WO2014017401A1 - Steering device for ship - Google Patents

Steering device for ship Download PDF

Info

Publication number
WO2014017401A1
WO2014017401A1 PCT/JP2013/069659 JP2013069659W WO2014017401A1 WO 2014017401 A1 WO2014017401 A1 WO 2014017401A1 JP 2013069659 W JP2013069659 W JP 2013069659W WO 2014017401 A1 WO2014017401 A1 WO 2014017401A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid pump
acting cylinder
steering
double acting
double
Prior art date
Application number
PCT/JP2013/069659
Other languages
French (fr)
Japanese (ja)
Inventor
修次 植木
佐藤 寛
司 中川
英利 山本
松本 隆弘
阿久津 誠
Original Assignee
三井造船株式会社
第一電気株式会社
株式会社ケーイーアイシステム
山本鐵工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井造船株式会社, 第一電気株式会社, 株式会社ケーイーアイシステム, 山本鐵工株式会社 filed Critical 三井造船株式会社
Priority to KR1020147030749A priority Critical patent/KR101487292B1/en
Priority to CN201380032162.7A priority patent/CN104379444B/en
Publication of WO2014017401A1 publication Critical patent/WO2014017401A1/en
Priority to PH12014502666A priority patent/PH12014502666A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/06Steering by rudders
    • B63H25/08Steering gear
    • B63H25/14Steering gear power assisted; power driven, i.e. using steering engine
    • B63H25/26Steering engines
    • B63H25/28Steering engines of fluid type
    • B63H25/30Steering engines of fluid type hydraulic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20515Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20561Type of pump reversible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/27Directional control by means of the pressure source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6336Electronic controllers using input signals representing a state of the output member, e.g. position, speed or acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6651Control of the prime mover, e.g. control of the output torque or rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7053Double-acting output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7107Multiple output members, e.g. multiple hydraulic motors or cylinders the output members being mechanically linked

