WO2014016947A1 - Vehicle control system and control unit - Google Patents

Vehicle control system and control unit Download PDF

Info

Publication number
WO2014016947A1
WO2014016947A1 PCT/JP2012/069030 JP2012069030W WO2014016947A1 WO 2014016947 A1 WO2014016947 A1 WO 2014016947A1 JP 2012069030 W JP2012069030 W JP 2012069030W WO 2014016947 A1 WO2014016947 A1 WO 2014016947A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
slip angle
steering
control
body slip
Prior art date
Application number
PCT/JP2012/069030
Other languages
French (fr)
Japanese (ja)
Inventor
鈴村 将人
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2012/069030 priority Critical patent/WO2014016947A1/en
Publication of WO2014016947A1 publication Critical patent/WO2014016947A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/002Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels
    • B62D6/003Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels in order to control vehicle yaw movement, i.e. around a vertical axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/025Active steering aids, e.g. helping the driver by actively influencing the steering system after environment evaluation

Definitions

  • the present invention relates to a vehicle control system and a control device.
  • a steering wheel is given according to a traveling state of the vehicle and a front wheel that is given a steering angle by steering a steering wheel.
  • a control device for a front and rear wheel steering vehicle having rear wheels is disclosed. This front / rear wheel steering vehicle control device controls the rear wheel steering angle based on the deviation between the standard yaw rate corresponding to the steering angle of the steering wheel and the actual yaw rate acting on the vehicle, thereby turning the vehicle's turning motility and disturbance.
  • the balance with restraint is aimed at.
  • control device for the front and rear wheel steering vehicle described in Patent Document 1 described above is, for example, in terms of automatic driving control for controlling the vehicle based on the detection result of the detection device that detects the situation on the front side in the traveling direction of the vehicle. There is room for further improvement.
  • the present invention has been made in view of the above circumstances, and provides a vehicle control system and a control device capable of appropriately executing automatic driving control in a vehicle in which front wheels and rear wheels are steering wheels. Objective.
  • a vehicle control system includes a steering device capable of steering a front wheel and a rear wheel of a vehicle, a detection device that detects a situation on the front side in the traveling direction of the vehicle, and the vehicle
  • the steering device can be controlled in accordance with the vehicle body slip angle characteristic, and the vehicle can be controlled based on the detection result of the detection device to execute automatic driving control.
  • a control device that changes the vehicle body slip angle characteristic of the vehicle.
  • the control device changes the vehicle body slip angle characteristic in the high speed range where the vehicle speed of the vehicle is equal to or higher than a predetermined vehicle speed set in advance according to whether or not the automatic driving control is executed. Can be.
  • control device may change the vehicle body slip angle characteristic of the vehicle based on at least one of the vehicle speed of the vehicle and the turning radius of the vehicle. .
  • the control device changes the vehicle body slip angle characteristic of the vehicle based on a target locus that is a target locus of the vehicle generated based on a detection result of the detection device. Can be.
  • the control device has a relatively large vehicle body slip angle when the automatic driving control is being executed, compared to when the automatic driving control is not being executed.
  • the vehicle body slip angle characteristic of the vehicle can be changed.
  • the control device when the automatic operation control is being performed, the control device is configured such that the vehicle body slip angle of the vehicle is relatively increased as the vehicle speed of the vehicle is relatively increased.
  • the vehicle body slip angle characteristic can be changed.
  • the control device when the automatic driving control is being performed, the control device is configured so that the vehicle body slip angle is relatively increased as the turning radius of the vehicle is relatively decreased.
  • the vehicle body slip angle characteristic of the vehicle can be changed.
  • the control device switches from a state in which the automatic driving control is performed to a state in which the automatic driving control is not performed, and from a state in which the automatic driving control is not performed.
  • the rate of change of the steering angle of the front wheels and the rear wheels can be limited.
  • control device may change the vehicle body slip angle characteristic of the vehicle according to a contact prediction between the vehicle and an object around the vehicle.
  • control device is configured so that the vehicle body of the vehicle can be used even when the contact between the vehicle and an object around the vehicle is predicted, or when the automatic driving control is being executed.
  • the vehicle body slip angle characteristic of the vehicle may be changed so that the slip angle is equivalent to that when the automatic operation control is not executed.
  • the vehicle body slip angle characteristic of the vehicle is set based on a slip angle gain corresponding to a ratio between the vehicle body slip angle of the vehicle and the steering wheel steering angle of the vehicle, and the control device includes:
  • the vehicle body slip angle characteristic of the vehicle can be changed by changing the slip angle gain.
  • a control device controls the vehicle based on a detection result by a detection device that detects a situation on the front side in the traveling direction of the vehicle in which front wheels and rear wheels are steering wheels.
  • Automatic driving control can be executed, and the vehicle body slip angle characteristic of the vehicle is changed according to whether or not the automatic driving control is executed.
  • the vehicle control system and the control device according to the present invention have an effect that it is possible to appropriately execute automatic driving control in a vehicle in which front wheels and rear wheels are steering wheels.
  • FIG. 1 is a schematic configuration diagram of a vehicle to which the vehicle control system according to the first embodiment is applied.
  • FIG. 2 is a block diagram illustrating a schematic configuration example of the ECU of the vehicle control system according to the first embodiment.
  • FIG. 3 is a schematic diagram illustrating an example of a detection range of the front detection device in the vehicle control system according to the first embodiment.
  • FIG. 4 is a diagram illustrating an example of a first vehicle body slip angle gain map in the vehicle control system according to the first embodiment.
  • FIG. 5 is a diagram illustrating an example of a second vehicle body slip angle gain map in the vehicle control system according to the first embodiment.
  • FIG. 6 is a flowchart illustrating an example of control by the ECU of the vehicle control system according to the first embodiment.
  • FIG. 7 is a flowchart illustrating an example of control by the ECU of the vehicle control system according to the second embodiment.
  • FIG. 1 is a schematic configuration diagram of a vehicle to which the vehicle control system according to the first embodiment is applied
  • FIG. 2 is a block diagram illustrating a schematic configuration example of an ECU of the vehicle control system according to the first embodiment
  • FIG. 4 is a schematic diagram for explaining an example of a detection range of the front detection device in the vehicle control system according to the first embodiment.
  • FIG. 4 is a diagram showing an example of a first vehicle body slip angle gain map in the vehicle control system according to the first embodiment.
  • 5 is a diagram illustrating an example of a second vehicle body slip angle gain map in the vehicle control system according to the first embodiment
  • FIG. 6 is a flowchart illustrating an example of control by the ECU of the vehicle control system according to the first embodiment. .
  • the vehicle control system 1 of this embodiment is mounted on a vehicle 2 as shown in FIG.
  • the vehicle 2 moves forward in the arrow Y direction in FIG.
  • the direction in which the vehicle 2 moves forward is the direction from the driver seat where the driver of the vehicle 2 sits toward the steering wheel.
  • the left-right distinction is based on the direction in which the vehicle 2 moves forward (the direction of the arrow Y in FIG. 1). That is, “left” refers to the left side in the direction in which the vehicle 2 moves forward, and “right” refers to the right side in the direction in which the vehicle 2 moves forward.
  • the direction in which the vehicle 2 moves forward is defined as the front
  • the direction in which the vehicle 2 moves backward that is, the direction opposite to the direction in which the vehicle 2 moves forward is defined as the rear.
  • the vehicle 2 includes, as wheels 3, a left front wheel (left front wheel 3) 3FL, a right front wheel (right front wheel 3) 3FR, a left rear wheel (left rear wheel 3) 3RL, and a right rear wheel (right rear side). Wheel 3) with 3RR.
  • the left front wheel 3FL, the right front wheel 3FR, the left rear wheel 3RL, and the right rear wheel 3RR may be simply referred to as “wheel 3” when there is no need to describe them separately.
  • the left front wheel 3FL and the right front wheel 3FR are simply referred to as “front wheel 3F” when it is not necessary to describe them separately.
  • the left rear wheel 3RL and the right rear wheel 3RR may be simply referred to as “rear wheel 3R” when there is no need to describe them separately.
  • the vehicle control system 1 is a driving support system equipped with a steering device 6 or the like that can steer the front wheels 3F and the rear wheels 3R of the vehicle 2.
  • the vehicle control system 1 typically includes a vehicle 2 including a steering device 6 that is a four-wheel steering mechanism including a front wheel steering device 9 and a rear wheel steering device 10. The posture is arbitrarily controlled.
  • the vehicle control system 1 includes a drive device 4, a braking device 5, a steering device 6, and an ECU (Electronic Control Unit) 7 as a control device.
  • the driving device 4 constitutes a power train including a power source 4a, a torque converter 4b, a transmission 4c, and the like in the vehicle 2, and rotationally drives the wheels 3 serving as driving wheels.
  • the power source 4a generates rotational power that causes the vehicle 2 to travel, and is a power source for traveling such as an internal combustion engine (engine) or an electric motor (rotary machine).
