WO2014017550A1 - Rotary joint - Google Patents

Rotary joint Download PDF

Info

Publication number
WO2014017550A1
WO2014017550A1 PCT/JP2013/070078 JP2013070078W WO2014017550A1 WO 2014017550 A1 WO2014017550 A1 WO 2014017550A1 JP 2013070078 W JP2013070078 W JP 2013070078W WO 2014017550 A1 WO2014017550 A1 WO 2014017550A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
fixed
fluid
seal
gap
Prior art date
Application number
PCT/JP2013/070078
Other languages
French (fr)
Japanese (ja)
Inventor
芳数 三苫
Original Assignee
リックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リックス株式会社 filed Critical リックス株式会社
Priority to CN201380036647.3A priority Critical patent/CN104428572B/en
Publication of WO2014017550A1 publication Critical patent/WO2014017550A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L17/00Joints with packing adapted to sealing by fluid pressure
    • F16L17/02Joints with packing adapted to sealing by fluid pressure with sealing rings arranged between outer surface of pipe and inner surface of sleeve or socket
    • F16L17/03Joints with packing adapted to sealing by fluid pressure with sealing rings arranged between outer surface of pipe and inner surface of sleeve or socket having annular axial lips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/10Arrangements for cooling or lubricating tools or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/10Arrangements for cooling or lubricating tools or work
    • B23Q11/1015Arrangements for cooling or lubricating tools or work by supplying a cutting liquid through the spindle
    • B23Q11/103Rotary joints specially adapted for feeding the cutting liquid to the spindle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L27/00Adjustable joints, Joints allowing movement
    • F16L27/08Adjustable joints, Joints allowing movement allowing adjustment or movement only about the axis of one pipe
    • F16L27/0804Adjustable joints, Joints allowing movement allowing adjustment or movement only about the axis of one pipe the fluid passing axially from one joint element to another
    • F16L27/0808Adjustable joints, Joints allowing movement allowing adjustment or movement only about the axis of one pipe the fluid passing axially from one joint element to another the joint elements extending coaxially for some distance from their point of separation