Definitions

  • the present invention relates to a marine steering apparatus that can directly control a hydraulic actuator with a liquid pump using an electric motor without using a control valve.
  • oil from a tank is pressurized by a hydraulic source pump driven by an electric motor, and the pressurized oil is supplied to a direction control valve through various pipes.
  • the rudder is rotated by supplying pressurized oil to a cylinder connected to an arm that drives the rudder of the ship by feeding and controlling the direction control valve.
  • an object of the present invention is to provide a marine steering apparatus capable of obtaining an automatic fail-safe function capable of reliably and automatically ensuring safety and reliability with a more simplified configuration.
  • the marine steering apparatus is configured to be connected to and driven by the first and second electric motors and the first and second electric motors, respectively, and each discharges liquid in both directions.
  • First and second liquid pumps having first and second discharge ports, and first and second liquid pumps corresponding to the first and second liquid pumps and connected to a rudder to be steered.
  • a second double-action cylinder The first discharge port of the first liquid pump communicates with the first working chamber of the first double acting cylinder and the second working chamber of the second double acting cylinder, and the first liquid pump
  • the second discharge port communicates with the second working chamber of the first double acting cylinder and the first working chamber of the second double acting cylinder.
  • the first discharge port of the second liquid pump communicates with the first working chamber of the second double acting cylinder and the second working chamber of the first double acting cylinder, and the second liquid pump The second discharge port communicates with the second working chamber of the second double acting cylinder and the first working chamber of the first double acting cylinder.
  • the steering device is electrically connected to a steering angle detector that detects a steering angle ⁇ f of the rudder, a steering angle detector that detects a steering angle ⁇ i of the steering steering, a steering angle detector, and a steering angle detector
  • the difference ( ⁇ i ⁇ f ) and difference ( ⁇ f ⁇ i ) between the detected rotation angle and steering angle are calculated, and the drive signal S corresponding to the difference ( ⁇ i ⁇ f ) is calculated.
  • a control circuit that outputs a drive signal S d2 corresponding to d1 and the difference ( ⁇ f ⁇ i ), and a control circuit that is electrically connected to the control circuit, and the first electric motor is connected to the output drive signal S d1.
  • a first drive circuit for driving and a second drive circuit that is electrically connected to the control circuit and drives the second electric motor in accordance with the output drive signal S d2 are further provided.
  • the hydraulic pressure from the first liquid pump is not limited to the second working chamber of the first double-acting cylinder. It is also supplied to the first working chamber of the cylinder to rotate the rudder in a predetermined direction. Further, the hydraulic pressure from the second liquid pump is supplied not only to the first working chamber of the second double-acting cylinder but also to the second working chamber of the first double-acting cylinder, so that the rudder is driven in a predetermined direction. Turn to. Conversely, the hydraulic pressure from the first liquid pump is supplied not only to the first working chamber of the first double-acting cylinder but also to the second working chamber of the second double-acting cylinder so that the rudder is predetermined.
  • the hydraulic pressure from the second liquid pump is supplied not only to the second working chamber of the second double-acting cylinder but also to the first working chamber of the first double-acting cylinder, so that the rudder is driven in a predetermined direction. Rotate in the opposite direction. Therefore, when one of the electric motors and / or the liquid pump fails, for example, when the second electric motor and / or the second liquid pump fails, the hydraulic pressure from the first liquid pump driven by the first electric motor.
  • Both the first double-acting cylinder and the second double-acting cylinder can be operated to rotate the rudder in a predetermined direction (in a direction opposite to the predetermined direction). For this reason, the fail-safe operation can be automatically performed without switching and controlling the failed double-acting cylinder to a free state by an electromagnetic switching valve or the like. As a result, it is possible to obtain an automatic fail-safe function that can ensure safety and reliability reliably and automatically with a more simplified configuration.
  • the first drive circuit and the second drive circuit send voltage signals having different positive and negative voltages to the first motor and the second liquid so that the rotation directions of the first liquid pump and the second liquid pump are opposite to each other. It is preferable to be configured to output to the electric motor.
  • the arm further includes an arm that is integrally fixed to the rudder and that is driven to rotate around the fulcrum of the rudder.
  • the first double-acting cylinder and the second double-acting cylinder are provided at both ends of the arm, respectively. It is preferable that they are a pair of single rod double acting cylinders that are swingably connected to the pair of connecting portions.
  • the rudder angle detector is preferably a rotary encoder that detects the rotation angle of the arm.
  • the steering angle detector is preferably a rotary encoder that detects the turning angle of the steering steering.
  • the first liquid pump and the second liquid pump are rotatable in both a clockwise direction and a counterclockwise direction, and a pair of fixed pumps that discharge a predetermined hydraulic pressure corresponding to the rotational speed in a direction corresponding to the rotational direction.
  • a positive displacement liquid pump is preferred.
  • the first driving circuit and the second driving circuit generate voltage signals of the same level opposite to each other in accordance with the driving signal S d1 and the driving signal S d2 to the first motor and the second motor, respectively.
  • a pair of servo amplifiers to be applied is preferable.
  • a first check valve having an output side connected to the first discharge port of the first tank and the first liquid pump, and an input side connected to the first liquid pump and the first tank; and a first liquid
  • a second check valve having an output side connected to the second discharge port of the pump and an input side connected to the first liquid pump and the first tank; a second tank; and a first of the second liquid pump.
  • An output side is connected to the discharge port of the second liquid pump, a third check valve whose input side is connected to the second liquid pump and the second tank, and an output side is connected to the second discharge port of the second liquid pump, It is preferable to further include a second check pump having an input side connected to the second liquid pump and the second tank.
  • the present invention it is possible to automatically perform a fail-safe operation without switching and controlling the failed double-acting cylinder to a free state by an electromagnetic switching valve or the like. As a result, it is possible to obtain an automatic fail-safe function that can ensure safety and reliability reliably and automatically with a more simplified configuration.
  • FIG. 1 is a hydraulic circuit diagram schematically showing an overall configuration in an embodiment of a marine steering apparatus of the present invention.
  • FIG. 2 is a block diagram schematically showing an electrical configuration of a control circuit in the embodiment of FIG. 1.
  • 3 is a flowchart for explaining the operation of the control circuit of FIG. 2. It is a figure explaining operation
  • FIG. 1 is a hydraulic circuit diagram schematically showing the overall configuration of an embodiment of a marine steering system according to the present invention.
  • 10 is a rudder of a ship that can be turned to the left and right as indicated by an arrow
  • 11 is an arm that is integrally fixed to the rudder 10, and is driven to rotate around its fulcrum 11a
  • 13 are a pair of single rod type double acting cylinders (first and second single rod type double acting cylinders) that are swingably connected to connecting portions 11b and 11c provided at both ends of the arm 11, respectively. Show.
  • 1st and 2nd single rod type double acting cylinders 12 and 13 are arranged in parallel in the left-right symmetric position to fulcrum 11a located in the central part of arm 11.
  • the arm 11 is configured to rotate by receiving the pulling force or the pushing force of the first and second single rod type double acting cylinders 12 and 13 so that the rudder 10 can be operated left and right.
  • the first single rod double acting cylinder 12 includes a rod chamber 12a (corresponding to the first working chamber of the present invention) and a bottom chamber 12b (corresponding to the second working chamber of the present invention).
  • the inlet of the rod chamber 12a and the inlet of the bottom chamber 12b are respectively connected to a rod side pipe 14a and a bottom side pipe 14b which are pipe lines of a hydraulic circuit.
  • the rod side pipe 14a is connected to one discharge port 16a (corresponding to the first discharge port of the present invention) of the first constant capacity liquid pump 16, and the bottom side pipe 14b is connected to the first constant capacity type liquid pump 16. It is connected to the other discharge port 16b (corresponding to the second discharge port of the present invention) of the capacitive liquid pump 16.
  • the first constant-capacity liquid pump 16 is a constant capacity (cc / ev) type that can rotate in both the clockwise and counterclockwise directions. Discharge fluid pressure.
  • the first constant capacity liquid pump 16 is connected to a first electric motor 18 and is driven at a variable speed from zero rotation to a predetermined rotation speed.
  • the first electric motor 18 is constituted by, for example, an AC servo motor, a DC servo motor, an IPM (Interior Permanent Magnet) motor, an induction motor, or the like, and the first servo amplifier 27 (in the first drive circuit of the present invention). In response to a positive or negative voltage signal given by (corresponding), it can rotate in the corresponding direction.
  • the first electric motor 18 can rotate in both directions at a variable speed from zero rotation to a predetermined rotation speed, and thereby the first constant displacement liquid pump 16 is driven.
  • the first servo amplifier 27 that drives the first electric motor 18 desirably uses an inverter when the first electric motor 18 is an induction motor.
  • the second single rod type double acting cylinder 13 includes a rod chamber 13a (corresponding to the first working chamber of the present invention) and a bottom chamber 13b (corresponding to the second working chamber of the present invention).
  • the inlet of the rod chamber 13a and the inlet of the bottom chamber 13b are respectively connected to a rod side pipe 15a and a bottom side pipe 15b which are pipes of a hydraulic circuit.
  • the rod side pipe 15a is connected to one discharge port 17a (corresponding to the first discharge port of the present invention) of the second constant capacity liquid pump 17, and the bottom side pipe 15b is connected to the second constant volume type liquid pump 17. It is connected to the other discharge port 17b (corresponding to the second discharge port of the present invention) of the capacitive liquid pump 17.
  • the second constant capacity liquid pump 17 is a constant capacity (cc / ev) type that can rotate in both the clockwise and counterclockwise directions. Discharge fluid pressure.
  • the second constant capacity liquid pump 17 is connected to a second electric motor 19 and is driven at a variable speed from zero rotation to a predetermined rotation speed.
  • the second electric motor 19 is composed of, for example, an AC servo motor, a DC servo motor, an IPM motor, an induction motor, or the like, and is given from a second servo amplifier 28 (corresponding to the second drive circuit of the present invention). In response to the positive or negative voltage signal generated, it can rotate in the corresponding direction.
  • the second electric motor 19 can rotate in both directions at a variable speed from zero rotation to a predetermined rotation speed, and thereby the second constant capacity liquid pump 17 is driven.
  • the second servo amplifier 28 that drives the second electric motor 19 preferably uses an inverter when the second electric motor 19 is an induction motor.
  • the first electric motor 18 and the second electric motor 19 are configured to rotate in mutually different rotation directions when voltage signals having different positive and negative are applied to each other.
  • the first electric motor 18 and the second electric motor 19 The first constant-capacity liquid pump 16 and the second constant-capacity liquid pump 17 connected to and driven by the electric motor 19 are switched and driven so that the rotation directions are opposite to each other.
  • the important points in this embodiment are the rod-side piping 14a communicating with the rod chamber 12a of one first single rod double acting cylinder 12 and the bottom chamber 13b of the other second single rod double acting cylinder 13.
  • the communicating bottom side pipe 15 b communicates with each other, and the bottom side pipe 14 b communicating with the bottom chamber 12 b of the first single rod double acting cylinder 12 and the rod chamber 13 a of the second single rod type double acting cylinder 13.
  • the rod side pipe 15a communicating with each other. That is, the first and second single rod double acting cylinders 12 and 13 are connected to each other, and the supply amount when the first and second single rod double acting cylinders 12 and 13 are stroked. Push-pull drive is performed with the same amount of oil as the return amount.
  • the IN side is connected to the first constant capacity liquid pump 16 and the first tank 21, and the OUT side is connected to the rod side pipe 14a and the bottom side pipe 14b, respectively.
  • a connected rod side check valve 20a (corresponding to the first check valve of the present invention) and a bottom side check valve 20b (corresponding to the second check valve of the present invention) are provided.
  • the rod side check valve 20a and the bottom side check valve 20b are provided to compensate for internal leakage of the first constant displacement liquid pump 16.
  • the IN side is connected to the second constant capacity liquid pump 17 and the second tank 23, and the OUT side is connected to the rod side pipe 15a and the bottom side pipe 15b, respectively.
  • a connected rod side check valve 22a (corresponding to the third check valve of the present invention) and a bottom side check valve 22b (corresponding to the fourth check valve of the present invention) are provided.
  • the rod side check valve 22a and the bottom side check valve 22b are provided to compensate for internal leakage of the second constant displacement liquid pump 17.
  • the rudder angle detector 25 is configured to detect a rotation angle that is a driving amount of the rudder 10 and to send an angle signal corresponding to the detected rotation angle to the control circuit 24.
  • the steering angle detector 25 of the present embodiment is configured by a rotary encoder that detects the rotation angle of the arm 11.
  • the steering angle detector 26 is configured to detect a steering angle of a steering steering at a boat maneuvering console (not shown) and send an angle signal corresponding to the detected steering angle to the control circuit 24.
  • the steering angle detector 26 of the present embodiment is configured by a rotary encoder that detects a turning angle of steering steering (not shown).
  • the control circuit 24 includes an input interface 24a electrically connected to a steering angle detector 25, a steering angle detector 26, and an operation unit 29 provided in the boat maneuvering console, and first and second Output interface 24b electrically connected to the servo amplifiers 27 and 28, an image output unit 24c electrically connected to the display 30 provided in the boat maneuvering console, a central processing unit (CPU) 24d, a lead Only the memory (ROM) 24e, the random access memory (RAM) 24f, the hard disk drive (HDD) 24g, the input interface 24a, the output interface 24b, the image output unit 24c, the CPU 24d, the ROM 24e, the RAM 24f, and the HDD 24g are mutually connected.
  • the CPU 24d executes a program stored in the RAM 24f according to a basic program such as an operation system (OS) or a boot program stored in the ROM 24e to perform the processing of the present embodiment.
  • the CPU 24d controls operations of the RAM 24f, the HDD 24g, the image output unit 24c, the input interface 24a, and the output interface 24b.
  • the RAM 24f is used as a main memory of the control circuit 24, and stores programs and data transferred from the HDD 24g.
  • the RAM 24f is also used as a work area for temporarily storing various data during program execution.
  • the HDD 24g stores programs and data in advance.
  • the image output unit 24c generates image data according to an instruction from the CPU 24d and outputs the image data to the display 30.
  • the input interface 24a controls transfer of input data from the steering angle detector 25, the steering angle detector 26, and the operation unit 29 to the CPU 24d or the RAM 24f.
  • the output interface 24b controls the transfer of output data from the CPU 24d to the first and second servo amplifiers 27 and 28.
  • the CPU 24d first secures a program storage area, a data storage area, and a work area in the RAM 24f at the start of operation, and fetches the program and data from the HDD 24g or from the outside. And stored in the data storage area. Next, the processing shown in FIG. 3 is executed based on the program stored in the program storage area.
  • the program shown in FIG. 3 is configured to be repeatedly executed at regular intervals for a short time until the end of operation.
  • the angle command signal S i representing the steering angle ⁇ i corresponding to the steering amount of the steering steering provided in the boat maneuvering console is fetched from the steering angle detector 26 via the input interface 24a (step S1).
  • an angle signal S f representing the current turning angle ⁇ f of the rudder 10 is fetched from the rudder angle detector 25 via the input interface 24a (step S2).
  • the drive signal S d1 for driving the first servo amplifier 27 is obtained by calculating ⁇ i - ⁇ f , that is, by subtracting the rotation angle ⁇ f from the steering angle ⁇ i (step S3).
  • the drive signal S d2 for driving the second servo amplifier 28 is obtained by calculating ⁇ f ⁇ i , that is, calculating the subtraction of the steering angle ⁇ i from the rotation angle ⁇ f (step S4).
  • step S5 the drive signal S d1 obtained in this way is outputted to the first servo amplifier 27 via the output interface 24b (step S5), and the drive signal S d2 obtained in the same manner is outputted via the output interface 24b.
  • step S6 Output to the second servo amplifier 28 (step S6).
  • the first and second servo amplifiers 27 and 28 output the drive signal S d1 and the drive signal S d2 instructing to apply voltages of the same level, which are opposite to each other.
  • the first servo amplifier 27 outputs a positive voltage (+ voltage)
  • the second servo amplifier 28 is negatively driven.
  • the second servo amplifier 28 outputs a negative voltage ( ⁇ voltage) of the same level, and as a result, the rudder 10 rotates clockwise.
  • the first electric motor 18 rotates clockwise, and the liquid from the first constant capacity liquid pump 16 is rotated.
  • the pressure is supplied to the bottom chamber 12 b of the first single rod double acting cylinder 12, and the first single rod double acting cylinder 12 moves in the protruding direction (upward in the figure) and pushes the arm 11. Perform the action.
  • a negative voltage ( ⁇ voltage) is output from the second servo amplifier 28, the second electric motor 19 rotates counterclockwise and the liquid from the second constant capacity liquid pump 17 is rotated.
  • the pressure is supplied to the rod chamber 13a of the second single rod type double acting cylinder 13, the second single rod type double acting cylinder 13 moves in the pulling direction (downward in the figure) and pulls the arm 11. Perform the action. Thereby, the rudder 10 rotates clockwise as shown in FIG.
  • the hydraulic pressure from the second constant displacement liquid pump 17 is also supplied to the bottom chamber 12b of the first single rod double acting cylinder 12, while the rod of the second single rod double acting cylinder 13 is supplied.
  • the hydraulic pressure from the first constant capacity liquid pump 16 is also supplied to the chamber 13a. That is, both the first single rod double acting cylinder 12 and the second single rod double acting cylinder 13 discharge from both the first constant displacement liquid pump 16 and the second constant displacement liquid pump 17. It operates with the discharge amount which added. Accordingly, the discharge amount of the first constant displacement liquid pump 16 and the discharge amount of the second constant displacement liquid pump 17 can be operated even if they are different from each other, but it is desirable that the discharge amounts are substantially equal. .
  • step S7 it is determined whether or not the steering operation has ended. If it is determined that the operation has ended (in the case of YES), this program ends. When it is determined that the operation is not finished (in the case of NO), the process returns to step S1, and the processes of steps S1 to S7 are repeated.
  • steps S1 to S7 are periodically repeated, so that the turning angle of the rudder 10 approaches and matches the steering angle of the steering steering. That is, the current turning angle ⁇ f of the rudder 10 represented by the angle signal S f from the rudder angle detector 25 and the steering angle ⁇ i represented by the angle command signal S i from the steering angle detector 26. Difference
  • the drive signal S d1 to the first servo amplifier 27 and the drive signal S d2 to the second servo amplifier 28 are controlled based on the turning angle ⁇ f of the rudder 10 from the rudder angle detector 25.
  • the rotational speeds of the first electric motor 18 and the second electric motor 19 are controlled so that the first single rod double acting cylinder 12 and the second single rod double acting cylinder 13 move at a synchronized speed.
  • the discharge amounts of the first constant displacement liquid pump 16 and the second constant displacement liquid pump 17 are controlled.
  • the first electric motor 18 rotates counterclockwise, and the hydraulic pressure from the first constant displacement liquid pump 16 changes to the first pressure.
  • the first single rod type double acting cylinder 12 is supplied to the rod chamber 12a of the single rod type double acting cylinder 12 and moves in the retracting direction (downward in the figure) to pull the arm 11. .
  • the second electric motor 19 rotates in the clockwise direction, and the hydraulic pressure from the second constant capacity liquid pump 17 is increased.
  • the first and second single rod type double acting cylinders 12 and 13 are piped in a cross, and the rod chamber 12a of the first single rod type double acting cylinder 12 and the The bottom chamber 13b of the two single rod double acting cylinders 13 communicates with each other, and the bottom chamber 12b of the first single rod double acting cylinder 12 and the rod chamber 13a of the second single rod double acting cylinder 13 are connected. And communicate with each other.
  • the hydraulic pressure from the first constant displacement liquid pump 16 is applied not only to the bottom chamber 12b of the first single rod double acting cylinder 12 but also to the rod chamber 13a of the second single rod double acting cylinder 13. Is also provided to assist in the clockwise rotation of the arm 11 and thus the rudder 10.
  • the hydraulic pressure from the second constant displacement liquid pump 17 is applied not only to the rod chamber 13a of the second single rod double acting cylinder 13 but also to the bottom chamber 12b of the first single rod double acting cylinder 12. Supplied to assist in the clockwise rotation of the arm 11 and thus the rudder 10.
  • the hydraulic pressure from the first constant displacement liquid pump 16 is applied not only to the rod chamber 12 a of the first single rod double acting cylinder 12 but also to the bottom chamber 13 b of the second single rod double acting cylinder 13. Is also provided to assist in the counterclockwise rotation of the arm 11 and thus the rudder 10.
  • the hydraulic pressure from the second constant displacement liquid pump 17 is applied not only to the bottom chamber 13 b of the second single rod double acting cylinder 13 but also to the rod chamber 12 a of the first single rod double acting cylinder 12. Supplied to assist in the counterclockwise rotation of the arm 11 and thus the rudder 10.
  • the first electric motor 18 is driven.
  • the hydraulic pressure from the first constant displacement liquid pump 16 is automatically supplied to the bottom chamber 12b of the first single rod double acting cylinder 12 and the rod chamber 13a of the second single rod double acting cylinder 13.
  • both the first single rod type double acting cylinder 12 and the second single rod type double acting cylinder 13 are operated, and the rudder 10 can be rotated clockwise. Therefore, the rod chamber 13a and the bottom chamber 13b of the second single rod double acting cylinder 13 on the failed side are communicated with each other by an electromagnetic switching valve or the like, and the fail safe operation is automatically performed without switching control to the free state. It can be performed.
  • the steering angle detector 26 sends an angle command signal S i representing the steering angle ⁇ i corresponding to the steering angle amount to the control circuit 24.
  • the rudder angle detector 25 sends an angle signal S f representing the current turning angle ⁇ f of the rudder 10 to the control circuit 24.
  • the control circuit 24 sends the drive signal S d1 corresponding to the calculation result of ⁇ i ⁇ f to the first servo amplifier 27, and the drive signal S d2 corresponding to the calculation result of ⁇ f ⁇ i to the second servo.
  • different positive and negative voltage commands are output to the first electric motor 18 and the second electric motor 19, respectively, and the first electric motor 18 and the second electric motor 19 are started, Both are rotated in opposite directions.
  • the first electric motor 18 and the second electric motor 19 rapidly increase in rotational speed from zero to a predetermined rotational speed, and rotate the first constant capacity liquid pump 16 and the second constant capacity liquid pump 17. To generate hydraulic pressure.
  • the hydraulic pressure of the first constant displacement type liquid pump 16 is supplied to the rod chamber 12a or the bottom chamber 12b of the first single rod type double acting cylinder 12 to move the first single rod type double acting cylinder 12 in the retracting direction or Move in the protruding direction.
  • the hydraulic pressure of the second constant displacement type liquid pump 17 is supplied to the bottom chamber 13b or the rod chamber 13a of the second single rod double acting cylinder 13 so that the second single rod double acting cylinder 13 can It is moved in the projecting direction or the retracting direction, which is the direction opposite to the one-rod double-acting cylinder 12.
  • the hydraulic pressure of the first constant displacement type liquid pump 16 is supplied to the bottom chamber 13b or the rod chamber 13a of the second single rod double acting cylinder 13 and protrudes from the second single rod double acting cylinder 13. Move in the direction or pull-in direction.
  • the hydraulic pressure of the second constant displacement type liquid pump 17 is supplied to the rod chamber 12a or the bottom chamber 12b of the first single rod double acting cylinder 12, and the first single rod double acting cylinder 12 is supplied to the second single acting double pump cylinder 12. It is moved in the retracting direction or the protruding direction, which is the opposite direction to the single rod type double acting cylinder 13.
  • the arm 11 has a multiple resultant force in the projecting direction or the retracting direction by the first single rod double acting cylinder 12 and the retracting direction or the projecting direction in the opposite direction by the second single rod double acting cylinder 13. And easily and quickly rotate.
  • the turning angle ⁇ f of the rudder 10 represented by the angle signal S f from the rudder angle detector 25 and the angle command signal S i from the steering angle detector 26 are represented.
  • from the steering angle ⁇ i becomes zero, the first electric motor 18 and the second electric motor 19 stop, and the arm 11 and thus the rudder 10 are controlled to an accurate rotation angle. can do.
  • the rudder 10 maintains the angle unless the angle command signal S i from the steering angle detector 26 fluctuates.
  • the first single rod double acting cylinder 12 and the second single rod double acting cylinder 13 rotate at a synchronized speed by controlling the discharge amount of the hydraulic pump according to the instruction of the control circuit 24.
  • the arm 11 is rotated by receiving a large rotational force.
  • the first and second single rod double acting cylinders connected to the hydraulic pressure from the first constant displacement liquid pump 16.
  • the first and second single rod type double acting cylinders 12 and 13 which are directly supplied to both 12 and 13 and the hydraulic pressure from the second constant displacement liquid pump 17 is connected thereto.
  • a plurality of single-rod double-acting cylinders 12 and 13 are connected to one arm 11, and the arm 11 and thus the rudder 10 are coupled by the combined force of the plurality of double-acting cylinders.
  • Driving According to this direct control system, the first and second constant displacement liquids are pushed and pulled, the rod speed, and the rod thrust of the first and second single rod double acting cylinders 12 and 13 without using a directional control valve. It can be controlled directly by pumps 16 and 17.
  • the hydraulic pressure from the first constant displacement liquid pump 16 is not limited to the rod chamber 12a of the first single rod double acting cylinder 12, but also the second single rod double acting cylinder. 13 is also supplied to the bottom chamber 13b to rotate the arm 11 and thus the rudder 10 counterclockwise. Further, the hydraulic pressure from the second constant displacement liquid pump 17 is supplied not only to the bottom chamber 13 b of the second single rod double acting cylinder 13 but also to the rod chamber 12 a of the first single rod double acting cylinder 12. As a result, the arm 11 and thus the rudder 10 are rotated counterclockwise.
  • the first electric motor 18 is driven.
  • the hydraulic pressure from the first constant displacement liquid pump 16 is such that the bottom chamber 12b or the rod chamber 12a of the first single rod double acting cylinder 12 and the rod chamber 13a of the second single rod double acting cylinder 13 or Automatically supplied to the bottom chamber 13b, both the first single rod double acting cylinder 12 and the second single rod double acting cylinder 13 are operated, and the rudder 10 is rotated clockwise or counterclockwise. Can be moved.
  • the arm 11 can be rotated without controlling the switching to the free state by connecting the rod chamber and the bottom chamber of the failed single rod type double acting cylinder with an electromagnetic switching valve or the like.
  • an electromagnetic switching valve or the like With a simplified configuration, it is possible to obtain an automatic fail-safe function that can reliably and automatically ensure safety and reliability.
  • the amount of liquid between the rod chamber 12a and the bottom chamber 12b of the first single rod double acting cylinder 12 and between the rod chamber 13a and the bottom chamber 13b of the second single rod double acting cylinder 13 is as follows. Therefore, since it is not necessary to provide a liquid amount compensation circuit between them, a simpler configuration can be achieved in this sense.
  • control circuit is configured by using the electric motor having a constant rotational speed and the variable displacement liquid pump. May control the rotation direction of the electric motor and the discharge amount of the variable displacement liquid pump, or may control the discharge direction and the discharge amount of the variable displacement liquid pump while keeping the rotation direction of the electric motor constant. .

