WO2014017585A1 - エンジンダクト及び航空機エンジン - Google Patents

エンジンダクト及び航空機エンジン Download PDF

Info

Publication number
WO2014017585A1
WO2014017585A1 PCT/JP2013/070171 JP2013070171W WO2014017585A1 WO 2014017585 A1 WO2014017585 A1 WO 2014017585A1 JP 2013070171 W JP2013070171 W JP 2013070171W WO 2014017585 A1 WO2014017585 A1 WO 2014017585A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
peripheral wall
wall surface
nacelle
core
Prior art date
Application number
PCT/JP2013/070171
Other languages
English (en)
French (fr)
Inventor
真也 楠田
大庭 芳則
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to CN201380038301.7A priority Critical patent/CN104619977B/zh
Priority to EP13822491.0A priority patent/EP2878796B1/en
Priority to RU2015105965/06A priority patent/RU2599694C2/ru
Priority to CA2879403A priority patent/CA2879403C/en
Publication of WO2014017585A1 publication Critical patent/WO2014017585A1/ja
Priority to US14/601,885 priority patent/US9869276B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/02Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber
    • F02K3/04Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type
    • F02K3/06Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type with front fan
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/16Arrangement of bearings; Supporting or mounting bearings in casings
    • F01D25/162Bearing supports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • F01D5/142Shape, i.e. outer, aerodynamic form of the blades of successive rotor or stator blade-rows
    • F01D5/143Contour of the outer or inner working fluid flow path wall, i.e. shroud or hub contour
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • F01D5/145Means for influencing boundary layers or secondary circulations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/041Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector using blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/545Ducts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to an engine duct that takes in air and exhausts a core jet and a bypass jet, and an aircraft engine that generates engine thrust by exhausting the core jet and the bypass jet.
  • engine ducts which are the main components of aircraft engines, and the general construction of related engine ducts will be briefly described as follows.
  • a typical engine duct has a cylindrical core cowl (inner cylinder), and an annular core channel for taking in air and exhausting the core jet is formed inside (inside) the core cowl.
  • a cylindrical nacelle engine outer cylinder
  • a bypass jet is provided by inserting air between the inner peripheral wall surface of the nacelle and the outer peripheral wall surface of the core cowl.
  • An annular bypass passage for exhausting the air is formed.
  • a plurality of struts as structural members for supporting the nacelle with respect to the core cowl are disposed at intervals in the circumferential direction.
  • a top pylon as a main pylon extending in parallel to the engine axis direction of the aircraft engine is integrally connected, and this top pylon is upward (radially outward) from the nacelle. It protrudes and is used for mounting the aircraft engine to the aircraft and transmitting engine thrust.
  • a bottom pylon as a subpylon is provided symmetrically with the top pylon with respect to the engine axis between the lower part of the outer peripheral wall surface of the core cowl and the lower part of the inner peripheral wall surface of the nacelle.
  • a plurality of fan outlet guide vanes for rectifying the air taken into the bypass flow path into an axial flow are spaced apart in the circumferential direction on the upstream side of the strut between the outer peripheral wall surface of the core cowl and the inner peripheral wall surface of the nacelle. It is placed and arranged.
  • the aircraft engine is operated and air taken into the core flow path is used as a core jet, and air taken into the bypass flow path is rectified into an axial flow and exhausted as a bypass jet. Thereby, the engine thrust of an aircraft engine can be generated.
  • Patent Document 1 Japanese Patent Laid-Open Publication No. 2008-155103
  • Patent Document 2 Japanese Patent Laid-Open No. 5-202768
  • Fig.6 (a) is a figure which shows the peeling area
  • the inventor of the present invention has a radial direction on the inner peripheral wall surface of the nacelle as shown in FIGS. If the predetermined bulging part that protrudes inward is formed from the both sides in the circumferential direction of the bottom pylon as the subpylon (from the leading edge of both sides) to the downstream side, the bypass flow may occur during operation of the aircraft engine. In the flow field in the road, a novel finding that the separation region in the vicinity of the connection portion between the inner peripheral wall surface of the nacelle and the bottom pylon can be sufficiently reduced can be obtained, and the present invention has been completed.
  • the predetermined raised portion has a streamline shape in which the shape viewed from the inside in the radial direction extends in the engine axial direction, and the top portion is located on the surface (including the rear edge) of the bottom pylon. It refers to the raised part.
  • 5 (a) is a perspective view showing the periphery of the raised portion according to the invention example
  • FIG. 5 (b) is a view of the periphery of the raised portion according to the invention example as viewed from the inside in the radial direction
  • FIG. 6 (b). ) Is a diagram showing the separation region of the flow field in the bypass flow path of the engine duct according to the invention example, and the separation region of FIG. 6B is obtained by three-dimensional unsteady viscosity CFD analysis. .
  • “FF” indicates the forward direction (upstream direction)
  • FR” indicates the backward direction (downstream direction).
  • the inner wall surface of the nacelle or the outer peripheral wall surface of the core cowl is radially inner or Bulges that protrude outward in the radial direction from the both sides in the circumferential direction of the strut toward the downstream side, and the bulges that protrude radially inward or radially outward on the inner peripheral wall surface of the nacelle or the outer peripheral wall surface of the core cowl Even when the portion is formed from both sides in the circumferential direction of the fan outlet guide vane toward the downstream side, it can be considered in the same manner as described above.
  • an engine duct which is a component of an aircraft engine and takes in air to exhaust a core jet and a bypass jet
  • the air is taken inside (inside) and the core jet is
  • a cylindrical core cowl engine inner cylinder in which an annular core flow path for exhaust is formed; and an outer peripheral wall of the core cowl that is disposed outside the core cowl so as to surround the core cowl.
  • a cylindrical nacelle (engine outer cylinder) in which an annular bypass passage for taking in air and exhausting the bypass jet is formed, and a circle between the outer peripheral wall surface of the core cowl and the inner peripheral wall surface of the nacelle A plurality of struts disposed at intervals in the circumferential direction and supporting the nacelle with respect to the core cowl, and integrally formed from the core cowl to the nacelle A main pylon that is connected and extends parallel to the engine axial direction of the aircraft engine and projects radially outward (sideward) from the nacelle; and an outer peripheral wall surface of the core cowl and an inner peripheral wall surface of the nacelle.
