WO2014017725A1 - Film-forming roll and method for manufacturing optical film using same - Google Patents

Film-forming roll and method for manufacturing optical film using same Download PDF

Info

Publication number
WO2014017725A1
WO2014017725A1 PCT/KR2013/002677 KR2013002677W WO2014017725A1 WO 2014017725 A1 WO2014017725 A1 WO 2014017725A1 KR 2013002677 W KR2013002677 W KR 2013002677W WO 2014017725 A1 WO2014017725 A1 WO 2014017725A1
Authority
WO
WIPO (PCT)
Prior art keywords
forming roll
film
film forming
thermoplastic resin
temperature
Prior art date
Application number
PCT/KR2013/002677
Other languages
French (fr)
Korean (ko)
Inventor
최종규
조진희
유소희
이승규
김란
구준모
박종선
은종혁
정오용
Original Assignee
제일모직 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직 주식회사 filed Critical 제일모직 주식회사
Publication of WO2014017725A1 publication Critical patent/WO2014017725A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/44Compression means for making articles of indefinite length
    • B29C43/46Rollers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/32Holograms used as optical elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/44Compression means for making articles of indefinite length
    • B29C43/46Rollers
    • B29C2043/466Rollers the rollers having specific shape, e.g. non cylindrical rollers, conical rollers