Abstract

A steering device for a ship is provided with: first and second electric motors; first and second liquid pumps which are configured to be connected to and driven by the first and second electric motors, respectively, and which are each provided with first and second discharge openings for discharging liquid in both directions; and first and second double-acting cylinders which are provided corresponding to the first and second liquid pumps and which are connected to a rudder to be steered. The first discharge opening of the first liquid pump connects to a first operating chamber of the first double-acting cylinder and to a second operating chamber of the second double-acting cylinder, and the second discharge opening of the first liquid pump connects to a second operating chamber of the first double-acting cylinder and to a first operating chamber of the second double-acting cylinder. The first discharge opening of the second liquid pump connects to the first operating chamber of the second double-acting cylinder and to the second operating chamber of the first double-acting cylinder, and the second discharge opening of the second liquid pump connects to the second operating chamber of the second double acting cylinder and to the first operating chamber of the first double-acting cylinder.

Description

船舶用の操舵装置Marine steering system
 本発明は、制御弁を用いることなく液圧アクチュエータを電動機による液体ポンプで直接制御することができる船舶用の操舵装置に関する。 The present invention relates to a marine steering apparatus that can directly control a hydraulic actuator with a liquid pump using an electric motor without using a control valve.
 従来より一般的に用いられている船舶用の操舵装置においては、タンクからの油を電動機により駆動される油圧源ポンプで加圧し、加圧された油を種々の配管を介して方向制御弁に送り、この方向制御弁の制御によって、船舶の舵を駆動するアームに連結されたシリンダに加圧油を供給することにより、舵が回動される。 Conventionally, in a marine steering system that is generally used, oil from a tank is pressurized by a hydraulic source pump driven by an electric motor, and the pressurized oil is supplied to a direction control valve through various pipes. The rudder is rotated by supplying pressurized oil to a cylinder connected to an arm that drives the rudder of the ship by feeding and controlling the direction control valve.
 このような油圧源ポンプ、配管及び方向制御弁を用いることなく、両方向に液体を吐出可能な1対の液体ポンプをこれら1対の液体ポンプにそれぞれ対応して設けられた1対の電動機によって回転させて液圧を発生させると共に、1対の液体ポンプから1対のアクチュエータに液圧をそれぞれ直接的に供給し、これら1対のアクチュエータによって船舶の舵を駆動する技術が既に提案されている(特許文献1)。 Without using such a hydraulic source pump, piping and directional control valve, a pair of liquid pumps capable of discharging liquid in both directions is rotated by a pair of electric motors provided corresponding to each of the pair of liquid pumps. In addition, a technology has been proposed in which hydraulic pressure is generated and hydraulic pressure is directly supplied from a pair of liquid pumps to a pair of actuators, and the rudder of the ship is driven by the pair of actuators ( Patent Document 1).
特開2002-139003号公報JP 2002-139003 A
 特許文献1に記載されている、1対の液体ポンプから1対のアクチュエータに液圧をそれぞれ直接的に供給しこれら1対のアクチュエータによって舵を駆動する操舵装置によれば、方向制御弁が不要であり、しかも、一方の液体ポンプ及びアクチュエータが故障した場合に、他方の液体ポンプ及びアクチュエータを用いて舵を制御することができるため、フェイルセーフ機能を得ることが可能である。 According to the steering device described in Patent Document 1 in which hydraulic pressure is directly supplied from a pair of liquid pumps to a pair of actuators and the rudder is driven by the pair of actuators, a directional control valve is unnecessary. In addition, when one of the liquid pumps and actuators fails, the rudder can be controlled using the other liquid pumps and actuators, so that a fail-safe function can be obtained.
 しかしながら、特許文献1に記載されているこの操舵装置では、一方の液体ポンプ及びアクチュエータが故障した場合に、電磁切換弁を作動させてそのアクチュエータをフリー状態とし、外力により抵抗なく作動するように操作することが必須である。このため、通常時は作動せず、故障時にのみ作動する電磁切換弁を設ける必要があるため、その分、装置構成が複雑となり、また故障も起き易くなる。 However, in this steering device described in Patent Document 1, when one of the liquid pump and the actuator fails, the electromagnetic switching valve is operated so that the actuator is in a free state and is operated without resistance by an external force. It is essential to do. For this reason, it is necessary to provide an electromagnetic switching valve that does not operate during normal operation but operates only during failure, and accordingly, the device configuration becomes complicated, and failure is likely to occur.
 従って本発明の目的は、より簡易化した構成で、安全性及び信頼性を確実にかつ自動的に確保できる自動フェイルセーフ機能を得ることができる船舶用の操舵装置を提供することにある。 Accordingly, an object of the present invention is to provide a marine steering apparatus capable of obtaining an automatic fail-safe function capable of reliably and automatically ensuring safety and reliability with a more simplified configuration.
 本発明によれば、船舶用の操舵装置は、第1及び第2の電動機と、第1及び第2の電動機にそれぞれ連結されて駆動されるように構成されており各々が両方向に液体を吐出する第1及び第2の吐出口を備えた第1及び第2の液体ポンプと、第1及び第2の液体ポンプにそれぞれ対応して設けられていると共に操舵すべき舵に連結された第1及び第2の複動シリンダとを備えている。第1の液体ポンプの第1の吐出口が第1の複動シリンダの第1の作動室と第2の複動シリンダの第2の作動室とに連通していると共に、第1の液体ポンプの第2の吐出口が第1の複動シリンダの第2の作動室と第2の複動シリンダの第1の作動室とに連通している。第2の液体ポンプの第1の吐出口が第2の複動シリンダの第1の作動室と第1の複動シリンダの第2の作動室とに連通していると共に、第2の液体ポンプの第2の吐出口が第2の複動シリンダの第2の作動室と第1の複動シリンダの第1の作動室とに連通している。操舵装置は、舵の回動角度θを検出する舵角検出器と、操舵ステアリングの操舵角度θを検出する操舵角検出器と、舵角検出器及び操舵角検出器に電気的に接続されており、検出された回動角度と操舵角度との差(θ-θ)及び差(θ-θ)を演算し、差(θ-θ)に対応する駆動信号Sd1及び差(θ-θ)に対応する駆動信号Sd2を出力する制御回路と、制御回路に電気的に接続されており、出力された駆動信号Sd1に応じて第1の電動機を駆動する第1の駆動回路と、制御回路に電気的に接続されており、出力された駆動信号Sd2に応じて第2の電動機を駆動する第2の駆動回路とをさらに備えている。 According to the present invention, the marine steering apparatus is configured to be connected to and driven by the first and second electric motors and the first and second electric motors, respectively, and each discharges liquid in both directions. First and second liquid pumps having first and second discharge ports, and first and second liquid pumps corresponding to the first and second liquid pumps and connected to a rudder to be steered. And a second double-action cylinder. The first discharge port of the first liquid pump communicates with the first working chamber of the first double acting cylinder and the second working chamber of the second double acting cylinder, and the first liquid pump The second discharge port communicates with the second working chamber of the first double acting cylinder and the first working chamber of the second double acting cylinder. The first discharge port of the second liquid pump communicates with the first working chamber of the second double acting cylinder and the second working chamber of the first double acting cylinder, and the second liquid pump The second discharge port communicates with the second working chamber of the second double acting cylinder and the first working chamber of the first double acting cylinder. The steering device is electrically connected to a steering angle detector that detects a steering angle θ f of the rudder, a steering angle detector that detects a steering angle θ i of the steering steering, a steering angle detector, and a steering angle detector The difference (θ i −θ f ) and difference (θ f −θ i ) between the detected rotation angle and steering angle are calculated, and the drive signal S corresponding to the difference (θ i −θ f ) is calculated. a control circuit that outputs a drive signal S d2 corresponding to d1 and the difference (θ f −θ i ), and a control circuit that is electrically connected to the control circuit, and the first electric motor is connected to the output drive signal S d1. A first drive circuit for driving and a second drive circuit that is electrically connected to the control circuit and drives the second electric motor in accordance with the output drive signal S d2 are further provided.
 第1及び第2の複動シリンダがたすき掛けに配管されているため、第1の液体ポンプからの液圧は、第1の複動シリンダの第2の作動室のみならず第2の複動シリンダの第1の作動室にも供給されて、舵を所定方向に回動させる。さらに、第2の液体ポンプからの液圧は、第2の複動シリンダの第1の作動室のみならず第1の複動シリンダの第2の作動室にも供給されて、舵を所定方向に回動させる。逆に、第1の液体ポンプからの液圧は、第1の複動シリンダの第1の作動室のみならず第2の複動シリンダの第2の作動室にも供給されて、舵を所定方向とは逆方向に回動させる。さらに、第2の液体ポンプからの液圧は、第2の複動シリンダの第2の作動室のみならず第1の複動シリンダの第1の作動室にも供給されて、舵を所定方向とは逆方向に回動させる。従って、一方の電動機及び/又は液体ポンプが故障した場合、例えば第2の電動機及び/又は第2の液体ポンプが故障した場合、第1の電動機によって駆動される第1の液体ポンプからの液圧が、第1の複動シリンダの第2の作動室(第1の作動室)と第2の複動シリンダの第1の作動室(第2の作動室)とに自動的に供給されて、第1の複動シリンダ及び第2の複動シリンダの両方を作動させ、舵を所定方向に(所定方向とは逆方向に)回動させることができる。このため、故障した側の複動シリンダを電磁切替弁等でフリー状態に切換制御することなく、自動的にフェイルセーフ動作を行うことができる。その結果、より簡易化した構成で、安全性及び信頼性を確実にかつ自動的に確保できる自動フェイルセーフ機能を得ることができる。 Since the first and second double-acting cylinders are connected to each other, the hydraulic pressure from the first liquid pump is not limited to the second working chamber of the first double-acting cylinder. It is also supplied to the first working chamber of the cylinder to rotate the rudder in a predetermined direction. Further, the hydraulic pressure from the second liquid pump is supplied not only to the first working chamber of the second double-acting cylinder but also to the second working chamber of the first double-acting cylinder, so that the rudder is driven in a predetermined direction. Turn to. Conversely, the hydraulic pressure from the first liquid pump is supplied not only to the first working chamber of the first double-acting cylinder but also to the second working chamber of the second double-acting cylinder so that the rudder is predetermined. Turn in the direction opposite to the direction. Further, the hydraulic pressure from the second liquid pump is supplied not only to the second working chamber of the second double-acting cylinder but also to the first working chamber of the first double-acting cylinder, so that the rudder is driven in a predetermined direction. Rotate in the opposite direction. Therefore, when one of the electric motors and / or the liquid pump fails, for example, when the second electric motor and / or the second liquid pump fails, the hydraulic pressure from the first liquid pump driven by the first electric motor. Is automatically supplied to the second working chamber (first working chamber) of the first double-acting cylinder and the first working chamber (second working chamber) of the second double-acting cylinder, Both the first double-acting cylinder and the second double-acting cylinder can be operated to rotate the rudder in a predetermined direction (in a direction opposite to the predetermined direction). For this reason, the fail-safe operation can be automatically performed without switching and controlling the failed double-acting cylinder to a free state by an electromagnetic switching valve or the like. As a result, it is possible to obtain an automatic fail-safe function that can ensure safety and reliability reliably and automatically with a more simplified configuration.
 第1の駆動回路及び第2の駆動回路は、第1の液体ポンプ及び第2の液体ポンプの回転方向が互いに逆方向となるように正負が互いに異なる電圧信号を第1の電動機及び第2の電動機に出力するように構成されていることが好ましい。 The first drive circuit and the second drive circuit send voltage signals having different positive and negative voltages to the first motor and the second liquid so that the rotation directions of the first liquid pump and the second liquid pump are opposite to each other. It is preferable to be configured to output to the electric motor.
 舵に一体的に固着されておりこの舵の支点を中心にして回動駆動されるアームをさらに備えており、第1の複動シリンダ及び第2の複動シリンダはアームの両端部にそれぞれ設けられた一対の連結部に揺動自在に連結されている一対の片ロッド形複動シリンダであることが好ましい。 The arm further includes an arm that is integrally fixed to the rudder and that is driven to rotate around the fulcrum of the rudder. The first double-acting cylinder and the second double-acting cylinder are provided at both ends of the arm, respectively. It is preferable that they are a pair of single rod double acting cylinders that are swingably connected to the pair of connecting portions.
 この場合、舵角検出器はアームの回動角度を検出するロータリエンコーダであることが好ましい。 In this case, the rudder angle detector is preferably a rotary encoder that detects the rotation angle of the arm.
 操舵角検出器は、操舵ステアリングの回動角度を検出するロータリエンコーダであることが好ましい。 The steering angle detector is preferably a rotary encoder that detects the turning angle of the steering steering.
 第1の液体ポンプ及び第2の液体ポンプは、時計方向及び反時計方向の両方向に回転可能であり、その回転方向に応じた方向に回転速度に応じた所定の液圧を吐出する一対の定容量形液体ポンプであることが好ましい。 The first liquid pump and the second liquid pump are rotatable in both a clockwise direction and a counterclockwise direction, and a pair of fixed pumps that discharge a predetermined hydraulic pressure corresponding to the rotational speed in a direction corresponding to the rotational direction. A positive displacement liquid pump is preferred.
 第1の駆動回路及び第2の駆動回路は、駆動信号Sd1及び駆動信号Sd2に応じて正負が互いに反対の同じレベルの電圧信号を発生して第1の電動機及び第2の電動機にそれぞれ印加する一対のサーボ増幅器であることが好ましい。 The first driving circuit and the second driving circuit generate voltage signals of the same level opposite to each other in accordance with the driving signal S d1 and the driving signal S d2 to the first motor and the second motor, respectively. A pair of servo amplifiers to be applied is preferable.
 第1のタンクと、第1の液体ポンプの第1の吐出口に出力側が接続され、第1の液体ポンプ及び第1のタンクに入力側が接続された第1のチェック弁と、第1の液体ポンプの第2の吐出口に出力側が接続され、第1の液体ポンプ及び第1のタンクに入力側が接続された第2のチェック弁と、第2のタンクと、第2の液体ポンプの第1の吐出口に出力側が接続され、第2の液体ポンプ及び第2のタンクに入力側が接続された第3のチェック弁と、第2の液体ポンプの第2の吐出口に出力側が接続され、第2の液体ポンプ及び第2のタンクに入力側が接続された第4のチェック弁とをさらに備えていることが好ましい。 A first check valve having an output side connected to the first discharge port of the first tank and the first liquid pump, and an input side connected to the first liquid pump and the first tank; and a first liquid A second check valve having an output side connected to the second discharge port of the pump and an input side connected to the first liquid pump and the first tank; a second tank; and a first of the second liquid pump. An output side is connected to the discharge port of the second liquid pump, a third check valve whose input side is connected to the second liquid pump and the second tank, and an output side is connected to the second discharge port of the second liquid pump, It is preferable to further include a second check pump having an input side connected to the second liquid pump and the second tank.