Definitions

  • the present invention relates to a rotary joint used for supplying fluid to a rotating part.
  • Fluid coupling for connecting a fixed fluid feed pipe to a flow path of a rotating part in a fluid feeding mechanism that feeds a coolant or other fluid to a rotating part that is in a rotating state during operation such as a spindle of a machine tool
  • the rotary joint is a rotary seal that is coupled to the rotating portion and rotated, and a fixed shaft connected to the fluid supply pipe is arranged coaxially so as to face each other in the axial direction, and is attached to each facing end surface. These seal surfaces are in close contact with each other to prevent fluid leakage.
  • a fluid having a predetermined pressure and a predetermined flow rate is continuously supplied from a fluid supply pipe to a rotating part in a rotating state via a rotary joint.
  • the fixed shaft is slidably fitted into a fitting hole provided in the casing portion or the like, and a seal such as an O-ring interposed between the inner periphery of the fitting hole and the fixed shaft.
  • the member prevents fluid leakage from the sliding gap.
  • the sliding gap is filled with grease by constantly pushing the grease into the annular groove provided on the inner peripheral surface of the fitting hole, and foreign matter in the sliding gap is obtained.
  • a bendable diaphragm is attached to the upstream end portion of the fixed shaft, and is sealed so that fluid does not flow other than the passage hole of the fixed shaft. This prevents foreign matter from entering the sliding gap.
  • JP 2007-218293 A Japanese Patent Laid-Open No. 06-241366
  • the present invention has been made in view of such a problem, and it is possible to effectively solve a problem caused by foreign matter entering into a sliding gap between the fixed shaft portion and the fitting hole to be accumulated and solidified with a simple configuration.
  • An object of the present invention is to provide a rotary joint that can be prevented.
  • the rotary joint of the present invention includes a rotating part (1a) provided with an axial rotation flow path (4e) and attached to the rotation shaft, and a fixed part (1b) provided with an axial fixed flow path (8f).
  • a rotating part (1a) provided with an axial rotation flow path (4e) and attached to the rotation shaft
  • a fixed part (1b) provided with an axial fixed flow path (8f).
  • the fixed flow path (8f) is formed so as to penetrate in the axial direction, and a predetermined sliding gap (G1) is maintained in a fitting hole (7a) provided in the holding member (7, 3), so that the shaft It has a fixed shaft part (8a) that fits in a state in which movement in the direction is allowed, and the front end face on one side
  • a fixed seal portion having a second seal surface (9b) with an open fixed channel (8f) and the sliding gap are provided in the downstream
  • a gap seal portion that selectively seals only the flow of the fluid, and a flow path inner diameter (d1) at the upstream end of the fixed flow path (8f) and at the upstream end of the fixed flow path ) And a throttle part (18, 19) provided with a smaller flow path diameter (d2) than the fluid supply source to supply the fluid into the fitting hole, and the fixed shaft part (8a) Is pressed to the downstream side by a fluid force to bring the first seal surface (5b) and the second seal surface (9b) into close contact with each other to form a surface seal portion, and the throttle portion (18, 19) due to the differential pressure generated by the fluid flowing downstream,
  • the body characterized in that to flow into the fixed passage (8f).
  • the axial movement between the fitting hole and the fixed shaft portion is allowed and the downstream direction is allowed.
  • a gap seal portion that selectively seals only the flow of the fluid is provided.
  • the throttle part is provided at the upstream end of the fixed flow path, and the flow path diameter of the throttle part is made smaller than the flow path inner diameter of the shaft end part on the upstream side of the fixed flow path.
  • the fluid in the sliding gap can be caused to flow into the fixed flow path due to the differential pressure generated by the fluid flowing downstream. Thereby, it is possible to effectively prevent problems caused by foreign matters entering the sliding gap between the fixed shaft portion and the fitting hole to be accumulated and solidified with a simple configuration.
  • Sectional drawing of the rotary joint in one embodiment of this invention Operational explanatory diagram of a rotary joint in an embodiment of the present invention Structure and function explanatory diagram of a gap seal portion used for a rotary joint in an embodiment of the present invention Structure and function explanatory diagram of a gap seal portion used for a rotary joint in an embodiment of the present invention
  • the fragmentary sectional view of the rotary joint in one embodiment of the present invention The fragmentary sectional view of the rotary joint in one embodiment of the present invention
  • a rotary joint 1 is used for a fluid supply mechanism for supplying a cooling fluid to a rotating shaft such as a spindle shaft of a machine tool.
  • the rotary joint 1 is configured by coaxially arranging a rotating part 1a provided with an axial rotating flow path and a fixed part 1b provided with an axial fixed flow path.
  • the rotating part 1a is fastened to the flow path hole 2a of the spindle shaft 2 which is a rotating shaft.
  • the spindle shaft 2 is driven to rotate by a motor built in the spindle to rotate around the axis A, and is moved forward and backward in the axial direction by a clamp / unclamp cylinder.
  • the fixed portion 1b is fixedly mounted to a mounting hole 3a provided in the casing 3 so as to communicate with the flow path hole 3b via a housing member 7 serving as a holding member.
  • the casing 3 is detachably fastened to a frame (not shown) through which the spindle shaft 2 is inserted by fastening means such as bolts, and the fixed portion 1b is disposed coaxially with the rotating portion 1a.
  • a fluid such as a liquid coolant or cooling air is supplied to the flow path hole 3b from a fluid supply source (not shown).
  • the rotating part 1 a is mainly composed of a rotor 4 mounted on the spindle shaft 2.
  • the rotor 4 has a shape in which a flange portion 4b having an outer diameter larger than that of the rotation shaft portion 4a is provided at one end of the rotation shaft portion 4a, and a rotation flow path 4e is provided in the axial direction in the axial center portion. Yes.
  • a male screw portion 4d is provided on the outer surface of the rotating shaft portion 4a, and a female screw portion 2b is provided on the inner surface of the flow path hole 2a.
  • the rotor 4 By screwing the male screw portion 4d into the female screw portion 2b, the rotor 4 is screwed to the spindle shaft 2, and the screw fastening portion is sealed by the O-ring 6. As a result, the rotating flow path 4 e communicates with the flow path hole 2 a of the spindle shaft 2.
  • a circular recess 4c is formed on the end surface of the rotor 4 on the right side (the side facing the fixed portion 1b) so as to surround the opening surface of the rotating flow path 4e.
  • a first seal ring 5 is fixed to the recess 4c.
  • the first seal ring 5 is formed by molding a hard material rich in wear resistance such as ceramic into an annular shape having an opening 5a in the center, and the first seal surface 5b finished to a smooth surface. Is fixed to the recess 4c in a state in which is on the outer surface side. In this state, the rotating flow path 4e communicates with the opening 5a and opens to the first seal surface 5b.
  • the rotor 4 to which the first seal ring 5 is fixed is provided in the rotating portion 1a, and constitutes a rotating seal portion having a first seal surface 5b having an opening on the end surface of the rotating flow path 4e. ing.
  • the fixed portion 1 b is configured such that the floating sheet 8 is attached to the housing member 7.
  • a mounting hole 3 a provided in communication with the flow path hole 3 b is opened in the mounting surface 3 c of the casing 3.
  • a cylindrical housing member 7 constituting the main body of the fixing portion 1b is fitted into the mounting hole 3a.
  • the housing member 7 is bolted to the mounting surface 3 c (screw holes provided in the mounting surface 3 c are not shown), and the fitting portion to the mounting hole 3 a is sealed by the O-ring 11.
  • the floating sheet 8 is provided with a disk-shaped flange portion 8b on one side (the side facing the rotating portion 1a in the figure), and on the other side, a fixed flow path 8f (flow path inner diameter d1) penetrates in the axial direction.
  • a fixed shaft portion 8a is formed on the downstream side of the fixed flow path 8f.
  • a stepped portion 8g having an inner peripheral surface 8e narrowed to the flow path diameter d3 is formed.
  • the flow path diameter d3 is set so as to be larger than the flow path diameter d2 of the throttle hole 18c of the throttle section 18 described later.
  • a second seal ring 9 is fixed in a convex portion 8c projecting in an annular shape on the left side of the flange portion 8b (the end surface facing the rotating portion 1a).
  • the second seal ring 9 is formed by molding a hard material similar to that of the first seal ring 5 into an annular shape having an opening 9a at the center.
  • the second seal ring 9 is fixed to the flange portion 8b with the second seal surface 9b finished as a smooth surface facing the outer surface. In this state, the fixed flow path 8f communicates with the opening 9a and opens to the second seal surface 9b.
  • the fixed shaft portion 8a is fitted in a fitting hole 7a provided in the center portion of the housing member 7 so as to penetrate in the axial direction in a state where movement in the axial direction is allowed. That is, the sliding gap G1 (with a predetermined clearance dimension) between the inner peripheral surface 7b of the fitting hole 7a and the outer peripheral surface 8d of the fixed shaft portion 8a is determined by setting the shape and dimensions of the fitting hole 7a and the fixed shaft portion 8a. 3, 4, and 5) are secured.
  • a seal groove (circumferential groove) 7c is formed on the inner peripheral surface 7b of the fitting hole 7a, and a lip seal 12 which is an annular seal member having a V-shaped cross section is formed in the seal groove 7c. It is installed.
  • FIG. 3A shows a state in which the lip seal 12 is mounted in the seal groove 7c in a state where the fixed shaft portion 8a is fitted in the fitting hole 7a.
  • the lip seal 12 has a cross-sectional shape in which two lip portions of the inner peripheral lip portion 12b and the outer peripheral lip portion 12c extend in a V shape from the connecting ring portion 12a that contacts the groove wall surface of the seal groove 7c. is doing.
  • the inner peripheral lip portion 12b is pressed against the outer peripheral surface 8d of the fixed shaft portion 8a, and the outer peripheral lip portion 12c is pressed against the bottom surface of the seal groove 7c. It becomes a state. In this state, the axial movement of the fixed shaft portion 8a is allowed.
  • FIG. 3B shows the sealing characteristics of the lip seal 12 when the fluid flows (arrow f) in the sliding gap G1 with the lip seal 12 mounted. That is, the pressure of the fluid reaching the seal groove 7c via the sliding gap G1 acts on the inter-lip gap 12d, so that the inner peripheral lip portion 12b and the outer peripheral lip portion 12c have the outer peripheral surface 8d and the seal respectively. It is pressed against the bottom surface of the groove 7c (arrow g). With this pressing force, the fluid flow in the downstream direction in the sliding gap G ⁇ b> 1 is sealed by the lip seal 12.
  • FIG. 3C shows the sealing characteristics of the lip seal 12 when the fluid flows upstream in the sliding gap G1 (arrow h) when the lip seal 12 is mounted. . That is, the pressure of the fluid that has reached the seal groove 7c via the sliding gap G1 acts on the inner peripheral lip portion 12b from the upper surface side, so that the inner peripheral lip portion 12b is close to the outer peripheral lip portion 12c. Deflection in the direction (arrow i). As a result, a gap is generated between the inner peripheral lip portion 12b and the outer peripheral surface 8d, and the fluid from the downstream side flows upstream via the sliding gap G1 (arrow j).
  • the lip seal 12 is a gap seal portion that selectively seals only the flow of fluid in the downstream direction through the sliding gap G1 while allowing the movement of the fixed shaft portion 8a in the axial direction.
  • the gap seal portion having such sealing characteristics, the fluid supplied to the flow path hole 3b is prevented from leaking through the sliding gap G1, and the fluid for discharging foreign matter in the sliding gap G1. In other words, the fluid is allowed to flow upstream in the sliding gap G1.
  • the form of the gap seal portion As described above, an example of using the lip seal 12 in which the lip is mounted in the seal groove 7c opened in the sliding gap G1 with the lip facing upstream is shown as the form of the gap seal portion.
  • the seal form that can be used as the gap seal portion is not limited to the lip seal 12.
  • Various seals can be adopted as long as it is a circumferential seal that can selectively seal only a flow in one direction, such as the example shown in FIG.
  • FIG. 4A shows an example of a gap seal portion configured by pressing the O-ring member 121 downstream by a biasing member 122 such as a spring in the seal groove 7c opened in the sliding gap G1. It is shown.
  • the fluid flow (arrow f) in the downstream direction in the sliding gap G ⁇ b> 1 is sealed by the O-ring member 121.
  • the O-ring member 121 is displaced upstream against the biasing force of the biasing member 122. Fluid flow in the upstream direction is allowed (arrow j).
  • FIG. 4B shows an example in which a plurality of bent seals 123 are stacked and installed in the seal groove 7c.
  • the fluid flow (arrow f) in the downstream direction in the sliding gap G 1 is sealed by the bent seal 123.
  • the bending seal 123 is displaced in a direction in which a gap is formed between the outer peripheral surface 8d and thereby in the upstream direction. Is allowed to flow (arrow j).
  • FIG. 4 (c) shows an example of a gap seal portion in which an O-ring member 124 is mounted in a seal groove 7c 'having a tapered bottom surface whose groove depth is shallower toward the downstream side.
  • the fluid flow (arrow f) in the downstream direction in the sliding gap G1 moves to the downstream side where the groove depth is the shallowest in the seal groove 7c ′ and is pressed against the O-ring member 124. Sealed by.
  • the O-ring member 124 moves to the upstream side having the deepest groove depth in the seal groove 7c '.
  • a gap is created between the O-ring member 124 and the outer peripheral surface 8d, and fluid flow in the upstream direction is allowed (arrow j).
  • the floating sheet 8 to which the second seal ring 9 is fixed has a fixed shaft portion 8a, and becomes a fixed seal portion having a second seal surface 9b having a fixed flow path 8f opened at the end surface.
  • the fixed shaft portion 8a is fitted in a fitting hole 7a provided in the housing member 7 which is a holding member having a fixed flow path formed in the axial direction in a state where movement in the axial direction is allowed.
  • the floating sheet 8 is attached to the casing 3 via the housing member 7 as a holding member, but the floating sheet 8 may be directly attached to the casing 3. Good.
  • the fixed shaft portion 8a is fitted in a fitting hole provided in the casing 3 as a holding member in a state where movement in the axial direction is allowed.
  • a throttle portion 18 is attached to the end of the fitting convex portion 7e where the housing member 7 is fitted into the fitting hole 3a.
  • the restricting portion 18 includes a cylindrical cylindrical portion 18b extending in the axial direction from a circular plate-shaped annular portion 18a.
  • the throttle portion 18 is provided with a throttle hole 18c having a flow path diameter d2 that passes through the annular portion 18a and the cylindrical portion 18b in the axial direction.
  • the throttle portion 18 is mounted by inserting the cylindrical portion 18b into the fixed flow path 8f and fixing the annular portion 18a to the end of the fitting convex portion 7e. At this time, the dimensions of each part are set so that a predetermined annular gap G2 (see FIG. 5) is secured between the inner peripheral surface 8e of the fixed flow path 8f and the outer peripheral surface 18d of the cylindrical portion 18b.
  • the throttle portion 18 is provided on the upstream side of the end portion of the fixed flow path 8f.
  • the restricting portion 18 is a restricting hole having a flow passage diameter d2 that is smaller than the flow passage inner diameter d1 of the upstream shaft end portion of the fixed flow passage 8f and smaller than the downstream flow passage diameter d3 of the downstream stepped portion 8g. 18c.
  • the throttle part 18 provided with the throttle hole 18c penetrating is fixed to the housing member 7 as a holding member and extended in the inner diameter direction of the fitting hole 7a, and the annular part 18a.
  • a cylindrical portion 18b extending downstream and inserted into the fixed flow path 8f with a predetermined annular gap G2.
  • the throttle portion 18 has a function of causing the fluid in the sliding gap G1 to flow into the fixed flow path by the differential pressure generated by the fluid flowing downstream through the throttle hole 18c.
  • the fluid to be supplied is fed into the throttle hole 18c through the flow path hole 3b, and further flows into the fixed flow path 8f, whereby the fluid pressure of this fluid is provided on the downstream side of the fixed flow path 8f. It acts on the end face of the stepped portion 8g (arrow F).
  • the fixed shaft portion 8a slides toward the rotating portion 1a in the fitting hole 7a, and the second seal ring 9 is fluidized to the projected area of the end surface of the stepped portion 8g with respect to the first seal ring 5. It is pressed by a fluid force F having a magnitude multiplied by the pressure.
  • the fluid force F causes the second seal surface 9b and the first seal surface 5b to be in close contact with each other, thereby leaking the fluid fed from the fixed channel 8f to the rotating channel 4e in a rotating state around the axis.
  • a face seal portion 10 is formed to prevent this.
  • the sealing surface of the face seal portion 10 is contacted and separated by the advancement of the floating sheet 8 due to the pressure of the supplied fluid and the advancement / retraction operation of the spindle shaft 2. That is, when the floating sheet 8 is moved backward and the first seal surface 5b and the second seal surface 9b are separated from each other, the fluid is supplied to the flow channel hole 3b, whereby the fixed flow channel 8f. Inside, the fluid force F acts on the end surface of the stepped portion 8g and presses it in the axial direction.
  • the floating sheet 8 moves forward (in the direction of the arrow a), the first seal surface 5b and the second seal surface 9b come into contact with each other, and the face seal portion 10 in close contact with each other is formed. Thereafter, the fluid is supplied from the fixed flow path 8f to the rotating flow path 4e in the rotating state.
  • FIG. 5 shows a case where the fluid fed through the flow path hole 3b and flowing into the fitting hole 7a (arrow k) flows downstream in the fixed flow path 8f of the fixed shaft portion 8a toward the rotating portion 1a.
  • the fluid to be supplied often includes foreign matter 20 such as minute cutting waste such as coolant that is circulated and used in the machine tool.
  • a part of these foreign substances 20 enters the sliding gap G1 together with the fluid flowing into the sliding gap G1.
  • invasion of these foreign materials 20 repeatedly accumulates and fixes in the sliding gap G1, it will result in the smooth sliding of the fixed shaft part 8a being inhibited.
  • the fluid flow in the sliding gap G1 is induced by the differential pressure generation effect by the throttle portion 18 described below, that is, the so-called ejector effect. be able to.
  • the foreign material 20 in the sliding gap G1 can be discharged. That is, when the fluid supplied through the flow path hole 3b passes through the throttle hole 18c with a reduced flow path diameter (arrow k), the flow velocity increases, and as a result, the fitting hole 7a and the sliding gap G1 are increased. , A static pressure difference corresponding to the increase in the flow velocity occurs between the annular gap G2.
  • This differential pressure induces an upstream flow in the sliding gap G1 (arrow 1), and the fluid in the sliding gap G1 passes through the annular gap G2 together with the foreign matter 20 by this flow, and the fixed flow path. It is discharged into 8f (arrow m).
  • the lip seal 12 as a gap seal portion provided in the sliding gap G1 has a sealing property that allows fluid flow (arrow n) from the downstream side to the upstream side.
  • the foreign matter 20 existing on the downstream side of the lip seal 12 in the gap G1 can be discharged by the above-described differential pressure.
  • the throttle portion 18 configured to insert the cylindrical portion 18b into the fixed flow path 8f is used as the throttle portion for generating the differential pressure. It is not limited to. That is, it is provided on the upstream side of the end of the fixed flow path 8f, and is provided with a flow path diameter smaller than the flow path inner diameter of the fixed flow path 8f, and has an effect of restricting the flow of fluid from the upstream side.
  • any type of aperture may be selected.
  • a simple disk-shaped throttle part 19 with a hole can be used.
  • the throttle part 19 is provided with a throttle hole 19b having a flow path diameter d2 smaller than the flow path inner diameter d1 of the fixed flow path 8f at the center, and the outer edge part 19a of the throttle part 19 is a fitting convex of the housing member 7. It is fixed to the part 7e. The fluid from the upstream side passes through the throttle hole 19b and flows into the fixed flow path 8f. At this time, a differential pressure corresponding to an increase in the flow velocity when passing through the throttle hole 19b is generated, and a flow is generated that sucks the fluid in the sliding gap G1 together with the foreign matter 20 into the fixed flow path 8f ( Arrow o). Thereby, the same effect as the example shown in FIG. 5 is acquired.
  • the fixed shaft portion 8a is fitted into the fitting hole 7a provided in the housing member 7 which is a holding member.
  • a lip seal 12 is provided as a gap seal portion.
  • a throttle portion 18 is provided upstream of the end portion of the fixed flow path 8f, and the throttle portion 18 is provided with a throttle hole 18c having a flow path diameter smaller than that of the fixed flow path 8f.
  • the fluid in the sliding gap G1 can be caused to flow into the fixed flow path 8f by the differential pressure generated by the fluid flowing downstream through the throttle portion 18, and the fixed shaft portion 8a and the fitting hole 7a.
  • the fluid in the sliding gap G1 can be caused to flow into the fixed flow path 8f by the differential pressure generated by the fluid flowing downstream through the throttle portion 18, and the fixed shaft portion 8a and the fitting hole 7a.
  • the rotary joint of the present invention is characterized in that it is possible to effectively prevent problems caused by foreign matter entering into the sliding gap between the fixed shaft portion and the fitting hole and being solidified by a simple configuration. It is useful for applications in which fluid such as liquid coolant or air is fed to a rotating part such as a spindle of a machine tool.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Joints Allowing Movement (AREA)
  • Auxiliary Devices For Machine Tools (AREA)

