WO2014017377A1 - Exhaust gas power generation purification system - Google Patents

Exhaust gas power generation purification system Download PDF

Info

Publication number
WO2014017377A1
WO2014017377A1 PCT/JP2013/069507 JP2013069507W WO2014017377A1 WO 2014017377 A1 WO2014017377 A1 WO 2014017377A1 JP 2013069507 W JP2013069507 W JP 2013069507W WO 2014017377 A1 WO2014017377 A1 WO 2014017377A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
turbine
mist
power generation
space
Prior art date
Application number
PCT/JP2013/069507
Other languages
French (fr)
Japanese (ja)
Inventor
啓吾 清水
Original Assignee
Shimizu Keigo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Keigo filed Critical Shimizu Keigo
Priority to JP2014526883A priority Critical patent/JP6007365B2/en
Publication of WO2014017377A1 publication Critical patent/WO2014017377A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K21/00Steam engine plants not otherwise provided for
    • F01K21/04Steam engine plants not otherwise provided for using mixtures of steam and gas; Plants generating or heating steam by bringing water or steam into direct contact with hot gas
    • F01K21/045Introducing gas and steam separately into the motor, e.g. admission to a single rotor through separate nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D47/02Separating dispersed particles from gases, air or vapours by liquid as separating agent by passing the gas or air or vapour over or through a liquid bath
    • B01D47/021Separating dispersed particles from gases, air or vapours by liquid as separating agent by passing the gas or air or vapour over or through a liquid bath by bubbling the gas through a liquid bath
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D47/06Spray cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/38Removing components of undefined structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/06Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2067Urea
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste

Definitions

  • the present invention combines a high-temperature exhaust gas purification process and power generation equipment in factories (including coke ovens), waste incineration facilities, sewage treatment facilities, etc., in addition to a method for efficient energy recovery (power generation) and regeneration cycle,
  • the present invention relates to an exhaust gas purification method that does not require a wastewater treatment facility and a specific device used in a system that combines these methods.
  • Heat (energy) recovery of high-temperature exhaust gas discharged from factories is generally performed by a method that obtains hot water or steam using a hot water boiler or steam boiler. ing.
  • a steam turbine generator is driven by steam obtained from a steam boiler to recover exhaust heat.
  • hot water and steam can be said to be an effective recovery method if there is demand within each plant facility, but if there is no demand, it will not be an effective recovery method, and steam turbine power generation is accompanied by boilers, condensers, etc.
  • the exhaust gas is increased by mist or steam and the turbocharger (turbo turbine) is driven to create compressed air, and this system is used as a combustion air to be sent to the combustion furnace
  • turbocharger turbo turbine
  • this system is used as a combustion air to be sent to the combustion furnace
  • there is technology to generate electricity by connecting a motor for power generation it is a method of using a completely open type (back pressure type) working medium, and the main purpose is to create compressed air and control the pressurized flow furnace incinerator Because of the stabilization, the power generation and exhaust gas purification processes were separated, and the system was not directly aimed at efficient power generation.
  • JP2004-89776 JP2004-92419 (P2004-92419A) JP2005-28251 (P2005-28251A) JP2007-170704A (P2007-170704A)
  • the method of driving a steam turbine using steam obtained from a steam boiler is expensive to install and operate ancillary equipment, and also uses high-temperature (high-pressure) exhaust gas as mist.
  • the method of generating electricity accompanying the generation of compressed air by generating turbines by increasing the amount of steam can achieve stable turbine efficiency if the amount of processing is large and constant (see the prior art document), but the amount of processing In both times, the turbine efficiency is significantly reduced and the cost performance with respect to the amount of power generation is not necessarily a satisfactory system.
  • This method is not generally used as a power generation method using waste heat in facilities.
  • the present invention eliminates the need for an advanced wastewater treatment facility in addition to a method capable of performing energy recovery (power generation) and a regeneration cycle without requiring an expensive incidental facility such as a steam boiler or a condenser or a large scale.
  • An exhaust purification method and a specific device used in a system combining these methods are provided.
  • the present invention employs the following means to achieve the above object.
  • exhaust gas is introduced into the turbine casing that is rotated by the expansion force of the high-temperature exhaust gas that has passed through the cyclone dust collector using a blower (compressor), and urea water mist is introduced into the turbine casing inlet and / or the turbine casing.
  • blower compressor
  • urea water mist is introduced into the turbine casing inlet and / or the turbine casing.
  • Exhaust gas is sent to wet deodorization, desulfurization, denitration, and dust collection equipment (hereinafter referred to as wet purification equipment) to purify the exhaust gas, and after condensing the vaporized mist, fine dust is filtered by the filter into the turbine.
  • wet purification equipment wet deodorization, desulfurization, denitration, and dust collection equipment
  • one of the exhaust discharged from the wet purification device used again as a mist for spraying, spraying into the furnace or flue, one of the exhaust discharged from the wet purification device Alternatively, a part of the exhaust gas exhausted from the activated carbon adsorption tower by sending exhaust gas that has been refluxed entirely into the furnace and not refluxed to the activated carbon adsorption tower, or sending the exhaust gas (exhaust from the wet purification device) to the activated carbon adsorption tower Alternatively, the whole is refluxed into the furnace.
  • An impeller turbine blade having a blower (compressor) and rotating by the expansion force of the exhaust gas introduced thereby is held in the turbine casing, and mist is supplied to the turbine casing inlet or the turbine casing or both.
  • a power generation apparatus having a structure and a function of spraying and having the turbine connected to a power generation motor by a shaft is produced.
  • the casing has an exhaust intake port and an exhaust port, and a space A extending from the intake port has an inner wall so as to gradually expand toward the lower part, a path from the space A toward the upper part along the inner wall, and a lower part of the space A It has a space B that is connected by a path that is inclined away from the space and heads upward, and the space B includes a plurality of small spaces that are configured to spray mist from above, and each small space has flowed into the space B.
  • the exhaust gas As the exhaust gas advances, it is connected with a relationship that sandwiches the ellipsoidal inner wall with a stepped upward direction, and it is filled with a guide plate that is inclined (curved) to change the direction of exhaust gas flow along the ellipsoidal inner wall
  • the liquid to be discharged overflows in two stages, a filter and a discharge port are provided in the space where each overflow is received, and a mist sprayer is provided near the exhaust intake port.
  • the wet purification apparatus condenses the vapor by allowing the filling liquid to circulate in the counterclockwise direction in the drawing counterclockwise by the inflow of exhaust gas and efficiently cool it, but the condensed liquid has considerable residual heat.
  • spraying this to the turbine again it is as efficient as the conventional condensate method in steam turbine power generation (no heat exchanger is used, the mist is sprayed to cool the working medium and promote condensation)
  • it is possible to obtain a more efficient regeneration cycle than that which promotes condensation by creating cold air externally and exchanging heat with the cold air using a heat exchanger. Since urea water is used as the working medium supplied and sprayed to the generator, the exhaust gas can be purified efficiently in a power generation process under high temperature and stirring conditions.
  • Nitrogen oxide can be removed with high efficiency by the combined system and desulfurization can be performed in parallel, and since ammonia is intervened in the activated carbon adsorption tower, it is difficult to consume activated carbon during regeneration of the activated carbon. Economical operation is possible.
  • Nitrogen oxides generated by partially recirculating the exhaust gas purified in the system as combustion air to the combustion furnace can be suppressed, and efficiency is achieved by spraying the overflow of urea water in the wet purification device into the furnace or flue
  • the purification of nitrogen oxides is promoted, it is possible to reduce the concentration and amount of urea water newly supplied to the wet purification apparatus and to reduce the amount of urea water to be discarded as much as possible.
  • the type of the compressor (blower) is not limited in the same manner as described above. However, the compressor (blower) has a role of partitioning the compressor side and the turbine side of the power generation turbine to prevent backflow of fluid (working medium). It is desirable to use a screw type, a rotary type, or a roots type.
  • Embodiment of the whole system according to claim 1 (best mode) Specific example (schematic diagram) of the power generator according to claim 2 Specific example (schematic diagram) of the wet purification apparatus according to claim 3