 本発明によれば、故障した側の複動シリンダを電磁切替弁等でフリー状態に切換制御することなく、自動的にフェイルセーフ動作を行うことができる。その結果、より簡易化した構成で、安全性及び信頼性を確実にかつ自動的に確保できる自動フェイルセーフ機能を得ることができる。 According to the present invention, it is possible to automatically perform a fail-safe operation without switching and controlling the failed double-acting cylinder to a free state by an electromagnetic switching valve or the like. As a result, it is possible to obtain an automatic fail-safe function that can ensure safety and reliability reliably and automatically with a more simplified configuration.
本発明の船舶用の操舵装置の一実施形態における全体の構成を概略的に示す油圧回路図である。1 is a hydraulic circuit diagram schematically showing an overall configuration in an embodiment of a marine steering apparatus of the present invention. 図1の実施形態における制御回路の電気的構成を概略的に示すブロック図である。FIG. 2 is a block diagram schematically showing an electrical configuration of a control circuit in the embodiment of FIG. 1. 図2の制御回路の動作を説明するフローチャートである。3 is a flowchart for explaining the operation of the control circuit of FIG. 2. 図1の実施形態における油圧回路及び制御回路の動作(舵が時計方向に回動する場合)を説明する図である。It is a figure explaining operation | movement (when a rudder rotates clockwise) of the hydraulic circuit and control circuit in embodiment of FIG. 図1の実施形態における油圧回路及び制御回路の動作(舵が反時計方向に回動する場合)を説明する図である。It is a figure explaining operation | movement (when a rudder rotates counterclockwise) of the hydraulic circuit and control circuit in embodiment of FIG.
 図1は本発明の船舶用の操舵装置の一実施形態における全体の構成を概略的に示す油圧回路図である。 FIG. 1 is a hydraulic circuit diagram schematically showing the overall configuration of an embodiment of a marine steering system according to the present invention.
 同図において、10は矢印に示すように左右に回動可能な船舶の舵、11はこの舵10に一体的に固着されており、その支点11aを中心にして回動駆動されるアーム、12及び13はアーム11の両端部に設けられた連結部11b及び11cに揺動自在に連結されている一対の片ロッド形複動シリンダ(第1及び第2の片ロッド形複動シリンダ)をそれぞれ示している。 In the figure, 10 is a rudder of a ship that can be turned to the left and right as indicated by an arrow, 11 is an arm that is integrally fixed to the rudder 10, and is driven to rotate around its fulcrum 11a, 12 And 13 are a pair of single rod type double acting cylinders (first and second single rod type double acting cylinders) that are swingably connected to connecting portions 11b and 11c provided at both ends of the arm 11, respectively. Show.
 第1及び第2の片ロッド形複動シリンダ12及び13は、アーム11の中心部に位置する支点11aに対して左右対称位置に並列に配置されている。アーム11は、これら第1及び第2の片ロッド形複動シリンダ12及び13の引き力又は押し力を受けて回動し、舵10を左右に作動可能に構成されている。 1st and 2nd single rod type double acting cylinders 12 and 13 are arranged in parallel in the left-right symmetric position to fulcrum 11a located in the central part of arm 11. The arm 11 is configured to rotate by receiving the pulling force or the pushing force of the first and second single rod type double acting cylinders 12 and 13 so that the rudder 10 can be operated left and right.
 第1の片ロッド形複動シリンダ12は、ロッド室12a(本発明の第1の作動室に対応する)及びボトム室12b(本発明の第2の作動室に対応する)を備えており、これらロッド室12aの入口及びボトム室12bの入口は、液圧回路の管路であるロッド側配管14a及びボトム側配管14bにそれぞれ接続されている。ロッド側配管14aは、第1の定容量形液体ポンプ16の一方の吐出口16a(本発明の第1の吐出口に対応する)に接続されており、ボトム側配管14bは、第1の定容量形液体ポンプ16の他方の吐出口16b(本発明の第2の吐出口に対応する)に接続されている。第1の定容量形液体ポンプ16は、時計方向及び反時計方向の両方向に回転可能な定容量(cc/ev)型であり、その回転方向に応じた方向に、回転速度に応じた所定の液圧を吐出する。この第1の定容量形液体ポンプ16は、第1の電動機18に接続されており、零回転から所定の回転速度まで可変速の駆動を受けている。第1の電動機18は、例えば、ACサーボモータ、DCサーボモータ、IPM(Interior Permanent Magnet)モータ又は誘導電動機等で構成されており、第1のサーボ増幅器27(本発明の第1の駆動回路に対応する)から与えられる正又は負の電圧信号を受けて対応する方向に回転可能である。第1の電動機18は、零回転から所定の回転速度まで可変速に両方向に回転可能であり、これによって第1の定容量形液体ポンプ16が駆動される。第1の電動機18を駆動する第1のサーボ増幅器27は、この第1の電動機18が誘導電動機の場合、インバータを使用することが望ましい。 The first single rod double acting cylinder 12 includes a rod chamber 12a (corresponding to the first working chamber of the present invention) and a bottom chamber 12b (corresponding to the second working chamber of the present invention). The inlet of the rod chamber 12a and the inlet of the bottom chamber 12b are respectively connected to a rod side pipe 14a and a bottom side pipe 14b which are pipe lines of a hydraulic circuit. The rod side pipe 14a is connected to one discharge port 16a (corresponding to the first discharge port of the present invention) of the first constant capacity liquid pump 16, and the bottom side pipe 14b is connected to the first constant capacity type liquid pump 16. It is connected to the other discharge port 16b (corresponding to the second discharge port of the present invention) of the capacitive liquid pump 16. The first constant-capacity liquid pump 16 is a constant capacity (cc / ev) type that can rotate in both the clockwise and counterclockwise directions. Discharge fluid pressure. The first constant capacity liquid pump 16 is connected to a first electric motor 18 and is driven at a variable speed from zero rotation to a predetermined rotation speed. The first electric motor 18 is constituted by, for example, an AC servo motor, a DC servo motor, an IPM (Interior Permanent Magnet) motor, an induction motor, or the like, and the first servo amplifier 27 (in the first drive circuit of the present invention). In response to a positive or negative voltage signal given by (corresponding), it can rotate in the corresponding direction. The first electric motor 18 can rotate in both directions at a variable speed from zero rotation to a predetermined rotation speed, and thereby the first constant displacement liquid pump 16 is driven. The first servo amplifier 27 that drives the first electric motor 18 desirably uses an inverter when the first electric motor 18 is an induction motor.
 第2の片ロッド形複動シリンダ13は、ロッド室13a(本発明の第1の作動室に対応する)及びボトム室13b(本発明の第2の作動室に対応する)を備えており、これらロッド室13aの入口及びボトム室13bの入口は、液圧回路の管路であるロッド側配管15a及びボトム側配管15bにそれぞれ接続されている。ロッド側配管15aは、第2の定容量形液体ポンプ17の一方の吐出口17a(本発明の第1の吐出口に対応する)に接続されており、ボトム側配管15bは、第2の定容量形液体ポンプ17の他方の吐出口17b(本発明の第2の吐出口に対応する)に接続されている。第2の定容量形液体ポンプ17は、時計方向及び反時計方向の両方向に回転可能な定容量(cc/ev)型であり、その回転方向に応じた方向に、回転速度に応じた所定の液圧を吐出する。この第2の定容量形液体ポンプ17は、第2の電動機19に接続されており、零回転から所定の回転速度まで可変速の駆動を受けている。第2の電動機19は、例えば、ACサーボモータ、DCサーボモータ、IPMモータ又は誘導電動機等で構成されており、第2のサーボ増幅器28(本発明の第2の駆動回路に対応する)から与えられる正又は負の電圧信号を受けて対応する方向に回転可能である。第2の電動機19は、零回転から所定の回転速度まで可変速に両方向に回転可能であり、これによって第2の定容量形液体ポンプ17が駆動される。第2の電動機19を駆動する第2のサーボ増幅器28は、この第2の電動機19が誘導電動機の場合、インバータを使用することが望ましい。 The second single rod type double acting cylinder 13 includes a rod chamber 13a (corresponding to the first working chamber of the present invention) and a bottom chamber 13b (corresponding to the second working chamber of the present invention). The inlet of the rod chamber 13a and the inlet of the bottom chamber 13b are respectively connected to a rod side pipe 15a and a bottom side pipe 15b which are pipes of a hydraulic circuit. The rod side pipe 15a is connected to one discharge port 17a (corresponding to the first discharge port of the present invention) of the second constant capacity liquid pump 17, and the bottom side pipe 15b is connected to the second constant volume type liquid pump 17. It is connected to the other discharge port 17b (corresponding to the second discharge port of the present invention) of the capacitive liquid pump 17. The second constant capacity liquid pump 17 is a constant capacity (cc / ev) type that can rotate in both the clockwise and counterclockwise directions. Discharge fluid pressure. The second constant capacity liquid pump 17 is connected to a second electric motor 19 and is driven at a variable speed from zero rotation to a predetermined rotation speed. The second electric motor 19 is composed of, for example, an AC servo motor, a DC servo motor, an IPM motor, an induction motor, or the like, and is given from a second servo amplifier 28 (corresponding to the second drive circuit of the present invention). In response to the positive or negative voltage signal generated, it can rotate in the corresponding direction. The second electric motor 19 can rotate in both directions at a variable speed from zero rotation to a predetermined rotation speed, and thereby the second constant capacity liquid pump 17 is driven. The second servo amplifier 28 that drives the second electric motor 19 preferably uses an inverter when the second electric motor 19 is an induction motor.
 第1の電動機18と第2の電動機19とは、正負が互いに異なる電圧信号が印加されることにより互いに異なる回転方向に回転するように構成されており、これら第1の電動機18と第2の電動機19とにそれぞれ接続され駆動される第1の定容量形液体ポンプ16と第2の定容量形液体ポンプ17とは、回転方向が互いに逆方向となるように切換駆動される。 The first electric motor 18 and the second electric motor 19 are configured to rotate in mutually different rotation directions when voltage signals having different positive and negative are applied to each other. The first electric motor 18 and the second electric motor 19 The first constant-capacity liquid pump 16 and the second constant-capacity liquid pump 17 connected to and driven by the electric motor 19 are switched and driven so that the rotation directions are opposite to each other.
 本実施形態において重要なポイントは、一方の第1の片ロッド形複動シリンダ12のロッド室12aに連通するロッド側配管14aと他方の第2の片ロッド形複動シリンダ13のボトム室13bに連通するボトム側配管15bとが互いに連通しており、第1の片ロッド形複動シリンダ12のボトム室12bに連通するボトム側配管14bと第2の片ロッド形複動シリンダ13のロッド室13aに連通するロッド側配管15aとが互いに連通している点にある。即ち、第1及び第2の片ロッド形複動シリンダ12及び13がたすき掛けに配管されており、これら第1及び第2の片ロッド形複動シリンダ12及び13がストロークしたときの供給量と戻り量との油量を同容量として、プッシュプル駆動されている。 The important points in this embodiment are the rod-side piping 14a communicating with the rod chamber 12a of one first single rod double acting cylinder 12 and the bottom chamber 13b of the other second single rod double acting cylinder 13. The communicating bottom side pipe 15 b communicates with each other, and the bottom side pipe 14 b communicating with the bottom chamber 12 b of the first single rod double acting cylinder 12 and the rod chamber 13 a of the second single rod type double acting cylinder 13. And the rod side pipe 15a communicating with each other. That is, the first and second single rod double acting cylinders 12 and 13 are connected to each other, and the supply amount when the first and second single rod double acting cylinders 12 and 13 are stroked. Push-pull drive is performed with the same amount of oil as the return amount.
 ロッド側配管14a及びボトム側配管14bとの間には、IN側が第1の定容量形液体ポンプ16及び第1のタンク21に接続され、OUT側がこれらロッド側配管14a及びボトム側配管14bにそれぞれ接続されたロッド側チェック弁20a(本発明の第1のチェック弁に対応する)及びボトム側チェック弁20b(本発明の第2のチェック弁に対応する)が設けられている。これらロッド側チェック弁20a及びボトム側チェック弁20bは、第1の定容量形液体ポンプ16の内部漏れを補償するために設けられている。 Between the rod side pipe 14a and the bottom side pipe 14b, the IN side is connected to the first constant capacity liquid pump 16 and the first tank 21, and the OUT side is connected to the rod side pipe 14a and the bottom side pipe 14b, respectively. A connected rod side check valve 20a (corresponding to the first check valve of the present invention) and a bottom side check valve 20b (corresponding to the second check valve of the present invention) are provided. The rod side check valve 20a and the bottom side check valve 20b are provided to compensate for internal leakage of the first constant displacement liquid pump 16.
 ロッド側配管15a及びボトム側配管15bとの間にも、IN側が第2の定容量形液体ポンプ17及び第2のタンク23に接続され、OUT側がこれらロッド側配管15a及びボトム側配管15bにそれぞれ接続されたロッド側チェック弁22a(本発明の第3のチェック弁に対応する)及びボトム側チェック弁22b(本発明の第4のチェック弁に対応する)が設けられている。これらロッド側チェック弁22a及びボトム側チェック弁22bは、第2の定容量形液体ポンプ17の内部漏れを補償するために設けられている。 Between the rod side pipe 15a and the bottom side pipe 15b, the IN side is connected to the second constant capacity liquid pump 17 and the second tank 23, and the OUT side is connected to the rod side pipe 15a and the bottom side pipe 15b, respectively. A connected rod side check valve 22a (corresponding to the third check valve of the present invention) and a bottom side check valve 22b (corresponding to the fourth check valve of the present invention) are provided. The rod side check valve 22a and the bottom side check valve 22b are provided to compensate for internal leakage of the second constant displacement liquid pump 17.
 舵角検出器25は、舵10の駆動量である回動角度を検出し、検出した回動角度に応じた角度信号を制御回路24に送り込むように構成されている。本実施形態の舵角検出器25は、具体的には、アーム11の回動角度を検出するロータリエンコーダによって構成されている。 The rudder angle detector 25 is configured to detect a rotation angle that is a driving amount of the rudder 10 and to send an angle signal corresponding to the detected rotation angle to the control circuit 24. Specifically, the steering angle detector 25 of the present embodiment is configured by a rotary encoder that detects the rotation angle of the arm 11.
 操舵角検出器26は、図示しない操船コンソールにおける操舵ステアリングの操舵角度を検出し、検出した操舵角度に応じた角度信号を制御回路24に送り込むように構成されている。本実施形態の操舵角検出器26は、図示しない操舵ステアリングの回動角度を検出するロータリエンコーダによって構成されている。 The steering angle detector 26 is configured to detect a steering angle of a steering steering at a boat maneuvering console (not shown) and send an angle signal corresponding to the detected steering angle to the control circuit 24. The steering angle detector 26 of the present embodiment is configured by a rotary encoder that detects a turning angle of steering steering (not shown).
