and method of operating an injector for an exhaust gas aftertreatment apparatus

Publications (2)

Publication Number Publication Date
WO2014018036A2 true WO2014018036A2 (en) 2014-01-30
WO2014018036A3 WO2014018036A3 (en) 2014-05-01

Family

ID=49997940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2012/048277 WO2014018036A2 (en) 2012-07-26 2012-07-26 Apparatus and method of operating an injector for an exhaust gas aftertreatment apparatus

Country Status (8)

Country Link
US (1) US20150192050A1 (en)
EP (1) EP2893163A4 (en)
JP (1) JP5909028B2 (en)
CN (1) CN104541030A (en)
BR (1) BR112015001717A2 (en)
CA (1) CA2879562A1 (en)
RU (1) RU2604405C2 (en)
WO (1) WO2014018036A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2537598A (en) * 2015-04-13 2016-10-26 Perkins Engines Co Ltd Method of controlling an engine system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106246301B (en) * 2016-08-30 2019-07-05 潍柴动力股份有限公司 A kind of exhaust temperature control system and control method
CN108240250B (en) 2016-12-27 2020-11-24 丰田自动车株式会社 Exhaust gas purification device for internal combustion engine
JP6563890B2 (en) * 2016-12-27 2019-08-21 株式会社Soken Exhaust gas purification device for internal combustion engine
CN109209569B (en) * 2017-07-07 2022-01-25 卡明斯公司 Diesel engine thermal management control strategy
CN107387206A (en) * 2017-08-17 2017-11-24 无锡威孚高科技集团股份有限公司 A kind of fuel nozzle for dpf regeneration system
EP3894674A4 (en) * 2018-12-14 2022-09-07 Cummins Filtration IP, Inc. Diesel fuel dosing module for regeneration of diesel particulate filters with continuous purging
US11885251B2 (en) * 2022-05-25 2024-01-30 Tenneco Automotive Operating Company Inc. Selective catalytic reduction catalyst pre-heating burner assembly and method of controlling burner emissions

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4987738A (en) * 1989-10-27 1991-01-29 General Motors Corporation Particulate trap system for an internal combustion engine
US6630244B1 (en) * 2001-03-23 2003-10-07 Delavan Inc. Carbon resistant surface coating
US20080209897A1 (en) * 2007-03-02 2008-09-04 Caterpillar Inc. Fluid injector having purge heater
US8006482B2 (en) * 2007-03-02 2011-08-30 Caterpillar Inc. Method of purging fluid injector by heating

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09112392A (en) * 1995-10-13 1997-04-28 Denso Corp Fuel injection nozzle for internal combustion engine and manufacture thereof
CN1171013C (en) * 1999-07-02 2004-10-13 罗伯特·博施有限公司 Fuel-injection valve
DE19951014A1 (en) * 1999-07-02 2001-01-04 Bosch Gmbh Robert Fuel injector
JP4560447B2 (en) * 2005-06-24 2010-10-13 株式会社サムソン Denitration device to prevent clogging of urea water injection nozzle
US7874148B2 (en) * 2007-03-15 2011-01-25 Deere & Company Regeneration system and method for particulate traps
US7958721B2 (en) * 2007-06-29 2011-06-14 Caterpillar Inc. Regeneration system having integral purge and ignition device
EP2279335B1 (en) * 2008-04-15 2016-05-11 G.W. Lisk Company, Inc. System for purging a device
JP2011027023A (en) * 2009-07-24 2011-02-10 Isuzu Motors Ltd Internal combustion engine
US8881995B2 (en) * 2010-09-29 2014-11-11 Delavan Inc Carbon contamination resistant pressure atomizing nozzles
US9033256B2 (en) * 2011-08-30 2015-05-19 Continental Automotive Systems, Inc. Catalytic coating to prevent carbon deposits on gasoline direct injector tips