Definitions

  • the present invention relates to a film forming roll and an optical film manufacturing method using the same. More specifically, the present invention relates to a film forming roll capable of expressing the inclined characteristics of the refractive index main axis in the film thickness direction and an optical film manufacturing method using the same.
  • Liquid crystal displays are one of the most widely used flat panel displays.
  • a liquid crystal display has a structure in which a liquid crystal layer is enclosed between a thin film transistor (TFT) array substrate and a color filter substrate.
  • TFT thin film transistor
  • a polarizing film (polarizing plate) is provided outside the array substrate and the color filter substrate.
  • the polarizing film may control polarization by selectively transmitting light in a specific direction among light incident from the backlight and light passing through the liquid crystal layer.
  • the polarizing plate generally includes a polarizer, a protective layer, and a compensation film capable of polarizing light in a specific direction.
  • the liquid crystal display Due to the refractive anisotropy of the liquid crystal, the liquid crystal display has a fundamental problem of a viewing angle.
  • the viewing angle of TN (Twist Nematic) type has a limited problem of 120 degrees in the horizontal direction and 90 degrees in the vertical direction.
  • the wide viewing angle compensation film compensates for the phase delay to compensate for the wide viewing angle, and has various compensation functions such as improving contrast ratio, gray scale inversion, and color change.
  • JP 2006-267241 after rubbing treatment is performed on the lower transparent film fabric surface, the coating liquid is oriented on the surface above the liquid crystal glass transition temperature, and the alignment is fixed to form an optically anisotropic layer. After that, a technique for producing a product by winding a laminating agent is disclosed.
  • JP H6-6-222213 discloses a technique for producing a film having a compensation function by forming an optical axis by varying the peripheral speed difference between rolls when a solidified film fabric prepared by extrusion processing polycarbonate is formed.
  • JP 2003-025414 describes the construction of the processing rolls, the first roll applying the metal plated roll on the elastic rubber roll surface, and the second roll applying the normal metal roll to incline the optical axis under the conditions above the glass transition temperature of the raw material resin. Disclosed is a technique to make. This method is advantageous in realizing the inclination angle by widening the contact area between the rolls, but because of the surface roughness, a transparent product cannot be made.
  • JP 2010-058495 discloses a technique for tilting an optical axis by giving a circumferential speed difference between rolls when an extrusion melt is introduced between a rubber coated metal roll and a general metal roll. At this time, the pressure between each applied roll can be variously adjusted, and if the pressure between the rolls is increased, the inclined structure can be increased and a film with high optical uniformity can be produced.
  • JP 2011-059471 discloses a technique of obtaining an inclined angle as much as possible by giving a main speed difference between metal rolls in the process of co-extrusion and feeding between metal rolls, and then peeling the surface layer with poor appearance and obtaining only the protected layer in the middle.
  • One object of the present invention is to provide a film forming roll and an optical film manufacturing method using the same that can express the inclination characteristics of the refractive index main axis in the film thickness direction.
  • Another object of the present invention is to provide a film-forming roll and an optical film manufacturing method using the same in which the surface is not inclined orientation occurs in the single film during the film forming, the inside can express the inclined orientation.
  • Still another object of the present invention is to provide a film forming roll capable of expressing uniform physical properties according to film width during film formation and an optical film manufacturing method using the same.
  • Still another object of the present invention is to provide a film forming roll and an optical film manufacturing method using the same, which can maintain transparency and an orientation angle even after the haze without stretching.
  • Still another object of the present invention is to provide a film forming roll and an optical film manufacturing method using the same, which can greatly improve the viewing angle of a liquid crystal display during film forming.
  • Still another object of the present invention is to provide a film forming roll and an optical film manufacturing method using the same, which can improve light leakage caused by liquid crystal compensation during film formation.
  • the film forming roll has a rotatable cylindrical inner member; A surface member formed at intervals from an outer circumference of the cylindrical inner member; And a liquid layer filled between the cylindrical inner member and the surface member.
  • the material of the cylindrical inner member and the surface member may be a metal.
  • the liquid layer may be at least one selected from the group consisting of water and oils.
  • the surface member may have a diameter d2 of the contact center portion larger than a diameter d1 of the end portion.
  • the diameter d2 of the contact center portion may be about 0.01 to about 5.00% greater than the diameter d1 of the end portion.
  • Another aspect of the invention relates to a method for producing an optical film using the film forming roll.
  • the method comprises melt extrusion of a non-liquid crystalline thermoplastic resin; And nip molding the melt-extruded thermoplastic resin between the film forming roll and the second forming roll to form a film.
  • the film forming roll and the second forming roll may have different elastic modulus.
  • the elastic modulus of the film forming roll may be greater than the elastic modulus of the second forming roll.
  • the elastic modulus of the film forming roll may be about 0.1 to about 30.0% greater than that of the second forming roll.
  • the film forming roll and the second forming roll may have a peripheral speed difference of about 30% or less.
  • the surface temperature of the film forming roll and the second forming roll may be less than or equal to the glass transition temperature (Tg) of the non-liquid crystal thermoplastic resin.
  • the surface temperature (Tr) of the film forming roll may satisfy the following equation 3:
  • Tr is the thermoplastic resin temperature immediately after melt extrusion
  • Tr is the surface temperature of the film forming roll
  • the film forming roll and the second forming roll may have a temperature difference of about 30 ° C.
  • thermoplastic resin may be a resin having a negative anisotropy refractive index.
  • thermoplastic resin may be a resin having a positive anisotropy refractive index, and may further include stretching after forming a nip.
  • the stretching may be about 5 to 20% of the stretching direction in the opposite direction of travel (TD).
  • the stretching may be performed at a temperature lower than the glass transition temperature (Tg) of the thermoplastic resin.
  • the stretching may have a stretching temperature satisfying the following formula:
  • Td is the stretching temperature
  • Tg is the glass transition temperature of the thermoplastic resin
  • a is 5 ⁇ 20 °C.
  • the present invention can express the inclination characteristics of the refractive index main axis in the film thickness direction, the surface in the single film during film formation, the inclination orientation does not occur, the inside can express the inclination orientation, ensure uniform properties in the width direction It is possible to maintain transparency and alignment angle without haze after stretching, and to greatly improve the viewing angle of the liquid crystal display, and to improve the light leakage caused by liquid crystal compensation, and a film forming method using the same. It has the effect of providing the invention.
  • FIG. 1 is a schematic perspective view of a film forming roll according to one embodiment of the present invention.
  • FIG. 2 is a front sectional view of the film forming roll of the present invention.
  • FIG 3 is a side cross-sectional view of the film forming roll of the present invention.
  • Figure 4 is a schematic diagram showing a process of manufacturing an optical film using the film forming roll.
  • FIG. 5 is a cross-sectional view schematically showing an optical film manufactured by the manufacturing method of the present invention.
  • FIG. 6 is a conceptual diagram for explaining the film ⁇ angle.
  • Example 7 is a phase difference measurement result according to a film width of Example 3 and Comparative Example 1.
  • the film forming roll 100 of the present invention is a rotatable cylindrical inner member (10); A surface member 30 formed at intervals from an outer circumference of the cylindrical inner member; And a liquid layer 20 filled between the cylindrical inner member and the surface member.
  • metal glass, ceramic, plastic, rubber, or the like may be applied, and preferably, metal.
  • the diameter of the cylindrical inner member 10 may be about 200mm to about 500mm.
  • the surface member 30 surrounds the outer periphery of the film forming roll 100 of the present invention and is formed at intervals from the cylindrical inner member 10.
  • the material of the surface member 30 may be a metal.
  • a metal a single metal, a metal plated with a second metal, an alloy of two or more metals, and the like may be applied.
  • steel metal plated with chromium may be applied.
  • materials of the cylindrical inner member 10 and the surface member 30 may be different from each other.
  • the cylindrical inner member 10 and the surface member 30 are made of metal, the cylindrical inner member 10 may be made of steel and the surface member 30 may be made of steel.
  • the average distance between the cylindrical inner member 10 and the surface member 30 may be about 0.1 mm to about 10 mm mm.
  • the surface member may have a cylindrical shape having the same diameter as that of the end portion 31 and the contact center portion 32.
  • the surface member may have a diameter d2 of the contact center 32 greater than the diameter d1 of the end 31. That is, as shown in FIG. 3, the contact center of the film forming roll 100 has a convex jar shape.
  • the end part 31 and the contact center part 32 make both ends the "end part” and the part in the center of the said end as the "contact center part" when observed in the direction perpendicular to the axial direction of a film forming roll here.
  • the diameter d2 of the contact center may be about 0.01% to about 5%, preferably about 0.01% to about 1% larger than the diameter d1 of the end. Within this range, it is possible to ensure uniformity in the width direction phase difference and the inclination angle.
  • the diameter d1 of the end portion 31 of the surface member may be about 200 mm 3 to about 500 mm mm
  • the diameter d 2 of the contact center portion 32 may be about 200.02 mm to about 505.00 mm mm.
  • the liquid crystal layer 20 is filled between the cylindrical inner member 10 and the surface member 30.
  • the liquid layer may be water, oil or the like. Of these, water is preferable because it is easy to control the temperature.
  • Another aspect of the invention relates to a method for producing the optical film.
  • the method comprises melt extrusion of a non-liquid crystalline thermoplastic resin; And nip molding the melt-extruded thermoplastic resin between the film forming roll and the second forming roll to form a film.
  • thermoplastic resin melt-extruded from the die 400 is passed between the film forming roll 100 and the second forming roll 200 to be produced as an optical film 500 in the form of a film. Thereafter, passing between the third forming rolls 300 adjacent to the second forming rolls 200 may be a winding or stretching process.
  • a process of drying the melted thermoplastic resin in the die 400 may be performed.
  • the moisture content in the raw material contains a certain level or more, defects in the product in the bubble state such as orange peel may occur.
  • a dehumidifying dryer or a hot air dryer may be used in the drying process.
  • the drying temperature is preferably about 20 to 200 ° C, more preferably about 50 to 150 ° C, and most preferably about 70 to 130 ° C. In the above range it is possible to remove the moisture without changing the raw material properties.
  • the drying time of the raw material is preferably about 30 minutes to 5 hours, more preferably about 1 to 3 hours, and most preferably about 2 to 3 hours.
  • the raw material After the raw material is dried, the raw material is fed into the fixed quantity supply device, and then, the raw material is supplied to the extrusion facility in earnest by adjusting a predetermined amount to the raw material reservoir (hopper) installed at the inlet of the extrusion facility. At this time, in order to remove impurities that may be included in the raw material may be passed through the filtration device while primarily circulating air in the intermediate reservoir.
  • the dried raw material is then fed to an extruder.
  • the extruder is divided into 3 to 5 sections depending on the temperature.
  • the first raw material is filled in the first section of the extrusion plant screw.
  • the first section serves to transfer the raw material to the extrusion equipment cylinder.
  • the temperature setting of the first section is preferably about 20 ⁇ 350 °C, most preferably about 150 ⁇ 250 °C.
  • the second section is where the melting of the raw material begins.
  • the temperature setting of the second section is preferably about 150 ⁇ 350 °C, most preferably about 200 ⁇ 280 °C.
  • the third section serves to convert the raw material completely into the melt. Temperature setting of the third section is about 150 ⁇ 350 °C, preferably about 200 ⁇ 280 °C.
  • the fourth section increases the density of the melt by increasing the pressure of the molten raw material to ensure a stable discharge amount.
  • Temperature conditions of the fourth section is about 150 ⁇ 350 °C, most preferably about 200 ⁇ 280 °C. It can pass through the mesh of the screen changer section to remove impurities contained in the molten raw material.
  • the cubic number of the mesh is preferably about 30 to 1000 squares, and most preferably about 100 to 300 squares. It is easy to move the melt in the above range, and excellent in the ability to remove impurities.
  • the demelted melt passes through the gear pump section, which transfers it to the T-die in a constant amount.
  • the gear pump stores the raw material irregularly injected from the extrusion equipment cylinder in a certain space and supplies a certain amount of melt to the tie tie to minimize the change of pressure distribution.
  • Ti-dye section is the section where the melt is finally discharged out of the extrusion facility.
  • the shape and manufacturing thickness of the film are determined depending on the form of the T-die. Ti die types are divided into "T-shaped" dies, coat hanger dies, and fish tail dies. It can be used selectively depending on the flow of the melt.
  • the melt in the form of a film discharged through the die is in contact with the film forming roll 100 to have a solidified film form.
  • the film forming roll 100 and the second forming roll 200 may have different elastic modulus. As such, the film forming rolls 100 and the second forming rolls 200 may have different elasticities from each other to form various film ⁇ angles.
  • the elastic modulus of the film forming roll 100 may be greater than the elastic modulus of the second forming roll 200.
  • the elastic modulus of the film forming roll 100 may be about 1.0 kPa to about 30.0 kPa% greater than the elastic modulus of the second forming roll 200. It is possible to ensure the uniformity of the width direction retardation and the inclination angle in the above range.
  • the film forming roll 100 and the second forming roll 200 may have a difference in peripheral speed.
  • the main speed difference is the speed at which the roll rotates.
  • the circumferential speed of the film forming roll 100 may be faster than the circumferential speed of the second molding roll 200.
  • the circumferential speed of the film forming roll 100 may be about 1 kPa to about 60 m / min, and the circumferential speed of the second forming roll 200 may be about 1 kPa to about 50 m / min.
  • the peripheral speed difference between the film forming roll 100 and the second forming roll 200 may be within about 30%.
  • the peripheral speed difference may be about 0 to about 10%, more preferably about 0 to about 5%.
  • the surface temperature of the film forming roll 100 and the second forming roll 200 may be less than or equal to the glass transition temperature (Tg) of the non-liquid crystalline thermoplastic resin.
  • the melt-extruded thermoplastic resin is in contact with the film forming roll 100 and the second forming roll 200, the film inside the film when the Tg temperature or more, while the film surface is different to the Tg temperature or less.
  • the forming rolls of the film forming roll 100 and the second forming roll 200 are driven in a state where the film ⁇ surface and the forming temperature difference are generated, different shearing forces are generated on the surface and the inside of the film and are inclined in the thickness direction. It will have an angle.
  • the surface temperature Tr of the film forming roll 100 may satisfy the following Equation 3:
  • Tr is the thermoplastic resin temperature immediately after melt extrusion
  • Tr is the surface temperature of the film forming roll
  • the surface layer may not be oriented in the film thickness direction, and may have a structure in which only the inner layer is inclined.
  • the surface temperature (Tr) of the film forming roll 100 is about 20 ⁇ 200 °C, preferably about 50 ⁇ 150 °C, most preferably about 80 ⁇ 130 °C. It is possible to secure the phase difference value and the inclination angle through the phase expression in the above range.
  • the surface temperature of the second forming roll 200 is about 20 ⁇ 200 °C, preferably about 80 ⁇ 130 °C. It is possible to secure the phase difference value and the inclination angle through the phase expression in the above range.
  • the temperature difference between the film forming roll 100 and the second forming roll 200 is about 2 to 50 ° C, preferably about 5 to 30 ° C, and more preferably about 5 to 15 ° C. It is possible to secure the phase difference value and the angle of inclination through phase expression in the above range.
  • the surface temperature of the third forming roll 300 may be about 20 ⁇ 180 °C, preferably about 50 ⁇ 120 °C.
  • the thermoplastic resin may be a resin having a negative anisotropic refractive index, such as an aromatic vinyl resin, an acrylic resin, or the like, or a resin having a positive anisotropic refractive index, such as a cycloolefin resin, a polycarbonate resin, a polyolefin resin, or the like.
  • the method may further include stretching after nip molding.
  • the stretching may be biaxial stretching, and stretching may be performed at about 5 to 30% of the traveling direction in the opposite traveling direction (TD).
  • TD traveling direction
  • the stretching may be performed at about 8 to 25%, more preferably at about 10 to 20% relative to the driving direction in the opposite traveling direction (TD).
  • the stretching may be performed at a temperature lower than the glass transition temperature (Tg) of the thermoplastic resin.
  • the stretching may be performed at a temperature about 5 to 20 ° C. lower than the glass transition temperature (Tg) of the thermoplastic resin.
  • the drawing may have a drawing temperature satisfying the following formula:
  • Td is the stretching temperature
  • Tg is the glass transition temperature of the thermoplastic resin
  • a is 5 ⁇ 20 °C.
  • the film having the inclination angle in the thickness direction is stretched in the extruded film, the film is stretched at a low magnification at a temperature lower than the glass transition temperature (Tg), whereby the inclination characteristic during extrusion molding can be efficiently maintained.
  • Tg glass transition temperature
  • thermoplastic resin when the thermoplastic resin is a resin having a negative anisotropy refractive index, internally oriented characteristics may be obtained without a drawing process after nip molding.
  • the film is finally wound up.
  • the film may be wound after trimming the uneven portions of both side ends of the film.
  • the surface may not be inclined in the film thickness direction and may be inclined in the film thickness direction as shown in FIG. 5.
  • the optical film manufactured by the above method may be formed to have different orientations depending on the surface and the interior thereof, thereby improving a viewing angle and light leakage.
  • the manufacturing of the optical film having different inclination orientations according to the surface and the inside can be performed in a single extrusion process, the process can be shortened and manufacturing cost can be reduced.
  • the film inner layer 500c may have a film average ⁇ angle of about 5 to 35 degrees, preferably about 12 to 30 degrees, defined as an angle at which orthogonal nicotine transmittance is minimum.
  • the film? Beta angle is an intercept alignment angle, and is an angle formed between the z axis in the thickness direction and the z 'axis perpendicular to the orientation plane, as shown in FIG. 6.
  • the film? Average?? Angle can be obtained between the polarizing plates and observed at the orthogonal nicotine to obtain an angle at which orthogonal nicotine transmittance is minimum.
  • the film inner layer 500c may have different values of the film ⁇ angles along the z-axis in the thickness direction.
  • the film ⁇ angle may be about 21 to 27 degrees at the position of about 10 to 20 ⁇ m from the surface of the film, whereas the film ⁇ angle may be about 15 to 20 degrees at the position of about 70 to 80 ⁇ m from the surface of the film.
  • the inclination orientation is different according to the film thickness, and the film ⁇ angle has different distribution.
  • the ratio of the maximum ⁇ angle ⁇ 1 and the minimum ⁇ angle ⁇ 2 in the film inner layer ( ⁇ 1 / ⁇ 2) may be about 1 to 1.8, more preferably about 1.1 to 1.5.
  • the average ⁇ angle may be about 5 to 40 degrees, for example, about 15 to 35 degrees.
  • the optical film 500 may have an in-plane retardation value Ro of about 550 nm to about 150 dB at 550 nm.
  • nx and ny ' are the refractive indexes in the x- and y'-axis directions, respectively, and d is the thickness of the film).
  • the optical film may have a thickness direction retardation value Rth defined by Equation 2 at 550 nm in a range of about 0 Hz to about 200 Hz.
  • nx, ny 'and nz' are the refractive indices in the x-axis, y'-axis and z'-axis directions, respectively, and d is the thickness of the film).
  • the thickness d of the optical film may be about 30 to about 110 ⁇ m, preferably about 50 to about 100 ⁇ m.
  • the optical film produced by the above method may be directly laminated on the polarizing device to produce a polarizing film. Since the optical film manufactured according to the method of the present invention is not inclined to the surface but is inclined only to the inner layer, it is possible to secure an excellent viewing angle even in the vertical alignment mode liquid crystal. You can improve the light spring mura.
  • thermoplastic resin JSR Arton RX4500
  • the thermoplastic resin is melt-extruded at 250 ° C. with a T die, and the film forming roll 100 and the rigid metal are filled with water between the steel cylindrical inner member and the stainless steel surface member as shown in FIG. 4.
  • the melt was passed through the rolls 200 to prepare a film.
  • the peripheral speed ratio between the film forming roll 100 and the rigid metal roll 200 was changed as shown in Table 1 to prepare an optical film, and then laminated with a polarizing film.
  • the surface temperatures of the film forming rolls 100 and the rigid metal rolls 200 and 300 were the same.
  • Ro 'and Rth' values Wavelengths in the direction perpendicular to the sample film surface and inclined ⁇ 45 ° from the film plane normal using Axo scan (OPMF-2 eries of Axometrics Inc.) for the produced film. The retardation value at 550 nm was measured.
  • the hypothesis of the average refractive index may be a polymer handbook (JOHN WILEY & SONS, Inc.) and values of catalogs of various optical films.
  • the luminance distribution of the polarizing microscope image was analyzed for each angle, and the average brightness was calculated after dividing the light into nine equal intervals in the film thickness direction.
  • the angle and the average luminance (PLOT) were plotted for each thickness and then averaged.
  • Example 1 Speedboat Roll temperature (°C) Film optical properties # 1 ⁇ # 2 roll speed Crown Metal Elastic Roll (# 1) Rigid Metal Roll (# 2) Rigid Metal Roll (# 3) Ro (nm) Rth (nm) ⁇ (°)
  • Example 1 1.010 123 123 115 7.2 38.2 22.2
  • Example 2 1.015 123 123 115 12.7 44.4 26.6
  • Example 3 1.020 123 123 115 18.5 50.4 29.9
  • Example 4 1.025 123 123 115 24.7 57.0 31.8
  • Example 5 1.030 123 123 115 34.5 66.7 32.1
  • Example 6 1.035 123 123 115 43.1 75.0 32.7
  • Examples 7 to 9 have a high viewing angle compared to Comparative Examples 2 to 3 where the stretching temperature is higher than the Tg of the resin.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

The present invention relates to a film-forming roll and to a method for manufacturing an optical film using same. The film-forming roll includes: a rotatable cylindrical inner member; a surface member formed apart from the outer circumferential edge of the cylindrical inner member; and a liquid layer filled between the cylindrical inner member and the surface member.

