WO2014017089A1 - Auxiliary steering device for vehicle and auxiliary steering method for same, and elevation device for auxiliary wheel - Google Patents

Auxiliary steering device for vehicle and auxiliary steering method for same, and elevation device for auxiliary wheel Download PDF

Info

Publication number
WO2014017089A1
WO2014017089A1 PCT/JP2013/004511 JP2013004511W WO2014017089A1 WO 2014017089 A1 WO2014017089 A1 WO 2014017089A1 JP 2013004511 W JP2013004511 W JP 2013004511W WO 2014017089 A1 WO2014017089 A1 WO 2014017089A1
Authority
WO
WIPO (PCT)
Prior art keywords
auxiliary
wheel
auxiliary wheel
vehicle
steering
Prior art date
Application number
PCT/JP2013/004511
Other languages
French (fr)
Japanese (ja)
Inventor
裕 御厨
三浦 雅博
量康 赤坂
好夫 滝本
川島 啓一
一高 藤井
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to JP2014526768A priority Critical patent/JP5930040B2/en
Publication of WO2014017089A1 publication Critical patent/WO2014017089A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S9/00Ground-engaging vehicle fittings for supporting, lifting, or manoeuvring the vehicle, wholly or in part, e.g. built-in jacks
    • B60S9/14Ground-engaging vehicle fittings for supporting, lifting, or manoeuvring the vehicle, wholly or in part, e.g. built-in jacks for both lifting and manoeuvring
    • B60S9/16Ground-engaging vehicle fittings for supporting, lifting, or manoeuvring the vehicle, wholly or in part, e.g. built-in jacks for both lifting and manoeuvring for operating only on one end of vehicle
    • B60S9/20Ground-engaging vehicle fittings for supporting, lifting, or manoeuvring the vehicle, wholly or in part, e.g. built-in jacks for both lifting and manoeuvring for operating only on one end of vehicle with fluid-pressure lift