  • the vehicle 2 may be any of a hybrid vehicle having both an internal combustion engine and an electric motor as a driving power source, a combined vehicle having an internal combustion engine but no electric motor, and an EV vehicle having an electric motor and no internal combustion engine.
  • the vehicle of the form may be sufficient.
  • the driving device 4 transmits the power generated by the power source 4a from the power source 4a to the wheels 3 (for example, the left rear wheel 3RL and the right rear wheel 3RR as driving wheels) via the torque converter 4b, the transmission 4c, and the like. To do.
  • the drive device 4 is electrically connected to the ECU 7 and controlled by the ECU 7.
  • the driving device 4 generates power (torque) according to the operation (accelerator operation) of the accelerator pedal 8 a by the driver, and this power is transmitted to the wheels 3 to generate driving force on the wheels 3.
  • the vehicle 2 can move forward or backward by the driving force generated by the driving device 4.
  • the vehicle 2 generates a braking force on the wheels 3 by the operation of the braking device 5 according to the operation (braking operation) of the brake pedal 8b by the driver. Thereby, the vehicle 2 can be decelerated and stopped by the braking force generated by the braking device 5.
  • the steering device 6 is capable of steering the front wheels 3F and the rear wheels 3R of the vehicle 2, and includes a front wheel steering device 9 and a rear wheel steering device 10 here.
  • the front wheel steering device 9 can steer the front wheel 3F of the vehicle 2 and steers the left front wheel 3FL and the right front wheel 3FR as steering wheels.
  • the rear wheel steering device 10 can steer the rear wheel 3R of the vehicle 2, and steers the left rear wheel 3RL and the right rear wheel 3RR as steering wheels.
  • the front wheel steering device 9 includes a steering wheel (handle) 9a as a steering member that is a steering operator by the driver, and a steering that drives the steering wheel 9a to steer the front wheels 3F. And an angle imparting mechanism 9b.
  • a so-called rack and pinion mechanism including a rack gear and a pinion gear can be used, but the present invention is not limited thereto.
  • the front wheel steering device 9 includes a VGRS (Variable Gear Ratio Steering) device 9c provided between the steering wheel 9a and the turning angle imparting mechanism 9b, a front wheel steering drive device (boost device) 9d, and the like. Composed.
  • VGRS Very Gear Ratio Steering
  • the VGRS device 9c is a gear ratio variable steering mechanism that can change the gear ratio of the steering wheel 9a.
  • the front wheel steering device 9 has a steering characteristic changing function realized by the VGRS device 9c.
  • the front wheel steering device 9 is, for example, a front wheel with respect to a steering wheel steering angle (cutting angle) that is an operation amount of the steering wheel 9a according to the driving state of the vehicle 2 (for example, the vehicle speed that is the traveling speed of the vehicle 2) by the VGRS device 9c.
  • the steering angle of 3F (hereinafter sometimes referred to as “front wheel steering angle”) can be changed.
  • the steering driver 9d is a so-called electric power steering device (EPS) that assists the steering force applied by the driver to the steering wheel 9a with power (steering assisting force) of an electric motor or the like.
  • EPS electric power steering device
  • a steering force assisting function is realized by the steering driver 9d.
  • the front wheel steering device 9 drives the driver's steering wheel by, for example, driving an electric motor or the like so that a steering assist force corresponding to the steering force applied to the steering wheel 9a from the driver can be obtained by the steering driver 9d.
  • the steering operation (steering operation) for 9a can be assisted.
  • the front wheel steering device 9 is electrically connected to the ECU 7, and the ECU 7 controls the VGRS device 9c, the steering driver 9d, and the like.
  • the rear wheel steering device 10 is a so-called ARS (Active Rear Steering) device.
  • the rear wheel steering device 10 includes a rear wheel steering driver 10a that is driven by power from an electric motor or the like to steer the rear wheel 3R.
  • a steering characteristic changing function is realized by the steering driver 10a.
  • the rear wheel steering device 10 Similar to the front wheel steering device 9, the rear wheel steering device 10, for example, uses a steering driver 10 a to control the steering angle of the rear wheel 3 ⁇ / b> R with respect to the steering wheel steering angle (hereinafter, “ It may be referred to as “rear wheel steering angle”).
  • the rear wheel steering device 10 is electrically connected to the ECU 7, and the steering driver 10a and the like are controlled by the ECU 7.
  • the rear wheel steering device 10 uses the ECU 7 to steer the rear wheel 3R with the same phase as or opposite to the steering angle of the front wheel 3F according to the driving state of the vehicle 2 (for example, vehicle speed or turning state).
  • the front wheel steering device 9 and the rear wheel steering device 10 constitute the steering device 6 that is a four-wheel steering mechanism, and together with the left front wheel 3FL and the right front wheel 3FR, the left rear wheel 3RL and the right rear wheel.
  • the wheel 3RR is also a steering wheel.
  • the front wheel steering device 9 and the rear wheel steering device 10 can change the steering angle of the front wheels 3F and the rear wheels 3R regardless of the steering operation by the driver under the control of the ECU 7.
  • the ECU 7 controls driving of each part of the vehicle 2 and includes an electronic circuit mainly composed of a known microcomputer including a CPU, a ROM, a RAM, and an interface. For example, various sensors and detectors are electrically connected to the ECU 7 and an electric signal corresponding to the detection result is input. Then, the ECU 7 executes the stored control program based on various input signals and various maps input from various sensors, detectors, etc., so that the drive device 4, the front wheel steering device 9, and the rear wheel steering are executed. A drive signal is output to each part of the vehicle 2 such as the device 10 to control the drive.
  • a known microcomputer including a CPU, a ROM, a RAM, and an interface.
  • various sensors and detectors are electrically connected to the ECU 7 and an electric signal corresponding to the detection result is input.
  • the ECU 7 executes the stored control program based on various input signals and various maps input from various sensors, detectors, etc., so that the drive device 4, the front wheel steering device 9, and the rear wheel steering are
  • the vehicle control system 1 of the present embodiment includes, for example, a wheel speed sensor 11, a yaw rate / lateral acceleration sensor 12, and a forward detection device 13 as a detection device as various sensors and detectors.
  • a wheel speed sensor 11 is provided, one for each of the left front wheel 3FL, the right front wheel 3FR, the left rear wheel 3RL, and the right rear wheel 3RR.
  • Each wheel speed sensor 11 detects wheel speeds VwFL, VwFR, VwRL, and VwRR, which are rotational speeds of the left front wheel 3FL, the right front wheel 3FR, the left rear wheel 3RL, and the right rear wheel 3RR, respectively.
  • the yaw rate / lateral acceleration sensor 12 detects the yaw rate ⁇ of the vehicle 2 and the lateral acceleration Gy that is acceleration in the lateral direction (direction intersecting (orthogonal) with the forward direction Y) generated in the vehicle body of the vehicle 2.
  • the front detection device 13 detects the situation in the forward direction of the vehicle 2 (the direction along the forward direction Y).
  • the front detection device 13 detects a situation within a predetermined detection range set in advance on the front side in the traveling direction of the vehicle 2.
  • the front detection device 13 is provided in a pair of left and right on the front side of the vehicle body of the vehicle 2.
  • the front detection device 13 includes, for example, the presence or absence of a peripheral object on the front side in the traveling direction of the vehicle 2, the relative physical quantity indicating the relative positional relationship between the detected peripheral object and the vehicle 2, You may make it detect at least 1 of the shape of the road where 2 drive
  • the peripheral object on the front side in the traveling direction of the vehicle 2 is, for example, an object such as an obstacle on the front side in the traveling direction of the vehicle 2, a forward vehicle that travels on the front side in the traveling direction of the vehicle 2, or the like.
  • the front detection device 13 uses, for example, a relative speed (m / s), a relative distance (m), a relative deceleration (m / s) between the vehicle 2 and a surrounding object as the relative physical quantity detected by the front detection device 13. 2 ), at least one of TTC (Time-To-Collision) (s) may be detected.
  • TTC time-To-Collision
  • relative time corresponds to the time until the vehicle 2 reaches the surrounding object, and the relative distance between the vehicle 2 and the surrounding object is converted according to the relative speed. It corresponds to the time.
  • the forward detection device 13 is, for example, a millimeter wave radar, a radar using a laser or an infrared ray, a short-range radar such as a UWB (Ultra Wide Band) radar, a sonar using a sound wave or an ultrasonic wave in an audible range, a CCD camera, etc.
  • An image recognition device or the like that detects the situation on the front side in the traveling direction of the vehicle 2 by analyzing image data obtained by imaging the front in the traveling direction of the vehicle 2 with the imaging device of FIG.
  • the ECU 7 is electrically connected to the VGRS device 9c, the steering driver 9d, and the steering driver 10a.
  • the ECU 7 receives an electrical signal corresponding to the steering wheel steering angle (cutting angle) ⁇ d detected by the steering wheel steering angle sensor from the VGRS device 9c.