Description

필름 형성롤 및 이를 이용한 광학필름 제조방법Film forming rolls and optical film manufacturing method using the same
본 발명은 필름 형성롤 및 이를 이용한 광학필름 제조방법에 관한 것이다. 보다 구체적으로 본 발명은 필름 두께 방향으로 굴절율 주축의 경사특성을 발현할 수 있는 필름 형성롤 및 이를 이용한 광학필름 제조방법에 관한 것이다. The present invention relates to a film forming roll and an optical film manufacturing method using the same. More specifically, the present invention relates to a film forming roll capable of expressing the inclined characteristics of the refractive index main axis in the film thickness direction and an optical film manufacturing method using the same.
액정 디스플레이(liquid crystal display, LCD)는 현재 가장 널리 사용되고 있는 평판 디스플레이(flat panel display) 중 하나이다. 일반적으로 액정 디스플레이는 TFT(Thin Film Transistor) 어레이 기판과 칼라필터 기판 사이에 액정층이 봉입된 구조를 취한다. 상기 어레이 기판과 칼라필터 기판에 존재하는 전극에 전기장을 인가하면 그 사이에 봉입된 액정층의 액정 분자의 배열이 변하게 되고, 이를 이용해 영상을 표시하게 된다. 한편, 어레이 기판과 칼라필터 기판의 외측에는 편광필름(편광판)이 구비되어 있다.  편광필름은 백라이트로부터 입사되는 빛 및 액정층을 통과한 빛 중 특정 방향의 빛을 선택적으로 투과함으로써 편광을 제어할 수 있다. 편광판은 빛을 특정 방향으로 편광시킬 수 있는 편광자(polarizer), 보호층 및 보상필름을 포함하는 것이 일반적이다.Liquid crystal displays (LCDs) are one of the most widely used flat panel displays. In general, a liquid crystal display has a structure in which a liquid crystal layer is enclosed between a thin film transistor (TFT) array substrate and a color filter substrate. When an electric field is applied to the electrodes on the array substrate and the color filter substrate, the arrangement of the liquid crystal molecules of the liquid crystal layer enclosed therebetween changes, thereby displaying an image. On the other hand, a polarizing film (polarizing plate) is provided outside the array substrate and the color filter substrate. The polarizing film may control polarization by selectively transmitting light in a specific direction among light incident from the backlight and light passing through the liquid crystal layer. The polarizing plate generally includes a polarizer, a protective layer, and a compensation film capable of polarizing light in a specific direction.
액정의 굴절율 이방성에 기인하여 액정 디스플레이는 시야각이라는 근본적인 문제를 안고 있다. 광 시야 각 보상필름의 일종으로 TN(Twist Nematic)타입의 시야 각은 수평 방향에서 120도, 수직방향에서의 시야 각 90도로 제한적인 문제가 있다. Due to the refractive anisotropy of the liquid crystal, the liquid crystal display has a fundamental problem of a viewing angle. As a kind of optical viewing angle compensation film, the viewing angle of TN (Twist Nematic) type has a limited problem of 120 degrees in the horizontal direction and 90 degrees in the vertical direction.
이러한 문제를 해결해 주기 위하여 시야 각을 보상해 주는 광 시야 각 필름이 사용되고 있다. 이러한 광 시야 각 보상필름은 위상지연을 보상하여 넓은 시야 각을 보상하며, 명암 비 개선, 그레이 스케일 역전 개선, 색상변화 개선의 다양한 보상 기능을 갖게 해준다. In order to solve this problem, a wide viewing angle film for compensating the viewing angle is used. The wide viewing angle compensation film compensates for the phase delay to compensate for the wide viewing angle, and has various compensation functions such as improving contrast ratio, gray scale inversion, and color change.
JP 2006-267241에서는 하부측 투명 필름 원단표면에 러빙(rubbing)처리를 한 후 이 표면위에 도포액을 액정 유리전이온도 이상에서 액정성 화합물을 배향시키고, 그 배향을 고정하여 광학 이방성층을 형성한 후 적층제를 감아 제품을 제조하는 기술을 개시하고 있다. In JP 2006-267241, after rubbing treatment is performed on the lower transparent film fabric surface, the coating liquid is oriented on the surface above the liquid crystal glass transition temperature, and the alignment is fixed to form an optically anisotropic layer. After that, a technique for producing a product by winding a laminating agent is disclosed.
JP 평6-222213는 폴리카보네이트를 압출가공으로 제조된 고형화된 필름원단을 투입 시 롤간에 주속차를 달리하여 광축을 형성시킴으로써 보상 기능을 갖는 필름을 제조하는 기술이 개시되고 있다.  JP H6-6-222213 discloses a technique for producing a film having a compensation function by forming an optical axis by varying the peripheral speed difference between rolls when a solidified film fabric prepared by extrusion processing polycarbonate is formed.
JP 2003-025414는 가공롤의 구성을 첫 번째 롤은 탄성이 있는 고무롤 표면에 금속 도금 된 롤을 적용하였으며, 두 번째 롤은 일반 금속롤을 적용하여 원료 수지의 유리전이온도 이상의 조건에서 광축을 경사시키는 기술을 개시하고 있다. 상기 방법은 롤간의 접촉면적을 넓게 하여 경사각도를 구현하는데 있어 유리하지만 표면 거칠기 때문에 투명한 제품이 만들어 질 수 없다. JP 2003-025414 describes the construction of the processing rolls, the first roll applying the metal plated roll on the elastic rubber roll surface, and the second roll applying the normal metal roll to incline the optical axis under the conditions above the glass transition temperature of the raw material resin. Disclosed is a technique to make. This method is advantageous in realizing the inclination angle by widening the contact area between the rolls, but because of the surface roughness, a transparent product cannot be made.
JP 2010-058495는 압출 용융물을 고무피복된 금속롤과 일반 금속롤사이에 투입 될 시 롤간의 주속차이를 주어 광축을 경사시키는 기술이 개시되어 있다. 이 때, 각 적용 롤간의 압력을 다양하게 조절 할 수 있으며, 롤 간의 압력을 높일 경우 경사 구조가 커지고 광학 균일성 높은 필름을 제조 할 수 있다. JP 2010-058495 discloses a technique for tilting an optical axis by giving a circumferential speed difference between rolls when an extrusion melt is introduced between a rubber coated metal roll and a general metal roll. At this time, the pressure between each applied roll can be variously adjusted, and if the pressure between the rolls is increased, the inclined structure can be increased and a film with high optical uniformity can be produced.
JP 2011-059471는 공압출하여 금속롤 사이로 투입과정에서 금속롤의 주속차이를 주어서 경사각을 최대한 형성한 후 외관이 좋지 않은 표면층은 박리하고 가운데 보호된 층만을 얻는 기술을 개시하고 있다.  JP 2011-059471 discloses a technique of obtaining an inclined angle as much as possible by giving a main speed difference between metal rolls in the process of co-extrusion and feeding between metal rolls, and then peeling the surface layer with poor appearance and obtaining only the protected layer in the middle.
본 발명의 하나의 목적은 필름 두께 방향으로 굴절율 주축의 경사특성을 발현할 수 있는 필름 형성롤 및 이를 이용한 광학필름 제조방법을 제공하는 것이다.One object of the present invention is to provide a film forming roll and an optical film manufacturing method using the same that can express the inclination characteristics of the refractive index main axis in the film thickness direction.
본 발명의 다른 목적은 제막시 단일 필름에서 표면은 경사 배향이 발생하지 않고, 내부는 경사 배향을 발현할 수 있는 필름 형성롤 및 이를 이용한 광학필름 제조방법을 제공하는 것이다.Another object of the present invention is to provide a film-forming roll and an optical film manufacturing method using the same in which the surface is not inclined orientation occurs in the single film during the film forming, the inside can express the inclined orientation.
본 발명의 또 다른 목적은 제막시 필름 폭에 따라 균일한 물성을 발현할 수 있는 필름 형성롤 및 이를 이용한 광학필름 제조방법을 제공하는 것이다.Still another object of the present invention is to provide a film forming roll capable of expressing uniform physical properties according to film width during film formation and an optical film manufacturing method using the same.
본 발명의 또 다른 목적은 연신 후에도 헤이즈 상승없이 투명성과 배향각을 유지할 수 있는 필름 형성롤 및 이를 이용한 광학필름 제조방법을 제공하는 것이다.Still another object of the present invention is to provide a film forming roll and an optical film manufacturing method using the same, which can maintain transparency and an orientation angle even after the haze without stretching.
본 발명의 또 다른 목적은 제막시 액정 디스플레이의 시야각을 크게 개선할 수 있는 필름 형성롤 및 이를 이용한 광학필름 제조방법을 제공하는 것이다.Still another object of the present invention is to provide a film forming roll and an optical film manufacturing method using the same, which can greatly improve the viewing angle of a liquid crystal display during film forming.
본 발명의 또 다른 목적은 제막시 액정 보상에서 발생하는 빛샘 무라를 개선할 수 있는 필름 형성롤 및 이를 이용한 광학필름 제조방법을 제공하는 것이다.Still another object of the present invention is to provide a film forming roll and an optical film manufacturing method using the same, which can improve light leakage caused by liquid crystal compensation during film formation.
본 발명의 하나의 관점은 필름 형성롤에 관한 것이다. 상기 필름 형성롤은 회전 가능한 원통형 내부 부재; 상기 원통형 내부 부재의 외주연과 간격을 두고 형성된 표면 부재; 및 상기 원통형 내부 부재와 상기 표면부재 사이에 채워진 액상층을 포함하여 이루어진다. One aspect of the present invention relates to a film forming roll. The film forming roll has a rotatable cylindrical inner member; A surface member formed at intervals from an outer circumference of the cylindrical inner member; And a liquid layer filled between the cylindrical inner member and the surface member.
상기 원통형 내부 부재와 상기 표면 부재의 재질은 금속일 수 있다. The material of the cylindrical inner member and the surface member may be a metal.
상기 액상층은 물, 오일류로 이루어진 군으로부터 하나 이상 선택될 수 있다. The liquid layer may be at least one selected from the group consisting of water and oils.
상기 표면 부재는 접촉 중앙부의 직경(d2)이 단부의 직경(d1)보다 클 수 있다. The surface member may have a diameter d2 of the contact center portion larger than a diameter d1 of the end portion.
상기 접촉 중앙부의 직경(d2)이 단부의 직경(d1)보다 약 0.01 내지 약 5.00% 클 수 있다. The diameter d2 of the contact center portion may be about 0.01 to about 5.00% greater than the diameter d1 of the end portion.
본 발명의 다른 관점은 상기 필름 형성롤을 이용한 광학필름의 제조방법에 관한 것이다. 상기 방법은 비액정 열가소성 수지를 용융압출하고; 그리고 상기 용융압출된 열가소성 수지를 상기 필름 형성롤과 제2성형롤 사이로 닙(nip) 성형하여 필름 형태로 제조하는 단계를 포함한다. Another aspect of the invention relates to a method for producing an optical film using the film forming roll. The method comprises melt extrusion of a non-liquid crystalline thermoplastic resin; And nip molding the melt-extruded thermoplastic resin between the film forming roll and the second forming roll to form a film.