Definitions

  • the present invention is a technology relating to auxiliary steering that makes it possible to make a small turn of the vehicle using auxiliary wheels, and a technology that raises and lowers auxiliary wheels for lifting the third wheel.
  • auxiliary steering device using auxiliary wheels there is a device described in Patent Document 1.
  • the device described in Patent Document 1 is provided with auxiliary wheels that are different from the wheels used during normal traveling at the front and rear of the vehicle body.
  • the vehicle is moved to a horizontal direction by rotationally driving the lowered auxiliary wheel.
  • the above-described conventional auxiliary steering device is used by rotationally driving the auxiliary wheel by mounting a hydraulic motor serving as a power source on the axle of the auxiliary wheel in order to allow the vehicle to travel in the lateral direction. It has a configuration. For this reason, the above-described conventional auxiliary steering device requires devices and actuators such as a hydraulic path, a hydraulic pump, and an electromagnetic switching valve, and thus there is a problem that the auxiliary steering device is increased in size and cost.
  • the present invention pays attention to the above points, and an object of the present invention is to make it possible to move the vehicle by a small turn with a simpler auxiliary wheel.
  • one aspect of the present invention is provided in a vehicle including left and right drive wheels that are arranged on one of the front side and the rear side of the vehicle and face each other on the left and right.
  • the auxiliary wheel disposed on the other side of the front side or the rear side of the vehicle in plan view and used without driving, the auxiliary wheel lifting device for raising and lowering the auxiliary wheel with respect to the vehicle body, and the auxiliary wheel are grounded.
  • a driving force difference adjusting device for generating a driving force difference between the left and right driving wheels.
  • a moment in the yaw direction acts on the vehicle body.
  • the body portion of the auxiliary wheel position moves in the lateral direction of the vehicle body by the force of the moment.
  • the vehicle can turn around the driving wheel side having a relatively small driving force. That is, a power unit for rotating the auxiliary wheels is not required, and the configuration around the auxiliary wheels is simple, and the vehicle can be moved in a small direction.
  • FIG. 1 is a schematic diagram showing a configuration of a vehicle according to the present embodiment
  • FIG. 2 is a system diagram thereof.
  • a vehicle having left and right front wheels 1FL and 1FR and left and right rear wheels 1RL and 1RR and using left and right front wheels 1FL and 1FR as driving wheels will be described as an example.
  • the steering wheel is not particularly limited.
  • the vehicle according to the present embodiment includes an engine 2 as a power source, an engine control unit 4, a differential gear device 3, and a braking control device 18.
  • the power source of the drive wheels 1FL and 1FR is not limited to the engine 2 and may be an electric motor.
  • the engine 2 is connected to the axles of the left and right drive wheels 1FL and 1FR via a differential gear device 3.
  • the power of the engine 2 is distributed to the left and right drive wheels 1FL and 1FR by the differential gear device 3.
  • the engine control unit 4 calculates an output command value corresponding to the operation amount of the accelerator pedal 5 and adjusts the throttle opening of the engine 2 so that power corresponding to the calculated output command value is generated.
  • the brake control device 18 includes a brake control circuit 6, a brake control actuator 7, and left and right brake devices 8 provided individually on the left and right drive wheels 1FL and 1FR. Then, by operating the brake control actuator 7 according to the brake command value output from the brake control circuit 6, the left and right brake devices 8 can apply individual braking forces to the left and right drive wheels 1FL and 1FR. It has become. That is, the brake control circuit 6 sends a command to a brake control actuator 7 having a solenoid for opening and closing a valve in the brake oil passage and a hydraulic pump for the brake, and individually controls the braking force one by one.
  • the brake device 8 is a disc type brake device or the like. The brake device 8 may be an electric brake device.
  • the brake control device 18 When the brake control device 18 detects an operation of the brake pedal 9, the brake control device 18 applies a braking force corresponding to the operation amount of the brake pedal 9 to each brake device 8. Further, the braking control device 18 of the present embodiment applies a braking force to one of the left and right front wheels 1FL and 1FR when an operation signal is input from an auxiliary steering control unit described later. However, even if an operation signal is input from the auxiliary steering control unit, the brake control circuit 6 gives priority to the brake control according to the brake operation amount when it detects a brake operation amount that is set in advance by operating the brake pedal 9. To implement.
  • the vehicle also includes a wheel speed sensor 10 that detects the rotational speeds of the left and right front wheels 1FL and 1FR, and a shift position detection sensor 11 that detects a shift position.
  • the wheel speed sensor 10 detects the wheel speed of each front wheel 1FL, 1FR.
  • the shift position detection sensor 11 detects whether the shift position is a forward position, a neutral position, or a reverse position.
  • the vehicle includes an auxiliary steering device.
  • the differential gear device 3 and the braking control device 18 also serve as part of the configuration of the auxiliary steering device.
  • the auxiliary steering device includes left and right auxiliary wheels 12, an auxiliary wheel elevating device 13 that raises and lowers each auxiliary wheel 12 relative to the vehicle body, a lift motor control circuit 14, and an auxiliary steering control unit.
  • the vehicle also includes an auxiliary steering operation switch 19 that can be operated by a passenger.
  • the left and right auxiliary wheels 12 are arranged on the opposite side of the left and right drive wheels 1FL and 1FR with respect to the vehicle center of gravity G when the auxiliary wheels 12 are grounded in a plan view. Yes.
  • the left and right auxiliary wheels 12 are driven in the above-mentioned direction rather than a line connecting ends of the left and right rear wheels 1RL and 1RR closer to the drive wheels 1FL and 1FR (front side in the vehicle front-rear direction).
  • the left and right auxiliary wheels 12 are positioned on the opposite side of the left and right drive wheels 1FL and 1FR with respect to the vehicle center of gravity G by being arranged at positions away from the wheels 1FL and 1FR.
  • the rotating shaft of the auxiliary wheel 12 faces the vehicle front-rear direction at least in a grounded state.
  • the vehicle front-rear direction may be inclined in the vehicle width direction with respect to the longitudinal direction of the vehicle body. The inclination is an angle of less than 45 degrees, for example.
  • the left and right auxiliary wheels 12 are arranged apart from each other in the vehicle width direction in the space between the left and right rear wheels 1RL and 1RR.
  • the case where the left auxiliary wheel 12 is arranged close to the left rear wheel 1RL and the right auxiliary wheel 12 is arranged close to the right rear wheel 1RR is illustrated.
  • the auxiliary wheel lifting / lowering device 13 is a device that supports each auxiliary wheel 12 at the rear part of the vehicle body so as to be movable up and down.
  • the auxiliary wheel lifting / lowering device 13 of the present embodiment supports the auxiliary wheel 12 on the vehicle body by the link members 26 to 28 so as to be able to turn in the vehicle width direction, and drives the auxiliary wheel lift motor from the inner side in the vehicle width direction.
  • the auxiliary wheel 12 is moved up and down by moving the auxiliary wheel 12 so as to go downward as it goes outward in the vehicle width direction.
  • the auxiliary wheel lifting device 13 is provided for each auxiliary wheel 12.
  • FIG. 4 shows the auxiliary wheel elevating device 13 provided on the left rear wheel side as a representative.
  • the configuration of the auxiliary wheel lifting device 13 on the right rear wheel side is the same.
  • the rear wheels 1RL and 1RR constituting the third wheel are rotatably supported by the wheel support member 20.
  • the wheel support member 20 is supported via a suspension device 24 so as to be swingable up and down with respect to the vehicle body.
  • FIG. 4 shows an upper link member 21, a lower link member 22, and a shock absorber 23 as examples of members constituting the suspension device 24.
  • auxiliary wheel 12 is rotatably attached to the auxiliary wheel support member 25 as shown in FIG.
  • the auxiliary wheel support member 25 and the wheel support member 20 are connected by a first link member 26 so as to be swingable up and down.
  • the auxiliary wheel support member 25 and the vehicle body are connected to each other by the second and third link members 27 and 28 so as to be swingable up and down.
  • the second link member 27 is composed of a lift motor whose drive shaft 27a extends and contracts with respect to the motor body 27b.
  • the lift motor 27 is a linear motion device, and the motor main body 27b is connected to the vehicle body so as to be able to swing up and down. It is connected so that it can swing.
  • first link member 26 is set such that the connection point to the wheel support member 20 is higher than the connection point to the auxiliary wheel support member 25. Further, the connection point of the third link member 28 to the auxiliary wheel support member 25 is disposed below the connection point of the second link member 27 to the auxiliary wheel support member 25.
  • the first to third link members 26 to 28 are preferably arranged on the same plane.
  • the lift motor 27 extends the drive shaft 27a, so that the auxiliary wheel 12 moves upward about the connection point on the auxiliary wheel support member 25 side of the third link member 28. It turns, that is, rises and is stored in the lower surface of the vehicle body. From this state, the lift motor 27 contracts the drive shaft 27a, so that the auxiliary wheel 12 descends downward by turning downward about the connection point of the third link member 28 on the auxiliary wheel support member 25 side. The auxiliary wheel 12 is grounded. At this time, in the present embodiment, when the drive shaft 27a contracts, the connection point on the auxiliary wheel support member 25 side of the first link member 26 is connected to the auxiliary wheel support member 25 side of the third link member 28.
  • the lift motor control circuit 14 reads the motor position and current value from the lift motor 27 that raises and lowers the auxiliary wheel 12 and controls the position of the lift motor 27.
  • the auxiliary steering control unit 30 is configured as a part of a program of the controller 15 that performs vehicle control.
  • the controller 15 is constituted by a CPU, a ROM, a RAM, and the like, and programs for realizing various processes are stored in the ROM.
  • the controller 15 reads the driver's operation switch, the shift position by the shift operation, and the rotational speed of the wheel by the wheel speed sensor 10.
  • the controller 15 determines the vehicle state based on the signal from the sensor or the like, and communicates with the brake control circuit 6 for controlling the braking force, the lift motor control circuit 14 for raising and lowering the auxiliary wheel 12 and the like through the interface circuit. Command is possible.
  • the auxiliary steering control unit 30 includes an auxiliary wheel lift processing unit 30A and a power difference distribution processing unit 30B.
  • the auxiliary wheel lift processing unit 30 ⁇ / b> A detects that the auxiliary steering operation switch 19 is turned on, the auxiliary wheel lift processing unit 30 ⁇ / b> A supplies a lowering command to the lift motor control circuit 14.
  • the auxiliary wheel lift processing unit 30A detects that the auxiliary steering operation switch 19 is turned off, the auxiliary wheel lift processing unit 30A supplies a lift command to the lift motor control circuit 14.
  • the lift motor control circuit 14 drives the lift motor 27 by the lowering command, rotationally drives the link member by a preset rotation angle so as to turn the auxiliary wheel 12 downward, and the auxiliary wheel by the raising command.
  • the lift motor 27 is driven so that the link member turns by a preset rotation angle so as to turn 12 upward.
  • the power difference distribution processing unit 30B of the present embodiment When determining that the auxiliary steering operation switch 19 is ON, the power difference distribution processing unit 30B of the present embodiment operates the brake device 8 of the right drive wheel 1FR via the brake control circuit 6, and regardless of the brake operation, A preset braking force is applied to the right drive wheel 1FR.
  • the power difference distribution processing unit 30B applies a braking force to both the left and right front wheels 1FL and 1FR. Only the braking force may be released.
  • step S10 the auxiliary steering control unit 30 determines whether or not the switch has been operated based on a signal from the auxiliary steering operation switch 19. If it is determined that the auxiliary steering operation switch 19 has been operated, the process proceeds to step S20. In step S20, it is determined whether or not the vehicle is stopped. When it determines with the vehicle having stopped, it transfers to step S30. On the other hand, if it is determined that the vehicle is not stopped, the process proceeds to step S25.
  • the vehicle stop determination may be performed, for example, as follows.
  • the vehicle speed is detected based on a signal from the wheel speed sensor 10, and the determination is made based on whether or not the detected vehicle speed is equal to or lower than a preset vehicle speed (for example, 5 Km / h) that can be regarded as the vehicle being stopped.
  • a preset vehicle speed for example, 5 Km / h
  • step S25 the driver is notified that the brake operation is urged. Thereafter, the process proceeds to step S10.
  • step S30 it is determined whether or not the auxiliary steering operation switch 19 has been turned ON. If it is determined that the operation has been turned ON, the process proceeds to step S30. If it is determined that the auxiliary steering operation switch 19 is turned off, the process proceeds to step S100.
  • step S ⁇ b> 40 the auxiliary wheel lift processing unit 30 ⁇ / b> A performs control to lower the auxiliary wheel 12 and to ground it. In the present embodiment, a lowering command is supplied to each lift motor 27. As a result, the rear part of the vehicle body is lifted. And the ground load on the rear wheel side is reduced.
  • step S50 the power difference distribution processing unit 30B performs a process of applying a braking force to the right front wheel 1FR.
  • the applied braking force is preferably large enough to lock the rotation of the right front wheel 1FR.
  • step S60 when it is detected that the auxiliary wheel 12 has been lowered and the braking force has been applied to the right front wheel 1FR, the passenger is informed of information presentation indicating that auxiliary steering is possible.
  • the notification is displayed on a display unit or the like of a navigation device that can be visually recognized by an occupant, or is performed by voice. Thereafter, the process ends.
  • step S100 the power difference distribution processing unit 30B performs a process of releasing the braking force applied to the right front wheel 1FR.
  • step S110 the auxiliary wheel lift processing unit 30A performs a process of raising the auxiliary wheel 12 and storing it. In the present embodiment, the lift command is supplied to each lift motor 27.
  • step S120 when it is detected that the storage of the auxiliary wheel 12 has been completed and the release of the braking force to the right front wheel 1FR has been completed, an information presentation to the effect that the auxiliary steering process has been canceled is notified to the occupant.
  • the notification is displayed on a display unit or the like of a navigation device that can be visually recognized by an occupant, or is performed by voice. Thereafter, the process ends.
  • the auxiliary steering device of the present embodiment starts to operate when the occupant operates the auxiliary steering operation switch 19 to ON.
  • the auxiliary wheel 12 is stored on the vehicle body side and the auxiliary wheel 12 is in a non-grounded state.
  • the driver moves the vehicle forward or backward by performing an accelerator operation.
  • the driver operates the brake to stop the vehicle, and puts the shift lever into the “N” or “P” range.
  • the auxiliary steering control unit 30 when the driver turns on the auxiliary steering operation switch 19, the auxiliary steering control unit 30 is activated, and the auxiliary steering control unit 30 lowers the left and right auxiliary wheels 12 to ground each auxiliary wheel 12.
  • the ground load of the rear wheels 1RL and 1RR is reduced to zero or small by further lifting the vehicle body.
  • the auxiliary steering control unit 30 presents information indicating that auxiliary steering is possible after applying braking force to the right front wheel 1FR to lock the right front wheel 1FR.
  • the driver selects whether to turn forward or backward by putting the shift lever into the “D” or “R” range.
  • the driver since the braking force is applied to the right front wheel 1FR, it is possible to turn right in forward (D range) and turn left in backward (R range). Become.
  • it when it is set as the structure which provides a braking force to the left front wheel 1FL, it will be in the state in which it can turn to the left by forward (D range), and to the right by reverse (R range).
  • FIG. 8 shows an example of the turning state of the vehicle MM at that time.
  • the minimum turning radius is reduced by turning the vehicle MM around the right front wheel 1FR.
  • the auxiliary steering operation switch 19 is changed to OFF after the vehicle stops and the driver puts the shift lever into the D range or the P range.
  • the auxiliary steering control unit 30 releases the braking force applied to the right front wheel 1FR and raises the auxiliary wheel 12 to store it on the vehicle body side. Thereafter, the auxiliary steering control unit 30 notifies the occupant of the cancellation of the auxiliary steering.
  • the auxiliary wheel 12 is provided at the lower portion of the vehicle body, and the auxiliary wheel 12 is supported on the road surface by the lifting mechanism, thereby lifting the rear wheel 1RL, 1RR releases the restraining force in the left-right direction with respect to the vehicle body.
  • the driver selects the turning direction by the shift operation and then performs the accelerator operation, a driving force difference is generated between the left and right rear wheels 1RL and 1RR, and a moment in the yaw direction is generated in the vehicle body.
  • the braking force is applied to the right front wheel 1FR, the vehicle body can turn around the right front wheel 1FR to which the braking is applied or the vicinity thereof.
  • FIG. 10 shows an example of parking in the horizontal direction.
  • the vehicle MM is moved forward to the front of the parking position, the vehicle MM is turned and moved forward to be parked at the target position.
  • the left and right rear wheels 1RL and 1RR may be driving wheels 1FL and 1FR or driven wheels.
  • the left and right front wheels 1FL and 1FR are illustrated as driving wheels.
  • the auxiliary wheel 12 may be disposed on the vehicle body front side. In this case, for example, setting is made so that braking is applied to the right rear wheel 1RR side.
  • FIG. An example of turning of the vehicle MM by auxiliary steering in this case is shown in FIG. In this case, for example, after the vehicle MM is retracted to the front of the parking position, the vehicle MM can be turned as shown in FIG.
  • the braking force is applied to one of the left and right drive wheels 1FL and 1FR by using the braking control device 18 capable of applying the braking force independently on the left and right is illustrated.
  • the left and right independent parking brake device 40 causes one of the left and right driving wheels to move to one wheel. It is good also as composition which can give braking.
  • the drive wheels are exemplified as the left and right rear wheels 1RL and 1RR.
  • the driver may select a wheel to be braked, or the auxiliary steering control unit 30 may be operated so as to apply braking to one of the drive wheels 1FL and 1FR.
  • the drive wheel power source may be a motor. That is, the vehicle to which the auxiliary steering device of the present invention is applied may be an electric vehicle or a hybrid vehicle. Further, at this time, as shown in FIG. 12, an in-wheel motor structure in which a drive motor 41 is individually arranged for each of the left and right drive wheels may be employed. In this case, a power difference can be generated between the left and right drive wheels by individually controlling the output torque of the left and right drive motors 41.
  • the rotation shafts of the left and right auxiliary wheels 12 are arranged to face in the vehicle front-rear direction so that the auxiliary wheels 12 roll in the vehicle lateral direction during auxiliary steering.
  • the rotation axis of the auxiliary wheel 12 since the vehicle body rotates around the right front wheel 1FR, it is preferable to set the rotation axis of the auxiliary wheel 12 to face the right front wheel 1FR as shown in FIG. . In this way, the auxiliary wheel 12 is more easily rolled by directing the rotation shaft to the center at the time of turning.
  • symbol L indicates an extension line of the rotation shaft of the auxiliary wheel 12.
  • the auxiliary wheel 12 and the auxiliary wheel support member 25 may be connected via a rotary bearing 43 to form a caster wheel.
  • the rotation axis of the auxiliary wheel 12 is freely changed, so that the rotation axis is automatically adjusted to the center at the time of turning.
  • the right driving wheel is described as a wheel to which braking is applied, but the wheel to which braking is applied may be set as the left driving wheel.
  • driving wheels to which braking is applied are set in advance, but driving wheels to which braking is applied may be selected according to a driver's instruction.
  • the drive wheel to which braking is applied may be determined according to the steering direction of the steered wheel when the vehicle is stopped.
  • a drive force difference is generated between the left and right drive wheels by applying braking to one drive wheel and applying drive force to the other drive wheel.
  • the configuration for generating a driving force difference between the left and right driving wheels is not limited to this.
  • the drive force difference may be generated by reversing the rotation directions of the left and right drive wheels. In this case, the vehicle body turns around the center position of the left and right drive wheels.
  • the driving force is transmitted to both the left and right driving wheels, but a driving force difference may be generated by changing the transmitted driving force.
  • the braking force can be regarded as a negative driving force.
  • the driving wheels are the front wheels 1FL, 1FR
  • the rear wheels 1RL, 1RR are the third wheels.
  • the front wheels 1FL and 1FR are the third wheels.
  • the auxiliary wheel 12 and the auxiliary wheel elevating device 13 may be provided on both the front wheels 1FL and 1FR and the rear wheels 1RL and 1RR.
  • auxiliary steering on the front wheels 1FL, 1FR if the driving wheels at the time of auxiliary steering are the front wheels 1FL, 1FR, the auxiliary steering on the rear wheels 1RL, 1RR side is operated, and if the driving wheels at the time of auxiliary steering are the rear wheels 1RL, 1RR, The auxiliary steering on the front wheels 1FL and 1FR may be actuated.
  • the differential gear device 3 and the braking control device 18 constitute a driving force difference adjusting device.
  • the braking control device 18 constitutes a left and right independent braking control device 18.
  • the auxiliary wheel elevating device 13 raises and lowers the auxiliary wheel 12 with respect to the vehicle body.
  • the driving force difference adjusting device can generate a driving force difference between the left and right driving wheels when the auxiliary wheel 12 is grounded.
  • the vehicle can be turned with a smaller turning radius than that during normal traveling by including the device that generates the driving force difference and the lifting device of the auxiliary wheel 12.
  • a power source engine 2, motor, etc.
  • the apparatus can be made compact and the cost can be reduced.
  • the driving force difference adjusting device generates the driving force difference by applying braking to one of the left and right driving wheels and transmitting the driving force to the other wheel.
  • the addition of braking includes the case where the wheel is not locked.
  • the vehicle can be turned around the drive wheel side to which braking is applied.
  • the driving force difference adjusting device includes a left / right independent braking control device 18 capable of variably controlling the brake pressure individually for the left and right driving wheels, and a power difference from the power source to the left and right driving wheels.
  • a differential gear device for distribution According to this configuration, the turning radius can be controlled from the spot turning to the small turn during extremely low speed traveling.
  • the turning radius can be changed from on-site turning to small turning depending on the magnitude of the applied braking force. As the braking force increases, the turning radius decreases.
  • the driving force difference adjusting device includes a left and right independent parking brake device that can individually operate the parking brake for the left and right driving wheels, and a difference that distributes the power from the power source to the left and right driving wheels with a power difference.
  • a moving gear device According to this configuration, a braking force can be applied to one of the drive wheels by the driver operating the parking brake.
  • the driving force difference adjusting device includes an in-wheel motor in which a motor serving as an individual power source is mounted on the left and right driving wheels. According to this configuration, the driving forces of the left and right wheels can be individually adjusted independently.
  • auxiliary wheel 12 In plan view, when the auxiliary wheel 12 is in a state where the auxiliary wheel 12 is grounded, a driving wheel in which the extension line of the rotating shaft of the auxiliary wheel 12 has a relatively small driving force among the left and right driving wheels. Set to go to the side. According to this configuration, the auxiliary wheel 12 is disposed in a substantially vertical direction with respect to the wheel on which the braking force is applied. As a result, it is possible to reduce the wear of the auxiliary wheel 12.
  • the auxiliary wheel 12 is a caster wheel whose direction of rotation changes according to input from the road surface. According to this configuration, there is no need to consider the rotation axis of the auxiliary wheel 12, so there is a degree of freedom in design. In addition, since the rotation axis of the auxiliary wheel 12 is automatically adjusted, wear of the auxiliary wheel 12 can be reduced without turning the direction of the auxiliary wheel 12 according to the center of rotation of the vehicle when turning the auxiliary steering. Is possible.
  • the auxiliary wheel 12 is located on the opposite side of the vehicle center of gravity G from the left and right drive wheels when the auxiliary wheel 12 is grounded. According to this configuration, it is possible to reduce the ground load of the third wheel (including zero) by lowering the auxiliary wheel 12.
  • the auxiliary wheel 12 is arranged at a position farther from the driving wheel than a line connecting ends of the left and right third wheels close to the driving wheel. According to this configuration, by lowering the auxiliary wheel 12, it is possible to more reliably reduce the ground load of the third wheel (including zero).
  • the vehicle can be turned with a small turning radius, that is, with a minimum turning radius reduced.
  • the auxiliary wheel 12 is used in a non-driven state (driven wheel state)
  • a power device that rotationally drives the auxiliary wheel 12 becomes unnecessary, and the configuration around the auxiliary wheel 12 becomes a simple configuration.
  • FIG. 15 is a top view showing the suspension and auxiliary wheel lifting device 13 at the rear of the vehicle
  • FIG. 16 is a rear view thereof.
  • the auxiliary wheel elevating device 13 is provided for each of the left and right rear wheels.
  • FIG. 15 which is a top view, a mechanism for sliding the link 27, a lift motor 29, and the like are omitted.
  • the rear wheels 1RL and 1RR of the present embodiment are rotatably supported by the wheel support member 20.
  • the wheel support member 20 is supported by the vehicle body so as to be able to swing up and down via a leaf-rigid suspension device.
  • the auxiliary wheel 12 is rotatably attached to the auxiliary wheel support member 25 as shown in FIG.
  • the auxiliary wheel support member 25 and the wheel support member 20 are connected by a first link member 26 so as to be swingable up and down.
  • the auxiliary wheel support member 25 and the vehicle body are connected to each other by the second and third link members 27 and 28 so as to be swingable up and down.
  • the auxiliary wheel support member 25 and the vehicle body are connected to the second and third link members 27 and 28 by, for example, ball joints.
  • a lift motor 29 is fixed to the lower surface of the vehicle body.
  • the lift motor 29 is a linear motion device, and the tip of the link member 27 is rotatably connected to a sliding table.
  • FIG. 17 in a plan view, when the auxiliary wheel 12 is lowered and the auxiliary wheel 12 is in contact with the ground, the extension line of the rotation shaft of the auxiliary wheel 12 is relatively driven among the left and right driving wheels. It is set so as to go to the drive wheel side where the force becomes smaller.
  • the turning direction (operating direction) of the auxiliary wheel when the auxiliary wheel lifting device 13 moves up and down and retracts is set to be perpendicular to the rotation axis of the auxiliary wheel 12. That is, as shown in FIG.
  • the rolling direction of the auxiliary wheels 12 is the vehicle width direction so that the rotating shaft of each auxiliary wheel 12 faces the drive wheel 1FR regardless of whether the auxiliary wheels 12 are stored or grounded.
  • the angles ⁇ and ⁇ are given in the vehicle longitudinal direction in plan view.
  • the extension line of the rotation shaft of the auxiliary wheel 12 in the vehicle width direction is on the driving wheel side where the driving force is relatively small among the left and right driving wheels. It sets so that it may go, and it is set so that it may raise / lower by turning in the direction orthogonal to the said rotating shaft.
  • the first to third link members 26 to 28 are not arranged on the same plane.
  • the auxiliary shaft's rotating shaft extension line faces the vehicle longitudinal direction when the auxiliary wheel is installed.
  • the load applied when moving up and down is increased.
  • the load applied when raising and lowering the auxiliary wheel elevating device 13 is reduced, and the output of the motor can be reduced.
  • the auxiliary wheel does not turn and the extension line of the rotating shaft of the auxiliary wheel 12 has a relatively small driving force among the left and right driving wheels.
  • the wear of the auxiliary wheel can be reduced, and the input to the auxiliary wheel lifting device 13 that supports the auxiliary wheel can be drastically reduced.
  • the grounded auxiliary wheel is raised to store the auxiliary wheel.
  • the lift motor 29 of the present embodiment is illustrated as being set to slide in the vehicle left-right direction.
  • the set angle that is the direction in which the lift motor 29 slides can be set to be inclined with respect to the vehicle left-right direction.
  • the angle ⁇ formed by the left auxiliary wheel 12 far from the brake wheel 1FR from the angle parallel to the vehicle left-right direction with respect to the vehicle left-right direction is the brake wheel It is set to be larger than the angle ⁇ formed by the right auxiliary wheel on the side close to 1FR.
  • the vehicle also includes a steering device.
  • the steering device includes a steering wheel 39, a steering shaft 31, and a steering rack 36.
  • the steering wheel 39 is a steering operator that a driver performs a steering operation.
  • the steering shaft 31 has an upper end connected to the steering wheel 39.
  • the lower end portion of the steering shaft 31 is connected to the upper end portion of the steering intermediate shaft 34, and the lower end portion of the steering intermediate shaft 34 is connected to the steering rack 36 via a pinion gear.
  • the rotation of the steering wheel 39 is converted into a linear motion of the steering rack 36 by the rack and pinion mechanism.
  • the left and right ends of the steering rack 36 are connected via a tie rod 50 to a knuckle arm 51a of a knuckle 51 that rotatably supports the steered wheels 1FL and 1FR.
  • the steered wheels 1FL and 1FR are the front wheels 1FL and 1FR which are drive wheels.
  • the steering shaft 31, the steering intermediate shaft 34, the pinion gear, the steering rack 36, and the tie rod 50 form a steering transmission path for transmitting the steering of the steering wheel 39 to the steered wheels 1FL and 1FR.
  • the steering shaft 31 is rotatably disposed in the steering column 32.
  • a steering electric motor 33 is attached to the steering column 32.
  • the steering electric motor 33 is configured to be able to input a steering torque to the steering shaft 31.
  • the vehicle includes a steering operation restriction device.
  • the steering operation restriction device of the present embodiment has a mechanism for restricting the rotational displacement of the steering shaft 31 and restricts the rotation (movement) of the steering wheel 39 by restricting the rotational displacement of the steering shaft 31.
  • the steering operation restriction device includes a recess 31 a formed in the steering shaft 31, a pin 40 a, and an advance / retreat mechanism 40.
  • the advance / retreat mechanism 40 includes an electromagnetic solenoid 40c.
  • the recess 31a is formed every 90 degrees in the circumferential direction.
  • the steering column 32 is formed with a notch 32a at a position that can be opposed to one of the recesses 31a in the radial direction as the steering shaft 31 rotates. As a result, as the steering shaft 31 rotates, the recesses 31a sequentially face the notches 32a.
  • the pin 40a has such a size that it can pass through the notch 32a and can be inserted into the recess 31a.
  • the pin 40a is attached to the tip of the advance / retreat shaft 40b of the electromagnetic solenoid 40c, and the pin 40a is directed to the surface of the steering shaft 31 through the notch 32a by the advance / retreat of the advance / retreat shaft 40b accompanying the operation of the electromagnetic solenoid 40c.
  • the advance / retreat shaft 40b is contracted by the elastic force of the spring 40d and the pin 40a is separated from the steering shaft 31.
  • the electromagnetic solenoid 40c is supported by the steering column 32, for example.
  • the vehicle includes an auxiliary steering device.
  • the differential gear device 3 and the braking control device 18 also serve as part of the configuration of the auxiliary steering device.
  • the auxiliary steering device includes left and right auxiliary wheels 12, an auxiliary wheel elevating device 13 that raises and lowers each auxiliary wheel 12 relative to the vehicle body, a lift motor control circuit 14, and an auxiliary steering control unit.
  • the vehicle also includes an auxiliary steering operation switch 19 that can be operated by a passenger.
  • the left and right auxiliary wheels 12 and the lifting mechanism thereof are the same as in the other embodiments, and thus the description thereof is omitted here.
  • the auxiliary steering control unit 30 is configured as a partial program of the controller 15 that performs vehicle control.
  • the controller 15 is constituted by a CPU, a ROM, a RAM, and the like, and programs for realizing various processes are stored in the ROM.
  • the controller 15 reads the driver's operation switch, the shift position by the shift operation, and the rotational speed of the wheel by the wheel speed sensor 10. Then, the controller 15 determines the vehicle state based on the signal from the sensor or the like, and communicates with the brake control circuit 6 that controls the braking force, the lift motor control circuit 14 that raises and lowers the auxiliary wheels 12 and the like through the interface circuit. Command is possible.
  • the auxiliary steering control unit 30 includes an auxiliary wheel lift processing unit 30A, a power difference distribution processing unit 30B, and a steering lock processing unit 30C.
  • the auxiliary wheel lift processing unit 30 ⁇ / b> A detects that the auxiliary steering operation switch 19 is turned on, the auxiliary wheel lift processing unit 30 ⁇ / b> A supplies a lowering command to the lift motor control circuit 14.
  • the auxiliary wheel lift processing unit 30A detects that the auxiliary steering operation switch 19 is turned off, the auxiliary wheel lift processing unit 30A supplies a lift command to the lift motor control circuit 14.
  • the lift motor control circuit 14 drives the lift motor 27 by the lowering command, rotationally drives the link member by a preset rotation angle so as to turn the auxiliary wheel 12 downward, and the auxiliary wheel by the raising command.
  • the lift motor 27 is driven so that the link member turns by a preset rotation angle so as to turn 12 upward.
  • the power difference distribution processing unit 30B of the present embodiment When determining that the auxiliary steering operation switch 19 is ON, the power difference distribution processing unit 30B of the present embodiment operates the brake device 8 of the right drive wheel 1FR via the brake control circuit 6, and regardless of the brake operation, A preset braking force is applied to the right drive wheel 1FR.
  • the power difference distribution processing unit 30B applies a braking force to both the left and right front wheels 1FL and 1FR. Only the braking force may be released.
  • the steering lock processing unit 30C When the steering lock processing unit 30C detects that the auxiliary steering operation switch 19 is turned on, it supplies a lock command (current supply command) to the electromagnetic solenoid 40c and presses the pin 40a against the surface of the steering shaft 31. . When the steering lock processing unit 30C detects that the auxiliary steering operation switch 19 is turned off, the steering lock processing unit 30C supplies a lock release command (current cutoff command) to the electromagnetic solenoid 40c so that the pin 40a is separated from the steering shaft 31. Evacuate.
  • step S10 the auxiliary steering control unit 30 determines whether or not the switch has been operated based on a signal from the auxiliary steering operation switch 19. If it is determined that the auxiliary steering operation switch 19 has been operated, the process proceeds to step S20.
  • step S20 it is determined whether or not the vehicle is stopped. When it determines with the vehicle having stopped, it transfers to step S30. On the other hand, if it is determined that the vehicle is not stopped, the process proceeds to step S25.
  • the vehicle stop determination may be performed, for example, as follows. That is, the vehicle speed is detected based on the signal from the wheel speed sensor 10, and the determination is made based on whether or not the detected vehicle speed is equal to or lower than a preset vehicle speed (for example, 5 km / h) that can be considered that the vehicle is stopped.
  • a preset vehicle speed for example, 5 km / h
  • step S25 the driver is notified that the brake operation is urged. Thereafter, the process proceeds to step S10.
  • step S30 it is determined whether or not the auxiliary steering operation switch 19 has been turned ON. If it is determined that the operation has been turned ON, the process proceeds to step S30. If it is determined that the auxiliary steering operation switch 19 is turned off, the process proceeds to step S100.
  • step S ⁇ b> 40 the auxiliary wheel lift processing unit 30 ⁇ / b> A performs control to lower the auxiliary wheel 12 and to ground it. In the present embodiment, a lowering command is supplied to each lift motor 27. As a result, the rear part of the vehicle body is lifted. And the ground load on the rear wheel side is reduced.
  • step S50 the power difference distribution processing unit 30B performs a process of applying a braking force to the right front wheel 1FR.
  • the applied braking force is preferably large enough to lock the rotation of the right front wheel 1FR.
  • step S55 the steering lock processing unit 30C outputs a lock command (current supply command) to the electromagnetic solenoid 40c.
  • the advance / retreat shaft 40 b extends and the pin 40 a is pressed against the steering shaft 31.
  • the pin 40a is inserted into any one of the concave portions 31a within a rotational range of less than 90 degrees, and the rotational displacement of the steering shaft 31 beyond that. Is regulated.
  • step S60 when it is detected that the auxiliary wheel 12 has been lowered and the braking force has been applied to the right front wheel 1FR, the passenger is informed of information presentation indicating that auxiliary steering is possible.
  • the notification is displayed on a display unit or the like of a navigation device that can be visually recognized by an occupant, or is performed by voice. Thereafter, the process ends.
  • the power difference distribution processing unit 30B performs a process of releasing the braking force applied to the right front wheel 1FR.
  • step S110 the auxiliary wheel lift processing unit 30A performs a process of raising the auxiliary wheel 12 and storing it.
  • the lift command is supplied to each lift motor 27.
  • step S115 the steering lock processing unit 30C outputs a lock release command (current cutoff command) to the electromagnetic solenoid 40c.
  • a lock release command current cutoff command
  • the advancing / retracting shaft 40 b contracts and the pin 40 a is displaced in a direction away from the steering shaft 31.
  • the restriction on the rotation of the steering shaft 31 is released.
  • step S120 when it is detected that the storage of the auxiliary wheel 12 has been completed and the release of the braking force to the right front wheel 1FR has been completed, an information presentation to the effect that the auxiliary steering process has been canceled is notified to the occupant.
  • the notification is displayed on a display unit or the like of a navigation device that can be visually recognized by an occupant, or is performed by voice. Thereafter, the process ends.
  • Other configurations are the same as those in the above embodiment.
  • the auxiliary steering device of the present embodiment starts to operate when the occupant operates the auxiliary steering operation switch 19 to ON.
  • the auxiliary wheel 12 is stored on the vehicle body side and the auxiliary wheel 12 is in a non-grounded state.
  • the driver moves the vehicle forward or backward by performing an accelerator operation.
  • the driver operates the brake to stop the vehicle, and puts the shift lever into the “N” or “P” range.
  • the auxiliary steering control unit 30 when the driver turns on the auxiliary steering operation switch 19, the auxiliary steering control unit 30 is activated, and the auxiliary steering control unit 30 lowers the left and right auxiliary wheels 12 to ground each auxiliary wheel 12.
  • the ground load of the rear wheels 1RL and 1RR is reduced to zero or small by further lifting the vehicle body.
  • the auxiliary steering control unit 30 applies a braking force to the right front wheel 1FR to place the right front wheel 1FR in a locked state.
  • the auxiliary steering control unit 30 presents information indicating that auxiliary steering is possible after the pin 40a is pressed from the radial direction toward the steering shaft 31.
  • the driver selects whether to turn forward or backward by putting the shift lever into the “D” or “R” range.
  • the driver since the braking force is applied to the right front wheel 1FR, it is possible to turn right in forward (D range) and turn left in backward (R range). Become.
  • it when it is set as the structure which provides a braking force to the left front wheel 1FL, it will be in the state in which it can turn to the left by forward (D range), and to the right by reverse (R range).
  • FIG. 8 shows an example of the turning state of the vehicle MM at that time.
  • the minimum turning radius is reduced by turning the vehicle MM around the right front wheel 1FR.
  • the steering shaft 31 is rotationally displaced.
  • the pin 40a faces the recess 31a, and the pin 40a is inserted into the facing recess 31a. The rotation of the steering shaft 31 is restricted.
  • the auxiliary steering control unit 30 releases the braking force applied to the right front wheel 1FR and raises the auxiliary wheel 12 to store it on the vehicle body side. Further, the auxiliary steering control unit 30 releases the lock of the steering shaft 31, and allows the rotational displacement of the steering wheel 39 to be allowed. Thereafter, the auxiliary steering control unit 30 notifies the occupant of the cancellation of the auxiliary steering.
  • the auxiliary wheel 12 is provided at the lower portion of the vehicle body, and the auxiliary wheel 12 is supported on the road surface by the lifting mechanism, thereby lifting the rear wheel 1RL, 1RR releases the restraining force in the left-right direction with respect to the vehicle body.
  • the driver selects the turning direction by the shift operation and then performs the accelerator operation, a driving force difference is generated between the left and right rear wheels 1RL and 1RR, and a moment in the yaw direction is generated in the vehicle body.
  • the braking force is applied to the right front wheel 1FR, the vehicle body can turn around the right front wheel 1FR to which the braking is applied or the vicinity thereof.
  • the auxiliary wheel 12 since the auxiliary wheel 12 is in a non-driving free state, the auxiliary wheel 12 rolls in the lateral direction of the vehicle body in a state in which the moment in the yaw direction generated in the vehicle body is not inhibited or small. As a result, as the minimum turning radius of the vehicle becomes smaller than that in the normal state, the space required for parallel parking is extremely reduced as shown in FIG.
  • the steering wheel 39 is exemplified as the steering operator.
  • the steering operator may be composed of a stick-like operator.
  • the steered wheel may be a rear wheel constituting the third wheel.
  • the rotation of the steering wheel 39 is restricted as described above, so that the driver does not need to hold the steering wheel 30 firmly.
  • the steering configuration may be a configuration employing a steering-by-wire system.
  • the driving wheels are the front wheels 1FL, 1FR
  • the rear wheels 1RL, 1RR are the third wheels.
  • the front wheels 1FL and 1FR are the third wheels.
  • the auxiliary wheel 12 and the auxiliary wheel elevating device 13 may be provided on both the front wheels 1FL and 1FR and the rear wheels 1RL and 1RR.
  • the differential gear device 3 and the braking control device 18 constitute a driving force difference adjusting device.
  • the braking control device 18 constitutes a left and right independent braking control device 18.
  • the steering wheel 39 constitutes a steering operator.
  • the auxiliary wheel 12 is disposed at a position closer to the third wheel than the driving wheel in plan view, and is used without being driven.
  • the auxiliary wheel lifting device lifts and lowers the auxiliary wheel 12 with respect to the vehicle body.
  • the auxiliary wheel elevating device and the driving force difference adjusting device can generate a driving force difference between the left and right driving wheels when the auxiliary wheel 12 is grounded.
  • the steering operation restriction device restricts the movement of the steering operator when the auxiliary wheel 12 is grounded. According to this configuration, when the vehicle turns in a small turn by the auxiliary steering using the auxiliary wheels 12, the movement of the steering operator such as an unexpected touching movement is reduced by restricting the movement of the steering operator. Is possible. That is, the vehicle can turn on the spot without causing the driver to perform an operation of holding the steering operator more than necessary.
  • the steering operator is a steering wheel 39.
  • the movement of the steering operator is a rotational displacement of the steering wheel 39.
  • an unexpected rotational displacement of the steering wheel 39 during auxiliary steering by the auxiliary wheels 12 can be limited.
  • the steering operation restriction device includes two or more recesses 31a formed on the steering shaft 31 that is rotationally displaced as the steering wheel 39 rotates and arranged in the circumferential direction, and a pin 40a that can be inserted into the recess 31a. And an advancing / retracting mechanism 40 for advancing and retracting the pin 40a toward the steering shaft 31 at an axial position where the concave portion 31a is formed in the steering shaft 31. According to this configuration, the rotation of the steering wheel can be restricted during auxiliary steering by the auxiliary wheel 12.
  • the steering operation restriction device of this embodiment includes a recess 36a formed in the steering rack 36, an advance / retreat mechanism 41, and a pin 42a.
  • the steering rack 36 is formed with two or more recesses 36a along the longitudinal direction (axial direction).
  • the two or more recesses 36a are arranged such that the two or more recesses 36a are accommodated in a length that allows relative displacement in the axial direction of the steering rack 36.
  • one end of a pair of substantially C-shaped actuating parts 42 (clamping parts) is connected to a rotational displacement, and the connecting part is used as a fulcrum to rotationally displace the pair of actuating parts.
  • the other end is configured to approach and separate.
  • a locking motor 41a is provided, and the locking motor 41a drives the pair of operating portions 42 so that the other end portions of the pair of operating portions 42 are separated from each other.
  • the other end of the one operating part 42 sandwiches the steering rack 36 from above and below, and the other end of the upper operating part 42 constitutes a pin 42a.
  • the locking motor 41a When a lock command is input, the locking motor 41a is driven so that the pair of operating parts 42 approach each other and presses the pin 42a (the other end of the upper operating part 42) against the steering rack 36. . Further, when a lock release command is input, the locking motor 41a is driven so that the pair of operating parts 42 are separated from each other, thereby separating the pin 42a from the steering rack 36.
  • the locking motor 41a is fixed to the vehicle body. Other configurations are the same as those of the first embodiment.
  • the auxiliary steering control unit 30 When the driver turns on the auxiliary steering operation switch 19, the auxiliary steering control unit 30 is activated, and the auxiliary steering control unit 30 lowers the left and right auxiliary wheels 12 to ground each auxiliary wheel 12. By lifting the vehicle body, the ground load of the rear wheels 1RL and 1RR is reduced to zero or small. Subsequently, the auxiliary steering control unit 30 applies a braking force to the right front wheel 1FR to place the right front wheel 1FR in a locked state. Further, the auxiliary steering control unit 30 presents information indicating that auxiliary steering is possible after the other end portion (pin) of the upper operation unit 42 is pressed against the steering rack 36.
  • the driver selects whether to turn forward or backward by putting the shift lever into the “D” or “R” range.
  • the driver since the braking force is applied to the right front wheel 1FR, it is possible to turn right in forward (D range) and turn left in backward (R range). Become.
  • it when it is set as the structure which provides a braking force to the left front wheel 1FL, it will be in the state in which it can turn to the left by forward (D range), and to the right by reverse (R range).
  • the recess 36a, the pair of operating parts 42, and the advance / retreat mechanism 41 constitute a steering operation restriction device.
  • the other end of the upper operating portion 42 constitutes the pin 42a.
  • the steering operation limiting device is formed in the steering rack 36 that is displaced in the vehicle width direction with the rotation of the steering wheel 39 and is arranged along the longitudinal direction of the steering rack 36, and the concave portion 36a.
  • the lock position can be set with a finer resolution than when the rotation of the steering shaft 31 is restricted. The reason is that in the case of the steering shaft 31, it is taken in the circumferential direction, but in the case of the steering rack 36, the recess 36 a can be set in the longitudinal direction.
  • the steering electric motor 33 may be a power steering electric motor or a reaction force applying motor.
  • the steering lock processing unit 30 ⁇ / b> C of the present embodiment detects that the auxiliary steering operation switch 19 is turned on, the steering lock processing unit 30 ⁇ / b> C inputs a motor torque such that the steering shaft 31 is fixed to the steering electric motor 33 to the steering shaft 31.
  • a control command is issued.
  • the steering angle that is the control target at this time is set to the steering angle zero (neutral position)
  • the current steering angle is read from the steering angle sensor 38
  • the steering position is near the steering angle zero (substantially approximately) based on the read steering angle.
  • the steering angle that is the control target may be the steering angle when the auxiliary steering operation switch 19 is turned on.
  • the steering lock processing unit 30C detects that the auxiliary steering operation switch 19 is turned off, the steering lock processing unit 30C cancels the application of the steering lock motor torque.
  • the optimum target rudder angle ⁇ f will be described with reference to FIG.
  • the sum of the caster rail and the pneumatic trail calculated from the suspension geometry of the front wheel (the right front wheel in the figure) that generates the braking force is the trail l, and the distance between the front axles is the front tread base e.
  • the steered angle ⁇ f of the drive wheels is used, the steered angle at which the steering force fluctuation is minimized can be obtained from the following equation.
  • the motor torque input from the steering electric motor 33 to the steering shaft 31 may be feedback-controlled so that the steering angle of the steering wheel 39 becomes the target steering angle ⁇ f.
  • the steering electric motor 33 constitutes a steering operation limiting device.
  • this embodiment has the following effect.
  • the steering operation restriction device restricts the movement of the steering wheel 39 by adding the motor torque output from the steering electric motor 33 to the steering wheel 39. According to this configuration, a dedicated device for limiting the steering operation becomes unnecessary. This leads to point costs.
  • FIG. 1 is a schematic diagram showing a configuration of a vehicle according to the present embodiment
  • FIG. 2 is a system diagram thereof.
  • a vehicle having left and right front wheels 1FL and 1FR and left and right rear wheels 1RL and 1RR and using left and right front wheels 1FL and 1FR as driving wheels will be described as an example.
  • the steering wheel is not particularly limited.
  • the vehicle according to the present embodiment includes an engine 2 as a power source, an engine control unit 4, a differential gear device 3, and a braking control device 18.
  • the power source of the drive wheels 1FL and 1FR is not limited to the engine 2 and may be an electric motor.
  • the engine 2 is connected to the axles of the left and right drive wheels 1FL, 1FR via a differential gear device 3.
  • the power of the engine 2 is distributed to the left and right drive wheels 1FL and 1FR by the differential gear device 3.
  • the engine control unit 4 calculates an output command value corresponding to the operation amount of the accelerator pedal 5 and adjusts the throttle opening of the engine 2 so that power corresponding to the calculated output command value is generated.
  • the brake control device 18 includes a brake control circuit 6, a brake control actuator 7, and left and right brake devices 8 provided individually on the left and right drive wheels 1FL and 1FR. Then, by operating the brake control actuator 7 according to the brake command value output from the brake control circuit 6, the left and right brake devices 8 can apply individual braking forces to the left and right drive wheels 1FL and 1FR. It has become. That is, the brake control circuit 6 sends a command to a brake control actuator 7 having a solenoid for opening and closing a valve in the brake oil passage and a hydraulic pump for the brake, and individually controls the braking force one by one.
  • the brake device 8 is a disc type brake device or the like. The brake device 8 may be an electric brake device.
  • the brake control device 18 When the brake control device 18 detects an operation of the brake pedal 9, the brake control device 18 applies a braking force corresponding to the operation amount of the brake pedal 9 to each brake device 8. Further, the braking control device 18 of the present embodiment applies a braking force to one of the left and right front wheels 1FL and 1FR when an operation signal is input from an auxiliary steering control unit described later. However, even if an operation signal is input from an auxiliary steering control unit, which will be described later, the brake control circuit 6 detects a brake operation amount that is greater than a preset value by operating the brake pedal 9, and performs brake control according to the brake operation amount. Will be prioritized.
  • the vehicle also includes a wheel speed sensor 10 that detects the rotational speeds of the left and right front wheels 1FL and 1FR, and a shift position detection sensor 11 that detects a shift position.
  • the wheel speed sensor 10 detects the wheel speed of each front wheel 1FL, 1FR.
  • the shift position detection sensor 11 detects whether the shift position is a forward position, a neutral position, or a reverse position.
  • the vehicle includes an auxiliary steering device.
  • the differential gear device 3 and the braking control device 18 also serve as part of the configuration of the auxiliary steering device.
  • the auxiliary steering device includes left and right auxiliary wheels 12, an auxiliary wheel elevating device 13 that raises and lowers each auxiliary wheel 12 relative to the vehicle body, a lift motor control circuit 14, and an auxiliary steering control unit.
  • the vehicle also includes an auxiliary steering operation switch 19 that can be operated by a passenger.
  • the left and right auxiliary wheels 12 are arranged on the opposite side of the left and right drive wheels 1FL and 1FR with respect to the vehicle center of gravity G when the auxiliary wheels 12 are grounded in a plan view. Yes.
  • the left and right auxiliary wheels 12 are driven in the above-mentioned direction rather than a line connecting ends of the left and right rear wheels 1RL and 1RR closer to the drive wheels 1FL and 1FR (front side in the vehicle front-rear direction).
  • the left and right auxiliary wheels 12 are positioned on the opposite side of the left and right drive wheels 1FL and 1FR with respect to the vehicle center of gravity G by being arranged at positions away from the wheels 1FL and 1FR.
  • the rotating shaft of the auxiliary wheel 12 faces the vehicle front-rear direction at least in a grounded state.
  • the vehicle front-rear direction may be inclined in the vehicle width direction with respect to the longitudinal direction of the vehicle body. The inclination is an angle of less than 45 degrees, for example.
  • the left and right auxiliary wheels 12 are arranged apart from each other in the vehicle width direction in the space between the left and right rear wheels 1RL and 1RR.
  • the case where the left auxiliary wheel 12 is arranged close to the left rear wheel 1RL and the right auxiliary wheel 12 is arranged close to the right rear wheel 1RR is illustrated.
  • the auxiliary wheel lifting / lowering device 13 is a device that supports each auxiliary wheel 12 at the rear part of the vehicle body so as to be movable up and down.
  • the auxiliary wheel lifting / lowering device 13 of the present embodiment supports the auxiliary wheel 12 on the vehicle body by the links 26 to 28 so that the auxiliary wheel 12 can turn in the vehicle width direction, and drives the auxiliary wheel lift motor from the inner side in the vehicle width direction.
  • the auxiliary wheel 12 is moved up and down by moving the auxiliary wheel 12 so as to go downward as it goes outward in the vehicle width direction.
  • the auxiliary wheel lifting device 13 is provided for each auxiliary wheel 12.
  • FIG. 4 shows the auxiliary wheel elevating device 13 provided on the left rear wheel side as a representative.
  • the configuration of the auxiliary wheel lifting device 13 on the right rear wheel side is the same.
  • the rear wheels 1RL and 1RR constituting the third wheel are rotatably supported by the wheel support member 20.
  • the wheel support member 20 is supported via a suspension device 24 so as to be swingable up and down with respect to the vehicle body.
  • FIG. 4 shows an upper link 21, a lower link 22, and a shock absorber 23 as examples of suspension members that constitute the suspension device 24.
  • auxiliary wheel 12 is rotatably attached to the auxiliary wheel support member 25 as shown in FIG.
  • the auxiliary wheel support member 25 and the wheel support member 20 are connected by a first link 26 so as to be swingable up and down.
  • the auxiliary wheel support member 25 and the vehicle body are connected by the second and third links 27 and 28 so as to be swingable up and down.
  • the second link 27 is composed of a lift motor, and the lift motor 27 has a drive shaft 27a that expands and contracts with respect to the motor body.
  • the lift motor 27 is a linear motion device, and the motor main body 27b is connected to the vehicle body so as to be able to swing up and down. It is connected so that it can swing. That is, in the present embodiment, the second link 27 is configured by a lift motor, and the length of the second link is changed, so that the position of the auxiliary wheel support member side end portion of the second link is changed. Displace.
  • the first link 26 is set such that the connection point to the wheel support member 20 is higher than the connection point to the auxiliary wheel support member 25. Further, the connection point of the third link 28 to the auxiliary wheel support member 25 is disposed below the connection point of the second link 27 to the auxiliary wheel support member 25.
  • the first to third links 26 to 28 are preferably arranged on the same plane.
  • the auxiliary wheel 12 rolls in the vehicle width direction, it is preferable that the turning of the auxiliary wheel 12 at the time of the raising / lowering is set in the vehicle width direction.
  • the link arrangement is set so that the turning of the auxiliary wheel 12 at the time of raising and lowering is in the vehicle front-rear direction other than the vehicle width direction.
  • the lift motor control circuit 14 reads the motor position and current value from the lift motor 27 that raises and lowers the auxiliary wheel 12 and controls the position of the lift motor 27.
  • the auxiliary steering control unit 30 is configured as a part of a program of the controller 15 that performs vehicle control.
  • the controller 15 is constituted by a CPU, a ROM, a RAM, and the like, and programs for realizing various processes are stored in the ROM.
  • the controller 15 reads the driver's operation switch, the shift position by the shift operation, and the rotational speed of the wheel by the wheel speed sensor 10.
  • the controller 15 determines the vehicle state based on the signal from the sensor or the like, and communicates with the brake control circuit 6 for controlling the braking force, the lift motor control circuit 14 for raising and lowering the auxiliary wheel 12 and the like through the interface circuit. Command is possible.
  • the auxiliary steering control unit 30 includes an auxiliary wheel lift processing unit 30A and a power difference distribution processing unit 30B.
  • the auxiliary wheel lift processing unit 30 ⁇ / b> A detects that the auxiliary steering operation switch 19 is turned on, the auxiliary wheel lift processing unit 30 ⁇ / b> A supplies a lowering command to the lift motor control circuit 14.
  • the auxiliary wheel lift processing unit 30A detects that the auxiliary steering operation switch 19 is turned off, the auxiliary wheel lift processing unit 30A supplies a lift command to the lift motor control circuit 14.
  • the lift motor control circuit 14 drives the lift motor 27 by the lowering command, rotationally drives the link by a preset rotation angle so as to turn the auxiliary wheel 12 downward, and the auxiliary wheel 12 by the raising command.
  • the lift motor 27 is driven so that the link turns by a preset rotation angle so as to turn upward.
  • the power difference distribution processing unit 30B of the present embodiment When determining that the auxiliary steering operation switch 19 is ON, the power difference distribution processing unit 30B of the present embodiment operates the brake device 8 of the right drive wheel 1FR via the brake control circuit 6, and regardless of the brake operation, A preset braking force is applied to the right drive wheel 1FR.
  • the power difference distribution processing unit 30B applies a braking force to both the left and right front wheels 1FL and 1FR. Only the braking force may be released.
  • step S10 the auxiliary steering control unit 30 determines whether or not the switch has been operated based on a signal from the auxiliary steering operation switch 19. If it is determined that the auxiliary steering operation switch 19 has been operated, the process proceeds to step S20.
  • step S20 it is determined whether or not the vehicle is stopped. When it determines with the vehicle having stopped, it transfers to step S30. On the other hand, if it is determined that the vehicle is not stopped, the process proceeds to step S25.
  • the vehicle stop determination may be performed, for example, as follows. That is, the vehicle speed is detected based on a signal from the wheel speed sensor 10, and the determination is made based on whether or not the detected vehicle speed is equal to or lower than a preset vehicle speed (for example, 5 Km / h) that can be regarded as the vehicle being stopped.
  • a preset vehicle speed for example, 5 Km / h
  • step S25 the driver is notified that the brake operation is urged. Thereafter, the process proceeds to step S10.
  • step S30 it is determined whether or not the auxiliary steering operation switch 19 has been turned ON. If it is determined that the operation has been turned ON, the process proceeds to step S30. If it is determined that the auxiliary steering operation switch 19 is turned off, the process proceeds to step S100.
  • step S ⁇ b> 40 the auxiliary wheel lift processing unit 30 ⁇ / b> A performs control to lower the auxiliary wheel 12 and to ground it. In the present embodiment, a lowering command is supplied to each lift motor 27. As a result, the rear part of the vehicle body is lifted. And the ground load on the rear wheel side is reduced.
  • step S50 the power difference distribution processing unit 30B performs a process of applying a braking force to the right front wheel 1FR.
  • the applied braking force is preferably large enough to lock the rotation of the right front wheel 1FR.
  • step S60 when it is detected that the auxiliary wheel 12 has been lowered and the braking force has been applied to the right front wheel 1FR, the passenger is informed of information presentation indicating that auxiliary steering is possible.
  • the notification is displayed on a display unit or the like of a navigation device that can be visually recognized by an occupant, or is performed by voice. Thereafter, the process ends.
  • step S100 the power difference distribution processing unit 30B performs a process of releasing the braking force applied to the right front wheel 1FR.
  • step S110 the auxiliary wheel lift processing unit 30A performs a process of raising the auxiliary wheel 12 and storing it. In the present embodiment, the lift command is supplied to each lift motor 27.
  • step S120 when it is detected that the storage of the auxiliary wheel 12 has been completed and the release of the braking force to the right front wheel 1FR has been completed, an information presentation to the effect that the auxiliary steering process has been canceled is notified to the occupant.
  • the notification is displayed on a display unit or the like of a navigation device that can be visually recognized by an occupant, or is performed by voice. Thereafter, the process ends.
  • connection point P1 of the first link 26 to the auxiliary wheel support member 25 is located below the connection point P3 of the third link 28 to the auxiliary wheel support member 25.
  • the first link 26 turns inward and upward in the vehicle width direction around the wheel side connection point, and the auxiliary wheel 12 further rises accordingly. It is in a state.
  • the lift motor 27 contracts the drive shaft 27a.
  • the drive shaft 27a contracts, as shown in FIG. 4A, the auxiliary wheel 12 is outward and downward in the vehicle width direction with the connection point P3 of the third link 28 to the auxiliary wheel support member 25 as the center of oscillation. Turn to head towards. As a result, the auxiliary wheel 12 descends and contacts the outer side in the vehicle width direction, and the auxiliary wheel 12 further descends to lift the rear part of the vehicle body.
  • the reaction force F from the ground is input to the wheel support member 20 through the first link 26, and as a result, the stroke amount of the rear wheels 1RL and 1RR is lowered. Can be kept small.
  • the first link 26 connected to the auxiliary wheel support member 25 and the wheel support member 20 restricts the rear wheel from stroking in the rebound direction. The vehicle body can be lifted by the auxiliary wheel 12 while suppressing the stroke to the side.
  • the auxiliary wheel 12 is used so as to roll in the vehicle width direction.
  • the turning direction of the auxiliary wheel 12 when moving up and down is set to turn in the rolling direction, that is, the vehicle width direction.
  • unnecessary wear of the auxiliary wheel 12 associated with the raising and lowering of the auxiliary wheel 12 can be suppressed.
  • the connection point P1 of the first link 26 to the auxiliary wheel support member 25 is positioned below the connection point P3 of the third link 28 to the auxiliary wheel support member 25.
  • the first link 26 turns outward and downward in the vehicle width direction around the wheel side connection point, and the link of the first link 26 correspondingly.
  • the raising operation of the lowered auxiliary wheel 12 is the storing operation described above.
  • the auxiliary steering device of the present embodiment starts to operate when the occupant operates the auxiliary steering operation switch 19 to ON.
  • a normal travelable state as shown in FIG. 4B, the auxiliary wheel 12 is stored on the vehicle body side and the auxiliary wheel 12 is in a non-grounded state.
  • the driver moves the vehicle forward or backward by performing an accelerator operation.
  • the driver operates the brake to stop the vehicle, and puts the shift lever into the “N” or “P” range.
  • the auxiliary steering control unit 30 when the driver turns on the auxiliary steering operation switch 19, the auxiliary steering control unit 30 is activated, and the auxiliary steering control unit 30 lowers the left and right auxiliary wheels 12 to ground each auxiliary wheel 12. Lift the car body. As a result, the ground load of the rear wheels 1RL and 1RR is reduced to zero or small. Subsequently, the auxiliary steering control unit 30 presents information indicating that auxiliary steering is possible after applying braking force to the right front wheel 1FR to lock the right front wheel 1FR.
  • the driver selects whether to turn forward or backward by putting the shift lever into the “D” or “R” range.
  • the driver since the braking force is applied to the right front wheel 1FR, it is possible to turn right in forward (D range) and turn left in backward (R range). Become.
  • it when it is set as the structure which provides a braking force to the left front wheel 1FL, it will be in the state in which it can turn to the left by forward (D range), and to the right by reverse (R range).
  • forward (D range) is selected.
  • FIG. 8 shows an example of the turning state of the vehicle MM at that time. As shown in FIG. 8, the minimum turning radius is reduced by turning the vehicle MM around the right front wheel 1FR.
  • the auxiliary steering control unit 30 releases the braking force applied to the right front wheel 1FR and raises the auxiliary wheel 12 to store it on the vehicle body side. Thereafter, the auxiliary steering control unit 30 notifies the occupant of the cancellation of the auxiliary steering.
  • the auxiliary wheel 12 is provided at the lower portion of the vehicle body, and the auxiliary wheel 12 is supported on the road surface by the lifting device, thereby lifting the rear wheel 1RL, 1RR releases the restraining force in the left-right direction with respect to the vehicle body.
  • FIG. 10 shows an example of parking in the horizontal direction.
  • the vehicle MM is moved forward to the front of the parking position, the vehicle MM is turned and moved forward to be parked at the target position.
  • FIG. 27 is a vehicle rear view schematically illustrating the behavior of the auxiliary wheel 12 and the links 26 to 28 when the rear wheel is bound and rebound. Since the first to third links 26 to 28 are connected to each other so as to be swingable up and down, the first to third links 26 to 28 swing up and down following the bounding / rebounding of the wheels. Move. For this reason, as shown in FIG. 27, even when the suspension moves in the vertical direction in association with the bounding / rebounding of the wheel, the stored auxiliary wheel 12 follows the vertical direction without affecting the behavior of the suspension. Works.
  • FIG. 28 is a diagram showing a result of simulating the suspension performance. This simulation is an evaluation of the acceleration on the rear wheel spring when the projection is passed over at a vehicle speed of 30 km / h.
  • a solid line is a simulation result when the lifting device for the auxiliary wheel 12 according to the present embodiment is employed, and a broken line is a simulation result when the lifting device for the auxiliary wheel 12 described in Patent Document 1 is employed.
  • the lifting device for the auxiliary wheel 12 of the present embodiment when adopted, the acceleration on the rear wheel spring is small when the protrusion is passed at a vehicle speed of 30 km / h, and the riding comfort performance is improved.
  • the auxiliary wheel 12 is provided in the lower part of the vehicle body, and the auxiliary wheel 12 is supported by the lifting device so as to be lifted and lowered.
  • the auxiliary wheel 12 was supported on the vehicle body via a suspension of the vehicle. As a result, the vehicle body lifted by operating the drive mechanism is lifted together with the suspension, so that the lifting stroke of the lifting device is reduced and the device can be made compact.
  • the lifted vehicle body is supported by the auxiliary wheels 12 on the road surface via the suspension member, so that the suspension member acts in the same manner as in normal driving when the vehicle is driven by the auxiliary wheels 12. Will not be damaged.
  • the drive mechanism portion which is a heavy component, is mounted on the vehicle body side, so that an increase in unsprung weight is suppressed, and the suspension performance when riding over the protrusion is improves.
  • the wheel side end of the first link 26 is connected to the wheel support member.
  • the wheel side end of the first link 26 may be connected to a suspension member such as a lower link.
  • the drive mechanism that expands and contracts the length of the second link 27 is the lift motor 27 that linearly guides the drive shaft 27a by controlling the rotation of the electric motor.
  • the drive mechanism may be configured with a fluid pressure cylinder device.
  • the left and right rear wheels 1RL and 1RR may be driving wheels 1FL and 1FR or driven wheels.
  • the auxiliary wheel 12 may be disposed on the vehicle body front side. In this case, for example, setting is made so that braking is applied to the right rear wheel 1RR side.
  • FIG. An example of turning of the vehicle MM by auxiliary steering in this case is shown in FIG. In this case, for example, after the vehicle MM is retracted to the front of the parking position, the vehicle MM can be turned as shown in FIG.
  • the rotation shafts of the left and right auxiliary wheels 12 are arranged to face in the vehicle front-rear direction so that the auxiliary wheels 12 roll in the vehicle lateral direction during auxiliary steering.
  • the rotation axis of the auxiliary wheel 12 since the vehicle body rotates around the right front wheel 1FR, it is preferable to set the rotation axis of the auxiliary wheel 12 to face the right front wheel 1FR as shown in FIG. . In this way, the auxiliary wheel 12 is more easily rolled by directing the rotation shaft to the center at the time of turning.
  • symbol L indicates an extension line of the rotation shaft of the auxiliary wheel 12.
  • the auxiliary wheel 12 and the auxiliary wheel support member 25 may be connected via a rotary bearing to form a caster wheel.
  • the rotation axis of the auxiliary wheel 12 is freely changed, so that the rotation axis is automatically adjusted to the center at the time of turning.
  • the right driving wheel is described as a wheel to which braking is applied, but the wheel to which braking is applied may be set as the left driving wheel.
  • driving wheels to which braking is applied are set in advance, but driving wheels to which braking is applied may be selected according to a driver's instruction.
  • the drive wheel to which braking is applied may be determined according to the steering direction of the steered wheel when the vehicle is stopped.
  • a case where a driving force difference is generated between the left and right driving wheels by applying braking to one driving wheel and applying driving force to the other driving wheel is exemplified.
  • the configuration for generating a driving force difference between the left and right driving wheels is not limited to this.
  • the drive force difference may be generated by reversing the rotation directions of the left and right drive wheels.
  • the vehicle body turns around the center position of the left and right drive wheels.
  • the driving force is transmitted to both the left and right driving wheels, but a driving force difference may be generated by changing the transmitted driving force.
  • the lift motor 27 constitutes a drive mechanism.
  • the first link 26 connects the auxiliary wheel support member 25 and the wheel support member or suspension member so as to be swingable up and down.
  • the second link 27 connects the auxiliary wheel support member 25 and the vehicle body so as to be swingable up and down.
  • the drive mechanism is supported by the vehicle body and displaces the position of the auxiliary wheel side end portion of the second link 27 in a direction approaching and separating from the wheel side end portion of the first link 26. According to this configuration, an increase in unsprung weight can be suppressed by providing a drive mechanism for raising and lowering the auxiliary wheel 12 on the vehicle body side.
  • the wheel support member or suspension member and the vehicle body are connected via a link and an auxiliary wheel support member 25 connected in series.
  • the downward stroke (rebound) of the wheel support member can be suppressed or reduced by the force that operates the drive mechanism to displace the second link 27 or the force transmitted from the ground to the link.
  • connection point of the first link 26 to the wheel support member is set to a position higher than the connection point P1 of the first link 26 to the auxiliary wheel support member 25. To do. According to this configuration, the downward stroke of the wheel can be more reliably suppressed by the reaction force F from the road surface input to the auxiliary wheel 12.
  • connection point P1 of the first link 26 to the auxiliary wheel support member 25 and the connection point P2 of the second link 27 to the auxiliary wheel support member 25 are arranged offset with respect to each other. Furthermore, a third link 28 for connecting the auxiliary wheel support member 25 and the vehicle body is provided.
  • connection point P3 of the third link 28 to the auxiliary wheel support member 25 is set to a position lower than the position of the connection point P2 of the second link 27 to the auxiliary wheel support member 25.
  • the auxiliary wheel 12 can be reliably turned up and down.
  • the drive mechanism is configured to extend and contract the second link 27.
  • the second link 27 is configured by a linear motion device. Accordingly, the position of the auxiliary wheel side end portion of the second link 27 can be displaced in a direction approaching or separating from the wheel side end portion of the first link 26.
  • connection points P1 and P3 of the first link 26 and the third link 28 with respect to the auxiliary wheel support member 25 are different from 1 in the third embodiment. That is, the connection point P1 of the first link 26 to the auxiliary wheel support member 25 is set to a position higher than the position of the connection point P3 of the third link 28 to the auxiliary wheel support member 25.
  • the position of the connection point P of the second link 27 to the auxiliary wheel support member 25 is the position of the connection point P of the third link 28 to the auxiliary wheel support member 25. In a higher position. Further, the connection point P of the second link 27 to the auxiliary wheel support member 25 is set lower than the position of the connection point P of the first link 26 to the auxiliary wheel support member 25. Thus, the relative relationship of the connection point of each link to the auxiliary wheel support member 25 of the present embodiment is different from 1 of the third embodiment. Other configurations are the same as those of the third embodiment.
  • the lifting device 2 of the third embodiment has a configuration in which the auxiliary wheel 12 is lowered to lift the vehicle body by extending the linear motion shaft of the lift motor 27 constituting the linear motion device. . For this reason, when the sliding accompanying expansion and contraction of the drive shaft 27a is taken into consideration, the structure is advantageous for buckling.
  • the vehicle body side end of the second link 27 is displaced by the drive mechanism in the direction of approaching / separating from the wheel side, whereby the auxiliary wheel side end of the second link 27 is The position is displaced in a direction approaching / separating from the wheel side end of the first link 26.
  • the drive mechanism of this embodiment is a linear motion device including a guide member 41a, a slide member 41b, and a drive unit 41c, and is fixed to the vehicle body.
  • the guide member 41a is fixed to the vehicle body in a state of extending in a direction toward the first link 26 in a plan view.
  • the slide member 41b is movable along the guide member 41a.
  • the movement of the slide member 41b may be a publicly known linear motion mechanism such as a ball screw mechanism or a linear guide mechanism that is realized by driving the drive unit 41c.
  • the drive unit is usually constituted by a motor.
  • the wheel side end portion P4 of the second link 27 is attached to the slide member 41b so as to be swingable up and down. Accordingly, the wheel side end portion of the second link 27 approaches and separates from the first link 26 by moving the position of the slide member 41b along the guide member 41a. As a result, the connection point P ⁇ b> 2 of the second link 27 to the auxiliary wheel support member 25 is displaced so as to approach and separate from the first link 26. Thus, the same effect as 1 of the third embodiment can be obtained.
  • the arrangement configuration of the first to third links 26 to 28 may be the second configuration of the third embodiment.
  • the linear motion apparatus provided with the guide member 41a, the slide member 41b, and the drive part 41c comprises a drive mechanism.
  • This embodiment has the following effect in addition to the effect of 1 of the said 3rd Embodiment.
  • the drive mechanism displaces the wheel side connection point P4 of the second link 27.
  • the position of the auxiliary wheel side end of the second link 27 can be displaced in the direction of approaching / separating from the wheel side end of the first link 26.
  • the vehicle body side end portion of the second link 27 is connected to the slide member 41b so as to be swingable. For this reason, the linear motion mechanism attached to the vehicle body does not need to swing up and down.
  • the drive unit of the linear motion device can be fixed to the vehicle body.
  • the drive unit of the linear motion device which is heavy and has a tendency to increase the installation space, is fixed to the vehicle body as a base. As a result, it is possible to minimize the influence of the drive unit being swung during normal travel in which the auxiliary wheels 12 are stored. In addition, the degree of freedom in layout increases.
  • the drive device of the present embodiment is configured to rotate and drive to rotate the guide portion 27b of the slider portion 27 including the drive shaft 27a that expands and contracts and the cylindrical guide portion 27b that guides the drive shaft 27a.
  • a driving unit 42, and the driving unit to be driven is fixed to the vehicle body.
  • the other configuration is the same as 1 in the third embodiment.
  • the arrangement of the first to third links 26 to 28 may be the same arrangement as 2 in the third embodiment. In this case, the same effect as 2 of the third embodiment can be obtained.
  • the rotation driving unit 42 can arbitrarily adjust the vertical inclination of the second link 27. For this reason, for example, compared with 1 of 3rd Embodiment, the 2nd link 27 can be turned up and the auxiliary wheel 12 can be stored up by that much. Note that, during normal traveling with the auxiliary wheel 12 stored, at least the auxiliary wheel support member 25 and the wheel support member 20 are connected by the first link 26 so as to be swingable up and down. For this reason, it is possible to reduce an adverse effect on the behavior of the suspension at the time of bounce / rebound of the vehicle during normal driving.
  • the lift motor 27 constitutes a drive mechanism.
  • FIG. 1 is a schematic diagram showing a configuration of a vehicle according to the present embodiment
  • FIG. 2 is a system diagram thereof.
  • a vehicle having left and right front wheels 1FL and 1FR and left and right rear wheels 1RL and 1RR and using left and right front wheels 1FL and 1FR as driving wheels will be described as an example.
  • the steering wheel is not particularly limited.
  • the vehicle according to the present embodiment includes an engine 2 as a power source, an engine control unit 4, a differential gear device 3, and a braking control device 18.
  • the power source of the drive wheels 1FL and 1FR is not limited to the engine 2 and may be an electric motor.
  • the engine 2 is connected to the axles of the left and right drive wheels 1FL, 1FR via a differential gear device 3.
  • the power of the engine 2 is distributed to the left and right drive wheels 1FL and 1FR by the differential gear device 3.
  • the engine control unit 4 calculates an output command value corresponding to the operation amount of the accelerator pedal 5 and adjusts the throttle opening of the engine 2 so that power corresponding to the calculated output command value is generated.
  • the brake control device 18 includes a brake control circuit 6, a brake control actuator 7, and left and right brake devices 8 provided individually on the left and right drive wheels 1FL and 1FR. Then, by operating the brake control actuator 7 according to the brake command value output from the brake control circuit 6, the left and right brake devices 8 can apply individual braking forces to the left and right drive wheels 1FL and 1FR. It has become. That is, the brake control circuit 6 sends a command to a brake control actuator 7 having a solenoid for opening and closing a valve in the brake oil passage and a hydraulic pump for the brake, and individually controls the braking force one by one.
  • the brake device 8 is a disc type brake device or the like. The brake device 8 may be an electric brake device.
  • the brake control device 18 When the brake control device 18 detects an operation of the brake pedal 9, the brake control device 18 applies a braking force corresponding to the operation amount of the brake pedal 9 to each brake device 8. Further, the braking control device 18 of the present embodiment applies a braking force to one of the left and right front wheels 1FL and 1FR when an operation signal is input from an auxiliary steering control unit described later. However, even if an operation signal is input from an auxiliary steering control unit, which will be described later, the brake control circuit 6 detects a brake operation amount that is greater than a preset value by operating the brake pedal 9, and performs brake control according to the brake operation amount. Will be prioritized.
  • the vehicle also includes a wheel speed sensor 10 that detects the rotational speeds of the left and right front wheels 1FL and 1FR, and a shift position detection sensor 11 that detects a shift position.
  • the wheel speed sensor 10 detects the wheel speed of each front wheel 1FL, 1FR.
  • the shift position detection sensor 11 detects whether the shift position is a forward position, a neutral position, or a reverse position.
  • the vehicle includes an auxiliary steering device.
  • the differential gear device 3 and the braking control device 18 also serve as part of the configuration of the auxiliary steering device.
  • the auxiliary steering device includes left and right auxiliary wheels 12, an auxiliary wheel elevating device 13 that raises and lowers each auxiliary wheel 12 relative to the vehicle body, a lift motor control circuit 14, and an auxiliary steering control unit.
  • the vehicle also includes an auxiliary steering operation switch 19 that can be operated by a passenger.
  • the left and right auxiliary wheels 12 are arranged on the opposite side of the left and right drive wheels 1FL and 1FR with respect to the vehicle center of gravity G when the auxiliary wheels 12 are grounded in a plan view. Yes.
  • the left and right auxiliary wheels 12 are driven in the above-mentioned direction rather than a line connecting ends of the left and right rear wheels 1RL and 1RR closer to the drive wheels 1FL and 1FR (front side in the vehicle front-rear direction).
  • the left and right auxiliary wheels 12 are positioned on the opposite side of the left and right drive wheels 1FL and 1FR with respect to the vehicle center of gravity G by being arranged at positions away from the wheels 1FL and 1FR.
  • the rotating shaft of the auxiliary wheel 12 faces the vehicle front-rear direction at least in a grounded state.
  • the vehicle front-rear direction may be inclined in the vehicle width direction with respect to the longitudinal direction of the vehicle body. The inclination is an angle of less than 45 degrees, for example.
  • the left and right auxiliary wheels 12 are arranged apart from each other in the vehicle width direction in the space between the left and right rear wheels 1RL and 1RR.
  • the auxiliary wheel lifting / lowering device 13 is a device that supports each auxiliary wheel 12 at the rear part of the vehicle body so as to be movable up and down. As shown in FIGS.
  • the auxiliary wheel elevating device 13 of this embodiment supports each auxiliary wheel 12 on the vehicle body so as to be turnable in the vehicle width direction by individual links 26 to 28, and has a common approach /
  • the left and right auxiliary wheels 12 are turned and moved downward from the inner side in the vehicle width direction toward the outer side in the vehicle width direction.
  • the auxiliary wheel 12 is raised and lowered.
  • the auxiliary wheel lifting / lowering device 13 of this embodiment will be described with reference to FIGS. 32 and 33.
  • the left and right rear wheels 1RL, 1RR constituting the third wheel are rotatably supported by the wheel support member 20, respectively, as shown in FIGS.
  • the left and right wheel support members 20 are supported to be swingable up and down with respect to the vehicle body 57 via individual suspension devices 24.
  • an upper link 21, a lower link 22, and a shock absorber 23 are illustrated as an example of a suspension member constituting the suspension device 24.
  • the auxiliary wheel lifting device supports left and right auxiliary wheel support members 25 that make the left and right auxiliary wheels 12 rotatable, and left and right auxiliary wheel support members 25 supported by a vehicle body 57, respectively. And an approach / separation mechanism that drives the left and right auxiliary wheels 12 to move up and down in synchronization.
  • the left and right auxiliary wheels 12 are rotatably supported by the left and right auxiliary wheel support members 25, respectively.
  • Each auxiliary wheel support member 25 is suspended between the wheel and the vehicle body by an auxiliary wheel link mechanism.
  • Each of the left and right auxiliary wheel link mechanisms includes first to third links 25 to 28, as shown in FIGS.
  • the first link 26 connects the corresponding auxiliary wheel support member 25 and the wheel support member 20 in a state in which the first link 26 can swing up and down.
  • the second and third links 27 and 28 are connected so that the auxiliary wheel support member 25 and the vehicle body 57 can swing up and down.
  • the first link 26 is set such that the connection point to the wheel support member 20 is higher than the connection point to the auxiliary wheel support member 25. Further, the connection point of the third link 28 to the auxiliary wheel support member 25 is disposed below the connection point of the second link 27 to the auxiliary wheel support member 25.
  • the mutual relationship of the connection points of the first to third links 25 to 28 to the auxiliary wheel support member 25 is not limited to the above arrangement.
  • the auxiliary wheel 12 only needs to be configured to be able to move up and down by the displacement of the second link 27.
  • the first to third links 26 to 28 constituting the auxiliary wheel link mechanism are preferably arranged on the same plane.
  • the approach / separation mechanism of the present embodiment is a ball screw mechanism. That is, the approach / separation mechanism includes a screw shaft 35 and a pair of nuts 36 ⁇ / b> R and 36 ⁇ / b> L that are screwed onto the screw shaft 35.
  • the drive unit includes a motor 37 that rotationally drives the screw shaft 35.
  • the screw shaft 35 extends in the vehicle width direction and is attached to the vehicle body 57 in a rotatable state.
  • the screw shaft 35 has a right screw portion 35b extending to the right side and a left screw portion 35a extending to the left side with respect to the axial central portion, and the screw directions of the right screw portion 35b and the left screw portion 35a are reversed.
  • Nuts 36R and 36L are screwed into the right and left screw portions 35b and 35a, respectively, which are set in the directions.
  • the left and right nuts 36R, 36L linearly move in the direction in which the left and right nuts 36R, 36L approach and separate from each other as the screw shaft 35 rotates.
  • the vehicle body side edge part of the 2nd link located in the right side with respect to the nut 36R screwed together with the said right side screw part 35b is connected so that rocking
  • the vehicle body side end portion of the second link 27 located on the left side is connected to the nut 36L screwed to the left side screw portion 35a so as to be vertically swingable.
  • the output shaft of the motor 37 is connected to the screw shaft 35 via a gear.
  • the motor 37 is fixed to the vehicle body 57. According to the above configuration, the rotational torque of the motor 37 is transmitted to the screw shaft 35, and the left and right nuts 36 ⁇ / b> R and 36 ⁇ / b> L approach and separate as the screw shaft 35 rotates.
  • the left and right nuts 36R, 36L approach / separate
  • the vehicle body side end portions of the left / right second links 27 approach / separate.
  • the auxiliary wheel 12 rises and the auxiliary wheel 12 enters the retracted state, as shown in FIG.
  • the auxiliary wheel 12 descends and the vehicle body 57 is lifted, as shown in FIG.
  • the link arrangement is set so that the turning of the auxiliary wheel 12 at the time of raising and lowering is in the vehicle front-rear direction other than the vehicle width direction.
  • the lift motor control circuit 14 reads the motor position and current value from the motor 37 that raises and lowers the auxiliary wheel 12 and controls the position of the motor 37.
  • the auxiliary steering control unit 30 is configured as a part of a program of the controller 15 that performs vehicle control.
  • the controller 15 is constituted by a CPU, a ROM, a RAM, and the like, and programs for realizing various processes are stored in the ROM.
  • the controller 15 reads the driver's operation switch, the shift position by the shift operation, and the rotational speed of the wheel by the wheel speed sensor 10.
  • the controller 15 determines the vehicle state based on the signal from the sensor or the like, and communicates with the brake control circuit 6 for controlling the braking force, the lift motor control circuit 14 for raising and lowering the auxiliary wheel 12 and the like through the interface circuit. Command is possible.
  • the auxiliary steering control unit 30 includes an auxiliary wheel lift processing unit 30A and a power difference distribution processing unit 30B.
  • the auxiliary wheel lift processing unit 30 ⁇ / b> A detects that the auxiliary steering operation switch 19 is turned on, the auxiliary wheel lift processing unit 30 ⁇ / b> A supplies a lowering command to the lift motor control circuit 14.
  • the auxiliary wheel lift processing unit 30A detects that the auxiliary steering operation switch 19 is turned off, the auxiliary wheel lift processing unit 30A supplies a lift command to the lift motor control circuit 14.
  • the lift motor control circuit 14 drives the motor 37 by the lowering command, rotationally drives the link by a preset rotation angle so as to turn the auxiliary wheel 12 downward, and the auxiliary wheel 12 is driven by the raising command.
  • the motor 37 is driven so that the link turns by a preset rotation angle so as to turn upward.
  • the power difference distribution processing unit 30B of the present embodiment When determining that the auxiliary steering operation switch 19 is ON, the power difference distribution processing unit 30B of the present embodiment operates the brake device 8 of the right drive wheel 1FR via the brake control circuit 6, and regardless of the brake operation, A preset braking force is applied to the right drive wheel 1FR.
  • the power difference distribution processing unit 30B applies a braking force to both the left and right front wheels 1FL and 1FR. Only the braking force may be released.
  • step S10 the auxiliary steering control unit 30 determines whether or not the switch has been operated based on a signal from the auxiliary steering operation switch 19. If it is determined that the auxiliary steering operation switch 19 has been operated, the process proceeds to step S20.
  • step S20 it is determined whether or not the vehicle is stopped. When it determines with the vehicle having stopped, it transfers to step S30. On the other hand, if it is determined that the vehicle is not stopped, the process proceeds to step S25.
  • the vehicle stop determination may be performed, for example, as follows. That is, the vehicle speed is detected based on a signal from the wheel speed sensor 10, and the determination is made based on whether or not the detected vehicle speed is equal to or lower than a preset vehicle speed (for example, 5 Km / h) that can be regarded as the vehicle being stopped.
  • a preset vehicle speed for example, 5 Km / h
  • step S25 the driver is notified that the brake operation is urged. Thereafter, the process proceeds to step S10.
  • step S30 it is determined whether or not the auxiliary steering operation switch 19 has been turned ON. If it is determined that the operation has been turned ON, the process proceeds to step S30. If it is determined that the auxiliary steering operation switch 19 is turned off, the process proceeds to step S100.
  • step S ⁇ b> 40 the auxiliary wheel lift processing unit 30 ⁇ / b> A performs control to lower the auxiliary wheel 12 and to ground it. In the present embodiment, a lowering command is supplied to each motor 37. As a result, the rear part of the vehicle body is lifted. And the ground load on the rear wheels 1RL, 1RR is reduced.
  • step S50 the power difference distribution processing unit 30B performs a process of applying a braking force to the right front wheel 1FR.
  • the applied braking force is preferably large enough to lock the rotation of the right front wheel 1FR.
  • step S60 when it is detected that the auxiliary wheel 12 has been lowered and the braking force has been applied to the right front wheel 1FR, the passenger is informed of information presentation indicating that auxiliary steering is possible.
  • the notification is displayed on a display unit or the like of a navigation device that can be visually recognized by an occupant, or is performed by voice. Thereafter, the process ends.
  • step S100 the power difference distribution processing unit 30B performs a process of releasing the braking force applied to the right front wheel 1FR.
  • step S110 the auxiliary wheel lift processing unit 30A performs a process of raising the auxiliary wheel 12 and storing it. In the present embodiment, a rising command is supplied to each motor 37.
  • step S120 when it is detected that the storage of the auxiliary wheel 12 has been completed and the release of the braking force to the right front wheel 1FR has been completed, an information presentation to the effect that the auxiliary steering process has been canceled is notified to the occupant.
  • the notification is displayed on a display unit or the like of a navigation device that can be visually recognized by an occupant, or is performed by voice. Thereafter, the process ends.
  • the auxiliary wheel elevating device 13 is in a state in which the left and right nuts 36R and 36L are separated from each other as shown in FIG.
  • the vehicle body side ends of the left and right second links 27 are synchronized and displaced outward in the vehicle width direction.
  • the auxiliary wheel 12 turns inward and upward in the vehicle width direction with the connection point of the third link 28 to the auxiliary wheel support member 25 as the center of oscillation, and the auxiliary wheel 12 It is in the state stored in. That is, as shown in FIG. 32, the auxiliary wheel 12 is raised and stored in the lower surface of the vehicle body.
  • connection point of the first link 26 to the auxiliary wheel support member 25 is located below the connection point of the third link 28 to the auxiliary wheel support member 25.
  • the first links 26 are inward in the vehicle width direction around the wheel side connection points. The vehicle turns in the upward direction, and the auxiliary wheel 12 is further raised accordingly.
  • the motor 37 is rotationally driven to bring the left and right nuts 36R and 36L closer to each other.
  • the left and right second links 27 are displaced in the vehicle width direction center side in synchronization with each other, as shown in FIG.
  • the vehicle pivots outward and downward in the vehicle width direction with the connection point of the link 28 to the auxiliary wheel support member 25 as the swing center.
  • the auxiliary wheel 12 descends and grounds while facing outward in the vehicle width direction, and the auxiliary wheel 12 further descends and lifts the rear part of the vehicle body.
  • the auxiliary wheel 12 After the auxiliary wheel 12 is in contact with the ground, a reaction force from the ground is input to the wheel support member 20 through the first link 26. As a result, the downward stroke amount of the rear wheels 1RL and 1RR is increased. Can be kept small.
  • the first wheel 26 connected to the auxiliary wheel support member 25 and the wheel support member 20 is used to restrict the rear wheels 1RL and 1RR from moving in the rebound direction. The vehicle body 57 can be lifted by the auxiliary wheels 12 while suppressing the downward stroke of the rear wheels 1RL and 1RR.
  • the auxiliary wheel 12 is used so as to roll in the vehicle width direction.
  • the turning direction of the auxiliary wheel 12 when moving up and down is set to turn in the rolling direction, that is, the vehicle width direction.
  • unnecessary wear of the auxiliary wheel 12 associated with the raising and lowering of the auxiliary wheel 12 can be suppressed.
  • the connection point of the first link 26 to the auxiliary wheel support member 25 is positioned below the connection point of the third link 28 to the auxiliary wheel support member 25.
  • the first link 26 turns outward and downward in the vehicle width direction around the wheel side connection point, and accordingly, the first link 26
  • the link axis of the link 26 approaches the vertical direction, and the force for suppressing the rebound stroke of the rear wheels 1RL and 1RR increases.
  • the left and right auxiliary wheels 12 separated in the vehicle width direction are synchronized, and the rear part of the vehicle body is lifted by a mechanical link mechanism. For this reason, even when shifting to auxiliary steering on an inclined road surface, the rear part of the vehicle body can be lifted upward in parallel with the road surface. That is, the wobbling of the rear part of the vehicle body to the left and right can be suppressed to be small, so that the vehicle body can be lifted stably.
  • the raising operation of the lowered auxiliary wheel 12 is the storing operation described above.
  • the auxiliary steering device of the present embodiment starts to operate when the occupant operates the auxiliary steering operation switch 19 to ON.
  • the auxiliary wheel 12 is stored on the vehicle body 57 side, and the auxiliary wheel 12 is in a non-grounded state.
  • the driver moves the vehicle forward or backward by performing an accelerator operation.
  • the driver operates the brake to stop the vehicle, and puts the shift lever into the “N” or “P” range.
  • the auxiliary steering control unit 30 is activated, and the auxiliary steering control unit 30 is lowered to lower the left and right auxiliary wheels 12 to ground each auxiliary wheel 12. Then, as shown in FIG. 33, the vehicle body 57 is continuously lifted. As a result, the ground load of the rear wheels 1RL and 1RR is reduced to zero or small. Subsequently, the auxiliary steering control unit 30 presents information indicating that auxiliary steering is possible after applying braking force to the right front wheel 1FR to lock the right front wheel 1FR.
  • the driver selects whether to turn forward or backward by putting the shift lever into the “D” or “R” range.
  • the driver since the braking force is applied to the right front wheel 1FR, it is possible to turn right in forward (D range) and turn left in backward (R range). Become.
  • it when it is set as the structure which provides a braking force to the left front wheel 1FL, it will be in the state in which it can turn to the left by forward (D range), and to the right by reverse (R range).
  • FIG. 8 shows an example of the turning state of the vehicle MM at that time.
  • the minimum turning radius is reduced by turning the vehicle MM around the right front wheel 1FR.
  • the auxiliary steering operation switch 19 is changed to OFF after the vehicle stops and the driver puts the shift lever into the D range or the P range.
  • the auxiliary steering control unit 30 releases the application of the braking force to the right front wheel 1FR and raises the auxiliary wheel 12 to store it on the vehicle body 57 side. Thereafter, the auxiliary steering control unit 30 notifies the occupant of the cancellation of the auxiliary steering.
  • the auxiliary wheel 12 is provided at the lower portion of the vehicle body 57, and the auxiliary wheel 12 is supported on the road surface by the lifting device, whereby the rear wheel 1RL lifted up. 1RR releases the restraining force in the left-right direction with respect to the vehicle body 57.
  • the driver selects the turning direction by the shift operation and then performs the accelerator operation, a driving force difference is generated between the left and right rear wheels 1RL and 1RR, and a moment in the yaw direction is generated in the vehicle body 57.
  • the vehicle body 57 can turn around the right front wheel 1FR to which the braking is applied or its vicinity.
  • FIG. 10 shows an example of parking in the horizontal direction.
  • the vehicle MM is moved forward to the front of the parking position, the vehicle MM is turned and moved forward to be parked at the target position.
  • FIG. 27 is a vehicle rear view schematically showing the behavior of the auxiliary wheel 12 and the links 26 to 28 when the rear wheels 1RL and 1RR are bound and rebound. Since the first to third links 26 to 28 are connected to each other so as to be swingable up and down, the first to third links 26 to 28 swing up and down following the bounding / rebounding of the wheels. Move. For this reason, as shown in FIG. 27, even when the suspension moves in the vertical direction in association with the bounding / rebounding of the wheel, the stored auxiliary wheel 12 follows the vertical direction without affecting the behavior of the suspension. Works.
  • FIG. 28 is a diagram showing a result of simulating the suspension performance. This simulation is an evaluation of the acceleration on the rear wheel spring when the projection is passed over at a vehicle speed of 30 km / h.
  • a solid line is a simulation result when the lifting device for the auxiliary wheel 12 according to the present embodiment is employed, and a broken line is a simulation result when the lifting device for the auxiliary wheel 12 described in Patent Document 1 is employed.
  • FIG. 28 when the lifting device for the auxiliary wheel 12 of the present embodiment is adopted, the acceleration on the rear wheel spring is small when the protrusion is passed at a vehicle speed of 30 km / h, and the riding comfort performance is improved. I understand that.
  • the auxiliary wheel 12 is provided at the lower portion of the vehicle body 57 and the auxiliary wheel 12 is supported by the lifting device so as to be lifted and lowered.
  • the auxiliary wheel 12 was supported by the vehicle body 57 via a suspension of the vehicle. As a result, the vehicle body 57 lifted by operating the approach / separation mechanism is lifted together with the suspension, so that the lifting stroke of the lifting device is reduced and the device can be made compact.
  • the lifted vehicle body 57 is supported by the auxiliary wheel 12 on the road surface via the suspension member, so that the suspension member acts when the vehicle is driven by the auxiliary wheel 12 in the same manner as in normal driving. There is no loss of comfort. Even in the normal running state when the auxiliary wheels 12 are stored, the driving part, which is a heavy component, is mounted on the vehicle body 57 side, so that an increase in unsprung weight is suppressed, and the suspension performance when riding over the protrusion is improves.
  • the wheel side end of the first link 26 is connected to the wheel support member.
  • the wheel side end of the first link 26 may be connected to a suspension member such as a lower link.
  • the left and right rear wheels 1RL, 1RR may be drive wheels 1FL, 1FR or driven wheels.
  • the left and right front wheels 1FL and 1FR are illustrated as driving wheels.
  • the auxiliary wheel 12 may be disposed on the vehicle body front side. In this case, for example, setting is made so that braking is applied to the right rear wheel 1RR side.
  • FIG. An example of turning of the vehicle MM by auxiliary steering in this case, for example, after the vehicle MM is retracted to the front of the parking position, the vehicle MM can be turned as shown in FIG.
  • the rotation shafts of the left and right auxiliary wheels 12 are arranged to face in the vehicle front-rear direction so that the auxiliary wheels 12 roll in the vehicle lateral direction during auxiliary steering.
  • the rotation shaft of the auxiliary wheel 12 since the vehicle body 57 rotates around the right front wheel 1FR, the rotation shaft of the auxiliary wheel 12 may be set to face the right front wheel 1FR as shown in FIG. preferable. In this way, the auxiliary wheel 12 is more easily rolled by directing the rotation shaft to the center at the time of turning.
  • symbol L indicates an extension line of the rotation shaft of the auxiliary wheel 12.
  • the auxiliary wheel 12 and the auxiliary wheel support member 25 may be coupled via a rotary bearing to form a caster wheel.
  • the rotation axis of the auxiliary wheel 12 is freely changed, so that the rotation axis is automatically adjusted to the center at the time of turning.
  • the right driving wheel is described as a wheel to which braking is applied, but the wheel to which braking is applied may be set as the left driving wheel.
  • driving wheels to which braking is applied are set in advance, but driving wheels to which braking is applied may be selected according to a driver's instruction.
  • the drive wheel to which braking is applied may be determined according to the steering direction of the steered wheel when the vehicle is stopped.
  • a driving force difference is generated between the left and right driving wheels by applying braking to one driving wheel and applying driving force to the other driving wheel.
  • the configuration for generating a driving force difference between the left and right driving wheels is not limited to this.
  • the drive force difference may be generated by reversing the rotation directions of the left and right drive wheels.
  • the vehicle body 57 rotates around the center position of the left and right drive wheels.
  • the driving force is transmitted to both the left and right driving wheels, but a driving force difference may be generated by changing the transmitted driving force.
  • the screw shaft 35 and the nuts 36R and 36L constitute an approach / separation mechanism.
  • the motor 37 constitutes a drive unit.
  • an auxiliary wheel support member 25 that rotatably supports the auxiliary wheel 12 is connected to a wheel support member or a suspension member via a first link so as to be vertically swingable.
  • the vehicle body 57 is connected to the vehicle body 57 through the second link 27 so as to be swingable up and down.
  • the approach / separation mechanism approaches / separates the vehicle body side end portions of the left and right second links 27.
  • the drive unit is attached to the vehicle body 57 and drives the approach / separation mechanism.
  • the driving unit for raising and lowering the auxiliary wheel 12 on the vehicle body 57 side since the approach / separation mechanism and the drive unit for driving the left and right auxiliary wheels 12 are common, the left and right auxiliary wheels 12 can be moved up and down in synchronization. Further, the wheel support member or suspension member and the vehicle body 57 are connected via a link and an auxiliary wheel support member 25 connected in series. For this reason, the downward stroke (rebound) of the wheel support member can be suppressed or reduced by the force transmitted from the ground to the link. As a result, it is also possible to suppress an increase in the lifting stroke of the auxiliary wheel 12 due to lifting.
  • the approach / separation mechanism is a ball screw mechanism including a screw shaft 35 extending in the vehicle width direction and a pair of nuts 36R and 36L screwed to the screw shaft 35.
  • the drive unit is a motor 37 that rotationally drives the screw shaft 35.
  • the screw shaft 35 has a right screw portion 35b extending to the right side and a left screw portion 35a extending to the left side, and the screw directions of the right screw portion 35b and the left screw portion 35a are set in opposite directions, and Nuts 36R and 36L are screwed into the right screw portion 35b and the left screw portion 35a, respectively.
  • the vehicle body side end portion of the second link 27 located on the right side is connected to the nut 36R screwed into the right screw portion 35b, and the second link located on the left side of the nut 36L screwed into the left screw portion 35a. 27 end portions on the vehicle body side are connected.
  • this embodiment is an example in which two drive units 37R and 37L are provided for one approach / separation mechanism. There may be three or more motors as drive units.
  • the auxiliary wheel 12 when the auxiliary wheel 12 is operated, that is, when the vehicle body 57 is lifted, a relatively large output is required.
  • the auxiliary wheel 12 when the auxiliary wheel 12 is stored, there is no problem even if the auxiliary wheel 12 is stored.
  • the auxiliary wheel 12 when using two small motors 37R and 37L whose output is smaller than that of the motor 37 used in 1 of the fourth embodiment, the auxiliary wheel 12 is lowered and the vehicle body 57 is lifted.
  • the auxiliary wheel 12 can be stored by driving the other motor 37L side.
  • the screw shaft 35 and the nut 36R. 36L constitutes an approach / separation mechanism.
  • Each of the motors 37R and 37L constitutes a drive unit.
  • the auxiliary wheel lifting device includes one approach / separation mechanism and two or more drive units that drive the approach / separation mechanism. And when raising the auxiliary wheel 12, one drive part of two or more drive parts drives an approach and separation mechanism. According to this configuration, even if the drive unit that raises the auxiliary wheel 12 fails, the auxiliary wheel 12 can be raised and stored by another drive unit.
  • the approach / separation mechanism includes a pantograph-like link structure in which four links (arms 40 to 44) are arranged in a parallelogram shape, and an approach / separation mechanism main body. It comprised with the screw rod 47 to comprise.
  • This approach / separation mechanism is the same mechanism as the pantograph jack mechanism. That is, the pantograph jack device is attached to the vehicle body 57 and the pantograph jack device is driven by the motors 37R and 37L, thereby lifting the vehicle body 57 through the second link 27 and the auxiliary wheel 12.
  • the pantograph-like link structure includes two right arms 43 and 44, two left arms 40 and 41, a first connecting portion 45, and a second connecting portion 46.
  • the two right arms 43 and 44 extend to the left second link 27 side by connecting the outer end to the vehicle body side end of the right second link 27, respectively.
  • the two left arms extend to the right second link 27 side by connecting the outer end to the vehicle body side end of the left second link 27.
  • the first connecting portion 45 connects the inner end portion of the upper right arm 43 and the inner end portion of the upper left arm 40.
  • the second connecting portion 46 connects the inner end portion of the lower right arm 44 and the inner end portion of the lower left arm 41.
  • the first connecting portion 45 is provided with a cylindrical member (not shown) having an internal thread formed on the inner diameter surface. Then, the lower end side of the screw rod 47 is supported with respect to the second connecting portion 46 in a state where the shaft rotation is free and the movement in the axial direction is restricted, and the upper side of the screw rod 47 is screwed into the cylindrical member.
  • the first screw portion is configured, and the two connecting portions 45 and 46 are moved closer to and away from each other by the screw motion at the first screw portion.
  • two motors 37R and 37L which comprise a drive part are connected with respect to the upper-end part of the said screw rod 47 via a separate gearwheel.
  • this embodiment is an example in which two motors 37R and 37L are provided as drive units that rotationally drive the screw rods 47 constituting the approach / separation mechanism main body.
  • Each motor 37R, 37L is individually attached to the vehicle body 57. That is, this embodiment is an example in which two drive units are provided for one approach / separation mechanism.
  • the screw rod 47 is rotationally displaced to increase the distance between the two connecting portions 45 and 46, so that the inner ends of the left and right second links 27 approach each other in synchronization. By reducing the distance between the two connecting portions 45 and 46, the inner end portions of the left and right second links 27 are separated in synchronization.
  • the screw rod 47 constitutes a screw shaft (an approach / separation mechanism main body).
  • the approach / separation mechanism includes a pantograph-like link structure and an approach / separation mechanism main body that approaches / separates between the first connection part 45 and the second connection part 46 of the link structure.
  • the driving unit drives the approach / separation mechanism main body.
  • the approach / separation mechanism main body includes a screw rod 47 that connects the first connecting portion 45 and the second connecting portion 46.
  • the drive unit rotates and drives the screw rod 47 to approach and separate the first connection part 45 and the second connection part 46. According to this configuration, it is possible to change the link structure while ensuring the rigidity of the pantograph-like link structure.
  • the basic configuration of the lifting device for the auxiliary wheel 12 of the present embodiment is the same as 3 of the fourth embodiment.
  • the approach / separation mechanism of the present embodiment comprises a pantograph-like link structure in which four links (arms 40 to 44) are arranged in a parallelogram shape and an approach / separation mechanism main body as shown in FIG.
  • the linear motion device 50 is configured.
  • the pantograph-like link structure of the present embodiment is the same as the pantograph-like link structure 3 of the fourth embodiment.
  • the approach / separation mechanism main body is a linear motion device 50 including a ball screw mechanism or a linear guide that converts the rotational motion of the rotating component 51 into a linear motion.
  • the linear motion device 50 is configured to approach / separate between the first connecting portion 45 and the second connecting portion 46 in accordance with the rotational displacement of the rotating component 51.
  • the rotating component 51 is rotatably supported on the vehicle body 57.
  • two motors 37R and 37L are provided as the drive unit of this embodiment.
  • the output shafts of the motors 37R and 37L are connected to the rotating component 51 by an endless annular belt 53, and the rotational torque of the motors 37R and 37L is applied to the belt Transmission to the rotating part 51 is possible.
  • the motors 37R and 37L may be connected to the rotating component 51 by individual belts 53. According to this configuration, by driving the motors 37R and 37L, the distance between the two connecting portions 45 and 46 is approached and separated, and the inner end portions of the left and right second links 27 are approached in synchronization. ⁇ Separate.
  • Other configurations and operations are the same as those in 2 of the fourth embodiment.
  • the approach / separation mechanism main body is a linear motion device 50 that converts the rotational motion of the rotating component 51 into a linear motion, and is between the first coupling portion 45 and the second coupling portion 46 by the linear motion. It is the composition which approaches and separates.
  • the rotating component 51 is pivotally supported on the vehicle body 57 so as to be rotatable.
  • the drive unit rotationally displaces the rotating component 51.
  • the rotary component 51 that directly drives the linear motion device 50 is pivotally supported on the vehicle body 57, so that the reaction force at the time of rotation of the rotary component 51 can be surely applied to the vehicle body 57. 50 can be activated.
  • the drive unit includes motors 37R and 37L, and transmits the torque of the motors 37R and 37L to the rotating component 51 by belt transmission. According to this configuration, the degree of freedom of the arrangement positions of the motors 37R and 37L is improved by using belt transmission.
  • interval of the 1st connection part 45 and the 2nd connection part 46 offset up and down of the pantograph-like link structure is changed with the screw rod 47 or the linear motion apparatus 50.
  • the case is illustrated.
  • a mechanism capable of changing the intersection angle between the upper right arms 43 and 44 and the upper left arms 40 and 41 may be provided in the first connecting portion 45.