Abstract

A lip seal (12) serving as a gap sealing part for selectively sealing only a flow of fluid in the downstream direction while a sliding gap (G1) in which a fixed shaft part (8a) fits into a fitting hole (7a) provided in a housing member (7) allows axial movement of the fixed shaft part (8a), is provided in said sliding gap (G1). A narrowing part (18) provided at a narrowing hole (18c) which has a flow path diameter (d2) smaller than the flow path inner diameter (d1) of a fixed flow path (8f) and is provided upstream of the end part of the fixed flow path (8f) is also provided in the sliding gap (G1). As a result, fluid flowing downstream through the narrowing part (18) generates a differential pressure, whereby the fluid within the sliding gap (G1) is made to flow to the fixed flow path (8f), and is discharged along with contamination (20) in the fixed flow path (8f).

Description

ロータリジョイントRotary joint
 本発明は、回転部に流体を送給するために用いられるロータリジョイントに関するものである。 The present invention relates to a rotary joint used for supplying fluid to a rotating part.
 工作機械の主軸など作動時に回転状態にある回転部に、冷却用のクーラントなどの流体を送給する流体送給機構において、固定された流体送給配管を回転部の流路と接続する流体継手として、ロータリジョイントが用いられる。ロータリジョイントは、回転部に結合されて回転する回転軸と、流体送給配管に接続される固定軸とを、同軸に配置して軸方向に対向させ、それぞれの対向端面に装着された回転シールのシール面を、相互に密着させることにより、流体の漏洩を防止する構成となっている。流体送給配管から回転状態にある回転部へ、所定圧力・所定流量の流体が、ロータリジョイントを介して連続的に供給される。このような構成のロータリジョイントでは、シール面を密着させるために固定軸側を、軸方向に移動させる必要がある。このため、固定軸は、ケーシング部などに設けられた嵌合孔に摺動自在に嵌合しており、嵌合孔の内周と固定軸との間に介設されたOリングなどのシール部材によって、この摺動隙間からの流体の漏れが防止される。 Fluid coupling for connecting a fixed fluid feed pipe to a flow path of a rotating part in a fluid feeding mechanism that feeds a coolant or other fluid to a rotating part that is in a rotating state during operation such as a spindle of a machine tool As a rotary joint is used. The rotary joint is a rotary seal that is coupled to the rotating portion and rotated, and a fixed shaft connected to the fluid supply pipe is arranged coaxially so as to face each other in the axial direction, and is attached to each facing end surface. These seal surfaces are in close contact with each other to prevent fluid leakage. A fluid having a predetermined pressure and a predetermined flow rate is continuously supplied from a fluid supply pipe to a rotating part in a rotating state via a rotary joint. In the rotary joint having such a configuration, it is necessary to move the fixed shaft side in the axial direction in order to bring the sealing surface into close contact. For this reason, the fixed shaft is slidably fitted into a fitting hole provided in the casing portion or the like, and a seal such as an O-ring interposed between the inner periphery of the fitting hole and the fixed shaft. The member prevents fluid leakage from the sliding gap.
 ロータリジョイントによる供給対象となる流体には、工作機械に循環使用されるクーラントなど、微少な切削屑などの異物を含んだものが多い。このような場合に、連続して流体を供給する過程において、固定軸と嵌合孔との間の摺動隙間にこれらの異物が侵入することが避けられない。そしてこれらの異物が反復して侵入すると、摺動隙間内において堆積固着し、固定軸の円滑な摺動が阻害される結果、ロータリジョイントは正常に作動せずに流体の大量の漏洩などの不具合が生じる。このため、このような不具合を防止することを目的として、固定軸と嵌合孔との間の摺動隙間への異物侵入を防止する構造のロータリジョイントが提案されている(特許文献1、2参照)。 Many fluids to be supplied by rotary joints contain foreign matter such as minute cutting waste, such as coolant that is circulated in machine tools. In such a case, it is inevitable that these foreign substances enter the sliding gap between the fixed shaft and the fitting hole in the process of continuously supplying the fluid. If these foreign substances enter repeatedly, they accumulate and adhere within the sliding gap, and the smooth sliding of the fixed shaft is obstructed. As a result, the rotary joint does not operate normally and a large amount of fluid leaks. Occurs. For this reason, a rotary joint having a structure for preventing foreign matter from entering the sliding gap between the fixed shaft and the fitting hole has been proposed for the purpose of preventing such problems (Patent Documents 1 and 2). reference).
 特許文献1に示す先行技術例では、嵌合孔の内周面に設けられた環状溝内にグリースを常時押し込む構成とすることにより摺動隙間をグリースで充填状態とし、摺動隙間への異物の侵入を防止するようにしている。また特許文献2に示す先行技術例では、固定軸の上流側の端部に屈曲自在なダイヤフラムを装着して、固定軸の流路孔以外に流体が流れないように密封している。これにより、摺動隙間への異物の侵入を防止するようにしている。 In the prior art example shown in Patent Document 1, the sliding gap is filled with grease by constantly pushing the grease into the annular groove provided on the inner peripheral surface of the fitting hole, and foreign matter in the sliding gap is obtained. To prevent the intrusion. Moreover, in the prior art example shown in Patent Document 2, a bendable diaphragm is attached to the upstream end portion of the fixed shaft, and is sealed so that fluid does not flow other than the passage hole of the fixed shaft. This prevents foreign matter from entering the sliding gap.
特開2007-218293号公報JP 2007-218293 A 特開平06-241366号公報Japanese Patent Laid-Open No. 06-241366
 しかしながら上述の先行技術においては、異物侵入を防止する機構の構成に起因して、以下のような難点があった。まず特許文献1に示す先行技術例では、摺動隙間を充填するグリースが流体に徐々に溶解して充填効果が低下するため、異物侵入の防止効果を安定して確保することが困難であった。また特許文献2に示す先行技術例では、固定軸の移動量が十分に確保できないので、固定軸の移動量を必要とする工作機械への適用は著しく限定されていた。 However, the above-described prior art has the following problems due to the structure of the mechanism that prevents foreign matter from entering. First, in the prior art example shown in Patent Document 1, since the grease filling the sliding gap is gradually dissolved in the fluid and the filling effect is reduced, it is difficult to stably secure the foreign matter intrusion preventing effect. . Further, in the prior art example shown in Patent Document 2, since the amount of movement of the fixed shaft cannot be secured sufficiently, the application to machine tools that require the amount of movement of the fixed shaft has been remarkably limited.
 本発明はこのような課題に鑑みなされたものであり、固定軸部と嵌合孔との摺動隙間内に異物が侵入して堆積固化することに起因する不具合を、簡便な構成で有効に防止することができるロータリジョイントを提供することを目的とする。 The present invention has been made in view of such a problem, and it is possible to effectively solve a problem caused by foreign matter entering into a sliding gap between the fixed shaft portion and the fitting hole to be accumulated and solidified with a simple configuration. An object of the present invention is to provide a rotary joint that can be prevented.
 本発明のロータリジョイントは、軸方向の回転流路(4e)が設けられ回転軸に装着される回転部(1a)、および、軸方向の固定流路(8f)が設けられた固定部(1b)を、同軸配置して成り、流体供給源から供給される流体を、軸心(A)廻りに回転する前記回転部(1a)の回転流路(4e)へ、前記固定流路(8f)を介して送給するロータリジョイントであって、前記回転部(1a)に設けられ端面に、前記回転流路(4e)が開口した、第1のシール面(5b)を有する回転シール部と、前記固定流路(8f)が前記軸方向に貫通して形成され保持部材(7、3)に設けられた嵌合孔(7a)に、所定の摺動隙間(G1)を保って、前記軸方向の移動が許容された状態で嵌合する固定軸部(8a)を有し、一方側の端面に前記固定流路(8f)が開口した第2のシール面(9b)を有する固定シール部と、前記摺動隙間に設けられ、この摺動隙間を前記軸方向の移動を許容しながら下流側方向への流体の流動のみを選択的にシールする隙間シール部と、前記固定流路(8f)の端部の上流側に設けられ、この固定流路の上流側の軸端部の流路内径(d1)よりも小さい流路径(d2)で設けられた絞り部(18、19)と、を備え、前記流体供給源から前記嵌合孔内へ前記流体を供給して、前記固定軸部(8a)を流体力によって下流側へ押圧することにより、前記第1のシール面(5b)と第2のシール面(9b)とを相互に密着させて面シール部を形成し、前記絞り部(18、19)を流体が下流へ流動することにより生じた差圧によって、前記摺動隙間内の流体を、固定流路(8f)に流動させることを特徴とする。 The rotary joint of the present invention includes a rotating part (1a) provided with an axial rotation flow path (4e) and attached to the rotation shaft, and a fixed part (1b) provided with an axial fixed flow path (8f). ) Are coaxially arranged, and the fluid supplied from the fluid supply source is rotated around the axis (A) to the rotating channel (4e) of the rotating part (1a), and the fixed channel (8f) A rotary joint having a first seal surface (5b) provided at the end of the rotary joint (1a) with the rotary flow path (4e) open; The fixed flow path (8f) is formed so as to penetrate in the axial direction, and a predetermined sliding gap (G1) is maintained in a fitting hole (7a) provided in the holding member (7, 3), so that the shaft It has a fixed shaft part (8a) that fits in a state in which movement in the direction is allowed, and the front end face on one side A fixed seal portion having a second seal surface (9b) with an open fixed channel (8f) and the sliding gap are provided in the downstream direction while allowing the sliding gap to move in the axial direction. A gap seal portion that selectively seals only the flow of the fluid, and a flow path inner diameter (d1) at the upstream end of the fixed flow path (8f) and at the upstream end of the fixed flow path ) And a throttle part (18, 19) provided with a smaller flow path diameter (d2) than the fluid supply source to supply the fluid into the fitting hole, and the fixed shaft part (8a) Is pressed to the downstream side by a fluid force to bring the first seal surface (5b) and the second seal surface (9b) into close contact with each other to form a surface seal portion, and the throttle portion (18, 19) due to the differential pressure generated by the fluid flowing downstream, The body, characterized in that to flow into the fixed passage (8f).
 本発明によれば、保持部材に設けられた嵌合孔に固定軸部が嵌合した摺動隙間において、嵌合孔と固定軸部との軸方向の移動を許容するとともに、下流側方向への流体の流動のみを選択的にシールする隙間シール部を設けている。さらに、絞り部を固定流路の上流側端部に設け、絞り部の流路径を、この固定流路の上流側の軸端部の流路内径よりも小さくしているので、絞り部を流体が下流へ流動することにより生じた差圧によって、摺動隙間内の流体を固定流路に流動させることができる。これにより、固定軸部と嵌合孔との摺動隙間内に異物が侵入して堆積固化することに起因する不具合を、簡便な構成で有効に防止することができる。 According to the present invention, in the sliding gap in which the fixed shaft portion is fitted in the fitting hole provided in the holding member, the axial movement between the fitting hole and the fixed shaft portion is allowed and the downstream direction is allowed. A gap seal portion that selectively seals only the flow of the fluid is provided. Further, the throttle part is provided at the upstream end of the fixed flow path, and the flow path diameter of the throttle part is made smaller than the flow path inner diameter of the shaft end part on the upstream side of the fixed flow path. The fluid in the sliding gap can be caused to flow into the fixed flow path due to the differential pressure generated by the fluid flowing downstream. Thereby, it is possible to effectively prevent problems caused by foreign matters entering the sliding gap between the fixed shaft portion and the fitting hole to be accumulated and solidified with a simple configuration.