구체예에서 상기 필름 형성롤과 상기 제2성형롤은 탄성율이 서로 다를 수 있다.  상기 필름 형성롤의 탄성율은 상기 제2성형롤의 탄성율보다 클 수 있다. In embodiments, the film forming roll and the second forming roll may have different elastic modulus. The elastic modulus of the film forming roll may be greater than the elastic modulus of the second forming roll.
상기 필름 형성롤의 탄성율은 상기 제2성형롤의 탄성율 대비 약 0.1 내지 약 30.0 % 클 수 있다. The elastic modulus of the film forming roll may be about 0.1 to about 30.0% greater than that of the second forming roll.
구체예에서 상기 필름 형성롤과 상기 제2성형롤은 주속차가 약 30% 이내일 수 있다. In embodiments, the film forming roll and the second forming roll may have a peripheral speed difference of about 30% or less.
상기 필름 형성롤과 상기 제2성형롤의 표면온도는 상기 비액정 열가소성 수지의 유리전이온도 (Tg) 이하일 수 있다. The surface temperature of the film forming roll and the second forming roll may be less than or equal to the glass transition temperature (Tg) of the non-liquid crystal thermoplastic resin.
상기 필름 형성롤의 표면온도(Tr)는 하기 식 3을 만족할 수 있다:The surface temperature (Tr) of the film forming roll may satisfy the following equation 3:
[식 3][Equation 3]
Te x 0.4 < Tr < Te x 0.5Te x 0.4 <Tr <Te x 0.5
(Te는 용융압출 직후 열가소성 수지 온도, Tr은 필름 형성롤의 표면온도).(Te is the thermoplastic resin temperature immediately after melt extrusion, and Tr is the surface temperature of the film forming roll).
상기 필름 형성롤과 상기 제2성형롤은 온도차가 약 30 ℃ 이내일 수 있다. The film forming roll and the second forming roll may have a temperature difference of about 30 ° C.
한 구체예에서 상기 열가소성 수지는 음의 이방성의 굴절율을 가지는 수지일 수 있다. In one embodiment, the thermoplastic resin may be a resin having a negative anisotropy refractive index.
다른 구체예에서 상기 열가소성 수지는 양의 이방성의 굴절율을 가지는 수지일 수 있으며, 닙(nip) 성형 후 연신하는 단계를 더 포함할 수 있다. In another embodiment, the thermoplastic resin may be a resin having a positive anisotropy refractive index, and may further include stretching after forming a nip.
상기 연신은 주행 반대 방향(TD)으로 주행 방향 대비 약 5~20% 연신할 수 있다. The stretching may be about 5 to 20% of the stretching direction in the opposite direction of travel (TD).
상기 연신은 상기 열가소성 수지의 유리전이온도(Tg) 보다 낮은 온도에서 연신할 수 있다. The stretching may be performed at a temperature lower than the glass transition temperature (Tg) of the thermoplastic resin.
상기 연신은 연신온도가 하기 식을 만족할 수 있다:The stretching may have a stretching temperature satisfying the following formula:
Td = Tg - aTd = Tg-a
( Td는 연신온도, Tg는 열가소성 수지의 유리전이온도, a는 5~20 ℃).(Td is the stretching temperature, Tg is the glass transition temperature of the thermoplastic resin, a is 5 ~ 20 ℃).
본 발명은 필름 두께 방향으로 굴절율 주축의 경사특성을 발현할 수 있고, 제막시 단일 필름에서 표면은 경사 배향이 발생하지 않고, 내부는 경사 배향을 발현할 수 있으며, 폭방향으로 균일한 물성을 확보할 수 있고, 연신 후에도 헤이즈 상승없이 투명성성과 배향각을 유지하고, 액정 디스플레이의 시야각을 크게 개선할 수 있고, 액정 보상에서 발생하는 빛샘 무라를 개선할 수 있는 필름 형성롤 및 이를 이용한 광학필름 제조방법을 제공하는 발명의 효과를 갖는다. The present invention can express the inclination characteristics of the refractive index main axis in the film thickness direction, the surface in the single film during film formation, the inclination orientation does not occur, the inside can express the inclination orientation, ensure uniform properties in the width direction It is possible to maintain transparency and alignment angle without haze after stretching, and to greatly improve the viewing angle of the liquid crystal display, and to improve the light leakage caused by liquid crystal compensation, and a film forming method using the same. It has the effect of providing the invention.
도 1은 본 발명의 한 구체예에 따른 필름 형성롤의 개략적인 사시도이다. 1 is a schematic perspective view of a film forming roll according to one embodiment of the present invention.
도 2는 본 발명의 필름 형성롤의 정단면도이다. 2 is a front sectional view of the film forming roll of the present invention.
도 3은 본 발명의 필름 형성롤의 측단면도이다. 3 is a side cross-sectional view of the film forming roll of the present invention.
도 4는 상기 필름형성롤을 이용하여 광학필름을 제조하는 과정을 나타낸 모식도이다.Figure 4 is a schematic diagram showing a process of manufacturing an optical film using the film forming roll.
도 5는 본 발명의 제조방법에 의해 제조된 광학필름을 개략적으로 나타낸 단면도이다5 is a cross-sectional view schematically showing an optical film manufactured by the manufacturing method of the present invention.
도 6은 필름 β각을 설명하기 위한 개념도이다. 6 is a conceptual diagram for explaining the film β angle.
도 7은 실시예 3과 비교예 1의 필름 폭에 따른 위상차 측정 결과이다. 7 is a phase difference measurement result according to a film width of Example 3 and Comparative Example 1.
필름 형성롤Film forming roll
도 1은 본 발명의 한 구체예에 따른 필름 형성롤의 개략적인 사시도이고, 도 2는 정단면도, 도 3은 측단면도이다. 도 1에 도시된 것과 같이, 본 발명의 필름 형성롤(100)은 회전 가능한 원통형 내부 부재(10); 상기 원통형 내부 부재의 외주연과 간격을 두고 형성된 표면 부재(30); 및 상기 원통형 내부 부재와 상기 표면부재 사이에 채워진 액상층(20)을 포함하여 이루어진다. 1 is a schematic perspective view of a film forming roll according to an embodiment of the present invention, Figure 2 is a front sectional view, Figure 3 is a side sectional view. As shown in Figure 1, the film forming roll 100 of the present invention is a rotatable cylindrical inner member (10); A surface member 30 formed at intervals from an outer circumference of the cylindrical inner member; And a liquid layer 20 filled between the cylindrical inner member and the surface member.
상기 원통형 내부 부재(10)의 재질로는 금속, 유리, 세라믹, 플라스틱, 고무 등이 적용될 수 있으며, 바람직하게는 금속이다. As the material of the cylindrical inner member 10, metal, glass, ceramic, plastic, rubber, or the like may be applied, and preferably, metal.
또한 상기 원통형 내부 부재(10)의 직경은 약 200 내지 약 500mm 일 수 있다. In addition, the diameter of the cylindrical inner member 10 may be about 200mm to about 500mm.
상기 표면 부재(30)는 본 발명의 필름 형성롤(100)의 외주연을 둘러싸고 있으며, 상기 원통형 내부 부재(10)와 간격을 두고 형성된다. The surface member 30 surrounds the outer periphery of the film forming roll 100 of the present invention and is formed at intervals from the cylindrical inner member 10.
상기 표면 부재(30)의 재질은 금속이 적용될 수 있다. 상기 금속으로는 단일 금속, 제2금속이 도금된 금속, 2종 이상의 금속의 합금 등이 적용될 수 있다. 예를 들면 크롬이 도금된 스틸 금속이 적용될 수도 있다. The material of the surface member 30 may be a metal. As the metal, a single metal, a metal plated with a second metal, an alloy of two or more metals, and the like may be applied. For example, steel metal plated with chromium may be applied.
구체예에서는 상기 원통형 내부 부재(10)와 상기 표면 부재(30)의 재질이 서로 다를 수 있다. 예를 들면 상기 원통형 내부 부재(10)와 상기 표면 부재(30)가 서로 금속이라 하더라도 상기 원통형 내부 부재(10)의 재질은 강판이고 상기 표면 부재(30)의 재질은 스틸일 수 있다. In embodiments, materials of the cylindrical inner member 10 and the surface member 30 may be different from each other. For example, even when the cylindrical inner member 10 and the surface member 30 are made of metal, the cylindrical inner member 10 may be made of steel and the surface member 30 may be made of steel.
상기 원통형 내부 부재(10)와 상기 표면 부재(30) 의 평균 간격은 약 0.1 내지 약 10 mm 일 수 있다. 한 구체예에서 상기 표면부재는 단부(31)와 접촉 중앙부(32)의 직경이 동일한 원통형태일 수 있다. 다른 구체예에서는 상기 표면부재는 접촉 중앙부(32)의 직경(d2)이 단부(31)의 직경(d1)보다 클 수 있다. 즉, 도 3에 도시된 바와 같이 필름 형성롤(100)의 접촉 중앙부가 볼록한 항아리 형태를 갖게 되는 것이다. 여기서 단부(31)와 접촉 중앙부(32)는 필름 형성롤의 축방향과 수직한 방향으로 관찰했을 때양 쪽 끝을 "단부", 상기 단부의 중심에 있는 부분을 "접촉 중앙부"로 한다. 이와 같이 필름 형성롤의 접촉 중앙부가 볼록한 항아리 형태를 가질 경우 폭 방향 위상차 및 경사각의 균일성을 보장 할 수 있다. 구체예에서는 상기 접촉 중앙부의 직경(d2)은 단부의 직경(d1) 보다 약 0.01% 내지 약 5%, 바람직하게는 약 0.01% 내지 약 1% 클 수 있다. 상기 범위에서 폭 방향 위상차 및 경사각의 균일성을 보장 할 수 있다. 예를 들면, 표면부재의 단부(31)의 직경(d1)은 약 200 mm 내지 약 500 mm일 수 있으며, 접촉 중앙부(32)의 직경(d2)은 약 200.02 내지 약 505.00mm 일 수 있다. The average distance between the cylindrical inner member 10 and the surface member 30 may be about 0.1 mm to about 10 mm mm. In one embodiment, the surface member may have a cylindrical shape having the same diameter as that of the end portion 31 and the contact center portion 32. In another embodiment, the surface member may have a diameter d2 of the contact center 32 greater than the diameter d1 of the end 31. That is, as shown in FIG. 3, the contact center of the film forming roll 100 has a convex jar shape. The end part 31 and the contact center part 32 make both ends the "end part" and the part in the center of the said end as the "contact center part" when observed in the direction perpendicular to the axial direction of a film forming roll here. As such, when the contact center portion of the film forming roll has a convex jar shape, uniformity of the width direction retardation and the inclination angle can be ensured. In embodiments, the diameter d2 of the contact center may be about 0.01% to about 5%, preferably about 0.01% to about 1% larger than the diameter d1 of the end. Within this range, it is possible to ensure uniformity in the width direction phase difference and the inclination angle. For example, the diameter d1 of the end portion 31 of the surface member may be about 200 mm 3 to about 500 mm mm, and the diameter d 2 of the contact center portion 32 may be about 200.02 mm to about 505.00 mm mm.
상기 원통형 내부 부재(10)와 상기 표면부재(30) 사이에는 액상층(20)으로 채워진다. The liquid crystal layer 20 is filled between the cylindrical inner member 10 and the surface member 30.
상기 액상층은 물, 오일 등이 사용될 수 있다. 이중 물이 온도조절이 용이하므로 바람직하다.The liquid layer may be water, oil or the like. Of these, water is preferable because it is easy to control the temperature.
 