  • the steering wheel steering angle ⁇ d is the steering angle of the steering wheel 9a (the rotation angle of the steering wheel 9a).
  • the ECU 7 also receives an electrical signal corresponding to the front wheel steering angle ⁇ f detected by the front wheel steering angle sensor from the steering driver 9d.
  • the front wheel steering angle ⁇ f is the steering angle of the front wheel 3F (the rotation angle of the front wheel 3F).
  • the ECU 7 receives an electric signal corresponding to the rear wheel steering angle ⁇ r detected by the rear wheel steering angle sensor from the steering driver 10a.
  • an electric signal corresponding to the rear wheel steering angle ⁇ r which is the steering angle of the rear wheel 3R (the rotation angle of the rear wheel 3R), is input.
  • the vehicle control system 1 may include a communication system 14 that performs communication with the outside of the vehicle 2.
  • the communication system 14 may include at least one of, for example, a vehicle-to-vehicle communication system, an infrastructure cooperation system, a GPS (Global Positioning System) system, and the like.
  • the inter-vehicle communication system is a system that acquires various other vehicle information by communicating with an inter-vehicle communication device mounted on another vehicle.
  • the infrastructure cooperation system is a system that acquires various infrastructure information by communicating with an infrastructure such as a road-to-vehicle communication device provided on the roadside.
  • the GPS system is a system that receives a GPS signal representing position information (GPS information) of the vehicle 2 distributed by a GPS satellite.
  • the ECU 7 is electrically connected to the communication system 14 and receives electrical signals corresponding to various information from the communication system 14. For example, the ECU 7 measures and calculates the position information of the vehicle 2, for example, GPS information (X coordinate; X, Y coordinate; Y), based on the GPS signal received by the communication system 14, and is stored in the database. The travel point of the vehicle 2 can be recognized by referring to map information such as road information.
  • the vehicle control system 1 may further include a navigation device or the like.
  • the ECU 7 of this embodiment can control the front wheel steering device 9 and the rear wheel steering device 10 of the steering device 6 according to the vehicle body slip angle characteristic of the vehicle 2.
  • the vehicle body slip angle characteristic is a characteristic of the vehicle body slip angle with respect to the steering wheel steering angle when the ECU 7 controls the steering device 6 (the front wheel steering device 9 and the rear wheel steering device 10).
  • the vehicle body slip angle is an angle formed by the longitudinal center line of the vehicle body of the vehicle 2 and the traveling direction (speed vector) of the vehicle 2, and is, for example, the longitudinal center of the vehicle body of the vehicle 2 with respect to the turning tangential direction of the vehicle 2. The angle formed by the line.
  • the vehicle body slip angle represents, for example, that the vehicle body of the vehicle 2 is facing the inside of the turn as the angle becomes relatively large.
  • the vehicle body slip angle is determined according to, for example, the front wheel steering angle, the rear wheel steering angle, or the like of the vehicle 2.
  • the ECU 7 controls the front wheel steering device 9 and the rear wheel steering device 10 in accordance with the vehicle body slip angle characteristics of the vehicle 2 set in advance to steer the front wheels 3F and the rear wheels 3R, thereby setting the front wheel steering angle and the rear wheel steering angle. change.
  • the vehicle body slip angle characteristic of the vehicle 2 is set based on a slip angle gain K ⁇ described later.
  • the ECU 7 calculates the steering control amount by using the slip angle gain K ⁇ and controls the front wheel steering device 9 and the rear wheel steering device 10 to control the front wheel steering according to a predetermined vehicle body slip angle characteristic.
  • the device 9 and the rear wheel steering device 10 can be controlled.
  • the ECU 7 of the present embodiment can control the vehicle 2 based on the detection result by the front detection device 13 and execute automatic driving control.
  • the automatic driving control of the present embodiment is driving support control of the vehicle 2 using the detection result by the front detection device 13.
  • the automatic driving control is, for example, trajectory control that generates a target trajectory based on a detection result by the front detection device 13 and controls the front wheel steering device 9 and the rear wheel steering device 10 based on the target trajectory.
  • the ECU 7 detects the situation on the front side in the traveling direction of the vehicle 2 detected by the front detection device 13, for example, the presence or absence of a peripheral object on the front side in the traveling direction of the vehicle 2, the relative physical quantity between the peripheral object and the vehicle 2, and the vehicle 2 traveling.
  • a target trajectory that is a target travel trajectory of the vehicle 2 is generated.
  • the ECU 7 travels while avoiding obstacles ahead of the traveling direction of the vehicle 2 (lane keeping assist) in which the vehicle 2 that is the host vehicle travels while being maintained in the current lane (lane).
  • a target locus of the vehicle 2 is generated according to the locus, a traveling locus that causes the vehicle 2 to follow the preceding vehicle, and the like.
  • the ECU 7 may further generate the target locus in consideration of other vehicle information acquired by the communication system 14, infrastructure information, GPS information, and the like.
  • the ECU 7 controls the front wheel steering device 9 and the rear wheel steering device 10 according to the vehicle body slip angle characteristic so that the vehicle 2 travels in the traveling direction and posture according to the generated target locus.
  • the vehicle control system 1 can arbitrarily switch automatic driving control on and off in accordance with, for example, a driver switching operation via the changeover switch 15.
  • the ECU 7 of the present embodiment includes a vehicle speed determination unit 7a, a target locus generation unit 7b, a steering control unit 7c, a gain setting unit 7d, and the like in terms of functional concept.
  • the vehicle speed determination unit 7a outputs the calculated vehicle speed Vx to the steering control unit 7c.
  • the target trajectory generation unit 7b generates a target trajectory that is a target travel trajectory of the vehicle 2 based on the situation on the front side in the traveling direction of the vehicle 2 input from the front detection device 13.
  • the target locus generation unit 7b is, for example, the presence or absence of a peripheral object on the front side in the traveling direction of the vehicle 2 detected by the front detection device 13, the relative physical quantity between the peripheral object and the vehicle 2, the shape of the road on which the vehicle 2 travels, the lane, etc. Based on the above, a target locus is generated.
  • the target locus generation unit 7b outputs an index related to the generated target locus to the steering control unit 7c and the gain setting unit 7d.
  • the index related to the target trajectory generated by the target trajectory generating unit 7b may include, for example, at least one of a turning radius R according to the target trajectory, a distance Lx to the obstacle, a lateral target moving distance Lyt, and the like.
  • the steering control unit 7c controls the front wheel steering device 9 and the rear wheel steering device 10, steers the front wheels 3F and the rear wheels 3R, and changes the front wheel steering angle and the rear wheel steering angle.
  • the steering control unit 7c includes, for example, a steering wheel steering angle ⁇ d input from a steering wheel steering angle sensor of the VGRS device 9c, a vehicle speed Vx input from the vehicle speed determination unit 7a, and an index related to a target track input from the target track generation unit 7b, Based on a yaw rate gain K ⁇ and a slip angle gain K ⁇ input from a gain setting unit 7d described later, a target yaw rate ⁇ and a target vehicle body slip angle ⁇ are calculated using a transfer function or the like.
  • the steering control unit 7c may calculate the target yaw rate ⁇ and the target vehicle body slip angle ⁇ without using the index related to the target trajectory when the automatic driving control is off.
  • the target yaw rate ⁇ and the target vehicle body slip angle ⁇ calculated by the steering control unit 7c are the yaw rate ⁇ and the vehicle body slip angle ⁇ that are targets when the front wheel steering device 9 and the rear wheel steering device 10 are steering controlled. 2 is set to a value that stabilizes the behavior.
  • the steering control unit 7c may further correct the target yaw rate ⁇ and the target vehicle body slip angle ⁇ based on the yaw rate ⁇ and the lateral acceleration Gy of the vehicle 2 input from the yaw rate / lateral acceleration sensor 12.
  • the steering control unit 7c calculates control amounts (steering control amounts) of the front wheel steering angle ⁇ f and the rear wheel steering angle ⁇ r so that the calculated target yaw rate ⁇ and target vehicle body slip angle ⁇ can be realized. For example, the steering control unit 7c reverses the control amounts of the front wheel steering angle ⁇ f and the rear wheel steering angle ⁇ r from the target yaw rate ⁇ and the target vehicle body slip angle ⁇ using the vehicle model of the vehicle 2 stored in advance in the storage unit. Calculate. Then, the steering control unit 7c outputs a control command to the front wheel steering device 9 and the rear wheel steering device 10 based on the calculated control amounts of the front wheel steering angle and the rear wheel steering angle.
  • the steering control unit 7c feedback-controls the actual front wheel steering angle ⁇ f and the rear wheel steering angle ⁇ r detected by the front wheel steering angle sensor of the steering driver 9d and the rear wheel steering angle sensor of the steering driver 10a,
  • the front wheel steering device 9 and the rear wheel steering device 10 are controlled so that the yaw rate ⁇ and the vehicle body slip angle ⁇ converge on the target yaw rate ⁇ and the target vehicle body slip angle ⁇ .