本発明の一実施の形態におけるロータリジョイントの断面図Sectional drawing of the rotary joint in one embodiment of this invention 本発明の一実施の形態におけるロータリジョイントの動作説明図Operational explanatory diagram of a rotary joint in an embodiment of the present invention 本発明の一実施の形態におけるロータリジョイントに用いられる隙間シール部の構成および機能説明図Structure and function explanatory diagram of a gap seal portion used for a rotary joint in an embodiment of the present invention 本発明の一実施の形態におけるロータリジョイントに用いられる隙間シール部の構成および機能説明図Structure and function explanatory diagram of a gap seal portion used for a rotary joint in an embodiment of the present invention 本発明の一実施の形態におけるロータリジョイントの部分断面図The fragmentary sectional view of the rotary joint in one embodiment of the present invention 本発明の一実施の形態におけるロータリジョイントの部分断面図The fragmentary sectional view of the rotary joint in one embodiment of the present invention
 次に本発明の実施の形態を、図面を参照して説明する。まず図1,図2を参照して、ロータリジョイント1の全体構成を説明する。図1において、ロータリジョイント1は、工作機械のスピンドル軸などの回転軸へ冷却用の流体を送給する流体供給機構に用いられるものである。ロータリジョイント1は、軸方向の回転流路が設けられた回転部1a、および、軸方向の固定流路が設けられた固定部1bを同軸配置して構成される。 Next, embodiments of the present invention will be described with reference to the drawings. First, the overall configuration of the rotary joint 1 will be described with reference to FIGS. In FIG. 1, a rotary joint 1 is used for a fluid supply mechanism for supplying a cooling fluid to a rotating shaft such as a spindle shaft of a machine tool. The rotary joint 1 is configured by coaxially arranging a rotating part 1a provided with an axial rotating flow path and a fixed part 1b provided with an axial fixed flow path.
 回転部1aは、回転軸であるスピンドル軸2の流路孔2aに締結されている。スピンドル軸2は、スピンドルに内蔵されたモータによって回転駆動されて軸心A廻りに回転するとともに、クランプ/アンクランプシリンダによって軸方向の進退動作を行う。また固定部1bは、ケーシング3に流路孔3bと連通して設けられた装着孔3aに、保持部材であるハウジング部材7を介して固定装着されている。スピンドル軸2が挿通するフレーム(図示省略)に、ボルトなどの締結手段によって、ケーシング3は着脱自在に締結されており、固定部1bは、回転部1aと同軸に配置される。流路孔3bには、流体供給源(図示省略)より液体クーラントや冷却用のエアなどの流体が送給される。 The rotating part 1a is fastened to the flow path hole 2a of the spindle shaft 2 which is a rotating shaft. The spindle shaft 2 is driven to rotate by a motor built in the spindle to rotate around the axis A, and is moved forward and backward in the axial direction by a clamp / unclamp cylinder. The fixed portion 1b is fixedly mounted to a mounting hole 3a provided in the casing 3 so as to communicate with the flow path hole 3b via a housing member 7 serving as a holding member. The casing 3 is detachably fastened to a frame (not shown) through which the spindle shaft 2 is inserted by fastening means such as bolts, and the fixed portion 1b is disposed coaxially with the rotating portion 1a. A fluid such as a liquid coolant or cooling air is supplied to the flow path hole 3b from a fluid supply source (not shown).
 次に各部の詳細構造を説明する。回転部1aは、スピンドル軸2に装着されたロータ4を主体としている。ロータ4は、回転軸部4aの一方側の端部に回転軸部4aよりも外径が大きいフランジ部4bを設け、さらに軸心部に回転流路4eを軸方向に設けた形状となっている。回転軸部4aの外面には、雄ねじ部4dが設けられており、流路孔2aの内面には雌ねじ部2bが設けられている。雄ねじ部4dを雌ねじ部2bに螺合させることにより、ロータ4はスピンドル軸2にねじ締結され、Oリング6によってねじ締結部が密封される。これにより、回転流路4eはスピンドル軸2の流路孔2aと連通する。 Next, the detailed structure of each part will be described. The rotating part 1 a is mainly composed of a rotor 4 mounted on the spindle shaft 2. The rotor 4 has a shape in which a flange portion 4b having an outer diameter larger than that of the rotation shaft portion 4a is provided at one end of the rotation shaft portion 4a, and a rotation flow path 4e is provided in the axial direction in the axial center portion. Yes. A male screw portion 4d is provided on the outer surface of the rotating shaft portion 4a, and a female screw portion 2b is provided on the inner surface of the flow path hole 2a. By screwing the male screw portion 4d into the female screw portion 2b, the rotor 4 is screwed to the spindle shaft 2, and the screw fastening portion is sealed by the O-ring 6. As a result, the rotating flow path 4 e communicates with the flow path hole 2 a of the spindle shaft 2.
 ロータ4の右側(固定部1bと対向する側)の端面には、回転流路4eの開孔面を囲む配置で円形状の凹部4cが形成されている。凹部4cには第1のシールリング5が固定されている。第1のシールリング5は、セラミックなどの耐摩耗性に富む硬質材料を、中央部に開口部5aを有する円環形状に成形したものであり、平滑面に仕上げられた第1のシール面5bを外面側にした状態で凹部4cに固定される。そしてこの状態では、回転流路4eは、開口部5aと連通して第1のシール面5bに開口する。上記構成において、第1のシールリング5が固定されたロータ4は、回転部1aに設けられており、端面に回転流路4eが開口した第1のシール面5bを有する回転シール部を構成している。 A circular recess 4c is formed on the end surface of the rotor 4 on the right side (the side facing the fixed portion 1b) so as to surround the opening surface of the rotating flow path 4e. A first seal ring 5 is fixed to the recess 4c. The first seal ring 5 is formed by molding a hard material rich in wear resistance such as ceramic into an annular shape having an opening 5a in the center, and the first seal surface 5b finished to a smooth surface. Is fixed to the recess 4c in a state in which is on the outer surface side. In this state, the rotating flow path 4e communicates with the opening 5a and opens to the first seal surface 5b. In the above configuration, the rotor 4 to which the first seal ring 5 is fixed is provided in the rotating portion 1a, and constitutes a rotating seal portion having a first seal surface 5b having an opening on the end surface of the rotating flow path 4e. ing.
 次に、ケーシング3に装着される固定部1bの構造を説明する。固定部1bは、フローティングシート8をハウジング部材7に装着した構成となっている。ケーシング3の装着面3cには、流路孔3bと連通して設けられた装着孔3aが開口している。装着孔3aには、固定部1bの本体を構成する円筒形状のハウジング部材7が、嵌合する。そしてハウジング部材7は、装着面3cにボルト締結され(装着面3c設けられたねじ孔は図示省略)、Oリング11によって装着孔3aへの嵌合部が密封される。 Next, the structure of the fixing portion 1b attached to the casing 3 will be described. The fixed portion 1 b is configured such that the floating sheet 8 is attached to the housing member 7. A mounting hole 3 a provided in communication with the flow path hole 3 b is opened in the mounting surface 3 c of the casing 3. A cylindrical housing member 7 constituting the main body of the fixing portion 1b is fitted into the mounting hole 3a. The housing member 7 is bolted to the mounting surface 3 c (screw holes provided in the mounting surface 3 c are not shown), and the fitting portion to the mounting hole 3 a is sealed by the O-ring 11.
 フローティングシート8は、一方側(図において回転部1aと対向する側)に、円板形状のフランジ部8bが設けられ、他方側に、固定流路8f(流路内径d1)が軸方向に貫通して形成された固定軸部8aを有する形状となっている。固定流路8fの下流側には、内周面8eが流路径d3に狭められた段付き部8gが形成されている。ここで、流路径d3は、後述する絞り部18の絞り孔18cの流路径d2よりも大きくなるように設定される。 The floating sheet 8 is provided with a disk-shaped flange portion 8b on one side (the side facing the rotating portion 1a in the figure), and on the other side, a fixed flow path 8f (flow path inner diameter d1) penetrates in the axial direction. Thus, the fixed shaft portion 8a is formed. On the downstream side of the fixed flow path 8f, a stepped portion 8g having an inner peripheral surface 8e narrowed to the flow path diameter d3 is formed. Here, the flow path diameter d3 is set so as to be larger than the flow path diameter d2 of the throttle hole 18c of the throttle section 18 described later.
 フランジ部8bの左側(回転部1aと対向する端面)に円環状に突設された凸部8c内には、第2のシールリング9が固定されている。第2のシールリング9は、第1のシールリング5と同様の硬質材料を、中央部に開口部9aを有する円環形状に成形したものである。第2のシールリング9は、平滑面に仕上げられた第2のシール面9bを外面側にした状態で、フランジ部8bに固定される。この状態で、固定流路8fは開口部9aと連通して第2のシール面9bに開口する。 A second seal ring 9 is fixed in a convex portion 8c projecting in an annular shape on the left side of the flange portion 8b (the end surface facing the rotating portion 1a). The second seal ring 9 is formed by molding a hard material similar to that of the first seal ring 5 into an annular shape having an opening 9a at the center. The second seal ring 9 is fixed to the flange portion 8b with the second seal surface 9b finished as a smooth surface facing the outer surface. In this state, the fixed flow path 8f communicates with the opening 9a and opens to the second seal surface 9b.
 固定軸部8aは、ハウジング部材7の中心部に軸方向に貫通して設けられた嵌合孔7aに、軸方向の移動が許容された状態で、嵌合する。すなわち、嵌合孔7a、固定軸部8aの形状・寸法設定により、嵌合孔7aの内周面7bと固定軸部8aの外周面8dとの間に所定の隙間寸法の摺動隙間G1(図3、図4、図5参照)が、確保されるようになっている。嵌合孔7aの内周面7bには、シール溝(円周溝)7cが形成されており、シール溝7cには、V字断面形状を有する円環状のシール部材であるリップシール12が、装着されている。 The fixed shaft portion 8a is fitted in a fitting hole 7a provided in the center portion of the housing member 7 so as to penetrate in the axial direction in a state where movement in the axial direction is allowed. That is, the sliding gap G1 (with a predetermined clearance dimension) between the inner peripheral surface 7b of the fitting hole 7a and the outer peripheral surface 8d of the fixed shaft portion 8a is determined by setting the shape and dimensions of the fitting hole 7a and the fixed shaft portion 8a. 3, 4, and 5) are secured. A seal groove (circumferential groove) 7c is formed on the inner peripheral surface 7b of the fitting hole 7a, and a lip seal 12 which is an annular seal member having a V-shaped cross section is formed in the seal groove 7c. It is installed.
 リップシール12の形状およびシール特性について、図3を参照して説明する。図3(a)は、嵌合孔7aに固定軸部8aが嵌合した状態において、シール溝7cにリップシール12が装着された状態を示している。リップシール12は、シール溝7cの溝壁面に当接する連結リング部12aから、内周側リップ部12b、外周側リップ部12cの2つのリップ部が、V字形状に延出した断面形状を有している。リップシール12が、シール溝7cに装着された状態では、内周側リップ部12bが、固定軸部8aの外周面8dに押し付けられ、外周側リップ部12cが、シール溝7cの底面に押し付けられた状態となる。この状態では、固定軸部8aの軸方向の移動が許容される。 The shape and sealing characteristics of the lip seal 12 will be described with reference to FIG. FIG. 3A shows a state in which the lip seal 12 is mounted in the seal groove 7c in a state where the fixed shaft portion 8a is fitted in the fitting hole 7a. The lip seal 12 has a cross-sectional shape in which two lip portions of the inner peripheral lip portion 12b and the outer peripheral lip portion 12c extend in a V shape from the connecting ring portion 12a that contacts the groove wall surface of the seal groove 7c. is doing. In a state where the lip seal 12 is mounted in the seal groove 7c, the inner peripheral lip portion 12b is pressed against the outer peripheral surface 8d of the fixed shaft portion 8a, and the outer peripheral lip portion 12c is pressed against the bottom surface of the seal groove 7c. It becomes a state. In this state, the axial movement of the fixed shaft portion 8a is allowed.
 図3(b)は、このリップシール12の装着状態において、摺動隙間G1内を下流側に流体が流動(矢印f)する際の、リップシール12のシール特性を示している。すなわち、摺動隙間G1を介してシール溝7cに到達した流体の圧力が、リップ間隙間12dに作用することにより、内周側リップ部12b,外周側リップ部12cは、それぞれ外周面8dおよびシール溝7cの底面に押し付けられる(矢印g)。この押し付け力により、摺動隙間G1内における下流側方向への流体の流動は、リップシール12によってシールされる。 FIG. 3B shows the sealing characteristics of the lip seal 12 when the fluid flows (arrow f) in the sliding gap G1 with the lip seal 12 mounted. That is, the pressure of the fluid reaching the seal groove 7c via the sliding gap G1 acts on the inter-lip gap 12d, so that the inner peripheral lip portion 12b and the outer peripheral lip portion 12c have the outer peripheral surface 8d and the seal respectively. It is pressed against the bottom surface of the groove 7c (arrow g). With this pressing force, the fluid flow in the downstream direction in the sliding gap G <b> 1 is sealed by the lip seal 12.