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Treating Waste Gases (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Chimneys And Flues (AREA)

Abstract

An exhaust gas power generation purification system in which: exhaust gas is introduced using a blower into a turbine compartment which is rotated by the expansion power of high-temperature exhaust gas which has passed through a cyclone dust collection machine. A mist of urea water is atomized and vaporized into an entrance to the turbine compartment or the interior of the turbine compartment or both of these; the energy at the time of vaporization expansion of said mist within the turbine compartment is used in direct turbine driving to increase the rotary power of the turbine; the energy is retrieved by a connected motor for power-generating use; and said turbine exhaust air is sent in to a wet purification device where the exhaust gas is purified. After said vaporized mist has been condensed the minute dust which has been filtered by a filter is reused as mist for atomizing into said turbine, and is also atomized into a furnace or a flue. All or a part of the exhaust air expelled from the wet purification device is circulated back to the furnace and the exhaust air not circulated back is sent into an activated carbon adsorption column or said exhaust air is sent into an activated carbon adsorption column and all or a part of the exhaust gas to be expelled from said activated carbon adsorption column is circulated back to the furnace.

Description

排ガス発電浄化システムExhaust gas power generation purification system
 本発明は工場(コークス炉を含む)やごみの焼却設備、下水処理施設等における高温排ガスの浄化プロセスと発電装置を組み合わせ、効率的なエネルギー回収(発電)と再生サイクルを行う方法に加え、高度な廃水処理設備が不要である排気浄化方法、及びこれらを組み合わせたシステムに用いる具体的装置に関するものである。 The present invention combines a high-temperature exhaust gas purification process and power generation equipment in factories (including coke ovens), waste incineration facilities, sewage treatment facilities, etc., in addition to a method for efficient energy recovery (power generation) and regeneration cycle, The present invention relates to an exhaust gas purification method that does not require a wastewater treatment facility and a specific device used in a system that combines these methods.
 工場(コークス炉を含む)やごみの焼却設備、下水処理施設等で排出される高温排ガスの熱(エネルギー)回収は、一般的に温水ボイラや蒸気ボイラにより、温水や蒸気を得る方法でおこなわれている。そして大規模な設備では、蒸気ボイラで得られた蒸気で蒸気タービン発電機を駆動し排熱の回収を行っている。しかし、温水や蒸気については各プラント設備内において需要があれば有効な回収方法といえるが需要が無ければ有効な回収方法とはならず、また蒸気タービン発電においてはボイラや復水器等の付帯設備とその運用にかかるコストが高く、大規模なプラントにおいて大量の電気を発生できる場合には有効な回収方法であるが、比較的規模の大きくない設備から排出される熱量ではコストパフォーマンスが低いため、一般的な設備に導入されるには至っていないのが現状である。また、特殊タービンとして排ガスの膨張力を利用する排熱タービン発電機を設計している設計者も存在するがコストパフォーマンスの点で一般的な設備に導入されるには至っていないのが現状である。これに加え、先行技術として排ガスをミストやスチームで増量し加給機(ターボタービン)を駆動することで圧縮空気を作り出し、この圧縮空気を燃焼炉へ送る燃焼空気として利用するシステムに、付加的に発電用モーターを連結することで発電する技術は存在するが、完全な開放型(背圧式)の作動媒体の利用方式であり、主目的は圧縮空気を作り出して加圧流動炉焼却装置の制御を安定化することにある為、発電と排ガスの浄化プロセスは分離されており、効率的な発電を直接的な目的とするシステムではなかった。排気の浄化についても、湿式の浄化装置としてスプレー式、バブル式等確立した技術は存在するものの、廃液の処理をする為の高度な廃水処理設備が必要であり、設備の整った下水処理施設等では容易に導入することが可能でも設備の整っていない工場等では廃液処理を外部に委託する費用や設備の設置コストがかさむという課題があった。 Heat (energy) recovery of high-temperature exhaust gas discharged from factories (including coke ovens), waste incineration facilities, sewage treatment facilities, etc. is generally performed by a method that obtains hot water or steam using a hot water boiler or steam boiler. ing. In a large-scale facility, a steam turbine generator is driven by steam obtained from a steam boiler to recover exhaust heat. However, hot water and steam can be said to be an effective recovery method if there is demand within each plant facility, but if there is no demand, it will not be an effective recovery method, and steam turbine power generation is accompanied by boilers, condensers, etc. This is an effective recovery method when the cost of equipment and its operation is high and a large amount of electricity can be generated in a large-scale plant, but the cost performance is low for the amount of heat emitted from a relatively small-scale equipment. However, the current situation is that it has not been introduced into general equipment. In addition, there are designers who are designing exhaust heat turbine generators that utilize the expansion force of exhaust gas as special turbines, but they have not yet been introduced into general facilities in terms of cost performance. . In addition to this, as a prior art, the exhaust gas is increased by mist or steam and the turbocharger (turbo turbine) is driven to create compressed air, and this system is used as a combustion air to be sent to the combustion furnace Although there is technology to generate electricity by connecting a motor for power generation, it is a method of using a completely open type (back pressure type) working medium, and the main purpose is to create compressed air and control the pressurized flow furnace incinerator Because of the stabilization, the power generation and exhaust gas purification processes were separated, and the system was not directly aimed at efficient power generation. As for the purification of exhaust gas, although there are established technologies such as spray type and bubble type as a wet type purification device, advanced wastewater treatment equipment for treating waste liquid is necessary and well-equipped sewage treatment facilities etc. However, there is a problem that the cost of outsourcing the waste liquid treatment and the installation cost of the equipment increase in a factory that can be easily introduced but is not equipped with facilities.