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4987738A (en) * 1989-10-27 1991-01-29 General Motors Corporation Particulate trap system for an internal combustion engine
US6630244B1 (en) * 2001-03-23 2003-10-07 Delavan Inc. Carbon resistant surface coating
US20080209897A1 (en) * 2007-03-02 2008-09-04 Caterpillar Inc. Fluid injector having purge heater
US8006482B2 (en) * 2007-03-02 2011-08-30 Caterpillar Inc. Method of purging fluid injector by heating

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2537598A (en) * 2015-04-13 2016-10-26 Perkins Engines Co Ltd Method of controlling an engine system
GB2537598B (en) * 2015-04-13 2017-09-13 Perkins Engines Co Ltd Method of controlling an engine system

Also Published As

Publication number Publication date
EP2893163A4 (en) 2016-06-08
JP2015526634A (en) 2015-09-10
CA2879562A1 (en) 2014-01-30
CN104541030A (en) 2015-04-22
BR112015001717A2 (en) 2017-07-04
RU2015106316A (en) 2016-09-20
WO2014018036A3 (en) 2014-05-01
RU2604405C2 (en) 2016-12-10
JP5909028B2 (en) 2016-04-26
US20150192050A1 (en) 2015-07-09
EP2893163A2 (en) 2015-07-15

Similar Documents

Publication Publication Date Title
US20150192050A1 (en) Apparatus and method of operating an injector for an exhaust gas aftertreatment apparatus
US8707684B2 (en) Control method and apparatus for regenerating a particulate filter
EP2808512B1 (en) Exhaust post-processing apparatus and control method
US8720189B2 (en) Apparatus and method for onboard performance monitoring of oxidation catalyst
US8910466B2 (en) Exhaust aftertreatment system with diagnostic delay
US20110030343A1 (en) Scr reductant deposit removal
US20100313547A1 (en) Apparatus and method for regenerating an exhaust filter
JP2006514205A (en) Post-injection method of hydrocarbon regeneration solution, alcohol regeneration solution and / or reducing agent type regeneration solution (eg diesel fuel and / or urea and / or ammonia solution) for regeneration of diesel engine exhaust gas filter
US8756917B2 (en) Control apparatus for temperature excursions within an exhaust gas treatment system
US20140311123A1 (en) Electrically heated doc using hcscr cold start nox controls
US20130186064A1 (en) Exhaust Aftertreatment for NOx-Containing Exhaust From an Internal Combustion Engine
US8763369B2 (en) Apparatus and method for regenerating an exhaust filter
US20090199537A1 (en) Methods to protect selective catalyst reducer aftertreatment devices during uncontrolled diesel particulate filter regeneration
US20110067386A1 (en) Oxidizing Particulate Filter
US9562452B2 (en) System and method for controlling regeneration within an after-treatment component of a compression-ignition engine
EP3163044B1 (en) Exhaust gas cleaning apparatus for internal combustion engine
US8864875B2 (en) Regeneration of a particulate filter based on a particulate matter oxidation rate
US8826647B2 (en) Electrically heated filter regeneration methods and systems
US9926823B2 (en) System and method for controlling detecting and cleaning diesel-exhaust-fluid injector deposits
US8584445B2 (en) Method and system for controlling an electrically heated particulate filter
US9046019B2 (en) System and method for particulate filter regeneration
US20150113963A1 (en) Control of regeneration in a diesel after-treatment system
KR102287319B1 (en) Exhaust gas aftertreatement apparatus and method for controlling the same
EP2415982A1 (en) Apparatus and method for regenerating particulate filters for internal combustion engines
EP1223312A1 (en) Exhaust gas after-treatment system for a combustion engine and method of controling such a system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12881703

Country of ref document: EP

Kind code of ref document: A2

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 14414547

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2879562

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2015524230

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012881703

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015106316

Country of ref document: RU

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12881703

Country of ref document: EP

Kind code of ref document: A2

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015001717

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015001717

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150126