  • the vehicle 2 can travel along the target locus while the front wheels 3F and the rear wheels 3R are steered according to the vehicle body slip angle characteristics by the front wheel steering device 9 and the rear wheel steering device 10.
  • the vehicle body slip angle characteristic of the vehicle 2 may be set such that, for example, the vehicle body slip angle is in the vicinity of 0 [rad] in a turning state in a high speed range where the vehicle speed is equal to or higher than a predetermined vehicle speed set in advance. preferable.
  • the four-wheel steering vehicle 2 can improve the vehicle stability and the driver feeling, while the two-wheel steering (2 Wheel Steering).
  • the longitudinal center line L1 of the vehicle body 2A tends to face the turning outer side relative to the turning center, as illustrated in FIG. Accordingly, as illustrated in FIG. 3, the detection range X ⁇ b> 1 by the front detection device 13 (see FIG. 1) provided in the vehicle body 2 ⁇ / b> A also turns relative to the turning center on the front side in the traveling direction of the vehicle 2. It will turn to the outside. For this reason, when the vehicle 2 executes the automatic driving control (trajectory control) described above with such vehicle characteristics, depending on the viewing angle of the front detection device 13 or the like, the detection of the front detection device 13 during turning is detected. There is a possibility that the range does not become an appropriate range, and the situation on the front side in the traveling direction necessary for the automatic operation control cannot be properly detected.
  • the ECU 7 of the present embodiment changes the vehicle body slip angle characteristic of the vehicle 2 according to whether or not the automatic driving control is executed. That is, the ECU 7 changes the vehicle body slip angle characteristic between when the automatic driving control is executed and when the automatic driving control is not executed. Thereby, the ECU 7 can appropriately perform the automatic driving control in the vehicle 2 in which the front wheels 3F and the rear wheels 3R are the steering wheels.
  • the case where the automatic driving control is executed may be referred to as “at the time of automatic driving control”, and the case where the automatic driving control is not executed may be referred to as “at the time of driver steering”.
  • the vehicle body slip angle characteristic of the vehicle 2 is set based on the slip angle gain K ⁇ as described above.
  • the slip angle gain K ⁇ is used when the target vehicle body slip angle ⁇ is calculated as described above, and corresponds to, for example, the ratio between the vehicle body slip angle ⁇ of the vehicle 2 and the steering wheel steering angle ⁇ d of the vehicle 2.
  • the ECU 7 of the present embodiment changes the vehicle body slip angle characteristic of the vehicle 2 by changing the slip angle gain K ⁇ .
  • the ECU 7 changes the vehicle body slip angle characteristic so as to have a tendency as illustrated in FIG. 3 when comparing the driver steering and the automatic driving control. That is, the ECU 7 relatively faces the vehicle 2 turning outward during steering of the driver (refer to the vehicle body 2A, the front-rear direction center line L1, and the detection range X1 in FIG. 3), and the vehicle body of the vehicle 2 during automatic driving control.
  • the vehicle body slip angle characteristic is changed so that the vehicle is relatively directed toward the inside of the turn (see the vehicle body 2B, the front-rear direction center line L2, and the detection range X2 in FIG. 3).
  • the ECU 7 changes the vehicle body slip angle characteristic of the vehicle 2 by changing the vehicle slip angle gain K ⁇ by switching the vehicle body slip angle gain map (or mathematical model) between the driver steering and the automatic driving control.
  • the vehicle body slip angle gain map is a map for calculating the slip angle gain K ⁇ .
  • the ECU 7 of the present embodiment switches the vehicle body slip angle gain map to be used depending on whether the gain setting unit 7d (see FIG. 2) is at the time of driver steering or automatic driving control.
  • the gain setting unit 7d uses the vehicle body slip angle gain maps corresponding to the steering operation and the automatic driving control, respectively, and the vehicle speed Vx input from the vehicle speed determination unit 7a and the target input from the target locus generation unit 7b.
  • a slip angle gain K ⁇ is calculated based on an index related to the trajectory. Then, the gain setting unit 7d outputs the slip angle gain K ⁇ calculated according to the situation to the steering control unit 7c.
  • the gain setting unit 7d calculates a slip angle gain K ⁇ used during driver steering according to the vehicle speed Vx input from the vehicle speed determining unit 7a using the first vehicle body slip angle gain map during driver steering.
  • the first vehicle body slip angle gain map typically has a vehicle body slip angle in the vicinity of 0 [rad] in a turning state in a high speed region, and can achieve vehicle stabilization and improved driver feeling.
  • the slip angle characteristic is set.
  • FIG. 4 is a diagram showing an example of a first vehicle body slip angle gain map m1 used during driver steering.
  • the horizontal axis represents the vehicle speed
  • the vertical axis represents the slip angle gain K ⁇ used during driver steering.
  • the first vehicle body slip angle gain map m1 describes the relationship between the vehicle speed and the slip angle gain K ⁇ .
  • the first vehicle body slip angle gain map m1 is stored in the storage unit of the ECU 7 after the relationship between the vehicle speed and the slip angle gain K ⁇ is set in advance based on actual vehicle evaluation and the like.
  • the slip angle gain K ⁇ decreases as the vehicle speed increases, and is set to 0 in a high-speed range that is equal to or higher than a predetermined vehicle speed.
  • the gain setting unit 7d calculates a slip angle gain K ⁇ used during driver steering from the input vehicle speed.
  • the vehicle 2 has a higher vehicle speed, and as the slip angle gain K ⁇ calculated by the gain setting unit 7d approaches 0, the vehicle body slip angle becomes near 0 [rad] and the vehicle body tends to turn in the tangential direction of the turn.
  • the vehicle control system 1 can achieve vehicle stabilization and improvement of driver feeling in a turning state in a high speed region during driver steering.
  • the gain setting unit 7d has been described as calculating and setting the slip angle gain K ⁇ using the first vehicle body slip angle gain map m1, but the present embodiment is not limited to this.
  • the gain setting unit 7d may calculate and set the slip angle gain K ⁇ based on a mathematical model corresponding to the first vehicle body slip angle gain map m1.
  • the gain setting unit 7d uses the second vehicle body slip angle gain map to convert the vehicle speed Vx input from the vehicle speed determination unit 7a and the index related to the target track input from the target track generation unit 7b. Accordingly, a slip angle gain K ⁇ used during automatic operation control is calculated.
  • the gain setting unit 7d calculates the slip angle gain K ⁇ based on the vehicle speed Vx and the turning radius R corresponding to the target locus. That is, the ECU 7 of the present embodiment changes the vehicle body slip angle characteristic of the vehicle 2 based on at least one of the vehicle speed Vx of the vehicle 2 or the turning radius R of the vehicle, here both.
  • the ECU 7 changes the vehicle body slip angle characteristic of the vehicle 2 based on the target locus that is the target locus of the vehicle 2 in the automatic operation control.
  • the second vehicle body slip angle gain map typically has the detection range of the front detection device 13 as far as possible in the trajectory direction of the target trajectory according to the vehicle speed Vx and the curving radius R even in a turning state in a high speed region. Such a vehicle body slip angle characteristic is set.
  • FIG. 5 is a diagram showing an example of a second vehicle body slip angle gain map m2 used during automatic operation control.
  • the horizontal axis represents the vehicle speed
  • the vertical axis represents the slip angle gain K ⁇ used during automatic operation control.
  • the second vehicle body slip angle gain map m2 describes the relationship between the vehicle speed, the turning radius, and the slip angle gain K ⁇ .
  • the second vehicle body slip angle gain map m2 is stored in the storage unit of the ECU 7 after the relationship between the vehicle speed, the turning radius, and the slip angle gain K ⁇ is set in advance based on actual vehicle evaluation and the like.
  • the second vehicle body slip angle gain map m2 is set such that the slip angle gain K ⁇ in the high speed region is different from the first vehicle body slip angle gain map m1.
  • the gain setting unit 7d calculates a slip angle gain K ⁇ used during automatic operation control from the input vehicle speed and turning radius. That is, the ECU 7 typically changes the vehicle body slip angle characteristic in the high speed range according to whether or not the automatic driving control is executed.
  • the second vehicle body slip angle gain map m2 is a future vehicle position predicted from the current vehicle speed, the turning radius according to the target locus, and the detection range of the front detection device 13 is the locus of the target locus.
  • a slip angle gain K ⁇ (in other words, a vehicle body slip angle characteristic) is set so that the vehicle posture faces the direction.
  • the slip angle gain K ⁇ decreases as the vehicle speed increases, becomes 0 at a predetermined vehicle speed set in advance, and gradually decreases below 0 in a higher speed range than the predetermined vehicle speed.