特開2004‐89776(P2004‐89776A)JP2004-89776 (P2004-89776A) 特開2004‐92419(P2004‐92419A)JP2004-92419 (P2004-92419A) 特開2005‐28251(P2005‐28251A)JP2005-28251 (P2005-28251A) 特開2007‐170704(P2007‐170704A)JP2007-170704A (P2007-170704A)
 蒸気ボイラ(熱交換器、蒸発器)で得られた蒸気を用いて蒸気タービンを駆動し発電する方法は、付帯設備の設置や運用にかかるコストが高く、また高温(高圧)の排ガスをミストやスチームで増量してタービンを駆動し圧縮空気を作り出すことに付随して発電する方式は処理量が大量かつ一定していれば安定したタービン効率が得られるものの(先行技術文献参照)、処理量の少ない時間帯においてはタービン効率の低下が著しく発電量に対するコストパフォーマンスが必ずしも満足な数字を得られるわけではないシステムであることから両者とも一定規模以下の工場(コークス炉を含む)やプラント、下水処理施設等において廃熱による発電方法として一般的に用いられない方法であった。また、これらの発電には必ず排ガスの処理という工程が並存し、これらのプロセスと発電を完全に分離したシステムでは、熱回収(発電)と再生サイクルの効率化をはかることに限界があった。排気の浄化についても、湿式の浄化装置としてスプレー式、バブル式等確立した技術は存在するものの、廃液の処理をする為の高度な廃水処理設備が必要であり、設備の整った下水処理施設等では容易に導入することが可能でも設備の整っていない工場等では廃液処理を外部に委託する費用や設備の設置コストがかさむという課題があった。 The method of driving a steam turbine using steam obtained from a steam boiler (heat exchanger, evaporator) is expensive to install and operate ancillary equipment, and also uses high-temperature (high-pressure) exhaust gas as mist. The method of generating electricity accompanying the generation of compressed air by generating turbines by increasing the amount of steam can achieve stable turbine efficiency if the amount of processing is large and constant (see the prior art document), but the amount of processing In both times, the turbine efficiency is significantly reduced and the cost performance with respect to the amount of power generation is not necessarily a satisfactory system. This method is not generally used as a power generation method using waste heat in facilities. In addition, these power generations always have a process of exhaust gas treatment, and in a system in which these processes and power generation are completely separated, there is a limit in achieving efficient heat recovery (power generation) and regeneration cycles. As for the purification of exhaust gas, although there are established technologies such as spray type and bubble type as a wet type purification device, advanced wastewater treatment equipment for treating waste liquid is necessary and well-equipped sewage treatment facilities etc. However, there is a problem that the cost of outsourcing the waste liquid treatment and the installation cost of the equipment increase in a factory that can be easily introduced but is not equipped with facilities.
 そこで、本発明は、蒸気ボイラや復水器などの高価な付帯設備を設けることも大規模化の必要もないエネルギー回収(発電)と再生サイクルを行える方法に加え、高度な廃水処理設備も不要である排気浄化方法、及びこれらを組み合わせたシステムに用いる具体的装置を提供する。 Therefore, the present invention eliminates the need for an advanced wastewater treatment facility in addition to a method capable of performing energy recovery (power generation) and a regeneration cycle without requiring an expensive incidental facility such as a steam boiler or a condenser or a large scale. An exhaust purification method and a specific device used in a system combining these methods are provided.
 本発明は、上記の目的を達成するため、次の手段を採った。すなわち、サイクロン集塵機を通過した高温排ガスの膨張力で回転するタービン車室にブロワー(圧縮機)を用いて排ガスを導入すると共に、タービン車室入口またはタービン車室内もしくはその両方に尿素水のミストを噴霧し気化させ、タービン車室内における該ミストの気化膨張時のエネルギーを直接タービン駆動に利用することでタービンの回転力を増加させ、連結された発電用モーターによりエネルギー回収(発電)し、該タービン排気を湿式の脱臭、脱硫、脱硝、集塵装置(以下湿式浄化装置)へ送り込んで排ガスの浄化を行うと共に該気化したミストを凝縮したのちフィルターにより微細な塵埃を濾過したものを該タービンへの噴霧用ミストとして再び用い、炉内または煙道へも噴霧し、該湿式浄化装置から排出された排気の一部又は全部を炉内へ還流させて還流させない排気を活性炭吸着塔に送り込み、又は該排気(該湿式浄化装置からの排気)を活性炭吸着塔へ送り込み、該活性炭吸着塔から排出される排ガスの一部又は全部を炉内へ還流させる。 The present invention employs the following means to achieve the above object. In other words, exhaust gas is introduced into the turbine casing that is rotated by the expansion force of the high-temperature exhaust gas that has passed through the cyclone dust collector using a blower (compressor), and urea water mist is introduced into the turbine casing inlet and / or the turbine casing. By spraying and vaporizing, and using the energy at the time of vaporization and expansion of the mist in the turbine casing directly for driving the turbine, the rotational force of the turbine is increased, and energy recovery (power generation) is performed by the connected power generation motor. Exhaust gas is sent to wet deodorization, desulfurization, denitration, and dust collection equipment (hereinafter referred to as wet purification equipment) to purify the exhaust gas, and after condensing the vaporized mist, fine dust is filtered by the filter into the turbine. Used again as a mist for spraying, spraying into the furnace or flue, one of the exhaust discharged from the wet purification device Alternatively, a part of the exhaust gas exhausted from the activated carbon adsorption tower by sending exhaust gas that has been refluxed entirely into the furnace and not refluxed to the activated carbon adsorption tower, or sending the exhaust gas (exhaust from the wet purification device) to the activated carbon adsorption tower Alternatively, the whole is refluxed into the furnace.
 ブロワー(圧縮機)を備え、これにより導入される排ガスの膨張力で回転する羽根車(タービン翼)をタービン車室内に持ち、該タービン車室入口または該タービン車室内、もしくはその両方にミストを噴霧する構造と機能を備え、該タービンが発電用モーターと軸により連結されたことを特徴とする発電装置を作製する。 An impeller (turbine blade) having a blower (compressor) and rotating by the expansion force of the exhaust gas introduced thereby is held in the turbine casing, and mist is supplied to the turbine casing inlet or the turbine casing or both. A power generation apparatus having a structure and a function of spraying and having the turbine connected to a power generation motor by a shaft is produced.