Abstract

Provided is an auxiliary steering device which makes possible tight-turning movements of a vehicle using a simpler auxiliary wheel. The auxiliary steering device is provided on a vehicle equipped with left/right drive wheels and a third wheel which is separate from said left/right drive wheels. By lowering a non-drive state auxiliary wheel (12) which is supported in the vehicle body, the load of the contact patch of said third wheel is reduced or even brought to zero. In a state in which the third wheel (12) is lowered in this way, the present invention has a drive power differential regulation device which can enable the generation of a drive power differential in said left/right drive wheels.

Description

車両の補助操舵装置及び補助操舵方法、並びに補助輪の昇降装置Auxiliary steering device and auxiliary steering method for vehicle, and lifting device for auxiliary wheel
 本発明は、補助輪を利用して、車両の小回りな移動を可能とする補助操舵に関する技術、及び第3の車輪を持ち上げるための補助輪を昇降させる技術である。 The present invention is a technology relating to auxiliary steering that makes it possible to make a small turn of the vehicle using auxiliary wheels, and a technology that raises and lowers auxiliary wheels for lifting the third wheel.
 補助輪を利用した補助操舵装置としては、例えば特許文献1に記載の装置がある。
 この特許文献1に記載の装置は、狭い場所で車両の縦列駐車等を行うために、車体の前部や後部に対し通常の走行時に使用する車輪とは別の補助輪を設けている。そして、上記従来の装置では、上記補助輪を下降して車体の後部等を持ち上げると共に、下降した補助輪を回転駆動することで車両を横方向に移動する。
As an auxiliary steering device using auxiliary wheels, for example, there is a device described in Patent Document 1.
In order to perform parallel parking of a vehicle in a narrow place, the device described in Patent Document 1 is provided with auxiliary wheels that are different from the wheels used during normal traveling at the front and rear of the vehicle body. And in the said conventional apparatus, while lowering the said auxiliary wheel and raising the rear part of a vehicle body, etc., the vehicle is moved to a horizontal direction by rotationally driving the lowered auxiliary wheel.
特開平7-132803号公報JP-A-7-132803
 上記従来の補助操舵装置は、車両の横方向への走行を可能とするために、補助輪の車軸に動力源となる油圧モータを装着することで、上記補助輪を回転駆動して使用するという構成となっている。このため、上記従来の補助操舵装置は、油圧経路、油圧ポンプ、電磁切替弁といった機器やアクチュエータが必要となることから、補助操舵装置が大型化、高コストになるという問題があった。
 本発明は、上記のような点に着目したもので、より簡便な補助輪による車両の小回りでの移動を可能とすることを目的としている。
The above-described conventional auxiliary steering device is used by rotationally driving the auxiliary wheel by mounting a hydraulic motor serving as a power source on the axle of the auxiliary wheel in order to allow the vehicle to travel in the lateral direction. It has a configuration. For this reason, the above-described conventional auxiliary steering device requires devices and actuators such as a hydraulic path, a hydraulic pump, and an electromagnetic switching valve, and thus there is a problem that the auxiliary steering device is increased in size and cost.
The present invention pays attention to the above points, and an object of the present invention is to make it possible to move the vehicle by a small turn with a simpler auxiliary wheel.
 上記課題を解決するために、本発明の一態様は、車両の前側又は後側の一方に配置されると共に左右で対向する2輪からなる左右の駆動輪を備える車両に設けられる。また、平面視において車両の前側又は後側の他方に配置され且つ無駆動で使用される補助輪と、車体に対し上記補助輪を昇降させる補助輪昇降装置と、上記補助輪が接地しているときに上記左右の駆動輪に駆動力差を発生させる駆動力差調整装置と、を備える。 In order to solve the above-described problems, one aspect of the present invention is provided in a vehicle including left and right drive wheels that are arranged on one of the front side and the rear side of the vehicle and face each other on the left and right. In addition, the auxiliary wheel disposed on the other side of the front side or the rear side of the vehicle in plan view and used without driving, the auxiliary wheel lifting device for raising and lowering the auxiliary wheel with respect to the vehicle body, and the auxiliary wheel are grounded. And a driving force difference adjusting device for generating a driving force difference between the left and right driving wheels.
 本発明の一態様によれば、補助輪が接地しているときに、左右の駆動輪に駆動力差を発生させると、車体にヨー方向のモーメントが作用する。このとき、上記モーメントの力によって、補助輪位置の車体部分が車体横方向に移動する。この結果、例えば、駆動力が相対的に小さい駆動輪側を中心に車両が転回可能となる。つまり、補助輪を回転駆動する動力装置が不要となって、補助輪周りの構成が簡便な構成で、車両の小回りでの移動が可能となる。 According to one aspect of the present invention, when a driving force difference is generated between the left and right driving wheels while the auxiliary wheel is grounded, a moment in the yaw direction acts on the vehicle body. At this time, the body portion of the auxiliary wheel position moves in the lateral direction of the vehicle body by the force of the moment. As a result, for example, the vehicle can turn around the driving wheel side having a relatively small driving force. That is, a power unit for rotating the auxiliary wheels is not required, and the configuration around the auxiliary wheels is simple, and the vehicle can be moved in a small direction.
本発明に基づく実施形態に係る車両の構成を示す概略図である。It is the schematic which shows the structure of the vehicle which concerns on embodiment based on this invention. 本発明に基づく実施形態に係る車両の補助操舵装置のシステム構成を説明する図である。It is a figure explaining the system configuration | structure of the auxiliary steering apparatus of the vehicle which concerns on embodiment based on this invention. 昇降する補助輪を説明するための車両後方からみた図である。It is the figure seen from the vehicle back for explaining the auxiliary wheel which goes up and down. 補助輪の昇降機構の例を説明する図である。It is a figure explaining the example of the raising / lowering mechanism of an auxiliary wheel. 補助操作制御部の構成を説明する図である。It is a figure explaining the structure of an auxiliary operation control part. 補助操作制御部の処理の一例を説明するフローチャート図である。It is a flowchart figure explaining an example of a process of an auxiliary operation control part. 運転者の操作と補助操舵装置の動作を示す状態遷移図である。It is a state transition diagram which shows a driver | operator's operation and operation | movement of an auxiliary steering device. 補助操舵による車両の転回例を示す平面図である。It is a top view which shows the example of turning of the vehicle by auxiliary steering. 後輪側を駆動輪として補助輪で車体前側を持ち上げる場合における、補助操舵による車両の転回例を示す平面図である。It is a top view which shows the example of turning of the vehicle by auxiliary steering in the case where the rear wheel side is used as a driving wheel and the front side of the vehicle body is lifted by auxiliary wheels. 補助輪で車体前側を持ち上げる場合における、補助操舵を利用した並列駐車の例を示す図である。It is a figure which shows the example of the parallel parking using auxiliary steering in the case of lifting the vehicle body front side with an auxiliary wheel. 左右独立駐車ブレーキ装置を利用する車両構成を説明する概念図である。It is a key map explaining vehicles composition using a right-and-left independent parking brake device. 駆動輪の動力源をインホイールモータとする場合における車両構成を説明する概念図である。It is a conceptual diagram explaining the vehicle structure in the case of using the power source of a driving wheel as an in-wheel motor. 補助輪の向きの最適例を示す平面図である。It is a top view which shows the optimal example of direction of an auxiliary wheel. 補助輪をキャスタホイールで構成する場合の車両構成を説明する概念図である。It is a conceptual diagram explaining the vehicle structure in case an auxiliary wheel is comprised with a caster wheel. 車両後部のサスペンションと補助輪昇降装置を示す上面図である。It is a top view which shows the suspension and auxiliary wheel raising / lowering apparatus of a vehicle rear part. 車両後部のサスペンションと補助輪昇降装置を示す後面図である。It is a rear view which shows the suspension and auxiliary wheel raising / lowering apparatus of a vehicle rear part. 補助輪昇降装置の配置を示す平面視である。It is a top view which shows arrangement | positioning of an auxiliary wheel raising / lowering apparatus. 操舵装置を説明する概念図である。It is a conceptual diagram explaining a steering device. 操舵操作制限装置を説明する図である。It is a figure explaining a steering operation limiting device. ピンと凹部との関係を示す図である。It is a figure which shows the relationship between a pin and a recessed part. 補助操作制御部の構成を説明する図である。It is a figure explaining the structure of an auxiliary operation control part. 補助操作制御部の処理の一例を説明するフローチャート図である。It is a flowchart figure explaining an example of a process of an auxiliary operation control part. 操舵操作制限装置を説明する図である。It is a figure explaining a steering operation limiting device. ピンと凹部との関係を示す図である。It is a figure which shows the relationship between a pin and a recessed part. 操舵操作制限装置を説明する図である。It is a figure explaining a steering operation limiting device. 最適目標舵角を説明する図である。It is a figure explaining an optimal target rudder angle. 通常走行時における補助輪の挙動を説明する模式図である。It is a schematic diagram explaining the behavior of the auxiliary wheel during normal traveling. 通常走行時の突起乗り越し時の挙動をシミュレーションした図である。It is the figure which simulated the behavior at the time of protruding over the protrusion at the time of normal driving. 補助輪の昇降機構を説明する図である。It is a figure explaining the raising / lowering mechanism of an auxiliary wheel. 補助輪の昇降機構を説明する図である。It is a figure explaining the raising / lowering mechanism of an auxiliary wheel. 補助輪の昇降機構を説明する図である。It is a figure explaining the raising / lowering mechanism of an auxiliary wheel. 補助輪の昇降機構を説明する図である。It is a figure explaining the raising / lowering mechanism of an auxiliary wheel. 補助輪の昇降機構を説明する図である。It is a figure explaining the raising / lowering mechanism of an auxiliary wheel. 補助輪の昇降機構を説明する図である。It is a figure explaining the raising / lowering mechanism of an auxiliary wheel. 補助輪の昇降機構を説明する図である。It is a figure explaining the raising / lowering mechanism of an auxiliary wheel. 補助輪の昇降機構を説明する図である。It is a figure explaining the raising / lowering mechanism of an auxiliary wheel. 補助輪の昇降機構を説明する図である。It is a figure explaining the raising / lowering mechanism of an auxiliary wheel.
[第1実施形態]
 次に、本発明の実施形態について図面を参照して説明する。
「第1実施形態の1」
(構成)
 図1は、本実施形態の車両の構成を示す概要図であり、図2はそのシステム図である。
 本実施形態では、図1に示すように、左右前輪1FL、1FR及び左右後輪1RL、1RRを具備すると共に、左右前輪1FL、1FRを駆動輪とする車両を例に挙げて説明する。なお、本発明は、操向輪について特に限定は無い。
 本実施形態の車両は、動力源としてのエンジン2、エンジン制御部4、差動歯車装置3、及び制動制御装置18を備える。なお、駆動輪1FL、1FRの動力源はエンジン2に限定されず、電動機であって良い。
[First Embodiment]
Next, embodiments of the present invention will be described with reference to the drawings.
“1 of the first embodiment”
(Constitution)
FIG. 1 is a schematic diagram showing a configuration of a vehicle according to the present embodiment, and FIG. 2 is a system diagram thereof.
In the present embodiment, as shown in FIG. 1, a vehicle having left and right front wheels 1FL and 1FR and left and right rear wheels 1RL and 1RR and using left and right front wheels 1FL and 1FR as driving wheels will be described as an example. In the present invention, the steering wheel is not particularly limited.
The vehicle according to the present embodiment includes an engine 2 as a power source, an engine control unit 4, a differential gear device 3, and a braking control device 18. The power source of the drive wheels 1FL and 1FR is not limited to the engine 2 and may be an electric motor.
 上記エンジン2は、差動歯車装置3を介して左右の駆動輪1FL、1FRの車軸に連結されている。そして、エンジン2の動力が、差動歯車装置3によって左右駆動輪1FL、1FRに動力分配される構成となっている。上記エンジン制御部4は、アクセルペダル5の操作量に応じた出力指令値を演算し、演算した出力指令値に応じた動力が発生するように、エンジン2のスロットル開度等を調整する。 The engine 2 is connected to the axles of the left and right drive wheels 1FL and 1FR via a differential gear device 3. The power of the engine 2 is distributed to the left and right drive wheels 1FL and 1FR by the differential gear device 3. The engine control unit 4 calculates an output command value corresponding to the operation amount of the accelerator pedal 5 and adjusts the throttle opening of the engine 2 so that power corresponding to the calculated output command value is generated.
 上記制動制御装置18は、図1及び図2に示すように、ブレーキ制御回路6、ブレーキ制御アクチュエータ7、及び左右の駆動輪1FL、1FRに個別に設けられた左右のブレーキ装置8を備える。そして、ブレーキ制御回路6が出力したブレーキ指令値に応じてブレーキ制御アクチュエータ7が作動することで、左右のブレーキ装置8によって、左右の駆動輪1FL、1FRに対して個別の制動力を付与可能となっている。すなわち、ブレーキ制御回路6は、ブレーキの油路の弁を開閉するソレノイドとブレーキの油圧ポンプを備えるブレーキ制御アクチュエータ7へ指令を送り、制動力を一輪ずつ個別に制御する。ブレーキ装置8は、ディスク式ブレーキ装置等である。なお、ブレーキ装置8は、電動式のブレーキ装置であっても良い。 1 and 2, the brake control device 18 includes a brake control circuit 6, a brake control actuator 7, and left and right brake devices 8 provided individually on the left and right drive wheels 1FL and 1FR. Then, by operating the brake control actuator 7 according to the brake command value output from the brake control circuit 6, the left and right brake devices 8 can apply individual braking forces to the left and right drive wheels 1FL and 1FR. It has become. That is, the brake control circuit 6 sends a command to a brake control actuator 7 having a solenoid for opening and closing a valve in the brake oil passage and a hydraulic pump for the brake, and individually controls the braking force one by one. The brake device 8 is a disc type brake device or the like. The brake device 8 may be an electric brake device.
 そして、上記制動制御装置18は、ブレーキペダル9の操作を検出すると、そのブレーキペダル9の操作量に応じた制動力を各ブレーキ装置8に付与する。また、本実施形態の制動制御装置18は、後述の補助操舵制御部から作動信号を入力すると、左右前輪1FL、1FRの一方に対して制動力を付与する。ただし、ブレーキ制御回路6は、補助操舵制御部から作動信号を入力しても、ブレーキペダル9の操作による予め設定した以上のブレーキ操作量を検出すると、そのブレーキ操作量に応じた制動制御を優先的に実施する。 When the brake control device 18 detects an operation of the brake pedal 9, the brake control device 18 applies a braking force corresponding to the operation amount of the brake pedal 9 to each brake device 8. Further, the braking control device 18 of the present embodiment applies a braking force to one of the left and right front wheels 1FL and 1FR when an operation signal is input from an auxiliary steering control unit described later. However, even if an operation signal is input from the auxiliary steering control unit, the brake control circuit 6 gives priority to the brake control according to the brake operation amount when it detects a brake operation amount that is set in advance by operating the brake pedal 9. To implement.
 また車両は、左右前輪1FL、1FRの回転数を検出する車輪速センサ10、シフトポジションを検出するシフトポジション検出センサ11を備える。車輪速センサ10は、各前輪1FL、1FRの車輪速を検出する。シフトポジション検出センサ11は、シフト位置が前進位置、中立位置、後退位置のいずれの位置となっているかを検出する。
 上記車両は、補助操舵装置を備える。上記差動歯車装置3、及び制動制御装置18は、補助操舵装置の構成の一部を兼ねる。
 その補助操舵装置は、左右の補助輪12と、その各補助輪12を車体に対し昇降させる補助輪昇降装置13と、リフトモータ制御回路14と、補助操舵制御部とを備える。
The vehicle also includes a wheel speed sensor 10 that detects the rotational speeds of the left and right front wheels 1FL and 1FR, and a shift position detection sensor 11 that detects a shift position. The wheel speed sensor 10 detects the wheel speed of each front wheel 1FL, 1FR. The shift position detection sensor 11 detects whether the shift position is a forward position, a neutral position, or a reverse position.
The vehicle includes an auxiliary steering device. The differential gear device 3 and the braking control device 18 also serve as part of the configuration of the auxiliary steering device.
The auxiliary steering device includes left and right auxiliary wheels 12, an auxiliary wheel elevating device 13 that raises and lowers each auxiliary wheel 12 relative to the vehicle body, a lift motor control circuit 14, and an auxiliary steering control unit.
 また車両は、乗員が操作可能な補助操舵作動スイッチ19を備える。
 上記左右の補助輪12は、図1に示すように、平面視において、当該補助輪12が接地した状態では、車両重心Gに対し上記左右の駆動輪1FL、1FRとは反対側に配置されている。本実施形態では、左右の補助輪12は、平面視において、その左右後輪1RL、1RRにおける駆動輪1FL、1FRに近い側(車両前後方向前側)の端部同士を結んだ線よりも上記駆動輪1FL、1FRから離れる位置に配置されることで、左右補助輪12を、車両重心Gに対し上記左右の駆動輪1FL、1FRとは反対側に位置するようにしている。なお、補助輪12の回転軸は、少なくとも接地状態において車両前後方向に向いている。車両前後方向とは、車体の長手方向に対して車幅方向に傾いていても良い。その傾きは例えば45度未満の角度である。
The vehicle also includes an auxiliary steering operation switch 19 that can be operated by a passenger.
As shown in FIG. 1, the left and right auxiliary wheels 12 are arranged on the opposite side of the left and right drive wheels 1FL and 1FR with respect to the vehicle center of gravity G when the auxiliary wheels 12 are grounded in a plan view. Yes. In the present embodiment, the left and right auxiliary wheels 12 are driven in the above-mentioned direction rather than a line connecting ends of the left and right rear wheels 1RL and 1RR closer to the drive wheels 1FL and 1FR (front side in the vehicle front-rear direction). The left and right auxiliary wheels 12 are positioned on the opposite side of the left and right drive wheels 1FL and 1FR with respect to the vehicle center of gravity G by being arranged at positions away from the wheels 1FL and 1FR. Note that the rotating shaft of the auxiliary wheel 12 faces the vehicle front-rear direction at least in a grounded state. The vehicle front-rear direction may be inclined in the vehicle width direction with respect to the longitudinal direction of the vehicle body. The inclination is an angle of less than 45 degrees, for example.
 また、左右補助輪12を、図3に示すように、左右後輪1RL、1RR間の空間において、互いに車幅方向に離して配置している。本実施形態では、左側の補助輪12を左側の後輪1RLに近づけて配置すると共に右側の補助輪12を右側の後輪1RRに近づけて配置する場合を例示している。
 補助輪昇降装置13は、各補助輪12を昇降可能に車体後部に支持させる装置である。本実施形態の補助輪昇降装置13は、リンク部材26~28によって、補助輪12を車幅方向に旋回可能に車体に支持し、補助輪用リフトモータを駆動することで、車幅方向内側から、車幅方向外側に向かうにつれて下方に向かうように補助輪12を移動させることで、補助輪12を昇降する構成となっている。上記補助輪昇降装置13は、補助輪12毎に設けられている。
Further, as shown in FIG. 3, the left and right auxiliary wheels 12 are arranged apart from each other in the vehicle width direction in the space between the left and right rear wheels 1RL and 1RR. In the present embodiment, the case where the left auxiliary wheel 12 is arranged close to the left rear wheel 1RL and the right auxiliary wheel 12 is arranged close to the right rear wheel 1RR is illustrated.
The auxiliary wheel lifting / lowering device 13 is a device that supports each auxiliary wheel 12 at the rear part of the vehicle body so as to be movable up and down. The auxiliary wheel lifting / lowering device 13 of the present embodiment supports the auxiliary wheel 12 on the vehicle body by the link members 26 to 28 so as to be able to turn in the vehicle width direction, and drives the auxiliary wheel lift motor from the inner side in the vehicle width direction. The auxiliary wheel 12 is moved up and down by moving the auxiliary wheel 12 so as to go downward as it goes outward in the vehicle width direction. The auxiliary wheel lifting device 13 is provided for each auxiliary wheel 12.
 上記補助輪昇降装置13の一例を、図4を参照して説明する。図4は、左後輪側に設けた補助輪昇降装置13を代表して図示している。右後輪側の補助輪昇降装置13の構成も同じ構成となっている。
 ここで、第3の車輪を構成する後輪1RL、1RRは、車輪支持部材20によって回転自在に支持されている。その車輪支持部材20は、サスペンション装置24を介して、車体に対し上下揺動可能に支持されている。図4には、サスペンション装置24を構成する部材の一例として、アッパーリンク部材21及びロアリンク部材22と、ショックアブソーバ23とが図示されている。
An example of the auxiliary wheel lifting device 13 will be described with reference to FIG. FIG. 4 shows the auxiliary wheel elevating device 13 provided on the left rear wheel side as a representative. The configuration of the auxiliary wheel lifting device 13 on the right rear wheel side is the same.
Here, the rear wheels 1RL and 1RR constituting the third wheel are rotatably supported by the wheel support member 20. The wheel support member 20 is supported via a suspension device 24 so as to be swingable up and down with respect to the vehicle body. FIG. 4 shows an upper link member 21, a lower link member 22, and a shock absorber 23 as examples of members constituting the suspension device 24.
 また、補助輪12は、図4に示すように、補助輪支持部材25に対し回転自在に取付けられている。その補助輪支持部材25と上記車輪支持部材20とが、第1のリンク部材26で上下揺動可能な状態で連結されている。また、補助輪支持部材25と車体とが第2及び第3のリンク部材27,28によって上下揺動可能な状態で連結されている。
 上記第2のリンク部材27は、モータ本体27bに対し駆動軸27aが伸縮するリフトモータから構成されている。そのリフトモータ27は、直動装置であって、モータ本体27bが車体に上下揺動可能に連結すると共に、上記モータ本体27bに対し伸縮する駆動軸27aの先端部が補助輪支持部材25に上下揺動可能に連結している。
Further, the auxiliary wheel 12 is rotatably attached to the auxiliary wheel support member 25 as shown in FIG. The auxiliary wheel support member 25 and the wheel support member 20 are connected by a first link member 26 so as to be swingable up and down. Further, the auxiliary wheel support member 25 and the vehicle body are connected to each other by the second and third link members 27 and 28 so as to be swingable up and down.
The second link member 27 is composed of a lift motor whose drive shaft 27a extends and contracts with respect to the motor body 27b. The lift motor 27 is a linear motion device, and the motor main body 27b is connected to the vehicle body so as to be able to swing up and down. It is connected so that it can swing.
 ここで、第1のリンク部材26は、車輪支持部材20への連結点が補助輪支持部材25への連結点よりも高く設定されている。また、第3のリンク部材28の補助輪支持部材25への連結点が、第2のリンク部材27の補助輪支持部材25への連結点よりも下方に配置されている。なお、上記第1~第3のリンク部材26~28は同一平面状に配置することが好ましい。 Here, the first link member 26 is set such that the connection point to the wheel support member 20 is higher than the connection point to the auxiliary wheel support member 25. Further, the connection point of the third link member 28 to the auxiliary wheel support member 25 is disposed below the connection point of the second link member 27 to the auxiliary wheel support member 25. The first to third link members 26 to 28 are preferably arranged on the same plane.
 上記構成例の補助輪昇降装置13では、リフトモータ27が駆動軸27aを伸ばすことで、補助輪12は、第3のリンク部材28の補助輪支持部材25側の連結点を中心に、上方に旋回して、つまり上昇して車体下面に格納された状態となる。その状態から、リフトモータ27が駆動軸27aを縮めることで、補助輪12は、第3のリンク部材28の補助輪支持部材25側の連結点を中心に下方に旋回することで、下方に下降して、当該補助輪12は接地する。このとき、本実施形態では、上記駆動軸27aが縮むときに、第1のリンク部材26の補助輪支持部材25側の連結点が、第3のリンク部材28の補助輪支持部材25側の連結点を中心に車輪側に旋回し、第1のリンク部材26を通じて車輪支持部材20に上方に向かう分力が入力され、更に、補助輪12が接地した状態では、地面からの反力として、車輪支持部材20に上方に向かう力が入力される結果、後輪1RL、1RRの下方へのストローク量が小さく抑えられる。 In the auxiliary wheel lifting / lowering device 13 of the above configuration example, the lift motor 27 extends the drive shaft 27a, so that the auxiliary wheel 12 moves upward about the connection point on the auxiliary wheel support member 25 side of the third link member 28. It turns, that is, rises and is stored in the lower surface of the vehicle body. From this state, the lift motor 27 contracts the drive shaft 27a, so that the auxiliary wheel 12 descends downward by turning downward about the connection point of the third link member 28 on the auxiliary wheel support member 25 side. The auxiliary wheel 12 is grounded. At this time, in the present embodiment, when the drive shaft 27a contracts, the connection point on the auxiliary wheel support member 25 side of the first link member 26 is connected to the auxiliary wheel support member 25 side of the third link member 28. When the auxiliary wheel 12 turns to the wheel side around the point and a component force directed upward is input to the wheel support member 20 through the first link member 26 and the auxiliary wheel 12 is grounded, As a result of the upward force being input to the support member 20, the downward stroke amount of the rear wheels 1RL, 1RR is kept small.
 また、上記リフトモータ制御回路14は、補助輪12を昇降するリフトモータ27からモータ位置、電流値を読み取り当該リフトモータ27の位置制御を行う。
 上記補助操舵制御部30は、図5に示すように、車両制御を行うコントローラ15の一部のプログラムとして構成される。ここで、コントローラ15は、CPU、ROM、RAM等で構成され、ROMには各種の処理を実現するプログラムが格納されている。コントローラ15は運転者の操作スイッチ、シフト操作によるシフトポジション、および車輪速センサ10よる車輪の回転速度を読み取る。そして、コントローラ15は、センサ等からの信号に基づき車両状態を判定し、インターフェース回路を通じて、制動力を制御するブレーキ制御回路6、補助輪12を昇降するリフトモータ制御回路14などへと通信して指令可能となっている。
The lift motor control circuit 14 reads the motor position and current value from the lift motor 27 that raises and lowers the auxiliary wheel 12 and controls the position of the lift motor 27.
As shown in FIG. 5, the auxiliary steering control unit 30 is configured as a part of a program of the controller 15 that performs vehicle control. Here, the controller 15 is constituted by a CPU, a ROM, a RAM, and the like, and programs for realizing various processes are stored in the ROM. The controller 15 reads the driver's operation switch, the shift position by the shift operation, and the rotational speed of the wheel by the wheel speed sensor 10. Then, the controller 15 determines the vehicle state based on the signal from the sensor or the like, and communicates with the brake control circuit 6 for controlling the braking force, the lift motor control circuit 14 for raising and lowering the auxiliary wheel 12 and the like through the interface circuit. Command is possible.
 上記補助操舵制御部30は、図5に示すように、補助輪リフト処理部30Aと、動力差配分処理部30Bとを備える。
 補助輪リフト処理部30Aは、補助操舵作動スイッチ19がONになったことを検出すると、リフトモータ制御回路14に下降指令を供給する。また、補助輪リフト処理部30Aは、補助操舵作動スイッチ19がOFFになったことを検出すると、リフトモータ制御回路14に上昇指令を供給する。ここで、リフトモータ制御回路14は、下降指令によってリフトモータ27を駆動して、補助輪12を下方に旋回するようにリンク部材を予め設定した回転角だけ回転駆動し、上昇指令によって、補助輪12を上方に旋回するようにリンク部材が予め設定した回転角だけ旋回するようにリフトモータ27を駆動する。
As shown in FIG. 5, the auxiliary steering control unit 30 includes an auxiliary wheel lift processing unit 30A and a power difference distribution processing unit 30B.
When the auxiliary wheel lift processing unit 30 </ b> A detects that the auxiliary steering operation switch 19 is turned on, the auxiliary wheel lift processing unit 30 </ b> A supplies a lowering command to the lift motor control circuit 14. In addition, when the auxiliary wheel lift processing unit 30A detects that the auxiliary steering operation switch 19 is turned off, the auxiliary wheel lift processing unit 30A supplies a lift command to the lift motor control circuit 14. Here, the lift motor control circuit 14 drives the lift motor 27 by the lowering command, rotationally drives the link member by a preset rotation angle so as to turn the auxiliary wheel 12 downward, and the auxiliary wheel by the raising command. The lift motor 27 is driven so that the link member turns by a preset rotation angle so as to turn 12 upward.
 本実施形態の動力差配分処理部30Bは、補助操舵作動スイッチ19がONと判定すると、ブレーキ制御回路6を介して、右駆動輪1FRのブレーキ装置8を作動して、ブレーキ操作と無関係に、当該右駆動輪1FRに対して予め設定した制動力を付与する。
 なお、動力差配分処理部30Bは、補助操舵作動スイッチ19がONと判定すると、左右前輪1FL、1FRの両方に制動力を付与し、上記補助輪12の下降が完了したら、左前輪1FL側の制動力だけ解除するようにしても良い。
When determining that the auxiliary steering operation switch 19 is ON, the power difference distribution processing unit 30B of the present embodiment operates the brake device 8 of the right drive wheel 1FR via the brake control circuit 6, and regardless of the brake operation, A preset braking force is applied to the right drive wheel 1FR.
When the auxiliary steering operation switch 19 is determined to be ON, the power difference distribution processing unit 30B applies a braking force to both the left and right front wheels 1FL and 1FR. Only the braking force may be released.
 次に、上記補助操舵制御部30の処理の例を、図6を参照して説明する。
 この補助操舵制御部30の処理は、予め設定したサンプリング時間毎に実施される。
 補助操舵制御部30は、まずステップS10にて、補助操舵作動スイッチ19からの信号に基づき、当該スイッチの操作があったか否かを判定する。そして、補助操舵作動スイッチ19の操作があったと判定するとステップS20に移行する。
 ステップS20では、車両が停止しているか否かを判定する。車両が停止していると判定した場合には、ステップS30に移行する。一方、車両が停止していないと判定した場合にはステップS25に移行する。
 ここで、車両の停止判定は、例えば次のように実施すれば良い。すなわち、車輪速センサ10からの信号に基づき車速を検出し、検出した車速が、車両が停止していると見なせる予め設定した設定車速(例えば5Km/h)以下か否かで判定する。
Next, an example of processing of the auxiliary steering control unit 30 will be described with reference to FIG.
The processing of the auxiliary steering control unit 30 is performed every preset sampling time.
First, in step S10, the auxiliary steering control unit 30 determines whether or not the switch has been operated based on a signal from the auxiliary steering operation switch 19. If it is determined that the auxiliary steering operation switch 19 has been operated, the process proceeds to step S20.
In step S20, it is determined whether or not the vehicle is stopped. When it determines with the vehicle having stopped, it transfers to step S30. On the other hand, if it is determined that the vehicle is not stopped, the process proceeds to step S25.
Here, the vehicle stop determination may be performed, for example, as follows. That is, the vehicle speed is detected based on a signal from the wheel speed sensor 10, and the determination is made based on whether or not the detected vehicle speed is equal to or lower than a preset vehicle speed (for example, 5 Km / h) that can be regarded as the vehicle being stopped.
 ステップS25では、運転者にブレーキ操作を促す旨の報知を行う。その後、ステップS10に移行する。
 ステップS30では、補助操舵作動スイッチ19がONに操作されたか否かを判定する。ONに操作されたと判定した場合には、ステップS30に移行する。補助操舵作動スイッチ19がOFFに操作されたと判定した場合にはステップS100に移行する。
 ステップS40では、補助輪リフト処理部30Aが、補助輪12を下降させて接地させる制御を行う。本実施形態では、各リフトモータ27に下降指令を供給する。これによって、車体後部が持ち上げられる。そして、後輪側の接地荷重が低減する。
In step S25, the driver is notified that the brake operation is urged. Thereafter, the process proceeds to step S10.
In step S30, it is determined whether or not the auxiliary steering operation switch 19 has been turned ON. If it is determined that the operation has been turned ON, the process proceeds to step S30. If it is determined that the auxiliary steering operation switch 19 is turned off, the process proceeds to step S100.
In step S <b> 40, the auxiliary wheel lift processing unit 30 </ b> A performs control to lower the auxiliary wheel 12 and to ground it. In the present embodiment, a lowering command is supplied to each lift motor 27. As a result, the rear part of the vehicle body is lifted. And the ground load on the rear wheel side is reduced.
 次に、ステップS50では、動力差配分処理部30Bが、右前輪1FRに対して制動力を付与する処理を行う。なお、付与する制動力は、右前輪1FRの回転をロック可能な大きさが好ましい。
 次に、ステップS60では、上記補助輪12の下降完了及び、右前輪1FRへの制動力付与が完了したことを検出すると、乗員に対して補助操舵可能の旨の情報呈示を報知する。報知は、乗員が視認可能なナビゲーション装置の表示部などに表示したり、音声によって実施する。
 その後、処理を終了する。
Next, in step S50, the power difference distribution processing unit 30B performs a process of applying a braking force to the right front wheel 1FR. The applied braking force is preferably large enough to lock the rotation of the right front wheel 1FR.
Next, in step S60, when it is detected that the auxiliary wheel 12 has been lowered and the braking force has been applied to the right front wheel 1FR, the passenger is informed of information presentation indicating that auxiliary steering is possible. The notification is displayed on a display unit or the like of a navigation device that can be visually recognized by an occupant, or is performed by voice.
Thereafter, the process ends.
 一方、補助操舵作動スイッチ19がOFFに操作されてステップS100に移行すると、動力差配分処理部30Bが、右前輪1FRに対して付与していた制動力の解除処理を行う。
 次に、ステップS110では、補助輪リフト処理部30Aが、補助輪12を上昇させて格納する処理を行う。本実施形態では、各リフトモータ27に上昇指令を供給する。
 次に、ステップS120では、上記補助輪12の格納完了及び、右前輪1FRへの制動力解除が完了したことを検出すると、乗員に対して補助操舵処理の解除した旨の情報呈示を報知する。報知は、乗員が視認可能なナビゲーション装置の表示部などに表示したり、音声によって実施する。
 その後、処理を終了する。
On the other hand, when the auxiliary steering operation switch 19 is turned off and the process proceeds to step S100, the power difference distribution processing unit 30B performs a process of releasing the braking force applied to the right front wheel 1FR.
Next, in step S110, the auxiliary wheel lift processing unit 30A performs a process of raising the auxiliary wheel 12 and storing it. In the present embodiment, the lift command is supplied to each lift motor 27.
Next, in step S120, when it is detected that the storage of the auxiliary wheel 12 has been completed and the release of the braking force to the right front wheel 1FR has been completed, an information presentation to the effect that the auxiliary steering process has been canceled is notified to the occupant. The notification is displayed on a display unit or the like of a navigation device that can be visually recognized by an occupant, or is performed by voice.
Thereafter, the process ends.
(動作その他)
 次に、図7を参照して、運転者の操作に伴う、補助操舵装置の動作状態の状態遷移について説明する。
 本実施形態の補助操舵装置は、乗員が補助操舵作動スイッチ19をONに操作することで作動を開始する。
 通常の走行可能状態では、補助輪12は車体側に格納されて当該補助輪12が非接地状態となっている。この状態において、運転者は、アクセル操作を行うことで、車両を前進または後退させる。
 補助操舵を実施する場合には、運転者はブレーキを作動させて車両を停車し、シフトレバーを「N」または「P」レンジへ入れる。
(Operation other)
Next, with reference to FIG. 7, the state transition of the operation state of the auxiliary steering device accompanying the operation of the driver will be described.
The auxiliary steering device of the present embodiment starts to operate when the occupant operates the auxiliary steering operation switch 19 to ON.
In a normal travelable state, the auxiliary wheel 12 is stored on the vehicle body side and the auxiliary wheel 12 is in a non-grounded state. In this state, the driver moves the vehicle forward or backward by performing an accelerator operation.
When carrying out the auxiliary steering, the driver operates the brake to stop the vehicle, and puts the shift lever into the “N” or “P” range.
 続いて、運転者が補助操舵作動スイッチ19を「ON」にすると、補助操舵制御部30が起動して、補助操舵制御部30は、左右の補助輪12を下降させて各補助輪12を接地させ、更に車体を持ち上げることで、後輪1RL、1RRの接地荷重をゼロ若しくは小さくする。続いて、補助操舵制御部30は、右前輪1FRに制動力を付与して当該右前輪1FRをロック状態にした後に、補助操舵が可能となった旨の情報呈示を行う。 Subsequently, when the driver turns on the auxiliary steering operation switch 19, the auxiliary steering control unit 30 is activated, and the auxiliary steering control unit 30 lowers the left and right auxiliary wheels 12 to ground each auxiliary wheel 12. The ground load of the rear wheels 1RL and 1RR is reduced to zero or small by further lifting the vehicle body. Subsequently, the auxiliary steering control unit 30 presents information indicating that auxiliary steering is possible after applying braking force to the right front wheel 1FR to lock the right front wheel 1FR.
 運転者は、補助操舵が可能となったことを確認すると、シフトレバーを「D」または「R」レンジへ入れることで、前方への転回か後方への転回かを選択する。
 ここで、本実施形態の補助操舵装置の例では、右前輪1FRに制動力を付与する構成としたので、前進(Dレンジ)で右転回、後退(Rレンジ)で左転回が可能な状態となる。
 なお、左前輪1FLに制動力を付与する構成とした場合には、前進(Dレンジ)で左転回、後退(Rレンジ)で右転回が可能な状態となる。
When the driver confirms that auxiliary steering is possible, the driver selects whether to turn forward or backward by putting the shift lever into the “D” or “R” range.
Here, in the example of the auxiliary steering device of the present embodiment, since the braking force is applied to the right front wheel 1FR, it is possible to turn right in forward (D range) and turn left in backward (R range). Become.
In addition, when it is set as the structure which provides a braking force to the left front wheel 1FL, it will be in the state in which it can turn to the left by forward (D range), and to the right by reverse (R range).
 ここでは、前進(Dレンジ)が選択されたとする。
 この状態で、運転者がアクセルペダル5を踏んで、エンジン2の出力を駆動輪1FL、1FRに伝達する際に、差動歯車装置3で、駆動力が左前輪1FL側に主として動力分配される結果、左右前輪1FL、1FRに駆動力差が発生する。この左右前輪1FL、1FRの駆動力差によって、車体に対してヨー方向のモーメントが発生する。このとき、左右前輪1FL、1FRのうち、右前輪1FRは制動力に付与されていることから、左前輪1FLだけが駆動力で転動する。これによって、車両は、制動力が付与されている右前輪1FRを中心に右転回する。このとき、上記モーメントの力によって、補助輪12で持ち上げられた車体後部が補助輪12の転動に伴い左側に横移動する。
Here, it is assumed that forward (D range) is selected.
In this state, when the driver steps on the accelerator pedal 5 to transmit the output of the engine 2 to the drive wheels 1FL, 1FR, the driving force is mainly distributed to the left front wheel 1FL side by the differential gear unit 3. As a result, a driving force difference is generated between the left and right front wheels 1FL and 1FR. Due to the difference in driving force between the left and right front wheels 1FL and 1FR, a moment in the yaw direction is generated with respect to the vehicle body. At this time, among the left and right front wheels 1FL and 1FR, the right front wheel 1FR is applied to the braking force, so that only the left front wheel 1FL rolls with the driving force. Thus, the vehicle turns right around the right front wheel 1FR to which the braking force is applied. At this time, the rear part of the vehicle body lifted by the auxiliary wheel 12 moves laterally to the left as the auxiliary wheel 12 rolls due to the force of the moment.
 このような補助操舵によって、車両は、小回りで移動することで、狭い場所での縦列駐車などが可能となる。
 図8にそのときの、車両MMの転回状態の例を示す。この図8に示すように、右前輪1FRを中心にして車両MMを転回することで、最小回転半径が小さくなる。
 更に、運転者がアクセル操作を止めてブレーキ操作を行う事で、車両の転回動作が停止する。
 上記車両が停止して、運転者がシフトレバーをDレンジかPレンジに入れた後に、補助操舵作動スイッチ19をOFFに変更したとする。すると、補助操舵制御部30は、右前輪1FRへの制動力付与を解除すると共に、補助輪12を上昇して車体側に格納する。その後、補助操舵制御部30は、補助操舵の解除を乗員に報知する。
By such auxiliary steering, the vehicle moves in a small turn, thereby enabling parallel parking in a narrow place.
FIG. 8 shows an example of the turning state of the vehicle MM at that time. As shown in FIG. 8, the minimum turning radius is reduced by turning the vehicle MM around the right front wheel 1FR.
Furthermore, when the driver stops the accelerator operation and performs the brake operation, the turning operation of the vehicle is stopped.
Assume that the auxiliary steering operation switch 19 is changed to OFF after the vehicle stops and the driver puts the shift lever into the D range or the P range. Then, the auxiliary steering control unit 30 releases the braking force applied to the right front wheel 1FR and raises the auxiliary wheel 12 to store it on the vehicle body side. Thereafter, the auxiliary steering control unit 30 notifies the occupant of the cancellation of the auxiliary steering.
 以上のように、本実施形態の補助操舵装置によれば、車体の下部に補助輪12を設けて、その補助輪12を昇降機構によって路面上に支持することで、持ち上げられた後輪1RL、1RRは車体に対して左右方向の拘束力が外れる。
 この状態で、運転者がシフト操作により転回方向を選択した後に、アクセル操作を行うことで、左右後輪1RL、1RRに駆動力差が発生して、車体にヨー方向のモーメントが発生する。このとき、右前輪1FRに制動力が付与されているので、その制動が掛かっている右前輪1FR若しくはその近傍を中心に車体が旋回可能となる。
As described above, according to the auxiliary steering device of the present embodiment, the auxiliary wheel 12 is provided at the lower portion of the vehicle body, and the auxiliary wheel 12 is supported on the road surface by the lifting mechanism, thereby lifting the rear wheel 1RL, 1RR releases the restraining force in the left-right direction with respect to the vehicle body.
In this state, when the driver selects the turning direction by the shift operation and then performs the accelerator operation, a driving force difference is generated between the left and right rear wheels 1RL and 1RR, and a moment in the yaw direction is generated in the vehicle body. At this time, since the braking force is applied to the right front wheel 1FR, the vehicle body can turn around the right front wheel 1FR to which the braking is applied or the vicinity thereof.
 このとき、補助輪12は、無駆動のフリー状態となっているので、上記車体に発生するヨー方向のモーメントを阻害しないかその阻害が小さい状態で車体横方向に転動する。
 この結果、車両の最小回転半径が通常状態よりも小さくなることで、図8に示すように、縦列駐車に必要なスペースは極端に小さくなる。
 また、横方向に並んで駐車する場合の一例を図10に示す。この図10に記載の例では、駐車位置の前まで車両MMを前進させた後に、車両MMを転回し、そのまま前進させることで目的の位置に駐車させることになる。
At this time, since the auxiliary wheel 12 is in a non-driving free state, the auxiliary wheel 12 rolls in the lateral direction of the vehicle body in a state in which the moment in the yaw direction generated in the vehicle body is not inhibited or small.
As a result, as the minimum turning radius of the vehicle becomes smaller than that in the normal state, the space required for parallel parking is extremely reduced as shown in FIG.
FIG. 10 shows an example of parking in the horizontal direction. In the example shown in FIG. 10, after the vehicle MM is moved forward to the front of the parking position, the vehicle MM is turned and moved forward to be parked at the target position.
(変形例)
 (1)左右後輪1RL、1RRは補助輪12で持ち上げて接地荷重が低減するので、当該左右後輪1RL、1RRは、駆動輪1FL、1FRであっても従動輪であっても構わない。
 (2)上記説明では、左右前輪1FL、1FRを駆動輪とする場合で例示した。左右後輪1RL、1RRを駆動輪の場合には、上記補助輪12を車体前部側に配置すれば良い。
 この場合には、例えば右後輪1RR側に制動を付加するように設定する。この場合における、補助操舵による車両MMの転回例を図9に示す。この場合、例えば、車両MMを駐車位置の前まで後退させた後に該車両MMを図9のように転回し、そのまま駐車位置へ後退して駐車させることが可能となる。
(Modification)
(1) Since the left and right rear wheels 1RL and 1RR are lifted by the auxiliary wheel 12 to reduce the ground load, the left and right rear wheels 1RL and 1RR may be driving wheels 1FL and 1FR or driven wheels.
(2) In the above description, the left and right front wheels 1FL and 1FR are illustrated as driving wheels. When the left and right rear wheels 1RL and 1RR are drive wheels, the auxiliary wheel 12 may be disposed on the vehicle body front side.
In this case, for example, setting is made so that braking is applied to the right rear wheel 1RR side. An example of turning of the vehicle MM by auxiliary steering in this case is shown in FIG. In this case, for example, after the vehicle MM is retracted to the front of the parking position, the vehicle MM can be turned as shown in FIG.
 (3)上記説明では、左右独立で制動力を付与可能な制動制御装置18を使用することで、左右駆動輪1FL、1FRの一方に制動力を付与する場合を例示した。
 図11に示すように、左右駆動輪に個別にパーキングブレーキを作動可能な左右独立駐車ブレーキ装置40を備える車両にあっては、その左右独立駐車ブレーキ装置40によって、左右駆動輪の一方の車輪に制動を付与可能な構成としても良い。この図11の例では、駆動輪が左右後輪1RL、1RRの場合で例示している。
 この場合には、運転者が制動する車輪を選択するようにしても良いし、補助操舵制御部30が一方の駆動輪1FL、1FRに制動を付与するように作動させる構成としても良い。
(3) In the above description, the case where the braking force is applied to one of the left and right drive wheels 1FL and 1FR by using the braking control device 18 capable of applying the braking force independently on the left and right is illustrated.
As shown in FIG. 11, in a vehicle including a left and right independent parking brake device 40 that can individually actuate a parking brake on left and right driving wheels, the left and right independent parking brake device 40 causes one of the left and right driving wheels to move to one wheel. It is good also as composition which can give braking. In the example of FIG. 11, the drive wheels are exemplified as the left and right rear wheels 1RL and 1RR.
In this case, the driver may select a wheel to be braked, or the auxiliary steering control unit 30 may be operated so as to apply braking to one of the drive wheels 1FL and 1FR.
 (4)上記説明では、駆動輪の動力源がエンジン2の場合を例示した。駆動輪の動力源はモータであっても良い。すなわち、本発明の補助操舵装置を適用する車両は、電気自動車でもハイブリッド車両でも構わない。
 またこのとき、図12に示すように、左右の駆動輪毎に駆動モータ41を個別に配置したインホイールモータ構造であっても良い。この場合には、左右の駆動モータ41の出力トルクを個別制御することで、左右の駆動輪に動力差を発生することが出来る。
(4) In the above description, the case where the power source of the drive wheels is the engine 2 is exemplified. The drive wheel power source may be a motor. That is, the vehicle to which the auxiliary steering device of the present invention is applied may be an electric vehicle or a hybrid vehicle.
Further, at this time, as shown in FIG. 12, an in-wheel motor structure in which a drive motor 41 is individually arranged for each of the left and right drive wheels may be employed. In this case, a power difference can be generated between the left and right drive wheels by individually controlling the output torque of the left and right drive motors 41.
 (5)ここで、補助操舵時に補助輪12を車両横方向に転動するように、左右の補助輪12の回転軸は、車両前後方向に向くように配置する。
 但し、本実施形態では、右前輪1FRを中心に車体が転回するので、図13に示すように、上記補助輪12の回転軸は、当該右前輪1FRに向かうように設定しておくことが好ましい。このように転回時の中心に回転軸を向けることで、より補助輪12は転動し易くなる。図13中、符号Lは補助輪12の回転軸の延長線を示す。
(5) Here, the rotation shafts of the left and right auxiliary wheels 12 are arranged to face in the vehicle front-rear direction so that the auxiliary wheels 12 roll in the vehicle lateral direction during auxiliary steering.
However, in this embodiment, since the vehicle body rotates around the right front wheel 1FR, it is preferable to set the rotation axis of the auxiliary wheel 12 to face the right front wheel 1FR as shown in FIG. . In this way, the auxiliary wheel 12 is more easily rolled by directing the rotation shaft to the center at the time of turning. In FIG. 13, symbol L indicates an extension line of the rotation shaft of the auxiliary wheel 12.
 (6)このとき、図14に示すように、補助輪12と補助輪支持部材25とを回転軸受43を介して連結して、キャスタホイールとしておくと良い。この場合、補助輪12の回転軸が自在に変向することで、転回時の中心に回転軸が自動調整される。
 (7)また上記実施形態では、右側の駆動輪を制動を付加する車輪として説明したが、制動を付加する車輪を左側の駆動輪に設定しても構わない。
 (8)また上記説明では、制動を付加する駆動輪を予め設定しているが、運転者の指示によって制動を付加する駆動輪を選択可能に構成しても良い。例えば、車両を停止したときの操向輪の転舵方向によって制動を付加する駆動輪を決定して良い。
(6) At this time, as shown in FIG. 14, the auxiliary wheel 12 and the auxiliary wheel support member 25 may be connected via a rotary bearing 43 to form a caster wheel. In this case, the rotation axis of the auxiliary wheel 12 is freely changed, so that the rotation axis is automatically adjusted to the center at the time of turning.
(7) In the above embodiment, the right driving wheel is described as a wheel to which braking is applied, but the wheel to which braking is applied may be set as the left driving wheel.
(8) In the above description, driving wheels to which braking is applied are set in advance, but driving wheels to which braking is applied may be selected according to a driver's instruction. For example, the drive wheel to which braking is applied may be determined according to the steering direction of the steered wheel when the vehicle is stopped.
 (9)上記実施形態では、一方の駆動輪に制動を付与し、他方の駆動輪に駆動力を付与することで、左右の駆動輪に駆動力差を発生する場合で例示した。
 左右の駆動輪に駆動力差を発生する構成はこれに限定されない。例えば、左右の駆動輪の回転方向を逆向きにすることで、駆動力差を発生させるようにしても良い。この場合には、左右駆動輪の約中央位置を中心にして車体は転回する。
 また、左右駆動輪の両方共に駆動力を伝達するが、その伝達する駆動力を変える事で、駆動力差を発生させるようにしても良い。
(9) In the above-described embodiment, an example is given in which a drive force difference is generated between the left and right drive wheels by applying braking to one drive wheel and applying drive force to the other drive wheel.
The configuration for generating a driving force difference between the left and right driving wheels is not limited to this. For example, the drive force difference may be generated by reversing the rotation directions of the left and right drive wheels. In this case, the vehicle body turns around the center position of the left and right drive wheels.
In addition, the driving force is transmitted to both the left and right driving wheels, but a driving force difference may be generated by changing the transmitted driving force.
 ここで、制動力は負の駆動力と見なすことが出来る。
 ここで、駆動輪が前輪1FL、1FRの場合には、後輪1RL、1RRが第3の車輪となる。駆動輪が後輪1RL、1RRの場合には、前輪1FL、1FRが第3の車輪となる。ここで、4輪駆動車両の場合には、前輪1FL、1FR側と後輪1RL、1RR側の両方に補助輪12と補助輪昇降装置13をそれぞれ設けておいても良い。このときには、補助操舵の際の駆動輪が前輪1FL、1FRの場合には、後輪1RL、1RR側の補助操舵を作動させ、補助操舵の際の駆動輪が後輪1RL、1RRの場合には、前輪1FL、1FR側の補助操舵を作動させるようにしても良い。
 差動歯車装置3と制動制御装置18は、駆動力差調整装置を構成する。制動制御装置18は、左右独立制動制御装置18を構成する。
Here, the braking force can be regarded as a negative driving force.
Here, when the driving wheels are the front wheels 1FL, 1FR, the rear wheels 1RL, 1RR are the third wheels. When the driving wheels are the rear wheels 1RL and 1RR, the front wheels 1FL and 1FR are the third wheels. Here, in the case of a four-wheel drive vehicle, the auxiliary wheel 12 and the auxiliary wheel elevating device 13 may be provided on both the front wheels 1FL and 1FR and the rear wheels 1RL and 1RR. At this time, if the driving wheels at the time of auxiliary steering are the front wheels 1FL, 1FR, the auxiliary steering on the rear wheels 1RL, 1RR side is operated, and if the driving wheels at the time of auxiliary steering are the rear wheels 1RL, 1RR, The auxiliary steering on the front wheels 1FL and 1FR may be actuated.
The differential gear device 3 and the braking control device 18 constitute a driving force difference adjusting device. The braking control device 18 constitutes a left and right independent braking control device 18.
 (本実施形態の効果)
 次に、本実施形態の効果について説明する。
 (1)補助輪昇降装置13は、車体に対し上記補助輪12を昇降させる。駆動力差調整装置は、補助輪12が接地しているときに上記左右の駆動輪に駆動力差を発生可能である。
 この構成によれば、駆動力差を生み出す装置と、補助輪12の昇降装置とを備えたことにより車両を、通常走行時よりも小さな回転半径で転回可能となる。
 このとき、車両の通常走行で使用する動力源(エンジン2、モータ等)を利用して駆動力制御を行うことで転回可能となるので、新たな動力システムを必要としない。また、補助輪12自体も無駆動の従動輪となるため、装置のコンパクト化、低コスト化が図れる。
(Effect of this embodiment)
Next, the effect of this embodiment will be described.
(1) The auxiliary wheel elevating device 13 raises and lowers the auxiliary wheel 12 with respect to the vehicle body. The driving force difference adjusting device can generate a driving force difference between the left and right driving wheels when the auxiliary wheel 12 is grounded.
According to this configuration, the vehicle can be turned with a smaller turning radius than that during normal traveling by including the device that generates the driving force difference and the lifting device of the auxiliary wheel 12.
At this time, since it is possible to turn by performing driving force control using a power source (engine 2, motor, etc.) used in normal traveling of the vehicle, a new power system is not required. Further, since the auxiliary wheel 12 itself is a non-driven driven wheel, the apparatus can be made compact and the cost can be reduced.
 (2)駆動力差調整装置は、左右の駆動輪のうちの一方の車輪に制動を付加すると共に他方の車輪に駆動力を伝達することで、上記駆動力差を発生させる。
 ここで、制動の付加は車輪をロック状態としない場合も含む。
 この構成によれば、制動を付加した駆動輪側を中心として車両を転回可能となる。
 (3)駆動力差調整装置は、左右の駆動輪に対し個別にブレーキ圧を可変制御可能な左右独立制動制御装置18と、動力源からの動力を左右の駆動輪に対し動力差を付けて配分する差動歯車装置と、を備える。
 この構成によれば、極低速走行時にその場旋回から小回りまで旋回半径を制御可能となる。すなわち、制動を付加した側の駆動輪の駆動力が相対的に小さくなるように動力配分されるので、付加する制動力の大きさによって、その場旋回から小回りまで旋回半径を変更可能となる。制動力を大きくするほど旋回半径が小さくなる。
(2) The driving force difference adjusting device generates the driving force difference by applying braking to one of the left and right driving wheels and transmitting the driving force to the other wheel.
Here, the addition of braking includes the case where the wheel is not locked.
According to this configuration, the vehicle can be turned around the drive wheel side to which braking is applied.
(3) The driving force difference adjusting device includes a left / right independent braking control device 18 capable of variably controlling the brake pressure individually for the left and right driving wheels, and a power difference from the power source to the left and right driving wheels. A differential gear device for distribution.
According to this configuration, the turning radius can be controlled from the spot turning to the small turn during extremely low speed traveling. That is, since the power is distributed so that the driving force of the driving wheel to which braking is applied becomes relatively small, the turning radius can be changed from on-site turning to small turning depending on the magnitude of the applied braking force. As the braking force increases, the turning radius decreases.
 (4)駆動力差調整装置は、左右の駆動輪に対し個別にパーキングブレーキを作動できる左右独立駐車ブレーキ装置と、動力源からの動力を左右の駆動輪に対し動力差を付けて配分する差動歯車装置と、を備える。
 この構成によれば、パーキングブレーキを運転者が操作することで、一方の駆動輪に制動力を付加可能となる。
 (5)駆動力差調整装置は、上記左右の駆動輪に個別の動力源となるモータを装着したインホイールモータを備える。
 この構成によれば、左右の車輪の駆動力を個別に独立して調整可能となる。
(4) The driving force difference adjusting device includes a left and right independent parking brake device that can individually operate the parking brake for the left and right driving wheels, and a difference that distributes the power from the power source to the left and right driving wheels with a power difference. A moving gear device.
According to this configuration, a braking force can be applied to one of the drive wheels by the driver operating the parking brake.
(5) The driving force difference adjusting device includes an in-wheel motor in which a motor serving as an individual power source is mounted on the left and right driving wheels.
According to this configuration, the driving forces of the left and right wheels can be individually adjusted independently.
 (6)平面視において、上記補助輪12を、当該補助輪12が接地した状態において、上記補助輪12の回転軸の延長線が左右の駆動輪のうち相対的に駆動力が小さくなる駆動輪側に向かうように設定する。
 この構成によれば、補助輪12を、制動力を作用させる車輪に対して略垂直の向きに配置する。この結果、補助輪12の磨耗を低減することが可能となる。
 (7)補助輪12は、路面からの入力によって回転方向の向きが変わるキャスタホイールからなる。
 この構成によれば、補助輪12の回転軸を考慮する必要がなくなるので、設計の自由度がある。また、補助輪12の回転軸が自動調整させることから、補助操舵の転回時に、車両の回転中心に応じて、補助輪12の向きを調整しなくても、補助輪12の磨耗を低減することが可能となる。
(6) In plan view, when the auxiliary wheel 12 is in a state where the auxiliary wheel 12 is grounded, a driving wheel in which the extension line of the rotating shaft of the auxiliary wheel 12 has a relatively small driving force among the left and right driving wheels. Set to go to the side.
According to this configuration, the auxiliary wheel 12 is disposed in a substantially vertical direction with respect to the wheel on which the braking force is applied. As a result, it is possible to reduce the wear of the auxiliary wheel 12.
(7) The auxiliary wheel 12 is a caster wheel whose direction of rotation changes according to input from the road surface.
According to this configuration, there is no need to consider the rotation axis of the auxiliary wheel 12, so there is a degree of freedom in design. In addition, since the rotation axis of the auxiliary wheel 12 is automatically adjusted, wear of the auxiliary wheel 12 can be reduced without turning the direction of the auxiliary wheel 12 according to the center of rotation of the vehicle when turning the auxiliary steering. Is possible.
 (8)平面視において、上記補助輪12は、当該補助輪12が接地した状態では、車両重心Gに対し上記左右の駆動輪とは反対側に位置する。
 この構成によれば、補助輪12を下降させることで、第3の車輪の接地荷重を小さく(ゼロも含む)することが可能となる。
 (9)平面視において、上記左右の第3の車輪における上記駆動輪に近い側の端部同士を結んだ線よりも上記駆動輪から離れる位置に上記補助輪12を配置する。
 この構成によれば、補助輪12を下降させることで、より確実に第3の車輪の接地荷重を小さく(ゼロも含む)することが可能となる。
(8) In plan view, the auxiliary wheel 12 is located on the opposite side of the vehicle center of gravity G from the left and right drive wheels when the auxiliary wheel 12 is grounded.
According to this configuration, it is possible to reduce the ground load of the third wheel (including zero) by lowering the auxiliary wheel 12.
(9) In the plan view, the auxiliary wheel 12 is arranged at a position farther from the driving wheel than a line connecting ends of the left and right third wheels close to the driving wheel.
According to this configuration, by lowering the auxiliary wheel 12, it is possible to more reliably reduce the ground load of the third wheel (including zero).
 (10)車体に支持される無駆動状態の補助輪12を下降させることで、上記第3の車輪の接地荷重を減少若しくはゼロとした状態とした後に、上記左右の駆動輪に駆動力差を発生させて車両を移動させる。
 この場合、左右の駆動輪に駆動力差を発生させると、車体にヨー方向のモーメントが作用する。このとき、補助輪12によって第3の車輪の接地荷重を減少若しくはゼロとした状態としているため、上記モーメントの力によって、補助輪12位置の車体部分が車体横方向に移動する。この結果、例えば、駆動力が相対的に小さい駆動輪側を中心に車両が転回可能となる。これによって車両の小回りでの移動、つまり最小回転半径を小さくして転回が可能となる。また、補助輪12を無駆動状態(従動輪の状態)で使用するので、補助輪12を回転駆動する動力装置が不要となって、補助輪12周りの構成が簡便な構成となる。
(10) By lowering the non-driving auxiliary wheel 12 supported by the vehicle body to reduce or reduce the ground load of the third wheel to zero, a driving force difference is applied to the left and right driving wheels. Generate and move the vehicle.
In this case, when a driving force difference is generated between the left and right driving wheels, a moment in the yaw direction acts on the vehicle body. At this time, since the ground contact load of the third wheel is reduced or made zero by the auxiliary wheel 12, the vehicle body portion at the position of the auxiliary wheel 12 moves in the lateral direction of the vehicle body by the force of the moment. As a result, for example, the vehicle can turn around the driving wheel side having a relatively small driving force. As a result, the vehicle can be turned with a small turning radius, that is, with a minimum turning radius reduced. In addition, since the auxiliary wheel 12 is used in a non-driven state (driven wheel state), a power device that rotationally drives the auxiliary wheel 12 becomes unnecessary, and the configuration around the auxiliary wheel 12 becomes a simple configuration.
「第1実施形態の2」
 次に、別の実施形態について図面を参照して説明する。なお、上記実施形態と同様な部本等については同一の符号を付して説明する。
 本実施形態の基本構成は、上記第1実施形態の1と同様である。但し、補助輪の可能時の配置が異なる。
(構成)
 図15は、車両後部のサスペンションと補助輪昇降装置13を示す上面図であり、図16はその後面図である。この例では、左右の後輪にそれぞれ個別に補助輪昇降装置13を設けた構成となっている。尚、上面図である図15では、リンク27をスライドさせる機構やリフトモータ29などは省略されている。
 ここで、本実施形態の後輪1RL、1RRは、車輪支持部材20によって回転自在に支持されている。その車輪支持部材20は、リーフリジッド形式のサスペンション装置を介して、車体に上下揺動可能に支持されている。
"2 of the first embodiment"
Next, another embodiment will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected and demonstrated about the same copy as the said embodiment.
The basic configuration of the present embodiment is the same as 1 in the first embodiment. However, the arrangement of auxiliary wheels when possible is different.
(Constitution)
FIG. 15 is a top view showing the suspension and auxiliary wheel lifting device 13 at the rear of the vehicle, and FIG. 16 is a rear view thereof. In this example, the auxiliary wheel elevating device 13 is provided for each of the left and right rear wheels. In FIG. 15, which is a top view, a mechanism for sliding the link 27, a lift motor 29, and the like are omitted.
Here, the rear wheels 1RL and 1RR of the present embodiment are rotatably supported by the wheel support member 20. The wheel support member 20 is supported by the vehicle body so as to be able to swing up and down via a leaf-rigid suspension device.
 また、補助輪12は、図4に示すように、補助輪支持部材25に対し回転自在に取付けられている。その補助輪支持部材25と上記車輪支持部材20とが、第1のリンク部材26で上下揺動可能な状態で連結されている。また、補助輪支持部材25と車体とが第2及び第3のリンク部材27,28によって上下揺動可能な状態で連結されている。補助輪支持部材25及び車体と、第2及び第3のリンク部材27,28とは、例えばボールジョイントで連結する。 The auxiliary wheel 12 is rotatably attached to the auxiliary wheel support member 25 as shown in FIG. The auxiliary wheel support member 25 and the wheel support member 20 are connected by a first link member 26 so as to be swingable up and down. Further, the auxiliary wheel support member 25 and the vehicle body are connected to each other by the second and third link members 27 and 28 so as to be swingable up and down. The auxiliary wheel support member 25 and the vehicle body are connected to the second and third link members 27 and 28 by, for example, ball joints.
 車体下面には、リフトモータ29が固定された状態で装着されている。リフトモータ29は、直動装置であって、スライドするテーブル上にリンク部材27の先端部が回転可能に連結されている。
 図17に示すように平面視において、上記補助輪12を下降させ、その該補助輪12が接地した状態では、上記補助輪12の回転軸の延長線が左右の駆動輪のうち相対的に駆動力が小さくなる駆動輪側に向かうように設定する。加えて、補助輪昇降装置13による昇降、格納動作する際の補助輪の旋回する方向(作動方向)を、補助輪12の回転軸と垂直となるように設定する。すなわち、図15に示すように、補助輪12が格納された状態でも接地した状態でも、各補助輪12の回転軸が駆動輪1FRを向くように、補助輪12の転動方向が車幅方向に対して、平面視で車両前後方向に角度α、βだけ角度が付いている。
A lift motor 29 is fixed to the lower surface of the vehicle body. The lift motor 29 is a linear motion device, and the tip of the link member 27 is rotatably connected to a sliding table.
As shown in FIG. 17, in a plan view, when the auxiliary wheel 12 is lowered and the auxiliary wheel 12 is in contact with the ground, the extension line of the rotation shaft of the auxiliary wheel 12 is relatively driven among the left and right driving wheels. It is set so as to go to the drive wheel side where the force becomes smaller. In addition, the turning direction (operating direction) of the auxiliary wheel when the auxiliary wheel lifting device 13 moves up and down and retracts is set to be perpendicular to the rotation axis of the auxiliary wheel 12. That is, as shown in FIG. 15, the rolling direction of the auxiliary wheels 12 is the vehicle width direction so that the rotating shaft of each auxiliary wheel 12 faces the drive wheel 1FR regardless of whether the auxiliary wheels 12 are stored or grounded. On the other hand, the angles α and β are given in the vehicle longitudinal direction in plan view.
 具体的には、図17に示すように、平面視において、車幅方向に対して補助輪12の回転軸の延長線が左右の駆動輪のうち相対的に駆動力が小さくなる駆動輪側に向かうように設定され、且つ、上記回転軸と直交する方向に旋回することで昇降するように設定されている。なお、この場合には、図15に示すように、上記第1~第3のリンク部材26~28は同一平面状に配置されない。 Specifically, as shown in FIG. 17, in a plan view, the extension line of the rotation shaft of the auxiliary wheel 12 in the vehicle width direction is on the driving wheel side where the driving force is relatively small among the left and right driving wheels. It sets so that it may go, and it is set so that it may raise / lower by turning in the direction orthogonal to the said rotating shaft. In this case, as shown in FIG. 15, the first to third link members 26 to 28 are not arranged on the same plane.
(作用効果)
 補助輪の昇降時の旋回方向を車幅方向に向けた場合、補助輪が設置した状態では、補助輪の回転軸延長線は、車両前後方向を向き、そのままでは、前述した理由によって、補助輪の昇降時にかかる負荷が大きくなる。
 これに対し、上記実施形態の構成によれば、補助輪12が昇降、格納する際に受ける地面からの反力を低減することが可能となり、補助輪12が接地した状態では、旋回時の磨耗を低減することができる。この結果、補助輪昇降装置13の昇降時にかかる負荷が小さくなりモータの出力を小さく抑えられる。
(Function and effect)
If the turning direction of the auxiliary wheel is raised or lowered in the vehicle width direction, the auxiliary shaft's rotating shaft extension line faces the vehicle longitudinal direction when the auxiliary wheel is installed. The load applied when moving up and down is increased.