 これに対し、図3(c)は、このリップシール12の装着状態において、摺動隙間G1内を上流側に流体が流動(矢印h)する際の、リップシール12のシール特性を示している。すなわち、摺動隙間G1を介してシール溝7cに到達した流体の圧力が内周側リップ部12bに上面側から作用することにより、内周側リップ部12bは、外周側リップ部12cに近接する方向に、撓み変形する(矢印i)。これにより、内周側リップ部12bと外周面8dとの間には、隙間が生じ、下流側からの流体は、摺動隙間G1を介して上流側へ流動する(矢印j)。 On the other hand, FIG. 3C shows the sealing characteristics of the lip seal 12 when the fluid flows upstream in the sliding gap G1 (arrow h) when the lip seal 12 is mounted. . That is, the pressure of the fluid that has reached the seal groove 7c via the sliding gap G1 acts on the inner peripheral lip portion 12b from the upper surface side, so that the inner peripheral lip portion 12b is close to the outer peripheral lip portion 12c. Deflection in the direction (arrow i). As a result, a gap is generated between the inner peripheral lip portion 12b and the outer peripheral surface 8d, and the fluid from the downstream side flows upstream via the sliding gap G1 (arrow j).
 すなわちリップシール12は、固定軸部8aの軸方向の移動を許容しながら、摺動隙間G1を下流側方向への流体の流動のみを選択的にシールする隙間シール部となっている。このようなシール特性の隙間シール部を用いることにより、流路孔3bに供給された流体の摺動隙間G1を介しての漏出を防止するとともに、摺動隙間G1内の異物排出のための流体の流動、すなわち、摺動隙間G1において上流側へ流体の流動を許容するようになっている。 That is, the lip seal 12 is a gap seal portion that selectively seals only the flow of fluid in the downstream direction through the sliding gap G1 while allowing the movement of the fixed shaft portion 8a in the axial direction. By using the gap seal portion having such sealing characteristics, the fluid supplied to the flow path hole 3b is prevented from leaking through the sliding gap G1, and the fluid for discharging foreign matter in the sliding gap G1. In other words, the fluid is allowed to flow upstream in the sliding gap G1.
 上述したように、隙間シール部の形態として、摺動隙間G1に開口したシール溝7c内にリップを上流側に向けて装着されたリップシール12を用いる例を示した。隙間シール部として使用可能なシール形態は、リップシール12には限定されない。図4に示す例など、一方向の流動のみを選択的にシール可能な円周状シールであれば、各種のシールを採用することができる。 As described above, an example of using the lip seal 12 in which the lip is mounted in the seal groove 7c opened in the sliding gap G1 with the lip facing upstream is shown as the form of the gap seal portion. The seal form that can be used as the gap seal portion is not limited to the lip seal 12. Various seals can be adopted as long as it is a circumferential seal that can selectively seal only a flow in one direction, such as the example shown in FIG.
 例えば、図4(a)には、摺動隙間G1に開口したシール溝7c内においてOリング部材121を、スプリングなどの付勢部材122によって下流側に押し付けて構成された隙間シール部の一例が示されている。この場合には、摺動隙間G1内における下流側方向への流体の流動(矢印f)は、Oリング部材121によってシールされる。これに対し、摺動隙間G1内において上流側方向へ流体が流動(矢印h)することにより、Oリング部材121は、付勢部材122の付勢力に抗して上流側へ変位し、これにより上流側方向への流体の流動が許容される(矢印j)。 For example, FIG. 4A shows an example of a gap seal portion configured by pressing the O-ring member 121 downstream by a biasing member 122 such as a spring in the seal groove 7c opened in the sliding gap G1. It is shown. In this case, the fluid flow (arrow f) in the downstream direction in the sliding gap G <b> 1 is sealed by the O-ring member 121. On the other hand, when the fluid flows in the upstream direction in the sliding gap G1 (arrow h), the O-ring member 121 is displaced upstream against the biasing force of the biasing member 122. Fluid flow in the upstream direction is allowed (arrow j).
 図4(b)には、シール溝7c内に複数枚の屈曲シール123を積層して装着した一例が示されている。この場合には、摺動隙間G1内における下流側方向への流体の流動(矢印f)は屈曲シール123によってシールされる。これに対し、摺動隙間G1内において上流側方向へ流体が流動(矢印h)することにより、屈曲シール123は外周面8dとの間に隙間を生じる方向に変位し、これにより上流側方向への流体の流動が許容される(矢印j)。 FIG. 4B shows an example in which a plurality of bent seals 123 are stacked and installed in the seal groove 7c. In this case, the fluid flow (arrow f) in the downstream direction in the sliding gap G 1 is sealed by the bent seal 123. On the other hand, when the fluid flows in the upstream direction in the sliding gap G1 (arrow h), the bending seal 123 is displaced in a direction in which a gap is formed between the outer peripheral surface 8d and thereby in the upstream direction. Is allowed to flow (arrow j).
 さらに図4(c)では、下流側ほど溝深さが浅いテーパ状の底面を有するシール溝7c’内に、Oリング部材124を装着した構成の隙間シール部の一例が示されている。この場合には、摺動隙間G1内における下流側方向への流体の流動(矢印f)は、シール溝7c’内において最も溝深さが浅い下流側に移動して押し付けられたOリング部材124によってシールされる。これに対し、摺動隙間G1内において上流側方向へ流体が流動(矢印h)することにより、Oリング部材124はシール溝7c’内において最も溝深さが深い上流側へ移動する。これにより、Oリング部材124と外周面8dとの間に隙間が生じ、上流側方向への流体の流動が許容される(矢印j)。 Further, FIG. 4 (c) shows an example of a gap seal portion in which an O-ring member 124 is mounted in a seal groove 7c 'having a tapered bottom surface whose groove depth is shallower toward the downstream side. In this case, the fluid flow (arrow f) in the downstream direction in the sliding gap G1 moves to the downstream side where the groove depth is the shallowest in the seal groove 7c ′ and is pressed against the O-ring member 124. Sealed by. In contrast, when the fluid flows in the upstream direction in the sliding gap G1 (arrow h), the O-ring member 124 moves to the upstream side having the deepest groove depth in the seal groove 7c '. As a result, a gap is created between the O-ring member 124 and the outer peripheral surface 8d, and fluid flow in the upstream direction is allowed (arrow j).
 上記構成において、第2のシールリング9が固定されたフローティングシート8は、固定軸部8aを有し、端面に固定流路8fが開口した第2のシール面9bを有する固定シール部となっている。固定軸部8aは、固定流路が軸方向に形成された保持部材であるハウジング部材7に設けられた嵌合孔7aに、軸方向の移動が許容された状態で嵌合する。本実施の形態においては、フローティングシート8を、保持部材としてのハウジング部材7を介して、ケーシング3に装着する例を示しているが、ケーシング3に、フローティングシート8を直接装着するようにしてもよい。この場合には保持部材としてのケーシング3に設けられた嵌合孔に、固定軸部8aを軸方向の移動が許容された状態で嵌合させる。 In the above configuration, the floating sheet 8 to which the second seal ring 9 is fixed has a fixed shaft portion 8a, and becomes a fixed seal portion having a second seal surface 9b having a fixed flow path 8f opened at the end surface. Yes. The fixed shaft portion 8a is fitted in a fitting hole 7a provided in the housing member 7 which is a holding member having a fixed flow path formed in the axial direction in a state where movement in the axial direction is allowed. In the present embodiment, an example is shown in which the floating sheet 8 is attached to the casing 3 via the housing member 7 as a holding member, but the floating sheet 8 may be directly attached to the casing 3. Good. In this case, the fixed shaft portion 8a is fitted in a fitting hole provided in the casing 3 as a holding member in a state where movement in the axial direction is allowed.
 ハウジング部材7が嵌合孔3aに嵌合した嵌合凸部7eの端部には、絞り部18が装着されている。絞り部18は、円形板状の円環部18aから軸方向に延出した円筒形状の円筒状部18bより構成されている。絞り部18には、円環部18a、円筒状部18bを軸方向に貫通する、流路径d2の絞り孔18cが設けられている。絞り部18は、円筒状部18bを、固定流路8f内に挿入し、円環部18aを、嵌合凸部7eの端部に固定することにより装着される。このとき、固定流路8fの内周面8eと円筒状部18bの外周面18dとの間には、所定の円環隙間G2(図5参照)が確保されるよう、各部寸法が設定されている。 A throttle portion 18 is attached to the end of the fitting convex portion 7e where the housing member 7 is fitted into the fitting hole 3a. The restricting portion 18 includes a cylindrical cylindrical portion 18b extending in the axial direction from a circular plate-shaped annular portion 18a. The throttle portion 18 is provided with a throttle hole 18c having a flow path diameter d2 that passes through the annular portion 18a and the cylindrical portion 18b in the axial direction. The throttle portion 18 is mounted by inserting the cylindrical portion 18b into the fixed flow path 8f and fixing the annular portion 18a to the end of the fitting convex portion 7e. At this time, the dimensions of each part are set so that a predetermined annular gap G2 (see FIG. 5) is secured between the inner peripheral surface 8e of the fixed flow path 8f and the outer peripheral surface 18d of the cylindrical portion 18b. Yes.
 すなわち、上述構成において、絞り部18は、固定流路8fの端部のうちの上流側に設けられている。絞り部18は、この固定流路8fの上流側の軸端部の流路内径d1よりも小さく、且つ下流側の段付き部8gの下流側の流路径d3よりも小さい流路径d2の絞り孔18cを有する。そして絞り孔18cが貫通して設けられた絞り部18は、保持部材であるハウジング部材7に固定されて嵌合孔7aの内径方向に延出した円環部18aと、この円環部18aから下流側に延出して固定流路8f内に所定の円環隙間G2で挿入された円筒状部18bとを有する。絞り部18は、後述するように、絞り孔18cを流体が下流へ流動することにより生じた差圧によって、摺動隙間G1内の流体を、固定流路に流入させる機能を有するものである。 That is, in the above-described configuration, the throttle portion 18 is provided on the upstream side of the end portion of the fixed flow path 8f. The restricting portion 18 is a restricting hole having a flow passage diameter d2 that is smaller than the flow passage inner diameter d1 of the upstream shaft end portion of the fixed flow passage 8f and smaller than the downstream flow passage diameter d3 of the downstream stepped portion 8g. 18c. The throttle part 18 provided with the throttle hole 18c penetrating is fixed to the housing member 7 as a holding member and extended in the inner diameter direction of the fitting hole 7a, and the annular part 18a. A cylindrical portion 18b extending downstream and inserted into the fixed flow path 8f with a predetermined annular gap G2. As will be described later, the throttle portion 18 has a function of causing the fluid in the sliding gap G1 to flow into the fixed flow path by the differential pressure generated by the fluid flowing downstream through the throttle hole 18c.
 次に図2を参照して、ロータリジョイント1の動作を説明する。流路孔3bを介して絞り孔18c内に供給対象の流体が送給され、さらに固定流路8f内に流入することにより、この流体の流体圧は固定流路8fの下流側に設けられた段付き部8gの端面に作用する(矢印F)。これにより、固定軸部8aは嵌合孔7a内で回転部1a側へスライドし、第2のシールリング9は第1のシールリング5に対して、段付き部8gの端面の投影面積に流体圧を乗じた大きさの流体力Fで押圧される。この流体力Fは第2のシール面9bと第1のシール面5bとを相互に密着させ、これにより固定流路8fから軸廻りに回転状態の回転流路4eへ送給される流体の漏洩を防止する面シール部10が形成される。 Next, the operation of the rotary joint 1 will be described with reference to FIG. The fluid to be supplied is fed into the throttle hole 18c through the flow path hole 3b, and further flows into the fixed flow path 8f, whereby the fluid pressure of this fluid is provided on the downstream side of the fixed flow path 8f. It acts on the end face of the stepped portion 8g (arrow F). As a result, the fixed shaft portion 8a slides toward the rotating portion 1a in the fitting hole 7a, and the second seal ring 9 is fluidized to the projected area of the end surface of the stepped portion 8g with respect to the first seal ring 5. It is pressed by a fluid force F having a magnitude multiplied by the pressure. The fluid force F causes the second seal surface 9b and the first seal surface 5b to be in close contact with each other, thereby leaking the fluid fed from the fixed channel 8f to the rotating channel 4e in a rotating state around the axis. A face seal portion 10 is formed to prevent this.