 ケーシングに排気取り入れ口と排出口を備え、取り入れ口から連なる空間Aは下部へ向かうに従い漸次広がるように内壁を持ち、該空間Aから該内壁にそって上部に向かう経路と、該空間A下部から該空間より遠ざかるように傾斜して上部に向かう経路で結ばれた空間Bを持ち、該空間Bは、上方からミストを噴霧する構造とする小空間を複数個備え、それぞれの小空間は流入した排気が進むにつれ上方向に段差がつくかたちでエル字型の内壁を挟む関係で連なり、さらにエル字型の内壁に沿って排気が進む方向を変化させるよう傾斜(湾曲)する案内板を備え充填される液体が二段階でオーバーフローし、それぞれのオーバーフローを受ける空間にフィルターと排出口が設けられ、前記排気の取り入れ口付近にミスト噴霧器を備えたことを特徴とする脱臭、脱硫、脱硝、集塵装置(以下湿式浄化装置)を作製する The casing has an exhaust intake port and an exhaust port, and a space A extending from the intake port has an inner wall so as to gradually expand toward the lower part, a path from the space A toward the upper part along the inner wall, and a lower part of the space A It has a space B that is connected by a path that is inclined away from the space and heads upward, and the space B includes a plurality of small spaces that are configured to spray mist from above, and each small space has flowed into the space B. As the exhaust gas advances, it is connected with a relationship that sandwiches the ellipsoidal inner wall with a stepped upward direction, and it is filled with a guide plate that is inclined (curved) to change the direction of exhaust gas flow along the ellipsoidal inner wall The liquid to be discharged overflows in two stages, a filter and a discharge port are provided in the space where each overflow is received, and a mist sprayer is provided near the exhaust intake port. Making deodorization, desulfurization, denitrification, dust collector (hereinafter wet purification apparatus) to
 蒸気ボイラ(蒸発器)や復水器(凝縮器、冷却設備)などの高価な付帯設備の設置や大規模化の必要もなく、これまでの蒸気発電よりも比較的短い始動時間で稼動が可能であり、完全な背圧式でない為、これまでの蒸気発電に匹敵する発電効率を確保し、排ガスをミストやスチームで増量したものをタービンに送り込むことで圧縮空気を作り出し、付加的に発電をする方式よりも高効率の発電効率が得られる。 It is possible to operate with relatively shorter start-up time than conventional steam power generation without the need for expensive auxiliary equipment such as a steam boiler (evaporator) and condenser (condenser, cooling equipment) Because it is not a complete back-pressure type, it ensures power generation efficiency comparable to conventional steam power generation, and generates compressed air by sending the exhaust gas increased by mist and steam to the turbine for additional power generation. Higher power generation efficiency than the method can be obtained.
 石炭火力、LNG及び廃熱を利用する発電には必ず排ガスの処理という工程が並存し、これらのプロセスと発電を完全に分離したシステムにおいては、おのずと熱循環や熱回収の効率化に限界があったが、排ガスの集塵、脱臭、脱硫、脱硝プロセスと新型発電装置を組み合わせることで、効率的なエネルギー回収(発電)と再生サイクルを行うことができる。 Power generation using coal-fired power, LNG, and waste heat always has a process of exhaust gas treatment. In a system that completely separates these processes from power generation, there is a limit to the efficiency of heat circulation and heat recovery. However, by combining exhaust gas dust collection, deodorization, desulfurization, and denitration processes with a new power generator, efficient energy recovery (power generation) and regeneration cycles can be performed.
 これまでの大型プラントなどでの蒸気タービン発電では効率的な発電と再生サイクルを確保するために復水式(タービンから出た蒸気を凝縮器で冷却し液体に戻すことで復水器内を真空に近付け、タービンの排気を引き込む方式)を用いているがタービン車室内も真空に近い排気圧にまで蒸気を膨張させるには相応にタービン車室の構造を大型化する必要と真空に耐える強度が求められ製造コストも高価となるが本システムでは湿式浄化装置により蒸気を凝縮するものの真空近くに保つことを目的としたシステムではないことから抽気の設備を設ける必要が無いのはもちろんであるが、タービン車室を大型化する必要がなく真空に耐える高価な造りにする必要も無い。またタービンが高温にさらされるものの常にミストが噴霧されることから蒸気による羽根の冷却が促され、耐熱用の特殊合金などをタービンの材質に使用する必要がないので、ステンレス製のタービンブレード、ブロワー、ファンを扱う一般的なメーカーにおいて様々な仕様(軸流式、遠心式の選択や段数の組み方、またはスクリュー式(ロータリー、ルーツ形)のタービンを採用するかなど)で容易に作製が可能である。仮に耐熱性に問題を生じてもセラミック系断熱塗料等でコーティングすることで対応できるのでタービンが安価である。しかし、凝縮の作用により排気を引き込む現象(効果)も相当に得られるので、小型・簡便な蒸気タービン発電で主に採用されている背圧式による発電方法よりも効率的に発電できる。 In conventional steam turbine power generation at large plants, etc., a condensate system is used to ensure an efficient power generation and regeneration cycle (the steam inside the condenser is evacuated by cooling it with a condenser and returning it to a liquid. However, in order to expand the steam to the exhaust pressure close to the vacuum in the turbine casing, it is necessary to enlarge the structure of the turbine casing and to withstand the vacuum. Although it is required and the manufacturing cost is also expensive, in this system, it is not necessary to install a bleeder because it is not a system aiming to keep it close to vacuum although it condenses steam with a wet purification device, There is no need to increase the size of the turbine casing and to make it expensive to withstand vacuum. In addition, although the turbine is exposed to high temperatures, the mist is always sprayed, so cooling of the blades is promoted by steam, and there is no need to use a heat-resistant special alloy as the turbine material. Can be easily manufactured with various specifications (selection of axial flow type, centrifugal type, number of stages, or screw type (rotary, roots type) turbine) is there. Even if a problem arises in heat resistance, it can be handled by coating with a ceramic heat insulating paint or the like, so that the turbine is inexpensive. However, since a phenomenon (effect) of drawing exhaust gas by the action of condensation can be obtained considerably, it is possible to generate power more efficiently than the back pressure type power generation method mainly used in small-sized and simple steam turbine power generation.