  • the slip angle gain K ⁇ is set to become smaller as the turning radius becomes smaller in a high speed range than the predetermined vehicle speed. That is, the second vehicle body slip angle gain map m2 is set so as to have a vehicle body slip angle characteristic that is head-in (the vehicle body is directed toward the inside of the vehicle) as compared with the case of driver steering in accordance with the turning radius. Based on the second vehicle body slip angle gain map m2, the gain setting unit 7d calculates a slip angle gain K ⁇ used during driver steering from the input vehicle speed and turning radius.
  • the vehicle body slip angle characteristic of the vehicle 2 is changed. More specifically, when executing the automatic operation control, the ECU 7 sets the vehicle body slip angle characteristic of the vehicle 2 so that the vehicle body slip angle of the vehicle 2 becomes relatively larger as the vehicle speed of the vehicle 2 becomes relatively higher. Will be changed. Similarly, when executing the automatic driving control, the ECU 7 changes the vehicle body slip angle characteristic of the vehicle 2 so that the vehicle body slip angle of the vehicle 2 becomes relatively larger as the turning radius of the vehicle 2 becomes relatively smaller. Will be.
  • the vehicle control system 1 can make the detection range of the front detection device 13 as far as possible in the trajectory direction of the target trajectory even when the vehicle 2 is turning in the high speed region during the automatic driving control. .
  • the ECU 7 changes the steering angle change rate (amount of change per unit time) of the front wheels 3F and the rear wheels 3R when the automatic driving control is switched from on to off and when the automatic driving control is switched from off to on. And so-called change rate guard of the front wheel steering angle and the rear wheel steering angle may be performed.
  • the time when the automatic driving control is switched from ON to OFF is a time when switching from the state in which the automatic driving control is executed to the state in which the automatic driving control is not executed.
  • when automatic driving control is turned on from off is when switching from a state in which automatic driving control is not executed to a state in which automatic driving control is executed.
  • the ECU 7 limits the steering control amount (control command) when starting the automatic driving control and ending the automatic driving control, and limits the change rate of the front wheel steering angle and the rear wheel steering angle.
  • the automatic driving control is switched from on to off, for example, when the driver performs a large steering operation, the forward detection device 13 loses the preceding vehicle and cannot generate the target locus.
  • the driver switches from on to off.
  • the automatic driving control is turned on from off include a case where the driver switches from off to on via the changeover switch 15.
  • control routines are repeatedly executed at a control cycle of several ms to several tens of ms.
  • the ECU 7 determines whether or not the driving support system is operating, that is, whether or not automatic driving control is being executed (step ST1).
  • step ST1 If the ECU 7 determines that the driving support system is operating, that is, that automatic driving control is being executed (step ST1: Yes), the ECU 7 uses the second vehicle body slip angle gain map m2 illustrated in FIG. Then, the slip angle gain K ⁇ is calculated (step ST2). Then, the ECU 7 calculates the target vehicle body slip angle ⁇ using the calculated slip angle gain K ⁇ , and calculates the control amounts of the front wheel steering angle and the rear wheel steering angle.
  • the ECU 7 determines whether or not automatic driving control (driving support) is being switched on / off (step ST3). For example, when the automatic driving control is being switched on / off, the second vehicle body slip angle gain map m2 is used from the front wheel steering angle and the rear wheel steering angle when the first vehicle body slip angle gain map m1 is used. This is the case when the vehicle is in the process of shifting to the front wheel steering angle or the rear wheel steering angle, or vice versa.
  • step ST3 when it is determined that the automatic driving control is being switched on / off (step ST3: Yes), the ECU 7 limits the change rate of the front wheel steering angle and the rear wheel steering angle, and performs the change rate guard ( Step ST4).
  • the ECU 7 performs steering control by controlling the front wheel steering device 9 and the rear wheel steering device 10 based on the calculated control amounts of the front wheel steering angle and the rear wheel steering angle (step ST5), and ends the current control cycle. Then, the next control cycle is started.
  • step ST3 No
  • step ST1 When it is determined in step ST1 that the driving support system is not operating, that is, the automatic driving control is not being executed (step ST1: No), the ECU 7 displays the first vehicle body slip angle gain map m1 illustrated in FIG. In use, the slip angle gain K ⁇ is calculated (step ST6). Then, the ECU 7 calculates the target vehicle body slip angle ⁇ using the calculated slip angle gain K ⁇ , calculates the control amounts of the front wheel steering angle and the rear wheel steering angle, and proceeds to the processing of step ST3.
  • the vehicle control system 1 configured as described above can make the vehicle body slip angle characteristic different between automatic driving control for executing automatic driving control and driver steering without executing automatic driving control. . Therefore, in the vehicle 2 in which the front wheels 3F and the rear wheels 3R are the steering wheels, the vehicle control system 1 can detect the vehicle body with respect to steering even when the ideal vehicle posture is different between automatic driving control and driver steering.
  • the slip angle posture can be arbitrarily controlled appropriately according to the presence or absence of automatic operation control. Thereby, the vehicle control system 1 can appropriately perform the automatic driving control in the vehicle 2 in which the front wheels 3F and the rear wheels 3R are the steering wheels.
  • the vehicle control system 1 can set the vehicle body slip angle of the vehicle 2 in the vicinity of 0 [rad] and turn the vehicle body in the turning tangential direction when the driver is steering, for example. As a result, the vehicle control system 1 can stabilize the vehicle and improve the driver feeling in a turning state in a high speed region at the time of driver steering.
  • the vehicle control system 1 changes the vehicle body slip angle characteristic to a vehicle body slip angle characteristic different from that during driver steering, for example, during automatic driving control, and changes the vehicle body slip angle characteristic of the vehicle 2 based on the vehicle speed, turning radius, etc. change.
  • the vehicle control system 1 changes the vehicle body slip angle characteristic of the vehicle 2 based on the target locus that is the target locus of the vehicle 2 in the automatic driving control.
  • the vehicle control system 1 may relatively increase the vehicle body slip angle of the vehicle 2 in a turning state in a high speed range so that the vehicle body relatively faces the inside of the turn. it can.
  • the vehicle control system 1 can make the detection range by the front detection device 13 face the trajectory direction of the target trajectory even when the vehicle 2 is turning in the high speed range.
  • the vehicle control system 1 can set the detection range of the front detection device 13 during turning during the automatic driving control to an appropriate range, and appropriately detect the situation on the front side in the traveling direction necessary for the automatic driving control. can do.
  • the vehicle control system 1 varies the vehicle body slip angle characteristics in the high-speed range between automatic driving control and driver steering, thereby improving vehicle stabilization and driver feeling during driver steering.
  • the vehicle control system 1 can achieve both vehicle stabilization and improvement in driver feeling and continuation of automatic driving control.
  • the vehicle control system 1 limits the steering control amounts of the front wheel steering device 9 and the rear wheel steering device 10 when switching on / off of the automatic driving control, and the rate of change of the front wheel steering angle and the rear wheel steering angle. Limit. As a result, the vehicle control system 1 can prevent the front wheel steering angle and the rear wheel steering angle from changing discontinuously at the time of switching between driver operation and automatic driving control, and a shock occurs. Can be prevented.
  • the steering device 6 that can steer the front wheels 3F and the rear wheels 3R of the vehicle 2, and the front detection device that detects the situation on the front side in the traveling direction of the vehicle 2. 13
  • the steering device 6 can be controlled according to the vehicle body slip angle characteristic of the vehicle 2
  • the vehicle 2 can be controlled based on the detection result by the front detection device 13, and automatic driving control can be executed.
  • ECU 7 which changes the vehicle body slip angle characteristic of vehicle 2 according to the presence or absence of execution of control. Therefore, the vehicle control system 1 and the ECU 7 can appropriately perform automatic driving control in the vehicle 2 in which the front wheels 3F and the rear wheels 3R are steering wheels.
  • FIG. 7 is a flowchart illustrating an example of control by the ECU of the vehicle control system according to the second embodiment.
  • the vehicle control system and the control device according to the second embodiment are different from the first embodiment in that the vehicle body slip angle characteristic of the vehicle is changed according to the contact prediction with the surrounding object.
  • the overlapping description is abbreviate
  • FIG.1, FIG.2 etc. are referred suitably.
  • the ECU 7 changes the vehicle body slip angle characteristic according to the contact prediction between the vehicle 2 and an object around the vehicle 2. For example, the ECU 7 predicts contact between the vehicle 2 and an object around the vehicle 2 based on the detection result by the front detection device 13, and according to this, the emergency avoidance pre-crash safety (Pre-Crash Safety, “hereinafter, (It may be called “emergency avoidance PCS”.) Control is executed.
  • Pre-Crash Safety “hereinafter, (It may be called “emergency avoidance PCS”.