  • the engine duct has at least one of the sub-pylon, the strut, and the fan outlet guide vane having a bulging portion protruding radially inward or radially outward on the inner peripheral wall surface of the nacelle or the outer peripheral wall surface of the core cowl.
  • the member is formed from both sides in the circumferential direction toward the downstream side, and the shape of the raised portion viewed from the radially inner side or the radially outer side exhibits a streamline shape extending in the engine axial direction. And the top part of the said protruding part is located on the surface of one of the said members, It is characterized by the above-mentioned.
  • arranged means not only directly disposed but also indirectly disposed through another member.
  • provided means that it is indirectly provided via another member in addition to being directly provided.
  • upstream means upstream from the flow direction of main flow in the core flow path or bypass flow path
  • downstream means main flow in the core flow path or bypass flow path. This is downstream as seen from the direction.
  • the aircraft engine is operated, and the air taken into the core flow path is discharged as a core jet, and the air taken into the bypass flow path is exhausted as a bypass jet while being rectified into an axial flow. .
  • the engine thrust of the aircraft engine can be generated.
  • the raised portion that protrudes radially inward or radially outward from the inner peripheral wall surface of the nacelle or the outer peripheral wall surface of the core cowl is downstream from both circumferential side surfaces of any one of the members.
  • the shape of the raised portion viewed from the radially inner side or radially outer side is a streamline shape extending in the engine axial direction, and the top portion of the raised portion is any one of the members.
  • an aircraft engine that generates engine thrust by exhausting a core jet and a bypass jet includes the engine duct according to the first technical aspect. .
  • FIG. 1 is a side sectional view of an aircraft engine according to an embodiment of the present invention.
  • 2A is an enlarged view of the arrow IIA in FIG. 1
  • FIG. 2B is a view taken along the line IIB-IIB in FIG. 2A.
  • FIG. 3 is an enlarged view taken along line III-III in FIG.
  • FIG. 4 is a diagram illustrating a relationship between the position in the engine axial direction and the thrust loss in the bypass flow path of the engine duct according to the invention example and the comparative example.
  • FIG. 5A is a perspective view showing the periphery of the raised portion according to the invention example
  • FIG. 5B is a view of the periphery of the raised portion according to the invention example as viewed from the inside in the radial direction.
  • FIG. 5A is a perspective view showing the periphery of the raised portion according to the invention example
  • FIG. 5B is a view of the periphery of the raised portion according to the invention example as viewed from
  • FIG. 6A is a diagram showing a separation region of the flow field in the bypass flow path of the engine duct according to the related art
  • FIG. 6B is a flow field in the bypass flow path of the engine duct according to the invention example. It is a figure which shows a peeling area
  • FF indicates the forward direction (upstream direction)
  • FR indicates the backward direction (downstream direction)
  • L indicates the left direction
  • R indicates the right direction.
  • an aircraft engine 1 As shown in FIGS. 1 and 3, an aircraft engine 1 according to an embodiment of the present invention is attached to an aircraft (not shown), and generates an engine thrust by exhausting a core jet CJ and a bypass jet BJ. It is. And the whole structure of the aircraft engine 1 which concerns on embodiment of this invention is as follows.
  • the aircraft engine 1 includes an engine duct 3 that takes in air and exhausts the core jet CJ and the bypass jet BJ as main components.
  • the engine duct 3 includes a cylindrical core cowl (engine inner cylinder) 5.
  • the core cowl 5 is provided with an annular core channel 7 for taking in air and exhausting the core jet CJ backward (downstream).
  • a cylindrical nacelle (engine outer cylinder) 9 is provided outside the core cowl 5 so as to surround the core cowl 5.
  • An inner peripheral wall surface 9p of the nacelle 9 and an outer peripheral wall surface (outer peripheral surface) 5p of the core cowl 5 are provided.
  • An annular bypass passage 11 for taking in air and exhausting the bypass jet BJ rearward is formed between them.
  • each strut 13 as structural members for supporting the nacelle 9 with respect to the core cowl 5 are arranged at intervals in the circumferential direction.
  • the cord direction of each strut 13 (direction connecting the leading edge and the trailing edge) is parallel to the engine axial direction (front-rear direction or engine axis SC direction).
  • a top pylon 15 as a main pylon extending in parallel with the engine axial direction is integrally connected.
  • the top pylon 15 is connected upward from the nacelle 9 (outside in the radial direction). ) And is used for mounting on an aircraft and transmitting engine thrust.
  • the top pylon 15 includes pipes such as a fuel supply pipe (not shown), a lubricating oil supply pipe (not shown), a guest room extraction pipe (not shown), and a cooling air extraction pipe (not shown). Has the function of accommodating.
  • a bottom pylon 17 serving as a subpylon is connected to the engine shaft (the shaft of the core cowl 5).
  • the center pylon 17 is provided symmetrically to the top pylon 15 with respect to the SC, and the bottom pylon 17 is located between the struts 13 adjacent in the circumferential direction. It is parallel to the axial direction.
  • the bottom pylon 17 has a function as a structural member for supporting the nacelle 9 with respect to the core cowl 5 and a function of accommodating piping such as fuel supply piping (not shown).
  • a fan (fan rotor) 21 that compresses and takes air into the core flow path 7 and the bypass flow path 11 is provided at the front portion of the core cowl 5 so as to be rotatable around the engine axis SC. ing.
  • a low-pressure compressor 23 that compresses compressed air (air) compressed and taken into the core flow path 7 is provided on the downstream side (rear side) of the fan 21 inside the core cowl 5.
  • a high-pressure compressor 25 that compresses the compressed air compressed at a low pressure is provided on the downstream side of the low-pressure compressor 23 inside the core cowl 5.
  • a combustor 27 that combusts fuel in compressed air is provided on the downstream side of the high-pressure compressor 25 inside the core cowl 5.
  • a high-pressure turbine 29 is provided on the downstream side of the combustor 27 inside the core cowl 5.
  • the high-pressure turbine 29 is driven by the expansion of the combustion gas from the combustor 27 and interlocks with the high-pressure compressor 25. It is to be driven.