 請求項3記載の湿式浄化装置は排ガスの流入により充填液が図面における流路を半時計回りに循環し効率的に冷却することで蒸気を凝縮させるが、凝縮した液体は余熱を相当に持っている、これを再度タービンへ噴霧することでこれまでの蒸気タービン発電における復水式(熱交換器は用いず、ミストを噴霧することによって作動媒体を冷却し凝縮を促すもの)と同様の効率的な再生サイクルが得られるのはもちろんであるが外部で冷気を作り熱交換器を用いて該冷気との熱交換をすることで凝縮を促すものよりも高効率な再生サイクルが得られることに加え発電機に供給噴霧する作動媒体に尿素水を用いるので発電プロセスにおいて排気の浄化を高温状態かつ攪拌状態のもとで効率的に行うことができる。 The wet purification apparatus according to claim 3 condenses the vapor by allowing the filling liquid to circulate in the counterclockwise direction in the drawing counterclockwise by the inflow of exhaust gas and efficiently cool it, but the condensed liquid has considerable residual heat. By spraying this to the turbine again, it is as efficient as the conventional condensate method in steam turbine power generation (no heat exchanger is used, the mist is sprayed to cool the working medium and promote condensation) As a matter of course, it is possible to obtain a more efficient regeneration cycle than that which promotes condensation by creating cold air externally and exchanging heat with the cold air using a heat exchanger. Since urea water is used as the working medium supplied and sprayed to the generator, the exhaust gas can be purified efficiently in a power generation process under high temperature and stirring conditions.
 高温のタービン内に微細なミストとして噴霧された尿素水からアンモニアが発生するので、アンモニアと窒素酸化物が反応し窒素と水に分解される。未反応の窒素酸化物とアンモニアは、そのまま活性炭吸着塔に送り込まれ、活性炭の触媒作用によって反応が促進され窒素と水に分解される。これにより一連のプロセスの中で無触媒還元法の効果と活性炭法の両方(複合方式)の効果を得ることができるため、リークアンモニア低減対策になる。複合方式により高効率に窒素酸化物を除去することができると共に脱硫も並行して行うことができ、活性炭吸着塔内にアンモニアが介在するので活性炭の再生時に活性炭が消費しにくく、ランニングコスト面において経済的な運用ができる。 Since ammonia is generated from urea water sprayed as fine mist in a high-temperature turbine, ammonia and nitrogen oxides react and decompose into nitrogen and water. Unreacted nitrogen oxides and ammonia are sent directly to the activated carbon adsorption tower, where the reaction is accelerated by the catalytic action of the activated carbon and decomposed into nitrogen and water. As a result, the effects of both the non-catalytic reduction method and the activated carbon method (combined method) can be obtained in a series of processes, which is a measure for reducing leakage ammonia. Nitrogen oxide can be removed with high efficiency by the combined system and desulfurization can be performed in parallel, and since ammonia is intervened in the activated carbon adsorption tower, it is difficult to consume activated carbon during regeneration of the activated carbon. Economical operation is possible.
 本件システムにおいて浄化された排ガスを燃焼炉へ燃焼空気として一部還流させることで発生する窒素酸化物を抑制でき、該湿式浄化装置における尿素水のオーバーフローを炉内または煙道に噴霧することで効率的に窒素酸化物の浄化が促進されることから、湿式浄化装置へ新たに供給する尿素水の濃度や量を節減できることに加え、廃棄する尿素水を限りなく減らす運用が可能である。 Nitrogen oxides generated by partially recirculating the exhaust gas purified in the system as combustion air to the combustion furnace can be suppressed, and efficiency is achieved by spraying the overflow of urea water in the wet purification device into the furnace or flue In addition, since the purification of nitrogen oxides is promoted, it is possible to reduce the concentration and amount of urea water newly supplied to the wet purification apparatus and to reduce the amount of urea water to be discarded as much as possible.
 前記排気浄化の一連のサイクルで排出される廃棄物は脱硫が絡んだ場合でも、リークアンモニアのみとなるが(使用済みの活性炭をメンテナンスとして別途再生処理に回す運用をすることで、その処理過程で硫酸や硫安は有益な物質として回収されるので、使用済みの活性炭は廃棄物とはならない)、活性炭吸着塔を増強することや運転中に新たに湿式浄化装置に供給する尿素水の濃度と量を最適化することによりリークアンモニアの発生量や濃度の基準値をクリアーする運用が比較的容易におこなえ、別途中和剤等を使用しないので汚水を発生させない運用が可能で高度な廃水処理設備を必要としないことから、廃水処理設備の整っている下水処理施設だけでなく、それ以外の工場(コークス炉を含む)やごみの焼却設備等高温の排ガスを発生するプラント一般においても本システムの設置運用が可能。 Even when desulfurization is involved, the waste discharged in a series of exhaust purification cycles is only leaked ammonia. (By using the used activated carbon for separate regeneration treatment as a maintenance, (Since sulfuric acid and ammonium sulfate are recovered as useful substances, the used activated carbon is not a waste ), and the concentration and amount of urea water to be supplied to the wet purification equipment by increasing the activated carbon adsorption tower or during operation By optimizing the system, it is relatively easy to clear the standard value of the amount and concentration of leaked ammonia, and since no separate neutralizer is used, it is possible to operate without generating sewage and to establish an advanced wastewater treatment facility. Because it is not necessary, not only sewage treatment facilities equipped with wastewater treatment facilities, but also high temperature exhaust gas from other factories (including coke ovens) and waste incineration facilities Also it can be installed operation of this system in the plant general to live.
 図1の実施例(フロ-)参照。 Refer to the example (flow) in FIG.
 請求項2記載の発電装置に用いるタービンの種類であるが、これまで発電用に主に用いられてきた軸流式、遠心式等のタービンブレードでもよいが、排ガスの発生量の低下に追随してタービン効率が極端に低下することを避ける為には、スクリュー式、ロータリー式、ルーツ形を用いるのが望ましい。圧縮機(ブロワー)の種類についても、上記同様にその種類は限定しないが、圧縮機側と発電用タービンの車室側を仕切る役割を持たせ、流体(作動媒体)の逆流を防止する為にはスクリュー式、ロータリー式、ルーツ形を用いるのが望ましい。 Although it is a kind of turbine used for the power generator according to claim 2, it may be an axial flow, centrifugal turbine blade or the like that has been mainly used for power generation so far. Therefore, it is desirable to use a screw type, a rotary type, or a roots type in order to avoid an extremely low turbine efficiency. The type of the compressor (blower) is not limited in the same manner as described above. However, the compressor (blower) has a role of partitioning the compressor side and the turbine side of the power generation turbine to prevent backflow of fluid (working medium). It is desirable to use a screw type, a rotary type, or a roots type.
請求項1記載のシステム全体の実施例(最良の形態)Embodiment of the whole system according to claim 1 (best mode) 請求項2記載の発電装置の具体例(概略図)Specific example (schematic diagram) of the power generator according to claim 2 請求項3記載の湿式浄化装置の具体例(概略図)Specific example (schematic diagram) of the wet purification apparatus according to claim 3