  • the ECU7 performs contact prediction with the vehicle 2 and a surrounding object based on the said relative physical quantity which the front detection apparatus 13 detected, for example. For example, when the relative distance between the vehicle 2 and a surrounding object is equal to or less than a preset relative distance threshold, or when the TTC (relative time) is equal to or less than a preset TTC threshold, the ECU 7 Presence. " The relative distance threshold value and the TTC threshold value are set in advance based on actual vehicle evaluation and the like, and are stored in the storage unit of the ECU 7. When the ECU 7 predicts “possibility of contact”, the emergency avoidance PCS control performs various processes to prepare for contact between the vehicle 2 and surrounding objects.
  • the ECU 7 automatically performs emergency braking by controlling the braking device 5. Further, in this case, for example, the ECU 7 drives the warning device to warn the driver that there is a possibility of contact with surrounding objects, and prompts the driver to perform emergency braking. Also good.
  • the ECU 7 of the present embodiment changes the vehicle body slip angle characteristic according to the prediction of the possibility of contact between the vehicle 2 and surrounding objects as described above. More specifically, the ECU 7 determines that the vehicle body slip angle of the vehicle 2 is automatically driven even when the contact between the vehicle 2 and an object in the vicinity of the vehicle 2 is predicted or when the automatic drive control is being executed. The vehicle body slip angle characteristic of the vehicle 2 is changed so as to be equivalent to the case where the control is not executed. That is, even when the automatic operation control is being executed, the ECU 7 switches the vehicle body slip angle characteristic to a characteristic that emphasizes behavioral stability under a situation where the emergency avoidance PCS is activated.
  • the gain setting unit 7d calculates the slip angle gain K ⁇ using the first vehicle body slip angle gain map m1 illustrated in FIG. 4 when the contact between the vehicle 2 and an object around the vehicle 2 is predicted. To do.
  • step ST1 When it is determined in step ST1 that the driving support system is operating, that is, the automatic driving control is being executed (step ST1: Yes), the ECU 7 determines whether or not the emergency avoidance PCS is operated (step ST1). Step ST201). For example, the ECU 7 performs contact prediction between the vehicle 2 and surrounding objects based on the detection result of the front detection device 13 and determines whether or not to operate the emergency avoidance PCS.
  • step ST201: Yes When the ECU 7 operates the emergency avoidance PCS, that is, when it is predicted that “there is a possibility of contact” (step ST201: Yes), the ECU 7 uses the first vehicle body slip angle gain map m1 illustrated in FIG. Gain K ⁇ is calculated (step ST202). Then, the ECU 7 calculates the target vehicle body slip angle ⁇ using the calculated slip angle gain K ⁇ , calculates the control amounts of the front wheel steering angle and the rear wheel steering angle, and proceeds to the processing of step ST3.
  • step ST201 When it is predicted that the emergency avoidance PCS does not operate, that is, “no contact possibility” (step ST201: No), the ECU 7 uses the second vehicle body slip angle gain map m2 illustrated in FIG. Gain K ⁇ is calculated (step ST203). Then, the ECU 7 calculates the target vehicle body slip angle ⁇ using the calculated slip angle gain K ⁇ , calculates the control amounts of the front wheel steering angle and the rear wheel steering angle, and proceeds to the processing of step ST3.
  • the vehicle control system 201 and the ECU 7 according to the embodiment described above can appropriately perform automatic driving control in the vehicle 2 in which the front wheels 3F and the rear wheels 3R are steering wheels.
  • the ECU 7 changes the vehicle body slip angle characteristic of the vehicle 2 according to the contact prediction between the vehicle 2 and an object around the vehicle 2.
  • the vehicle control system 201 and the ECU 7 switch the vehicle body slip angle characteristic to a characteristic that emphasizes behavioral stability under a situation where the emergency avoidance PCS is activated even when the automatic driving control is being executed. Can do.
  • the vehicle control system 201 and the ECU 7 change the vehicle behavior to the stable side when the contact between the vehicle 2 and an object around the vehicle 2 is predicted even when the automatic driving control is being executed. Thus, it is possible to safely deal with contact.
  • vehicle control system and the control device according to the above-described embodiment of the present invention are not limited to the above-described embodiment, and various modifications can be made within the scope described in the claims.
  • vehicle control system and the control device according to the present embodiment may be configured by appropriately combining the components of the embodiments described above.
  • control device has been described as being shared by the ECU 7, but is not limited thereto.
  • control device may be configured separately from the ECU 7, and may be configured to mutually exchange information such as a detection signal, a drive signal, and a control command.
  • the steering device 6 described above may be of a so-called steer-by-wire system in which there is no mechanical connection between the steering wheel 9a and the front wheels 3F and the rear wheels 3R.
  • the automatic driving control has been described as so-called trajectory control.
  • the present invention is not limited to this, and the driving device 4, the braking device 5, the steering device 6 and the like are simply based on the detection result by the front detection device 13. For example, follow-up control that automatically tracks the preceding vehicle may be possible.
  • control device has been described as changing the vehicle body slip angle characteristic of the vehicle 2 by changing the slip angle gain, but the present invention is not limited to this.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

This vehicle control system (1) is characterized by being equipped with: steering units (5) capable of steering front wheels (3F) and rear wheels (3R) of a vehicle (2); detection units (13) for detecting a condition ahead in the direction the vehicle (2) is traveling; and a control unit (7) which is capable of controlling the steering units (5) according to body slip angle characteristics of the vehicle (2) and executing automatic driving control by controlling the vehicle (2) on the basis of a detection result of the detection units (13) and which changes the body slip angle characteristics of the vehicle (2) depending on whether or not the automatic driving control is being executed. Therefore, with the vehicle control system (1) and the control unit (7), the automatic driving control of the vehicle (2) for which the front wheels (3F) and the rear wheels (3R) are steerable can be properly executed.

Description

車両制御システム及び制御装置Vehicle control system and control device
 本発明は、車両制御システム及び制御装置に関する。 The present invention relates to a vehicle control system and a control device.
 車両に搭載される従来の車両制御システム及び制御装置として、例えば、特許文献1には、ステアリングホイールを操舵することによって舵角を与えられる前輪と、車両の走行状態に応じて舵角を与えられる後輪とを有する前後輪操舵車両の制御装置が開示されている。この前後輪操舵車両の制御装置は、ステアリングホイールの操舵角に対応した規範ヨーレートと車両に作用する実ヨーレートとの偏差に基づいて後輪舵角を制御することで、車両の旋回運動性と外乱抑制性との両立を図っている。 As a conventional vehicle control system and control device mounted on a vehicle, for example, in Patent Document 1, a steering wheel is given according to a traveling state of the vehicle and a front wheel that is given a steering angle by steering a steering wheel. A control device for a front and rear wheel steering vehicle having rear wheels is disclosed. This front / rear wheel steering vehicle control device controls the rear wheel steering angle based on the deviation between the standard yaw rate corresponding to the steering angle of the steering wheel and the actual yaw rate acting on the vehicle, thereby turning the vehicle's turning motility and disturbance. The balance with restraint is aimed at.
特開平6-171540号公報JP-A-6-171540
 ところで、上述の特許文献1に記載の前後輪操舵車両の制御装置は、例えば、車両の進行方向前方側の状況を検出する検出装置の検出結果に基づいて車両を制御する自動運転制御の点で更なる改善の余地がある。 By the way, the control device for the front and rear wheel steering vehicle described in Patent Document 1 described above is, for example, in terms of automatic driving control for controlling the vehicle based on the detection result of the detection device that detects the situation on the front side in the traveling direction of the vehicle. There is room for further improvement.
 本発明は、上記の事情に鑑みてなされたものであって、前輪及び後輪が操舵輪となる車両において適正に自動運転制御を実行することができる車両制御システム及び制御装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides a vehicle control system and a control device capable of appropriately executing automatic driving control in a vehicle in which front wheels and rear wheels are steering wheels. Objective.
 上記目的を達成するために、本発明に係る車両制御システムは、車両の前輪及び後輪を操舵可能である操舵装置と、前記車両の進行方向前方側の状況を検出する検出装置と、前記車両の車体スリップ角特性に応じて前記操舵装置を制御可能であると共に、前記検出装置による検出結果に基づいて前記車両を制御し自動運転制御を実行可能であり、当該自動運転制御の実行の有無に応じて前記車両の車体スリップ角特性を変更する制御装置とを備えることを特徴とする。 In order to achieve the above object, a vehicle control system according to the present invention includes a steering device capable of steering a front wheel and a rear wheel of a vehicle, a detection device that detects a situation on the front side in the traveling direction of the vehicle, and the vehicle The steering device can be controlled in accordance with the vehicle body slip angle characteristic, and the vehicle can be controlled based on the detection result of the detection device to execute automatic driving control. And a control device that changes the vehicle body slip angle characteristic of the vehicle.
 また、上記車両制御システムでは、前記制御装置は、前記車両の車速が予め設定される所定車速以上である高速域における前記車両の車体スリップ角特性を前記自動運転制御の実行の有無に応じて変更するものとすることができる。 In the vehicle control system, the control device changes the vehicle body slip angle characteristic in the high speed range where the vehicle speed of the vehicle is equal to or higher than a predetermined vehicle speed set in advance according to whether or not the automatic driving control is executed. Can be.