  • a low-pressure turbine 31 is provided on the downstream side of the high-pressure turbine 29 inside the core cowl 5. The low-pressure turbine 31 is driven by the expansion of combustion gas, and the fan 21 and the low-pressure compressor 23 are interlocked. It is to be driven.
  • the fan 21, the low-pressure compressor 23, the high-pressure compressor 25, the high-pressure turbine 29, and the low-pressure turbine 31 include a plurality of blades (fan blades, low-pressure compressor blades, high-pressure compressor blades, high-pressure turbine blades, and Low-pressure turbine blades). Further, the low-pressure compressor 23, the high-pressure compressor 25, the high-pressure turbine 29, and the low-pressure turbine 31 include a plurality of stationary blades (low-pressure compressor stationary blade, high-pressure compressor stationary blade, high-pressure turbine stationary blade, and low-pressure turbine stationary blade). It has. In the drawing, the moving blades in the fan 21, the low-pressure compressor 23, the high-pressure compressor 25, the high-pressure turbine 29, and the low-pressure turbine 31 are hatched.
  • a protruding portion 33 that protrudes radially inward is downstream from the front edge 17 a side of both side surfaces 17 f and 17 s in the circumferential direction of the bottom pylon 17. It is formed toward the side.
  • the shape of the raised portion 33 viewed from the inside in the radial direction is a streamline shape extending in parallel with the engine axial direction, and the top portion 33 h at the center of the raised portion 33 is the rear edge 17 t of the bottom pylon 17. It is designed to be located above.
  • the central top portion 33h of the raised portion 33 may be positioned on the circumferential side surface 17f or 17s of the bottom pylon 17 instead of being positioned on the rear edge 17t of the bottom pylon 17.
  • the bulging portion 33 may not have a symmetrical shape. As shown in FIG. 2A, when viewed from the side of the bulging portion 33, the inner peripheral wall surface of the nacelle 9 extends from the top portion 33 h of the bulging portion 33. Although it is connected linearly over 9p, it may be connected in a streamline shape.
  • Another raised portion 35 that protrudes radially outward on the outer peripheral wall surface 5p of the core cowl 5 may be formed from the front edge 17a side of the both side surfaces 17f, 17s in the circumferential direction of the bottom pylon 17 toward the downstream side. I do not care.
  • the shape of another raised portion 35 viewed from the outside in the radial direction is a streamline shape extending in parallel to the engine axial direction, and the top portion 35h at the center of the other raised portion 35 is It will be located on the surface of the bottom pylon 17 (including the trailing edge 17t).
  • the high pressure compressor 25 is driven by the operation of an appropriate starter device (not shown), the fuel is combusted in the compressed air by the combustor 27, and the high pressure turbine 29 and the low pressure turbine 31 are driven by the expansion of the combustion gas. Let Further, the high pressure turbine 29 is driven in conjunction with the high pressure turbine 29, and the fan 21 and the low pressure compressor 23 are driven in conjunction with the low pressure turbine 31.
  • a series of operations as described above, namely, driving of the fan 21, driving of the low pressure compressor 23, driving of the high pressure compressor 25, combustion by the combustor 27, driving of the high pressure turbine 29, and driving of the low pressure turbine 31 are continuous. Will be done.
  • the aircraft engine 1 can be operated appropriately, and the core jet CJ and the bypass jet BJ can be exhausted from the core flow path 7 and the bypass flow path 11, respectively, and the engine thrust of the aircraft engine 1 can be generated. .
  • a raised portion 33 that protrudes radially inward on the inner peripheral wall surface of the nacelle 9 is formed from the side of the front edge 17a of both side surfaces 17f and 17s in the circumferential direction of the bottom pylon 17.
  • the shape of the raised portion 33 viewed from the inside in the radial direction has a streamline shape extending in parallel with the engine axial direction, and the central top portion 33h of the raised portion 33 is the bottom pylon 17 Is located on the trailing edge 17t. Therefore, when the above-described novel knowledge is applied, the separation region in the flow field in the bypass passage 11 can be sufficiently reduced during operation of the aircraft engine 1.
  • the thrust loss in the bypass passage 11 is reduced, and the aircraft The engine performance of the engine 1 can be improved to a high level.
  • FIG. 4 according to the three-dimensional unsteady viscous CFD analysis result on the relationship between the position in the axial direction of the engine in the bypass passage and the thrust loss, compared to the case of the engine duct according to the conventional example
  • the thrust loss at the outlet position of the bypass channel can be sufficiently reduced.
  • the thrust loss at the leading edge position of the bottom pylon in the bypass flow path of the engine duct according to the invention example and the conventional example is zero.
  • Strut-side raised portions that protrude radially inwardly or radially outwardly from the inner peripheral wall surface 9p of the nacelle 9 or the outer peripheral wall surface 5p of the core cowl 5 are directed from the both side surfaces in the circumferential direction of each strut 13 toward the downstream side. You may make it form.
  • the shape of each strut-side raised portion viewed from the radially inner side or radially outer side is a streamline shape extending in the engine axial direction, and the top portion of each strut-side raised portion is the surface of the strut. It is located above (including the trailing edge).
  • each guide blade side raised portion that protrude radially inward or radially outward on the inner peripheral wall surface 9p of the nacelle 9 or the outer peripheral wall surface 5p of the core cowl 5 are downstream from both circumferential side surfaces of the fan outlet guide vanes 19. You may make it form toward the side.
  • the shape of each guide blade side raised portion viewed from the radially inner side or radially outer side is a streamline shape extending in the engine axial direction
  • the top portion of each guide blade side raised portion is a fan outlet guide. It is located on the surface of the wing (including the trailing edge).
  • the main pylon as the main pylon extends from the left part (or right part) of the core cowl 5 to the left part (or right part) of the nacelle 9.
  • Side pylon (not shown) may be integrally connected.
  • a right portion (or left portion) of the outer peripheral wall surface 5p of the core cowl 5 is provided.
  • a right side (or left part) of the inner peripheral wall surface 9p of the nacelle 9 are provided with a sub side pylon (not shown) as a sub pylon symmetrically with the main side pylon with respect to the engine axis SC. .
  • the separation region in the flow field in the bypass flow path can be sufficiently reduced, so that the thrust loss in the bypass flow path is reduced and the engine performance of the aircraft engine is reduced. Can be improved to a high level.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