Claims (3)

  1.  サイクロン集塵機を通過した高温排ガスの膨張力で回転するタービン車室にブロワー(圧縮機)を用いて排ガスを導入すると共に、タービン車室入口またはタービン車室内もしくはその両方に尿素水のミストを噴霧し気化させ、タービン車室内における該ミストの気化膨張時のエネルギーを直接タービン駆動に利用することでタービンの回転力を増加させ、連結された発電用モーターによりエネルギー回収(発電)し、該タービン排気を湿式の脱臭、脱硫、脱硝、集塵装置(以下湿式浄化装置)へ送り込んで排ガスの浄化を行うと共に該気化したミストを凝縮したのちフィルターにより微細な塵埃を濾過したものを該タービンへの噴霧用ミストとして再び用い、炉内または煙道へも噴霧し、該湿式浄化装置から排出された排気の一部又は全部を炉内へ還流させて還流させない排気を活性炭吸着塔に送り込み、又は該排気(該湿式浄化装置から排出される排気)を活性炭吸着塔へ送り込み、該活性炭吸着塔から排出される排ガスの一部又は全部を炉内へ還流させることを特徴とする、工場(コークス炉を含む)やごみの焼却施設、下水処理施設等から発生する高温排ガスの集塵、脱臭、脱硫、脱硝プロセスと発電装置を組み合わせたエネルギー回収(発電)と再生サイクルを行う方法に加え高度な廃水処理設備も不要である排気浄化方法およびこれらを組み合わせたシステム。 The blower (compressor) is used to introduce exhaust gas into the turbine casing that is rotated by the expansion force of the high-temperature exhaust gas that has passed through the cyclone dust collector, and urea water mist is sprayed to the turbine casing inlet and / or the turbine casing Vaporizing and using the energy at the time of vaporization and expansion of the mist in the turbine casing directly for driving the turbine increases the rotational force of the turbine, and energy recovery (power generation) is performed by a connected power generation motor. For dehydration, desulfurization, denitration, and dust collection equipment (hereinafter referred to as wet purification equipment) to purify exhaust gas, condense the vaporized mist, and filter fine dust with a filter. Re-use as mist, spray into the furnace or flue, and part or all of the exhaust discharged from the wet-cleaning device Part of the exhaust gas exhausted from the activated carbon adsorption tower by sending exhaust gas that is refluxed into the furnace and not exhausted to the activated carbon adsorption tower, or sending the exhaust gas (exhaust gas discharged from the wet purification device) to the activated carbon adsorption tower Or collecting the deodorizing, desulfurizing, denitrating process and power generator of high-temperature exhaust gas from factories (including coke ovens), waste incineration facilities, sewage treatment facilities, etc. Exhaust purification methods that do not require advanced wastewater treatment facilities in addition to combined energy recovery (power generation) and regeneration cycles, and systems that combine these.
  2.  ブロワー(圧縮機)を備え、これにより導入される排ガスの膨張力で回転する羽根車(タービン翼)をタービン車室内に持ち、該タービン車室入口または該タービン車室内、もしくはその両方にミストを噴霧する構造と機能を備え、該タービンが発電用モーターと軸により連結されたことを特徴とする発電装置。 An impeller (turbine blade) having a blower (compressor) and rotating by the expansion force of the exhaust gas introduced thereby is held in the turbine casing, and mist is supplied to the turbine casing inlet or the turbine casing or both. A power generation apparatus having a structure and a function of spraying, wherein the turbine is connected to a power generation motor by a shaft.
  3.  ケーシングに排気取り入れ口と排出口を備え、取り入れ口から連なる空間Aは下部へ向かうに従い漸次広がるように内壁を持ち、該空間Aから該内壁にそって上部に向かう経路と、該空間A下部から該空間より遠ざかるように傾斜して上部に向かう経路で結ばれた空間Bを持ち、該空間Bは、上方からミストを噴霧する構造とする小空間を複数個備え、それぞれの小空間は流入した排気が進むにつれ上方向に段差がつくかたちでエル字型の内壁を挟む関係で連なり、さらにエル字型の内壁に沿って排気が進む方向を変化させるよう傾斜(湾曲)する案内板を備え充填される液体が二段階でオーバーフローし、それぞれのオーバーフローを受ける空間にフィルターと排出口が設けられ、前記排気の取り入れ口付近にミスト噴霧器を備えたことを特徴とする湿式の脱臭、脱硫、脱硝、集塵装置。
     