On the other hand, according to the configuration of the above-described embodiment, it is possible to reduce the reaction force from the ground that is received when the auxiliary wheel 12 is raised and lowered, and when the auxiliary wheel 12 is grounded, wear during turning Can be reduced. As a result, the load applied when raising and lowering the auxiliary wheel elevating device 13 is reduced, and the output of the motor can be reduced.
 すなわち、補助輪を下方に旋回して接地した状態で、補助輪が転向することなく、補助輪12の回転軸の延長線が左右の駆動輪のうち相対的に駆動力が小さくなる駆動輪側に向かう事となり、補助輪の磨耗が低減できると共に、補助輪を支持する補助輪昇降装置13に入力され拗れ力が大幅に低減可能となる。補助輪を格納するために接地している補助輪を上昇させる場合も同様である。 That is, with the auxiliary wheel turning downward and grounded, the auxiliary wheel does not turn and the extension line of the rotating shaft of the auxiliary wheel 12 has a relatively small driving force among the left and right driving wheels. Thus, the wear of the auxiliary wheel can be reduced, and the input to the auxiliary wheel lifting device 13 that supports the auxiliary wheel can be drastically reduced. The same applies to the case where the grounded auxiliary wheel is raised to store the auxiliary wheel.
 ここで、本実施形態のリフトモータ29は、車両左右方向に摺動するように設定されている場合について図示している。
 平面視において、リフトモータ29の摺動する方向となる設定角度は車両左右方向に対して傾けて設定することも可能である。各リンク部材の回転支持されている端部の可動範囲を小さくするため車両左右方向に平行な角度から制動輪1FRから遠い左側の補助輪12が車両左右方向に対してなす角度αは、制動輪1FRに近い側の右側の補助輪が成す角度βよりも大きく設定されている。
Here, the lift motor 29 of the present embodiment is illustrated as being set to slide in the vehicle left-right direction.
In a plan view, the set angle that is the direction in which the lift motor 29 slides can be set to be inclined with respect to the vehicle left-right direction. In order to reduce the movable range of the rotation supported end of each link member, the angle α formed by the left auxiliary wheel 12 far from the brake wheel 1FR from the angle parallel to the vehicle left-right direction with respect to the vehicle left-right direction is the brake wheel It is set to be larger than the angle β formed by the right auxiliary wheel on the side close to 1FR.
「第2実施形態」
 次に、本発明の別の実施形態について図面を参照して説明する。
「第2実施形態の1」
(構成)
 本実施形態の基本構成は、図1,図2に示すように第1実施形態と同様である。
 また車両は操舵装置を具備する。操舵装置は、図18に示すように、ステアリングホイール39、ステアリング軸31、ステアリングラック36を備える。
“Second Embodiment”
Next, another embodiment of the present invention will be described with reference to the drawings.
"1 of the second embodiment"
(Constitution)
The basic configuration of this embodiment is the same as that of the first embodiment as shown in FIGS.
The vehicle also includes a steering device. As shown in FIG. 18, the steering device includes a steering wheel 39, a steering shaft 31, and a steering rack 36.
 ステアリングホイール39は、運転者が操舵操作を行う操舵操作子である。ステアリング軸31は、その上端部を上記ステアリングホイール39に連結している。ステアリング軸31の下端部は、ステアリング中間シャフト34の上端部に連結し、そのステアリング中間シャフト34の下端部は、ピニオンギアを介してステアリングラック36に連結する。そして、ラック&ピニオン機構によって、ステアリングホイール39の回転がステアリングラック36の直線運動に変換される。ステアリングラック36の左右端部は、タイロッド50を介して操向輪1FL、1FRを回転自在に支持するナックル51のナックルアーム51aに連結する。本実施形態では、操向輪1FL、1FRは、駆動輪である前輪1FL、1FRである。ここで、ステアリング軸31、ステアリング中間シャフト34、ピニオンギア、ステアリングラック36、タイロッド50は、ステアリングホイール39の操舵を操向輪1FL、1FRに伝達する操舵伝達経路を形成する。 The steering wheel 39 is a steering operator that a driver performs a steering operation. The steering shaft 31 has an upper end connected to the steering wheel 39. The lower end portion of the steering shaft 31 is connected to the upper end portion of the steering intermediate shaft 34, and the lower end portion of the steering intermediate shaft 34 is connected to the steering rack 36 via a pinion gear. Then, the rotation of the steering wheel 39 is converted into a linear motion of the steering rack 36 by the rack and pinion mechanism. The left and right ends of the steering rack 36 are connected via a tie rod 50 to a knuckle arm 51a of a knuckle 51 that rotatably supports the steered wheels 1FL and 1FR. In the present embodiment, the steered wheels 1FL and 1FR are the front wheels 1FL and 1FR which are drive wheels. Here, the steering shaft 31, the steering intermediate shaft 34, the pinion gear, the steering rack 36, and the tie rod 50 form a steering transmission path for transmitting the steering of the steering wheel 39 to the steered wheels 1FL and 1FR.
 上記ステアリング軸31は、図19に示すように、ステアリングコラム32内に回転自在に配置されている。また上記ステアリングコラム32に操舵用電動モータ33が取り付けられている。その操舵用電動モータ33は、上記ステアリング軸31に対し操舵トルクを入力可能に構成されている。
 車両は操舵操作制限装置を備える。本実施形態の操舵操作制限装置は、上記ステアリング軸31の回転変位を規制する機構を有し、ステアリング軸31の回転変位を規制することで、ステアリングホイール39の回転(移動)を制限する。
 その操舵操作制限装置は、図20のように、ステアリング軸31に形成された凹部31aと、ピン40aと、進退機構40とを備える。進退機構40は電磁ソレノイド40cを備える。
As shown in FIG. 19, the steering shaft 31 is rotatably disposed in the steering column 32. A steering electric motor 33 is attached to the steering column 32. The steering electric motor 33 is configured to be able to input a steering torque to the steering shaft 31.
The vehicle includes a steering operation restriction device. The steering operation restriction device of the present embodiment has a mechanism for restricting the rotational displacement of the steering shaft 31 and restricts the rotation (movement) of the steering wheel 39 by restricting the rotational displacement of the steering shaft 31.
As shown in FIG. 20, the steering operation restriction device includes a recess 31 a formed in the steering shaft 31, a pin 40 a, and an advance / retreat mechanism 40. The advance / retreat mechanism 40 includes an electromagnetic solenoid 40c.
 上記ステアリング軸31の長手方向における予め設定した軸方向位置において、図20に示すように、周方向に沿って、2以上の上記凹部31aが形成されている。本実施形態では、凹部31aは周方向に向けて90度毎に形成されている。また、ステアリングコラム32には、ステアリング軸31の回転に伴い上記凹部31aのいずれかと径方向で対向可能な位置に切欠き32aが形成されている。これによって、ステアリング軸31の回転に伴い、順番に上記凹部31aが切欠き32aに臨む。 At the predetermined axial position in the longitudinal direction of the steering shaft 31, two or more concave portions 31a are formed along the circumferential direction as shown in FIG. In the present embodiment, the recess 31a is formed every 90 degrees in the circumferential direction. Further, the steering column 32 is formed with a notch 32a at a position that can be opposed to one of the recesses 31a in the radial direction as the steering shaft 31 rotates. As a result, as the steering shaft 31 rotates, the recesses 31a sequentially face the notches 32a.
 上記ピン40aは、上記切欠き32aを通過可能な大きさであり且つ、上記凹部31aに挿入可能な形状となっている。そのピン40aは、電磁ソレノイド40cの進退軸40bの先端部に取り付けられ、電磁ソレノイド40cの作動に伴う進退軸40bの進退によって、上記ピン40aは上記切欠き32aを介してステアリング軸31表面に向けて進退する。すなわち、電磁ソレノイド40cにロック指令として電流が供給させると進退軸40bが延びて、ピン40aがステアリング軸31の表面に押し付けられる。またロック解除指令として、電磁ソレノイド40cへの電流が遮断されると、スプリング40dの弾性力によって進退軸40bが縮んでピン40aがステアリング軸31から離れる。
 上記電磁ソレノイド40cは例えばステアリングコラム32に支持されている。
The pin 40a has such a size that it can pass through the notch 32a and can be inserted into the recess 31a. The pin 40a is attached to the tip of the advance / retreat shaft 40b of the electromagnetic solenoid 40c, and the pin 40a is directed to the surface of the steering shaft 31 through the notch 32a by the advance / retreat of the advance / retreat shaft 40b accompanying the operation of the electromagnetic solenoid 40c. To advance and retreat. That is, when a current is supplied to the electromagnetic solenoid 40c as a lock command, the advance / retreat shaft 40b extends and the pin 40a is pressed against the surface of the steering shaft 31. When the current to the electromagnetic solenoid 40c is interrupted as a lock release command, the advance / retreat shaft 40b is contracted by the elastic force of the spring 40d and the pin 40a is separated from the steering shaft 31.
The electromagnetic solenoid 40c is supported by the steering column 32, for example.
 また上記車両は、補助操舵装置を備える。上記差動歯車装置3、及び制動制御装置18は、補助操舵装置の構成の一部を兼ねる。
 その補助操舵装置は、左右の補助輪12と、その各補助輪12を車体に対し昇降させる補助輪昇降装置13と、リフトモータ制御回路14と、補助操舵制御部とを備える。
 また車両は、乗員が操作可能な補助操舵作動スイッチ19を備える。
 上記左右の補助輪12及びその昇降機構については、他の実施形態と同様であるため、ここでは説明を省略する。
The vehicle includes an auxiliary steering device. The differential gear device 3 and the braking control device 18 also serve as part of the configuration of the auxiliary steering device.
The auxiliary steering device includes left and right auxiliary wheels 12, an auxiliary wheel elevating device 13 that raises and lowers each auxiliary wheel 12 relative to the vehicle body, a lift motor control circuit 14, and an auxiliary steering control unit.
The vehicle also includes an auxiliary steering operation switch 19 that can be operated by a passenger.
The left and right auxiliary wheels 12 and the lifting mechanism thereof are the same as in the other embodiments, and thus the description thereof is omitted here.
 上記補助操舵制御部30は、車両制御を行うコントローラ15の一部のプログラムとして構成される。ここで、コントローラ15は、CPU、ROM、RAM等で構成され、ROMには各種の処理を実現するプログラムが格納されている。コントローラ15は運転者の操作スイッチ、シフト操作によるシフトポジション、および車輪速センサ10よる車輪の回転速度を読み取る。そして、コントローラ15は、センサ等からの信号に基づき車両状態を判定し、インターフェース回路を通じて、制動力を制御するブレーキ制御回路6、補助輪12を昇降するリフトモータ制御回路14などへと通信して指令可能となっている。 The auxiliary steering control unit 30 is configured as a partial program of the controller 15 that performs vehicle control. Here, the controller 15 is constituted by a CPU, a ROM, a RAM, and the like, and programs for realizing various processes are stored in the ROM. The controller 15 reads the driver's operation switch, the shift position by the shift operation, and the rotational speed of the wheel by the wheel speed sensor 10. Then, the controller 15 determines the vehicle state based on the signal from the sensor or the like, and communicates with the brake control circuit 6 that controls the braking force, the lift motor control circuit 14 that raises and lowers the auxiliary wheels 12 and the like through the interface circuit. Command is possible.
 上記補助操舵制御部30は、図21に示すように、補助輪リフト処理部30Aと、動力差配分処理部30Bと、操舵ロック処理部30Cとを備える。
 補助輪リフト処理部30Aは、補助操舵作動スイッチ19がONになったことを検出すると、リフトモータ制御回路14に下降指令を供給する。また、補助輪リフト処理部30Aは、補助操舵作動スイッチ19がOFFになったことを検出すると、リフトモータ制御回路14に上昇指令を供給する。ここで、リフトモータ制御回路14は、下降指令によってリフトモータ27を駆動して、補助輪12を下方に旋回するようにリンク部材を予め設定した回転角だけ回転駆動し、上昇指令によって、補助輪12を上方に旋回するようにリンク部材が予め設定した回転角だけ旋回するようにリフトモータ27を駆動する。
As shown in FIG. 21, the auxiliary steering control unit 30 includes an auxiliary wheel lift processing unit 30A, a power difference distribution processing unit 30B, and a steering lock processing unit 30C.
When the auxiliary wheel lift processing unit 30 </ b> A detects that the auxiliary steering operation switch 19 is turned on, the auxiliary wheel lift processing unit 30 </ b> A supplies a lowering command to the lift motor control circuit 14. In addition, when the auxiliary wheel lift processing unit 30A detects that the auxiliary steering operation switch 19 is turned off, the auxiliary wheel lift processing unit 30A supplies a lift command to the lift motor control circuit 14. Here, the lift motor control circuit 14 drives the lift motor 27 by the lowering command, rotationally drives the link member by a preset rotation angle so as to turn the auxiliary wheel 12 downward, and the auxiliary wheel by the raising command. The lift motor 27 is driven so that the link member turns by a preset rotation angle so as to turn 12 upward.
 本実施形態の動力差配分処理部30Bは、補助操舵作動スイッチ19がONと判定すると、ブレーキ制御回路6を介して、右駆動輪1FRのブレーキ装置8を作動して、ブレーキ操作と無関係に、当該右駆動輪1FRに対して予め設定した制動力を付与する。
 なお、動力差配分処理部30Bは、補助操舵作動スイッチ19がONと判定すると、左右前輪1FL、1FRの両方に制動力を付与し、上記補助輪12の下降が完了したら、左前輪1FL側の制動力だけ解除するようにしても良い。
When determining that the auxiliary steering operation switch 19 is ON, the power difference distribution processing unit 30B of the present embodiment operates the brake device 8 of the right drive wheel 1FR via the brake control circuit 6, and regardless of the brake operation, A preset braking force is applied to the right drive wheel 1FR.
When the auxiliary steering operation switch 19 is determined to be ON, the power difference distribution processing unit 30B applies a braking force to both the left and right front wheels 1FL and 1FR. Only the braking force may be released.
 また上記操舵ロック処理部30Cは、補助操舵作動スイッチ19がONになったことを検出すると、電磁ソレノイド40cにロック指令(電流供給指令)を供給して、ピン40aをステアリング軸31の表面に押し付ける。また操舵ロック処理部30Cは、補助操舵作動スイッチ19がOFFになったことを検出すると、電磁ソレノイド40cにロック解除指令(電流遮断指令)を供給して、ピン40aをステアリング軸31から離す方向に退避させる。 When the steering lock processing unit 30C detects that the auxiliary steering operation switch 19 is turned on, it supplies a lock command (current supply command) to the electromagnetic solenoid 40c and presses the pin 40a against the surface of the steering shaft 31. . When the steering lock processing unit 30C detects that the auxiliary steering operation switch 19 is turned off, the steering lock processing unit 30C supplies a lock release command (current cutoff command) to the electromagnetic solenoid 40c so that the pin 40a is separated from the steering shaft 31. Evacuate.
 次に、上記補助操舵制御部30の処理の例を、図22を参照して説明する。
 この補助操舵制御部30の処理は、予め設定したサンプリング時間毎に実施される。
 補助操舵制御部30は、まずステップS10にて、補助操舵作動スイッチ19からの信号に基づき、当該スイッチの操作があったか否かを判定する。そして、補助操舵作動スイッチ19の操作があったと判定するとステップS20に移行する。
Next, an example of processing of the auxiliary steering control unit 30 will be described with reference to FIG.
The processing of the auxiliary steering control unit 30 is performed every preset sampling time.
First, in step S10, the auxiliary steering control unit 30 determines whether or not the switch has been operated based on a signal from the auxiliary steering operation switch 19. If it is determined that the auxiliary steering operation switch 19 has been operated, the process proceeds to step S20.
 ステップS20では、車両が停止しているか否かを判定する。車両が停止していると判定した場合には、ステップS30に移行する。一方、車両が停止していないと判定した場合にはステップS25に移行する。
 ここで、車両の停止判定は、例えば次のように実施すれば良い。すなわち、車輪速センサ10からの信号に基づき車速を検出し、検出した車速が、車両が停止していると見なせる予め設定した設定車速(例えば5km/h)以下か否かで判定する。
In step S20, it is determined whether or not the vehicle is stopped. When it determines with the vehicle having stopped, it transfers to step S30. On the other hand, if it is determined that the vehicle is not stopped, the process proceeds to step S25.
Here, the vehicle stop determination may be performed, for example, as follows. That is, the vehicle speed is detected based on the signal from the wheel speed sensor 10, and the determination is made based on whether or not the detected vehicle speed is equal to or lower than a preset vehicle speed (for example, 5 km / h) that can be considered that the vehicle is stopped.
 ステップS25では、運転者にブレーキ操作を促す旨の報知を行う。その後、ステップS10に移行する。
 ステップS30では、補助操舵作動スイッチ19がONに操作されたか否かを判定する。ONに操作されたと判定した場合には、ステップS30に移行する。補助操舵作動スイッチ19がOFFに操作されたと判定した場合にはステップS100に移行する。
 ステップS40では、補助輪リフト処理部30Aが、補助輪12を下降させて接地させる制御を行う。本実施形態では、各リフトモータ27に下降指令を供給する。これによって、車体後部が持ち上げられる。そして、後輪側の接地荷重が低減する。
In step S25, the driver is notified that the brake operation is urged. Thereafter, the process proceeds to step S10.
In step S30, it is determined whether or not the auxiliary steering operation switch 19 has been turned ON. If it is determined that the operation has been turned ON, the process proceeds to step S30. If it is determined that the auxiliary steering operation switch 19 is turned off, the process proceeds to step S100.
In step S <b> 40, the auxiliary wheel lift processing unit 30 </ b> A performs control to lower the auxiliary wheel 12 and to ground it. In the present embodiment, a lowering command is supplied to each lift motor 27. As a result, the rear part of the vehicle body is lifted. And the ground load on the rear wheel side is reduced.
 次に、ステップS50では、動力差配分処理部30Bが、右前輪1FRに対して制動力を付与する処理を行う。なお、付与する制動力は、右前輪1FRの回転をロック可能な大きさが好ましい。
 次に、ステップS55では、操舵ロック処理部30Cが電磁ソレノイド40cにロック指令(電流供給指令)を出力する。これによって、進退軸40bが伸びて、ピン40aがステアリング軸31に押し付けられる。この状態でステアリングホイール39の回転に伴い、ステアリング軸31が回転変位すると、90度未満の回転範囲でといずれかの凹部31aに上記ピン40aが差し込まれて、それ以上のステアリング軸31の回転変位が規制される。
Next, in step S50, the power difference distribution processing unit 30B performs a process of applying a braking force to the right front wheel 1FR. The applied braking force is preferably large enough to lock the rotation of the right front wheel 1FR.
Next, in step S55, the steering lock processing unit 30C outputs a lock command (current supply command) to the electromagnetic solenoid 40c. As a result, the advance / retreat shaft 40 b extends and the pin 40 a is pressed against the steering shaft 31. In this state, when the steering shaft 31 is rotationally displaced along with the rotation of the steering wheel 39, the pin 40a is inserted into any one of the concave portions 31a within a rotational range of less than 90 degrees, and the rotational displacement of the steering shaft 31 beyond that. Is regulated.
 次に、ステップS60では、上記補助輪12の下降完了及び、右前輪1FRへの制動力付与が完了したことを検出すると、乗員に対して補助操舵可能の旨の情報呈示を報知する。報知は、乗員が視認可能なナビゲーション装置の表示部などに表示したり、音声によって実施する。
 その後、処理を終了する。
 一方、補助操舵作動スイッチ19がOFFに操作されてステップS100に移行すると、動力差配分処理部30Bが、右前輪1FRに対して付与していた制動力の解除処理を行う。
Next, in step S60, when it is detected that the auxiliary wheel 12 has been lowered and the braking force has been applied to the right front wheel 1FR, the passenger is informed of information presentation indicating that auxiliary steering is possible. The notification is displayed on a display unit or the like of a navigation device that can be visually recognized by an occupant, or is performed by voice.
Thereafter, the process ends.
On the other hand, when the auxiliary steering operation switch 19 is turned off and the process proceeds to step S100, the power difference distribution processing unit 30B performs a process of releasing the braking force applied to the right front wheel 1FR.
 次に、ステップS110では、補助輪リフト処理部30Aが、補助輪12を上昇させて格納する処理を行う。本実施形態では、各リフトモータ27に上昇指令を供給する。
 次に、ステップS115では、操舵ロック処理部30Cが電磁ソレノイド40cにロック解除指令(電流遮断指令)を出力する。これによって、進退軸40bが縮み、ピン40aがステアリング軸31から離れる方向に変位する。これによって、ステアリング軸31が回転の制限が解除される。
 次に、ステップS120では、上記補助輪12の格納完了及び、右前輪1FRへの制動力解除が完了したことを検出すると、乗員に対して補助操舵処理の解除した旨の情報呈示を報知する。報知は、乗員が視認可能なナビゲーション装置の表示部などに表示したり、音声によって実施する。
 その後、処理を終了する。
 その他の構成は、上記実施形態と同様である。
Next, in step S110, the auxiliary wheel lift processing unit 30A performs a process of raising the auxiliary wheel 12 and storing it. In the present embodiment, the lift command is supplied to each lift motor 27.
Next, in step S115, the steering lock processing unit 30C outputs a lock release command (current cutoff command) to the electromagnetic solenoid 40c. As a result, the advancing / retracting shaft 40 b contracts and the pin 40 a is displaced in a direction away from the steering shaft 31. As a result, the restriction on the rotation of the steering shaft 31 is released.
Next, in step S120, when it is detected that the storage of the auxiliary wheel 12 has been completed and the release of the braking force to the right front wheel 1FR has been completed, an information presentation to the effect that the auxiliary steering process has been canceled is notified to the occupant. The notification is displayed on a display unit or the like of a navigation device that can be visually recognized by an occupant, or is performed by voice.
Thereafter, the process ends.
Other configurations are the same as those in the above embodiment.
(動作その他)
 次に、運転者の操作に伴う、補助操舵装置の動作状態の状態遷移について説明する。
 本実施形態の補助操舵装置は、乗員が補助操舵作動スイッチ19をONに操作することで作動を開始する。
 通常の走行可能状態では、補助輪12は車体側に格納されて当該補助輪12が非接地状態となっている。この状態において、運転者は、アクセル操作を行うことで、車両を前進または後退させる。
 補助操舵を実施する場合には、運転者はブレーキを作動させて車両を停車し、シフトレバーを「N」または「P」レンジへ入れる。
(Operation other)
Next, the state transition of the operation state of the auxiliary steering device according to the driver's operation will be described.
The auxiliary steering device of the present embodiment starts to operate when the occupant operates the auxiliary steering operation switch 19 to ON.
In a normal travelable state, the auxiliary wheel 12 is stored on the vehicle body side and the auxiliary wheel 12 is in a non-grounded state. In this state, the driver moves the vehicle forward or backward by performing an accelerator operation.
When carrying out the auxiliary steering, the driver operates the brake to stop the vehicle, and puts the shift lever into the “N” or “P” range.
 続いて、運転者が補助操舵作動スイッチ19を「ON」にすると、補助操舵制御部30が起動して、補助操舵制御部30は、左右の補助輪12を下降させて各補助輪12を接地させ、更に車体を持ち上げることで、後輪1RL、1RRの接地荷重をゼロ若しくは小さくする。続いて、補助操舵制御部30は、右前輪1FRに制動力を付与して当該右前輪1FRをロック状態にする。更に、補助操舵制御部30は、ステアリング軸31に向けて径方向からピン40aを押し付けた状態にした後に、補助操舵が可能となった旨の情報呈示を行う。 Subsequently, when the driver turns on the auxiliary steering operation switch 19, the auxiliary steering control unit 30 is activated, and the auxiliary steering control unit 30 lowers the left and right auxiliary wheels 12 to ground each auxiliary wheel 12. The ground load of the rear wheels 1RL and 1RR is reduced to zero or small by further lifting the vehicle body. Subsequently, the auxiliary steering control unit 30 applies a braking force to the right front wheel 1FR to place the right front wheel 1FR in a locked state. Furthermore, the auxiliary steering control unit 30 presents information indicating that auxiliary steering is possible after the pin 40a is pressed from the radial direction toward the steering shaft 31.
 運転者は、補助操舵が可能となったことを確認すると、シフトレバーを「D」または「R」レンジへ入れることで、前方への転回か後方への転回かを選択する。
 ここで、本実施形態の補助操舵装置の例では、右前輪1FRに制動力を付与する構成としたので、前進(Dレンジ)で右転回、後退(Rレンジ)で左転回が可能な状態となる。
 なお、左前輪1FLに制動力を付与する構成とした場合には、前進(Dレンジ)で左転回、後退(Rレンジ)で右転回が可能な状態となる。
When the driver confirms that auxiliary steering is possible, the driver selects whether to turn forward or backward by putting the shift lever into the “D” or “R” range.
Here, in the example of the auxiliary steering device of the present embodiment, since the braking force is applied to the right front wheel 1FR, it is possible to turn right in forward (D range) and turn left in backward (R range). Become.
In addition, when it is set as the structure which provides a braking force to the left front wheel 1FL, it will be in the state in which it can turn to the left by forward (D range), and to the right by reverse (R range).
 ここでは、前進(Dレンジ)が選択されたとする。
 この状態で、運転者がアクセルペダル5を踏んで、エンジン2の出力を駆動輪1FL、1FRに伝達する際に、差動歯車装置3で、駆動力が左前輪1FL側に主として動力分配される結果、左右前輪1FL、1FRに駆動力差が発生する。この左右前輪1FL、1FRの駆動力差によって、車体に対してヨー方向のモーメントが発生する。このとき、左右前輪1FL、1FRのうち、右前輪1FRは制動力に付与されていることから、左前輪1FLだけが駆動力で転動する。これによって、車両は、制動力が付与されている右前輪1FRを中心に右転回する。このとき、上記モーメントの力によって、補助輪12で持ち上げられた車体後部が補助輪12の転動に伴い左側に横移動する。
Here, it is assumed that forward (D range) is selected.
In this state, when the driver steps on the accelerator pedal 5 to transmit the output of the engine 2 to the drive wheels 1FL, 1FR, the driving force is mainly distributed to the left front wheel 1FL side by the differential gear unit 3. As a result, a driving force difference is generated between the left and right front wheels 1FL and 1FR. Due to the difference in driving force between the left and right front wheels 1FL and 1FR, a moment in the yaw direction is generated with respect to the vehicle body. At this time, among the left and right front wheels 1FL and 1FR, the right front wheel 1FR is applied to the braking force, so that only the left front wheel 1FL rolls with the driving force. Thus, the vehicle turns right around the right front wheel 1FR to which the braking force is applied. At this time, the rear part of the vehicle body lifted by the auxiliary wheel 12 moves laterally to the left as the auxiliary wheel 12 rolls due to the force of the moment.
 このような補助操舵によって、車両は、小回りで移動することで、狭い場所での縦列駐車などが可能となる。
 図8にそのときの、車両MMの転回状態の例を示す。この図8に示すように、右前輪1FRを中心にして車両MMを転回することで、最小回転半径が小さくなる。
 このとき、上記補助操舵による上記モーメントを発生する際に、前輪の操舵系に上記ヨーモーメントとは逆方向の操舵反力が入力される。このため、ステアリング軸31が回転変位するが、ステアリング軸31が最大90度回転変位する前に、ピン40aが凹部31aに対向し、その対向した凹部31a内にピン40aが差し込まれることで、それ以上のステアリング軸31の回転が規制される。その後は、ステアリング軸31の回転が規制、つまりステアリングホイール39の回転が規制される。これによって、補助操舵時のステアリングホイール39の予期しない回転変位が制限される。この結果、運転者への補助操舵時のステアリングホイール39の挙動に関する違和感を低減可能となる。
By such auxiliary steering, the vehicle moves in a small turn, thereby enabling parallel parking in a narrow place.
FIG. 8 shows an example of the turning state of the vehicle MM at that time. As shown in FIG. 8, the minimum turning radius is reduced by turning the vehicle MM around the right front wheel 1FR.
At this time, when the moment is generated by the auxiliary steering, a steering reaction force in a direction opposite to the yaw moment is input to the front wheel steering system. For this reason, the steering shaft 31 is rotationally displaced. However, before the steering shaft 31 is rotationally displaced by 90 degrees at the maximum, the pin 40a faces the recess 31a, and the pin 40a is inserted into the facing recess 31a. The rotation of the steering shaft 31 is restricted. Thereafter, the rotation of the steering shaft 31 is restricted, that is, the rotation of the steering wheel 39 is restricted. As a result, the unexpected rotational displacement of the steering wheel 39 during auxiliary steering is limited. As a result, it is possible to reduce a sense of incongruity regarding the behavior of the steering wheel 39 during auxiliary steering to the driver.
 更に、運転者がアクセル操作を止めてブレーキ操作を行う事で、車両の転回動作が停止する。
 上記車両が停止して、運転者がシフトレバーをDレンジかPレンジに入れた後に、補助操舵作動スイッチ19をOFFに変更したとする。すると、補助操舵制御部30は、右前輪1FRへの制動力付与を解除すると共に、補助輪12を上昇して車体側に格納する。更に、補助操舵制御部30は、ステアリング軸31のロックを解除して、ステアリングホイール39の回転変位を許容状態とする。その後、補助操舵制御部30は、補助操舵の解除を乗員に報知する。
Furthermore, when the driver stops the accelerator operation and performs the brake operation, the turning operation of the vehicle is stopped.
Assume that the auxiliary steering operation switch 19 is changed to OFF after the vehicle stops and the driver puts the shift lever into the D range or the P range. Then, the auxiliary steering control unit 30 releases the braking force applied to the right front wheel 1FR and raises the auxiliary wheel 12 to store it on the vehicle body side. Further, the auxiliary steering control unit 30 releases the lock of the steering shaft 31, and allows the rotational displacement of the steering wheel 39 to be allowed. Thereafter, the auxiliary steering control unit 30 notifies the occupant of the cancellation of the auxiliary steering.
 以上のように、本実施形態の補助操舵装置によれば、車体の下部に補助輪12を設けて、その補助輪12を昇降機構によって路面上に支持することで、持ち上げられた後輪1RL、1RRは車体に対して左右方向の拘束力が外れる。
 この状態で、運転者がシフト操作により転回方向を選択した後に、アクセル操作を行うことで、左右後輪1RL、1RRに駆動力差が発生して、車体にヨー方向のモーメントが発生する。このとき、右前輪1FRに制動力が付与されているので、その制動が掛かっている右前輪1FR若しくはその近傍を中心に車体が旋回可能となる。
 このとき、補助輪12は、無駆動のフリー状態となっているので、上記車体に発生するヨー方向のモーメントを阻害しないかその阻害が小さい状態で車体横方向に転動する。
 この結果、車両の最小回転半径が通常状態よりも小さくなることで、図8に示すように、縦列駐車に必要なスペースは極端に小さくなる。
As described above, according to the auxiliary steering device of the present embodiment, the auxiliary wheel 12 is provided at the lower portion of the vehicle body, and the auxiliary wheel 12 is supported on the road surface by the lifting mechanism, thereby lifting the rear wheel 1RL, 1RR releases the restraining force in the left-right direction with respect to the vehicle body.
In this state, when the driver selects the turning direction by the shift operation and then performs the accelerator operation, a driving force difference is generated between the left and right rear wheels 1RL and 1RR, and a moment in the yaw direction is generated in the vehicle body. At this time, since the braking force is applied to the right front wheel 1FR, the vehicle body can turn around the right front wheel 1FR to which the braking is applied or the vicinity thereof.
At this time, since the auxiliary wheel 12 is in a non-driving free state, the auxiliary wheel 12 rolls in the lateral direction of the vehicle body in a state in which the moment in the yaw direction generated in the vehicle body is not inhibited or small.
As a result, as the minimum turning radius of the vehicle becomes smaller than that in the normal state, the space required for parallel parking is extremely reduced as shown in FIG.
(変形例)
 (1)上記実施形態では、操舵操作子としてステアリングホイール39を例示した。操舵操作子はスティック状の操作子から構成されていても良い。
 (2)また、操向輪が、第3の車輪を構成する後輪であっても良い。操向輪が後輪の場合には、補助輪12によって後輪の接地荷重がゼロ若しくは低減して、補助輪12を用いた補助操舵による小回り時のモーメントで負荷が小さくなった後輪が振れやすくなる。これに対し、本実施形態では、上述のとおりステアリングホイール39の回転が規制されることで、運転者がステアリングホイールを30をしっかりと抑えておく必要が無くなる。また、ステアリング構成は、ステアリングバイワイヤ方式を採用した構成であっても良い。
(Modification)
(1) In the above embodiment, the steering wheel 39 is exemplified as the steering operator. The steering operator may be composed of a stick-like operator.
(2) The steered wheel may be a rear wheel constituting the third wheel. When the steering wheel is a rear wheel, the ground contact load of the rear wheel is reduced to zero or reduced by the auxiliary wheel 12, and the rear wheel whose load is reduced due to a small turning moment by auxiliary steering using the auxiliary wheel 12 is shaken. It becomes easy. On the other hand, in this embodiment, the rotation of the steering wheel 39 is restricted as described above, so that the driver does not need to hold the steering wheel 30 firmly. Further, the steering configuration may be a configuration employing a steering-by-wire system.
 ここで、駆動輪が前輪1FL、1FRの場合には、後輪1RL、1RRが第3の車輪となる。駆動輪が後輪1RL、1RRの場合には、前輪1FL、1FRが第3の車輪となる。ここで、4輪駆動車両の場合には、前輪1FL、1FR側と後輪1RL、1RR側の両方に補助輪12と補助輪昇降装置13をそれぞれ設けておいても良い。このときには、補助操舵の際の駆動輪が前輪1FL、1FRの場合には、後輪1RL、1RR側の補助操舵を作動させ、補助操舵の際の駆動輪が後輪1RL、1RRの場合には、前輪1FL、1FR側の補助操舵を作動させるようにしても良い。
 差動歯車装置3と制動制御装置18は、駆動力差調整装置を構成する。制動制御装置18は、左右独立制動制御装置18を構成する。ステアリングホイール39が操舵操作子を構成する。
Here, when the driving wheels are the front wheels 1FL, 1FR, the rear wheels 1RL, 1RR are the third wheels. When the driving wheels are the rear wheels 1RL and 1RR, the front wheels 1FL and 1FR are the third wheels. Here, in the case of a four-wheel drive vehicle, the auxiliary wheel 12 and the auxiliary wheel elevating device 13 may be provided on both the front wheels 1FL and 1FR and the rear wheels 1RL and 1RR. At this time, if the driving wheels at the time of auxiliary steering are the front wheels 1FL, 1FR, the auxiliary steering on the rear wheels 1RL, 1RR side is operated, and if the driving wheels at the time of auxiliary steering are the rear wheels 1RL, 1RR, The auxiliary steering on the front wheels 1FL and 1FR may be actuated.
The differential gear device 3 and the braking control device 18 constitute a driving force difference adjusting device. The braking control device 18 constitutes a left and right independent braking control device 18. The steering wheel 39 constitutes a steering operator.
 (本実施形態の効果)
 次に、本実施形態の効果について説明する。
 (1)補助輪12は、平面視において上記駆動輪よりも上記第3の車輪に近い位置に配置され且つ無駆動で使用される。補助輪昇降装置は、車体に対し上記補助輪12を昇降させる。補助輪昇降装置と、駆動力差調整装置は、上記補助輪12が接地しているときに上記左右の駆動輪に駆動力差を発生可能である。操舵操作制限装置は、上記補助輪12が接地しているときに、上記操舵操作子の移動を制限する。
 この構成によれば、補助輪12を利用した補助操舵によって小回りで車両が転回するときに、操舵操作子の移動を制限することで、操舵操作子の予期しない触れ回り等の移動を低減することが可能となる。すなわち、運転者が必要以上に操舵操作子を保持する操作を行わせることなく、車両がその場で転回することが可能となる。
(Effect of this embodiment)
Next, the effect of this embodiment will be described.
(1) The auxiliary wheel 12 is disposed at a position closer to the third wheel than the driving wheel in plan view, and is used without being driven. The auxiliary wheel lifting device lifts and lowers the auxiliary wheel 12 with respect to the vehicle body. The auxiliary wheel elevating device and the driving force difference adjusting device can generate a driving force difference between the left and right driving wheels when the auxiliary wheel 12 is grounded. The steering operation restriction device restricts the movement of the steering operator when the auxiliary wheel 12 is grounded.
According to this configuration, when the vehicle turns in a small turn by the auxiliary steering using the auxiliary wheels 12, the movement of the steering operator such as an unexpected touching movement is reduced by restricting the movement of the steering operator. Is possible. That is, the vehicle can turn on the spot without causing the driver to perform an operation of holding the steering operator more than necessary.
 (2)上記操舵操作子はステアリングホイール39である。上記操舵操作子の移動は、ステアリングホイール39の回転変位である。
 この構成によれば、補助輪12による補助操舵の際における、ステアリングホイール39の予期しない回動変位を制限することが出来る。
 (3)上記操舵操作制限装置は、上記ステアリングホイール39の回転に伴い回転変位するステアリング軸31に形成されて周方向に並ぶ2以上の凹部31aと、上記凹部31aに挿入可能なピン40aと、上記ステアリング軸31における上記凹部31aが形成された軸方向位置において、上記ピン40aを上記ステアリング軸31に向けて進退させる進退機構40と、を備える。
 この構成によれば、補助輪12による補助操舵の際にステアリングホイールの回転を制限すること出来る。
(2) The steering operator is a steering wheel 39. The movement of the steering operator is a rotational displacement of the steering wheel 39.
According to this configuration, an unexpected rotational displacement of the steering wheel 39 during auxiliary steering by the auxiliary wheels 12 can be limited.
(3) The steering operation restriction device includes two or more recesses 31a formed on the steering shaft 31 that is rotationally displaced as the steering wheel 39 rotates and arranged in the circumferential direction, and a pin 40a that can be inserted into the recess 31a. And an advancing / retracting mechanism 40 for advancing and retracting the pin 40a toward the steering shaft 31 at an axial position where the concave portion 31a is formed in the steering shaft 31.
According to this configuration, the rotation of the steering wheel can be restricted during auxiliary steering by the auxiliary wheel 12.
「第2実施形態の2」
 次に、別の実施形態について図面を参照して説明する。なお、上記実施形態と同様な構成については同一の符号を付して説明する。
 本実施形態の基本構成は、上記第2実施形態の1と同様である。ただし、操舵操作制限装置の機構が異なる。その他の構成は上記第2実施形態の1と同様である。
 次に、本実施形態の操舵操作制限装置について図23及び図24を参照して説明する。
 本実施形態の操舵操作制限装置は、ステアリングホイール39の回転に車幅方向に変位するステアリングラック36の変位を規制することで、ステアリングホイール39の回転変位を制限する。
"2 of the second embodiment"
Next, another embodiment will be described with reference to the drawings. In addition, about the structure similar to the said embodiment, the same code | symbol is attached | subjected and demonstrated.
The basic configuration of the present embodiment is the same as 1 in the second embodiment. However, the mechanism of the steering operation restriction device is different. The other configuration is the same as that of 1 of the second embodiment.
Next, the steering operation restriction device of this embodiment will be described with reference to FIGS.
The steering operation restriction device of this embodiment restricts the rotational displacement of the steering wheel 39 by restricting the displacement of the steering rack 36 that is displaced in the vehicle width direction by the rotation of the steering wheel 39.
 本実施形態の操舵操作制限装置について説明する。
 本実施形態の操舵操作制限装置は、ステアリングラック36に形成された凹部36aと、進退機構41と、ピン42aとを備える。
 上記ステアリングラック36には、図24に示すように、長手方向(軸方向)に沿って2以上の凹部36aが並んで形成されている。上記2以上の凹部36aは、ステアリングラック36の軸方向への相対変位可能な長さに上記2以上の凹部36aが収まるように当該凹部36aが配置されている。
The steering operation restriction device of this embodiment will be described.
The steering operation restriction device of this embodiment includes a recess 36a formed in the steering rack 36, an advance / retreat mechanism 41, and a pin 42a.
As shown in FIG. 24, the steering rack 36 is formed with two or more recesses 36a along the longitudinal direction (axial direction). The two or more recesses 36a are arranged such that the two or more recesses 36a are accommodated in a length that allows relative displacement in the axial direction of the steering rack 36.
 上記進退機構41は、略C字状の一対の作動部42(挟持部)の一端部が回動変位に連結され、その連結部を支点として回動変位することで、上記一対の作動部の他端部が接近離隔する構成となっている。そして、ロック用モータ41aを備え、そのロック用モータ41aが上記一対の作動部42を駆動して、上記一対の作動部42の他端部が接近離隔させる構成となっている。上記一つの作動部42の他端部がステアリングラック36を上下から挟み込むようにされ、上側の作動部42の他端部がピン42aを構成する。 In the advance / retreat mechanism 41, one end of a pair of substantially C-shaped actuating parts 42 (clamping parts) is connected to a rotational displacement, and the connecting part is used as a fulcrum to rotationally displace the pair of actuating parts. The other end is configured to approach and separate. Then, a locking motor 41a is provided, and the locking motor 41a drives the pair of operating portions 42 so that the other end portions of the pair of operating portions 42 are separated from each other. The other end of the one operating part 42 sandwiches the steering rack 36 from above and below, and the other end of the upper operating part 42 constitutes a pin 42a.
 そしてロック用モータ41aは、ロック指令が入力されると、一対の作動部42間が接近するように駆動して、上記ピン42a(上側の作動部42の他端部)をステアリングラック36に押し付ける。また、ロック用モータ41aは、ロック解除指令が入力されると、一対の作動部42間が離隔するように駆動して、上記ピン42aをステアリングラック36から離す。上記ロック用モータ41aは車体に固定されている。
 その他の構成は、上記第2実施形態の1と同様である。
When a lock command is input, the locking motor 41a is driven so that the pair of operating parts 42 approach each other and presses the pin 42a (the other end of the upper operating part 42) against the steering rack 36. . Further, when a lock release command is input, the locking motor 41a is driven so that the pair of operating parts 42 are separated from each other, thereby separating the pin 42a from the steering rack 36. The locking motor 41a is fixed to the vehicle body.
Other configurations are the same as those of the first embodiment.
(動作など)
運転者が補助操舵作動スイッチ19を「ON」にすると、補助操舵制御部30が起動して、補助操舵制御部30は、左右の補助輪12を下降させて各補助輪12を接地させ、更に車体を持ち上げることで、後輪1RL、1RRの接地荷重をゼロ若しくは小さくする。続いて、補助操舵制御部30は、右前輪1FRに制動力を付与して当該右前輪1FRをロック状態にする。更に、補助操舵制御部30は、ステアリングラック36に向けて上側の作動部42の他端部(ピン)を押し付けた状態にした後に、補助操舵が可能となった旨の情報呈示を行う。
(Operation etc.)
When the driver turns on the auxiliary steering operation switch 19, the auxiliary steering control unit 30 is activated, and the auxiliary steering control unit 30 lowers the left and right auxiliary wheels 12 to ground each auxiliary wheel 12. By lifting the vehicle body, the ground load of the rear wheels 1RL and 1RR is reduced to zero or small. Subsequently, the auxiliary steering control unit 30 applies a braking force to the right front wheel 1FR to place the right front wheel 1FR in a locked state. Further, the auxiliary steering control unit 30 presents information indicating that auxiliary steering is possible after the other end portion (pin) of the upper operation unit 42 is pressed against the steering rack 36.
 運転者は、補助操舵が可能となったことを確認すると、シフトレバーを「D」または「R」レンジへ入れることで、前方への転回か後方への転回かを選択する。
 ここで、本実施形態の補助操舵装置の例では、右前輪1FRに制動力を付与する構成としたので、前進(Dレンジ)で右転回、後退(Rレンジ)で左転回が可能な状態となる。
 なお、左前輪1FLに制動力を付与する構成とした場合には、前進(Dレンジ)で左転回、後退(Rレンジ)で右転回が可能な状態となる。
When the driver confirms that auxiliary steering is possible, the driver selects whether to turn forward or backward by putting the shift lever into the “D” or “R” range.
Here, in the example of the auxiliary steering device of the present embodiment, since the braking force is applied to the right front wheel 1FR, it is possible to turn right in forward (D range) and turn left in backward (R range). Become.
In addition, when it is set as the structure which provides a braking force to the left front wheel 1FL, it will be in the state in which it can turn to the left by forward (D range), and to the right by reverse (R range).
 ここでは、前進(Dレンジ)が選択されたとする。
 この状態で、運転者がアクセルペダル5を踏んで、エンジン2の出力を駆動輪1FL、1FRに伝達する際に、差動歯車装置3で、駆動力が左前輪1FL側に主として動力分配される結果、左右前輪1FL、1FRに駆動力差が発生する。この左右前輪1FL、1FRの駆動力差によって、車体に対してヨー方向のモーメントが発生する。このとき、左右前輪1FL、1FRのうち、右前輪1FRは制動力に付与されていることから、左前輪1FLだけが駆動力で転動する。これによって、車両は、制動力が付与されている右前輪1FRを中心に右転回する。このとき、上記モーメントの力によって、補助輪12で持ち上げられた車体後部が補助輪12の転動に伴い左側に横移動する。
Here, it is assumed that forward (D range) is selected.
In this state, when the driver steps on the accelerator pedal 5 to transmit the output of the engine 2 to the drive wheels 1FL, 1FR, the driving force is mainly distributed to the left front wheel 1FL side by the differential gear unit 3. As a result, a driving force difference is generated between the left and right front wheels 1FL and 1FR. Due to the difference in driving force between the left and right front wheels 1FL and 1FR, a moment in the yaw direction is generated with respect to the vehicle body. At this time, among the left and right front wheels 1FL and 1FR, the right front wheel 1FR is applied to the braking force, so that only the left front wheel 1FL rolls with the driving force. Thus, the vehicle turns right around the right front wheel 1FR to which the braking force is applied. At this time, the rear part of the vehicle body lifted by the auxiliary wheel 12 moves laterally to the left as the auxiliary wheel 12 rolls due to the force of the moment.
 このとき、上記補助操舵による上記モーメントを発生する際に、前輪の操舵系に上記ヨーモーメントとは逆方向の操舵反力が入力される。このため、ステアリングラック36が軸方向(車幅方向)に直線変位が発生する。この時、ステアリングラック36の変位によって上側の作動部42の他端部(ピン42a)が凹部36aに対向し、その対向した凹部36a内にピン42aが差し込まれることで、それ以上のステアリングラック36の直線変位が規制される。その後は、ステアリングラック36の変位が規制、つまりステアリングホイール39の回転が規制される。これによって、補助操舵時のステアリングホイール39の予期しない回転変位が制限される。この結果、運転者への補助操舵時のステアリングホイール39の挙動に関する違和感を低減可能となる。 At this time, when the moment is generated by the auxiliary steering, a steering reaction force in a direction opposite to the yaw moment is input to the steering system of the front wheels. For this reason, the steering rack 36 is linearly displaced in the axial direction (vehicle width direction). At this time, due to the displacement of the steering rack 36, the other end portion (pin 42a) of the upper operating portion 42 faces the concave portion 36a, and the pin 42a is inserted into the opposed concave portion 36a, so that the steering rack 36 more than that. The linear displacement is regulated. Thereafter, the displacement of the steering rack 36 is restricted, that is, the rotation of the steering wheel 39 is restricted. As a result, the unexpected rotational displacement of the steering wheel 39 during auxiliary steering is limited. As a result, it is possible to reduce a sense of incongruity regarding the behavior of the steering wheel 39 during auxiliary steering to the driver.
 また、運転者が補助操舵作動スイッチ19を「OFF」になると、上記ステアリングラック36のロック状態が解除される。
 その他の動作は、上記第2実施形態の1と同様である。
 ここで、凹部36a、一対の作動部42、進退機構41が操舵操作制限装置を構成する。上側の作動部42の他端部がピン42aを構成する。 
When the driver turns the auxiliary steering operation switch 19 “OFF”, the locked state of the steering rack 36 is released.
Other operations are the same as those in the second embodiment.
Here, the recess 36a, the pair of operating parts 42, and the advance / retreat mechanism 41 constitute a steering operation restriction device. The other end of the upper operating portion 42 constitutes the pin 42a.
(本実施形態の効果)
 本実施形態は、上記第2実施形態の1の効果に加え、次の効果を奏する。
 (1)操舵操作制限装置は、上記ステアリングホイール39の回転に伴い車幅方向に変位するステアリングラック36に形成されてステアリングラック36の長手方向に沿って並ぶ2以上の凹部36aと、上記凹部36aに挿入可能なピン42aと、上記ステアリングラック36における上記凹部36aが形成された周方向位置において、上記ピン42aを上記ステアリングラック36に向けて進退させる進退機構41と、を備える。
 この構成によれば、ステアリング軸31の回動を規制する場合に比べて、細かい分解能でロック位置を設定することが出来る。
 その理由は、ステアリング軸31の場合には、周方向に取っているが、ステアリングラック36の場合には、長手方向に凹部36aを設定することが出来るからである。
(Effect of this embodiment)
In addition to the effect of 1 of the said 2nd Embodiment, this embodiment has the following effect.
(1) The steering operation limiting device is formed in the steering rack 36 that is displaced in the vehicle width direction with the rotation of the steering wheel 39 and is arranged along the longitudinal direction of the steering rack 36, and the concave portion 36a. And an advancing / retracting mechanism 41 for advancing and retracting the pin 42a toward and away from the steering rack 36 at a circumferential position where the recess 36a is formed in the steering rack 36.
According to this configuration, the lock position can be set with a finer resolution than when the rotation of the steering shaft 31 is restricted.
The reason is that in the case of the steering shaft 31, it is taken in the circumferential direction, but in the case of the steering rack 36, the recess 36 a can be set in the longitudinal direction.
「第2実施形態の3」
 次に、別の実施形態について図面を参照して説明する。なお、上記実施形態と同様な構成については同一の符号を付して説明する。
 本実施形態の基本構成は、上記第2実施形態の1と同様である。ただし、操舵操作制限装置が異なる。その他の構成は上記第2実施形態の1と同様である。
 本実施形態では、操舵操作制限装置専用の装置を用いることなく、図25に示すように、上記操舵用電動モータ33によって操舵方向とは逆向きのモータトルクをステアリングホイール39に付加することで上記ステアリングホイール39の回転を制限する。
“3 of the second embodiment”
Next, another embodiment will be described with reference to the drawings. In addition, about the structure similar to the said embodiment, the same code | symbol is attached | subjected and demonstrated.
The basic configuration of the present embodiment is the same as 1 in the second embodiment. However, the steering operation restriction device is different. The other configuration is the same as that of 1 of the second embodiment.
In the present embodiment, without using a dedicated device for the steering operation limiting device, as shown in FIG. 25, the steering electric motor 33 applies a motor torque opposite to the steering direction to the steering wheel 39 as described above. The rotation of the steering wheel 39 is limited.
 ここで、上記操舵用電動モータ33は、パワーステアリング用の電動モータでもあっても良いし、反力付与用のモータであっても良い。
 本実施形態の操舵ロック処理部30Cは、補助操舵作動スイッチ19がONになったことを検出すると、上記操舵用電動モータ33にステアリング軸31が固定するようなモータトルクをステアリング軸31に入力する制御指令を行う。
 例えば、このときの制御目標となる舵角を、舵角ゼロ(中立位置)とし、操舵角センサ38から現在の舵角を読み取り、読み取った舵角に基づき、ステアリング位置が舵角ゼロ付近(略中立位置)となる角度へサーボ制御する。制御目標となる舵角は、補助操舵作動スイッチ19がONになったときの舵角としても良い。
Here, the steering electric motor 33 may be a power steering electric motor or a reaction force applying motor.
When the steering lock processing unit 30 </ b> C of the present embodiment detects that the auxiliary steering operation switch 19 is turned on, the steering lock processing unit 30 </ b> C inputs a motor torque such that the steering shaft 31 is fixed to the steering electric motor 33 to the steering shaft 31. A control command is issued.
For example, the steering angle that is the control target at this time is set to the steering angle zero (neutral position), the current steering angle is read from the steering angle sensor 38, and the steering position is near the steering angle zero (substantially approximately) based on the read steering angle. Servo-controlled to an angle (neutral position). The steering angle that is the control target may be the steering angle when the auxiliary steering operation switch 19 is turned on.
 また、操舵ロック処理部30Cは、補助操舵作動スイッチ19がOFFとなったことを検出すると、操舵ロック用のモータトルクの付与を解除する。
 ここで、最適となる目標舵角θfについて図26を参照して説明する。
 制動力を発生させる前輪一輪(図には右前輪)のサスペンションジオメトリから算出されるキャスタートレールおよびニューマチックトレールの総和をトレールlとし、前輪車軸間距離を前輪トレッドベースeとする。駆動輪の転舵角θfとすると、操舵力変動が最小となる舵角は以下の式より求まる。
 θf =arctan(l/e)
 したがって、ステアリングホイール39の舵角が上記目標舵角θfとなるように、操舵用電動モータ33からステアリング軸31に入力するモータトルクをフィードバック制御すればよい。
 ここで、上記操舵用電動モータ33は、操舵操作制限装置を構成する。
Further, when the steering lock processing unit 30C detects that the auxiliary steering operation switch 19 is turned off, the steering lock processing unit 30C cancels the application of the steering lock motor torque.
Here, the optimum target rudder angle θf will be described with reference to FIG.
The sum of the caster rail and the pneumatic trail calculated from the suspension geometry of the front wheel (the right front wheel in the figure) that generates the braking force is the trail l, and the distance between the front axles is the front tread base e. Assuming that the steered angle θf of the drive wheels is used, the steered angle at which the steering force fluctuation is minimized can be obtained from the following equation.
θf = arctan (l / e)
Therefore, the motor torque input from the steering electric motor 33 to the steering shaft 31 may be feedback-controlled so that the steering angle of the steering wheel 39 becomes the target steering angle θf.
Here, the steering electric motor 33 constitutes a steering operation limiting device.
(本実施形態の効果)
 本実施形態は、上記第2実施形態の1の効果に加え、次の効果を奏する。
 (1)操舵操作制限装置は、上記操舵用電動モータ33が出力するモータトルクをステアリングホイール39に付加することで上記ステアリングホイール39の移動を制限する。
 この構成によれば、操舵操作を制限するための専用の装置が不要となる。このことは点コストに繋がる。
(Effect of this embodiment)
In addition to the effect of 1 of the said 2nd Embodiment, this embodiment has the following effect.
(1) The steering operation restriction device restricts the movement of the steering wheel 39 by adding the motor torque output from the steering electric motor 33 to the steering wheel 39.
According to this configuration, a dedicated device for limiting the steering operation becomes unnecessary. This leads to point costs.
「第3実施形態」
 次に、本発明の別の実施形態について図面を参照して説明する。
「第3実施形態の1」
(構成)
 本実施形態の車両の基本構成は、図1及び図2に示すように、上記第1実施形態と同様である。
 図1は、本実施形態の車両の構成を示す概要図であり、図2はそのシステム図である。
 本実施形態では、図1に示すように、左右前輪1FL、1FR及び左右後輪1RL、1RRを具備すると共に、左右前輪1FL、1FRを駆動輪とする車両を例に挙げて説明する。なお、本発明は、操向輪について特に限定は無い。
“Third Embodiment”
Next, another embodiment of the present invention will be described with reference to the drawings.
"1 of the third embodiment"
(Constitution)
The basic configuration of the vehicle of this embodiment is the same as that of the first embodiment, as shown in FIGS.
FIG. 1 is a schematic diagram showing a configuration of a vehicle according to the present embodiment, and FIG. 2 is a system diagram thereof.
In the present embodiment, as shown in FIG. 1, a vehicle having left and right front wheels 1FL and 1FR and left and right rear wheels 1RL and 1RR and using left and right front wheels 1FL and 1FR as driving wheels will be described as an example. In the present invention, the steering wheel is not particularly limited.
 本実施形態の車両は、動力源としてのエンジン2、エンジン制御部4、差動歯車装置3、及び制動制御装置18を備える。なお、駆動輪1FL、1FRの動力源はエンジン2に限定されず、電動機であって良い。
 上記エンジン2は、差動歯車装置3を介して左右の駆動輪1FL、1FRの車軸に連結されている。そして、エンジン2の動力が、差動歯車装置3によって左右駆動輪1FL、1FRに動力分配される構成となっている。上記エンジン制御部4は、アクセルペダル5の操作量に応じた出力指令値を演算し、演算した出力指令値に応じた動力が発生するように、エンジン2のスロットル開度等を調整する。
The vehicle according to the present embodiment includes an engine 2 as a power source, an engine control unit 4, a differential gear device 3, and a braking control device 18. The power source of the drive wheels 1FL and 1FR is not limited to the engine 2 and may be an electric motor.
The engine 2 is connected to the axles of the left and right drive wheels 1FL, 1FR via a differential gear device 3. The power of the engine 2 is distributed to the left and right drive wheels 1FL and 1FR by the differential gear device 3. The engine control unit 4 calculates an output command value corresponding to the operation amount of the accelerator pedal 5 and adjusts the throttle opening of the engine 2 so that power corresponding to the calculated output command value is generated.
 上記制動制御装置18は、図1及び図2に示すように、ブレーキ制御回路6、ブレーキ制御アクチュエータ7、及び左右の駆動輪1FL、1FRに個別に設けられた左右のブレーキ装置8を備える。そして、ブレーキ制御回路6が出力したブレーキ指令値に応じてブレーキ制御アクチュエータ7が作動することで、左右のブレーキ装置8によって、左右の駆動輪1FL、1FRに対して個別の制動力を付与可能となっている。すなわち、ブレーキ制御回路6は、ブレーキの油路の弁を開閉するソレノイドとブレーキの油圧ポンプを備えるブレーキ制御アクチュエータ7へ指令を送り、制動力を一輪ずつ個別に制御する。ブレーキ装置8は、ディスク式ブレーキ装置等である。なお、ブレーキ装置8は、電動式のブレーキ装置であっても良い。 1 and 2, the brake control device 18 includes a brake control circuit 6, a brake control actuator 7, and left and right brake devices 8 provided individually on the left and right drive wheels 1FL and 1FR. Then, by operating the brake control actuator 7 according to the brake command value output from the brake control circuit 6, the left and right brake devices 8 can apply individual braking forces to the left and right drive wheels 1FL and 1FR. It has become. That is, the brake control circuit 6 sends a command to a brake control actuator 7 having a solenoid for opening and closing a valve in the brake oil passage and a hydraulic pump for the brake, and individually controls the braking force one by one. The brake device 8 is a disc type brake device or the like. The brake device 8 may be an electric brake device.
 そして、上記制動制御装置18は、ブレーキペダル9の操作を検出すると、そのブレーキペダル9の操作量に応じた制動力を各ブレーキ装置8に付与する。また、本実施形態の制動制御装置18は、後述の補助操舵制御部から作動信号を入力すると、左右前輪1FL、1FRの一方に対して制動力を付与する。ただし、ブレーキ制御回路6は、後述の補助操舵制御部から作動信号を入力しても、ブレーキペダル9の操作による予め設定した以上のブレーキ操作量を検出すると、そのブレーキ操作量に応じた制動制御を優先的に実施する。 When the brake control device 18 detects an operation of the brake pedal 9, the brake control device 18 applies a braking force corresponding to the operation amount of the brake pedal 9 to each brake device 8. Further, the braking control device 18 of the present embodiment applies a braking force to one of the left and right front wheels 1FL and 1FR when an operation signal is input from an auxiliary steering control unit described later. However, even if an operation signal is input from an auxiliary steering control unit, which will be described later, the brake control circuit 6 detects a brake operation amount that is greater than a preset value by operating the brake pedal 9, and performs brake control according to the brake operation amount. Will be prioritized.
 また車両は、左右前輪1FL、1FRの回転数を検出する車輪速センサ10、シフトポジションを検出するシフトポジション検出センサ11を備える。車輪速センサ10は、各前輪1FL、1FRの車輪速を検出する。シフトポジション検出センサ11は、シフト位置が前進位置、中立位置、後退位置のいずれの位置となっているかを検出する。
 上記車両は、補助操舵装置を備える。上記差動歯車装置3、及び制動制御装置18は、補助操舵装置の構成の一部を兼ねる。
 その補助操舵装置は、左右の補助輪12と、その各補助輪12を車体に対し昇降させる補助輪昇降装置13と、リフトモータ制御回路14と、補助操舵制御部とを備える。
The vehicle also includes a wheel speed sensor 10 that detects the rotational speeds of the left and right front wheels 1FL and 1FR, and a shift position detection sensor 11 that detects a shift position. The wheel speed sensor 10 detects the wheel speed of each front wheel 1FL, 1FR. The shift position detection sensor 11 detects whether the shift position is a forward position, a neutral position, or a reverse position.
The vehicle includes an auxiliary steering device. The differential gear device 3 and the braking control device 18 also serve as part of the configuration of the auxiliary steering device.
The auxiliary steering device includes left and right auxiliary wheels 12, an auxiliary wheel elevating device 13 that raises and lowers each auxiliary wheel 12 relative to the vehicle body, a lift motor control circuit 14, and an auxiliary steering control unit.
 また車両は、乗員が操作可能な補助操舵作動スイッチ19を備える。
 上記左右の補助輪12は、図1に示すように、平面視において、当該補助輪12が接地した状態では、車両重心Gに対し上記左右の駆動輪1FL、1FRとは反対側に配置されている。本実施形態では、左右の補助輪12は、平面視において、その左右後輪1RL、1RRにおける駆動輪1FL、1FRに近い側(車両前後方向前側)の端部同士を結んだ線よりも上記駆動輪1FL、1FRから離れる位置に配置されることで、左右補助輪12を、車両重心Gに対し上記左右の駆動輪1FL、1FRとは反対側に位置するようにしている。なお、補助輪12の回転軸は、少なくとも接地状態において車両前後方向に向いている。車両前後方向とは、車体の長手方向に対して車幅方向に傾いていても良い。その傾きは例えば45度未満の角度である。
The vehicle also includes an auxiliary steering operation switch 19 that can be operated by a passenger.
As shown in FIG. 1, the left and right auxiliary wheels 12 are arranged on the opposite side of the left and right drive wheels 1FL and 1FR with respect to the vehicle center of gravity G when the auxiliary wheels 12 are grounded in a plan view. Yes. In the present embodiment, the left and right auxiliary wheels 12 are driven in the above-mentioned direction rather than a line connecting ends of the left and right rear wheels 1RL and 1RR closer to the drive wheels 1FL and 1FR (front side in the vehicle front-rear direction). The left and right auxiliary wheels 12 are positioned on the opposite side of the left and right drive wheels 1FL and 1FR with respect to the vehicle center of gravity G by being arranged at positions away from the wheels 1FL and 1FR. Note that the rotating shaft of the auxiliary wheel 12 faces the vehicle front-rear direction at least in a grounded state. The vehicle front-rear direction may be inclined in the vehicle width direction with respect to the longitudinal direction of the vehicle body. The inclination is an angle of less than 45 degrees, for example.
 また、左右補助輪12を、図3に示すように、左右後輪1RL、1RR間の空間において、互いに車幅方向に離して配置している。本実施形態では、左側の補助輪12を左側の後輪1RLに近づけて配置すると共に右側の補助輪12を右側の後輪1RRに近づけて配置する場合を例示している。
 補助輪昇降装置13は、各補助輪12を昇降可能に車体後部に支持させる装置である。本実施形態の補助輪昇降装置13は、リンク26~28によって、補助輪12を車幅方向に旋回可能に車体に支持し、補助輪用リフトモータを駆動することで、車幅方向内側から、車幅方向外側に向かうにつれて下方に向かうように補助輪12を移動させることで、補助輪12を昇降する構成となっている。上記補助輪昇降装置13は、補助輪12毎に設けられている。
Further, as shown in FIG. 3, the left and right auxiliary wheels 12 are arranged apart from each other in the vehicle width direction in the space between the left and right rear wheels 1RL and 1RR. In the present embodiment, the case where the left auxiliary wheel 12 is arranged close to the left rear wheel 1RL and the right auxiliary wheel 12 is arranged close to the right rear wheel 1RR is illustrated.
The auxiliary wheel lifting / lowering device 13 is a device that supports each auxiliary wheel 12 at the rear part of the vehicle body so as to be movable up and down. The auxiliary wheel lifting / lowering device 13 of the present embodiment supports the auxiliary wheel 12 on the vehicle body by the links 26 to 28 so that the auxiliary wheel 12 can turn in the vehicle width direction, and drives the auxiliary wheel lift motor from the inner side in the vehicle width direction. The auxiliary wheel 12 is moved up and down by moving the auxiliary wheel 12 so as to go downward as it goes outward in the vehicle width direction. The auxiliary wheel lifting device 13 is provided for each auxiliary wheel 12.
 次に、本実施形態の補助輪昇降装置13を、図4を参照して説明する。図4は、左後輪側に設けた補助輪昇降装置13を代表して図示している。右後輪側の補助輪昇降装置13の構成も同じ構成となっている。
 ここで、第3の車輪を構成する後輪1RL、1RRは、車輪支持部材20によって回転自在に支持されている。その車輪支持部材20は、サスペンション装置24を介して、車体に対し上下揺動可能に支持されている。図4には、サスペンション装置24を構成するサスペンション部材の一例として、アッパーリンク21及びロアリンク22と、ショックアブソーバ23とが図示されている。
Next, the auxiliary wheel lifting / lowering device 13 of this embodiment will be described with reference to FIG. FIG. 4 shows the auxiliary wheel elevating device 13 provided on the left rear wheel side as a representative. The configuration of the auxiliary wheel lifting device 13 on the right rear wheel side is the same.
Here, the rear wheels 1RL and 1RR constituting the third wheel are rotatably supported by the wheel support member 20. The wheel support member 20 is supported via a suspension device 24 so as to be swingable up and down with respect to the vehicle body. FIG. 4 shows an upper link 21, a lower link 22, and a shock absorber 23 as examples of suspension members that constitute the suspension device 24.
 また、補助輪12は、図4に示すように、補助輪支持部材25に対し回転自在に取付けられている。その補助輪支持部材25と上記車輪支持部材20とが、第1のリンク26で上下揺動可能な状態で連結されている。また、補助輪支持部材25と車体とが第2及び第3のリンク27,28によって上下揺動可能な状態で連結されている。
 上記第2のリンク27はリフトモータから構成され、リフトモータ27は、駆動軸27aがモータ本体に対し伸縮する。そのリフトモータ27は、直動装置であって、モータ本体27bが車体に上下揺動可能に連結すると共に、上記モータ本体27bに対し伸縮する駆動軸27aの先端部が補助輪支持部材25に上下揺動可能に連結している。すなわち、本実施形態では、第2のリンク27をリフトモータから構成することで、第2のリンクの長さが変更されることで、第2のリンクの補助輪支持部材側端部の位置を変位させる。
Further, the auxiliary wheel 12 is rotatably attached to the auxiliary wheel support member 25 as shown in FIG. The auxiliary wheel support member 25 and the wheel support member 20 are connected by a first link 26 so as to be swingable up and down. In addition, the auxiliary wheel support member 25 and the vehicle body are connected by the second and third links 27 and 28 so as to be swingable up and down.
The second link 27 is composed of a lift motor, and the lift motor 27 has a drive shaft 27a that expands and contracts with respect to the motor body. The lift motor 27 is a linear motion device, and the motor main body 27b is connected to the vehicle body so as to be able to swing up and down. It is connected so that it can swing. That is, in the present embodiment, the second link 27 is configured by a lift motor, and the length of the second link is changed, so that the position of the auxiliary wheel support member side end portion of the second link is changed. Displace.
 ここで、第1のリンク26は、車輪支持部材20への連結点が補助輪支持部材25への連結点よりも高く設定されている。また、第3のリンク28の補助輪支持部材25への連結点が、第2のリンク27の補助輪支持部材25への連結点よりも下方に配置されている。なお、上記第1~第3のリンク26~28は同一平面状に配置することが好ましい。
 また、補助輪12は車幅方向に転動するので、上記昇降時における補助輪12の旋回は、車幅方向に設定しておくことが好ましい。もちろん、上記昇降時における補助輪12の旋回が、車幅方向以外、例えば車両前後方向となるようにリンク配置を設定する。