 ナセル9の内周壁面9pに径方向内側へ隆起した隆起部33がボトムパイロン17の円周方向の両側面17f,17sの前縁17a側から下流側に向かって形成される。径方向内側から見た隆起部33の形状はエンジン軸方向に平行に延びた流線形状を呈し、隆起部33の中央の頂部分33hは、ボトムパイロン17の後縁17t上に位置する。

Description

エンジンダクト及び航空機エンジン
 本発明は、空気を取入れてコアジェット及びバイパスジェットを排気するエンジンダクト、及びコアジェットとバイパスジェットを排気することによりエンジン推力を発生させる航空機エンジンに関する。
 近年、航空機エンジンの主要な構成要素であるエンジンダクトについて種々の開発がなされており、関連する一般的なエンジンダクトの構成等について簡単に説明すると、次のようになる。
 一般的なエンジンダクトは、筒状のコアカウル(エンジン内筒)を具備しており、このコアカウルの内部(内側)には、空気を取入れてコアジェットを排気するための環状のコア流路が形成されている。また、コアカウルの外側には、筒状のナセル(エンジン外筒)がコアカウルを囲むように配設されており、ナセルの内周壁面とコアカウルの外周壁面の間には、空気を取入れてバイパスジェットを排気するための環状のバイパス流路が形成されている。更に、コアカウルの外周壁面とナセルの内周壁面との間には、コアカウルに対してナセルを支持する構造部材としての複数のストラットが円周方向に間隔を置いて配設されている。
 コアカウルの上部からナセルの上部にかけて、航空機エンジンのエンジン軸方向に平行に延びたメインパイロンとしてのトップパイロンが一体的に連結されており、このトップパイロンは、ナセルから上方向(径方向外側)へ突出してあって、航空機に対する航空機エンジンの取付け及びエンジン推力の伝達のために用いられるものである。また、コアカウルの外周壁面の下部とナセルの内周壁面の下部との間には、サブパイロンとしてのボトムパイロンがエンジン軸心に対してトップパイロンと対称に設けられており、このボトムパイロンは、円周方向に隣接するストラットの間に位置してあって、コアカウルに対してナセルを支持する構造部材としての機能の他に、配管等を収容する機能を有している。更に、コアカウルの外周壁面とナセルの内周壁面との間における前記ストラットの上流側には、バイパス流路に取入れた空気を軸流に整流する複数のファン出口案内翼が円周方向に間隔を置いて配設されている。
 従って、航空機エンジンを稼動させて、コア流路に取入れた空気をコアジェットとして、バイパス流路に取入れた空気を軸流に整流してバイパスジェットとしてそれぞれ排気する。これにより、航空機エンジンのエンジン推力を発生させることができる。
 なお、本発明に関連する先行技術として日本国特許公開公報特開2008-151033公報(特許文献1)および特開平5-202768号公報(特許文献2)がある。
 ところで、航空機エンジンの稼動中におけるバイパス流路内の流れ場について3次元非定常粘性CFD(Computational Fluid Dynamics)解析を行うと、図6(a)に示すように、ナセルの内周壁面とボトムパイロンとの接続部付近に大きな剥離領域が生成されることが判明した。ここで、図6(a)は、関連するエンジンダクトのバイパス流路内の流れ場の剥離領域を示す図である。一方、航空機エンジンの稼動中におけるバイパス流路内の流れ場において剥離領域が増大すると、それに伴い、バイパス流路内の推力ロスが増大して、航空機エンジンのエンジン性能を高いレベルまで向上させることが困難になる。
 なお、航空機エンジンの稼動中におけるバイパス流路内の流れ場においては、ナセルの内周壁面とボトムパイロンとの接続部付近だけでなく、コアカウルの外周壁面とボトムパイロンとの接続部付近、ナセルの内周壁面とストラットとの接続部付近等においても、大きな剥離領域が生成されることがあり、その場合には、前述と同様の問題が生じるものである。
 本発明によれば、バイパス流路内の流れ場における剥離領域を低減し推力損失を低減して高効率の航空機エンジンを提供することができる。
 本発明の発明者は、前述の課題を解決するために、試行錯誤を繰り返した結果、図5(a)(b)及び図6(b)に示すように、ナセルの内周壁面に径方向内側へ隆起した所定の隆起部をサブパイロンとしてのボトムパイロンの円周方向の両側面側(両側面の前縁側)から下流側に向かって形成した場合には、航空機エンジンの稼働中、バイパス流路内の流れ場において、ナセルの内周壁面とボトムパイロンとの接続部付近の剥離領域を十分に低減できるという、新規な知見を得ることができ、本発明を完成するに至った。
 ここで、所定の隆起部とは、径方向内側から見た形状がエンジン軸方向に延びた流線形状を呈し、頂部分がボトムパイロンの表面(後縁を含む)上に位置するようになっている隆起部のことをいう。また、図5(a)は、発明例に係る隆起部の周辺を示す斜視図、図5(b)は、発明例に係る隆起部の周辺を径方向内側から見た図、図6(b)は、発明例に係るエンジンダクトのバイパス流路内の流れ場の剥離領域を示す図であって、図6(b)の剥離領域は、3次元非定常粘性CFD解析より求めたものである。なお、図面中、「FF」は、前方向(上流方向)、「FR」は、後方向(下流方向)を指している。
 コアカウルの外周壁面に径方向外側へ隆起した隆起部をボトムパイロンの円周方向の両側面側から下流側に向かって形成した場合、ナセルの内周壁面又はコアカウルの外周壁面に径方向内側又は径方向外側へ隆起した隆起部をストラットの円周方向の両側面側から下流側に向かって形成した場合、及びナセルの内周壁面又はコアカウルの外周壁面に径方向内側又は径方向外側へ隆起した隆起部をファン出口案内翼の円周方向の両側面側から下流側に向かって形成した場合においても、前述の場合と同様に考えることができる。
 本発明の第1の技術的側面によれば、航空機エンジンの構成要素であって、空気を取入れてコアジェット及びバイパスジェットを排気するエンジンダクトにおいて、内部(内側)に空気を取入れてコアジェットを排気するための環状のコア流路が形成された筒状のコアカウル(エンジン内筒)と、前記コアカウルの外側に前記コアカウルを囲むように配設され、内周壁面と前記コアカウルの外周壁面との間に空気を取入れてバイパスジェットを排気するための環状のバイパス流路が形成された筒状のナセル(エンジン外筒)と、前記コアカウルの外周壁面と前記ナセルの内周壁面との間に円周方向に間隔を置いて配設され、前記コアカウルに対して前記ナセルを支持する複数のストラットと、前記コアカウルから前記ナセルにかけて一体的に連結され、前記航空機エンジンのエンジン軸方向に平行に延びてあって、前記ナセルから径方向外側(側方)へ突出したメインパイロンと、前記コアカウルの外周壁面と前記ナセルの内周壁面との間にエンジン軸心に対して前記メインパイロンと対称に設けられ、円周方向に隣接する前記ストラットの間に位置するサブパイロンと、前記コアカウルの外周壁面と前記ナセルの内周壁面との間における前記ストラットの上流側に円周方向に間隔を置いて配設され、前記バイパス流路に取入れた空気を軸流に整流する複数のファン出口案内翼とを具備することを特徴とする。さらに、エンジンダクトは、前記ナセルの内周壁面又は前記コアカウルの外周壁面に径方向内側又は径方向外側へ隆起した隆起部が前記サブパイロン、前記ストラット、及び前記ファン出口案内翼のうちの少なくともいずれかの部材の円周方向の両側面側から下流側に向かって形成され、径方向内側又は径方向外側から見た前記隆起部の形状が前記エンジン軸方向に延びた流線形状を呈してあって、前記隆起部の頂部分が前記いずれかの部材の表面上に位置するようになっていることを特徴とする。