 制御回路24は、図2に示すように、舵角検出器25、操舵角検出器26及び操船コンソールに設けられた操作部29に電気的に接続された入力インタフェース24aと、第1及び第2のサーボ増幅器27及び28にそれぞれ電気的に接続された出力インタフェース24bと、操船コンソールに設けられたディスプレイ30に電気的に接続された画像出力部24cと、中央処理装置(CPU)24dと、リードオンリメモリ(ROM)24eと、ランダムアクセスメモリ(RAM)24fと、ハードディスク駆動装置(HDD)24gと、これら入力インタフェース24a、出力インタフェース24b、画像出力部24c、CPU24d、ROM24e、RAM24f、及びHDD24gを互いに接続するバス24hとを備えたコンピュータ及びこれを作動させるプログラムから構成される。 As shown in FIG. 2, the control circuit 24 includes an input interface 24a electrically connected to a steering angle detector 25, a steering angle detector 26, and an operation unit 29 provided in the boat maneuvering console, and first and second Output interface 24b electrically connected to the servo amplifiers 27 and 28, an image output unit 24c electrically connected to the display 30 provided in the boat maneuvering console, a central processing unit (CPU) 24d, a lead Only the memory (ROM) 24e, the random access memory (RAM) 24f, the hard disk drive (HDD) 24g, the input interface 24a, the output interface 24b, the image output unit 24c, the CPU 24d, the ROM 24e, the RAM 24f, and the HDD 24g are mutually connected. Computer having bus 24h to be connected And it consists of a program for operating the same.
 CPU24dは、ROM24eに記憶されているオペレーションシステム(OS)やブートプログラム等の基本プログラムに従ってRAM24fに記憶されているプログラムを実行して本実施形態の処理を行う。また、CPU24dは、RAM24f、HDD24g、画像出力部24c、入力インタフェース24a及び出力インタフェース24bの動作を制御する。 The CPU 24d executes a program stored in the RAM 24f according to a basic program such as an operation system (OS) or a boot program stored in the ROM 24e to perform the processing of the present embodiment. The CPU 24d controls operations of the RAM 24f, the HDD 24g, the image output unit 24c, the input interface 24a, and the output interface 24b.
 RAM24fは制御回路24のメインメモリとして使用され、HDD24gから転送されたプログラムやデータを記憶する。また、RAM24fは、プログラム実行時の各種データが一時的に記憶されるワークエリアとしても使用される。 The RAM 24f is used as a main memory of the control circuit 24, and stores programs and data transferred from the HDD 24g. The RAM 24f is also used as a work area for temporarily storing various data during program execution.
 HDD24gには、プログラム及びデータがあらかじめ記憶されている。 The HDD 24g stores programs and data in advance.
 画像出力部24cは、CPU24dの指示に従って画像データを生成し、ディスプレイ30に出力する。 The image output unit 24c generates image data according to an instruction from the CPU 24d and outputs the image data to the display 30.
 入力インタフェース24aは、舵角検出器25、操舵角検出器26及び操作部29からCPU24d又はRAM24fへの入力データの転送を制御する。 The input interface 24a controls transfer of input data from the steering angle detector 25, the steering angle detector 26, and the operation unit 29 to the CPU 24d or the RAM 24f.
 出力インタフェース24bは、CPU24dから第1及び第2のサーボ増幅器27及び28への出力データの転送を制御する。 The output interface 24b controls the transfer of output data from the CPU 24d to the first and second servo amplifiers 27 and 28.
 このような構成の制御回路24において、CPU24dは、作動開始時に、まず、RAM24f内にプログラム記憶領域、データ記憶領域及びワークエリアを確保し、HDD24g又は外部からプログラム及びデータを取り込んで、プログラム記憶領域及びデータ記憶領域に格納する。次いで、このプログラム記憶領域に格納されたプログラムに基づいて、図3に示す処理を実行する。 In the control circuit 24 having such a configuration, the CPU 24d first secures a program storage area, a data storage area, and a work area in the RAM 24f at the start of operation, and fetches the program and data from the HDD 24g or from the outside. And stored in the data storage area. Next, the processing shown in FIG. 3 is executed based on the program stored in the program storage area.
 図3に示すプログラムは、作動終了時まで短時間の一定周期毎に繰り返し実行されるように構成されている。 The program shown in FIG. 3 is configured to be repeatedly executed at regular intervals for a short time until the end of operation.
 まず、入力インタフェース24aを介して操舵角検出器26から操船コンソールに設けられた操舵ステアリングの操舵量に応じた操舵角度θを表す角度指令信号Sを取り込む(ステップS1)。 First, the angle command signal S i representing the steering angle θ i corresponding to the steering amount of the steering steering provided in the boat maneuvering console is fetched from the steering angle detector 26 via the input interface 24a (step S1).
 次いで、入力インタフェース24aを介して舵角検出器25から舵10の現在の回動角度θを表す角度信号Sを取り込む(ステップS2)。 Next, an angle signal S f representing the current turning angle θ f of the rudder 10 is fetched from the rudder angle detector 25 via the input interface 24a (step S2).
 次いで、第1のサーボ増幅器27を駆動する駆動信号Sd1をθ-θの演算、即ち操舵角度θから回動角度θを差引く演算を行って取得し(ステップS3)、第2のサーボ増幅器28を駆動する駆動信号Sd2をθ-θの演算、即ち回動角度θから操舵角度θを差引く演算を行って取得する(ステップS4)。 Next, the drive signal S d1 for driving the first servo amplifier 27 is obtained by calculating θ if , that is, by subtracting the rotation angle θ f from the steering angle θ i (step S3). The drive signal S d2 for driving the second servo amplifier 28 is obtained by calculating θ f −θ i , that is, calculating the subtraction of the steering angle θ i from the rotation angle θ f (step S4).
 その後、このようにして得られた駆動信号Sd1を出力インタフェース24bを介して第1のサーボ増幅器27へ出力し(ステップS5)、同様に得られた駆動信号Sd2を出力インタフェース24bを介して第2のサーボ増幅器28へ出力する(ステップS6)。 Thereafter, the drive signal S d1 obtained in this way is outputted to the first servo amplifier 27 via the output interface 24b (step S5), and the drive signal S d2 obtained in the same manner is outputted via the output interface 24b. Output to the second servo amplifier 28 (step S6).
 このように第1及び第2のサーボ増幅器27及び28には、互いに正負が反対の同じレベルの電圧を印加するよう指示する駆動信号Sd1及び駆動信号Sd2が出力される。例えば、第1のサーボ増幅器27に正の駆動信号Sd1が印加されるとこの第1のサーボ増幅器27は正の電圧(+電圧)を出力し、同時に第2のサーボ増幅器28に負の駆動信号Sd2が印加されるとこの第2のサーボ増幅器28は同じレベルの負の電圧(-電圧)を出力し、その結果、舵10は時計方向に回動する。 As described above, the first and second servo amplifiers 27 and 28 output the drive signal S d1 and the drive signal S d2 instructing to apply voltages of the same level, which are opposite to each other. For example, when a positive drive signal S d1 is applied to the first servo amplifier 27, the first servo amplifier 27 outputs a positive voltage (+ voltage), and at the same time, the second servo amplifier 28 is negatively driven. When the signal S d2 is applied, the second servo amplifier 28 outputs a negative voltage (−voltage) of the same level, and as a result, the rudder 10 rotates clockwise.
 より詳細に説明すると、第1のサーボ増幅器27から正の電圧(+電圧)が出力されると、第1の電動機18は時計方向に回転し、第1の定容量形液体ポンプ16からの液圧が第1の片ロッド形複動シリンダ12のボトム室12bに供給されて、この第1の片ロッド形複動シリンダ12は突出方向(図にて上方向)へ移動し、アーム11を押す動作を行う。また、反対に、第2のサーボ増幅器28から負の電圧(-電圧)が出力されるので、第2の電動機19は反時計方向に回転し、第2の定容量形液体ポンプ17からの液圧が第2の片ロッド形複動シリンダ13のロッド室13aに供給されて、この第2の片ロッド形複動シリンダ13が引込方向(図にて下方向)へ移動し、アーム11を引く動作を行う。これにより、舵10は、図4に示すように、時計方向に回動する。 More specifically, when a positive voltage (+ voltage) is output from the first servo amplifier 27, the first electric motor 18 rotates clockwise, and the liquid from the first constant capacity liquid pump 16 is rotated. The pressure is supplied to the bottom chamber 12 b of the first single rod double acting cylinder 12, and the first single rod double acting cylinder 12 moves in the protruding direction (upward in the figure) and pushes the arm 11. Perform the action. On the other hand, since a negative voltage (−voltage) is output from the second servo amplifier 28, the second electric motor 19 rotates counterclockwise and the liquid from the second constant capacity liquid pump 17 is rotated. The pressure is supplied to the rod chamber 13a of the second single rod type double acting cylinder 13, the second single rod type double acting cylinder 13 moves in the pulling direction (downward in the figure) and pulls the arm 11. Perform the action. Thereby, the rudder 10 rotates clockwise as shown in FIG.
 このとき、第1の片ロッド形複動シリンダ12のボトム室12bへは第2の定容量形液体ポンプ17からの液圧も供給され、一方、第2の片ロッド形複動シリンダ13のロッド室13aへは第1の定容量形液体ポンプ16からの液圧も供給されることとなる。即ち、第1の片ロッド形複動シリンダ12も第2の片ロッド形複動シリンダ13も、第1の定容量形液体ポンプ16及び第2の定容量形液体ポンプ17の両方からの吐出量を加算した吐出量で作動することとなる。従って、第1の定容量形液体ポンプ16の吐出量と第2の定容量形液体ポンプ17の吐出量とは、互いに異なっていても作動可能であるが、両吐出量が略等しい方が望ましい。 At this time, the hydraulic pressure from the second constant displacement liquid pump 17 is also supplied to the bottom chamber 12b of the first single rod double acting cylinder 12, while the rod of the second single rod double acting cylinder 13 is supplied. The hydraulic pressure from the first constant capacity liquid pump 16 is also supplied to the chamber 13a. That is, both the first single rod double acting cylinder 12 and the second single rod double acting cylinder 13 discharge from both the first constant displacement liquid pump 16 and the second constant displacement liquid pump 17. It operates with the discharge amount which added. Accordingly, the discharge amount of the first constant displacement liquid pump 16 and the discharge amount of the second constant displacement liquid pump 17 can be operated even if they are different from each other, but it is desirable that the discharge amounts are substantially equal. .
 図3のフローチャートにおいて、ステップS6の処理の後には、操舵の作動終了かどうかの判別が行われ(ステップS7)、作動終了と判別した場合(YESの場合)は、このプログラムを終了するが、作動終了ではないと判別した場合(NOの場合)は、ステップS1へ戻り、ステップS1~S7の処理を繰り返して実行する。 In the flowchart of FIG. 3, after the process of step S6, it is determined whether or not the steering operation has ended (step S7). If it is determined that the operation has ended (in the case of YES), this program ends. When it is determined that the operation is not finished (in the case of NO), the process returns to step S1, and the processes of steps S1 to S7 are repeated.
 このようにステップS1~S7の処理が周期的に繰り返されることにより、舵10の回動角度が操舵ステアリングの操舵角度に近づき、一致することとなる。即ち、舵角検出器25からの角度信号Sにより表される舵10の現在の回動角度θと、操舵角検出器26からの角度指令信号Sにより表される操舵角度θとの差|θ-θ|がゼロとなり、その結果、第1の電動機18と第2の電動機19とが停止し、設定される角度指令信号Sによる操舵角度θが変動しない限り、舵10はその角度を保持する。 As described above, the processes of steps S1 to S7 are periodically repeated, so that the turning angle of the rudder 10 approaches and matches the steering angle of the steering steering. That is, the current turning angle θ f of the rudder 10 represented by the angle signal S f from the rudder angle detector 25 and the steering angle θ i represented by the angle command signal S i from the steering angle detector 26. Difference | θ i −θ f | becomes zero, and as a result, the first electric motor 18 and the second electric motor 19 stop, and unless the steering angle θ i by the set angle command signal S i changes, The rudder 10 maintains that angle.
 このとき、舵角検出器25からの舵10の回動角度θに基づいて、第1のサーボ増幅器27への駆動信号Sd1と第2のサーボ増幅器28への駆動信号Sd2を制御して第1の電動機18と第2の電動機19との回転速度を制御し、第1の片ロッド形複動シリンダ12と第2の片ロッド形複動シリンダ13とが同期した速度で移動するように、第1の定容量形液体ポンプ16と第2の定容量形液体ポンプ17との吐出量を制御している。 At this time, the drive signal S d1 to the first servo amplifier 27 and the drive signal S d2 to the second servo amplifier 28 are controlled based on the turning angle θ f of the rudder 10 from the rudder angle detector 25. Thus, the rotational speeds of the first electric motor 18 and the second electric motor 19 are controlled so that the first single rod double acting cylinder 12 and the second single rod double acting cylinder 13 move at a synchronized speed. In addition, the discharge amounts of the first constant displacement liquid pump 16 and the second constant displacement liquid pump 17 are controlled.
 一方、第1のサーボ増幅器27から負の電圧(-電圧)が出力されると、第1の電動機18は反時計方向に回転し、第1の定容量形液体ポンプ16からの液圧が第1の片ロッド形複動シリンダ12のロッド室12aに供給されて、この第1の片ロッド形複動シリンダ12は引込方向(図にて下方向)へ移動し、アーム11を引く動作を行う。また、反対に、第2のサーボ増幅器28から正の電圧(+電圧)が出力されるので、第2の電動機19は時計方向に回転し、第2の定容量形液体ポンプ17からの液圧が第2の片ロッド形複動シリンダ13のボトム室13bに供給されて、この第2の片ロッド形複動シリンダ13が突出方向(図にて上方向)へ移動し、アーム11を押す動作を行う。これにより、舵10は、図5に示すように、反時計方向に回動する。 On the other hand, when a negative voltage (−voltage) is output from the first servo amplifier 27, the first electric motor 18 rotates counterclockwise, and the hydraulic pressure from the first constant displacement liquid pump 16 changes to the first pressure. The first single rod type double acting cylinder 12 is supplied to the rod chamber 12a of the single rod type double acting cylinder 12 and moves in the retracting direction (downward in the figure) to pull the arm 11. . On the other hand, since a positive voltage (+ voltage) is output from the second servo amplifier 28, the second electric motor 19 rotates in the clockwise direction, and the hydraulic pressure from the second constant capacity liquid pump 17 is increased. Is supplied to the bottom chamber 13b of the second single rod double acting cylinder 13, and the second single rod double acting cylinder 13 moves in the protruding direction (upward in the figure) and pushes the arm 11. I do. As a result, the rudder 10 rotates counterclockwise as shown in FIG.
 前述したように、本実施形態では、第1及び第2の片ロッド形複動シリンダ12及び13がたすき掛けに配管されており、第1の片ロッド形複動シリンダ12のロッド室12aと第2の片ロッド形複動シリンダ13のボトム室13bとが互いに連通しており、第1の片ロッド形複動シリンダ12のボトム室12bと第2の片ロッド形複動シリンダ13のロッド室13aとが互いに連通している。 As described above, in the present embodiment, the first and second single rod type double acting cylinders 12 and 13 are piped in a cross, and the rod chamber 12a of the first single rod type double acting cylinder 12 and the The bottom chamber 13b of the two single rod double acting cylinders 13 communicates with each other, and the bottom chamber 12b of the first single rod double acting cylinder 12 and the rod chamber 13a of the second single rod double acting cylinder 13 are connected. And communicate with each other.
 このため、第1の定容量形液体ポンプ16からの液圧は、第1の片ロッド形複動シリンダ12のボトム室12bのみならず第2の片ロッド形複動シリンダ13のロッド室13aにも供給されて、アーム11の、従って舵10の時計方向の回動を補助する。さらに、第2の定容量形液体ポンプ17からの液圧は、第2の片ロッド形複動シリンダ13のロッド室13aのみならず第1の片ロッド形複動シリンダ12のボトム室12bにも供給されて、アーム11の、従って舵10の時計方向の回動を補助する。 Therefore, the hydraulic pressure from the first constant displacement liquid pump 16 is applied not only to the bottom chamber 12b of the first single rod double acting cylinder 12 but also to the rod chamber 13a of the second single rod double acting cylinder 13. Is also provided to assist in the clockwise rotation of the arm 11 and thus the rudder 10. Further, the hydraulic pressure from the second constant displacement liquid pump 17 is applied not only to the rod chamber 13a of the second single rod double acting cylinder 13 but also to the bottom chamber 12b of the first single rod double acting cylinder 12. Supplied to assist in the clockwise rotation of the arm 11 and thus the rudder 10.