Here, the first link 26 is set such that the connection point to the wheel support member 20 is higher than the connection point to the auxiliary wheel support member 25. Further, the connection point of the third link 28 to the auxiliary wheel support member 25 is disposed below the connection point of the second link 27 to the auxiliary wheel support member 25. The first to third links 26 to 28 are preferably arranged on the same plane.
Moreover, since the auxiliary wheel 12 rolls in the vehicle width direction, it is preferable that the turning of the auxiliary wheel 12 at the time of the raising / lowering is set in the vehicle width direction. Of course, the link arrangement is set so that the turning of the auxiliary wheel 12 at the time of raising and lowering is in the vehicle front-rear direction other than the vehicle width direction.
 また、上記リフトモータ制御回路14は、補助輪12を昇降するリフトモータ27からモータ位置、電流値を読み取り当該リフトモータ27の位置制御を行う。
 上記補助操舵制御部30は、図5に示すように、車両制御を行うコントローラ15の一部のプログラムとして構成される。ここで、コントローラ15は、CPU、ROM、RAM等で構成され、ROMには各種の処理を実現するプログラムが格納されている。コントローラ15は運転者の操作スイッチ、シフト操作によるシフトポジション、および車輪速センサ10よる車輪の回転速度を読み取る。そして、コントローラ15は、センサ等からの信号に基づき車両状態を判定し、インターフェース回路を通じて、制動力を制御するブレーキ制御回路6、補助輪12を昇降するリフトモータ制御回路14などへと通信して指令可能となっている。
The lift motor control circuit 14 reads the motor position and current value from the lift motor 27 that raises and lowers the auxiliary wheel 12 and controls the position of the lift motor 27.
As shown in FIG. 5, the auxiliary steering control unit 30 is configured as a part of a program of the controller 15 that performs vehicle control. Here, the controller 15 is constituted by a CPU, a ROM, a RAM, and the like, and programs for realizing various processes are stored in the ROM. The controller 15 reads the driver's operation switch, the shift position by the shift operation, and the rotational speed of the wheel by the wheel speed sensor 10. Then, the controller 15 determines the vehicle state based on the signal from the sensor or the like, and communicates with the brake control circuit 6 for controlling the braking force, the lift motor control circuit 14 for raising and lowering the auxiliary wheel 12 and the like through the interface circuit. Command is possible.
 上記補助操舵制御部30は、図5に示すように、補助輪リフト処理部30Aと、動力差配分処理部30Bとを備える。
 補助輪リフト処理部30Aは、補助操舵作動スイッチ19がONになったことを検出すると、リフトモータ制御回路14に下降指令を供給する。また、補助輪リフト処理部30Aは、補助操舵作動スイッチ19がOFFになったことを検出すると、リフトモータ制御回路14に上昇指令を供給する。ここで、リフトモータ制御回路14は、下降指令によってリフトモータ27を駆動して、補助輪12を下方に旋回するようにリンクを予め設定した回転角だけ回転駆動し、上昇指令によって、補助輪12を上方に旋回するようにリンクが予め設定した回転角だけ旋回するようにリフトモータ27を駆動する。
As shown in FIG. 5, the auxiliary steering control unit 30 includes an auxiliary wheel lift processing unit 30A and a power difference distribution processing unit 30B.
When the auxiliary wheel lift processing unit 30 </ b> A detects that the auxiliary steering operation switch 19 is turned on, the auxiliary wheel lift processing unit 30 </ b> A supplies a lowering command to the lift motor control circuit 14. In addition, when the auxiliary wheel lift processing unit 30A detects that the auxiliary steering operation switch 19 is turned off, the auxiliary wheel lift processing unit 30A supplies a lift command to the lift motor control circuit 14. Here, the lift motor control circuit 14 drives the lift motor 27 by the lowering command, rotationally drives the link by a preset rotation angle so as to turn the auxiliary wheel 12 downward, and the auxiliary wheel 12 by the raising command. The lift motor 27 is driven so that the link turns by a preset rotation angle so as to turn upward.
 本実施形態の動力差配分処理部30Bは、補助操舵作動スイッチ19がONと判定すると、ブレーキ制御回路6を介して、右駆動輪1FRのブレーキ装置8を作動して、ブレーキ操作と無関係に、当該右駆動輪1FRに対して予め設定した制動力を付与する。
 なお、動力差配分処理部30Bは、補助操舵作動スイッチ19がONと判定すると、左右前輪1FL、1FRの両方に制動力を付与し、上記補助輪12の下降が完了したら、左前輪1FL側の制動力だけ解除するようにしても良い。
When determining that the auxiliary steering operation switch 19 is ON, the power difference distribution processing unit 30B of the present embodiment operates the brake device 8 of the right drive wheel 1FR via the brake control circuit 6, and regardless of the brake operation, A preset braking force is applied to the right drive wheel 1FR.
When the auxiliary steering operation switch 19 is determined to be ON, the power difference distribution processing unit 30B applies a braking force to both the left and right front wheels 1FL and 1FR. Only the braking force may be released.
 次に、上記補助操舵制御部30の処理の例を、図6を参照して説明する。
 この補助操舵制御部30の処理は、予め設定したサンプリング時間毎に実施される。
 補助操舵制御部30は、まずステップS10にて、補助操舵作動スイッチ19からの信号に基づき、当該スイッチの操作があったか否かを判定する。そして、補助操舵作動スイッチ19の操作があったと判定するとステップS20に移行する。
Next, an example of processing of the auxiliary steering control unit 30 will be described with reference to FIG.
The processing of the auxiliary steering control unit 30 is performed every preset sampling time.
First, in step S10, the auxiliary steering control unit 30 determines whether or not the switch has been operated based on a signal from the auxiliary steering operation switch 19. If it is determined that the auxiliary steering operation switch 19 has been operated, the process proceeds to step S20.
 ステップS20では、車両が停止しているか否かを判定する。車両が停止していると判定した場合には、ステップS30に移行する。一方、車両が停止していないと判定した場合にはステップS25に移行する。
 ここで、車両の停止判定は、例えば次のように実施すれば良い。すなわち、車輪速センサ10からの信号に基づき車速を検出し、検出した車速が、車両が停止していると見なせる予め設定した設定車速(例えば5Km/h)以下か否かで判定する。
In step S20, it is determined whether or not the vehicle is stopped. When it determines with the vehicle having stopped, it transfers to step S30. On the other hand, if it is determined that the vehicle is not stopped, the process proceeds to step S25.
Here, the vehicle stop determination may be performed, for example, as follows. That is, the vehicle speed is detected based on a signal from the wheel speed sensor 10, and the determination is made based on whether or not the detected vehicle speed is equal to or lower than a preset vehicle speed (for example, 5 Km / h) that can be regarded as the vehicle being stopped.
 ステップS25では、運転者にブレーキ操作を促す旨の報知を行う。その後、ステップS10に移行する。
 ステップS30では、補助操舵作動スイッチ19がONに操作されたか否かを判定する。ONに操作されたと判定した場合には、ステップS30に移行する。補助操舵作動スイッチ19がOFFに操作されたと判定した場合にはステップS100に移行する。
 ステップS40では、補助輪リフト処理部30Aが、補助輪12を下降させて接地させる制御を行う。本実施形態では、各リフトモータ27に下降指令を供給する。これによって、車体後部が持ち上げられる。そして、後輪側の接地荷重が低減する。
In step S25, the driver is notified that the brake operation is urged. Thereafter, the process proceeds to step S10.
In step S30, it is determined whether or not the auxiliary steering operation switch 19 has been turned ON. If it is determined that the operation has been turned ON, the process proceeds to step S30. If it is determined that the auxiliary steering operation switch 19 is turned off, the process proceeds to step S100.
In step S <b> 40, the auxiliary wheel lift processing unit 30 </ b> A performs control to lower the auxiliary wheel 12 and to ground it. In the present embodiment, a lowering command is supplied to each lift motor 27. As a result, the rear part of the vehicle body is lifted. And the ground load on the rear wheel side is reduced.
 次に、ステップS50では、動力差配分処理部30Bが、右前輪1FRに対して制動力を付与する処理を行う。なお、付与する制動力は、右前輪1FRの回転をロック可能な大きさが好ましい。
 次に、ステップS60では、上記補助輪12の下降完了及び、右前輪1FRへの制動力付与が完了したことを検出すると、乗員に対して補助操舵可能の旨の情報呈示を報知する。報知は、乗員が視認可能なナビゲーション装置の表示部などに表示したり、音声によって実施する。
 その後、処理を終了する。
Next, in step S50, the power difference distribution processing unit 30B performs a process of applying a braking force to the right front wheel 1FR. The applied braking force is preferably large enough to lock the rotation of the right front wheel 1FR.
Next, in step S60, when it is detected that the auxiliary wheel 12 has been lowered and the braking force has been applied to the right front wheel 1FR, the passenger is informed of information presentation indicating that auxiliary steering is possible. The notification is displayed on a display unit or the like of a navigation device that can be visually recognized by an occupant, or is performed by voice.
Thereafter, the process ends.
 一方、補助操舵作動スイッチ19がOFFに操作されてステップS100に移行すると、動力差配分処理部30Bが、右前輪1FRに対して付与していた制動力の解除処理を行う。
 次に、ステップS110では、補助輪リフト処理部30Aが、補助輪12を上昇させて格納する処理を行う。本実施形態では、各リフトモータ27に上昇指令を供給する。
 次に、ステップS120では、上記補助輪12の格納完了及び、右前輪1FRへの制動力解除が完了したことを検出すると、乗員に対して補助操舵処理の解除した旨の情報呈示を報知する。報知は、乗員が視認可能なナビゲーション装置の表示部などに表示したり、音声によって実施する。
 その後、処理を終了する。
On the other hand, when the auxiliary steering operation switch 19 is turned off and the process proceeds to step S100, the power difference distribution processing unit 30B performs a process of releasing the braking force applied to the right front wheel 1FR.
Next, in step S110, the auxiliary wheel lift processing unit 30A performs a process of raising the auxiliary wheel 12 and storing it. In the present embodiment, the lift command is supplied to each lift motor 27.
Next, in step S120, when it is detected that the storage of the auxiliary wheel 12 has been completed and the release of the braking force to the right front wheel 1FR has been completed, an information presentation to the effect that the auxiliary steering process has been canceled is notified to the occupant. The notification is displayed on a display unit or the like of a navigation device that can be visually recognized by an occupant, or is performed by voice.
Thereafter, the process ends.
(動作その他)
 上記補助輪12の昇降動作について図4を参照して説明する。
 上記補助輪昇降装置13は、初期状態においては、リフトモータ27の駆動軸27aを車幅方向外方に向けて伸展させた状態になっている。駆動軸27aが伸展することで、補助輪12は、第3のリンク28の補助輪支持部材25への連結点P3を揺動中心として、車幅方向内方且つ上方に向けて旋回して、当該補助輪12は車体下部に格納された状態となっている。これによって、図4(b)のように、補助輪12は、上昇して車体下面に格納された状態となっている。
 なおこのとき、第1のリンク26の補助輪支持部材25への連結点P1が、第3のリンク28の補助輪支持部材25への連結点P3よりも下方に位置している。このため、上記駆動軸27aの伸展に伴い、第1のリンク26は、車輪側連結点を中心に、車幅方向内方且つ上方に向けて旋回し、その分、更に補助輪12は上昇した状態となっている。
(Operation other)
The raising / lowering operation | movement of the said auxiliary wheel 12 is demonstrated with reference to FIG.
In the initial state, the auxiliary wheel elevating device 13 is in a state where the drive shaft 27a of the lift motor 27 is extended outward in the vehicle width direction. The extension of the drive shaft 27a causes the auxiliary wheel 12 to turn inward and upward in the vehicle width direction with the connection point P3 of the third link 28 to the auxiliary wheel support member 25 as the center of oscillation. The auxiliary wheel 12 is stored in the lower part of the vehicle body. As a result, as shown in FIG. 4B, the auxiliary wheel 12 is lifted and stored in the lower surface of the vehicle body.
At this time, the connection point P1 of the first link 26 to the auxiliary wheel support member 25 is located below the connection point P3 of the third link 28 to the auxiliary wheel support member 25. For this reason, with the extension of the drive shaft 27a, the first link 26 turns inward and upward in the vehicle width direction around the wheel side connection point, and the auxiliary wheel 12 further rises accordingly. It is in a state.
 一方、補助操舵作動スイッチ19が「ON」となって、補助輪12の下降指示と判定されると、リフトモータ27が駆動軸27aを縮める。駆動軸27aが縮むと、図4(a)のように、補助輪12は、第3のリンク28の補助輪支持部材25への連結点P3を揺動中心として、車幅方向外方且つ下方に向かうように旋回する。これによって、補助輪12は、車幅方向外方に向かいながら下降して接地し、当該補助輪12は、さらに下降して車体後部を持ち上げる。 On the other hand, when the auxiliary steering operation switch 19 is turned “ON” and it is determined that the auxiliary wheel 12 is to be lowered, the lift motor 27 contracts the drive shaft 27a. When the drive shaft 27a contracts, as shown in FIG. 4A, the auxiliary wheel 12 is outward and downward in the vehicle width direction with the connection point P3 of the third link 28 to the auxiliary wheel support member 25 as the center of oscillation. Turn to head towards. As a result, the auxiliary wheel 12 descends and contacts the outer side in the vehicle width direction, and the auxiliary wheel 12 further descends to lift the rear part of the vehicle body.
 補助輪12が接地した状態後は、地面からの反力Fが第1のリンク26を通じて車輪支持部材20に対し上方に向かう力が入力される結果、後輪1RL、1RRの下方へのストローク量が小さく抑えられる。このように補助輪12で車体を持ち上げるとき、補助輪支持部材25と車輪支持部材20と連結する第1のリンク26によって、後輪がリバウンド方向にストロークすることを規制するため、後輪の下方へのストロークを抑えつつ、補助輪12で車体を持ち上げることが出来る。 After the auxiliary wheel 12 is in contact with the ground, the reaction force F from the ground is input to the wheel support member 20 through the first link 26, and as a result, the stroke amount of the rear wheels 1RL and 1RR is lowered. Can be kept small. When the vehicle body is lifted by the auxiliary wheel 12 in this way, the first link 26 connected to the auxiliary wheel support member 25 and the wheel support member 20 restricts the rear wheel from stroking in the rebound direction. The vehicle body can be lifted by the auxiliary wheel 12 while suppressing the stroke to the side.
 ここで、車体を持ち上げた状態において、補助輪12は車幅方向に転動するように使用される。このため、本実施形態では、上記昇降する際の補助輪12の旋回方向は、上記転動方向つまり車幅方向に旋回するように設定している。これによって、補助輪12の昇降時に伴う当該補助輪12の不要な磨耗を抑制出来る。
 特に、本実施形態では、第1のリンク26の補助輪支持部材25への連結点P1が、第3のリンク28の補助輪支持部材25への連結点P3よりも下方に位置している。このため、上記駆動軸27aの縮みに伴い、第1のリンク26は、車輪側連結点を中心に、車幅方向外方且つ下方に向けて旋回し、その分、第1のリンク26のリンク軸線が鉛直方向に近付いて、後輪のリバウンドストロークを抑制する力が大きくなる。
 ここで、下降した補助輪12の上昇動作は、上記説明した格納動作となる。
Here, in a state where the vehicle body is lifted, the auxiliary wheel 12 is used so as to roll in the vehicle width direction. For this reason, in this embodiment, the turning direction of the auxiliary wheel 12 when moving up and down is set to turn in the rolling direction, that is, the vehicle width direction. Thereby, unnecessary wear of the auxiliary wheel 12 associated with the raising and lowering of the auxiliary wheel 12 can be suppressed.
In particular, in this embodiment, the connection point P1 of the first link 26 to the auxiliary wheel support member 25 is positioned below the connection point P3 of the third link 28 to the auxiliary wheel support member 25. For this reason, with the contraction of the drive shaft 27a, the first link 26 turns outward and downward in the vehicle width direction around the wheel side connection point, and the link of the first link 26 correspondingly. As the axis approaches the vertical direction, the force to suppress the rebound stroke of the rear wheel increases.
Here, the raising operation of the lowered auxiliary wheel 12 is the storing operation described above.
 次に、図7を参照して、運転者の操作に伴う、補助操舵装置の動作状態の状態遷移について説明する。
 本実施形態の補助操舵装置は、乗員が補助操舵作動スイッチ19をONに操作することで作動を開始する。
 通常の走行可能状態では、図4(b)のように、補助輪12は車体側に格納されて当該補助輪12が非接地状態となっている。この状態において、運転者は、アクセル操作を行うことで、車両を前進または後退させる。
 補助操舵を実施する場合には、運転者はブレーキを作動させて車両を停車し、シフトレバーを「N」または「P」レンジへ入れる。
Next, with reference to FIG. 7, the state transition of the operation state of the auxiliary steering device accompanying the operation of the driver will be described.
The auxiliary steering device of the present embodiment starts to operate when the occupant operates the auxiliary steering operation switch 19 to ON.
In a normal travelable state, as shown in FIG. 4B, the auxiliary wheel 12 is stored on the vehicle body side and the auxiliary wheel 12 is in a non-grounded state. In this state, the driver moves the vehicle forward or backward by performing an accelerator operation.
When carrying out the auxiliary steering, the driver operates the brake to stop the vehicle, and puts the shift lever into the “N” or “P” range.
 続いて、運転者が補助操舵作動スイッチ19を「ON」にすると、補助操舵制御部30が起動して、補助操舵制御部30は、左右の補助輪12を下降させて各補助輪12を接地させ、更に車体を持ち上げる。この結果、後輪1RL、1RRの接地荷重をゼロ若しくは小さくする。
 続いて、補助操舵制御部30は、右前輪1FRに制動力を付与して当該右前輪1FRをロック状態にした後に、補助操舵が可能となった旨の情報呈示を行う。
Subsequently, when the driver turns on the auxiliary steering operation switch 19, the auxiliary steering control unit 30 is activated, and the auxiliary steering control unit 30 lowers the left and right auxiliary wheels 12 to ground each auxiliary wheel 12. Lift the car body. As a result, the ground load of the rear wheels 1RL and 1RR is reduced to zero or small.
Subsequently, the auxiliary steering control unit 30 presents information indicating that auxiliary steering is possible after applying braking force to the right front wheel 1FR to lock the right front wheel 1FR.
 運転者は、補助操舵が可能となったことを確認すると、シフトレバーを「D」または「R」レンジへ入れることで、前方への転回か後方への転回かを選択する。
 ここで、本実施形態の補助操舵装置の例では、右前輪1FRに制動力を付与する構成としたので、前進(Dレンジ)で右転回、後退(Rレンジ)で左転回が可能な状態となる。
 なお、左前輪1FLに制動力を付与する構成とした場合には、前進(Dレンジ)で左転回、後退(Rレンジ)で右転回が可能な状態となる。
 ここでは、前進(Dレンジ)が選択されたとする。
When the driver confirms that auxiliary steering is possible, the driver selects whether to turn forward or backward by putting the shift lever into the “D” or “R” range.
Here, in the example of the auxiliary steering device of the present embodiment, since the braking force is applied to the right front wheel 1FR, it is possible to turn right in forward (D range) and turn left in backward (R range). Become.
In addition, when it is set as the structure which provides a braking force to the left front wheel 1FL, it will be in the state in which it can turn to the left by forward (D range), and to the right by reverse (R range).
Here, it is assumed that forward (D range) is selected.
 この状態で、運転者がアクセルペダル5を踏んで、エンジン2の出力を駆動輪1FL、1FRに伝達する際に、差動歯車装置3で、駆動力が左前輪1FL側に主として動力分配される結果、左右前輪1FL、1FRに駆動力差が発生する。この左右前輪1FL、1FRの駆動力差によって、車体に対してヨー方向のモーメントが発生する。このとき、左右前輪1FL、1FRのうち、右前輪1FRに制動力が付与されていることから、左前輪1FLだけが駆動力で転動する。これによって、車両は、制動力が付与されている右前輪1FRを中心に右転回する。このとき、上記モーメントの力によって、補助輪12で持ち上げられた車体後部が補助輪12の転動に伴い左側に横移動する。
 このような補助操舵によって、車両は、小回りで移動することで、狭い場所での縦列駐車などが可能となる。
 図8にそのときの、車両MMの転回状態の例を示す。この図8に示すように、右前輪1FRを中心にして車両MMを転回することで、最小回転半径が小さくなる。
In this state, when the driver steps on the accelerator pedal 5 to transmit the output of the engine 2 to the drive wheels 1FL, 1FR, the driving force is mainly distributed to the left front wheel 1FL side by the differential gear unit 3. As a result, a driving force difference is generated between the left and right front wheels 1FL and 1FR. Due to the difference in driving force between the left and right front wheels 1FL and 1FR, a moment in the yaw direction is generated with respect to the vehicle body. At this time, since the braking force is applied to the right front wheel 1FR among the left and right front wheels 1FL, 1FR, only the left front wheel 1FL rolls with the driving force. Thus, the vehicle turns right around the right front wheel 1FR to which the braking force is applied. At this time, the rear part of the vehicle body lifted by the auxiliary wheel 12 moves laterally to the left as the auxiliary wheel 12 rolls due to the force of the moment.
By such auxiliary steering, the vehicle moves in a small turn, thereby enabling parallel parking in a narrow place.
FIG. 8 shows an example of the turning state of the vehicle MM at that time. As shown in FIG. 8, the minimum turning radius is reduced by turning the vehicle MM around the right front wheel 1FR.
 更に、運転者がアクセル操作を止めてブレーキ操作を行う事で、車両の転回動作が停止する。
 上記車両が停止して、運転者がシフトレバーをDレンジかPレンジに入れた後に、補助操舵作動スイッチ19をOFFに変更したとする。すると、補助操舵制御部30は、右前輪1FRへの制動力付与を解除すると共に、補助輪12を上昇して車体側に格納する。その後、補助操舵制御部30は、補助操舵の解除を乗員に報知する。
 以上のように、本実施形態の補助操舵装置によれば、車体の下部に補助輪12を設けて、その補助輪12を昇降装置によって路面上に支持することで、持ち上げられた後輪1RL、1RRは車体に対して左右方向の拘束力が外れる。
Furthermore, when the driver stops the accelerator operation and performs the brake operation, the turning operation of the vehicle is stopped.
Assume that the auxiliary steering operation switch 19 is changed to OFF after the vehicle stops and the driver puts the shift lever into the D range or the P range. Then, the auxiliary steering control unit 30 releases the braking force applied to the right front wheel 1FR and raises the auxiliary wheel 12 to store it on the vehicle body side. Thereafter, the auxiliary steering control unit 30 notifies the occupant of the cancellation of the auxiliary steering.
As described above, according to the auxiliary steering device of the present embodiment, the auxiliary wheel 12 is provided at the lower portion of the vehicle body, and the auxiliary wheel 12 is supported on the road surface by the lifting device, thereby lifting the rear wheel 1RL, 1RR releases the restraining force in the left-right direction with respect to the vehicle body.
 この状態で、運転者がシフト操作により転回方向を選択した後に、アクセル操作を行うことで、左右後輪1RL、1RRに駆動力差が発生して、車体にヨー方向のモーメントが発生する。このとき、右前輪1FRに制動力が付与されているので、その制動が掛かっている右前輪1FR若しくはその近傍を中心に車体が旋回可能となる。
 このとき、補助輪12は、無駆動のフリー状態となっているので、上記車体に発生するヨー方向のモーメントを阻害しないかその阻害が小さい状態で車体横方向に転動する。
 この結果、車両の最小回転半径が通常状態よりも小さくなることで、図8に示すように、縦列駐車に必要なスペースは極端に小さくなる。
 また、横方向に並んで駐車する場合の一例を図10に示す。この図10に記載の例では、駐車位置の前まで車両MMを前進させた後に、車両MMを転回し、そのまま前進させることで目的の位置に駐車させることになる。
In this state, when the driver selects the turning direction by the shift operation and then performs the accelerator operation, a driving force difference is generated between the left and right rear wheels 1RL and 1RR, and a moment in the yaw direction is generated in the vehicle body. At this time, since the braking force is applied to the right front wheel 1FR, the vehicle body can turn around the right front wheel 1FR to which the braking is applied or the vicinity thereof.
At this time, since the auxiliary wheel 12 is in a non-driving free state, the auxiliary wheel 12 rolls in the lateral direction of the vehicle body in a state in which the moment in the yaw direction generated in the vehicle body is not inhibited or small.
As a result, as the minimum turning radius of the vehicle becomes smaller than that in the normal state, the space required for parallel parking is extremely reduced as shown in FIG.
FIG. 10 shows an example of parking in the horizontal direction. In the example shown in FIG. 10, after the vehicle MM is moved forward to the front of the parking position, the vehicle MM is turned and moved forward to be parked at the target position.
 次に、補助輪12を車体下面に格納した状態での作用について説明する。
 図27は、後輪のバウンド・リバウンド時の補助輪12と各リンク26~28の挙動を模式的に図示した車両後面図である。
 第1~第3のリンク26~28は、上下揺動可能に部材間を連結しているので、第1~第3のリンク26~28は、車輪のバウンド・リバウンドに追従して上下に揺動する。このため、図27のように、車輪のバウンド・リバウンドに伴いサスペンションが上下方向に動いた場合であっても、格納した補助輪12は、サスペンションの挙動に影響することなく、上下方向に追従して動作する。
Next, the operation when the auxiliary wheel 12 is stored in the lower surface of the vehicle body will be described.
FIG. 27 is a vehicle rear view schematically illustrating the behavior of the auxiliary wheel 12 and the links 26 to 28 when the rear wheel is bound and rebound.
Since the first to third links 26 to 28 are connected to each other so as to be swingable up and down, the first to third links 26 to 28 swing up and down following the bounding / rebounding of the wheels. Move. For this reason, as shown in FIG. 27, even when the suspension moves in the vertical direction in association with the bounding / rebounding of the wheel, the stored auxiliary wheel 12 follows the vertical direction without affecting the behavior of the suspension. Works.
 また、本実施形態では、補助輪12を昇降させる駆動機構であるリフトモータ27の駆動部を車体側に取り付けている。このため、後輪と車体との間に昇降する補助輪12を設定しても、バネ下の重量の増加を低減することが出来る。
 そして、突起乗り越し時のサスペンション性能が、上記補助輪12を昇降させる駆動機構をサスペンションに支持させる場合に比べて向上する。
 図28は、上記サスペンション性能をシミュレーションした結果の図である。
 このシミュレーションは、車速30km/hで突起を乗り越した場合における、後輪バネ上加速度を評価したものである。実線が本実施形態の補助輪12の昇降装置を採用した場合のシミュレーション結果であり、破線は、特許文献1に記載の補助輪12の昇降装置を採用した場合のシミュレーション結果である。
In the present embodiment, a drive unit of a lift motor 27 that is a drive mechanism for raising and lowering the auxiliary wheel 12 is attached to the vehicle body side. For this reason, even if the auxiliary wheel 12 that moves up and down is set between the rear wheel and the vehicle body, an increase in unsprung weight can be reduced.
In addition, the suspension performance when riding over the protrusion is improved as compared with the case where the suspension is supported by the suspension for driving the auxiliary wheel 12 up and down.
FIG. 28 is a diagram showing a result of simulating the suspension performance.
This simulation is an evaluation of the acceleration on the rear wheel spring when the projection is passed over at a vehicle speed of 30 km / h. A solid line is a simulation result when the lifting device for the auxiliary wheel 12 according to the present embodiment is employed, and a broken line is a simulation result when the lifting device for the auxiliary wheel 12 described in Patent Document 1 is employed.
 この図28から分かるように、本実施形態の補助輪12の昇降装置を採用した場合の方が、車速30km/hで突起を乗り越した場合の後輪バネ上加速度は小さく乗心地性能が向上することがわかる。
 以上説明してきたように、本実施形態の補助輪12の昇降装置にあっては、車体の下部に補助輪12を設けてその補助輪12を昇降装置によって昇降自在に支持すると共にリフトモータのモータ駆動によって回転駆動可能に支持して、この補助輪12を車両のサスペンションを介して車体に支持した。これによって、駆動機構を作動して持ち上げられた車体はサスペンションと共に上昇することで、昇降装置の昇降ストロークが少なくなって、装置のコンパクト化を図ることができる。
As can be seen from FIG. 28, when the lifting device for the auxiliary wheel 12 of the present embodiment is adopted, the acceleration on the rear wheel spring is small when the protrusion is passed at a vehicle speed of 30 km / h, and the riding comfort performance is improved. I understand that.
As described above, in the lifting device for the auxiliary wheel 12 according to the present embodiment, the auxiliary wheel 12 is provided in the lower part of the vehicle body, and the auxiliary wheel 12 is supported by the lifting device so as to be lifted and lowered. The auxiliary wheel 12 was supported on the vehicle body via a suspension of the vehicle. As a result, the vehicle body lifted by operating the drive mechanism is lifted together with the suspension, so that the lifting stroke of the lifting device is reduced and the device can be made compact.
 また、持ち上げられた車体はサスペンション部材を介して路面上の補助輪12に支持されることで、補助輪12による車両の走行時にも通常走行と同様にサスペンション部材が作用することとなって乗心地が損なわれることがない。かつ、補助輪12を格納した場合の通常の走行状態においても、重量部品である駆動機構部は車体側に装着されているため、バネ下重量の増加が抑制され、突起乗り越し時のサスペンション性能は向上する。 In addition, the lifted vehicle body is supported by the auxiliary wheels 12 on the road surface via the suspension member, so that the suspension member acts in the same manner as in normal driving when the vehicle is driven by the auxiliary wheels 12. Will not be damaged. Even in the normal traveling state when the auxiliary wheel 12 is stored, the drive mechanism portion, which is a heavy component, is mounted on the vehicle body side, so that an increase in unsprung weight is suppressed, and the suspension performance when riding over the protrusion is improves.
 (変形例)
 (1)上記実施形態では、第1のリンク26の車輪側端部を車輪支持部材に連結している。これに代えて、第1のリンク26の車輪側端部を、ロアリンクなどのサスペンション部材に連結しても良い。
 (2)上記実施形態では、第2のリンク27の長さを伸縮する駆動機構を、電動モータを回転制御することで駆動軸27aを直動案内するリフトモータ27とした。これに代えて、駆動機構を流体圧シリンダ装置で構成しても良い。
(Modification)
(1) In the above embodiment, the wheel side end of the first link 26 is connected to the wheel support member. Alternatively, the wheel side end of the first link 26 may be connected to a suspension member such as a lower link.
(2) In the above embodiment, the drive mechanism that expands and contracts the length of the second link 27 is the lift motor 27 that linearly guides the drive shaft 27a by controlling the rotation of the electric motor. Alternatively, the drive mechanism may be configured with a fluid pressure cylinder device.
 (3)左右後輪1RL、1RRは補助輪12で持ち上げて接地荷重が低減するので、当該左右後輪1RL、1RRは、駆動輪1FL、1FRであっても従動輪であっても構わない。
 (4)上記説明では、左右前輪1FL、1FRを駆動輪とする場合で例示した。左右後輪1RL、1RRを駆動輪の場合には、上記補助輪12を車体前部側に配置すれば良い。
 この場合には、例えば右後輪1RR側に制動を付加するように設定する。この場合における、補助操舵による車両MMの転回例を図9に示す。この場合、例えば、車両MMを駐車位置の前まで後退させた後に該車両MMを図9のように転回し、そのまま駐車位置へ後退して駐車させることが可能となる。
(3) Since the left and right rear wheels 1RL and 1RR are lifted by the auxiliary wheel 12 to reduce the ground load, the left and right rear wheels 1RL and 1RR may be driving wheels 1FL and 1FR or driven wheels.
(4) In the above description, the case where the left and right front wheels 1FL and 1FR are drive wheels is exemplified. When the left and right rear wheels 1RL and 1RR are drive wheels, the auxiliary wheel 12 may be disposed on the vehicle body front side.
In this case, for example, setting is made so that braking is applied to the right rear wheel 1RR side. An example of turning of the vehicle MM by auxiliary steering in this case is shown in FIG. In this case, for example, after the vehicle MM is retracted to the front of the parking position, the vehicle MM can be turned as shown in FIG.
 (5)ここで、補助操舵時に補助輪12を車両横方向に転動するように、左右の補助輪12の回転軸は、車両前後方向に向くように配置する。
 但し、本実施形態では、右前輪1FRを中心に車体が転回するので、図13に示すように、上記補助輪12の回転軸は、当該右前輪1FRに向かうように設定しておくことが好ましい。このように転回時の中心に回転軸を向けることで、より補助輪12は転動し易くなる。図13中、符号Lは補助輪12の回転軸の延長線を示す。
(5) Here, the rotation shafts of the left and right auxiliary wheels 12 are arranged to face in the vehicle front-rear direction so that the auxiliary wheels 12 roll in the vehicle lateral direction during auxiliary steering.
However, in this embodiment, since the vehicle body rotates around the right front wheel 1FR, it is preferable to set the rotation axis of the auxiliary wheel 12 to face the right front wheel 1FR as shown in FIG. . In this way, the auxiliary wheel 12 is more easily rolled by directing the rotation shaft to the center at the time of turning. In FIG. 13, symbol L indicates an extension line of the rotation shaft of the auxiliary wheel 12.
 (6)このとき、補助輪12と補助輪支持部材25とを回転軸受を介して連結して、キャスタホイールとしておくと良い。この場合、補助輪12の回転軸が自在に変向することで、転回時の中心に回転軸が自動調整される。
 (7)また上記実施形態では、右側の駆動輪を制動を付加する車輪として説明したが、制動を付加する車輪を左側の駆動輪に設定しても構わない。
 また上記説明では、制動を付加する駆動輪を予め設定しているが、運転者の指示によって制動を付加する駆動輪を選択可能に構成しても良い。例えば、車両を停止したときの操向輪の転舵方向によって制動を付加する駆動輪を決定して良い。
(6) At this time, the auxiliary wheel 12 and the auxiliary wheel support member 25 may be connected via a rotary bearing to form a caster wheel. In this case, the rotation axis of the auxiliary wheel 12 is freely changed, so that the rotation axis is automatically adjusted to the center at the time of turning.
(7) In the above embodiment, the right driving wheel is described as a wheel to which braking is applied, but the wheel to which braking is applied may be set as the left driving wheel.
In the above description, driving wheels to which braking is applied are set in advance, but driving wheels to which braking is applied may be selected according to a driver's instruction. For example, the drive wheel to which braking is applied may be determined according to the steering direction of the steered wheel when the vehicle is stopped.
 (8)上記実施形態では、一方の駆動輪に制動を付与し、他方の駆動輪に駆動力を付与することで、左右の駆動輪に駆動力差を発生する場合で例示した。
 左右の駆動輪に駆動力差を発生する構成はこれに限定されない。例えば、左右の駆動輪の回転方向を逆向きにすることで、駆動力差を発生させるようにしても良い。この場合には、左右駆動輪の約中央位置を中心にして車体は転回する。
 また、左右駆動輪の両方共に駆動力を伝達するが、その伝達する駆動力を変える事で、駆動力差を発生させるようにしても良い。
 ここで、リフトモータ27は駆動機構を構成する。
(8) In the above-described embodiment, a case where a driving force difference is generated between the left and right driving wheels by applying braking to one driving wheel and applying driving force to the other driving wheel is exemplified.
The configuration for generating a driving force difference between the left and right driving wheels is not limited to this. For example, the drive force difference may be generated by reversing the rotation directions of the left and right drive wheels. In this case, the vehicle body turns around the center position of the left and right drive wheels.
In addition, the driving force is transmitted to both the left and right driving wheels, but a driving force difference may be generated by changing the transmitted driving force.
Here, the lift motor 27 constitutes a drive mechanism.
(本実施形態の効果)
 本実施形態は、次の効果を奏する。
 (1)第1のリンク26が、上記補助輪支持部材25と上記車輪支持部材又はサスペンション部材とを上下揺動可能に連結する。第2のリンク27が、上記補助輪支持部材25と車体とを上下揺動可能に連結する。駆動機構が、車体に支持されて、上記第2のリンク27の補助輪側端部の位置を、上記第1のリンク26の車輪側端部に対し接近・離隔する方向へ変位させる。
 この構成によれば、補助輪12を昇降するための駆動機構を車体側に設けることで、ばね下の重量の増加を抑えることが可能となる。
(Effect of this embodiment)
This embodiment has the following effects.
(1) The first link 26 connects the auxiliary wheel support member 25 and the wheel support member or suspension member so as to be swingable up and down. The second link 27 connects the auxiliary wheel support member 25 and the vehicle body so as to be swingable up and down. The drive mechanism is supported by the vehicle body and displaces the position of the auxiliary wheel side end portion of the second link 27 in a direction approaching and separating from the wheel side end portion of the first link 26.
According to this configuration, an increase in unsprung weight can be suppressed by providing a drive mechanism for raising and lowering the auxiliary wheel 12 on the vehicle body side.
 更に、本発明の一態様によれば、上記車輪支持部材又はサスペンション部材と車体とを、直列状に連結されたリンク及び補助輪支持部材25を介して、連結した構造となっている。このため、駆動機構を作動させて第2のリンク27を変位させる力や地面からリンクに伝達される力によって、車輪支持部材の下方へのストローク(リバウンド)を抑制若しくは低減可能となる。この結果、昇降に伴う補助輪12の昇降ストロークの増大を抑えることも可能となる。 Furthermore, according to one aspect of the present invention, the wheel support member or suspension member and the vehicle body are connected via a link and an auxiliary wheel support member 25 connected in series. For this reason, the downward stroke (rebound) of the wheel support member can be suppressed or reduced by the force that operates the drive mechanism to displace the second link 27 or the force transmitted from the ground to the link. As a result, it is also possible to suppress an increase in the lifting stroke of the auxiliary wheel 12 due to lifting.
 (2)少なくとも補助輪12が接地した状態において、第1のリンク26の車輪支持部材への連結点を、第1のリンク26の補助輪支持部材25への連結点P1よりも高い位置に設定する。
 この構成によれば、補助輪12に入力される路面からの反力Fによって、より確実に車輪の下方へのストロークを抑制することが出来る。
 (3)第1のリンク26の上記補助輪支持部材25への連結点P1と第2のリンク27の上記補助輪支持部材25への連結点P2とを、互いに上下にオフセットして配置する。
 更に、上記補助輪支持部材25と車体とを連結する第3のリンク28を備える。そして、上記第3のリンク28の補助輪支持部材25への連結点P3の位置は、上記第2のリンク27の上記補助輪支持部材25への連結点P2の位置よりも低い位置に設定する。
 このリンク配置に構成によれば、確実に補助輪12を昇降するように旋回させることが可能となる。
(2) At least in a state where the auxiliary wheel 12 is grounded, the connection point of the first link 26 to the wheel support member is set to a position higher than the connection point P1 of the first link 26 to the auxiliary wheel support member 25. To do.
According to this configuration, the downward stroke of the wheel can be more reliably suppressed by the reaction force F from the road surface input to the auxiliary wheel 12.
(3) The connection point P1 of the first link 26 to the auxiliary wheel support member 25 and the connection point P2 of the second link 27 to the auxiliary wheel support member 25 are arranged offset with respect to each other.
Furthermore, a third link 28 for connecting the auxiliary wheel support member 25 and the vehicle body is provided. The position of the connection point P3 of the third link 28 to the auxiliary wheel support member 25 is set to a position lower than the position of the connection point P2 of the second link 27 to the auxiliary wheel support member 25. .
According to the configuration of this link arrangement, the auxiliary wheel 12 can be reliably turned up and down.
 (4)上記駆動機構は、第2のリンク27を伸縮する構成とする。例えば、第2のリンク27を直動装置で構成する。
 これによって、上記第2のリンク27の補助輪側端部の位置を、上記第1のリンク26の車輪側端部に対し接近・離隔する方向へ変位させることが可能となる。
(4) The drive mechanism is configured to extend and contract the second link 27. For example, the second link 27 is configured by a linear motion device.
Accordingly, the position of the auxiliary wheel side end portion of the second link 27 can be displaced in a direction approaching or separating from the wheel side end portion of the first link 26.
「第3実施形態の2」
 次に、別の実施形態について図面を参照して説明する。なお、上記実施形態と同様な構成については同一の符号を付して説明する。
(構成)
 本実施形態の補助輪12の昇降装置の基本構成は、図29に示すように、上記第3実施形態の1と同様である。
 ただし、補助輪支持部材25に対する、第1のリンク26及び第3のリンク28の連結点P1、P3の関係が、上記第3実施形態の1と異なる。すなわち、相対的に、第1のリンク26の補助輪支持部材25への連結点P1を、第3のリンク28の補助輪支持部材25への連結点P3の位置よりも高い位置に設定した。
"2 of the third embodiment"
Next, another embodiment will be described with reference to the drawings. In addition, about the structure similar to the said embodiment, the same code | symbol is attached | subjected and demonstrated.
(Constitution)
As shown in FIG. 29, the basic configuration of the lifting device for the auxiliary wheel 12 of the present embodiment is the same as 1 of the third embodiment.
However, the relationship between the connection points P1 and P3 of the first link 26 and the third link 28 with respect to the auxiliary wheel support member 25 is different from 1 in the third embodiment. That is, the connection point P1 of the first link 26 to the auxiliary wheel support member 25 is set to a position higher than the position of the connection point P3 of the third link 28 to the auxiliary wheel support member 25.
 なお、第3実施形態の1と同様に、第2のリンク27の補助輪支持部材25への連結点Pの位置は、第3のリンク28の補助輪支持部材25への連結点Pの位置よりも高い位置にある。更に、第2のリンク27の補助輪支持部材25への連結点Pを、第1のリンク26の補助輪支持部材25への連結点Pの位置よりも高い位置に設定低く設定した。
 このように、本実施形態の補助輪支持部材25への各リンクの連結点の相対関係が、上記第3実施形態の1と異なる。その他構成は、上記第3実施形態の1と同様である。
As in 1 of the third embodiment, the position of the connection point P of the second link 27 to the auxiliary wheel support member 25 is the position of the connection point P of the third link 28 to the auxiliary wheel support member 25. In a higher position. Further, the connection point P of the second link 27 to the auxiliary wheel support member 25 is set lower than the position of the connection point P of the first link 26 to the auxiliary wheel support member 25.
Thus, the relative relationship of the connection point of each link to the auxiliary wheel support member 25 of the present embodiment is different from 1 of the third embodiment. Other configurations are the same as those of the third embodiment.
(動作その他)
 上記補助輪12の昇降装置の動作について説明する。
 (格納時)
 リフトモータ27の駆動軸27aを縮めることで、第1のリンク26の補助輪支持部材25への連結点P1を揺動中心として、第3のリンク28の補助輪支持部材25への連結点P3が、車幅方向外方且つ上方に旋回する。これによって、補助輪支持部材25の下端部に取り付けられている補助輪12は、車幅方向外方(車輪側)に旋回しながら上昇して、当該補助輪12は格納状態となる。
(Operation other)
The operation of the lifting device for the auxiliary wheel 12 will be described.
(When stored)
By contracting the drive shaft 27a of the lift motor 27, the connection point P3 of the third link 28 to the auxiliary wheel support member 25 with the connection point P1 of the first link 26 to the auxiliary wheel support member 25 as the center of oscillation. Turns outward and upward in the vehicle width direction. As a result, the auxiliary wheel 12 attached to the lower end of the auxiliary wheel support member 25 rises while turning outward in the vehicle width direction (wheel side), and the auxiliary wheel 12 enters the retracted state.
 (下降時)
 上記補助輪12が格納されているとする。
 この状態で、リフトモータ27の駆動軸27aを伸展させることで、第1のリンク26の補助輪支持部材25への連結点P1を揺動中心として、第3のリンク28の補助輪支持部材25への連結点P3が、車幅方向内方且つ下方に旋回する。これによって、補助輪12は、車幅方向内方に旋回しながら下降して接地し、更なる下降によって、車体を持ち上げる。
 ここで、補助輪12の上昇動作は、上記格納時の動作となる。
 ここで、リフトモータ27は駆動機構を構成する。
(Descent)
Assume that the auxiliary wheel 12 is stored.
In this state, by extending the drive shaft 27a of the lift motor 27, the auxiliary wheel support member 25 of the third link 28 with the connection point P1 of the first link 26 to the auxiliary wheel support member 25 as the center of swinging. The connection point P3 to the vehicle turns inward and downward in the vehicle width direction. As a result, the auxiliary wheel 12 descends and contacts the ground while turning inward in the vehicle width direction, and lifts the vehicle body by further descending.
Here, the raising operation of the auxiliary wheel 12 is the operation at the time of storage.
Here, the lift motor 27 constitutes a drive mechanism.
(本実施形態の効果)
 本実施形態は、上記第3実施形態の1の効果に加えて次の効果を有する。
(1)この第3実施形態の2の昇降装置においては、直動装置を構成するリフトモータ27の直動軸を伸展することで、補助輪12を下降させて車体を持ち上げる構成となっている。
 このため、駆動軸27aの伸縮に伴う摺動を考慮すると、坐屈に対し有利な構造となる。
(Effect of this embodiment)
This embodiment has the following effect in addition to the effect of 1 of the said 3rd Embodiment.
(1) The lifting device 2 of the third embodiment has a configuration in which the auxiliary wheel 12 is lowered to lift the vehicle body by extending the linear motion shaft of the lift motor 27 constituting the linear motion device. .
For this reason, when the sliding accompanying expansion and contraction of the drive shaft 27a is taken into consideration, the structure is advantageous for buckling.
「第3実施形態の3」
 次に、別の実施形態について図面を参照して説明する。なお、上記実施形態と同様な構成については同一の符号を付して説明する。
(構成)
 本実施形態の補助輪12の昇降装置の基本構成は、図30に示すように、上記第3実施形態の1と同様である。
 但し、本実施形態では、第2のリンク27の補助輪側端部の位置を変位させる駆動機構を採用した点が、上記3実施形態の1及び2と異なる。
 すなわち、第3実施形態の1及び2では、車体に対して駆動軸27aを伸縮することで、第2のリンク27の補助輪側端部の位置を変位させた。これに対し、本実施形態では、第2のリンク27の車体側端部を車輪側に対し接近・離隔する方向に駆動機構で変位させることで、第2のリンク27の補助輪側端部の位置を、第1のリンク26の車輪側端部に対し接近・離隔する方向に変位させる。
"3 of the third embodiment"
Next, another embodiment will be described with reference to the drawings. In addition, about the structure similar to the said embodiment, the same code | symbol is attached | subjected and demonstrated.
(Constitution)
The basic configuration of the lifting device for the auxiliary wheel 12 of this embodiment is the same as that of 1 of the third embodiment, as shown in FIG.
However, this embodiment differs from 1 and 2 in the third embodiment in that a drive mechanism that displaces the position of the auxiliary wheel side end of the second link 27 is employed.
That is, in 1 and 2 of the third embodiment, the position of the auxiliary wheel side end portion of the second link 27 is displaced by extending and retracting the drive shaft 27a with respect to the vehicle body. On the other hand, in this embodiment, the vehicle body side end of the second link 27 is displaced by the drive mechanism in the direction of approaching / separating from the wheel side, whereby the auxiliary wheel side end of the second link 27 is The position is displaced in a direction approaching / separating from the wheel side end of the first link 26.
 本実施形態の駆動機構について説明する。
本実施形態の駆動機構は、案内部材41a、スライド部材41b、及び駆動部41cを備える直動装置であって、車体に固定されている。
 上記案内部材41aは、平面視で、上記第1のリンク26に向かう方向に延在した状態で、車体に固定されている。その案内部材41aに沿ってスライド部材41bが移動可能となっている。スライド部材41bの移動は、駆動部41cを駆動することで実現される、ボールネジ機構、リニアガイド機構などの公知に直動機構を採用すれば良い。駆動部は通常モータによって構成される。
The drive mechanism of this embodiment will be described.
The drive mechanism of the present embodiment is a linear motion device including a guide member 41a, a slide member 41b, and a drive unit 41c, and is fixed to the vehicle body.
The guide member 41a is fixed to the vehicle body in a state of extending in a direction toward the first link 26 in a plan view. The slide member 41b is movable along the guide member 41a. The movement of the slide member 41b may be a publicly known linear motion mechanism such as a ball screw mechanism or a linear guide mechanism that is realized by driving the drive unit 41c. The drive unit is usually constituted by a motor.
 そして、上記スライド部材41bに対し上記第2のリンク27の車輪側端部P4が上下揺動可能に取り付けられている。
 これによって、案内部材41aに沿ってスライド部材41bの位置を移動させることで、第2のリンク27の車輪側端部が、上記第1のリンク26に対して接近・離隔する。この結果、第2のリンク27の補助輪支持部材25への連結点P2が、上記第1のリンク26に対して接近・離隔するように変位する。これによって、上記第3実施形態の1と同様の作用効果を奏する。
 なお、上記第1~第3のリンク26~28の配置構成は、上記第3実施形態の2の構成であっても構わない。
 また、案内部材41aとスライド部材41bと駆動部41cとを備える直動装置は、駆動機構を構成する。
The wheel side end portion P4 of the second link 27 is attached to the slide member 41b so as to be swingable up and down.
Accordingly, the wheel side end portion of the second link 27 approaches and separates from the first link 26 by moving the position of the slide member 41b along the guide member 41a. As a result, the connection point P <b> 2 of the second link 27 to the auxiliary wheel support member 25 is displaced so as to approach and separate from the first link 26. Thus, the same effect as 1 of the third embodiment can be obtained.
The arrangement configuration of the first to third links 26 to 28 may be the second configuration of the third embodiment.
Moreover, the linear motion apparatus provided with the guide member 41a, the slide member 41b, and the drive part 41c comprises a drive mechanism.
(本実施形態の効果)
 本実施形態は、上記第3実施形態の1の効果に加えて次の効果を有する。
 (1)駆動機構は、第2のリンク27の車輪側連結点P4を変位させる。これによって、上記第2のリンク27の補助輪側端部の位置を、上記第1のリンク26の車輪側端部に対し接近・離隔する方向へ変位させることが出来る。
 (2)本実施形態では、第2のリンク27の車体側端部を、スライド部材41bに揺動可能に連結する。
 このため、車体に取り付けれた直動機構が、上下に揺動する必要がない。特に、直動装置の駆動部を車体に固定することが出来る。
 すなわち、重量が有り且つ取付けスペースが大きくなりがちな部品である直動装置の駆動部がベースとなる車体に固定される。この結果、補助輪12を格納した通常走行時に、上記駆動部が振回される影響を最小限にできる。また、レイアウトの自由度が高くなる。
(Effect of this embodiment)
This embodiment has the following effect in addition to the effect of 1 of the said 3rd Embodiment.
(1) The drive mechanism displaces the wheel side connection point P4 of the second link 27. As a result, the position of the auxiliary wheel side end of the second link 27 can be displaced in the direction of approaching / separating from the wheel side end of the first link 26.
(2) In this embodiment, the vehicle body side end portion of the second link 27 is connected to the slide member 41b so as to be swingable.
For this reason, the linear motion mechanism attached to the vehicle body does not need to swing up and down. In particular, the drive unit of the linear motion device can be fixed to the vehicle body.
That is, the drive unit of the linear motion device, which is heavy and has a tendency to increase the installation space, is fixed to the vehicle body as a base. As a result, it is possible to minimize the influence of the drive unit being swung during normal travel in which the auxiliary wheels 12 are stored. In addition, the degree of freedom in layout increases.
「第3実施形態の4」
 次に、別の実施形態について図面を参照して説明する。なお、上記実施形態と同様な構成については同一の符号を付して説明する。
(構成)
 本実施形態の補助輪12の昇降装置の基本構成は、図31に示すように、上記第3実施形態の1と同様である。
 但し、本実施形態では、図31に示すように、第2のリンク27を構成するスライダ部の軸が車体に対して回転駆動する形で固定されている点が、上記第3実施形態の1と異なる。
“4 of the third embodiment”
Next, another embodiment will be described with reference to the drawings. In addition, about the structure similar to the said embodiment, the same code | symbol is attached | subjected and demonstrated.
(Constitution)
The basic configuration of the lifting device for the auxiliary wheel 12 of the present embodiment is the same as 1 of the third embodiment, as shown in FIG.
However, in the present embodiment, as shown in FIG. 31, the point of the slider portion constituting the second link 27 is fixed so as to be rotationally driven with respect to the vehicle body. And different.
 すなわち、本実施形態の駆動装置は、伸縮する駆動軸27a及びその駆動軸27aを案内する筒状の案内部27bからなるスライダ部27と、そのスライダ部27の上記案内部27bを回転駆動する回転駆動部42と、を備え、駆動する駆動部を車体に固定した。
 その他の構成は、上記第3実施形態の1と同じである。
 ここで、第1~第3のリンク26~28の配置は、上記第3実施形態の2と同じ配置構成としても良い。この場合には、上記第3実施形態の2と同じ効果を奏することが可能となる。
That is, the drive device of the present embodiment is configured to rotate and drive to rotate the guide portion 27b of the slider portion 27 including the drive shaft 27a that expands and contracts and the cylindrical guide portion 27b that guides the drive shaft 27a. A driving unit 42, and the driving unit to be driven is fixed to the vehicle body.
The other configuration is the same as 1 in the third embodiment.
Here, the arrangement of the first to third links 26 to 28 may be the same arrangement as 2 in the third embodiment. In this case, the same effect as 2 of the third embodiment can be obtained.
(動作など)
 車輪の昇降に伴う上記駆動軸27aの伸縮は、上記第3実施形態の1と同様な動作となる。但し、本実施形態では、駆動軸27aが伸縮するスライダ部27の底部を、回転駆動部41で強制的に回動させる点が、第3実施形態の1と異なる。
 すなわち、補助輪12を格納するために駆動軸27aを伸展するときには、回転駆動部42でスライダ部27を上方に旋回させることで、補助輪12を上昇させる。又、補助輪12を下降させるために駆動軸27aを縮めるときには、回転駆動部42でスライダ部27を下方に旋回させることで、補助輪12を下降させる。
(Operation etc.)
The expansion and contraction of the drive shaft 27a accompanying the raising and lowering of the wheel is the same operation as 1 in the third embodiment. However, this embodiment is different from 1 of the third embodiment in that the bottom of the slider portion 27 on which the drive shaft 27a expands and contracts is forcibly rotated by the rotation drive portion 41.
That is, when extending the drive shaft 27 a to store the auxiliary wheel 12, the auxiliary wheel 12 is raised by turning the slider portion 27 upward by the rotary drive unit 42. Further, when the drive shaft 27 a is contracted to lower the auxiliary wheel 12, the auxiliary wheel 12 is lowered by turning the slider portion 27 downward by the rotary drive unit 42.
 本実施形態では、回転駆動部42によって、第2のリンク27の上下方向の傾きを任意に調整出来る。このため、例えば第3実施形態の1に比べて、第2のリンク27を上方に旋回させて、補助輪12をその分上方で格納出来たりする。
 なお、補助輪12を格納した状態における通常走行時においては、少なくとも、補助輪支持部材25と車輪支持部材20とが第1のリンク26によって上下揺動可能に連結した状態が確保されている。このため、通常走行時における車両のバウンド・リバウンド時におけるサスペンションの挙動への悪影響を低減可能である。
 ここで、リフトモータ27は駆動機構を構成する。
In the present embodiment, the rotation driving unit 42 can arbitrarily adjust the vertical inclination of the second link 27. For this reason, for example, compared with 1 of 3rd Embodiment, the 2nd link 27 can be turned up and the auxiliary wheel 12 can be stored up by that much.
Note that, during normal traveling with the auxiliary wheel 12 stored, at least the auxiliary wheel support member 25 and the wheel support member 20 are connected by the first link 26 so as to be swingable up and down. For this reason, it is possible to reduce an adverse effect on the behavior of the suspension at the time of bounce / rebound of the vehicle during normal driving.
Here, the lift motor 27 constitutes a drive mechanism.
(本実施形態の効果)
 本実施形態は、上記第3実施形態の1の効果に加えて次の効果を有する。
 (1)本実施形態の駆動機構では、重量がありスペースを必要とする部品である駆動部がベースとなる車体に固定される。このため、補助輪12を格納した通常走行時に、駆動機構の直動駆動部の揺動が抑えられて、駆動機構が振り回されることによる影響を最小限にできる。
(Effect of this embodiment)
This embodiment has the following effect in addition to the effect of 1 of the said 3rd Embodiment.
(1) In the drive mechanism of the present embodiment, the drive unit, which is a heavy component requiring space, is fixed to the base vehicle body. For this reason, during normal travel in which the auxiliary wheels 12 are stored, the swing of the direct drive section of the drive mechanism is suppressed, and the influence of the drive mechanism being swung can be minimized.
[第4実施形態]
 次に、本発明の実施形態について図面を参照して説明する。
「第4実施形態の1」
(構成)
 図1は、本実施形態の車両の構成を示す概要図であり、図2はそのシステム図である。
 本実施形態では、図1に示すように、左右前輪1FL、1FR及び左右後輪1RL、1RRを具備すると共に、左右前輪1FL、1FRを駆動輪とする車両を例に挙げて説明する。なお、本発明は、操向輪について特に限定は無い。
[Fourth Embodiment]
Next, embodiments of the present invention will be described with reference to the drawings.
"1 of the fourth embodiment"
(Constitution)
FIG. 1 is a schematic diagram showing a configuration of a vehicle according to the present embodiment, and FIG. 2 is a system diagram thereof.
In the present embodiment, as shown in FIG. 1, a vehicle having left and right front wheels 1FL and 1FR and left and right rear wheels 1RL and 1RR and using left and right front wheels 1FL and 1FR as driving wheels will be described as an example. In the present invention, the steering wheel is not particularly limited.
 本実施形態の車両は、動力源としてのエンジン2、エンジン制御部4、差動歯車装置3、及び制動制御装置18を備える。なお、駆動輪1FL、1FRの動力源はエンジン2に限定されず、電動機であって良い。
 上記エンジン2は、差動歯車装置3を介して左右の駆動輪1FL、1FRの車軸に連結されている。そして、エンジン2の動力が、差動歯車装置3によって左右駆動輪1FL、1FRに動力分配される構成となっている。上記エンジン制御部4は、アクセルペダル5の操作量に応じた出力指令値を演算し、演算した出力指令値に応じた動力が発生するように、エンジン2のスロットル開度等を調整する。
The vehicle according to the present embodiment includes an engine 2 as a power source, an engine control unit 4, a differential gear device 3, and a braking control device 18. The power source of the drive wheels 1FL and 1FR is not limited to the engine 2 and may be an electric motor.
The engine 2 is connected to the axles of the left and right drive wheels 1FL, 1FR via a differential gear device 3. The power of the engine 2 is distributed to the left and right drive wheels 1FL and 1FR by the differential gear device 3. The engine control unit 4 calculates an output command value corresponding to the operation amount of the accelerator pedal 5 and adjusts the throttle opening of the engine 2 so that power corresponding to the calculated output command value is generated.
 上記制動制御装置18は、図1及び図2に示すように、ブレーキ制御回路6、ブレーキ制御アクチュエータ7、及び左右の駆動輪1FL、1FRに個別に設けられた左右のブレーキ装置8を備える。そして、ブレーキ制御回路6が出力したブレーキ指令値に応じてブレーキ制御アクチュエータ7が作動することで、左右のブレーキ装置8によって、左右の駆動輪1FL、1FRに対して個別の制動力を付与可能となっている。すなわち、ブレーキ制御回路6は、ブレーキの油路の弁を開閉するソレノイドとブレーキの油圧ポンプを備えるブレーキ制御アクチュエータ7へ指令を送り、制動力を一輪ずつ個別に制御する。ブレーキ装置8は、ディスク式ブレーキ装置等である。なお、ブレーキ装置8は、電動式のブレーキ装置であっても良い。 1 and 2, the brake control device 18 includes a brake control circuit 6, a brake control actuator 7, and left and right brake devices 8 provided individually on the left and right drive wheels 1FL and 1FR. Then, by operating the brake control actuator 7 according to the brake command value output from the brake control circuit 6, the left and right brake devices 8 can apply individual braking forces to the left and right drive wheels 1FL and 1FR. It has become. That is, the brake control circuit 6 sends a command to a brake control actuator 7 having a solenoid for opening and closing a valve in the brake oil passage and a hydraulic pump for the brake, and individually controls the braking force one by one. The brake device 8 is a disc type brake device or the like. The brake device 8 may be an electric brake device.
 そして、上記制動制御装置18は、ブレーキペダル9の操作を検出すると、そのブレーキペダル9の操作量に応じた制動力を各ブレーキ装置8に付与する。また、本実施形態の制動制御装置18は、後述の補助操舵制御部から作動信号を入力すると、左右前輪1FL、1FRの一方に対して制動力を付与する。ただし、ブレーキ制御回路6は、後述の補助操舵制御部から作動信号を入力しても、ブレーキペダル9の操作による予め設定した以上のブレーキ操作量を検出すると、そのブレーキ操作量に応じた制動制御を優先的に実施する。 When the brake control device 18 detects an operation of the brake pedal 9, the brake control device 18 applies a braking force corresponding to the operation amount of the brake pedal 9 to each brake device 8. Further, the braking control device 18 of the present embodiment applies a braking force to one of the left and right front wheels 1FL and 1FR when an operation signal is input from an auxiliary steering control unit described later. However, even if an operation signal is input from an auxiliary steering control unit, which will be described later, the brake control circuit 6 detects a brake operation amount that is greater than a preset value by operating the brake pedal 9, and performs brake control according to the brake operation amount. Will be prioritized.
 また車両は、左右前輪1FL、1FRの回転数を検出する車輪速センサ10、シフトポジションを検出するシフトポジション検出センサ11を備える。車輪速センサ10は、各前輪1FL、1FRの車輪速を検出する。シフトポジション検出センサ11は、シフト位置が前進位置、中立位置、後退位置のいずれの位置となっているかを検出する。
 上記車両は、補助操舵装置を備える。上記差動歯車装置3、及び制動制御装置18は、補助操舵装置の構成の一部を兼ねる。
 その補助操舵装置は、左右の補助輪12と、その各補助輪12を車体に対し昇降させる補助輪昇降装置13と、リフトモータ制御回路14と、補助操舵制御部とを備える。
The vehicle also includes a wheel speed sensor 10 that detects the rotational speeds of the left and right front wheels 1FL and 1FR, and a shift position detection sensor 11 that detects a shift position. The wheel speed sensor 10 detects the wheel speed of each front wheel 1FL, 1FR. The shift position detection sensor 11 detects whether the shift position is a forward position, a neutral position, or a reverse position.
The vehicle includes an auxiliary steering device. The differential gear device 3 and the braking control device 18 also serve as part of the configuration of the auxiliary steering device.
The auxiliary steering device includes left and right auxiliary wheels 12, an auxiliary wheel elevating device 13 that raises and lowers each auxiliary wheel 12 relative to the vehicle body, a lift motor control circuit 14, and an auxiliary steering control unit.
 また車両は、乗員が操作可能な補助操舵作動スイッチ19を備える。
 上記左右の補助輪12は、図1に示すように、平面視において、当該補助輪12が接地した状態では、車両重心Gに対し上記左右の駆動輪1FL、1FRとは反対側に配置されている。本実施形態では、左右の補助輪12は、平面視において、その左右後輪1RL、1RRにおける駆動輪1FL、1FRに近い側(車両前後方向前側)の端部同士を結んだ線よりも上記駆動輪1FL、1FRから離れる位置に配置されることで、左右補助輪12を、車両重心Gに対し上記左右の駆動輪1FL、1FRとは反対側に位置するようにしている。なお、補助輪12の回転軸は、少なくとも接地状態において車両前後方向に向いている。車両前後方向とは、車体の長手方向に対して車幅方向に傾いていても良い。その傾きは例えば45度未満の角度である。
The vehicle also includes an auxiliary steering operation switch 19 that can be operated by a passenger.
As shown in FIG. 1, the left and right auxiliary wheels 12 are arranged on the opposite side of the left and right drive wheels 1FL and 1FR with respect to the vehicle center of gravity G when the auxiliary wheels 12 are grounded in a plan view. Yes. In the present embodiment, the left and right auxiliary wheels 12 are driven in the above-mentioned direction rather than a line connecting ends of the left and right rear wheels 1RL and 1RR closer to the drive wheels 1FL and 1FR (front side in the vehicle front-rear direction). The left and right auxiliary wheels 12 are positioned on the opposite side of the left and right drive wheels 1FL and 1FR with respect to the vehicle center of gravity G by being arranged at positions away from the wheels 1FL and 1FR. Note that the rotating shaft of the auxiliary wheel 12 faces the vehicle front-rear direction at least in a grounded state. The vehicle front-rear direction may be inclined in the vehicle width direction with respect to the longitudinal direction of the vehicle body. The inclination is an angle of less than 45 degrees, for example.
 また、左右補助輪12を、図3に示すように、左右後輪1RL、1RR間の空間において、互いに車幅方向に離して配置している。本実施形態では、左側の補助輪12を左側の後輪1RLに近づけて配置すると共に右側の補助輪12を右側の後輪1RRに近づけて配置する場合を例示している。
 補助輪昇降装置13は、各補助輪12を昇降可能に車体後部に支持させる装置である。本実施形態の補助輪昇降装置13は、図32及び図33に示すように、各補助輪12を個別のリンク26~28によって車幅方向に旋回可能に車体に支持し、且つ共通の接近・離隔機構をモータ37で駆動することで、車幅方向内側から車幅方向外側に向かうにつれて下方に向かうように上記左右の補助輪12を旋回移動させる。このように、補助輪12を昇降する構成となっている。
Further, as shown in FIG. 3, the left and right auxiliary wheels 12 are arranged apart from each other in the vehicle width direction in the space between the left and right rear wheels 1RL and 1RR. In the present embodiment, the case where the left auxiliary wheel 12 is arranged close to the left rear wheel 1RL and the right auxiliary wheel 12 is arranged close to the right rear wheel 1RR is illustrated.
The auxiliary wheel lifting / lowering device 13 is a device that supports each auxiliary wheel 12 at the rear part of the vehicle body so as to be movable up and down. As shown in FIGS. 32 and 33, the auxiliary wheel elevating device 13 of this embodiment supports each auxiliary wheel 12 on the vehicle body so as to be turnable in the vehicle width direction by individual links 26 to 28, and has a common approach / By driving the separation mechanism with the motor 37, the left and right auxiliary wheels 12 are turned and moved downward from the inner side in the vehicle width direction toward the outer side in the vehicle width direction. Thus, the auxiliary wheel 12 is raised and lowered.
 次に、本実施形態の補助輪昇降装置13を、図32及び図33を参照して説明する。
 ここで、第3の車輪を構成する左右の後輪1RL、1RRは、図32及び図33に示すように、それぞれ車輪支持部材20によって回転自在に支持されている。左右の車輪支持部材20は、個別のサスペンション装置24を介して、車体57に対し上下揺動可能に支持されている。図32及び図33には、サスペンション装置24を構成するサスペンション部材の一例として、アッパーリンク21及びロアリンク22と、ショックアブソーバ23とが図示されている。
 上記補助輪昇降装置は、図32及び図33に示すように、左右の補助輪12をそれぞれ回転自在にする左右の補助輪支持部材25と、左右の補助輪支持部材25をそれぞれ車体57に支持させる補助輪リンク機構と、上記左右の補助輪12を同期をとって昇降駆動する接近・離隔機構及び駆動部と、を備える。
Next, the auxiliary wheel lifting / lowering device 13 of this embodiment will be described with reference to FIGS. 32 and 33.
Here, the left and right rear wheels 1RL, 1RR constituting the third wheel are rotatably supported by the wheel support member 20, respectively, as shown in FIGS. The left and right wheel support members 20 are supported to be swingable up and down with respect to the vehicle body 57 via individual suspension devices 24. 32 and 33, an upper link 21, a lower link 22, and a shock absorber 23 are illustrated as an example of a suspension member constituting the suspension device 24.
As shown in FIGS. 32 and 33, the auxiliary wheel lifting device supports left and right auxiliary wheel support members 25 that make the left and right auxiliary wheels 12 rotatable, and left and right auxiliary wheel support members 25 supported by a vehicle body 57, respectively. And an approach / separation mechanism that drives the left and right auxiliary wheels 12 to move up and down in synchronization.