광학필름 제조방법Optical film manufacturing method
본 발명의 또 다른 관점은 상기 광학필름의 제조방법에 관한 것이다. 상기 방법은 비액정 열가소성 수지를 용융압출하고; 그리고 상기 용융압출된 열가소성 수지를 상기 필름 형성롤과 제2성형롤 사이로 닙(nip) 성형하여 필름 형태로 제조하는 단계를 포함한다. Another aspect of the invention relates to a method for producing the optical film. The method comprises melt extrusion of a non-liquid crystalline thermoplastic resin; And nip molding the melt-extruded thermoplastic resin between the film forming roll and the second forming roll to form a film.
도 4는 본 발명의 한 구체예에 따라 상기 필름 형성롤(100)을 이용하여 광학필름을 제조하는 과정을 나타낸 모식도이다. 도시된 바와 같이, 다이(400)에서 용융압출된 열가소성 수지는 필름 형성롤(100)과 제2성형롤(200) 사이로 통과되어 필름 형태의 광학필름(500)으로 제조된다. 이후 상기 제2성형롤(200)에 인접한 제3성형롤(300) 사이를 지나 다음 공정인 권취 혹은 연신공정을 수행할 수 있다. 4 is a schematic diagram showing a process of manufacturing an optical film using the film forming roll 100 according to an embodiment of the present invention. As shown, the thermoplastic resin melt-extruded from the die 400 is passed between the film forming roll 100 and the second forming roll 200 to be produced as an optical film 500 in the form of a film. Thereafter, passing between the third forming rolls 300 adjacent to the second forming rolls 200 may be a winding or stretching process.
구체예에서는 다이(400)에서 열가소성 수지를 용융압출하기 전에 건조하는 과정을 수행할 수 있다. 용융 압출 공정에서 원료에 존재 하는 수분의 함량이 일정수준이상이 포함되어 있으면 오렌지필 형태와 같은 기포상태의 제품상의 불량이 발생할 수 있다. 구체예에서는 상기 건조 과정에서 제습 건조기나 열풍건조기 등이 사용될 수 있다. 건조온도는 바람직하게는 약 20~200℃이고, 더욱 바람직하게는 약 50~150℃이며, 가장 바람직하게는 약 70~130℃이다. 상기 범위에서 원료 특성의 변화없이 수분을 제거할 수 있다. 원료의 건조시간은 바람직하게는 약 30분~5시간이고, 더욱 바람직하게는 약 1~3 시간이며 가장 바람직하게는 약 2~3시간이다. In embodiments, a process of drying the melted thermoplastic resin in the die 400 may be performed. In the melt extrusion process, if the moisture content in the raw material contains a certain level or more, defects in the product in the bubble state such as orange peel may occur. In a specific embodiment, a dehumidifying dryer or a hot air dryer may be used in the drying process. The drying temperature is preferably about 20 to 200 ° C, more preferably about 50 to 150 ° C, and most preferably about 70 to 130 ° C. In the above range it is possible to remove the moisture without changing the raw material properties. The drying time of the raw material is preferably about 30 minutes to 5 hours, more preferably about 1 to 3 hours, and most preferably about 2 to 3 hours.
건조가 완료된 원료를 정량공급 장치로 투입된 후 압출설비 입구부에 설치 되어있는 원료 저장소(호퍼)로 일정량씩 조절되어 본격적인 압출설비로의 원료 공급이 이루어질 수 있다. 이때 원료에 포함될 수 있는 불순물을 일차적으로 제거하여 주기 위하여 중간 저장소에서 일차적으로 공기를 순환시키면서 여과장치를 거칠 수 있다. After the raw material is dried, the raw material is fed into the fixed quantity supply device, and then, the raw material is supplied to the extrusion facility in earnest by adjusting a predetermined amount to the raw material reservoir (hopper) installed at the inlet of the extrusion facility. At this time, in order to remove impurities that may be included in the raw material may be passed through the filtration device while primarily circulating air in the intermediate reservoir.
건조된 원료는 이후 압출기로 투입된다. 압출기는 온도에 따라 3~5 구간으로 나뉘어져 있다. 먼저 투입된 원료가 압출설비 스크류 첫 번째 구간에 채워지게 된다. 첫 번째 구간은 원료를 압출설비 실린더로 원료를 이송시키는 역할을 한다. 첫 번째 구간의 온도설정은 약 20~350℃가 바람직하고, 가장 바람직하게는 약 150~250℃이다. 두 번째 구간은 원료의 용융이 시작되는 구간이다. 두 번째 구간의 온도설정은 약 150~350℃가 바람직하고, 가장 바람직하게는 약 200~280℃이다. 세 번째 구간은 원료가 용융물로 완전히 전환되는 역할을 한다. 세 번째 구간의 온도설정은 약 150~350℃, 바람직하게는 약 200~280℃ 이다. 네 번째 구간은 용융된 원료를 압력을 높게 하여 용융물의 밀도를 높여 주어 안정적인 토출량을 확보해주는 역할을 한다. 네 번째 구간의 온도조건은 약 150~350℃이고, 가장 바람직하게는 약 200~280℃이다. 용융상태의 원료에 포함되어있는 불순물을 제거하여 주기 위하여 스크린 체인저 구간의 메시를 통과할 수 있다. 메시의 입방 수는 바람직하게는 약 30~1000방 이고, 가장 바람직하게는 약 100~300방 일 수 있다. 상기 범위에서 용융물의 이동이 용이하고, 불순물의 제거성능이 우수하다. 불순물이 제거된 용융물은 일정한 양씩 티다이로 이송해주는 기어펌프구간을 통과한다. 기어펌프는 압출설비 실린더로부터 불규칙하게 투입되는 원료를 일정공간에 저장하였다가 일정한양의 용융물을 티타이로 안정적으로 공급하여 압력분포의 변화를 최소화한다. 용융물이 최종적으로 압출설비 밖으로 토출되는 구간인 티다이 구간이다. 티다이의 형태에 따라서 필름의 형상 및 제조두께가 결정되어진다. 티다이의 형태는 "T자"형 다이, 옷걸이형태(coat hanger)  다이, 물고기 꼬리형태(fish tail)다이 로 구분되어 진다. 용융물의 흐름성에 따라 선택적으로 사용이 가능하다.The dried raw material is then fed to an extruder. The extruder is divided into 3 to 5 sections depending on the temperature. The first raw material is filled in the first section of the extrusion plant screw. The first section serves to transfer the raw material to the extrusion equipment cylinder. The temperature setting of the first section is preferably about 20 ~ 350 ℃, most preferably about 150 ~ 250 ℃. The second section is where the melting of the raw material begins. The temperature setting of the second section is preferably about 150 ~ 350 ℃, most preferably about 200 ~ 280 ℃. The third section serves to convert the raw material completely into the melt. Temperature setting of the third section is about 150 ~ 350 ℃, preferably about 200 ~ 280 ℃. The fourth section increases the density of the melt by increasing the pressure of the molten raw material to ensure a stable discharge amount. Temperature conditions of the fourth section is about 150 ~ 350 ℃, most preferably about 200 ~ 280 ℃. It can pass through the mesh of the screen changer section to remove impurities contained in the molten raw material. The cubic number of the mesh is preferably about 30 to 1000 squares, and most preferably about 100 to 300 squares. It is easy to move the melt in the above range, and excellent in the ability to remove impurities. The demelted melt passes through the gear pump section, which transfers it to the T-die in a constant amount. The gear pump stores the raw material irregularly injected from the extrusion equipment cylinder in a certain space and supplies a certain amount of melt to the tie tie to minimize the change of pressure distribution. Ti-dye section is the section where the melt is finally discharged out of the extrusion facility. The shape and manufacturing thickness of the film are determined depending on the form of the T-die. Ti die types are divided into "T-shaped" dies, coat hanger dies, and fish tail dies. It can be used selectively depending on the flow of the melt.
상기 다이를 통해 토출된 필름 형태의 용융물은 필름 형성롤(100)에 접촉되면서 고형화된 필름 형태를 갖추게 된다. 본 발명에서는 상기 특정 구조의 필름 형성롤(100)을 적용하여 두께 방향으로 굴절율 주축의 경사특성을 구현할 수 있는 것이다. The melt in the form of a film discharged through the die is in contact with the film forming roll 100 to have a solidified film form. In the present invention, it is possible to implement the inclination characteristics of the refractive index main axis in the thickness direction by applying the film forming roll 100 of the specific structure.
구체예에서 상기 필름 형성롤(100)과 상기 제2성형롤(200)은 탄성율이 서로 다를 수 있다.  이와 같이 필름 형성롤(100)과 제2성형롤(200) 간에 서로 탄성도를 다르게 하여 다양한 필름 β각을 형성시킬 수 있는 것이다. In embodiments, the film forming roll 100 and the second forming roll 200 may have different elastic modulus. As such, the film forming rolls 100 and the second forming rolls 200 may have different elasticities from each other to form various film β angles.
바람직하게는 상기 필름 형성롤(100)의 탄성율은 상기 제2성형롤(200)의 탄성율 보다 클 수 있다. 구체예에서 상기 필름 형성롤(100)의 탄성율은 상기 제2성형롤(200)의 탄성율 대비 약 1.0 내지 약 30.0 % 클 수 있다. 상기 범위에서 폭 방향 위상차 및 경사각의 균일성을 보장 할 수 있다. Preferably, the elastic modulus of the film forming roll 100 may be greater than the elastic modulus of the second forming roll 200. In an embodiment, the elastic modulus of the film forming roll 100 may be about 1.0 kPa to about 30.0 kPa% greater than the elastic modulus of the second forming roll 200. It is possible to ensure the uniformity of the width direction retardation and the inclination angle in the above range.
또한 상기 필름 형성롤(100)과 상기 제2성형롤(200)은 주속차가 다를 수 있다. 여기서 주속차는 롤이 회전하는 속도이다. 구체예에서는 상기 필름 형성롤(100)의 주속이 제2성형롤(200)의 주속 보다 빠를 수 있다. 예를 들면, 상기 필름 형성롤(100)의 주속은 약 1 내지 약 60 m/min 이고, 상기 제2성형롤(200)의 주속은 약 1 내지 약 50 m/min 일 수 있다. In addition, the film forming roll 100 and the second forming roll 200 may have a difference in peripheral speed. Here, the main speed difference is the speed at which the roll rotates. In a specific embodiment, the circumferential speed of the film forming roll 100 may be faster than the circumferential speed of the second molding roll 200. For example, the circumferential speed of the film forming roll 100 may be about 1 kPa to about 60 m / min, and the circumferential speed of the second forming roll 200 may be about 1 kPa to about 50 m / min.
바람직하게는 상기 필름 형성롤(100)과 상기 제2성형롤(200)의 주속차가 약 30% 이내일 수 있다. 바람직한 구체예에서는 주속차가 약 0 내지 약 10 %, 보다 바람직하게는 약 0 내지 약 5 % 일 수 있다. 상기 범위에서 위상발현을 통한 위상차 값 및 경사각도 확보 유리한 장점이 있다.Preferably, the peripheral speed difference between the film forming roll 100 and the second forming roll 200 may be within about 30%. In preferred embodiments, the peripheral speed difference may be about 0 to about 10%, more preferably about 0 to about 5%. Within the above range, there is an advantage of securing a phase difference value and an inclination angle through phase expression.
구체예에서 상기 필름 형성롤(100)과 상기 제2성형롤(200)의 표면온도는 상기 비액정 열가소성 수지의 유리전이온도 (Tg) 이하일 수 있다. In embodiments, the surface temperature of the film forming roll 100 and the second forming roll 200 may be less than or equal to the glass transition temperature (Tg) of the non-liquid crystalline thermoplastic resin.
 이처럼 용융 압출된 열가소성 수지가 필름 형성롤(100)과 제2성형롤(200)에 접촉하여 필름 성형시 필름 내부는 Tg 온도 이상인 반면, 필름 표면은 Tg 온도 이하로 다르게 된다. 필름 표면과 내부의 성형 온도 차이를 발생시킨 상태에서 필름 형성롤(100)과 제2성형롤(200)의 성형롤이 주행하게 되면 필름의 표면과 내부에 상이한 전단력을 발생하게 되어 두께 방향으로 경사 각도를 갖게 되는 것이다. Thus, the melt-extruded thermoplastic resin is in contact with the film forming roll 100 and the second forming roll 200, the film inside the film when the Tg temperature or more, while the film surface is different to the Tg temperature or less. When the forming rolls of the film forming roll 100 and the second forming roll 200 are driven in a state where the film 성형 surface and the forming temperature difference are generated, different shearing forces are generated on the surface and the inside of the film and are inclined in the thickness direction. It will have an angle.
구체예에서 상기 필름 형성롤(100)의 표면온도(Tr)는 하기 식 3을 만족할 수 있다:In embodiments, the surface temperature Tr of the film forming roll 100 may satisfy the following Equation 3:
[식 3][Equation 3]
Te x 0.4 < Tr < Te x 0.5Te x 0.4 <Tr <Te x 0.5
(Te는 용융압출 직후 열가소성 수지 온도, Tr은 필름 형성롤의 표면온도).(Te is the thermoplastic resin temperature immediately after melt extrusion, and Tr is the surface temperature of the film forming roll).
 상기 범위에서 필름두께 방향으로 표면층은 배향되지 않고, 내부층만 경사배향된 구조를 가질 수 있다. In the above range, the surface layer may not be oriented in the film thickness direction, and may have a structure in which only the inner layer is inclined.
구체예에서 상기 필름 형성롤(100)의 표면온도(Tr)는 약 20~200℃고, 바람직하게는 약 50~150℃이며, 가장 바람직하게는 약 80~130℃이다. 상기 범위에서 위상발현을 통한 위상차 값 및 경사각도를 확보할 수 있다. 또한 상기 제2성형롤(200)의 표면온도는 약 20~200℃이고, 바람직하게는 약 80~130℃이다. 상기 범위에서 위상발현을 통한 위상차 값 및 경사각도를 확보할 수 있다. 상기 필름 형성롤(100)과 제2성형롤(200)의 온도차이는 약 2~50 ℃, 바람직하게는 약 5~30℃, 보다 바람직하게는 약 5~15 ℃이다. 상기 범위에서 위상발현을 통한 위상차 값 및 경사각도를 확보할 수 있다. 또한 상기 제3성형롤(300)의 표면온도는 약 20~180℃이고, 바람직하게는 약 50~120℃ 일 수 있다. In an embodiment, the surface temperature (Tr) of the film forming roll 100 is about 20 ~ 200 ℃, preferably about 50 ~ 150 ℃, most preferably about 80 ~ 130 ℃. It is possible to secure the phase difference value and the inclination angle through the phase expression in the above range. In addition, the surface temperature of the second forming roll 200 is about 20 ~ 200 ℃, preferably about 80 ~ 130 ℃. It is possible to secure the phase difference value and the inclination angle through the phase expression in the above range. The temperature difference between the film forming roll 100 and the second forming roll 200 is about 2 to 50 ° C, preferably about 5 to 30 ° C, and more preferably about 5 to 15 ° C. It is possible to secure the phase difference value and the angle of inclination through phase expression in the above range. In addition, the surface temperature of the third forming roll 300 may be about 20 ~ 180 ℃, preferably about 50 ~ 120 ℃.
 