 なお、本明細書及び特許請求の範囲において、「配設され」とは、直接的に配設されたことの他に、別部材を介して間接的に配設されたことを含む意であって、「設けられ」とは、直接的に設けられたことの他に、別部材を介して間接的に設けられたことを含む意である。また、「上流」とは、前記コア流路又は前記バイパス流路において主流の流れ方向から見て上流のことをいい、「下流」とは、前記コア流路又は前記バイパス流路において主流の流れ方向から見て下流のことをいう。
 第1の側面によれば、前記航空機エンジンを稼動させて、前記コア流路に取入れた空気をコアジェットとして、前記バイパス流路に取入れた空気を軸流に整流しつつバイパスジェットとしてそれぞれ排気する。これにより、前記航空機エンジンのエンジン推力を発生させることができる。
 前述の作用の他に、前記ナセルの内周壁面又は前記コアカウルの外周壁面に径方向内側又は径方向外側へ隆起した前記隆起部が前記いずれかの部材の円周方向の両側面側から下流側に向かって形成され、径方向内側又は径方向外側から見た前記隆起部の形状が前記エンジン軸方向に延びた流線形状を呈してあって、前記隆起部の頂部分が前記いずれかの部材の表面上に位置するようになっているため、前述の新規な知見を適用又は類推適用すると、前記航空機エンジンの稼動中、前記バイパス流路内の流れ場における剥離領域を十分に低減することができる。
 本発明の第2の技術的側面によれば、コアジェットとバイパスジェットを排気することにより、エンジン推力を発生させる航空機エンジンにおいて、第1の技術的側面におけるエンジンダクトを備えたことを要旨とする。
図1は、本発明の実施形態に係る航空機エンジンの側断面図である。 図2(a)は、図1における矢視部IIAの拡大図、図2(b)は、図2(a)におけるIIB-IIB線に沿った図である。 図3は、図1におけるIII-III線に沿った拡大図である。 図4は、発明例及び比較例に係るエンジンダクトのバイパス流路内におけるエンジン軸方向の位置と推力ロスとの関係を示す図である。 図5(a)は、発明例に係る隆起部の周辺を示す斜視図、図5(b)は、発明例に係る隆起部の周辺を径方向内側から見た図である。 図6(a)は、関連技術に係るエンジンダクトのバイパス流路内の流れ場の剥離領域を示す図、図6(b)は、発明例に係るエンジンダクトのバイパス流路内の流れ場の剥離領域を示す図である。
 本発明の実施形態の内容について図1から図4を参照して説明する。なお、図面中、「FF」は、前方向(上流方向)、「FR」は、後方向(下流方向)、「L」は、左方向、「R」は、右方向をそれぞれ指してある。
 図1及び図3に示すように、本発明の実施形態に係る航空機エンジン1は、航空機(図示省略)に取付けられ、コアジェットCJとバイパスジェットBJを排気することにより、エンジン推力を発生させるものである。そして、本発明の実施形態に係る航空機エンジン1の全体的な構成は、次のようになる。
 航空機エンジン1は、空気を取入れてコアジェットCJ及びバイパスジェットBJを排気するエンジンダクト3を主要な構成要素として具備しており、このエンジンダクト3は、筒状のコアカウル(エンジン内筒)5を具備しており、このコアカウル5の内部(内側)には、空気を取入れてコアジェットCJを後方向(下流方向)へ排気するための環状のコア流路7が形成されている。また、コアカウル5の外側には、筒状のナセル(エンジン外筒)9がコアカウル5を囲むように設けられており、ナセル9の内周壁面9pとコアカウル5の外周壁面(外周面)5pとの間には、空気を取入れてバイパスジェットBJを後方向へ排気するための環状のバイパス流路11が形成されている。更に、コアカウル5の外周壁面5pとナセル9の内周壁面9pとの間には、コアカウル5に対してナセル9を支持する構造部材としての複数のストラット13が円周方向に間隔を置いて配設されており、各ストラット13のコード方向(前縁と後縁を結ぶ方向)は、エンジン軸方向(前後方向又はエンジン軸心SC方向)に平行になっている。
 コアカウル5の上部からナセル9の上部にかけて、エンジン軸方向に平行に延びたメインパイロンとしてのトップパイロン15が一体的に連結されており、このトップパイロン15は、ナセル9から上方向(径方向外側)へ突出してあって、航空機に対する取付及びエンジン推力の伝達のために用いられるものである。また、トップパイロン15は、燃料供給用配管(図示省略)、潤滑油供給用配管(図示省略)、客室抽気用配管(図示省略)、及び冷却空気抽気用配管(図示省略)等の配管等を収容する機能を有している。
 コアカウル5の外周壁面5pの下部(下側部分)とナセル9の内周壁面9pの下部(下側部分)との間には、サブパイロンとしてのボトムパイロン17がエンジン軸心(コアカウル5の軸心)SCに対してトップパイロン15と対称に設けられており、このボトムパイロン17は、円周方向に隣接するストラット13の間に位置してあって、ボトムパイロン17の軸心方向は、エンジン軸方向に平行になっている。また、ボトムパイロン17は、コアカウル5に対してナセル9を支持する構造部材としての機能及び燃料供給用配管(図示省略)等の配管等を収容する機能を有している。
 コアカウル5の外周壁面5pとナセル9の内周壁面9pとの間におけるストラット13の上流側には、バイパス流路11に取入れた空気を軸流に整流する複数のファン出口案内翼19が円周方向に間隔を置いて配設されている。
 続いて、航空機エンジン1の構成のうち、エンジンダクト3以外の構成について簡単に説明する。
 図1に示すように、コアカウル5の前部には、コア流路7及びバイパス流路11に空気を圧縮して取入れるファン(ファンロータ)21がエンジン軸心SC周りに回転可能に設けられている。また、コアカウル5の内部におけるファン21の下流側(後側)には、コア流路7内に圧縮して取入れた圧縮空気(空気)を低圧圧縮する低圧圧縮機23が設けられている。更に、コアカウル5の内部における低圧圧縮機23の下流側には、低圧圧縮された圧縮空気を高圧圧縮する高圧圧縮機25が設けられている。そして、コアカウル5の内部における高圧圧縮機25の下流側には、圧縮空気中で燃料を燃焼させる燃焼器27が設けられている。
 コアカウル5の内部における燃焼器27の下流側には、高圧タービン29が設けられており、この高圧タービン29は、燃焼器27からの燃焼ガスの膨張によって駆動すると共に高圧圧縮機25を連動して駆動させるものである。また、コアカウル5の内部における高圧タービン29の下流側には、低圧タービン31が設けられており、この低圧タービン31は、燃焼ガスの膨張によって駆動する共にファン21及び低圧圧縮機23を連動して駆動させるものである。