 さらに、補助輪昇降装置の構成を説明する。
 左右の補助輪12はそれぞれ、図32及び図33に示すように、左右の補助輪支持部材25に対し回転自在に支持されている。各補助輪支持部材25はそれぞれ、補助輪リンク機構で車輪-車体間に懸架されている。左右の各補助輪リンク機構は、図32及び図33に示すように、第1~第3のリンク25~28で構成されている。第1のリンク26は、対応する補助輪支持部材25と上記車輪支持部材20とを上下揺動可能な状態で連結されている。第2及び第3のリンク27,28は、補助輪支持部材25と車体57とを上下揺動可能な状態で連結されている。
Further, the configuration of the auxiliary wheel lifting device will be described.
As shown in FIGS. 32 and 33, the left and right auxiliary wheels 12 are rotatably supported by the left and right auxiliary wheel support members 25, respectively. Each auxiliary wheel support member 25 is suspended between the wheel and the vehicle body by an auxiliary wheel link mechanism. Each of the left and right auxiliary wheel link mechanisms includes first to third links 25 to 28, as shown in FIGS. The first link 26 connects the corresponding auxiliary wheel support member 25 and the wheel support member 20 in a state in which the first link 26 can swing up and down. The second and third links 27 and 28 are connected so that the auxiliary wheel support member 25 and the vehicle body 57 can swing up and down.
 ここで、第1のリンク26は、車輪支持部材20への連結点が補助輪支持部材25への連結点よりも高く設定されている。また、第3のリンク28の補助輪支持部材25への連結点が、第2のリンク27の補助輪支持部材25への連結点よりも下方に配置されている。ここで、上記第1~第3のリンク25~28の補助輪支持部材25への連結点の相互関係は、上記配置に限定されない。第2のリンク27の変位によって、補助輪12が昇降可能な構成になっていればよい。なお、上記補助輪リンク機構を構成する第1~第3のリンク26~28は同一平面状に配置することが好ましい。 Here, the first link 26 is set such that the connection point to the wheel support member 20 is higher than the connection point to the auxiliary wheel support member 25. Further, the connection point of the third link 28 to the auxiliary wheel support member 25 is disposed below the connection point of the second link 27 to the auxiliary wheel support member 25. Here, the mutual relationship of the connection points of the first to third links 25 to 28 to the auxiliary wheel support member 25 is not limited to the above arrangement. The auxiliary wheel 12 only needs to be configured to be able to move up and down by the displacement of the second link 27. The first to third links 26 to 28 constituting the auxiliary wheel link mechanism are preferably arranged on the same plane.
 本実施形態の上記接近・離隔機構は、ボールねじ機構である。すなわち、上記接近・離隔機構は、ねじ軸35と、そのねじ軸35に螺合する一対のナット36R、36Lとを備える。そして、上記駆動部は、上記ねじ軸35を回転駆動するモータ37から構成される。
 上記ねじ軸35は、車幅方向に延びて回転可能な状態で車体57に取り付けられている。ねじ軸35は、軸方向中央部を基準にして、右側に延びる右側ねじ部35bと左側に延びる左側ねじ部35aとを有し、その右側ねじ部35bと左側ねじ部35aのねじの向きが逆向きに設定されている、その右側ねじ部35bと左側ねじ部35aとにそれぞれナット36R、36Lが螺合している。これによって、上記ねじ軸35の回転運動に伴い、左右のナット36R、36L間が接近・離隔する方向に当該左右のナット36R、36Lが直線運動する。そして、上記右側ねじ部35bに螺合するナット36Rに対し右側に位置する第2のリンクの車体側端部が上下揺動可能に連結している。また、左側ねじ部35aに螺合するナット36Lに対し左側に位置する第2のリンク27の車体側端部が上下揺動可能に連結している。
The approach / separation mechanism of the present embodiment is a ball screw mechanism. That is, the approach / separation mechanism includes a screw shaft 35 and a pair of nuts 36 </ b> R and 36 </ b> L that are screwed onto the screw shaft 35. The drive unit includes a motor 37 that rotationally drives the screw shaft 35.
The screw shaft 35 extends in the vehicle width direction and is attached to the vehicle body 57 in a rotatable state. The screw shaft 35 has a right screw portion 35b extending to the right side and a left screw portion 35a extending to the left side with respect to the axial central portion, and the screw directions of the right screw portion 35b and the left screw portion 35a are reversed. Nuts 36R and 36L are screwed into the right and left screw portions 35b and 35a, respectively, which are set in the directions. As a result, the left and right nuts 36R, 36L linearly move in the direction in which the left and right nuts 36R, 36L approach and separate from each other as the screw shaft 35 rotates. And the vehicle body side edge part of the 2nd link located in the right side with respect to the nut 36R screwed together with the said right side screw part 35b is connected so that rocking | fluctuation is possible. Further, the vehicle body side end portion of the second link 27 located on the left side is connected to the nut 36L screwed to the left side screw portion 35a so as to be vertically swingable.
 そして、上記ねじ軸35に対して、歯車を介してモータ37の出力軸が接続されている。上記モータ37は車体57に固定されている。
 上記構成によれば、モータ37の回転トルクがねじ軸35に伝達され、そのねじ軸35の回転に伴い、左右のナット36R、36Lが接近・離隔する。左右のナット36R、36Lが接近・離隔することで、左右の第2のリンク27の車体側端部間が接近・離隔する。そして、左右の第2のリンク27の車体側端部間が離れるにつれて、図32に示すように、補助輪12が上昇して当該補助輪12が格納状態となる。逆に、左右の第2のリンク27の車体側端部間が近付くにつれて、図33に示すように、補助輪12が下降して、車体57を持ち上げた状態となる。
 ここで、補助輪12は車幅方向に転動するので、上記昇降時における補助輪12の旋回方向は、車幅方向に設定しておくことが好ましい。もちろん、上記昇降時における補助輪12の旋回が、車幅方向以外、例えば車両前後方向となるようにリンク配置を設定する。
The output shaft of the motor 37 is connected to the screw shaft 35 via a gear. The motor 37 is fixed to the vehicle body 57.
According to the above configuration, the rotational torque of the motor 37 is transmitted to the screw shaft 35, and the left and right nuts 36 </ b> R and 36 </ b> L approach and separate as the screw shaft 35 rotates. When the left and right nuts 36R, 36L approach / separate, the vehicle body side end portions of the left / right second links 27 approach / separate. Then, as the distance between the vehicle body side ends of the left and right second links 27 increases, the auxiliary wheel 12 rises and the auxiliary wheel 12 enters the retracted state, as shown in FIG. Conversely, as the distance between the vehicle body side ends of the left and right second links 27 approaches, the auxiliary wheel 12 descends and the vehicle body 57 is lifted, as shown in FIG.
Here, since the auxiliary wheel 12 rolls in the vehicle width direction, it is preferable to set the turning direction of the auxiliary wheel 12 in the vehicle width direction at the time of raising and lowering. Of course, the link arrangement is set so that the turning of the auxiliary wheel 12 at the time of raising and lowering is in the vehicle front-rear direction other than the vehicle width direction.
 また、上記リフトモータ制御回路14は、補助輪12を昇降するモータ37からモータ位置、電流値を読み取り当該モータ37の位置制御を行う。
 上記補助操舵制御部30は、図5に示すように、車両制御を行うコントローラ15の一部のプログラムとして構成される。ここで、コントローラ15は、CPU、ROM、RAM等で構成され、ROMには各種の処理を実現するプログラムが格納されている。コントローラ15は運転者の操作スイッチ、シフト操作によるシフトポジション、および車輪速センサ10よる車輪の回転速度を読み取る。そして、コントローラ15は、センサ等からの信号に基づき車両状態を判定し、インターフェース回路を通じて、制動力を制御するブレーキ制御回路6、補助輪12を昇降するリフトモータ制御回路14などへと通信して指令可能となっている。
The lift motor control circuit 14 reads the motor position and current value from the motor 37 that raises and lowers the auxiliary wheel 12 and controls the position of the motor 37.
As shown in FIG. 5, the auxiliary steering control unit 30 is configured as a part of a program of the controller 15 that performs vehicle control. Here, the controller 15 is constituted by a CPU, a ROM, a RAM, and the like, and programs for realizing various processes are stored in the ROM. The controller 15 reads the driver's operation switch, the shift position by the shift operation, and the rotational speed of the wheel by the wheel speed sensor 10. Then, the controller 15 determines the vehicle state based on the signal from the sensor or the like, and communicates with the brake control circuit 6 for controlling the braking force, the lift motor control circuit 14 for raising and lowering the auxiliary wheel 12 and the like through the interface circuit. Command is possible.
 上記補助操舵制御部30は、図5に示すように、補助輪リフト処理部30Aと、動力差配分処理部30Bとを備える。
 補助輪リフト処理部30Aは、補助操舵作動スイッチ19がONになったことを検出すると、リフトモータ制御回路14に下降指令を供給する。また、補助輪リフト処理部30Aは、補助操舵作動スイッチ19がOFFになったことを検出すると、リフトモータ制御回路14に上昇指令を供給する。ここで、リフトモータ制御回路14は、下降指令によってモータ37を駆動して、補助輪12を下方に旋回するようにリンクを予め設定した回転角だけ回転駆動し、上昇指令によって、補助輪12を上方に旋回するようにリンクが予め設定した回転角だけ旋回するようにモータ37を駆動する。
As shown in FIG. 5, the auxiliary steering control unit 30 includes an auxiliary wheel lift processing unit 30A and a power difference distribution processing unit 30B.
When the auxiliary wheel lift processing unit 30 </ b> A detects that the auxiliary steering operation switch 19 is turned on, the auxiliary wheel lift processing unit 30 </ b> A supplies a lowering command to the lift motor control circuit 14. In addition, when the auxiliary wheel lift processing unit 30A detects that the auxiliary steering operation switch 19 is turned off, the auxiliary wheel lift processing unit 30A supplies a lift command to the lift motor control circuit 14. Here, the lift motor control circuit 14 drives the motor 37 by the lowering command, rotationally drives the link by a preset rotation angle so as to turn the auxiliary wheel 12 downward, and the auxiliary wheel 12 is driven by the raising command. The motor 37 is driven so that the link turns by a preset rotation angle so as to turn upward.
 本実施形態の動力差配分処理部30Bは、補助操舵作動スイッチ19がONと判定すると、ブレーキ制御回路6を介して、右駆動輪1FRのブレーキ装置8を作動して、ブレーキ操作と無関係に、当該右駆動輪1FRに対して予め設定した制動力を付与する。
 なお、動力差配分処理部30Bは、補助操舵作動スイッチ19がONと判定すると、左右前輪1FL、1FRの両方に制動力を付与し、上記補助輪12の下降が完了したら、左前輪1FL側の制動力だけ解除するようにしても良い。
When determining that the auxiliary steering operation switch 19 is ON, the power difference distribution processing unit 30B of the present embodiment operates the brake device 8 of the right drive wheel 1FR via the brake control circuit 6, and regardless of the brake operation, A preset braking force is applied to the right drive wheel 1FR.
When the auxiliary steering operation switch 19 is determined to be ON, the power difference distribution processing unit 30B applies a braking force to both the left and right front wheels 1FL and 1FR. Only the braking force may be released.
 次に、上記補助操舵制御部30の処理の例を、図6を参照して説明する。
 この補助操舵制御部30の処理は、予め設定したサンプリング時間毎に実施される。
 補助操舵制御部30は、まずステップS10にて、補助操舵作動スイッチ19からの信号に基づき、当該スイッチの操作があったか否かを判定する。そして、補助操舵作動スイッチ19の操作があったと判定するとステップS20に移行する。
Next, an example of processing of the auxiliary steering control unit 30 will be described with reference to FIG.
The processing of the auxiliary steering control unit 30 is performed every preset sampling time.
First, in step S10, the auxiliary steering control unit 30 determines whether or not the switch has been operated based on a signal from the auxiliary steering operation switch 19. If it is determined that the auxiliary steering operation switch 19 has been operated, the process proceeds to step S20.
 ステップS20では、車両が停止しているか否かを判定する。車両が停止していると判定した場合には、ステップS30に移行する。一方、車両が停止していないと判定した場合にはステップS25に移行する。
 ここで、車両の停止判定は、例えば次のように実施すれば良い。すなわち、車輪速センサ10からの信号に基づき車速を検出し、検出した車速が、車両が停止していると見なせる予め設定した設定車速(例えば5Km/h)以下か否かで判定する。
In step S20, it is determined whether or not the vehicle is stopped. When it determines with the vehicle having stopped, it transfers to step S30. On the other hand, if it is determined that the vehicle is not stopped, the process proceeds to step S25.
Here, the vehicle stop determination may be performed, for example, as follows. That is, the vehicle speed is detected based on a signal from the wheel speed sensor 10, and the determination is made based on whether or not the detected vehicle speed is equal to or lower than a preset vehicle speed (for example, 5 Km / h) that can be regarded as the vehicle being stopped.
 ステップS25では、運転者にブレーキ操作を促す旨の報知を行う。その後、ステップS10に移行する。
 ステップS30では、補助操舵作動スイッチ19がONに操作されたか否かを判定する。ONに操作されたと判定した場合には、ステップS30に移行する。補助操舵作動スイッチ19がOFFに操作されたと判定した場合にはステップS100に移行する。
 ステップS40では、補助輪リフト処理部30Aが、補助輪12を下降させて接地させる制御を行う。本実施形態では、各モータ37に下降指令を供給する。これによって、車体後部が持ち上げられる。そして、後輪1RL、1RR側の接地荷重が低減する。
In step S25, the driver is notified that the brake operation is urged. Thereafter, the process proceeds to step S10.
In step S30, it is determined whether or not the auxiliary steering operation switch 19 has been turned ON. If it is determined that the operation has been turned ON, the process proceeds to step S30. If it is determined that the auxiliary steering operation switch 19 is turned off, the process proceeds to step S100.
In step S <b> 40, the auxiliary wheel lift processing unit 30 </ b> A performs control to lower the auxiliary wheel 12 and to ground it. In the present embodiment, a lowering command is supplied to each motor 37. As a result, the rear part of the vehicle body is lifted. And the ground load on the rear wheels 1RL, 1RR is reduced.
 次に、ステップS50では、動力差配分処理部30Bが、右前輪1FRに対して制動力を付与する処理を行う。なお、付与する制動力は、右前輪1FRの回転をロック可能な大きさが好ましい。
 次に、ステップS60では、上記補助輪12の下降完了及び、右前輪1FRへの制動力付与が完了したことを検出すると、乗員に対して補助操舵可能の旨の情報呈示を報知する。報知は、乗員が視認可能なナビゲーション装置の表示部などに表示したり、音声によって実施する。
 その後、処理を終了する。
Next, in step S50, the power difference distribution processing unit 30B performs a process of applying a braking force to the right front wheel 1FR. The applied braking force is preferably large enough to lock the rotation of the right front wheel 1FR.
Next, in step S60, when it is detected that the auxiliary wheel 12 has been lowered and the braking force has been applied to the right front wheel 1FR, the passenger is informed of information presentation indicating that auxiliary steering is possible. The notification is displayed on a display unit or the like of a navigation device that can be visually recognized by an occupant, or is performed by voice.
Thereafter, the process ends.
 一方、補助操舵作動スイッチ19がOFFに操作されてステップS100に移行すると、動力差配分処理部30Bが、右前輪1FRに対して付与していた制動力の解除処理を行う。
 次に、ステップS110では、補助輪リフト処理部30Aが、補助輪12を上昇させて格納する処理を行う。本実施形態では、各モータ37に上昇指令を供給する。
 次に、ステップS120では、上記補助輪12の格納完了及び、右前輪1FRへの制動力解除が完了したことを検出すると、乗員に対して補助操舵処理の解除した旨の情報呈示を報知する。報知は、乗員が視認可能なナビゲーション装置の表示部などに表示したり、音声によって実施する。
 その後、処理を終了する。
On the other hand, when the auxiliary steering operation switch 19 is turned off and the process proceeds to step S100, the power difference distribution processing unit 30B performs a process of releasing the braking force applied to the right front wheel 1FR.
Next, in step S110, the auxiliary wheel lift processing unit 30A performs a process of raising the auxiliary wheel 12 and storing it. In the present embodiment, a rising command is supplied to each motor 37.
Next, in step S120, when it is detected that the storage of the auxiliary wheel 12 has been completed and the release of the braking force to the right front wheel 1FR has been completed, an information presentation to the effect that the auxiliary steering process has been canceled is notified to the occupant. The notification is displayed on a display unit or the like of a navigation device that can be visually recognized by an occupant, or is performed by voice.
Thereafter, the process ends.
(動作その他)
 上記補助輪12の昇降動作について図32及び図33を参照して説明する。
 上記補助輪昇降装置13は、初期状態においては、図32に示すように、左右のナット36R、36L間を離隔させた状態となっている。左右のナット36R、36L間を離隔させることで、左右の第2のリンク27の車体側端部が同期をとって車幅方向外方に変位する。これによって、補助輪12は、第3のリンク28の補助輪支持部材25への連結点を揺動中心として、車幅方向内方且つ上方に向けて旋回して、当該補助輪12は車体下部に格納された状態となっている。すなわち、図32のように、補助輪12は、上昇して車体下面に格納された状態となっている。
(Operation other)
The raising / lowering operation | movement of the said auxiliary | assistant wheel 12 is demonstrated with reference to FIG.32 and FIG.33.
In the initial state, the auxiliary wheel elevating device 13 is in a state in which the left and right nuts 36R and 36L are separated from each other as shown in FIG. By separating the left and right nuts 36R, 36L, the vehicle body side ends of the left and right second links 27 are synchronized and displaced outward in the vehicle width direction. As a result, the auxiliary wheel 12 turns inward and upward in the vehicle width direction with the connection point of the third link 28 to the auxiliary wheel support member 25 as the center of oscillation, and the auxiliary wheel 12 It is in the state stored in. That is, as shown in FIG. 32, the auxiliary wheel 12 is raised and stored in the lower surface of the vehicle body.
 なおこのとき、第1のリンク26の補助輪支持部材25への連結点が、第3のリンク28の補助輪支持部材25への連結点よりも下方に位置している。このため、上記左右の第2のリンク27の車体側端部の外方への同期をとった移動に伴い、第1のリンク26は、車輪側連結点を中心に、車幅方向内方且つ上方に向けて旋回し、その分、更に補助輪12は上昇した状態となっている。 At this time, the connection point of the first link 26 to the auxiliary wheel support member 25 is located below the connection point of the third link 28 to the auxiliary wheel support member 25. For this reason, as the left and right second links 27 move in synchronization with the vehicle body side ends, the first links 26 are inward in the vehicle width direction around the wheel side connection points. The vehicle turns in the upward direction, and the auxiliary wheel 12 is further raised accordingly.
 一方、補助操舵作動スイッチ19が「ON」となって、補助輪12の下降指示と判定されると、モータ37が回転駆動することで、左右のナット36R、36L間を接近させる。左右のナット36R、36L間が接近すると、図33に示すように、左右の第2のリンク27が同期をとって車幅方向中央側に変位し、これによって、補助輪12は、第3のリンク28の補助輪支持部材25への連結点を揺動中心として、車幅方向外方且つ下方に向かうように旋回する。これによって、補助輪12は、車幅方向外方に向かいながら下降して接地し、更に当該補助輪12は下降して車体後部を持ち上げる。 On the other hand, when the auxiliary steering operation switch 19 is turned “ON” and it is determined that the auxiliary wheel 12 is to be lowered, the motor 37 is rotationally driven to bring the left and right nuts 36R and 36L closer to each other. When the left and right nuts 36R and 36L approach each other, the left and right second links 27 are displaced in the vehicle width direction center side in synchronization with each other, as shown in FIG. The vehicle pivots outward and downward in the vehicle width direction with the connection point of the link 28 to the auxiliary wheel support member 25 as the swing center. As a result, the auxiliary wheel 12 descends and grounds while facing outward in the vehicle width direction, and the auxiliary wheel 12 further descends and lifts the rear part of the vehicle body.
 補助輪12が接地した状態後は、地面からの反力が第1のリンク26を通じて車輪支持部材20に対し上方に向かう力が入力される結果、後輪1RL、1RRの下方へのストローク量が小さく抑えられる。このように補助輪12で車体57を持ち上げるとき、補助輪支持部材25と車輪支持部材20と連結する第1のリンク26によって、後輪1RL、1RRがリバウンド方向にストロークすることを規制するため、後輪1RL、1RRの下方へのストロークを抑えつつ、補助輪12で車体57を持ち上げることが出来る。 After the auxiliary wheel 12 is in contact with the ground, a reaction force from the ground is input to the wheel support member 20 through the first link 26. As a result, the downward stroke amount of the rear wheels 1RL and 1RR is increased. Can be kept small. When the vehicle body 57 is lifted by the auxiliary wheel 12 in this way, the first wheel 26 connected to the auxiliary wheel support member 25 and the wheel support member 20 is used to restrict the rear wheels 1RL and 1RR from moving in the rebound direction. The vehicle body 57 can be lifted by the auxiliary wheels 12 while suppressing the downward stroke of the rear wheels 1RL and 1RR.
 ここで、車体57を持ち上げた状態において、補助輪12は車幅方向に転動するように使用される。このため、本実施形態では、上記昇降する際の補助輪12の旋回方向は、上記転動方向つまり車幅方向に旋回するように設定している。これによって、補助輪12の昇降時に伴う当該補助輪12の不要な磨耗を抑制出来る。
 特に、本実施形態では、第1のリンク26の補助輪支持部材25への連結点が、第3のリンク28の補助輪支持部材25への連結点よりも下方に位置している。このため、上記左右の第2のリンク27の移動に伴い、第1のリンク26は、車輪側連結点を中心に、車幅方向外方且つ下方に向けて旋回し、その分、第1のリンク26のリンク軸線が鉛直方向に近付いて、後輪1RL、1RRのリバウンドストロークを抑制する力が大きくなる。
Here, in a state where the vehicle body 57 is lifted, the auxiliary wheel 12 is used so as to roll in the vehicle width direction. For this reason, in this embodiment, the turning direction of the auxiliary wheel 12 when moving up and down is set to turn in the rolling direction, that is, the vehicle width direction. Thereby, unnecessary wear of the auxiliary wheel 12 associated with the raising and lowering of the auxiliary wheel 12 can be suppressed.
In particular, in this embodiment, the connection point of the first link 26 to the auxiliary wheel support member 25 is positioned below the connection point of the third link 28 to the auxiliary wheel support member 25. For this reason, with the movement of the left and right second links 27, the first link 26 turns outward and downward in the vehicle width direction around the wheel side connection point, and accordingly, the first link 26 The link axis of the link 26 approaches the vertical direction, and the force for suppressing the rebound stroke of the rear wheels 1RL and 1RR increases.
 また、本実施形態では、車幅方向に離れた左右の補助輪12が同期をとって、しかも機械的なリンク機構によって車体後部を持ち上げる。このため、傾斜のついた路面における補助操舵への移行であっても、路面と平行に車体後部を上方に持ち上げることが出来る。すなわち、車体後部の左右へのぐらつきを小さく抑制可能となることで安定して車体を持ち上げることが出来るようになる。
 ここで、下降した補助輪12の上昇動作は、上記説明した格納動作となる。
In the present embodiment, the left and right auxiliary wheels 12 separated in the vehicle width direction are synchronized, and the rear part of the vehicle body is lifted by a mechanical link mechanism. For this reason, even when shifting to auxiliary steering on an inclined road surface, the rear part of the vehicle body can be lifted upward in parallel with the road surface. That is, the wobbling of the rear part of the vehicle body to the left and right can be suppressed to be small, so that the vehicle body can be lifted stably.
Here, the raising operation of the lowered auxiliary wheel 12 is the storing operation described above.
 次に、図7を参照して、運転者の操作に伴う、補助操舵装置の動作状態の状態遷移について説明する。
 本実施形態の補助操舵装置は、乗員が補助操舵作動スイッチ19をONに操作することで作動を開始する。
 通常の走行可能状態では、図32のように、補助輪12は車体57側に格納されて当該補助輪12が非接地状態となっている。この状態において、運転者は、アクセル操作を行うことで、車両を前進または後退させる。
 補助操舵を実施する場合には、運転者はブレーキを作動させて車両を停車し、シフトレバーを「N」または「P」レンジへ入れる。
Next, with reference to FIG. 7, the state transition of the operation state of the auxiliary steering device accompanying the operation of the driver will be described.
The auxiliary steering device of the present embodiment starts to operate when the occupant operates the auxiliary steering operation switch 19 to ON.
In the normal travelable state, as shown in FIG. 32, the auxiliary wheel 12 is stored on the vehicle body 57 side, and the auxiliary wheel 12 is in a non-grounded state. In this state, the driver moves the vehicle forward or backward by performing an accelerator operation.
When carrying out the auxiliary steering, the driver operates the brake to stop the vehicle, and puts the shift lever into the “N” or “P” range.
 続いて、運転者が補助操舵作動スイッチ19を「ON」にすると、補助操舵制御部30が起動して、補助操舵制御部30を、左右の補助輪12を下降させて各補助輪12を接地させ、図33に示すように、続けて車体57を持ち上げる。この結果、後輪1RL、1RRの接地荷重をゼロ若しくは小さくする。
 続いて、補助操舵制御部30は、右前輪1FRに制動力を付与して当該右前輪1FRをロック状態にした後に、補助操舵が可能となった旨の情報呈示を行う。
Subsequently, when the driver turns on the auxiliary steering operation switch 19, the auxiliary steering control unit 30 is activated, and the auxiliary steering control unit 30 is lowered to lower the left and right auxiliary wheels 12 to ground each auxiliary wheel 12. Then, as shown in FIG. 33, the vehicle body 57 is continuously lifted. As a result, the ground load of the rear wheels 1RL and 1RR is reduced to zero or small.
Subsequently, the auxiliary steering control unit 30 presents information indicating that auxiliary steering is possible after applying braking force to the right front wheel 1FR to lock the right front wheel 1FR.
 運転者は、補助操舵が可能となったことを確認すると、シフトレバーを「D」または「R」レンジへ入れることで、前方への転回か後方への転回かを選択する。
 ここで、本実施形態の補助操舵装置の例では、右前輪1FRに制動力を付与する構成としたので、前進(Dレンジ)で右転回、後退(Rレンジ)で左転回が可能な状態となる。
 なお、左前輪1FLに制動力を付与する構成とした場合には、前進(Dレンジ)で左転回、後退(Rレンジ)で右転回が可能な状態となる。
When the driver confirms that auxiliary steering is possible, the driver selects whether to turn forward or backward by putting the shift lever into the “D” or “R” range.
Here, in the example of the auxiliary steering device of the present embodiment, since the braking force is applied to the right front wheel 1FR, it is possible to turn right in forward (D range) and turn left in backward (R range). Become.
In addition, when it is set as the structure which provides a braking force to the left front wheel 1FL, it will be in the state in which it can turn to the left by forward (D range), and to the right by reverse (R range).
 ここでは、前進(Dレンジ)が選択されたとする。
 この状態で、運転者がアクセルペダル5を踏んで、エンジン2の出力を駆動輪1FL、1FRに伝達する際に、差動歯車装置3で、駆動力が左前輪1FL側に主として動力分配される結果、左右前輪1FL、1FRに駆動力差が発生する。この左右前輪1FL、1FRの駆動力差によって、車体57に対してヨー方向のモーメントが発生する。このとき、左右前輪1FL、1FRのうち、右前輪1FRに制動力が付与されていることから、左前輪1FLだけが駆動力で転動する。これによって、車両は、制動力が付与されている右前輪1FRを中心に右転回する。このとき、上記モーメントの力によって、補助輪12で持ち上げられた車体後部が補助輪12の転動に伴い左側に横移動する。
Here, it is assumed that forward (D range) is selected.
In this state, when the driver steps on the accelerator pedal 5 to transmit the output of the engine 2 to the drive wheels 1FL, 1FR, the driving force is mainly distributed to the left front wheel 1FL side by the differential gear unit 3. As a result, a driving force difference is generated between the left and right front wheels 1FL and 1FR. Due to the difference in driving force between the left and right front wheels 1FL and 1FR, a moment in the yaw direction is generated with respect to the vehicle body 57. At this time, since the braking force is applied to the right front wheel 1FR among the left and right front wheels 1FL, 1FR, only the left front wheel 1FL rolls with the driving force. Thus, the vehicle turns right around the right front wheel 1FR to which the braking force is applied. At this time, the rear part of the vehicle body lifted by the auxiliary wheel 12 moves laterally to the left as the auxiliary wheel 12 rolls due to the force of the moment.
 このような補助操舵によって、車両は、小回りで移動することで、狭い場所での縦列駐車などが可能となる。
 図8にそのときの、車両MMの転回状態の例を示す。この図8に示すように、右前輪1FRを中心にして車両MMを転回することで、最小回転半径が小さくなる。
 更に、運転者がアクセル操作を止めてブレーキ操作を行う事で、車両の転回動作が停止する。
 上記車両が停止して、運転者がシフトレバーをDレンジかPレンジに入れた後に、補助操舵作動スイッチ19をOFFに変更したとする。すると、補助操舵制御部30は、右前輪1FRへの制動力付与を解除すると共に、補助輪12を上昇して車体57側に格納する。その後、補助操舵制御部30は、補助操舵の解除を乗員に報知する。
By such auxiliary steering, the vehicle moves in a small turn, thereby enabling parallel parking in a narrow place.
FIG. 8 shows an example of the turning state of the vehicle MM at that time. As shown in FIG. 8, the minimum turning radius is reduced by turning the vehicle MM around the right front wheel 1FR.
Furthermore, when the driver stops the accelerator operation and performs the brake operation, the turning operation of the vehicle is stopped.
Assume that the auxiliary steering operation switch 19 is changed to OFF after the vehicle stops and the driver puts the shift lever into the D range or the P range. Then, the auxiliary steering control unit 30 releases the application of the braking force to the right front wheel 1FR and raises the auxiliary wheel 12 to store it on the vehicle body 57 side. Thereafter, the auxiliary steering control unit 30 notifies the occupant of the cancellation of the auxiliary steering.
 以上のように、本実施形態の補助操舵装置によれば、車体57の下部に補助輪12を設けて、その補助輪12を昇降装置によって路面上に支持することで、持ち上げられた後輪1RL、1RRは車体57に対して左右方向の拘束力が外れる。
 この状態で、運転者がシフト操作により転回方向を選択した後に、アクセル操作を行うことで、左右後輪1RL、1RRに駆動力差が発生して、車体57にヨー方向のモーメントが発生する。このとき、右前輪1FRに制動力が付与されているので、その制動が掛かっている右前輪1FR若しくはその近傍を中心に車体57が旋回可能となる。
As described above, according to the auxiliary steering device of the present embodiment, the auxiliary wheel 12 is provided at the lower portion of the vehicle body 57, and the auxiliary wheel 12 is supported on the road surface by the lifting device, whereby the rear wheel 1RL lifted up. 1RR releases the restraining force in the left-right direction with respect to the vehicle body 57.
In this state, when the driver selects the turning direction by the shift operation and then performs the accelerator operation, a driving force difference is generated between the left and right rear wheels 1RL and 1RR, and a moment in the yaw direction is generated in the vehicle body 57. At this time, since the braking force is applied to the right front wheel 1FR, the vehicle body 57 can turn around the right front wheel 1FR to which the braking is applied or its vicinity.
 このとき、補助輪12は、無駆動のフリー状態となっているので、上記車体57に発生するヨー方向のモーメントを阻害しないかその阻害が小さい状態で車体横方向に転動する。
 この結果、車両の最小回転半径が通常状態よりも小さくなることで、図8に示すように、縦列駐車に必要なスペースは極端に小さくなる。
 また、横方向に並んで駐車する場合の一例を図10に示す。この図10に記載の例では、駐車位置の前まで車両MMを前進させた後に、車両MMを転回し、そのまま前進させることで目的の位置に駐車させることになる。
At this time, since the auxiliary wheel 12 is in a non-driving free state, the auxiliary wheel 12 rolls in the lateral direction of the vehicle body in a state in which the moment in the yaw direction generated in the vehicle body 57 is not inhibited or small.
As a result, as the minimum turning radius of the vehicle becomes smaller than that in the normal state, the space required for parallel parking is extremely reduced as shown in FIG.
FIG. 10 shows an example of parking in the horizontal direction. In the example shown in FIG. 10, after the vehicle MM is moved forward to the front of the parking position, the vehicle MM is turned and moved forward to be parked at the target position.
 次に、補助輪12を車体下面に格納した状態での作用について説明する。
 図27は、後輪1RL、1RRのバウンド・リバウンド時の補助輪12と各リンク26~28の挙動を模式的に図示した車両後面図である。
 第1~第3のリンク26~28は、上下揺動可能に部材間を連結しているので、第1~第3のリンク26~28は、車輪のバウンド・リバウンドに追従して上下に揺動する。このため、図27のように、車輪のバウンド・リバウンドに伴いサスペンションが上下方向に動いた場合であっても、格納した補助輪12は、サスペンションの挙動に影響することなく、上下方向に追従して動作する。
Next, the operation when the auxiliary wheel 12 is stored in the lower surface of the vehicle body will be described.
FIG. 27 is a vehicle rear view schematically showing the behavior of the auxiliary wheel 12 and the links 26 to 28 when the rear wheels 1RL and 1RR are bound and rebound.
Since the first to third links 26 to 28 are connected to each other so as to be swingable up and down, the first to third links 26 to 28 swing up and down following the bounding / rebounding of the wheels. Move. For this reason, as shown in FIG. 27, even when the suspension moves in the vertical direction in association with the bounding / rebounding of the wheel, the stored auxiliary wheel 12 follows the vertical direction without affecting the behavior of the suspension. Works.
 また、本実施形態では、補助輪12を昇降させる駆動部であるモータ37を車体57に取り付けている。このため、後輪1RL、1RRと車体57との間に昇降する補助輪12を設定しても、バネ下の重量の増加を低減することが出来る。
 そして、突起乗り越し時のサスペンション性能が、上記補助輪12を昇降させる接近・離隔機構をサスペンションだけに支持させる場合に比べて向上する。
 図28は、上記サスペンション性能をシミュレーションした結果の図である。
 このシミュレーションは、車速30km/hで突起を乗り越した場合における、後輪バネ上加速度を評価したものである。実線が本実施形態の補助輪12の昇降装置を採用した場合のシミュレーション結果であり、破線は、特許文献1に記載の補助輪12の昇降装置を採用した場合のシミュレーション結果である。
 この図28から分かるように、本実施形態の補助輪12の昇降装置を採用した場合の方が、車速30km/hで突起を乗り越した場合の後輪バネ上加速度は小さく乗心地性能が向上することがわかる。
Further, in the present embodiment, a motor 37 that is a drive unit for raising and lowering the auxiliary wheel 12 is attached to the vehicle body 57. For this reason, even if the auxiliary wheel 12 that moves up and down is set between the rear wheels 1RL and 1RR and the vehicle body 57, an increase in unsprung weight can be reduced.
Then, the suspension performance when riding over the protrusion is improved as compared with the case where the approach / separation mechanism for raising and lowering the auxiliary wheel 12 is supported only by the suspension.
FIG. 28 is a diagram showing a result of simulating the suspension performance.
This simulation is an evaluation of the acceleration on the rear wheel spring when the projection is passed over at a vehicle speed of 30 km / h. A solid line is a simulation result when the lifting device for the auxiliary wheel 12 according to the present embodiment is employed, and a broken line is a simulation result when the lifting device for the auxiliary wheel 12 described in Patent Document 1 is employed.
As can be seen from FIG. 28, when the lifting device for the auxiliary wheel 12 of the present embodiment is adopted, the acceleration on the rear wheel spring is small when the protrusion is passed at a vehicle speed of 30 km / h, and the riding comfort performance is improved. I understand that.
 以上説明してきたように、本実施形態の補助輪12の昇降装置にあっては、車体57の下部に補助輪12を設けてその補助輪12を昇降装置によって昇降自在に支持すると共にモータ37の駆動によって回転駆動可能に支持して、この補助輪12を車両のサスペンションを介して車体57に支持した。これによって、接近・離隔機構を作動して持ち上げられた車体57はサスペンションと共に上昇することで、昇降装置の昇降ストロークが少なくなって、装置のコンパクト化を図ることができる。 As described above, in the lifting device for the auxiliary wheel 12 according to the present embodiment, the auxiliary wheel 12 is provided at the lower portion of the vehicle body 57 and the auxiliary wheel 12 is supported by the lifting device so as to be lifted and lowered. The auxiliary wheel 12 was supported by the vehicle body 57 via a suspension of the vehicle. As a result, the vehicle body 57 lifted by operating the approach / separation mechanism is lifted together with the suspension, so that the lifting stroke of the lifting device is reduced and the device can be made compact.
 また、持ち上げられた車体57はサスペンション部材を介して路面上の補助輪12に支持されることで、補助輪12による車両の走行時にも通常走行と同様にサスペンション部材が作用することとなって乗心地が損なわれることがない。かつ、補助輪12を格納した場合の通常の走行状態においても、重量部品である駆動部は車体57側に装着されているため、バネ下重量の増加が抑制され、突起乗り越し時のサスペンション性能は向上する。 Further, the lifted vehicle body 57 is supported by the auxiliary wheel 12 on the road surface via the suspension member, so that the suspension member acts when the vehicle is driven by the auxiliary wheel 12 in the same manner as in normal driving. There is no loss of comfort. Even in the normal running state when the auxiliary wheels 12 are stored, the driving part, which is a heavy component, is mounted on the vehicle body 57 side, so that an increase in unsprung weight is suppressed, and the suspension performance when riding over the protrusion is improves.
 (変形例)
 (1)上記実施形態では、第1のリンク26の車輪側端部を車輪支持部材に連結している。これに代えて、第1のリンク26の車輪側端部を、ロアリンクなどのサスペンション部材に連結しても良い。
 (2)左右後輪1RL、1RRは補助輪12で持ち上げて接地荷重が低減するので、当該左右後輪1RL、1RRは、駆動輪1FL、1FRであっても従動輪であっても構わない。
 (3)上記説明では、左右前輪1FL、1FRを駆動輪とする場合で例示した。左右後輪1RL、1RRを駆動輪の場合には、上記補助輪12を車体前部側に配置すれば良い。
 この場合には、例えば右後輪1RR側に制動を付加するように設定する。この場合における、補助操舵による車両MMの転回例を図9に示す。この場合、例えば、車両MMを駐車位置の前まで後退させた後に該車両MMを図9のように転回し、そのまま駐車位置へ後退して駐車させることが可能となる。
(Modification)
(1) In the above embodiment, the wheel side end of the first link 26 is connected to the wheel support member. Alternatively, the wheel side end of the first link 26 may be connected to a suspension member such as a lower link.
(2) Since the left and right rear wheels 1RL, 1RR are lifted by the auxiliary wheel 12 to reduce the ground load, the left and right rear wheels 1RL, 1RR may be drive wheels 1FL, 1FR or driven wheels.
(3) In the above description, the left and right front wheels 1FL and 1FR are illustrated as driving wheels. When the left and right rear wheels 1RL and 1RR are drive wheels, the auxiliary wheel 12 may be disposed on the vehicle body front side.
In this case, for example, setting is made so that braking is applied to the right rear wheel 1RR side. An example of turning of the vehicle MM by auxiliary steering in this case is shown in FIG. In this case, for example, after the vehicle MM is retracted to the front of the parking position, the vehicle MM can be turned as shown in FIG.
 (4)ここで、補助操舵時に補助輪12を車両横方向に転動するように、左右の補助輪12の回転軸は、車両前後方向に向くように配置する。
 但し、本実施形態では、右前輪1FRを中心に車体57が転回するので、図13に示すように、上記補助輪12の回転軸は、当該右前輪1FRに向かうように設定しておくことが好ましい。このように転回時の中心に回転軸を向けることで、より補助輪12は転動し易くなる。図13中、符号Lは補助輪12の回転軸の延長線を示す。
(4) Here, the rotation shafts of the left and right auxiliary wheels 12 are arranged to face in the vehicle front-rear direction so that the auxiliary wheels 12 roll in the vehicle lateral direction during auxiliary steering.
However, in the present embodiment, since the vehicle body 57 rotates around the right front wheel 1FR, the rotation shaft of the auxiliary wheel 12 may be set to face the right front wheel 1FR as shown in FIG. preferable. In this way, the auxiliary wheel 12 is more easily rolled by directing the rotation shaft to the center at the time of turning. In FIG. 13, symbol L indicates an extension line of the rotation shaft of the auxiliary wheel 12.
 (5)このとき、補助輪12と補助輪支持部材25とを回転軸受を介して連結して、キャスタホイールとしておくと良い。この場合、補助輪12の回転軸が自在に変向することで、転回時の中心に回転軸が自動調整される。
 (6)また上記実施形態では、右側の駆動輪を制動を付加する車輪として説明したが、制動を付加する車輪を左側の駆動輪に設定しても構わない。
 また上記説明では、制動を付加する駆動輪を予め設定しているが、運転者の指示によって制動を付加する駆動輪を選択可能に構成しても良い。例えば、車両を停止したときの操向輪の転舵方向によって制動を付加する駆動輪を決定して良い。
(5) At this time, the auxiliary wheel 12 and the auxiliary wheel support member 25 may be coupled via a rotary bearing to form a caster wheel. In this case, the rotation axis of the auxiliary wheel 12 is freely changed, so that the rotation axis is automatically adjusted to the center at the time of turning.
(6) In the above embodiment, the right driving wheel is described as a wheel to which braking is applied, but the wheel to which braking is applied may be set as the left driving wheel.
In the above description, driving wheels to which braking is applied are set in advance, but driving wheels to which braking is applied may be selected according to a driver's instruction. For example, the drive wheel to which braking is applied may be determined according to the steering direction of the steered wheel when the vehicle is stopped.
 (7)上記実施形態では、一方の駆動輪に制動を付与し、他方の駆動輪に駆動力を付与することで、左右の駆動輪に駆動力差を発生する場合で例示した。
 左右の駆動輪に駆動力差を発生する構成はこれに限定されない。例えば、左右の駆動輪の回転方向を逆向きにすることで、駆動力差を発生させるようにしても良い。この場合には、左右駆動輪の約中央位置を中心にして車体57は転回する。
 また、左右駆動輪の両方共に駆動力を伝達するが、その伝達する駆動力を変える事で、駆動力差を発生させるようにしても良い。
 ねじ軸35,ナット36R、36Lは、接近・離隔機構を構成する。モータ37は駆動部を構成する。
(7) In the above-described embodiment, an example is given in which a driving force difference is generated between the left and right driving wheels by applying braking to one driving wheel and applying driving force to the other driving wheel.
The configuration for generating a driving force difference between the left and right driving wheels is not limited to this. For example, the drive force difference may be generated by reversing the rotation directions of the left and right drive wheels. In this case, the vehicle body 57 rotates around the center position of the left and right drive wheels.
In addition, the driving force is transmitted to both the left and right driving wheels, but a driving force difference may be generated by changing the transmitted driving force.
The screw shaft 35 and the nuts 36R and 36L constitute an approach / separation mechanism. The motor 37 constitutes a drive unit.
(本実施形態の効果)
 本実施形態は、次の効果を奏する。
 (1)左右の各補助輪12はそれぞれ、当該補助輪12を回転可能に支持する補助輪支持部材25が、第1のリンクを介して車輪支持部材又はサスペンション部材と上下揺動可能に連結すると共に第2のリンク27を介して車体57と上下揺動可能に連結する。接近・離隔機構は、左右の上記第2のリンク27の車体側端部間を接近・離隔する。駆動部は、車体57に取り付けられて、上記接近・離隔機構を駆動する。
(Effect of this embodiment)
This embodiment has the following effects.
(1) In each of the left and right auxiliary wheels 12, an auxiliary wheel support member 25 that rotatably supports the auxiliary wheel 12 is connected to a wheel support member or a suspension member via a first link so as to be vertically swingable. At the same time, the vehicle body 57 is connected to the vehicle body 57 through the second link 27 so as to be swingable up and down. The approach / separation mechanism approaches / separates the vehicle body side end portions of the left and right second links 27. The drive unit is attached to the vehicle body 57 and drives the approach / separation mechanism.
 この構成によれば、補助輪12を昇降するための駆動部を車体57側に設けることで、ばね下の重量の増加を抑えることが可能となる。また本実施形態では、左右の補助輪12を駆動する接近・離隔機構及び駆動部が共通なので、左右の補助輪12の昇降が同期をとって実施可能となる。
 更に、上記車輪支持部材又はサスペンション部材と車体57とを、直列状に連結されたリンク及び補助輪支持部材25を介して、連結した構造となっている。このため、地面からリンクに伝達される力によって、車輪支持部材の下方へのストローク(リバウンド)を抑制若しくは低減可能となる。この結果、昇降に伴う補助輪12の昇降ストロークの増大を抑えることも可能となる。
According to this configuration, it is possible to suppress an increase in unsprung weight by providing the driving unit for raising and lowering the auxiliary wheel 12 on the vehicle body 57 side. In this embodiment, since the approach / separation mechanism and the drive unit for driving the left and right auxiliary wheels 12 are common, the left and right auxiliary wheels 12 can be moved up and down in synchronization.
Further, the wheel support member or suspension member and the vehicle body 57 are connected via a link and an auxiliary wheel support member 25 connected in series. For this reason, the downward stroke (rebound) of the wheel support member can be suppressed or reduced by the force transmitted from the ground to the link. As a result, it is also possible to suppress an increase in the lifting stroke of the auxiliary wheel 12 due to lifting.
 (2)上記接近・離隔機構は、車幅方向に延びるねじ軸35と、そのねじ軸35に螺合する一対のナット36R、36Lとを備えるボールねじ機構である。上記駆動部は、上記ねじ軸35を回転駆動するモータ37である。上記ねじ軸35は、右側に延びる右側ねじ部35bと左側に延びる左側ねじ部35aとを有し、その右側ねじ部35bと左側ねじ部35aのねじの向きが逆向きに設定され、且つ、その右側ねじ部35bと左側ねじ部35aとにそれぞれナット36R、36Lが螺合している。上記右側ねじ部35bに螺合するナット36Rに対し右側に位置する第2のリンク27の車体側端部が連結し、左側ねじ部35aに螺合するナット36Lに左側に位置する第2のリンク27の車体側端部が連結する。
 この構成を採用することで、左右の補助輪12の昇降が同期をとって実施可能となる。
 また、接近・離隔機構を構成するボールねじ機構は、車幅方向に沿って配置されることから、接近・離隔機構を配置するための、上下方向が前後に要する空間が小さく出来る。
(2) The approach / separation mechanism is a ball screw mechanism including a screw shaft 35 extending in the vehicle width direction and a pair of nuts 36R and 36L screwed to the screw shaft 35. The drive unit is a motor 37 that rotationally drives the screw shaft 35. The screw shaft 35 has a right screw portion 35b extending to the right side and a left screw portion 35a extending to the left side, and the screw directions of the right screw portion 35b and the left screw portion 35a are set in opposite directions, and Nuts 36R and 36L are screwed into the right screw portion 35b and the left screw portion 35a, respectively. The vehicle body side end portion of the second link 27 located on the right side is connected to the nut 36R screwed into the right screw portion 35b, and the second link located on the left side of the nut 36L screwed into the left screw portion 35a. 27 end portions on the vehicle body side are connected.
By adopting this configuration, the left and right auxiliary wheels 12 can be moved up and down in synchronization.
Further, since the ball screw mechanism constituting the approach / separation mechanism is arranged along the vehicle width direction, the space required in the vertical direction for arranging the approach / separation mechanism can be reduced.
 「第4実施形態の2」
 次に、別の実施形態について図面を参照して説明する。なお、上記実施形態と同様な構成については同一の符号を付して説明する。
(構成)
 本実施形態の補助輪12の昇降装置の基本構成は、上記第4実施形態の1と同様である。但し、図34及び図35に示すように、ねじ軸35に回転トルクを伝達する駆動部としてのモータ37R、37Lを2台設けた場合の例である。各モータ37R、37Lは個別に車体57に取り付けられている。また各モータ37R、37Lは、個別の歯車を介してねじ軸35にトルクを伝達可能となっている。
"2 of the fourth embodiment"
Next, another embodiment will be described with reference to the drawings. In addition, about the structure similar to the said embodiment, the same code | symbol is attached | subjected and demonstrated.
(Constitution)
The basic configuration of the lifting device for the auxiliary wheel 12 of the present embodiment is the same as 1 of the fourth embodiment. However, as shown in FIGS. 34 and 35, this is an example in which two motors 37R and 37L are provided as drive units for transmitting rotational torque to the screw shaft 35. Each motor 37R, 37L is individually attached to the vehicle body 57. The motors 37R and 37L can transmit torque to the screw shaft 35 via individual gears.
 すなわち、本実施形態は、1つの接近・離隔機構に対し2つの駆動部37R、37Lを設けた例である。駆動部としてのモータは3台以上あっても良い。
 ここで、補助輪12の作動時つまり車体57を持ち上げる際には相対的に大出力が必要であるが、補助輪12を格納する場合には相対的に小出力としても問題がない。
 これに鑑み、本実施形態では、第4実施形態の1で使用するモータ37よりも出力が小さい小型のモータ37R、37Lを2台使用し、補助輪12を下げて車体57を持ち上げる際には、2台のモータ37R、37Lを協働して駆動し、補助輪12を上昇させて格納する場合には、2台のモータ37R、37Lのうちの1台だけを駆動するように、2台のモータ37R、37Lの駆動を行うことが可能となる。この場合には、消費電力を抑えることに繋がる。
That is, this embodiment is an example in which two drive units 37R and 37L are provided for one approach / separation mechanism. There may be three or more motors as drive units.
Here, when the auxiliary wheel 12 is operated, that is, when the vehicle body 57 is lifted, a relatively large output is required. However, when the auxiliary wheel 12 is stored, there is no problem even if the auxiliary wheel 12 is stored.
In view of this, in this embodiment, when using two small motors 37R and 37L whose output is smaller than that of the motor 37 used in 1 of the fourth embodiment, the auxiliary wheel 12 is lowered and the vehicle body 57 is lifted. When the two motors 37R and 37L are driven in cooperation and the auxiliary wheel 12 is raised and stored, two units are set so that only one of the two motors 37R and 37L is driven. It becomes possible to drive the motors 37R and 37L. In this case, power consumption is reduced.
 またこのとき、補助輪12を格納する際に駆動するモータ37R側が故障しフェール状態に至った場合でも、もう一方のモータ37L側を駆動することで補助輪12を格納することが可能となる。このように、主に使用するモータ37Rが故障しても、補助輪12が車両の通常走行(自走)を妨げることが無い。
 その他の構成や作用等は、上記第4実施形態の1と同様である。
 ここで、ねじ軸35、ナット36R。36Lは接近・離隔機構を構成する。モータ37R、37Lはそれぞれ駆動部を構成する。
At this time, even if the motor 37R side that is driven when storing the auxiliary wheel 12 breaks down and a failure state is reached, the auxiliary wheel 12 can be stored by driving the other motor 37L side. Thus, even if the motor 37R used mainly breaks down, the auxiliary wheel 12 does not prevent the vehicle from traveling normally (self-propelled).
Other configurations, operations, and the like are the same as those of the first embodiment.
Here, the screw shaft 35 and the nut 36R. 36L constitutes an approach / separation mechanism. Each of the motors 37R and 37L constitutes a drive unit.
(本実施形態の効果)
 本実施形態は、上記第4実施形態の1の効果に加えて、次の効果を奏する。
 (1)補助輪昇降装置は、一つの接近・離隔機構と、その接近・離隔機構を駆動する2以上の駆動部とを備える。そして、補助輪12を上昇させる際には、2以上の駆動部の一つの駆動部が接近・離隔機構を駆動する。
 この構成によれば、補助輪12の上昇させる駆動部が故障しても、他の駆動部で補助輪12を上昇して格納することが可能となる。
(Effect of this embodiment)
In addition to the effect of 1 of the said 4th Embodiment, this embodiment has the following effect.
(1) The auxiliary wheel lifting device includes one approach / separation mechanism and two or more drive units that drive the approach / separation mechanism. And when raising the auxiliary wheel 12, one drive part of two or more drive parts drives an approach and separation mechanism.
According to this configuration, even if the drive unit that raises the auxiliary wheel 12 fails, the auxiliary wheel 12 can be raised and stored by another drive unit.
 「第4実施形態の3」
  次に、別の実施形態について図面を参照して説明する。なお、上記実施形態と同様な構成については同一の符号を付して説明する。
(構成)
 本実施形態の補助輪12の昇降装置の基本構成は、上記第4実施形態の1及び2と同様である。
 但し、本実施形態では、第3のリンク28を省略している。もっとも第3のリンク28を設けても良い。
“3 of the fourth embodiment”
Next, another embodiment will be described with reference to the drawings. In addition, about the structure similar to the said embodiment, the same code | symbol is attached | subjected and demonstrated.
(Constitution)
The basic configuration of the lifting device for the auxiliary wheel 12 of this embodiment is the same as 1 and 2 of the fourth embodiment.
However, in the present embodiment, the third link 28 is omitted. However, the third link 28 may be provided.
 また、本実施形態では、接近・離隔機構を、図36に示すように、4本のリンク(アーム40~44)を平行四辺形状に配置したパンタグラフ状のリンク構造と、接近・離隔機構本体を構成するねじ棒47とで構成した。
 なお、この接近・離隔機構は、パンタグラフ式ジャッキ機構と同じ機構である。すなわち、パンタグラフ式ジャッキ装置を車体57に取り付け、そのパンタグラフ式ジャッキ装置をモータ37R、37Lで駆動することで、第2のリンク27や補助輪12を通じて車体57を持ち上げる。
 上記パンタグラフ状のリンク構造は、2本の右側アーム43,44と、2本の左側アーム40,41と、第1連結部45と、第2連結部46とを備える。
In this embodiment, as shown in FIG. 36, the approach / separation mechanism includes a pantograph-like link structure in which four links (arms 40 to 44) are arranged in a parallelogram shape, and an approach / separation mechanism main body. It comprised with the screw rod 47 to comprise.
This approach / separation mechanism is the same mechanism as the pantograph jack mechanism. That is, the pantograph jack device is attached to the vehicle body 57 and the pantograph jack device is driven by the motors 37R and 37L, thereby lifting the vehicle body 57 through the second link 27 and the auxiliary wheel 12.
The pantograph-like link structure includes two right arms 43 and 44, two left arms 40 and 41, a first connecting portion 45, and a second connecting portion 46.
 2本の右側アーム43,44は、それぞれ右側の第2のリンク27の車体側端部に外端部を連結して左側の第2のリンク27側に延びている。2本の左アームは、左側の第2のリンク27の車体側端部に外端部を連結して右側の第2のリンク27側に延びている。第1連結部45は、上側の右側アーム43の内端部と上側の左側アーム40の内端部とを連結する。第2連結部46は、下側の右側アーム44の内端部と下側の左側アーム41の内端部とを連結する。 The two right arms 43 and 44 extend to the left second link 27 side by connecting the outer end to the vehicle body side end of the right second link 27, respectively. The two left arms extend to the right second link 27 side by connecting the outer end to the vehicle body side end of the left second link 27. The first connecting portion 45 connects the inner end portion of the upper right arm 43 and the inner end portion of the upper left arm 40. The second connecting portion 46 connects the inner end portion of the lower right arm 44 and the inner end portion of the lower left arm 41.
 上記第1連結部45には、内径面に雌ねじが形成された筒部材(不図示)が設けられている。そして、第2連結部46に対し、軸回転自由且つ軸方向への移動を拘束した状態でねじ棒47の下端部側を支持させ、このねじ棒47の上部側を上記筒部材に螺合して第1ねじ部を構成し、その第1ねじ部でのねじ運動で、上記2つの連結部45,46間が接近・離隔する構成となっている。 The first connecting portion 45 is provided with a cylindrical member (not shown) having an internal thread formed on the inner diameter surface. Then, the lower end side of the screw rod 47 is supported with respect to the second connecting portion 46 in a state where the shaft rotation is free and the movement in the axial direction is restricted, and the upper side of the screw rod 47 is screwed into the cylindrical member. The first screw portion is configured, and the two connecting portions 45 and 46 are moved closer to and away from each other by the screw motion at the first screw portion.
 そして上記ねじ棒47の上端部に対し、個別の歯車を介して、駆動部を構成する2台のモータ37R、37Lが連結している。
 このように、本実施形態は、接近・離隔機構本体を構成するねじ棒47を回転駆動する駆動部としてのモータ37R、37Lを2台設けた場合の例である。各モータ37R、37Lは個別に車体57に取り付けられている。すなわち、本実施形態は、1つの接近・離隔機構に対し2つの駆動部を設けた例である。駆動部としてのモータ37R、37Lは3台以上あっても良い。
And two motors 37R and 37L which comprise a drive part are connected with respect to the upper-end part of the said screw rod 47 via a separate gearwheel.
As described above, this embodiment is an example in which two motors 37R and 37L are provided as drive units that rotationally drive the screw rods 47 constituting the approach / separation mechanism main body. Each motor 37R, 37L is individually attached to the vehicle body 57. That is, this embodiment is an example in which two drive units are provided for one approach / separation mechanism. There may be three or more motors 37R, 37L as drive units.
 本実施形態では、ねじ棒47を回転変位して、2つの連結部45,46間の間隔を大きくすることで、左右の第2のリンク27の内端部は同期を取って接近し、2つの連結部45,46間の間隔を小さくすることで、左右の第2のリンク27の内端部は同期を取って離隔する。
 その他の構成や作用は、上記第4実施形態の2と同様である。
 ここで、ねじ棒47はねじ軸(接近・離隔機構本体)を構成する。
In the present embodiment, the screw rod 47 is rotationally displaced to increase the distance between the two connecting portions 45 and 46, so that the inner ends of the left and right second links 27 approach each other in synchronization. By reducing the distance between the two connecting portions 45 and 46, the inner end portions of the left and right second links 27 are separated in synchronization.
Other configurations and operations are the same as those in 2 of the fourth embodiment.
Here, the screw rod 47 constitutes a screw shaft (an approach / separation mechanism main body).
(本実施形態の効果)
 本実施形態は、上記第4実施形態の1の効果に加えて、次の効果を奏する。
 (1)上記接近・離隔機構は、パンタグラフ状のリンク構造と、上記リンク構造の第1連結部45と第2連結部46の間を接近・離隔する接近・離隔機構部本体と、を備える。駆動部は、上記接近・離隔機構部本体を駆動する。
 この構成を採用することで、左右の第2のリンク27の内端部を接近・離隔することが可能となる。
(Effect of this embodiment)
In addition to the effect of 1 of the said 4th Embodiment, this embodiment has the following effect.
(1) The approach / separation mechanism includes a pantograph-like link structure and an approach / separation mechanism main body that approaches / separates between the first connection part 45 and the second connection part 46 of the link structure. The driving unit drives the approach / separation mechanism main body.
By adopting this configuration, the inner ends of the left and right second links 27 can be approached and separated.
 (2)接近・離隔機構部本体は、上記第1連結部45と第2連結部46とを連結するねじ棒47で構成される。上記駆動部は、上記ねじ棒47を回転駆動することで、上記第1連結部45と第2連結部46の間を接近・離隔させる。
 この構成によれば、パンタグラフ状のリンク構造の剛性を確保しつつ、そのリンク構造を変化させることが可能となる。
(2) The approach / separation mechanism main body includes a screw rod 47 that connects the first connecting portion 45 and the second connecting portion 46. The drive unit rotates and drives the screw rod 47 to approach and separate the first connection part 45 and the second connection part 46.
According to this configuration, it is possible to change the link structure while ensuring the rigidity of the pantograph-like link structure.
 「第4実施形態の4」
 次に、別の実施形態について図面を参照して説明する。なお、上記実施形態と同様な構成については同一の符号を付して説明する。
(構成)
 本実施形態の補助輪12の昇降装置の基本構成は、上記第4実施形態の3と同様である。但し、本実施形態の接近・離隔機構を、図37に示すように、4本のリンク(アーム40~44)を平行四辺形状に配置したパンタグラフ状のリンク構造と、接近・離隔機構本体を構成する直動装置50とで構成した。
 本実施形態のパンタグラフ状のリンク構造は、上記第4実施形態の3のパンタグラフ状のリンク構造と同じである。
"4 of the fourth embodiment"
Next, another embodiment will be described with reference to the drawings. In addition, about the structure similar to the said embodiment, the same code | symbol is attached | subjected and demonstrated.
(Constitution)
The basic configuration of the lifting device for the auxiliary wheel 12 of the present embodiment is the same as 3 of the fourth embodiment. However, the approach / separation mechanism of the present embodiment comprises a pantograph-like link structure in which four links (arms 40 to 44) are arranged in a parallelogram shape and an approach / separation mechanism main body as shown in FIG. The linear motion device 50 is configured.
The pantograph-like link structure of the present embodiment is the same as the pantograph-like link structure 3 of the fourth embodiment.
 上記接近・離隔機構部本体は、回転部品51の回転運動を直線運動に変換するボールねじ機構やリニアガイドからなる直動装置50である。その直動装置50は、上記回転部品51の回転変位に伴い、上記第1連結部45と第2連結部46の間を接近・離隔する構成となっている。
 上記回転部品51は、回転自在に車体57に軸支されている。
 本実施形態の駆動部として、2つのモータ37R、37Lを備える、各モータ37R、37Lの出力軸は、無端環状のベルト53によって上記回転部品51に連結され、モータ37R、37Lの回転トルクがベルト伝動で上記回転部品51に伝達可能となっている。なお、モータ37R、37L毎に個別のベルト53で上記回転部品51に連結しても良い。
 この構成によれば、モータ37R、37Lを駆動することで、2つの連結部45,46間の間隔を接近・離隔させて、左右の第2のリンク27の内端部は同期を取って接近・離隔する。
 その他の構成や作用は、上記第4実施形態の2と同様である。
The approach / separation mechanism main body is a linear motion device 50 including a ball screw mechanism or a linear guide that converts the rotational motion of the rotating component 51 into a linear motion. The linear motion device 50 is configured to approach / separate between the first connecting portion 45 and the second connecting portion 46 in accordance with the rotational displacement of the rotating component 51.
The rotating component 51 is rotatably supported on the vehicle body 57.
As the drive unit of this embodiment, two motors 37R and 37L are provided. The output shafts of the motors 37R and 37L are connected to the rotating component 51 by an endless annular belt 53, and the rotational torque of the motors 37R and 37L is applied to the belt Transmission to the rotating part 51 is possible. Note that the motors 37R and 37L may be connected to the rotating component 51 by individual belts 53.
According to this configuration, by driving the motors 37R and 37L, the distance between the two connecting portions 45 and 46 is approached and separated, and the inner end portions of the left and right second links 27 are approached in synchronization.・ Separate.
Other configurations and operations are the same as those in 2 of the fourth embodiment.
 (本実施形態の効果)
 本実施形態は、上記第4実施形態の1及び3の効果に加えて、次の効果を奏する。
 (1)接近・離隔機構部本体は、回転部品51の回転運動を直線運動に変換する直動装置50であって、当該直線運動で、上記第1連結部45と第2連結部46の間を接近・離隔する構成となっている。上記回転部品51は回転自在に車体57に軸支されている。上記駆動部は、上記回転部品51を回転変位させる。
 直動装置50を直接駆動する回転部品51を車体57に軸支させることで、回転部品51の回転時の反力を確実に車体57に取ることが可能となり、その分、確実に直動装置50を作動させることが可能となる。
 (2)駆動部はモータ37R、37Lから構成され、モータ37R、37Lのトルクを上記回転部品51にベルト伝動で伝達する。
 この構成によれば、ベルト伝動とすることで、モータ37R、37Lの配置位置の自由度が向上する。
(Effect of this embodiment)
This embodiment has the following effects in addition to the effects 1 and 3 of the fourth embodiment.
(1) The approach / separation mechanism main body is a linear motion device 50 that converts the rotational motion of the rotating component 51 into a linear motion, and is between the first coupling portion 45 and the second coupling portion 46 by the linear motion. It is the composition which approaches and separates. The rotating component 51 is pivotally supported on the vehicle body 57 so as to be rotatable. The drive unit rotationally displaces the rotating component 51.
The rotary component 51 that directly drives the linear motion device 50 is pivotally supported on the vehicle body 57, so that the reaction force at the time of rotation of the rotary component 51 can be surely applied to the vehicle body 57. 50 can be activated.
(2) The drive unit includes motors 37R and 37L, and transmits the torque of the motors 37R and 37L to the rotating component 51 by belt transmission.
According to this configuration, the degree of freedom of the arrangement positions of the motors 37R and 37L is improved by using belt transmission.
 (その他)
 ここで、第4実施形態の3及び4において、パンタグラフ状のリンク構造の上下にオフセットした第1連結部45と第2連結部46との間隔を、ねじ棒47や直動装置50で変更する場合を例示している。第1連結部45と第2連結部46との間隔が変更出来れば、他の機構によって実現しても良い。例えば、上側の右側アーム43,44と上側の左側アーム40,41との交角を変更可能な機構を第1連結部45に設けて実現しても良い。
(Other)
Here, in 3 and 4 of 4th Embodiment, the space | interval of the 1st connection part 45 and the 2nd connection part 46 offset up and down of the pantograph-like link structure is changed with the screw rod 47 or the linear motion apparatus 50. The case is illustrated. As long as the distance between the first connecting part 45 and the second connecting part 46 can be changed, it may be realized by another mechanism. For example, a mechanism capable of changing the intersection angle between the upper right arms 43 and 44 and the upper left arms 40 and 41 may be provided in the first connecting portion 45.
 以上、本願が優先権を主張する、日本国特許出願2012-166223(2012年7月26日出願)、日本国特許出願2012-166224(2012年7月26日出願)、日本国特許出願2012-166228(2012年7月26日出願)、日本国特許出願2012-166229(2012年7月26日出願)の全内容は、参照により本開示の一部をなす。
 ここでは、限られた数の実施形態を参照しながら説明したが、権利範囲はそれらに限定されるものではなく、上記の開示に基づく各実施形態の改変は当業者にとって自明なことである。
As described above, the Japanese patent application 2012-166223 (filed on July 26, 2012), the Japanese patent application 2012-166224 (filed on July 26, 2012), the Japanese patent application 2012- The entire contents of 166228 (filed on July 26, 2012) and Japanese Patent Application 2012-166229 (filed on July 26, 2012) are hereby incorporated by reference.
Although the present invention has been described with reference to a limited number of embodiments, the scope of rights is not limited thereto, and modifications of each embodiment based on the above disclosure are obvious to those skilled in the art.
G     車両重心
1FL 駆動輪
2     エンジン
3     差動歯車装置
11   シフトポジション検出センサ
12   補助輪
13   補助輪昇降装置
14   リフトモータ制御回路
15   コントローラ
18   制動制御装置
19   補助操舵作動スイッチ
20   車輪支持部材
21   アッパーリンク部材
21   アッパーリンク
22   ロアリンク部材
23   ショックアブソーバ
24   サスペンション装置
25   補助輪支持部材
26   リンク部材
27   リンク部材
27   リンク部材(リフトモータ)
28   リンク
29   リフトモータ
30   補助操舵制御部
30A 補助輪リフト処理部
30B 動力差配分処理部
30C 操舵ロック処理部
G Vehicle center of gravity 1 FL Drive wheel 2 Engine 3 Differential gear device 11 Shift position detection sensor 12 Auxiliary wheel 13 Auxiliary wheel lifting device 14 Lift motor control circuit 15 Controller 18 Braking control device 19 Auxiliary steering operation switch 20 Wheel support member 21 Upper link member 21 Upper link 22 Lower link member 23 Shock absorber 24 Suspension device 25 Auxiliary wheel support member 26 Link member 27 Link member 27 Link member (lift motor)
28 link 29 lift motor 30 auxiliary steering control unit 30A auxiliary wheel lift processing unit 30B power difference distribution processing unit 30C steering lock processing unit