    The casing has an exhaust intake port and an exhaust port, and a space A extending from the intake port has an inner wall so as to gradually expand toward the lower part, a path from the space A toward the upper part along the inner wall, and a lower part of the space A It has a space B that is connected by a path that is inclined away from the space and heads upward, and the space B includes a plurality of small spaces that are configured to spray mist from above, and each small space has flowed into the space B. As the exhaust gas advances, it is connected with a relationship that sandwiches the ellipsoidal inner wall with a stepped upward direction, and it is filled with a guide plate that is inclined (curved) to change the direction of exhaust gas flow along the ellipsoidal inner wall The liquid to be discharged overflows in two stages, and a filter and a discharge port are provided in the space where each overflow is received, and a mist sprayer is provided near the exhaust intake port. Wet deodorization to, desulfurization, denitrification, dust collector.
PCT/JP2013/069507 2012-07-23 2013-07-18 Exhaust gas power generation purification system WO2014017377A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014526883A JP6007365B2 (en) 2012-07-23 2013-07-18 Exhaust gas power generation purification system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-176449 2012-07-23
JP2012176449 2012-07-23

Publications (1)

Publication Number Publication Date
WO2014017377A1 true WO2014017377A1 (en) 2014-01-30

Family

ID=49997191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069507 WO2014017377A1 (en) 2012-07-23 2013-07-18 Exhaust gas power generation purification system

Country Status (2)

Country Link
JP (1) JP6007365B2 (en)
WO (1) WO2014017377A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103977657A (en) * 2014-05-24 2014-08-13 程振国 Method for relieving haze
KR101761356B1 (en) * 2015-07-22 2017-07-25 스마트비젼(주) Organic acid extraction apparatus using organic waste
KR101761360B1 (en) * 2015-07-22 2017-07-25 스마트비젼(주) Organic acid extraction apparatus using the organic waste in an incinerator is equipped
WO2018220756A1 (en) * 2017-05-31 2018-12-06 東芝三菱電機産業システム株式会社 Coating head for mist coating and film forming device, and maintenance method therefor
CN111111362A (en) * 2019-12-28 2020-05-08 江苏新中金环保科技股份有限公司 Flue gas desulfurization and denitrification complete equipment based on efficient catalysis technology