상기 열가소성 수지는 방향족 비닐계 수지, 아크릴계 수지 등과 같이 음의 이방성의 굴절율을 가지는 수지 혹은 사이클로 올레핀계 수지, 폴리 카보네이트계 수지, 폴리올레핀계 수지, 등과 같이 양의 이방성의 굴절율을 가지는 수지일 수 있다. The thermoplastic resin may be a resin having a negative anisotropic refractive index, such as an aromatic vinyl resin, an acrylic resin, or the like, or a resin having a positive anisotropic refractive index, such as a cycloolefin resin, a polycarbonate resin, a polyolefin resin, or the like.
열가소성 수지가 양의 이방성의 굴절율을 가지는 수지일 경우 닙(nip) 성형 후 연신하는 단계를 더 포함할 수 있다. 구체예에서는 상기 연신은 2축연신으로 하며, 주행 반대 방향(TD)으로 주행 방향 대비 약 5~30%로 연신할 수 있다. 상기 범위에서 위상차 값 확보 및 경사 각도 저하를 막을 수 있는 장점이 있다. 바람직하게는 상기 연신은 주행 반대 방향(TD)으로 주행 방향 대비 약 8~25 % , 보다 바람직하게는 약 10~20 % 로 연신할 수 있다. When the thermoplastic resin is a resin having a positive anisotropy refractive index, the method may further include stretching after nip molding. In the specific example, the stretching may be biaxial stretching, and stretching may be performed at about 5 to 30% of the traveling direction in the opposite traveling direction (TD). In the above range, there are advantages in securing a phase difference value and preventing the inclination angle from falling. Preferably, the stretching may be performed at about 8 to 25%, more preferably at about 10 to 20% relative to the driving direction in the opposite traveling direction (TD).
바람직하게는 상기 연신은 상기 열가소성 수지의 유리전이온도(Tg) 보다 낮은 온도에서 연신할 수 있다. 예를 들면, 상기 연신은 열가소성 수지의 유리전이온도(Tg) 보다 약 5~20 ℃ 낮은 온도에서 수행할 수 있다. 상기 범위에서 위상발현을 통한 위상차 값 및 경사각도 확보 가능한 장점이 있다. Preferably, the stretching may be performed at a temperature lower than the glass transition temperature (Tg) of the thermoplastic resin. For example, the stretching may be performed at a temperature about 5 to 20 ° C. lower than the glass transition temperature (Tg) of the thermoplastic resin. In the above range, there is an advantage that a phase difference value and an inclination angle can be secured through phase expression.
예를 들면 상기 연신은 연신온도가 하기 식을 만족할 수 있다:For example, the drawing may have a drawing temperature satisfying the following formula:
Td = Tg - aTd = Tg-a
( Td는 연신온도, Tg는 열가소성 수지의 유리전이온도, a는 5~20 ℃).(Td is the stretching temperature, Tg is the glass transition temperature of the thermoplastic resin, a is 5 ~ 20 ℃).
이처럼 압출 제막에서 두께 방향의 경사각도를 가지는 필름을 연신할 때 유리전이온도(Tg) 보다 낮은 온도에서 저배율로 연신함으로서, 압출성형시의 경사특성을 효율적으로 유지할 수 있다. As described above, when the film having the inclination angle in the thickness direction is stretched in the extruded film, the film is stretched at a low magnification at a temperature lower than the glass transition temperature (Tg), whereby the inclination characteristic during extrusion molding can be efficiently maintained.
다른 구체예에서는 열가소성 수지가 음의 이방성의 굴절율을 가지는 수지일 경우 닙(nip) 성형 후 연신 과정 없이도 내부가 배향된 특성을 얻을 수 있다.In another embodiment, when the thermoplastic resin is a resin having a negative anisotropy refractive index, internally oriented characteristics may be obtained without a drawing process after nip molding.
성형과정이 완료된 필름은 이후 최종적으로 권취과정을 거친다. 바람직하게는 필름 양쪽 측단부의 평탄하지 못한 부분을 트리밍 커팅과정을 한 후 권취과정을 거질 수 있다.  After the molding process is completed, the film is finally wound up. Preferably, the film may be wound after trimming the uneven portions of both side ends of the film.
이와 같이 제조된 광학필름은 도 5에 도시된 바와 같이 표면은 필름 두께 방향으로 경사 배향되지 않고 내부는 필름 두께 방향으로 경사 배향되어 있을 수 있다. 이처럼 상기 방법으로 제조된 광학필름은 표면과 내부에 따라 배향이 다르게 형성되어 시야각과 빛샘 등을 개선할 수 있는 것이다. 또한 이와 같이 표면 및 내부에 따라 경사배향을 달리한 광학필름의 제조를 단일 압출공정에서 수행할 수 있으므로 공정이 단축되고 제조원가를 절감할 수 있다. In the optical film manufactured as described above, the surface may not be inclined in the film thickness direction and may be inclined in the film thickness direction as shown in FIG. 5. As described above, the optical film manufactured by the above method may be formed to have different orientations depending on the surface and the interior thereof, thereby improving a viewing angle and light leakage. In addition, since the manufacturing of the optical film having different inclination orientations according to the surface and the inside can be performed in a single extrusion process, the process can be shortened and manufacturing cost can be reduced.
도 6은 필름 β각을 설명하기 위한 개념도이다. 상기 필름 내부층(500c)은 직교 니콜 투과도가 최소가 되는 각도로 정의되는 필름 평균 β각이 약 5~35˚, 바람직하게는 약 12~30˚  일 수 있다. 상기 필름 β각은 절편배향각으로서, 도 6에 도시된 바와 같이, 두께 방향인 z 축과 배향면에 수직인 z' 축간 이루는 각이다. 이러한 필름 평균 β각은 편광판 사이에 놓고 직교 니콜을 관찰하여 직교 니콜 투과도가 최소가 되는 각도로 구할 수 있다. 6 is a conceptual diagram for explaining the film β angle. The film inner layer 500c may have a film average β angle of about 5 to 35 degrees, preferably about 12 to 30 degrees, defined as an angle at which orthogonal nicotine transmittance is minimum. The film? Beta angle is an intercept alignment angle, and is an angle formed between the z axis in the thickness direction and the z 'axis perpendicular to the orientation plane, as shown in FIG. 6. The film? Average?? Angle can be obtained between the polarizing plates and observed at the orthogonal nicotine to obtain an angle at which orthogonal nicotine transmittance is minimum.
상기 필름 내부층(500c)은 두께 방향인 z 축에 따라 필름 β각이 서로 다른 값을 가질 수 있다. 예를 들면 필름 표면에서부터 약 10~20 ㎛인 위치에서는 필름 β각이 약 21~27˚ 인 반면, 필름 표면에서부터  약 70~80 ㎛인 위치에서는 필름 β각이 약 15~20˚ 일 수 있다. 이처럼 필름 두께에 따라 경사 배향이 달라 필름 β각이 다른 분포를 갖게 된다. 바람직하게는 필름 내부층에서 최대 β각(β1)과 최소 β각(β2)의 비(β1/β2)가 약 1~1.8, 보다 바람직하게는 약 1.1~1.5 일 수 있다. 구체예에서는 평균 β각이 약 5~40˚ , 예를 들면 약 15~35˚일 수 있다. The film inner layer 500c may have different values of the film β angles along the z-axis in the thickness direction. For example, the film β angle may be about 21 to 27 degrees at the position of about 10 to 20 μm from the surface of the film, whereas the film β angle may be about 15 to 20 degrees at the position of about 70 to 80 μm from the surface of the film. Thus, the inclination orientation is different according to the film thickness, and the film β angle has different distribution. Preferably, the ratio of the maximum β angle β1 and the minimum β angle β2 in the film inner layer (β1 / β2) may be about 1 to 1.8, more preferably about 1.1 to 1.5. In embodiments, the average β angle may be about 5 to 40 degrees, for example, about 15 to 35 degrees.
상기 광학필름(500)은 550nm에서 하기 식으로 정의되는 면내 위상 지연값(Ro)이 약 0 내지 약 150 nm일 수 있다. The optical film 500 may have an in-plane retardation value Ro of about 550 nm to about 150 dB at 550 nm.
[식 1][Equation 1]
Ro' = (nx - ny')×dRo '= (nx-ny') × d
(상기 식에서, nx, ny'는 각각 x축 및 y'축 방향의 굴절율(refractive index)이고, d는 필름의 두께이다).(Wherein nx and ny 'are the refractive indexes in the x- and y'-axis directions, respectively, and d is the thickness of the film).
상기 광학필름은 550nm에서 하기 식 2로 정의되는 두께 방향 위상 지연값(Rth)이 약 0 내지 약 200 nm일 수 있다. The optical film may have a thickness direction retardation value Rth defined by Equation 2 at 550 nm in a range of about 0 Hz to about 200 Hz.
[식 2] [Equation 2]
Rth' = [(nx+ny')/2 - nz']×dRth '= [(nx + ny') / 2-nz '] × d
(상기에서, nx, ny', nz'는 각각 x축, y'축 및 z'축 방향의 굴절율이고, d는 필름의 두께이다).(In the above, nx, ny 'and nz' are the refractive indices in the x-axis, y'-axis and z'-axis directions, respectively, and d is the thickness of the film).
구체예에서 상기 광학필름의 두께 (d)는 약 30 내지 약 110 ㎛, 바람직하게는 약 50 내지 약 100 ㎛ 일 수 있다. In embodiments, the thickness d of the optical film may be about 30 to about 110 μm, preferably about 50 to about 100 μm.
 