 このフローティングシート8の軸方向のスライドにおいて、フランジ部8bに、螺設されたボルト16、および、ボルト16を包囲する円筒カラー17が、ハウジング部材7に軸方向に設けられたガイド孔7d内を摺動する。これにより、フローティングシート8の軸方向の移動がガイドされるとともに、軸廻りの廻り止めが行われる。 When the floating sheet 8 is slid in the axial direction, a bolt 16 screwed to the flange portion 8b and a cylindrical collar 17 surrounding the bolt 16 are placed in a guide hole 7d provided in the housing member 7 in the axial direction. Slide. As a result, the movement of the floating sheet 8 in the axial direction is guided and the rotation around the axis is prevented.
 ロータリジョイント1の作動状態においては、送給される流体の圧力によるフローティングシート8の進出と、スピンドル軸2の進退動作によって、面シール部10のシール面の接離が行われる。すなわち、フローティングシート8が後退して、第1のシール面5bと第2のシール面9bとが相互に離隔した状態において、流体が流路孔3bに送給されることにより、固定流路8f内において流体力Fが段付き部8gの端面に作用して軸方向に押圧する。これにより、フローティングシート8が前進(矢印a方向)し、第1のシール面5bと第2のシール面9bとが当接して、相互に密着した面シール部10が形成される。その後、固定流路8fから回転状態の回転流路4eへの流体の送給が行われる。 In the operating state of the rotary joint 1, the sealing surface of the face seal portion 10 is contacted and separated by the advancement of the floating sheet 8 due to the pressure of the supplied fluid and the advancement / retraction operation of the spindle shaft 2. That is, when the floating sheet 8 is moved backward and the first seal surface 5b and the second seal surface 9b are separated from each other, the fluid is supplied to the flow channel hole 3b, whereby the fixed flow channel 8f. Inside, the fluid force F acts on the end surface of the stepped portion 8g and presses it in the axial direction. As a result, the floating sheet 8 moves forward (in the direction of the arrow a), the first seal surface 5b and the second seal surface 9b come into contact with each other, and the face seal portion 10 in close contact with each other is formed. Thereafter, the fluid is supplied from the fixed flow path 8f to the rotating flow path 4e in the rotating state.
 スピンドル軸2が、固定部1bに対して相対的に前進(矢印d方向)することにより、フローティングシート8は後退(矢印b方向)し、フランジ部8bがハウジング部材7に近接した位置に復帰する。この状態からスピンドル軸2を相対的に後退(矢印c方向)させることにより、第1のシール面5bと第2のシール面9bとが相互に離隔した状態に戻る。 When the spindle shaft 2 moves forward (arrow d direction) relative to the fixed portion 1b, the floating seat 8 moves backward (arrow b direction), and the flange portion 8b returns to a position close to the housing member 7. . By relatively retreating the spindle shaft 2 from this state (in the direction of the arrow c), the first seal surface 5b and the second seal surface 9b are returned to the separated state.
 次に図5を参照して、上記構成のロータリジョイント1における異物排出機能を説明する。図5は、流路孔3bを介して送給され嵌合孔7aに流入(矢印k)した流体が、固定軸部8aの固定流路8fを回転部1a側へ向かって下流に流れるときの状態を示している。この場合に供給対象となる流体には、工作機械に循環使用されるクーラントなど、微少な切削屑などの異物20を含んでいる場合が多い。これらの異物20の一部は、摺動隙間G1内に流れ込む流体とともに摺動隙間G1内に侵入する。そしてこれらの異物20の侵入が、反復して摺動隙間G1内において堆積固着すると、固定軸部8aの円滑な摺動が阻害される結果となる。 Next, the foreign matter discharging function in the rotary joint 1 having the above-described configuration will be described with reference to FIG. FIG. 5 shows a case where the fluid fed through the flow path hole 3b and flowing into the fitting hole 7a (arrow k) flows downstream in the fixed flow path 8f of the fixed shaft portion 8a toward the rotating portion 1a. Indicates the state. In this case, the fluid to be supplied often includes foreign matter 20 such as minute cutting waste such as coolant that is circulated and used in the machine tool. A part of these foreign substances 20 enters the sliding gap G1 together with the fluid flowing into the sliding gap G1. And if the penetration | invasion of these foreign materials 20 repeatedly accumulates and fixes in the sliding gap G1, it will result in the smooth sliding of the fixed shaft part 8a being inhibited.
 このような場合にあっても、本実施の形態に示すロータリジョイント1においては、以下に説明する絞り部18による差圧発生効果、いわゆるエジェクタ効果により摺動隙間G1内における流体の流動を誘起することができる。これにより、摺動隙間G1内の異物20を排出することが可能となっている。すなわち、流路孔3bを介して供給された流体は、流路径が絞られた絞り孔18cを通過(矢印k)する際には流速が上昇し,その結果嵌合孔7aや摺動隙間G1,円環隙間G2との間に流速上昇分に相当する静圧差が生じる。 Even in such a case, in the rotary joint 1 shown in the present embodiment, the fluid flow in the sliding gap G1 is induced by the differential pressure generation effect by the throttle portion 18 described below, that is, the so-called ejector effect. be able to. Thereby, the foreign material 20 in the sliding gap G1 can be discharged. That is, when the fluid supplied through the flow path hole 3b passes through the throttle hole 18c with a reduced flow path diameter (arrow k), the flow velocity increases, and as a result, the fitting hole 7a and the sliding gap G1 are increased. , A static pressure difference corresponding to the increase in the flow velocity occurs between the annular gap G2.
 この差圧は、摺動隙間G1内において上流側への流動を誘起し(矢印l)、この流動により摺動隙間G1内の流体は異物20とともに、円環隙間G2を通過して固定流路8f内に排出される(矢印m)。このとき、摺動隙間G1に設けられた隙間シール部としてのリップシール12は、下流側から上流側方向への流体の流動(矢印n)を許容するシール特性を有しているため、摺動隙間G1においてリップシール12の下流側に存在する異物20は、上述の差圧による排出対象とすることができる。 This differential pressure induces an upstream flow in the sliding gap G1 (arrow 1), and the fluid in the sliding gap G1 passes through the annular gap G2 together with the foreign matter 20 by this flow, and the fixed flow path. It is discharged into 8f (arrow m). At this time, the lip seal 12 as a gap seal portion provided in the sliding gap G1 has a sealing property that allows fluid flow (arrow n) from the downstream side to the upstream side. The foreign matter 20 existing on the downstream side of the lip seal 12 in the gap G1 can be discharged by the above-described differential pressure.
 これにより、嵌合孔7aおよび固定軸部8aの全範囲にわたって、摺動隙間G1内の異物付着を防止することができるようになっている。また円筒状部18bが固定流路8f内に嵌入するための隙間量を適切に設定することにより、対象とする工作機械の機種によって所要の動作ストロークが異なる場合にあっても、常に良好な動作状態を確保することが可能とすることができる。 Thereby, foreign matter adhesion in the sliding gap G1 can be prevented over the entire range of the fitting hole 7a and the fixed shaft portion 8a. In addition, by appropriately setting the gap amount for fitting the cylindrical portion 18b into the fixed flow path 8f, even if the required operation stroke differs depending on the model of the target machine tool, the operation is always good. It may be possible to ensure the state.
 上述の実施例においては、差圧発生のための絞り部として、円筒状部18bを固定流路8f内に挿入する構成の絞り部18を用いる例を示したが、本発明はこのような構成には限定されない。すなわち、固定流路8fの端部の上流側に設けられ、この固定流路8fの流路内径よりも小さい流路径で設けられて、上流側からの流体の流れを絞る効果を有するものであれば、どのような形態の絞り部を選択してもよい。例えば、図6に示すように、単純な穴付き円板形状の絞り部19を用いることもできる。 In the above-described embodiment, the example in which the throttle portion 18 configured to insert the cylindrical portion 18b into the fixed flow path 8f is used as the throttle portion for generating the differential pressure has been described. It is not limited to. That is, it is provided on the upstream side of the end of the fixed flow path 8f, and is provided with a flow path diameter smaller than the flow path inner diameter of the fixed flow path 8f, and has an effect of restricting the flow of fluid from the upstream side. For example, any type of aperture may be selected. For example, as shown in FIG. 6, a simple disk-shaped throttle part 19 with a hole can be used.
 この例では、絞り部19は、中心に固定流路8fの流路内径d1よりも小さい流路径d2の絞り孔19bが設けられ、絞り部19の外縁部19aは、ハウジング部材7の嵌合凸部7eに固定される。そして上流側からの流体は、絞り孔19bを通過して固定流路8f内に流入する。このとき、絞り孔19bを通過する際の流速上昇分に相当する差圧が生じるとともに、摺動隙間G1内の流体を、異物20とともに、固定流路8f内に吸引するような流動が生じる(矢印o)。これにより、図5に示す例と同様の効果を得る。 In this example, the throttle part 19 is provided with a throttle hole 19b having a flow path diameter d2 smaller than the flow path inner diameter d1 of the fixed flow path 8f at the center, and the outer edge part 19a of the throttle part 19 is a fitting convex of the housing member 7. It is fixed to the part 7e. The fluid from the upstream side passes through the throttle hole 19b and flows into the fixed flow path 8f. At this time, a differential pressure corresponding to an increase in the flow velocity when passing through the throttle hole 19b is generated, and a flow is generated that sucks the fluid in the sliding gap G1 together with the foreign matter 20 into the fixed flow path 8f ( Arrow o). Thereby, the same effect as the example shown in FIG. 5 is acquired.
 上記説明したように、本実施の形態に示すロータリジョイント1では、保持部材であるハウジング部材7に設けられた嵌合孔7aに、固定軸部8aが嵌合する。嵌合孔7aと固定軸部8aとの間の摺動隙間G1に、この摺動隙間G1を固定軸部8aの軸方向の移動を許容しながら下流側方向への流体の流動のみを選択的にシールする、隙間シール部としてのリップシール12を設ける。固定流路8fの端部のうちの上流側に、絞り部18を備え、この絞り部18において、固定流路8fの流路内径よりも小さい流路径の絞り孔18cを設けるようにした。これにより、絞り部18を流体が下流へ流動することにより生じた差圧によって、摺動隙間G1内の流体を、固定流路8fに流動させることができ、固定軸部8aと嵌合孔7aとの摺動隙間G1内に、異物20が侵入して堆積固化することに起因する不具合を、簡便な構成で有効に防止することができる。 As described above, in the rotary joint 1 shown in the present embodiment, the fixed shaft portion 8a is fitted into the fitting hole 7a provided in the housing member 7 which is a holding member. For the sliding gap G1 between the fitting hole 7a and the fixed shaft portion 8a, only the flow of fluid in the downstream direction is selectively performed while allowing the sliding gap G1 to move in the axial direction of the fixed shaft portion 8a. A lip seal 12 is provided as a gap seal portion. A throttle portion 18 is provided upstream of the end portion of the fixed flow path 8f, and the throttle portion 18 is provided with a throttle hole 18c having a flow path diameter smaller than that of the fixed flow path 8f. As a result, the fluid in the sliding gap G1 can be caused to flow into the fixed flow path 8f by the differential pressure generated by the fluid flowing downstream through the throttle portion 18, and the fixed shaft portion 8a and the fitting hole 7a. Thus, it is possible to effectively prevent a problem caused by the foreign matter 20 entering and solidifying into the sliding gap G1 with a simple configuration.
 本発明のロータリジョイントは、固定軸部と嵌合孔との摺動隙間内に異物が侵入して堆積固化することに起因する不具合を、簡便な構成で有効に防止することができるという特徴を有し、工作機械の主軸などの回転部に液体クーラントやエアなどの流体を送給する用途に有用である。 The rotary joint of the present invention is characterized in that it is possible to effectively prevent problems caused by foreign matter entering into the sliding gap between the fixed shaft portion and the fitting hole and being solidified by a simple configuration. It is useful for applications in which fluid such as liquid coolant or air is fed to a rotating part such as a spindle of a machine tool.
 1  ロータリジョイント
 1a  回転部
 1b  固定部
 2  スピンドル軸
 3  ケーシング部材
 4  ロータ
 4e  回転流路
 5  第1のシールリング
 5b  第1のシール面
 8  フローティングシート
 8a  固定軸部
 8f  固定流路
 9  第2のシールリング
 9b  第2のシール面
 10  面シール部
 12  リップシール
 18、19  絞り部
 18c、19b  絞り孔
 G1  摺動隙間
 G2  円環隙間
DESCRIPTION OF SYMBOLS 1 Rotary joint 1a Rotating part 1b Fixed part 2 Spindle shaft 3 Casing member 4 Rotor 4e Rotating flow path 5 1st seal ring 5b 1st seal surface 8 Floating sheet 8a Fixed shaft part 8f Fixed flow path 9 2nd seal ring 9b Second seal face 10 Face seal part 12 Lip seal 18, 19 Restriction part 18c, 19b Restriction hole G1 Sliding gap G2 Ring gap