 なお、ファン21、低圧圧縮機23、高圧圧縮機25、高圧タービン29、及び低圧タービン31は、複数の動翼(ファン動翼、低圧圧縮機動翼、高圧圧縮機動翼、高圧タービン動翼、及び低圧タービン動翼)を備えている。また、低圧圧縮機23、高圧圧縮機25、高圧タービン29、及び低圧タービン31は、複数の静翼(低圧圧縮機静翼、高圧圧縮機静翼、高圧タービン静翼、及び低圧タービン静翼)を備えている。なお、図中において、ファン21、低圧圧縮機23、高圧圧縮機25、高圧タービン29、及び低圧タービン31における動翼は、ハッチングを施してある。
 続いて、本発明の実施形態に係るエンジンダクト3の特徴部分について説明する。
 図1から図3に示すように、ナセル9の内周壁面9pには、径方向内側へ隆起した隆起部33がボトムパイロン17の円周方向の両側面17f,17sの前縁17a側から下流側に向かって形成されている。また、径方向内側から見た隆起部33の形状は、エンジン軸方向に平行に延びた流線形状を呈してあって、隆起部33の中央の頂部分33hは、ボトムパイロン17の後縁17t上に位置するようになっている。
 なお、隆起部33の中央の頂部分33hがボトムパイロン17の後縁17t上に位置する代わりに、ボトムパイロン17の円周方向の側面17f又は17s上に位置するようにしても構わない。また、隆起部33が左右対称形状でなくても構わなく、図2(a)に示すように、隆起部33の側方から見ると、隆起部33の頂部分33hからナセル9の内周壁面9pにかけて直線状に繋がっているが、流線状に繋がっていても構わない。
 コアカウル5の外周壁面5pに径方向外側に隆起した別の隆起部35がボトムパイロン17の円周方向の両側面17f,17sの前縁17a側から下流側に向かって形成されるようにしても構わない。この場合には、径方向外側から見た別の隆起部35の形状は、エンジン軸方向に平行に延びた流線形状を呈してあって、別の隆起部35の中央の頂部分35hは、ボトムパイロン17の表面(後縁17tを含む)上に位置することになる。
 本発明の実施形態の作用及び効果について説明する。適宜のスタータ装置(図示省略)の作動によって高圧圧縮機25を駆動して、燃焼器27によって圧縮空気の中で燃料を燃焼させることにより、燃焼ガスの膨張によって高圧タービン29及び低圧タービン31を駆動させる。さらに、高圧タービン29によって高圧圧縮機25を連動して駆動させて、低圧タービン31によってファン21及び低圧圧縮機23を連動して駆動させる。
 そして、前述のような一連の動作、すなわち、ファン21の駆動、低圧圧縮機23の駆動、高圧圧縮機25の駆動、燃焼器27による燃焼、高圧タービン29の駆動、低圧タービン31の駆動が連続して行われることになる。その結果、航空機エンジン1を適切に稼動させて、コア流路7及びバイパス流路11からコアジェットCJ及びバイパスジェットBJをそれぞれ排気することができ、航空機エンジン1のエンジン推力を発生させることができる。
 前述の航空機エンジン1の一般的な作用の他に、ナセル9の内周壁面に径方向内側へ隆起した隆起部33がボトムパイロン17の円周方向の両側面17f,17sの前縁17a側から下流側に向かって形成され、径方向内側から見た隆起部33の形状がエンジン軸方向に平行に延びた流線形状を呈してあって、隆起部33の中央の頂部分33hがボトムパイロン17の後縁17t上に位置している。そのため、前述の新規な知見を適用すると、航空機エンジン1の稼動中、バイパス流路11内の流れ場における剥離領域を十分に低減することができる。特に、コアカウル5の外周壁面5pに径方向外側に隆起した別の隆起部35がボトムパイロン17の円周方向の両側面17f,17sの前縁17a側から下流側に向かって形成された場合には、バイパス流路11内の流れ場における剥離領域をより十分に低減することができる。
 従って、本発明の実施形態によれば、航空機エンジン1の稼動中、バイパス流路11内の流れ場における剥離領域を十分に低減できるため、バイパス流路11内の推力ロスを低減して、航空機エンジン1のエンジン性能を高いレベルまで向上させることができる。特に、図4に示すように、バイパス流路内におけるエンジン軸方向の位置と推力ロスとの関係についての3次元非定常粘性CFD解析結果によれば、従来例に係るエンジンダクトの場合に比べて、発明例に係るエンジンダクト(本発明の実施形態に係るエンジンダクト3)の場合の方がバイパス流路の出口位置の推力ロスを十分に低減できるが確認できた。なお、この3次元非定常粘性CFD解析においては、発明例及び従来例に係るエンジンダクトのバイパス流路内におけるボトムパイロンの前縁位置の推力ロスをゼロとしている。
 なお、本発明は、前述の実施形態の説明に限られるものではなく、次のように種々の態様で実施可能である。
 ナセル9の内周壁面9p又はコアカウル5の外周壁面5pに径方向内側又は径方向外側へ隆起したストラット側隆起部(図示省略)が各ストラット13の円周方向の両側面側から下流側に向かって形成されるようにしても構わない。この場合には、径方向内側又は径方向外側から見た各ストラット側隆起部の形状がエンジン軸方向へ延びた流線形状を呈してあって、各ストラット側隆起部の頂部分がストラットの表面(後縁を含む)上に位置するようになっている。
 ナセル9の内周壁面9p又はコアカウル5の外周壁面5pに径方向内側又は径方向外側へ隆起した案内翼側隆起部(図示省略)が各ファン出口案内翼19の円周方向の両側面側から下流側に向かって形成されるようにしても構わない。この場合には、径方向内側又は径方向外側から見た各案内翼側隆起部の形状がエンジン軸方向へ延びた流線形状を呈してあって、各案内翼側隆起部の頂部分がファン出口案内翼の表面(後縁を含む)上に位置するようになっている。
 コアカウル5の上部からナセル9の上部にかけてトップパイロン15が一体的に連結される代わりに、コアカウル5の左部(又は右部)からナセル9の左部(又は右部)にかけてメインパイロンとしてのメインサイドパイロン(図示省略)が一体的に連結されるようにしても構わない。この場合には、コアカウル5の外周壁面5pの下部とナセル9の内周壁面9pの下部との間にボトムパイロン17が設けられる代わりに、コアカウル5の外周壁面5pの右部(又は左部)とナセル9の内周壁面9pの右部(又は左部)との間にサブパイロンとしてのサブサイドパイロン(図示省略)がエンジン軸心SCに対してメインサイドパイロンと対称に設けられることになる。
 また、本発明に包含される権利範囲は、これらの実施形態に限定されないものである。
 本発明によれば、前記航空機エンジンの稼動中、前記バイパス流路内の流れ場における剥離領域を十分に低減できるため、前記バイパス流路内の推力ロスを低減して、前記航空機エンジンのエンジン性能を高いレベルまで向上させることができる。
(米国指定)
 本国際特許出願は米国指定に関し、2012年7月26日に出願された日本国特許出願第2012-165652号について米国特許法第119条(a)に基づく優先権の利益を援用し、当該開示内容を引用する。