 また、上記車両制御システムでは、前記制御装置は、少なくとも前記車両の車速、又は、前記車両の旋回半径のいずれか一方に基づいて、前記車両の車体スリップ角特性を変更するものとすることができる。 In the vehicle control system, the control device may change the vehicle body slip angle characteristic of the vehicle based on at least one of the vehicle speed of the vehicle and the turning radius of the vehicle. .
 また、上記車両制御システムでは、前記制御装置は、前記検出装置による検出結果に基づいて生成される前記車両の目標とする走行軌跡である目標軌跡に基づいて、前記車両の車体スリップ角特性を変更するものとすることができる。 In the vehicle control system, the control device changes the vehicle body slip angle characteristic of the vehicle based on a target locus that is a target locus of the vehicle generated based on a detection result of the detection device. Can be.
 また、上記車両制御システムでは、前記制御装置は、前記自動運転制御を実行している場合、前記自動運転制御を実行していない場合と比較して、前記車両の車体スリップ角が相対的に大きくなるように前記車両の車体スリップ角特性を変更するものとすることができる。 Further, in the vehicle control system, the control device has a relatively large vehicle body slip angle when the automatic driving control is being executed, compared to when the automatic driving control is not being executed. Thus, the vehicle body slip angle characteristic of the vehicle can be changed.
 また、上記車両制御システムでは、前記制御装置は、前記自動運転制御を実行している場合、前記車両の車速が相対的に高くなるほど前記車両の車体スリップ角が相対的に大きくなるように前記車両の車体スリップ角特性を変更するものとすることができる。 In the vehicle control system, when the automatic operation control is being performed, the control device is configured such that the vehicle body slip angle of the vehicle is relatively increased as the vehicle speed of the vehicle is relatively increased. The vehicle body slip angle characteristic can be changed.
 また、上記車両制御システムでは、前記制御装置は、前記自動運転制御を実行している場合、前記車両の旋回半径が相対的に小さくなるほど前記車両の車体スリップ角が相対的に大きくなるように前記車両の車体スリップ角特性を変更するものとすることができる。 In the vehicle control system, when the automatic driving control is being performed, the control device is configured so that the vehicle body slip angle is relatively increased as the turning radius of the vehicle is relatively decreased. The vehicle body slip angle characteristic of the vehicle can be changed.
 また、上記車両制御システムでは、前記制御装置は、前記自動運転制御を実行している状態から当該自動運転制御を実行しない状態に切り替える際、及び、前記自動運転制御を実行していない状態から当該自動運転制御を実行する状態に切り替える際に、前記前輪及び前記後輪の操舵角の変化率を制限するものとすることができる。 Further, in the vehicle control system, the control device switches from a state in which the automatic driving control is performed to a state in which the automatic driving control is not performed, and from a state in which the automatic driving control is not performed. When switching to a state in which automatic driving control is executed, the rate of change of the steering angle of the front wheels and the rear wheels can be limited.
 また、上記車両制御システムでは、前記制御装置は、前記車両と当該車両の周辺の物体との接触予測に応じて前記車両の車体スリップ角特性を変更するものとすることができる。 Further, in the vehicle control system, the control device may change the vehicle body slip angle characteristic of the vehicle according to a contact prediction between the vehicle and an object around the vehicle.
 また、上記車両制御システムでは、前記制御装置は、前記車両と当該車両の周辺の物体との接触が予測される場合、前記自動運転制御を実行している場合であっても、前記車両の車体スリップ角が前記自動運転制御を実行していない場合と同等となるように前記車両の車体スリップ角特性を変更するものとすることができる。 Further, in the vehicle control system, the control device is configured so that the vehicle body of the vehicle can be used even when the contact between the vehicle and an object around the vehicle is predicted, or when the automatic driving control is being executed. The vehicle body slip angle characteristic of the vehicle may be changed so that the slip angle is equivalent to that when the automatic operation control is not executed.
 また、上記車両制御システムでは、前記車両の車体スリップ角特性は、前記車両の車体スリップ角と前記車両のハンドル操舵角との比に相当するスリップ角ゲインに基づいて設定され、前記制御装置は、前記スリップ角ゲインを変更することで前記車両の車体スリップ角特性を変更するものとすることができる。 In the vehicle control system, the vehicle body slip angle characteristic of the vehicle is set based on a slip angle gain corresponding to a ratio between the vehicle body slip angle of the vehicle and the steering wheel steering angle of the vehicle, and the control device includes: The vehicle body slip angle characteristic of the vehicle can be changed by changing the slip angle gain.
 上記目的を達成するために、本発明に係る制御装置は、前輪及び後輪が操舵輪となる車両の進行方向前方側の状況を検出する検出装置による検出結果に基づいて、前記車両を制御し自動運転制御を実行可能であり、当該自動運転制御の実行の有無に応じて前記車両の車体スリップ角特性を変更することを特徴とする。 In order to achieve the above object, a control device according to the present invention controls the vehicle based on a detection result by a detection device that detects a situation on the front side in the traveling direction of the vehicle in which front wheels and rear wheels are steering wheels. Automatic driving control can be executed, and the vehicle body slip angle characteristic of the vehicle is changed according to whether or not the automatic driving control is executed.
 本発明に係る車両制御システム及び制御装置は、前輪及び後輪が操舵輪となる車両において適正に自動運転制御を実行することができる、という効果を奏する。 The vehicle control system and the control device according to the present invention have an effect that it is possible to appropriately execute automatic driving control in a vehicle in which front wheels and rear wheels are steering wheels.
図1は、実施形態1に係る車両制御システムが適用された車両の概略構成図である。FIG. 1 is a schematic configuration diagram of a vehicle to which the vehicle control system according to the first embodiment is applied. 図2は、実施形態1に係る車両制御システムのECUの概略構成例を示すブロック図である。FIG. 2 is a block diagram illustrating a schematic configuration example of the ECU of the vehicle control system according to the first embodiment. 図3は、実施形態1に係る車両制御システムにおける前方検出装置の検出範囲の一例について説明する模式図である。FIG. 3 is a schematic diagram illustrating an example of a detection range of the front detection device in the vehicle control system according to the first embodiment. 図4は、実施形態1に係る車両制御システムにおける第1車体スリップ角ゲインマップの一例を示す線図である。FIG. 4 is a diagram illustrating an example of a first vehicle body slip angle gain map in the vehicle control system according to the first embodiment. 図5は、実施形態1に係る車両制御システムにおける第2車体スリップ角ゲインマップの一例を示す線図である。FIG. 5 is a diagram illustrating an example of a second vehicle body slip angle gain map in the vehicle control system according to the first embodiment. 図6は、実施形態1に係る車両制御システムのECUによる制御の一例を説明するフローチャートである。FIG. 6 is a flowchart illustrating an example of control by the ECU of the vehicle control system according to the first embodiment. 図7は、実施形態2に係る車両制御システムのECUによる制御の一例を説明するフローチャートである。FIG. 7 is a flowchart illustrating an example of control by the ECU of the vehicle control system according to the second embodiment.
 以下に、本発明に係る実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能かつ容易なもの、或いは実質的に同一のものが含まれる。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by this embodiment. In addition, constituent elements in the following embodiments include those that can be easily replaced by those skilled in the art or those that are substantially the same.
[実施形態1]
 図1は、実施形態1に係る車両制御システムが適用された車両の概略構成図、図2は、実施形態1に係る車両制御システムのECUの概略構成例を示すブロック図、図3は、実施形態1に係る車両制御システムにおける前方検出装置の検出範囲の一例について説明する模式図、図4は、実施形態1に係る車両制御システムにおける第1車体スリップ角ゲインマップの一例を示す線図、図5は、実施形態1に係る車両制御システムにおける第2車体スリップ角ゲインマップの一例を示す線図、図6は、実施形態1に係る車両制御システムのECUによる制御の一例を説明するフローチャートである。
[Embodiment 1]
FIG. 1 is a schematic configuration diagram of a vehicle to which the vehicle control system according to the first embodiment is applied, FIG. 2 is a block diagram illustrating a schematic configuration example of an ECU of the vehicle control system according to the first embodiment, and FIG. FIG. 4 is a schematic diagram for explaining an example of a detection range of the front detection device in the vehicle control system according to the first embodiment. FIG. 4 is a diagram showing an example of a first vehicle body slip angle gain map in the vehicle control system according to the first embodiment. 5 is a diagram illustrating an example of a second vehicle body slip angle gain map in the vehicle control system according to the first embodiment, and FIG. 6 is a flowchart illustrating an example of control by the ECU of the vehicle control system according to the first embodiment. .