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106731560B (en) * 2016-12-21 2019-08-23 航天凯天环保科技股份有限公司 A kind of house refuse cooperates with power generation by waste combustion waste gas purification minimum discharge system with sludge
CN108554132A (en) * 2018-01-13 2018-09-21 安徽金禾实业股份有限公司 The processing method and processing device of oxidized tail gas in anthraquinone Hydrogen Peroxide Production
CN110075705B (en) * 2019-04-22 2021-11-05 广州颖创环保科技有限公司 Explosion-proof dust pelletizing system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08266858A (en) * 1995-03-31 1996-10-15 Sekiyu Sangyo Kasseika Center Wet desulfurizing device
JPH08332341A (en) * 1995-06-08 1996-12-17 Babcock Hitachi Kk Exhaust gas denitration method and exhaust gas treatment method
JP2001182553A (en) * 1999-10-05 2001-07-06 Kawasaki Steel Corp Gas turbine power generating equipment and its control method
JP2003239759A (en) * 2002-02-12 2003-08-27 Mitsubishi Heavy Ind Ltd Steam recovering device and gas turbine device with the same
JP2006097596A (en) * 2004-09-30 2006-04-13 Hitachi Ltd Gas turbine facility, control device thereof, method for controlling gas turbine facility and method for controlling turbine cooling part

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08266858A (en) * 1995-03-31 1996-10-15 Sekiyu Sangyo Kasseika Center Wet desulfurizing device
JPH08332341A (en) * 1995-06-08 1996-12-17 Babcock Hitachi Kk Exhaust gas denitration method and exhaust gas treatment method
JP2001182553A (en) * 1999-10-05 2001-07-06 Kawasaki Steel Corp Gas turbine power generating equipment and its control method
JP2003239759A (en) * 2002-02-12 2003-08-27 Mitsubishi Heavy Ind Ltd Steam recovering device and gas turbine device with the same
JP2006097596A (en) * 2004-09-30 2006-04-13 Hitachi Ltd Gas turbine facility, control device thereof, method for controlling gas turbine facility and method for controlling turbine cooling part

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103977657A (en) * 2014-05-24 2014-08-13 程振国 Method for relieving haze
KR101761356B1 (en) * 2015-07-22 2017-07-25 스마트비젼(주) Organic acid extraction apparatus using organic waste
KR101761360B1 (en) * 2015-07-22 2017-07-25 스마트비젼(주) Organic acid extraction apparatus using the organic waste in an incinerator is equipped
WO2018220756A1 (en) * 2017-05-31 2018-12-06 東芝三菱電機産業システム株式会社 Coating head for mist coating and film forming device, and maintenance method therefor
JPWO2018220756A1 (en) * 2017-05-31 2019-11-07 東芝三菱電機産業システム株式会社 Coating head of mist coating film forming apparatus and maintenance method thereof
CN110769941A (en) * 2017-05-31 2020-02-07 东芝三菱电机产业系统株式会社 Coating head of mist coating film forming apparatus and maintenance method thereof
CN111111362A (en) * 2019-12-28 2020-05-08 江苏新中金环保科技股份有限公司 Flue gas desulfurization and denitrification complete equipment based on efficient catalysis technology
CN111111362B (en) * 2019-12-28 2021-05-25 江苏新中金环保科技股份有限公司 Flue gas desulfurization and denitrification complete equipment based on efficient catalysis technology

Also Published As

Publication number Publication date
JPWO2014017377A1 (en) 2016-07-11
JP6007365B2 (en) 2016-10-12

Similar Documents

Publication Publication Date Title
JP6007365B2 (en) Exhaust gas power generation purification system
CN102003285B (en) Improved exhaust gas recirculating system and method for a turbomachine
KR102474929B1 (en) Methods and systems for improving boiler efficiency
JP5465246B2 (en) Method and apparatus for separating carbon dioxide from exhaust gas from fossil fuel power plant equipment
CN105909330B (en) A kind of flue gas waste heat recovery and smoke processing system based on Organic Rankine Cycle
KR101647117B1 (en) Method of generating electricity by burning waste and waste burning facility
US20120037097A1 (en) High efficiency feedwater heater
Xu et al. Integration of the steam cycle and CO2 capture process in a decarbonization power plant
JP5935124B2 (en) Turbine equipment and power generation equipment
WO2014038392A1 (en) Power generation device using organic rankine cycle and power generation method
JP2006194242A (en) Energy supply system, method of supplying energy and method of improving energy supply system
WO2013114937A1 (en) Carbon dioxide recovery system
RU2524588C2 (en) Power plant running on organic fuel with carbon dioxide separator and method of its operation
RU2700843C1 (en) Combined-cycle plant with deep waste gas heat recovery
RU2411368C2 (en) Operating method of power plant with gas turbine unit
CN102505990A (en) Power generation method of condensing double-working medium gas turbine circulation system
WO2014138079A1 (en) Emission control system
JP2019190359A (en) Plant and combustion exhaust gas treatment method
KR101593827B1 (en) Combined cycle power generation system
RU2548962C2 (en) Water deaeration method for thermal power plant
KR101331012B1 (en) Steam power generation system using centrifugal compressor and method for steam power generation using the same
RU118360U1 (en) INSTALLATION OF ELECTRIC-HEAT-WATER SUPPLY OF ENTERPRISES OF MINING, TRANSPORT AND PROCESSING OF HYDROCARBON RAW MATERIALS
JP2001029939A (en) Wastewater treatment facility
RU2482292C2 (en) Power plant steam-gas unit
CN110199154A (en) Exhaust gas purifying method and off-gas cleaning equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13822782

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014526883

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13822782

Country of ref document: EP

Kind code of ref document: A1