Claims (24)

  1.  車両の前側又は後側の一方に配置されると共に左右で対向する2輪からなる左右の駆動輪を備える車両に設けた補助操舵装置であって、
     平面視において車両の前側又は後側の他方に配置され且つ無駆動で使用される補助輪と、
     車体に対し上記補助輪を昇降させる補助輪昇降装置と、
     上記補助輪が接地しているときに上記左右の駆動輪に駆動力差を発生させる駆動力差調整装置と、
    を備えることを特徴とする車両の補助操舵装置。
    An auxiliary steering device provided in a vehicle having left and right drive wheels that are arranged on one of the front side and the rear side of the vehicle and that are opposed to each other on the left and right sides,
    An auxiliary wheel that is arranged on the other side of the front side or the rear side of the vehicle in plan view and used without driving;
    An auxiliary wheel elevating device for elevating the auxiliary wheel with respect to the vehicle body;
    A driving force difference adjusting device for generating a driving force difference between the left and right driving wheels when the auxiliary wheel is grounded;
    An auxiliary steering device for a vehicle, comprising:
  2.  上記駆動力差調整装置は、上記左右の駆動輪のうちの一方の車輪に制動を付加すると共に他方の車輪に駆動力を伝達することで、上記駆動力差を発生させることを特徴とする請求項1に記載した車両の補助操舵装置。 The driving force difference adjusting device generates the driving force difference by applying braking to one of the left and right driving wheels and transmitting the driving force to the other wheel. Item 2. The auxiliary steering device for a vehicle according to Item 1.
  3.  上記駆動力差調整装置は、上記左右の駆動輪に対し個別にブレーキ圧を可変制御可能な左右独立制動制御装置と、動力源からの動力を上記左右の駆動輪に対し動力差を付けて配分する差動歯車装置と、を備えることを特徴とする請求項1又は請求項2に記載した車両の補助操舵装置。 The driving force difference adjusting device distributes the power from the power source to the left and right driving wheels with a difference in power between the left and right driving wheels and the left and right independent braking control device capable of variably controlling the brake pressure individually. The auxiliary steering device for a vehicle according to claim 1, further comprising: a differential gear device that performs the operation.
  4.  上記駆動力差調整装置は、上記左右の駆動輪に対し個別にパーキングブレーキを作動できる左右独立駐車ブレーキ装置と、動力源からの動力を上記左右の駆動輪に対し動力差を付けて配分する差動歯車装置と、を備えることを特徴とする請求項1又は請求項2に記載した車両の補助操舵装置。 The driving force difference adjusting device includes a left and right independent parking brake device capable of individually operating a parking brake for the left and right driving wheels, and a difference for distributing power from a power source to the left and right driving wheels with a power difference. The auxiliary steering device for a vehicle according to claim 1 or 2, further comprising a moving gear device.
  5.  上記駆動力差調整装置は、上記左右の駆動輪に個別の動力源となるモータを装着したインホイールモータを備えることを特徴とする請求項1又は請求項2に記載した車両の補助操舵装置。 The vehicle auxiliary steering device according to claim 1 or 2, wherein the driving force difference adjusting device includes an in-wheel motor in which a motor as an individual power source is mounted on the left and right driving wheels.
  6.  平面視において、上記補助輪を、当該補助輪が接地した状態において、上記補助輪の回転軸の延長線が上記左右の駆動輪のうち相対的に駆動力が小さくなる駆動輪側に向かうように設定することを特徴とする請求項2~請求項5のいずれか1項に記載した車両の補助操舵装置。 In plan view, when the auxiliary wheel is in contact with the auxiliary wheel, the extension line of the rotation shaft of the auxiliary wheel is directed toward the driving wheel where the driving force is relatively small among the left and right driving wheels. 6. The auxiliary steering device for a vehicle according to claim 2, wherein the auxiliary steering device is set.
  7.  上記補助輪は、路面からの入力によって回転方向の向きが変わるキャスタホイールからなることを特徴とする請求項1~請求項5のいずれか1項に記載した車両の補助操舵装置。 The auxiliary steering device for a vehicle according to any one of claims 1 to 5, wherein the auxiliary wheel is a caster wheel whose direction of rotation changes according to an input from a road surface.
  8.  平面視において、上記補助輪は、当該補助輪が接地した状態では、車両重心に対し上記左右の駆動輪とは反対側に位置することを特徴とする請求項1~請求項7のいずれか1項に記載した車両の補助操舵装置。 8. The plane according to claim 1, wherein the auxiliary wheel is located on a side opposite to the left and right driving wheels with respect to the center of gravity of the vehicle when the auxiliary wheel is grounded. A vehicle auxiliary steering apparatus as described in the paragraph.
  9.  平面視において上記左右の駆動輪よりも補助輪の位置に近い第3の車輪を備え、その第3の車輪が左右に離れた左右2輪から構成された車両に設けられる補助操舵装置であって、
     平面視において、上記左右2輪における上記駆動輪に近い側の端部同士を結んだ線よりも上記駆動輪から離れる位置に上記補助輪を配置することを特徴とする請求項8に記載した車両の補助操舵装置。
    An auxiliary steering device provided in a vehicle having a third wheel closer to the position of the auxiliary wheel than the left and right drive wheels in plan view, the third wheel being composed of two left and right wheels separated left and right. ,
    9. The vehicle according to claim 8, wherein the auxiliary wheel is disposed at a position farther from the driving wheel than a line connecting ends of the two left and right wheels closer to the driving wheel in plan view. Auxiliary steering device.
  10. 上記補助昇降装置により昇降される上記補助輪の昇降時の作動方向を、平面視において、上記補助輪の回転軸と垂直となるように設定することを特徴とする請求項6に記載した車両の補助操舵装置。 7. The vehicle according to claim 6, wherein an operating direction of the auxiliary wheel that is lifted and lowered by the auxiliary lifting device is set to be perpendicular to a rotation axis of the auxiliary wheel in plan view. Auxiliary steering device.
  11.  運転者が操舵指示のために操作される操舵操作子の操作量に応じて操向輪が転舵する車両に設けられた車両の補助操舵装置であって、
     上記補助輪が接地しているときに、上記操舵操作子の移動を制限する操舵操作制限装置を備えることを特徴とする請求項1~請求項10のいずれか1項に記載した車両の補助操舵装置。
    An auxiliary steering device for a vehicle provided in a vehicle in which steered wheels are steered according to an operation amount of a steering operator operated for a steering instruction by a driver,
    The auxiliary steering of a vehicle according to any one of claims 1 to 10, further comprising a steering operation limiting device that limits movement of the steering operator when the auxiliary wheel is in contact with the ground. apparatus.
  12.  車両の前側又は後側の一方に配置されると共に左右で対向する2輪からなる左右の駆動輪と、上記左右の駆動輪とは別の第3の車輪とを備えた車両の補助操舵方法であって、
     車体に支持される無駆動状態の補助輪を下降させて接地させることで、上記第3の車輪の接地荷重を減少若しくはゼロとした状態とした後に、上記左右の駆動輪に駆動力差を発生させて車両を移動させることを特徴とする車両の補助操舵方法。
    An auxiliary steering method for a vehicle, comprising: left and right drive wheels, which are arranged on one of the front side and rear side of the vehicle and facing left and right, and a third wheel different from the left and right drive wheels. There,
    A driving force difference is generated between the left and right driving wheels after the non-driving auxiliary wheel supported by the vehicle body is lowered and brought into contact with the ground to reduce or eliminate the ground load on the third wheel. An auxiliary steering method for a vehicle, characterized in that the vehicle is moved.
  13.  車輪を回転自在に支持する車輪支持部材がサスペンション部材を介して車体に懸架される車両に設けた、補助輪の昇降装置であって、
     補助輪を回転可能に支持する補助輪支持部材と、
     上記補助輪支持部材と上記車輪支持部材又はサスペンション部材とを上下揺動可能に連結する第1のリンクと、
     上記補助輪支持部材と車体とを上下揺動可能に連結する第2のリンクと、
     車体に支持されて、上記第2のリンクの補助輪側端部の位置を、上記第1のリンクの車輪側端部に対し接近・離隔する方向へ変位させる駆動機構と、
     を備えることを特徴とする補助輪の昇降装置。
    A wheel support member that rotatably supports a wheel is provided in a vehicle that is suspended from a vehicle body via a suspension member.
    An auxiliary wheel support member for rotatably supporting the auxiliary wheel;
    A first link that connects the auxiliary wheel support member and the wheel support member or the suspension member so as to be vertically swingable;
    A second link for connecting the auxiliary wheel support member and the vehicle body so as to be vertically swingable;
    A drive mechanism supported by the vehicle body for displacing the position of the auxiliary wheel side end of the second link in a direction approaching or separating from the wheel side end of the first link;
    A lifting device for an auxiliary wheel, comprising:
  14.  少なくとも補助輪が接地した状態において、第1のリンクの車輪支持部材への連結点を、第1のリンクの補助輪支持部材への連結点よりも高い位置に設定することを特徴とする請求項13に記載した補助輪の昇降装置。 The connection point of the first link to the wheel support member is set at a position higher than the connection point of the first link to the wheel support member in a state where at least the auxiliary wheel is grounded. The lifting device for auxiliary wheels described in 13.
  15.  第1のリンクの上記補助輪支持部材への連結点と第2のリンクの上記補助輪支持部材への連結点とを、互いに上下にオフセットして配置し、
     更に、上記補助輪支持部材と車体とを連結する第3のリンクを備え、
     上記第3のリンクの補助輪支持部材への連結点の位置は、上記第2のリンクの上記補助輪支持部材への連結点の位置よりも低いことを特徴とする請求項13又は請求項14に記載した補助輪の昇降装置。
    The connection point of the first link to the auxiliary wheel support member and the connection point of the second link to the auxiliary wheel support member are arranged offset with respect to each other,
    And a third link connecting the auxiliary wheel support member and the vehicle body,
    The position of the connection point of the third link to the auxiliary wheel support member is lower than the position of the connection point of the second link to the auxiliary wheel support member. Lifting device for the auxiliary wheel described in 1.
  16.  上記駆動機構は、第2のリンクを伸縮することで、上記第2のリンクの補助輪側端部の位置を、上記第1のリンクの車輪側端部に対し接近・離隔する方向へ変位させることを特徴とする請求項13~請求項15のいずれか1項に記載した補助輪の昇降装置。 The drive mechanism expands and contracts the second link to displace the position of the auxiliary wheel side end of the second link in a direction approaching and separating from the wheel side end of the first link. The auxiliary wheel lifting / lowering device according to any one of claims 13 to 15, wherein
  17.  上記駆動機構は、第2のリンクの車体側連結点を変位させることで、上記第2のリンクの補助輪側端部の位置を、上記第1のリンクの車輪側端部に対し接近・離隔する方向へ変位させることを特徴とする請求項13~請求項15のいずれか1項に記載した補助輪の昇降装置。 The drive mechanism displaces the connecting point on the vehicle body side of the second link, so that the position of the auxiliary wheel side end of the second link approaches and separates from the wheel side end of the first link. The auxiliary wheel lifting / lowering device according to any one of claims 13 to 15, wherein the lifting / lowering device is displaced in a direction of moving.
  18.  左右の車輪がそれぞれ左右の車輪支持部材に回転自在に支持され、その左右の車輪支持部材がそれぞれサスペンションを介して車体に懸架される車両に設けた、補助輪の昇降装置であって、
     車幅方向に離隔して配置された左右の補助輪を備え、
     各補助輪はそれぞれ、当該補助輪を回転可能に支持する補助輪支持部材が、第1のリンクを介して車輪支持部材又はサスペンション部材と上下揺動可能に連結すると共に第2のリンクを介して車体と上下揺動可能に連結し、
     更に、左右の上記第2のリンクの車体側端部間を接近・離隔する接近・離隔機構と、
     車体に取り付けられて、上記接近・離隔機構を駆動する駆動部と、
     を備えることを特徴とする補助輪の昇降装置。
    The left and right wheels are rotatably supported by the left and right wheel support members, respectively, and the left and right wheel support members are respectively provided on a vehicle that is suspended from the vehicle body via a suspension.
    It has left and right auxiliary wheels that are spaced apart in the vehicle width direction,
    Each auxiliary wheel has an auxiliary wheel support member that rotatably supports the auxiliary wheel connected to the wheel support member or the suspension member via the first link so as to swing up and down, and via the second link. Connected to the vehicle body so that it can swing up and down,
    Furthermore, an approach / separation mechanism for approaching / separating between the vehicle body side end portions of the left and right second links,
    A drive unit attached to the vehicle body for driving the approach / separation mechanism;
    A lifting device for an auxiliary wheel, comprising:
  19.  上記接近・離隔機構は、車幅方向に延びるねじ軸と、そのねじ軸に螺合する一対のナットとを備えるボールねじ機構であり、上記駆動部は、上記ねじ軸を回転駆動するモータであり、
     上記ねじ軸は、右側に延びる右側ねじ部と左側に延びる左側ねじ部とを有し、その右側ねじ部と左側ねじ部のねじの向きが逆向きに設定され、且つ、その右側ねじ部と左側ねじ部とにそれぞれナットが螺合しており、
     上記右側ねじ部に螺合するナットに対し右側に位置する第2のリンクの車体側端部が連結し、左側ねじ部に螺合するナットに対し左側に位置する第2のリンクの車体側端部が連結することを特徴とする請求項18に記載した補助輪の昇降装置。
    The approach / separation mechanism is a ball screw mechanism including a screw shaft extending in the vehicle width direction and a pair of nuts screwed to the screw shaft, and the drive unit is a motor that rotationally drives the screw shaft. ,
    The screw shaft has a right-hand thread portion extending to the right side and a left-hand thread portion extending to the left side, and the screw directions of the right-hand thread portion and the left-hand thread portion are set in opposite directions, and the right-hand screw portion and the left-hand side Each nut is screwed to the thread part,
    The vehicle body side end portion of the second link located on the right side is connected to the nut screwed to the right screw portion, and the vehicle body side end of the second link located on the left side to the nut screwed to the left screw portion. The lifting / lowering device for an auxiliary wheel according to claim 18, wherein the portions are connected.
  20.  上記接近・離隔機構は、
     右側の第2のリンクの車体側端部に外端部を連結して左側の第2のリンク側に延びる2本の右側アームと、左側の第2のリンクの車体側端部に外端部を連結して右側の第2のリンク側に延びる2本の左側アームと、2本の右側アームのうちの一方の右側アームの内端部と2本の左側アームのうちの一方の左側アームの内端部とを連結する第1連結部と、2本の右側アームのうちの他方の右側アームの内端部と2本の左側アームのうちの他方の左側アームの内端部とを連結する第2連結部と、上記第1連結部と第2連結部の間を接近・離隔する接近・離隔機構部本体と、を備え、
     上記駆動部は、上記接近・離隔機構部本体を駆動することを特徴とする請求項18に記載した補助輪の昇降装置。
    The approach / separation mechanism is
    Two right arms extending to the left second link side by connecting the outer end to the vehicle body side end of the second link on the right side, and an outer end portion on the vehicle body side end of the second link on the left side Of the two left arms extending to the right second link side, the inner end of one right arm of the two right arms, and one left arm of the two left arms. A first connecting portion that connects the inner end portion, an inner end portion of the other right arm of the two right arms, and an inner end portion of the other left arm of the two left arms are connected. A second connecting part, and an approach / separation mechanism main body that approaches / separates between the first connecting part and the second connecting part,
    19. The lifting device for an auxiliary wheel according to claim 18, wherein the driving unit drives the approach / separation mechanism main body.
  21.  上記接近・離隔機構部本体は、上記第1連結部と第2連結部とを連結するねじ軸で構成され、
     上記駆動部は、上記ねじ軸を回転駆動することで、上記第1連結部と第2連結部の間を接近・離隔させることを特徴とする請求項20に記載した補助輪の昇降装置。
    The approach / separation mechanism main body includes a screw shaft that connects the first connecting portion and the second connecting portion,
    21. The lifting device for an auxiliary wheel according to claim 20, wherein the driving unit rotates and drives the screw shaft to approach and separate the first connecting unit and the second connecting unit.
  22.  上記接近・離隔機構部本体は、回転部品の回転運動を直線運動に変換する直動装置であって、当該直線運動で、上記第1連結部と第2連結部の間を接近・離隔する構成となっていると共に、上記回転部品が回転自在に車体に軸支され、
     上記駆動部は、上記回転部品を回転変位させることを特徴とする特徴とする請求項20に記載した補助輪の昇降装置。
    The approach / separation mechanism main body is a linear motion device that converts the rotational motion of the rotating component into a linear motion, and is configured to approach / separate between the first connection portion and the second connection portion by the linear motion. And the above rotating parts are rotatably supported on the vehicle body,
    21. The lifting device for an auxiliary wheel according to claim 20, wherein the driving unit rotationally displaces the rotating component.
  23.  上記駆動部はモータから構成され、モータのトルクを上記回転部品にベルト伝動で伝達することを特徴とする請求項22に記載した補助輪の昇降装置。 23. The lifting device for an auxiliary wheel according to claim 22, wherein the driving unit is constituted by a motor, and transmits the torque of the motor to the rotating component by belt transmission.
  24.  上記駆動機構は、一つの接近・離隔機構と、その接近・離隔機構を駆動する2以上の駆動部とを備え、補助輪を上昇させる際には、2以上の駆動部の一つの駆動部が接近・離隔機構を駆動することを特徴とする請求項18~請求項23のいずれか1項に記載した補助輪の昇降装置。 The drive mechanism includes one approach / separation mechanism and two or more drive units that drive the approach / separation mechanism. When raising the auxiliary wheel, one drive unit of the two or more drive units is The auxiliary wheel lifting / lowering apparatus according to any one of claims 18 to 23, wherein an approach / separation mechanism is driven.
PCT/JP2013/004511 2012-07-26 2013-07-24 Auxiliary steering device for vehicle and auxiliary steering method for same, and elevation device for auxiliary wheel WO2014017089A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014526768A JP5930040B2 (en) 2012-07-26 2013-07-24 Auxiliary steering device and auxiliary steering method for vehicle, and lifting device for auxiliary wheel