Claims (4)

  1.  軸方向の回転流路(4e)が設けられ回転軸に装着される回転部(1a)、および、軸方向の固定流路(8f)が設けられた固定部(1b)を、同軸配置して成り、流体供給源から供給される流体を、軸心(A)廻りに回転する前記回転部(1a)の回転流路(4e)へ、前記固定流路(8f)を介して送給するロータリジョイントであって、
     前記回転部(1a)に設けられ端面に、前記回転流路(4e)が開口した、第1のシール面(5b)を有する回転シール部と、
     前記固定流路(8f)が前記軸方向に貫通して形成され保持部材(7、3)に設けられた嵌合孔(7a)に、所定の摺動隙間(G1)を保って、前記軸方向の移動が許容された状態で嵌合する固定軸部(8a)を有し、一方側の端面に前記固定流路(8f)が開口した第2のシール面(9b)を有する固定シール部と、
     前記摺動隙間に設けられ、この摺動隙間を前記軸方向の移動を許容しながら下流側方向への流体の流動のみを選択的にシールする隙間シール部と、
     前記固定流路(8f)の端部の上流側に設けられ、この固定流路の上流側の軸端部の流路内径(d1)よりも小さい流路径(d2)で設けられた絞り部(18、19)と、を備え、
     前記流体供給源から前記嵌合孔内へ前記流体を供給して、前記固定軸部(8a)を流体力によって下流側へ押圧することにより、前記第1のシール面(5b)と第2のシール面(9b)とを相互に密着させて面シール部を形成し、
     前記絞り部(18、19)を流体が下流へ流動することにより生じた差圧によって、前記摺動隙間内の流体を、固定流路(8f)に流動させることを特徴とするロータリジョイント。
    The rotating part (1a) provided with the axial rotation flow path (4e) and attached to the rotation shaft, and the fixed part (1b) provided with the axial fixed flow path (8f) are arranged coaxially. The rotary which comprises and supplies the fluid supplied from a fluid supply source to the rotation flow path (4e) of the said rotation part (1a) rotating around an axis (A) via the said fixed flow path (8f). A joint,
    A rotary seal portion having a first seal surface (5b) provided on the rotary portion (1a) and having an end surface provided with the rotary flow path (4e);
    The fixed flow path (8f) is formed so as to penetrate in the axial direction, and a predetermined sliding gap (G1) is maintained in a fitting hole (7a) provided in the holding member (7, 3), so that the shaft A fixed seal portion having a fixed shaft portion (8a) that fits in a state in which movement in the direction is allowed, and having a second seal surface (9b) in which the fixed flow path (8f) is opened on one end surface. When,
    A gap seal portion that is provided in the sliding gap and selectively seals only the flow of fluid in the downstream direction while allowing the sliding gap to move in the axial direction;
    A throttle part (d2) provided on the upstream side of the end of the fixed channel (8f) and having a channel diameter (d2) smaller than the channel inner diameter (d1) of the shaft end on the upstream side of the fixed channel. 18, 19), and
    By supplying the fluid from the fluid supply source into the fitting hole and pressing the fixed shaft portion (8a) to the downstream side by a fluid force, the first seal surface (5b) and the second seal surface (5b) The seal surface (9b) is brought into close contact with each other to form a surface seal portion,
    A rotary joint characterized in that the fluid in the sliding gap is caused to flow to the fixed flow path (8f) by the differential pressure generated by the fluid flowing downstream through the throttle portions (18, 19).
  2.  前記絞り部は、前記保持部材に固定されて前記嵌合孔(7a)の内径方向に延出した円環部(18a)と、この円環部(18a)から下流側に延出して、前記固定流路内に所定の円環隙間(G2)で挿入された円筒状部(18b)と、を有することを特徴とする請求項1記載のロータリジョイント。 The throttle part is fixed to the holding member and extends in the inner diameter direction of the fitting hole (7a), and extends from the annular part (18a) to the downstream side. The rotary joint according to claim 1, further comprising a cylindrical portion (18b) inserted into the fixed flow path with a predetermined annular gap (G2).
  3.  前記隙間シール部は、前記摺動隙間に開口した円周溝(7c)内に、リップ(12b、12c)を上流側に向けて装着されたリップシール(12)であることを特徴とする請求項1または2記載のロータリジョイント。 The gap seal portion is a lip seal (12) mounted in a circumferential groove (7c) opened in the sliding gap with the lips (12b, 12c) facing upstream. Item 3. The rotary joint according to Item 1 or 2.
  4.  前記隙間シール部は、前記摺動隙間に開口した円周溝(7c)内において、Oリング部材(121)を付勢部材(122)によって下流側に付勢して構成されることを特徴とする請求項1または2記載のロータリジョイント。 The clearance seal portion is configured by urging an O-ring member (121) downstream by an urging member (122) in a circumferential groove (7c) opened in the sliding clearance. The rotary joint according to claim 1 or 2.
PCT/JP2013/070078 2012-07-24 2013-07-24 Rotary joint WO2014017550A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380036647.3A CN104428572B (en) 2012-07-24 2013-07-24 Swivel joint