상기 방법에 의해 제조된 광학필름은 편광소자에 직접 합지하여 편광필름으로 제조할 수 있다. 본 발명의 방법에 따라 제조된 광학필름은 표면에는 경사배향되지 않고 내부층에만 경사배향되어 있으므로 수직배향 모드 액정에서도 우수한 시야각을 확보할 수 있으며, 광탄성 계수가 낮은 고분자 필름을 적용하므로 액정 보상에서 발생하는 빛샘 무라를 개선할 수 있다. The optical film produced by the above method may be directly laminated on the polarizing device to produce a polarizing film. Since the optical film manufactured according to the method of the present invention is not inclined to the surface but is inclined only to the inner layer, it is possible to secure an excellent viewing angle even in the vertical alignment mode liquid crystal. You can improve the light spring mura.
 
실시예Example
실시예 1~6Examples 1-6
열가소성 수지(JSR社 Arton RX4500)를 250 ℃에서 T 다이로 용융압출하고 도 4에 도시된 바와 같이 강철 원통형 내부부재와 스테인레스 스틸 표면부재 사이에 물이 채워진 형태의 필름 형성롤(100)과 강성금속롤(200) 사이로 용융물을 통과시켜 필름형태로 제조하였다. 이 때 필름 형성롤(100)과 강성금속롤(200) 사이의 주속비율을 표 1과 같이 변경시켜 광학필름을 제조한 후, 편광필름과 합지시켰다. 필름 형성롤(100)과 강성금속롤(200, 300)의 표면온도는 동일하게 하였다. The thermoplastic resin (JSR Arton RX4500) is melt-extruded at 250 ° C. with a T die, and the film forming roll 100 and the rigid metal are filled with water between the steel cylindrical inner member and the stainless steel surface member as shown in FIG. 4. The melt was passed through the rolls 200 to prepare a film. At this time, the peripheral speed ratio between the film forming roll 100 and the rigid metal roll 200 was changed as shown in Table 1 to prepare an optical film, and then laminated with a polarizing film. The surface temperatures of the film forming rolls 100 and the rigid metal rolls 200 and 300 were the same.
 
물성평가방법Property evaluation method
(1)  Ro'와 Rth' 값: 제조된 필름에 대해 Axo scan(Axometrics Inc社의 OPMF-2 eries)을 이용하여 샘플 필름 표면에 대하여 수직방향 및 필름면 법선으로부터 ±45°경사시킨 방향에서 파장 550nm에서의 위상차 값을 측정하였다. 여기서 평균 굴절율의 가정치는 폴리머 핸드북(polymer handbook)  (JOHN WILEY&SONS,INC), 각종 광학 필름의 카탈로그의 값을 사용할 수 있다. (1) Ro 'and Rth' values: Wavelengths in the direction perpendicular to the sample film surface and inclined ± 45 ° from the film plane normal using Axo scan (OPMF-2 eries of Axometrics Inc.) for the produced film. The retardation value at 550 nm was measured. Here, the hypothesis of the average refractive index may be a polymer handbook (JOHN WILEY & SONS, Inc.) and values of catalogs of various optical films.
(2) 평균 β각 : Axo scan을 이용하여 측정하였다. 이는 전체 필름 두께 방향 내에 분포한 β각의 평균 값으로 계산된다. (2) average β angle: measured using Axo scan. This is calculated as an average value of β angles distributed in the overall film thickness direction.
이미지 분석 프로그램을 사용하여 각도별로 편광현미경 이미지의 휘도 분포를 분석하고, 필름 두께 방향으로 약 10 ㎛ 간격으로 9등분한 후 평균 휘도를 계산하였다. 다음에 각도와 평균 휘도를 플롯팅(PLOT) 한 후 필름 β각을 구하였다. 각 두께 별로 β각 분포를 플롯팅한 다음 평균 값을 구하였다. Using an image analysis program, the luminance distribution of the polarizing microscope image was analyzed for each angle, and the average brightness was calculated after dividing the light into nine equal intervals in the film thickness direction. Next, after plotting the angle and the average luminance (PLOT), the film β angle was obtained. The p-angle distribution was plotted for each thickness and then averaged.
(3) 시야각: CR=10 이상이 되는 측면 각도로서 EZ contrast를 통해 측정하였다. (3) Viewing angle: A lateral angle at which CR = 10 or more was measured through EZ contrast.
표 1
  주속차 롤 온도(℃) 필름 광학 물성
#1~#2롤간주속차 크라운금속 탄성롤(#1) 강성금속롤(#2) 강성금속롤(#3) Ro (nm) Rth (nm) β (°)
실시예1 1.010 123 123 115 7.2 38.2 22.2
실시예2 1.015 123 123 115 12.7 44.4 26.6
실시예3 1.020 123 123 115 18.5 50.4 29.9
실시예4 1.025 123 123 115 24.7 57.0 31.8
실시예5 1.030 123 123 115 34.5 66.7 32.1
실시예6 1.035 123 123 115 43.1 75.0 32.7
Table 1
Speedboat Roll temperature (℃) Film optical properties
# 1 ~ # 2 roll speed Crown Metal Elastic Roll (# 1) Rigid Metal Roll (# 2) Rigid Metal Roll (# 3) Ro (nm) Rth (nm) β (°)
Example 1 1.010 123 123 115 7.2 38.2 22.2
Example 2 1.015 123 123 115 12.7 44.4 26.6
Example 3 1.020 123 123 115 18.5 50.4 29.9
Example 4 1.025 123 123 115 24.7 57.0 31.8
Example 5 1.030 123 123 115 34.5 66.7 32.1
Example 6 1.035 123 123 115 43.1 75.0 32.7
상기 표 1에 나타낸 것과 같이, 본 발명의 필름 형성롤을 적용할 경우 두께 방향으로 굴절율 주축의 경사특성을 발현한 것을 확인할 수 있다. As shown in Table 1, when applying the film forming roll of the present invention it can be confirmed that the inclination characteristics of the refractive index main axis in the thickness direction.
 
비교예 1Comparative Example 1
필름 형성롤(100) 대신 강성금속롤을 적용한 것을 제외하고는 상기 실시예 3과 동일하게 수행하였다. 제조된 필름의 위상차를 측정하여 도 7에 나타내었다. Except that the rigid metal roll was applied instead of the film forming roll 100 was performed in the same manner as in Example 3. The retardation of the prepared film is measured and shown in FIG. 7.
 
도 7에 나타난 바와 같이, 본 발명의 필름 형성롤을 적용할 경우 필름 폭에 걸쳐 거의 균일한 위상차를 갖는 것을 확인할 수 있다. As shown in Figure 7, it can be seen that when applying the film forming roll of the present invention has a substantially uniform phase difference over the film width.
 
실시예 7~9 및 비교예 2~3 : 연신온도에 따른 물성변화Examples 7 to 9 and Comparative Examples 2 to 3 change in physical properties depending on the stretching temperature
하기 표 2와 같이 연신조건 하에서 연신공정을 한 것을 제외하고는 상기 실시예와 동일하게 수행하였다. It was carried out in the same manner as in Example 2 except that the stretching step under the stretching conditions as shown in Table 2.
표 2
  공정 조건 물성
연신온도(℃) 연신속도(m/m) 연신율(%) R0'(nm) Rth'(nm) 배향각(°) 상시야각/하시야각(°)
실시예 7 120 4 10 70 160 20 50~88/85
실시예 8 123 60 145 16 50~88/85
실시예 9 125 50 125 15 50~88/85
비교예 2 130 40 90 10 30~50/50~60
비교예 3 138 30 60 2 20~40/40~60
TABLE 2
Process conditions Properties
Drawing temperature (℃) Drawing speed (m / m) Elongation (%) R0 '(nm) Rth '(nm) Orientation angle (°) Normal viewing angle / Hashi viewing angle (°)
Example 7 120 4 10 70 160 20 50-88 / 85
Example 8 123 60 145 16 50 ~ 88/85
Example 9 125 50 125 15 50 ~ 88/85
Comparative Example 2 130 40 90 10 30-50 / 50-60
Comparative Example 3 138 30 60 2 20-40 / 40-60
상기 표 2에 나타난 바와 같이, 연신온도가 수지의 Tg 보다 높은 비교예 2~3에 비해 실시예 7~9가 높은 시야각을 확보하는 것을 알 수 있다.As shown in Table 2, it can be seen that Examples 7 to 9 have a high viewing angle compared to Comparative Examples 2 to 3 where the stretching temperature is higher than the Tg of the resin.