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2012166228 2012-07-26
JP2012-166223 2012-07-26
JP2012166229 2012-07-26
JP2012-166224 2012-07-26
JP2012-166229 2012-07-26
JP2012-166228 2012-07-26
JP2012166223 2012-07-26
JP2012166224 2012-07-26

Publications (1)

Publication Number Publication Date
WO2014017089A1 true WO2014017089A1 (en) 2014-01-30

Family

ID=49996915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004511 WO2014017089A1 (en) 2012-07-26 2013-07-24 Auxiliary steering device for vehicle and auxiliary steering method for same, and elevation device for auxiliary wheel

Country Status (2)

Country Link
JP (1) JP5930040B2 (en)
WO (1) WO2014017089A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016038643A1 (en) * 2014-09-08 2016-03-17 日産自動車株式会社 Vehicular parking assisting system and vehicular parking assisting method
DE102014224707A1 (en) 2014-12-03 2016-06-09 Schaeffler Engineering GmbH Axle arrangement for a vehicle and vehicle with the axle arrangement
WO2017201439A1 (en) 2016-05-19 2017-11-23 Vermeer Manufacturing Company Steered caster wheel systems
KR101811594B1 (en) * 2016-05-18 2017-12-22 엘지전자 주식회사 Parking control apparatus for Vehicle and Vehicle
KR101911704B1 (en) * 2016-05-18 2018-10-25 엘지전자 주식회사 Parking control apparatus for Vehicle and Vehicle
EP3458334A4 (en) * 2016-05-19 2020-01-15 Vermeer Manufacturing Company Self-propelled vehicles including a differential system
CN113126088A (en) * 2021-03-13 2021-07-16 中铁十二局集团有限公司 Tunnel detection robot and tunnel detection method
CN113291142A (en) * 2021-05-13 2021-08-24 广西大学 Intelligent driving system and control method thereof
CN113771807A (en) * 2021-09-06 2021-12-10 东风汽车集团股份有限公司 Vehicle steering auxiliary wheel device and control method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52171036U (en) * 1976-06-21 1977-12-26
JPH0177584U (en) * 1987-11-13 1989-05-25
JPH07132803A (en) * 1993-11-08 1995-05-23 Mitsubishi Motors Corp Auxiliary steering device of vehicle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60255550A (en) * 1984-05-31 1985-12-17 Mitsubishi Motors Corp Automobile with retractable auxiliary wheels for moving sidewards
JPH03253450A (en) * 1990-03-05 1991-11-12 Hino Motors Ltd Transverse driving device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52171036U (en) * 1976-06-21 1977-12-26
JPH0177584U (en) * 1987-11-13 1989-05-25
JPH07132803A (en) * 1993-11-08 1995-05-23 Mitsubishi Motors Corp Auxiliary steering device of vehicle

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016038643A1 (en) * 2014-09-08 2017-04-27 日産自動車株式会社 Vehicle parking assistance device and vehicle parking assistance method
WO2016038643A1 (en) * 2014-09-08 2016-03-17 日産自動車株式会社 Vehicular parking assisting system and vehicular parking assisting method
DE102014224707A1 (en) 2014-12-03 2016-06-09 Schaeffler Engineering GmbH Axle arrangement for a vehicle and vehicle with the axle arrangement
KR101911704B1 (en) * 2016-05-18 2018-10-25 엘지전자 주식회사 Parking control apparatus for Vehicle and Vehicle
KR101811594B1 (en) * 2016-05-18 2017-12-22 엘지전자 주식회사 Parking control apparatus for Vehicle and Vehicle
US10953918B2 (en) 2016-05-19 2021-03-23 Vermeer Manufacturing Company Self-propelled vehicles including a differential system
EP3457830A4 (en) * 2016-05-19 2020-01-15 Vermeer Manufacturing Company Steered caster wheel systems
EP3458334A4 (en) * 2016-05-19 2020-01-15 Vermeer Manufacturing Company Self-propelled vehicles including a differential system
WO2017201439A1 (en) 2016-05-19 2017-11-23 Vermeer Manufacturing Company Steered caster wheel systems
EP3827653A1 (en) * 2016-05-19 2021-06-02 Vermeer Manufacturing Company Steered caster wheel systems
US11166403B2 (en) 2016-05-19 2021-11-09 Vermeer Manufacturing Company Steered caster wheel systems
CN113126088A (en) * 2021-03-13 2021-07-16 中铁十二局集团有限公司 Tunnel detection robot and tunnel detection method
CN113126088B (en) * 2021-03-13 2022-06-10 中铁十二局集团有限公司 Tunnel detection robot and tunnel detection method
CN113291142A (en) * 2021-05-13 2021-08-24 广西大学 Intelligent driving system and control method thereof
CN113291142B (en) * 2021-05-13 2022-11-11 广西大学 Intelligent driving system and control method thereof
CN113771807A (en) * 2021-09-06 2021-12-10 东风汽车集团股份有限公司 Vehicle steering auxiliary wheel device and control method thereof

Also Published As

Publication number Publication date
JP5930040B2 (en) 2016-06-08
JPWO2014017089A1 (en) 2016-07-07

Similar Documents

Publication Publication Date Title
JP5930040B2 (en) Auxiliary steering device and auxiliary steering method for vehicle, and lifting device for auxiliary wheel
EP1902926B1 (en) Variable Wheel Positioning in a Vehicle
CN103476665B (en) The independent suspension of the trailing wheel that can somewhat turn to of double track vehicle
JP6945735B2 (en) Wheel module for automobiles
US20080116665A1 (en) Vehicle Having An Adjustable Wheel Base
CN109070873A (en) Controller of vehicle and method
JP6596065B2 (en) Three-wheel or more vehicle equipped with anti-roll stabilizer device and three-wheel or more vehicle anti-roll control method
CN103608242B (en) For controlling method and the engineering machinery of engineering machinery
EP1859970B1 (en) Rear wheel toe angle control system of vehicle
CN101148176A (en) Variable wheel positioning vehicle
JP2014201165A (en) Auxiliary steering device of vehicle
US20140288745A1 (en) Vehicle behavior control apparatus
JP4820661B2 (en) Turning resistance adjusting device and railway vehicle
JP4624151B2 (en) Car steering system
JP2019001328A (en) Suspension control device
CN1651294A (en) Automatic steering shaft
JP2012076670A (en) Riding vehicle
JP2014201164A (en) Auxiliary steering device of vehicle
JPH042511A (en) Camber angle control device
JP5181941B2 (en) vehicle
JP2016160051A (en) Work vehicle
JP4797421B2 (en) Wheel support device
KR100394631B1 (en) A wheel alignment for vehicles
JP2009533278A (en) Center-of-gravity moving device applied to a vehicle with three or more wheels
JP6913317B2 (en) Vehicle travel control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13823533

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2014526768

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13823533

Country of ref document: EP

Kind code of ref document: A1