Claims (3)

  1.  航空機エンジンの構成要素であり、空気を取入れてコアジェット及びバイパスジェットを排気するエンジンダクトであって、
     内部に空気を取入れてコアジェットを排気するための環状のコア流路が形成された筒状のコアカウルと、
     前記コアカウルの外側に前記コアカウルを囲むように配設され、内周壁面と前記コアカウルの外周壁面との間に空気を取入れてバイパスジェットを排気するための環状のバイパス流路が形成された筒状のナセルと、
     前記コアカウルの外周壁面と前記ナセルの内周壁面との間に円周方向に間隔を置いて配設され、前記コアカウルに対して前記ナセルを支持する複数のストラットと、
     前記コアカウルから前記ナセルにかけて一体的に連結され、前記航空機エンジンのエンジン軸方向に平行に延びてあって、前記ナセルから径方向外側へ突出したメインパイロンと、
     前記コアカウルの外周壁面と前記ナセルの内周壁面との間にエンジン軸心に対して前記メインパイロンと対称に設けられ、円周方向に隣接する前記ストラットの間に位置するサブパイロンと、
     前記コアカウルの外周壁面と前記ナセルの内周壁面との間における前記ストラットの上流側に円周方向に間隔を置いて配設され、前記バイパス流路に取入れた空気を軸流に整流する複数のファン出口案内翼と、を具備し、
     前記ナセルの内周壁面又は前記コアカウルの外周壁面に径方向内側又は径方向外側へ隆起した隆起部が前記サブパイロン、前記ストラット、及び前記ファン出口案内翼のうちの少なくともいずれかの部材の円周方向の両側面側から下流側に向かって形成され、
     径方向内側又は径方向外側から見た前記隆起部の形状が前記エンジン軸方向に延びた流線形状を呈してあって、前記隆起部の頂部分が前記いずれかの部材の表面上に位置するようになっていることを特徴とするエンジンダクト。
  2.  前記隆起部の頂部分が前記いずれかの部材の後縁上に位置するようになっていることを特徴とする請求項1に記載のエンジンダクト。
  3.  コアジェットとバイパスジェットを排気することにより、エンジン推力を発生させる航空機エンジンであって、
     請求項1又は請求項2に記載のエンジンダクトを具備したことを特徴とする航空機エンジン。
PCT/JP2013/070171 2012-07-26 2013-07-25 エンジンダクト及び航空機エンジン WO2014017585A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380038301.7A CN104619977B (zh) 2012-07-26 2013-07-25 发动机涵道以及航空器发动机
EP13822491.0A EP2878796B1 (en) 2012-07-26 2013-07-25 Engine duct and aircraft engine
RU2015105965/06A RU2599694C2 (ru) 2012-07-26 2013-07-25 Узел авиационного двигателя и авиационный двигатель
CA2879403A CA2879403C (en) 2012-07-26 2013-07-25 Engine duct and aircraft engine
US14/601,885 US9869276B2 (en) 2012-07-26 2015-01-21 Engine duct and aircraft engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012165652A JP6035946B2 (ja) 2012-07-26 2012-07-26 エンジンダクト及び航空機エンジン
JP2012-165652 2012-07-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/601,885 Continuation US9869276B2 (en) 2012-07-26 2015-01-21 Engine duct and aircraft engine

Publications (1)

Publication Number Publication Date
WO2014017585A1 true WO2014017585A1 (ja) 2014-01-30

Family

ID=49997394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070171 WO2014017585A1 (ja) 2012-07-26 2013-07-25 エンジンダクト及び航空機エンジン

Country Status (7)

Country Link
US (1) US9869276B2 (ja)
EP (1) EP2878796B1 (ja)
JP (1) JP6035946B2 (ja)
CN (1) CN104619977B (ja)
CA (1) CA2879403C (ja)
RU (1) RU2599694C2 (ja)
WO (1) WO2014017585A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7711604B1 (en) 1997-07-08 2010-05-04 Walker Digital, Llc Retail system for selling products based on a flexible product description
WO2014197062A2 (en) * 2013-03-15 2014-12-11 United Technologies Corporation Fan exit guide vane platform contouring
JP6507535B2 (ja) 2014-09-10 2019-05-08 株式会社Ihi 低バイパス比ターボファンエンジンのためのバイパスダクトフェアリングおよびそれを備えたターボファンエンジン
FR3034820B1 (fr) * 2015-04-13 2019-07-12 Safran Aircraft Engines Piece de turbomachine a surface non-axisymetrique
CN105043713B (zh) * 2015-06-23 2017-06-16 中国航空工业集团公司西安飞机设计研究所 一种舱体外表面压力测试方法
FR3039598B1 (fr) * 2015-07-29 2019-12-27 Safran Aircraft Engines Ensemble de redressement de flux d'air a performances aerodynamiques ameliorees
US10711702B2 (en) * 2015-08-18 2020-07-14 General Electric Company Mixed flow turbocore
FR3059419B1 (fr) * 2016-11-29 2018-11-23 Airbus Operations (S.A.S.) Systeme de protection d'un thermocouple installe dans un compartiment de moteur d'aeronef
DE102017222817A1 (de) * 2017-12-14 2019-06-19 MTU Aero Engines AG Turbinenmodul für eine strömungsmaschine

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05202768A (ja) 1991-10-30 1993-08-10 General Electric Co <Ge> 航空機ターボファンエンジン用のカウリング及び分岐ファンダクトアセンブリ
JPH10306732A (ja) * 1996-10-21 1998-11-17 United Technol Corp <Utc> ガスタービンエンジン流路用ステータアセンブリー及び作動媒体ガス流路形成方法
JP2000087803A (ja) * 1998-09-16 2000-03-28 Ishikawajima Harima Heavy Ind Co Ltd 可変ノズル機構およびこれを用いたターボファンエンジン
JP2003172206A (ja) * 2001-12-07 2003-06-20 Ishikawajima Harima Heavy Ind Co Ltd ターボファンエンジンとその運転方法
JP2003269384A (ja) * 2002-03-07 2003-09-25 United Technol Corp <Utc> 流れ案内アセンブリ
WO2006033407A1 (ja) * 2004-09-24 2006-03-30 Ishikawajima-Harima Heavy Industries Co., Ltd. 軸流機械の壁形状及びガスタービンエンジン
JP2007321617A (ja) * 2006-05-31 2007-12-13 Ihi Corp 軸流流体装置
JP2008151033A (ja) 2006-12-18 2008-07-03 Ihi Corp ジェット噴流排気ノズル及びジェットエンジン
JP2010150954A (ja) * 2008-12-24 2010-07-08 Technical Research & Development Institute Ministry Of Defence 軸流圧縮装置
JP2011112001A (ja) * 2009-11-27 2011-06-09 Ihi Corp エンジン排気ノズル及び航空機エンジン
JP2012145001A (ja) * 2011-01-07 2012-08-02 Ihi Corp エンジン排気ノズル及び航空機エンジン