Claims (18)

  1. 회전 가능한 원통형 내부 부재;Rotatable cylindrical inner members;
    상기 원통형 내부 부재의 외주연과 간격을 두고 형성된 표면 부재; 및A surface member formed at intervals from an outer circumference of the cylindrical inner member; And
    상기 원통형 내부 부재와 상기 표면부재 사이에 채워진 액상층;A liquid layer filled between the cylindrical inner member and the surface member;
    을 포함하여 이루어지는 필름 형성롤.Film forming roll comprising a.
  2. 제1항에 있어서, 상기 원통형 내부 부재와 상기 표면 부재의 재질은 금속인 것을 특징으로 하는 필름 형성롤.The film forming roll according to claim 1, wherein the cylindrical inner member and the surface member are made of metal.
  3. 제1항에 있어서, 상기 원통형 내부 부재와 상기 표면 부재의 재질은 금속인 것을 특징으로 하는 필름 형성롤.The film forming roll according to claim 1, wherein the cylindrical inner member and the surface member are made of metal.
  4. 제1항에 있어서, 상기 표면 부재는 접촉 중앙부의 직경(d2)이 단부의 직경(d1)보다 큰 것을 특징으로 하는 필름 형성롤.The film forming roll according to claim 1, wherein the surface member has a diameter d2 of a contact center portion larger than a diameter d1 of an end portion.
  5. 제4항에 있어서, 상기 접촉 중앙부의 직경(d2)이 단부의 직경(d1)보다 약 0.01 내지 약 5.00% 큰 것을 특징으로 하는 필름 형성롤.5. The film forming roll of claim 4 wherein the diameter d2 of the contact center portion is about 0.01 to about 5.00% greater than the diameter d1 of the end portion.
  6. 비액정 열가소성 수지를 용융압출하고; 그리고Melt extruding the non-liquid crystal thermoplastic resin; And
    상기 용융압출된 열가소성 수지를 제1항 내지 제5항중 어느 한 항의 필름 형성롤과 제2성형롤 사이로 닙(nip) 성형하여 필름 형태로 제조하는;The melt-extruded thermoplastic resin is nip formed between the film forming roll and the second forming roll of any one of claims 1 to 5 to form a film form;
    단계를 포함하는;Comprising a step;
    필름 형성롤을 이용한 광학필름 제조방법.Optical film production method using a film forming roll.
  7. 비액정 열가소성 수지를 용융압출하고; 그리고Melt extruding the non-liquid crystal thermoplastic resin; And
    상기 용융압출된 열가소성 수지를 제1항 내지 제5항중 어느 한 항의 필름 형성롤과 제2성형롤 사이로 닙(nip) 성형하여 필름 형태로 제조하는;The melt-extruded thermoplastic resin is nip formed between the film forming roll and the second forming roll of any one of claims 1 to 5 to form a film form;
    단계를 포함하는;Comprising a step;
    필름 형성롤을 이용한 광학필름 제조방법.Optical film production method using a film forming roll.
  8. 제7항에 있어서, 상기 필름 형성롤의 탄성율은 상기 제2성형롤의 탄성율보다 큰 것을 특징으로 하는 필름 형성롤을 이용한 광학필름 제조방법.The method of claim 7, wherein the elastic modulus of the film forming roll is larger than the elastic modulus of the second forming roll.
  9. 제8항에 있어서, 상기 필름 형성롤의 탄성율은 상기 제2성형롤의 탄성율 대비 1.0 내지 30.0 % 큰 것을 특징으로 하는 필름 형성롤을 이용한 광학필름 제조방법.The method of claim 8, wherein the elastic modulus of the film forming roll is 1.0 to 30.0% greater than the elastic modulus of the second forming roll.
  10. 제6항에 있어서, 상기 필름 형성롤과 상기 제2성형롤은 주속차가 약 30% 이내인 것을 특징으로 하는 광학필름 제조방법. The method of claim 6, wherein the film forming rolls and the second forming rolls have a peripheral speed difference of about 30% or less.
  11. 제6항에 있어서, 상기 필름 형성롤과 상기 제2성형롤의 표면온도는 상기 비액정 열가소성 수지의 유리전이온도 (Tg) 이하인 것을 특징으로 하는 광학필름 제조방법.The method of claim 6, wherein the surface forming temperature of the film forming roll and the second forming roll is less than or equal to the glass transition temperature (Tg) of the non-liquid crystalline thermoplastic resin.
  12. 제11항에 있어서, 상기 필름 형성롤의 표면온도(Tr)는 하기 식 3을 만족하는 것을 특징으로 하는 광학필름 제조방법:12. The method of claim 11, wherein the surface temperature Tr of the film forming roll satisfies Equation 3.
    [식 3][Equation 3]
    Te x 0.4 < Tr < Te x 0.5Te x 0.4 <Tr <Te x 0.5
    (Te는 용융압출 직후 열가소성 수지 온도, Tr은 필름 형성롤의 표면온도).(Te is the thermoplastic resin temperature immediately after melt extrusion, and Tr is the surface temperature of the film forming roll).
  13. 제11항에 있어서, 상기 필름 형성롤과 상기 제2성형롤은 온도차가 약 30 ℃ 이내인 것을 특징으로 하는 광학필름 제조방법.The method of claim 11, wherein the film forming rolls and the second forming rolls have a temperature difference of about 30 ° C. or less.
  14. 제6항에 있어서, 상기 열가소성 수지는 음의 이방성의 굴절율을 가지는 수지인 것을 특징으로 하는 광학필름 제조방법.The method of claim 6, wherein the thermoplastic resin is a resin having a negative anisotropy refractive index.
  15. 제6항에 있어서, 상기 열가소성 수지는 양의 이방성의 굴절율을 가지는 수지이며, 닙(nip) 성형 후 연신하는 단계를 더 포함하는 광학필름 제조방법.The method of claim 6, wherein the thermoplastic resin is a resin having a positive anisotropy refractive index, and further comprising stretching after nip molding.
  16. 제15항에 있어서, 상기 연신은 주행 반대 방향(TD)으로 주행 방향 대비 약 5~20% 연신하는 것을 특징으로 하는 광학필름 제조방법.16. The method of claim 15, wherein the stretching is about 5 to 20% of the stretching direction in the opposite direction of travel (TD).
  17. 제15항에 있어서, 상기 연신은 상기 열가소성 수지의 유리전이온도(Tg) 보다 낮은 온도에서 연신하는 것을 특징으로 하는 광학필름 제조방법.The method of claim 15, wherein the stretching is performed at a temperature lower than a glass transition temperature (Tg) of the thermoplastic resin.
  18. 제17항에 있어서, 상기 연신은 연신온도가 하기 식을 만족하는 것을 특징으로 하는 광학필름 제조방법:18. The method of claim 17, wherein the stretching has a stretching temperature satisfying the following formula:
    Td = Tg - aTd = Tg-a
    ( Td는 연신온도, Tg는 열가소성 수지의 유리전이온도, a는 5~20 ℃).(Td is the stretching temperature, Tg is the glass transition temperature of the thermoplastic resin, a is 5 ~ 20 ℃).
PCT/KR2013/002677 2012-07-25 2013-04-01 Film-forming roll and method for manufacturing optical film using same WO2014017725A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0081494 2012-07-25
KR1020120081494A KR20140014738A (en) 2012-07-25 2012-07-25 Roll for preparing film and method for preparing optical film using the same

Publications (1)

Publication Number Publication Date
WO2014017725A1 true WO2014017725A1 (en) 2014-01-30

Family

ID=49997508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/002677 WO2014017725A1 (en) 2012-07-25 2013-04-01 Film-forming roll and method for manufacturing optical film using same

Country Status (2)

Country Link
KR (1) KR20140014738A (en)
WO (1) WO2014017725A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR860001738B1 (en) * 1983-12-23 1986-10-20 미쓰이도오아쓰가가꾸 가부시끼가이샤 Polarizing film and method of manufacturing the same
JPH11235747A (en) * 1998-02-24 1999-08-31 Hitachi Zosen Corp Roll apparatus for molding sheet/film
KR20010033765A (en) * 1998-10-30 2001-04-25 야스이 쇼사꾸 Phase difference film and optical device using it
KR20020000506A (en) * 2000-06-22 2002-01-05 고지마 아끼로, 오가와 다이스께 Laminated film
KR20070020509A (en) * 2004-06-15 2007-02-21 이스트맨 코닥 캄파니 Belt over compliant roller with molding roller

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR860001738B1 (en) * 1983-12-23 1986-10-20 미쓰이도오아쓰가가꾸 가부시끼가이샤 Polarizing film and method of manufacturing the same
JPH11235747A (en) * 1998-02-24 1999-08-31 Hitachi Zosen Corp Roll apparatus for molding sheet/film
KR20010033765A (en) * 1998-10-30 2001-04-25 야스이 쇼사꾸 Phase difference film and optical device using it
KR20020000506A (en) * 2000-06-22 2002-01-05 고지마 아끼로, 오가와 다이스께 Laminated film
KR20070020509A (en) * 2004-06-15 2007-02-21 이스트맨 코닥 캄파니 Belt over compliant roller with molding roller

Also Published As

Publication number Publication date
KR20140014738A (en) 2014-02-06

Similar Documents

Publication Publication Date Title
WO2017091031A1 (en) Polarizer protective film, polarizing plate, and display device comprising same
WO2015030393A1 (en) Polarizing plate, method for manufacturing same and liquid-crystal display device comprising same
WO2012108674A2 (en) Method and apparatus for manufacturing a reflective polarizer having a dispersed polymer
WO2010110549A2 (en) A coupled polarizing plate set and in-plane switching mode liquid crystal display including the same
KR20080094612A (en) Heat treatment of thermoplastic film, and thermoplastic film and method for producing the same
WO2011053081A2 (en) In-plane switching mode liquid crystal display
JP2006309033A (en) Method for manufacturing film for optics
TWI798426B (en) Broad-band wavelength film and its manufacturing method, and circular polarizing film manufacturing method
KR101913730B1 (en) A polyester protective film for polarizer and polarizer using it
WO2019168345A1 (en) Viewing angle compensation film, polarizing plate comprising same, and display device comprising same
JP2013178576A (en) Optical film and method of manufacturing the same
EP3816685A1 (en) Viewing angle compensation film, polarizing plate including same, and display device including same
WO2019124752A1 (en) Retardation film for ips mode, polarizing plate comprising same, and liquid crystal display device comprising same
CN102736134A (en) Optical film, optical diaphragm and liquid display module
JPH09155951A (en) Manufacture of polysulphone resin film
WO2011053082A2 (en) In-plane switching mode liquid crystal display
WO2014017725A1 (en) Film-forming roll and method for manufacturing optical film using same
WO2020159138A1 (en) Viewing angle compensation film, polarizing plate including same, and display device including same
JP2008247933A (en) Stretched film
KR20080045407A (en) Retardation films, method for preparing the same, liquid crystal display comprising the film
KR101029620B1 (en) Method for preparing optical films having uniform retardation value
JP5333898B2 (en) Method for producing retardation film
JP4171105B2 (en) Production method of retardation plate
WO2013100661A1 (en) Reflective polarizer having dispersed polymer
KR101922290B1 (en) Retardation film, method for preparing the same, polazier comprising the same and liquid crystal display device comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13822447

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13822447

Country of ref document: EP

Kind code of ref document: A1