 逆に、第1の定容量形液体ポンプ16からの液圧は、第1の片ロッド形複動シリンダ12のロッド室12aのみならず第2の片ロッド形複動シリンダ13のボトム室13bにも供給されて、アーム11の、従って舵10の反時計方向の回動を補助する。さらに、第2の定容量形液体ポンプ17からの液圧は、第2の片ロッド形複動シリンダ13のボトム室13bのみならず第1の片ロッド形複動シリンダ12のロッド室12aにも供給されて、アーム11の、従って舵10の反時計方向の回動を補助する。 Conversely, the hydraulic pressure from the first constant displacement liquid pump 16 is applied not only to the rod chamber 12 a of the first single rod double acting cylinder 12 but also to the bottom chamber 13 b of the second single rod double acting cylinder 13. Is also provided to assist in the counterclockwise rotation of the arm 11 and thus the rudder 10. Further, the hydraulic pressure from the second constant displacement liquid pump 17 is applied not only to the bottom chamber 13 b of the second single rod double acting cylinder 13 but also to the rod chamber 12 a of the first single rod double acting cylinder 12. Supplied to assist in the counterclockwise rotation of the arm 11 and thus the rudder 10.
 従って、一方の電動機及び/又は定容量形液体ポンプが故障した場合、例えば第2の電動機19及び/又は第2の定容量形液体ポンプ17が故障した場合、第1の電動機18によって駆動される第1の定容量形液体ポンプ16からの液圧が、第1の片ロッド形複動シリンダ12のボトム室12bと第2の片ロッド形複動シリンダ13のロッド室13aとに自動的に供給されて、第1の片ロッド形複動シリンダ12及び第2の片ロッド形複動シリンダ13の両方を作動させ、舵10を時計方向に回動させることができる。このため、故障した側の第2の片ロッド形複動シリンダ13のロッド室13aとボトム室13bとを電磁切替弁等で連通させてフリー状態に切換制御することなく、自動的にフェイルセーフ動作を行うことができる。 Accordingly, when one of the electric motors and / or the constant displacement liquid pump fails, for example, when the second electric motor 19 and / or the second constant displacement liquid pump 17 fails, the first electric motor 18 is driven. The hydraulic pressure from the first constant displacement liquid pump 16 is automatically supplied to the bottom chamber 12b of the first single rod double acting cylinder 12 and the rod chamber 13a of the second single rod double acting cylinder 13. Thus, both the first single rod type double acting cylinder 12 and the second single rod type double acting cylinder 13 are operated, and the rudder 10 can be rotated clockwise. Therefore, the rod chamber 13a and the bottom chamber 13b of the second single rod double acting cylinder 13 on the failed side are communicated with each other by an electromagnetic switching valve or the like, and the fail safe operation is automatically performed without switching control to the free state. It can be performed.
 次に、本実施形態における船舶の操舵装置の作動について説明する。 Next, the operation of the ship steering apparatus according to this embodiment will be described.
 まず、操作員が操船コンソールにおける操舵ステアリングを操作(操舵)すると、操舵角検出器26は、その舵角量に応じた操舵角度θを表す角度指令信号Sを制御回路24へ送る。一方、舵角検出器25は、舵10の現在の回動角度θを表す角度信号Sを制御回路24へ送る。 First, when the operator operates (steers) the steering steering in the boat maneuvering console, the steering angle detector 26 sends an angle command signal S i representing the steering angle θ i corresponding to the steering angle amount to the control circuit 24. On the other hand, the rudder angle detector 25 sends an angle signal S f representing the current turning angle θ f of the rudder 10 to the control circuit 24.
 制御回路24は、θ-θの演算結果に相当する駆動信号Sd1を第1のサーボ増幅器27へ送り、θ-θの演算結果に相当する駆動信号Sd2を第2のサーボ増幅器28へ送ることにより、第1の電動機18及び第2の電動機19にそれぞれ異なった正及び負の電圧の指令を出力し、これら第1の電動機18及び第2の電動機19を起動すると共に、両者を相互に逆方向に回転させる。第1の電動機18及び第2の電動機19は、回転速度が零から所定の回転速度まで迅速に上昇し、第1の定容量形液体ポンプ16及び第2の定容量形液体ポンプ17を回転させて液圧を発生させる。第1の定容量形液体ポンプ16の液圧は第1の片ロッド形複動シリンダ12のロッド室12a又はボトム室12bに供給されて、第1の片ロッド形複動シリンダ12を引込方向又は突出方向に移動させる。一方、第2の定容量形液体ポンプ17の液圧は第2の片ロッド形複動シリンダ13のボトム室13b又はロッド室13aに供給されて、第2の片ロッド形複動シリンダ13を第1の片ロッド形複動シリンダ12とは反対の方向である突出方向又は引込方向に移動させる。さらに、第1の定容量形液体ポンプ16の液圧は第2の片ロッド形複動シリンダ13のボトム室13b又はロッド室13aに供給されて、第2の片ロッド形複動シリンダ13を突出方向又は引込方向に移動させる。第2の定容量形液体ポンプ17の液圧は第1の片ロッド形複動シリンダ12のロッド室12a又はボトム室12bに供給されて、第1の片ロッド形複動シリンダ12を第2の片ロッド形複動シリンダ13とは反対の方向である引込方向又は突出方向に移動させる。 The control circuit 24 sends the drive signal S d1 corresponding to the calculation result of θ i −θ f to the first servo amplifier 27, and the drive signal S d2 corresponding to the calculation result of θ f −θ i to the second servo. By sending to the amplifier 28, different positive and negative voltage commands are output to the first electric motor 18 and the second electric motor 19, respectively, and the first electric motor 18 and the second electric motor 19 are started, Both are rotated in opposite directions. The first electric motor 18 and the second electric motor 19 rapidly increase in rotational speed from zero to a predetermined rotational speed, and rotate the first constant capacity liquid pump 16 and the second constant capacity liquid pump 17. To generate hydraulic pressure. The hydraulic pressure of the first constant displacement type liquid pump 16 is supplied to the rod chamber 12a or the bottom chamber 12b of the first single rod type double acting cylinder 12 to move the first single rod type double acting cylinder 12 in the retracting direction or Move in the protruding direction. On the other hand, the hydraulic pressure of the second constant displacement type liquid pump 17 is supplied to the bottom chamber 13b or the rod chamber 13a of the second single rod double acting cylinder 13 so that the second single rod double acting cylinder 13 can It is moved in the projecting direction or the retracting direction, which is the direction opposite to the one-rod double-acting cylinder 12. Further, the hydraulic pressure of the first constant displacement type liquid pump 16 is supplied to the bottom chamber 13b or the rod chamber 13a of the second single rod double acting cylinder 13 and protrudes from the second single rod double acting cylinder 13. Move in the direction or pull-in direction. The hydraulic pressure of the second constant displacement type liquid pump 17 is supplied to the rod chamber 12a or the bottom chamber 12b of the first single rod double acting cylinder 12, and the first single rod double acting cylinder 12 is supplied to the second single acting double pump cylinder 12. It is moved in the retracting direction or the protruding direction, which is the opposite direction to the single rod type double acting cylinder 13.
 これにより、アーム11は、第1の片ロッド形複動シリンダ12により突出方向又は引込方向と、第2の片ロッド形複動シリンダ13により反対の方向の引込方向又は突出方向との多重の合力を受けて、容易にかつ迅速に回動する。 As a result, the arm 11 has a multiple resultant force in the projecting direction or the retracting direction by the first single rod double acting cylinder 12 and the retracting direction or the projecting direction in the opposite direction by the second single rod double acting cylinder 13. And easily and quickly rotate.
 制御回路24の上述した作動により、舵角検出器25からの角度信号Sにより表される舵10の回動角度θと、操舵角検出器26からの角度指令信号Sにより表される操舵角度θとの差|θ-θ|がゼロとなり、第1の電動機18と第2の電動機19とが停止して、アーム11を、従って舵10を正確な回動角度に制御することができる。舵10は、操舵角検出器26からの角度指令信号Sが変動しない限りその角度を保持する。また、第1の片ロッド形複動シリンダ12と第2の片ロッド形複動シリンダ13とは、制御回路24の指示で液圧ポンブの吐出量が制御されて同期した速度で回動するため、アーム11は大きな回転力を受けて回動することとなる。 By the above-described operation of the control circuit 24, the turning angle θ f of the rudder 10 represented by the angle signal S f from the rudder angle detector 25 and the angle command signal S i from the steering angle detector 26 are represented. The difference | θ i −θ f | from the steering angle θ i becomes zero, the first electric motor 18 and the second electric motor 19 stop, and the arm 11 and thus the rudder 10 are controlled to an accurate rotation angle. can do. The rudder 10 maintains the angle unless the angle command signal S i from the steering angle detector 26 fluctuates. Further, the first single rod double acting cylinder 12 and the second single rod double acting cylinder 13 rotate at a synchronized speed by controlling the discharge amount of the hydraulic pump according to the instruction of the control circuit 24. The arm 11 is rotated by receiving a large rotational force.
 以上説明したように、本実施形態の船舶用の操舵装置によれば、第1の定容量形液体ポンプ16からの液圧をこれに接続された第1及び第2の片ロッド形複動シリンダ12及び13の両方に直接的に供給していると共に、第2の定容量形液体ポンプ17からの液圧をこれに接続された第1及び第2の片ロッド形複動シリンダ12及び13の両方に直接的に供給しており、さらに、複数の片ロッド形複動シリンダ12及び13を1つのアーム11に連結し、複数の複動シリンダの多重の合力によりアーム11を、従って舵10を駆動している。この直接制御方式によれば、方向制御弁を用いることなく第1及び第2の片ロッド形複動シリンダ12及び13の押し引き、ロッド速度、ロッド推力を第1及び第2の定容量形液体ポンプ16及び17により直接的に制御することができる。 As described above, according to the marine vessel steering apparatus of the present embodiment, the first and second single rod double acting cylinders connected to the hydraulic pressure from the first constant displacement liquid pump 16. Of the first and second single rod type double acting cylinders 12 and 13 which are directly supplied to both 12 and 13 and the hydraulic pressure from the second constant displacement liquid pump 17 is connected thereto. Further, a plurality of single-rod double-acting cylinders 12 and 13 are connected to one arm 11, and the arm 11 and thus the rudder 10 are coupled by the combined force of the plurality of double-acting cylinders. Driving. According to this direct control system, the first and second constant displacement liquids are pushed and pulled, the rod speed, and the rod thrust of the first and second single rod double acting cylinders 12 and 13 without using a directional control valve. It can be controlled directly by pumps 16 and 17.
 特に本実施形態の操舵装置においては、第1の定容量形液体ポンプ16からの液圧が第1の片ロッド形複動シリンダ12のロッド室12aのみならず第2の片ロッド形複動シリンダ13のボトム室13bにも供給されて、アーム11を、従って舵10を反時計方向に回動させる。さらに、第2の定容量形液体ポンプ17からの液圧が第2の片ロッド形複動シリンダ13のボトム室13bのみならず第1の片ロッド形複動シリンダ12のロッド室12aにも供給されて、アーム11を、従って舵10を反時計方向に回動させる。 In particular, in the steering device of the present embodiment, the hydraulic pressure from the first constant displacement liquid pump 16 is not limited to the rod chamber 12a of the first single rod double acting cylinder 12, but also the second single rod double acting cylinder. 13 is also supplied to the bottom chamber 13b to rotate the arm 11 and thus the rudder 10 counterclockwise. Further, the hydraulic pressure from the second constant displacement liquid pump 17 is supplied not only to the bottom chamber 13 b of the second single rod double acting cylinder 13 but also to the rod chamber 12 a of the first single rod double acting cylinder 12. As a result, the arm 11 and thus the rudder 10 are rotated counterclockwise.
 従って、一方の電動機及び/又は定容量形液体ポンプが故障した場合、例えば第2の電動機19及び/又は第2の定容量形液体ポンプ17が故障した場合、第1の電動機18によって駆動される第1の定容量形液体ポンプ16からの液圧が、第1の片ロッド形複動シリンダ12のボトム室12b又はロッド室12aと、第2の片ロッド形複動シリンダ13のロッド室13a又はボトム室13bとに自動的に供給されて、第1の片ロッド形複動シリンダ12及び第2の片ロッド形複動シリンダ13の両方を作動させ、舵10を時計方向又は反時計方向に回動させることができる。この場合、故障した側の片ロッド形複動シリンダのロッド室とボトム室とを電磁切替弁等で連通させてフリー状態に切換制御することなく、アーム11を回動させることができるため、より簡易化した構成で、安全性及び信頼性を確実にかつ自動的に確保できる自動フェイルセーフ機能を得ることができる。また、第1の片ロッド形複動シリンダ12のロッド室12a及びボトム室12bとの間で、第2の片ロッド形複動シリンダ13のロッド室13a及びボトム室13bとの間で、液量の過不足が生じないので、これらの間に液量補償回路を設ける必要がないから、その意味でも、より簡易化した構成とすることができる。 Accordingly, when one of the electric motors and / or the constant displacement liquid pump fails, for example, when the second electric motor 19 and / or the second constant displacement liquid pump 17 fails, the first electric motor 18 is driven. The hydraulic pressure from the first constant displacement liquid pump 16 is such that the bottom chamber 12b or the rod chamber 12a of the first single rod double acting cylinder 12 and the rod chamber 13a of the second single rod double acting cylinder 13 or Automatically supplied to the bottom chamber 13b, both the first single rod double acting cylinder 12 and the second single rod double acting cylinder 13 are operated, and the rudder 10 is rotated clockwise or counterclockwise. Can be moved. In this case, the arm 11 can be rotated without controlling the switching to the free state by connecting the rod chamber and the bottom chamber of the failed single rod type double acting cylinder with an electromagnetic switching valve or the like. With a simplified configuration, it is possible to obtain an automatic fail-safe function that can reliably and automatically ensure safety and reliability. Further, the amount of liquid between the rod chamber 12a and the bottom chamber 12b of the first single rod double acting cylinder 12 and between the rod chamber 13a and the bottom chamber 13b of the second single rod double acting cylinder 13 is as follows. Therefore, since it is not necessary to provide a liquid amount compensation circuit between them, a simpler configuration can be achieved in this sense.
 なお、上述した実施形態においては、可変速度の電動機と定容量形液体ポンプとを用いた例を説明したが、一定の回転速度の電動機と可変容量形液体ポンプとを用いて構成し、制御回路からの指令信号により、電動機の回転方向と可変容量形液体ポンプの吐出量の制御、又は電動機の回転方向を一定にして可変容量形液体ポンプの吐出方向と吐出量を制御するようにしても良い。 In the above-described embodiment, the example using the variable speed electric motor and the constant displacement liquid pump has been described. However, the control circuit is configured by using the electric motor having a constant rotational speed and the variable displacement liquid pump. May control the rotation direction of the electric motor and the discharge amount of the variable displacement liquid pump, or may control the discharge direction and the discharge amount of the variable displacement liquid pump while keeping the rotation direction of the electric motor constant. .
 以上述べた実施形態は全て本発明を例示的に示すものであって限定的に示すものではなく、本発明は他の種々の変形態様及び変更態様で実施することができる。従って本発明の範囲は特許請求の範囲及びその均等範囲によってのみ規定されるものである。 The embodiments described above are all illustrative of the present invention and are not intended to be limiting, and the present invention can be implemented in other various modifications and changes. Therefore, the scope of the present invention is defined only by the claims and their equivalents.