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2735612A (en) * 1956-02-21 hausmann
US3540682A (en) * 1964-12-02 1970-11-17 Gen Electric Turbofan type engine frame and support system
GB1291235A (en) * 1968-10-02 1972-10-04 Rolls Royce Fluid flow machine
US4044973A (en) * 1975-12-29 1977-08-30 The Boeing Company Nacelle assembly and mounting structures for a turbofan jet propulsion engine
SU1469187A1 (ru) * 1987-04-13 1989-03-30 Ленинградский Кораблестроительный Институт Сопловой аппарат турбины
US5369954A (en) * 1991-04-22 1994-12-06 General Electric Company Turbofan engine bypass and exhaust system
US6901739B2 (en) * 2003-10-07 2005-06-07 General Electric Company Gas turbine engine with variable pressure ratio fan system
US7730714B2 (en) * 2005-11-29 2010-06-08 General Electric Company Turbofan gas turbine engine with variable fan outlet guide vanes
JP4616781B2 (ja) * 2006-03-16 2011-01-19 三菱重工業株式会社 タービン翼列エンドウォール
US7673458B2 (en) * 2006-11-14 2010-03-09 General Electric Company Turbofan engine nozzle assembly and method for operating the same
GB0624294D0 (en) * 2006-12-05 2007-01-10 Rolls Royce Plc A transition duct for a gas turbine engine
JP5283855B2 (ja) * 2007-03-29 2013-09-04 株式会社Ihi ターボ機械の壁、及びターボ機械
US9181899B2 (en) * 2008-08-27 2015-11-10 General Electric Company Variable slope exhaust nozzle
US8206115B2 (en) * 2008-09-26 2012-06-26 General Electric Company Scalloped surface turbine stage with trailing edge ridges
US20110262277A1 (en) * 2008-12-18 2011-10-27 Volvo Aero Corporation Gas turbine composite workpiece to be used in gas turbine engine
DE102009011924A1 (de) * 2009-03-10 2010-09-16 Rolls-Royce Deutschland Ltd & Co Kg Nebenstromkanal eines Turbofantriebwerks
US8105037B2 (en) * 2009-04-06 2012-01-31 United Technologies Corporation Endwall with leading-edge hump
US8794912B2 (en) * 2009-05-07 2014-08-05 Volvo Aero Corporation Strut and a gas turbine structure comprising the strut
JP5135296B2 (ja) * 2009-07-15 2013-02-06 株式会社東芝 タービン翼列、およびこれを用いたタービン段落、軸流タービン
US8356975B2 (en) * 2010-03-23 2013-01-22 United Technologies Corporation Gas turbine engine with non-axisymmetric surface contoured vane platform
GB201007215D0 (en) * 2010-04-30 2010-06-16 Rolls Royce Plc Gas turbine engine
US8727716B2 (en) * 2010-08-31 2014-05-20 General Electric Company Turbine nozzle with contoured band
US9017030B2 (en) * 2011-10-25 2015-04-28 Siemens Energy, Inc. Turbine component including airfoil with contour
ES2552650T3 (es) * 2012-04-13 2015-12-01 Mtu Aero Engines Gmbh Álabe para una turbomáquina, disposición de álabes y turbomáquina

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05202768A (ja) 1991-10-30 1993-08-10 General Electric Co <Ge> 航空機ターボファンエンジン用のカウリング及び分岐ファンダクトアセンブリ
JPH10306732A (ja) * 1996-10-21 1998-11-17 United Technol Corp <Utc> ガスタービンエンジン流路用ステータアセンブリー及び作動媒体ガス流路形成方法
JP2000087803A (ja) * 1998-09-16 2000-03-28 Ishikawajima Harima Heavy Ind Co Ltd 可変ノズル機構およびこれを用いたターボファンエンジン
JP2003172206A (ja) * 2001-12-07 2003-06-20 Ishikawajima Harima Heavy Ind Co Ltd ターボファンエンジンとその運転方法
JP2003269384A (ja) * 2002-03-07 2003-09-25 United Technol Corp <Utc> 流れ案内アセンブリ
WO2006033407A1 (ja) * 2004-09-24 2006-03-30 Ishikawajima-Harima Heavy Industries Co., Ltd. 軸流機械の壁形状及びガスタービンエンジン
JP2007321617A (ja) * 2006-05-31 2007-12-13 Ihi Corp 軸流流体装置
JP2008151033A (ja) 2006-12-18 2008-07-03 Ihi Corp ジェット噴流排気ノズル及びジェットエンジン
JP2010150954A (ja) * 2008-12-24 2010-07-08 Technical Research & Development Institute Ministry Of Defence 軸流圧縮装置
JP2011112001A (ja) * 2009-11-27 2011-06-09 Ihi Corp エンジン排気ノズル及び航空機エンジン
JP2012145001A (ja) * 2011-01-07 2012-08-02 Ihi Corp エンジン排気ノズル及び航空機エンジン

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2878796A4

Also Published As

Publication number Publication date
RU2599694C2 (ru) 2016-10-10
CN104619977B (zh) 2016-08-17
EP2878796A1 (en) 2015-06-03
CA2879403A1 (en) 2014-01-30
CN104619977A (zh) 2015-05-13
JP2014025395A (ja) 2014-02-06
US20150128562A1 (en) 2015-05-14
EP2878796A4 (en) 2016-07-20
JP6035946B2 (ja) 2016-11-30
US9869276B2 (en) 2018-01-16
RU2015105965A (ru) 2016-09-20
CA2879403C (en) 2016-11-22
EP2878796B1 (en) 2020-05-13

Similar Documents

Publication Publication Date Title
WO2014017585A1 (ja) エンジンダクト及び航空機エンジン
US10934858B2 (en) Method and system for improving turbine blade performance
US9188017B2 (en) Airfoil assembly with paired endwall contouring
JP5124276B2 (ja) ガスタービン中間構造および該中間構造を含むガスタービンエンジン
US10196982B2 (en) Gas turbine engine having a flow control surface with a cooling conduit
US20170306768A1 (en) Turbine engine shroud assembly
EP2896794B1 (en) Blisk
US10047625B2 (en) Fan blade root integrated sealing solution
EP2725233A1 (en) Rotor blade for a compressor
US9222437B2 (en) Transition duct for use in a turbine engine and method of assembly
US10240461B2 (en) Stator rim for a turbine engine
WO2010002294A1 (en) A vane for a gas turbine component, a gas turbine component and a gas turbine engine
US10329922B2 (en) Gas turbine engine airfoil
US20170107849A1 (en) Airfoil for axial flow machine
US10012108B2 (en) Gas turbine engine component
US20140314542A1 (en) Gas turbine engine exhaust diffuser with movable struts
EP4144959A1 (en) Fluid machine for an aircraft engine and aircraft engine
US20170328235A1 (en) Turbine nozzle assembly and method for forming turbine components

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13822491

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2879403

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013822491

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015105965

Country of ref document: RU

Kind code of ref document: A