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-163654 2012-07-24
JP2012163654A JP5783964B2 (en) 2012-07-24 2012-07-24 Rotary joint

Publications (1)

Publication Number Publication Date
WO2014017550A1 true WO2014017550A1 (en) 2014-01-30

Family

ID=49997359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070078 WO2014017550A1 (en) 2012-07-24 2013-07-24 Rotary joint

Country Status (3)

Country Link
JP (1) JP5783964B2 (en)
CN (1) CN104428572B (en)
WO (1) WO2014017550A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014151387A (en) * 2013-02-07 2014-08-25 Mitsubishi Heavy Ind Ltd Coolant suction device and machine tool
CN105690179A (en) * 2014-12-16 2016-06-22 发那科株式会社 rotary joint support structure, spindle of machine tool, and electric motor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015005634A1 (en) 2015-05-05 2015-08-06 Bielomatik Leuze Gmbh & Co. Kg Apparatus for minimal quantity lubrication
JP5976187B1 (en) * 2015-10-26 2016-08-23 千秋 澤井 Rotary union coolant leakage prevention device
JP7460838B1 (en) 2023-09-07 2024-04-02 リックス株式会社 Rotary seal mechanism and rotary joint in fluid delivery mechanism

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002195416A (en) * 2000-12-28 2002-07-10 Ichimaru Giken:Kk O-ring seal structure for fluid coupling
JP2007085408A (en) * 2005-09-21 2007-04-05 Rix Corp Rotary joint
JP2008261405A (en) * 2007-04-11 2008-10-30 Rix Corp Rotary sealing mechanism in fluid feeding mechanism, and rotary joint
JP2012092955A (en) * 2010-10-29 2012-05-17 Nippon Pillar Packing Co Ltd Multiple fluid-passage rotary joint

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2540010A1 (en) * 1975-09-09 1977-03-10 Siemens Ag Hollow shafts of liquid cooled electrical machines - have bearing sealing against penetration by leakage liquid with centrifugal ring seal
CN2090914U (en) * 1991-04-10 1991-12-18 王雅谷 Oil transfer joint for fluid distribution of hydraulic motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002195416A (en) * 2000-12-28 2002-07-10 Ichimaru Giken:Kk O-ring seal structure for fluid coupling
JP2007085408A (en) * 2005-09-21 2007-04-05 Rix Corp Rotary joint
JP2008261405A (en) * 2007-04-11 2008-10-30 Rix Corp Rotary sealing mechanism in fluid feeding mechanism, and rotary joint
JP2012092955A (en) * 2010-10-29 2012-05-17 Nippon Pillar Packing Co Ltd Multiple fluid-passage rotary joint

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014151387A (en) * 2013-02-07 2014-08-25 Mitsubishi Heavy Ind Ltd Coolant suction device and machine tool
CN105690179A (en) * 2014-12-16 2016-06-22 发那科株式会社 rotary joint support structure, spindle of machine tool, and electric motor

Also Published As

Publication number Publication date
JP5783964B2 (en) 2015-09-24
CN104428572B (en) 2016-02-10
CN104428572A (en) 2015-03-18
JP2014025482A (en) 2014-02-06

Similar Documents

Publication Publication Date Title
WO2014017550A1 (en) Rotary joint
JP4542114B2 (en) Rotary seal mechanism and rotary joint in fluid feed mechanism
TWI323316B (en) Seal structure of fluid pressure machine
TWI548828B (en) Rotary union with selectively controlled seal and method for operating the same
CN100513833C (en) Anticlogging mechanical sealing device
JP4629636B2 (en) Rotary seal mechanism and rotary joint in fluid feed mechanism
US20070014647A1 (en) Device for supplying a tool rotating or rotatable about an axis of rotation for machining materials with a coolant and/or lubricant
JP2014040915A (en) Rotary union with pressure controlled seal actuator
US20130015627A1 (en) Expansion Chuck for Loss-Free Transmission of a Lubricating Medium
TWI724991B (en) Piston actuated rotary union
ITMI961384A1 (en) DEVICE FOR TRANSFERRING FLUIDS BETWEEN ROTATING MACHINE PARTS WITH RESPECT TO THE OTHER
JP5063804B1 (en) Rotary joint
JP5916545B2 (en) Rotary joint
JP5221278B2 (en) Rotary joint
US7182346B2 (en) Multistage oil seal against different cutting fluids for a machine tool motor
JP5993227B2 (en) Rotary joint
JP2007138965A (en) Mechanical seal for slurry fluid
TW202040032A (en) Rotary joint
JP5249101B2 (en) Lubrication structure of bearing
JP2000230642A (en) Seal structure for floating shaft supporting portion
JP4426392B2 (en) Rotary joint
WO2014208235A1 (en) Sealing device
JP4530677B2 (en) Tool holder for machine tools
WO2006100831A1 (en) Seal member of ball screw device
JP2011169356A (en) Rolling bearing device with lubricating function, and method for setting crush allowance of seal member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13823457

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13823457

Country of ref document: EP

Kind code of ref document: A1