Claims (8)

  1.  第1及び第2の電動機と、該第1及び第2の電動機にそれぞれ連結されて駆動されるように構成されており各々が両方向に液体を吐出する第1及び第2の吐出口を備えた第1及び第2の液体ポンプと、該第1及び第2の液体ポンプにそれぞれ対応して設けられていると共に操舵すべき舵に連結された第1及び第2の複動シリンダとを備えており、
     前記第1の液体ポンプの前記第1の吐出口が前記第1の複動シリンダの第1の作動室と前記第2の複動シリンダの第2の作動室とに連通していると共に、前記第1の液体ポンプの前記第2の吐出口が前記第1の複動シリンダの第2の作動室と前記第2の複動シリンダの第1の作動室とに連通しており、
     前記第2の液体ポンプの前記第1の吐出口が前記第2の複動シリンダの第1の作動室と前記第1の複動シリンダの第2の作動室とに連通していると共に、前記第2の液体ポンプの前記第2の吐出口が前記第2の複動シリンダの第2の作動室と前記第1の複動シリンダの第1の作動室とに連通しており、
     さらに、前記舵の回動角度θを検出する舵角検出器と、操舵ステアリングの操舵角度θを検出する操舵角検出器と、前記舵角検出器及び前記操舵角検出器に電気的に接続されており、検出された回動角度と操舵角度との差(θ-θ)及び差(θ-θ)を演算し、該差(θ-θ)に対応する駆動信号Sd1及び該差(θ-θ)に対応する駆動信号Sd2を出力する制御回路と、該制御回路に電気的に接続されており、出力された駆動信号Sd1に応じて前記第1の電動機を駆動する第1の駆動回路と、前記制御回路に電気的に接続されており、出力された駆動信号Sd2に応じて前記第2の電動機を駆動する第2の駆動回路とをさらに備えていることを特徴とする船舶用の操舵装置。
    The first and second electric motors and the first and second electric motors are connected to and driven by the first and second electric motors, respectively, and each includes first and second discharge ports that discharge liquid in both directions. First and second liquid pumps, and first and second double-acting cylinders provided corresponding to the first and second liquid pumps and connected to a rudder to be steered, respectively. And
    The first discharge port of the first liquid pump communicates with a first working chamber of the first double acting cylinder and a second working chamber of the second double acting cylinder, and The second discharge port of the first liquid pump communicates with the second working chamber of the first double acting cylinder and the first working chamber of the second double acting cylinder;
    The first discharge port of the second liquid pump communicates with a first working chamber of the second double acting cylinder and a second working chamber of the first double acting cylinder, and The second discharge port of the second liquid pump communicates with the second working chamber of the second double acting cylinder and the first working chamber of the first double acting cylinder;
    Further, a steering angle detector for detecting the turning angle θ f of the rudder, a steering angle detector for detecting a steering angle θ i of steering steering, and the steering angle detector and the steering angle detector are electrically connected to the steering angle detector. A drive that is connected, calculates a difference (θ i −θ f ) and a difference (θ f −θ i ) between the detected rotation angle and the steering angle, and corresponds to the difference (θ i −θ f ) A control circuit that outputs a drive signal S d2 corresponding to the signal S d1 and the difference (θ f −θ i ), and is electrically connected to the control circuit, and is configured to respond to the output drive signal S d1. A first drive circuit for driving the first electric motor; and a second drive circuit that is electrically connected to the control circuit and drives the second electric motor in accordance with the output drive signal S d2. A marine steering apparatus further comprising:
  2.  前記第1の駆動回路及び前記第2の駆動回路は、前記第1の液体ポンプ及び前記第2の液体ポンプの回転方向が互いに逆方向となるように正負が互いに異なる電圧信号を前記第1の電動機及び前記第2の電動機に出力するように構成されていることを特徴とする請求項1に記載の船舶用の操舵装置。 The first drive circuit and the second drive circuit are configured to output voltage signals having different positive and negative voltages so that rotation directions of the first liquid pump and the second liquid pump are opposite to each other. The marine steering apparatus according to claim 1, wherein the marine steering apparatus is configured to output to an electric motor and the second electric motor.
  3.  前記舵に一体的に固着されており、該舵の支点を中心にして回動駆動されるアームをさらに備えており、前記第1の複動シリンダ及び前記第2の複動シリンダは前記アームの両端部にそれぞれ設けられた一対の連結部に揺動自在に連結されている一対の片ロッド形複動シリンダであることを特徴とする請求項1又は2に記載の船舶用の操舵装置。 The arm is fixed integrally with the rudder, and further includes an arm that is rotationally driven around a fulcrum of the rudder. The first double-acting cylinder and the second double-acting cylinder are provided on the arm. 3. The marine steering apparatus according to claim 1, wherein the marine steering apparatus is a pair of single-rod double-acting cylinders swingably connected to a pair of connecting portions provided at both ends. 4.
  4.  前記舵角検出器は、前記アームの回動角度を検出するロータリエンコーダであることを特徴とする請求項3に記載の船舶用の操舵装置。 The ship steering apparatus according to claim 3, wherein the rudder angle detector is a rotary encoder that detects a rotation angle of the arm.
  5.  前記操舵角検出器は、前記操舵ステアリングの回動角度を検出するロータリエンコーダであることを特徴とする請求項1又は2に記載の船舶用の操舵装置。 3. The marine steering apparatus according to claim 1, wherein the steering angle detector is a rotary encoder that detects a rotation angle of the steering steering.
  6.  前記第1の液体ポンプ及び前記第2の液体ポンプは、時計方向及び反時計方向の両方向に回転可能であり、その回転方向に応じた方向に回転速度に応じた所定の液圧を吐出する一対の定容量形液体ポンプであることを特徴とする請求項1又は2に記載の船舶用の操舵装置。 The first liquid pump and the second liquid pump are rotatable in both a clockwise direction and a counterclockwise direction, and discharge a predetermined hydraulic pressure corresponding to a rotational speed in a direction corresponding to the rotational direction. 3. The marine vessel steering apparatus according to claim 1 or 2, characterized by being a constant displacement liquid pump.
  7.  前記第1の駆動回路及び前記第2の駆動回路は、前記駆動信号Sd1及び前記駆動信号Sd2に応じて正負が互いに反対の同じレベルの電圧信号を発生して前記第1の電動機及び前記第2の電動機にそれぞれ印加する一対のサーボ増幅器であることを特徴とする請求項1又は2に記載の船舶用の操舵装置。 The first driving circuit and the second driving circuit generate voltage signals of the same level opposite in polarity to the first electric motor and the second driving circuit according to the driving signal S d1 and the driving signal S d2. The marine steering apparatus according to claim 1 or 2, wherein the steering apparatus is a pair of servo amplifiers respectively applied to the second electric motor.
  8.  第1のタンクと、前記第1の液体ポンプの前記第1の吐出口に出力側が接続され、該第1の液体ポンプ及び前記第1のタンクに入力側が接続された第1のチェック弁と、前記第1の液体ポンプの前記第2の吐出口に出力側が接続され、該第1の液体ポンプ及び前記第1のタンクに入力側が接続された第2のチェック弁と、第2のタンクと、前記第2の液体ポンプの前記第1の吐出口に出力側が接続され、該第2の液体ポンプ及び前記第2のタンクに入力側が接続された第3のチェック弁と、前記第2の液体ポンプの前記第2の吐出口に出力側が接続され、該第2の液体ポンプ及び前記第2のタンクに入力側が接続された第4のチェック弁とをさらに備えていることを特徴とする請求項1又は2に記載の船舶用の操舵装置。 A first check valve having an output side connected to the first discharge port of the first tank and the first liquid pump, and an input side connected to the first liquid pump and the first tank; A second check valve having an output side connected to the second discharge port of the first liquid pump, an input side connected to the first liquid pump and the first tank, and a second tank; A third check valve whose output side is connected to the first discharge port of the second liquid pump and whose input side is connected to the second liquid pump and the second tank; and the second liquid pump And a second check valve having an output side connected to the second discharge port and a second check valve having an input side connected to the second liquid pump and the second tank. Or the steering apparatus for ships of 2.
PCT/JP2013/069659 2012-07-26 2013-07-19 Steering device for ship WO2014017401A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020147030749A KR101487292B1 (en) 2012-07-26 2013-07-19 Steering device for ship
CN201380032162.7A CN104379444B (en) 2012-07-26 2013-07-19 The steering gear of boats and ships
PH12014502666A PH12014502666A1 (en) 2012-07-26 2014-11-28 Steering device for ship

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012165633A JP5641369B2 (en) 2012-07-26 2012-07-26 Marine steering system
JP2012-165633 2012-07-26

Publications (1)

Publication Number Publication Date
WO2014017401A1 true WO2014017401A1 (en) 2014-01-30

Family

ID=49997214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069659 WO2014017401A1 (en) 2012-07-26 2013-07-19 Steering device for ship

Country Status (5)

Country Link
JP (1) JP5641369B2 (en)
KR (1) KR101487292B1 (en)
CN (1) CN104379444B (en)
PH (1) PH12014502666A1 (en)
WO (1) WO2014017401A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104869159A (en) * 2015-05-11 2015-08-26 长江泸州航道局 Synchronous control and remote control method and system for signal of a plurality of signal towers
CN114215804A (en) * 2022-02-22 2022-03-22 中国空气动力研究与发展中心高速空气动力研究所 Electro-hydraulic servo system for driving curved knife supporting mechanism

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6522960B2 (en) * 2015-01-22 2019-05-29 ジャパン・ハムワージ株式会社 Electro-hydraulic steering system using reversible variable discharge direction variable hydraulic pump
AU2016231996B2 (en) * 2015-03-13 2019-11-21 Bae Systems Plc Hydraulic system
KR102058052B1 (en) * 2017-12-08 2019-12-20 (주)엠아이티코리아 Testing apparatus for vehicle steering system
CN109515673A (en) * 2018-10-30 2019-03-26 武汉船用机械有限责任公司 A kind of ship hydraulic steering mechanism

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56103699A (en) * 1980-01-04 1981-08-18 Donkin Ando Co Ltd Steering gear
JP2001114195A (en) * 1999-10-15 2001-04-24 Mitsui Eng & Shipbuild Co Ltd Steering system for ship
JP2002139003A (en) * 2000-10-31 2002-05-17 Daiichi Denki Kk Hydraulically-operated multiple drive device and gate control device as well as blade control device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2845778A (en) * 1955-11-21 1958-08-05 Oilgear Co Hydraulic power system
JPS5977999A (en) * 1982-10-28 1984-05-04 Mitsubishi Heavy Ind Ltd Steering function maintaining device for hydraulic type steering gear
JPS60219199A (en) * 1984-04-13 1985-11-01 Mitsubishi Heavy Ind Ltd Hydraulic steering unit for ship
JPS6175399U (en) * 1984-10-24 1986-05-21
CN101289114A (en) * 2007-12-26 2008-10-22 广州文冲船厂有限责任公司 Electro-hydraulic proportional twin rudders follow-up synchronization operation controlled system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56103699A (en) * 1980-01-04 1981-08-18 Donkin Ando Co Ltd Steering gear
JP2001114195A (en) * 1999-10-15 2001-04-24 Mitsui Eng & Shipbuild Co Ltd Steering system for ship
JP2002139003A (en) * 2000-10-31 2002-05-17 Daiichi Denki Kk Hydraulically-operated multiple drive device and gate control device as well as blade control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104869159A (en) * 2015-05-11 2015-08-26 长江泸州航道局 Synchronous control and remote control method and system for signal of a plurality of signal towers
CN114215804A (en) * 2022-02-22 2022-03-22 中国空气动力研究与发展中心高速空气动力研究所 Electro-hydraulic servo system for driving curved knife supporting mechanism

Also Published As

Publication number Publication date
PH12014502666B1 (en) 2015-02-02
KR101487292B1 (en) 2015-01-28
CN104379444A (en) 2015-02-25
KR20140136062A (en) 2014-11-27
JP2014024432A (en) 2014-02-06
PH12014502666A1 (en) 2015-02-02
JP5641369B2 (en) 2014-12-17
CN104379444B (en) 2015-12-30

Similar Documents

Publication Publication Date Title
WO2014017401A1 (en) Steering device for ship
US7631722B2 (en) Power steering system
KR102393338B1 (en) Steering control system and method of stopping the steering gear
US20130161113A1 (en) Hydraulic power steering system
JP6224937B2 (en) Steering device abnormality detection device and steering device with abnormality detection device
JP4314601B2 (en) Ship steering system
JP2007283891A (en) Vehicular steering device
JP2013103616A (en) Power steering device
KR102167906B1 (en) Apparatus for controlling steering and System for assisting steering including it
JP2011121384A (en) Steering device for ship
KR20150045489A (en) Steering gear and ship provided therewith
WO2011145488A1 (en) Control device for an electric actuator
JP6704206B2 (en) Steering machine, ship equipped with the same, and control method for steering machine
JP2015160447A (en) power steering device
JP7106994B2 (en) steering system
KR102044504B1 (en) Measuring And Control Method For A Vehicle Steering System
JP6598307B2 (en) Ship steering system and steering method having at least two marine drives
JP2017035959A (en) Hydraulic steering device
JP2014221589A (en) Vehicle steering controller and vehicle steering control method
WO2021171947A1 (en) Steering system
JP2015209000A (en) Hydraulic power steering device
JP6229362B2 (en) Control device for hydraulic power steering device
JPH10169602A (en) Liquid pressure driving gear
JP5360240B2 (en) Ship steering device
JP2007269219A (en) Vehicular steering device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13823750

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147030749

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13823750

Country of ref document: EP

Kind code of ref document: A1