 本実施形態の車両制御システム1は、図1に示すように車両2に搭載される。ここで、車両2は、図1の矢印Y方向に前進する。車両2が前進する方向は、車両2の運転者が座る運転席からハンドルへ向かう方向である。左右の区別は、車両2の前進する方向(図1の矢印Y方向)を基準とする。すなわち、「左」とは、車両2の前進する方向に向かって左側をいい、「右」とは、車両2の前進する方向に向かって右側をいう。また、車両2の前後は、車両2が前進する方向を前とし、車両2が後進する方向、すなわち車両2が前進する方向とは反対の方向を後とする。 The vehicle control system 1 of this embodiment is mounted on a vehicle 2 as shown in FIG. Here, the vehicle 2 moves forward in the arrow Y direction in FIG. The direction in which the vehicle 2 moves forward is the direction from the driver seat where the driver of the vehicle 2 sits toward the steering wheel. The left-right distinction is based on the direction in which the vehicle 2 moves forward (the direction of the arrow Y in FIG. 1). That is, “left” refers to the left side in the direction in which the vehicle 2 moves forward, and “right” refers to the right side in the direction in which the vehicle 2 moves forward. Further, before and after the vehicle 2, the direction in which the vehicle 2 moves forward is defined as the front, and the direction in which the vehicle 2 moves backward, that is, the direction opposite to the direction in which the vehicle 2 moves forward is defined as the rear.
 車両2は、車輪3として、左前輪(左前側の車輪3)3FL、右前輪(右前側の車輪3)3FR、左後輪(左後側の車輪3)3RL、右後輪(右後側の車輪3)3RRを備える。なお、以下の説明では、左前輪3FL、右前輪3FR、左後輪3RL、右後輪3RRを特に分けて説明する必要がない場合には単に「車輪3」という場合がある。また、以下の説明では、左前輪3FL、右前輪3FRを特に分けて説明する必要がない場合には単に「前輪3F」という場合がある。同様に、以下の説明では、左後輪3RL、右後輪3RRを特に分けて説明する必要がない場合には単に「後輪3R」という場合がある。 The vehicle 2 includes, as wheels 3, a left front wheel (left front wheel 3) 3FL, a right front wheel (right front wheel 3) 3FR, a left rear wheel (left rear wheel 3) 3RL, and a right rear wheel (right rear side). Wheel 3) with 3RR. In the following description, the left front wheel 3FL, the right front wheel 3FR, the left rear wheel 3RL, and the right rear wheel 3RR may be simply referred to as “wheel 3” when there is no need to describe them separately. Further, in the following description, there is a case where the left front wheel 3FL and the right front wheel 3FR are simply referred to as “front wheel 3F” when it is not necessary to describe them separately. Similarly, in the following description, the left rear wheel 3RL and the right rear wheel 3RR may be simply referred to as “rear wheel 3R” when there is no need to describe them separately.
 この車両制御システム1は、車両2の前輪3F及び後輪3Rを操舵可能である操舵装置6等を搭載した運転支援システムである。車両制御システム1は、典型的には、前輪操舵装置9及び後輪操舵装置10等からなる4輪操舵(4 Wheel Steering)機構である操舵装置6を備える車両2にて、操舵に対する車体スリップ角姿勢を任意に制御するものである。 The vehicle control system 1 is a driving support system equipped with a steering device 6 or the like that can steer the front wheels 3F and the rear wheels 3R of the vehicle 2. The vehicle control system 1 typically includes a vehicle 2 including a steering device 6 that is a four-wheel steering mechanism including a front wheel steering device 9 and a rear wheel steering device 10. The posture is arbitrarily controlled.
 具体的には、車両制御システム1は、図1に示すように、駆動装置4と、制動装置5と、操舵装置6と、制御装置としてのECU(Electronic Control Unit)7とを備える。 Specifically, as shown in FIG. 1, the vehicle control system 1 includes a drive device 4, a braking device 5, a steering device 6, and an ECU (Electronic Control Unit) 7 as a control device.
 駆動装置4は、車両2において、動力源4a、トルクコンバータ4b、変速機4c等を含んだパワートレーンを構成し、駆動輪となる車輪3を回転駆動するものである。動力源4aは、車両2を走行させる回転動力を発生させるものであり、内燃機関(機関)や電動機(回転機)などの走行用の動力源である。車両2は、走行用動力源として、内燃機関と電動機との両方を備えるハイブリッド車両、内燃機関を備える一方で電動機を備えないコンベ車両、電動機を備える一方で内燃機関を備えないEV車両等のいずれの形式の車両であってもよい。駆動装置4は、動力源4aが発生させた動力を動力源4aからトルクコンバータ4b、変速機4c等を介して車輪3(例えば、駆動輪としての左後輪3RL、右後輪3RR)に伝達する。駆動装置4は、ECU7に電気的に接続され、このECU7によって制御される。車両2は、運転者によるアクセルペダル8aの操作(アクセル操作)に応じて駆動装置4が動力(トルク)を発生させ、この動力が車輪3に伝達され、車輪3に駆動力を発生させる。これにより、車両2は、駆動装置4が発生させる駆動力によって前進または後退することができる。また、車両2は、運転者によるブレーキペダル8bの操作(ブレーキ操作)に応じて制動装置5が作動することで車輪3に制動力を発生させる。これにより、車両2は、制動装置5が発生させる制動力によって減速、停止することができる。 The driving device 4 constitutes a power train including a power source 4a, a torque converter 4b, a transmission 4c, and the like in the vehicle 2, and rotationally drives the wheels 3 serving as driving wheels. The power source 4a generates rotational power that causes the vehicle 2 to travel, and is a power source for traveling such as an internal combustion engine (engine) or an electric motor (rotary machine). The vehicle 2 may be any of a hybrid vehicle having both an internal combustion engine and an electric motor as a driving power source, a combined vehicle having an internal combustion engine but no electric motor, and an EV vehicle having an electric motor and no internal combustion engine. The vehicle of the form may be sufficient. The driving device 4 transmits the power generated by the power source 4a from the power source 4a to the wheels 3 (for example, the left rear wheel 3RL and the right rear wheel 3RR as driving wheels) via the torque converter 4b, the transmission 4c, and the like. To do. The drive device 4 is electrically connected to the ECU 7 and controlled by the ECU 7. In the vehicle 2, the driving device 4 generates power (torque) according to the operation (accelerator operation) of the accelerator pedal 8 a by the driver, and this power is transmitted to the wheels 3 to generate driving force on the wheels 3. As a result, the vehicle 2 can move forward or backward by the driving force generated by the driving device 4. In addition, the vehicle 2 generates a braking force on the wheels 3 by the operation of the braking device 5 according to the operation (braking operation) of the brake pedal 8b by the driver. Thereby, the vehicle 2 can be decelerated and stopped by the braking force generated by the braking device 5.
 操舵装置6は、車両2の前輪3F及び後輪3Rを操舵可能なものであり、ここでは、前輪操舵装置9と後輪操舵装置10とを含んで構成される。前輪操舵装置9は、車両2の前輪3Fを操舵可能であり、左前輪3FL、右前輪3FRを操舵輪として操舵する。後輪操舵装置10は、車両2の後輪3Rを操舵可能であり、左後輪3RL、右後輪3RRを操舵輪として操舵する。 The steering device 6 is capable of steering the front wheels 3F and the rear wheels 3R of the vehicle 2, and includes a front wheel steering device 9 and a rear wheel steering device 10 here. The front wheel steering device 9 can steer the front wheel 3F of the vehicle 2 and steers the left front wheel 3FL and the right front wheel 3FR as steering wheels. The rear wheel steering device 10 can steer the rear wheel 3R of the vehicle 2, and steers the left rear wheel 3RL and the right rear wheel 3RR as steering wheels.
 典型的には、前輪操舵装置9は、運転者による操舵操作子である操舵部材としてのステアリングホイール(ハンドル)9aと、このステアリングホイール9aの操舵操作に伴い駆動し前輪3Fを転舵させる転舵角付与機構9bとを備えている。転舵角付与機構9bは、例えば、ラックギヤやピニオンギヤを備えたいわゆるラック&ピニオン機構等を用いることができるがこれに限らない。さらに、前輪操舵装置9は、ステアリングホイール9aと転舵角付与機構9bとの間に設けられるVGRS(Variable Gear Ratio Steering)装置9c、前輪用の操舵駆動器(倍力装置)9d等を含んで構成される。VGRS装置9cは、ステアリングホイール9aのギヤ比を変更することができるギヤ比可変ステアリング機構である。前輪操舵装置9は、このVGRS装置9cにより操舵特性変更機能が実現される。前輪操舵装置9は、例えば、VGRS装置9cによって、車両2の運転状態(例えば車両2の走行速度である車速)に応じて、ステアリングホイール9aの操作量であるハンドル操舵角(切れ角)に対する前輪3Fの操舵角(以下、「前輪操舵角」という場合がある。)を変更することができる。操舵駆動器9dは、運転者からステアリングホイール9aに加えられた操舵力を、電動機等の動力(操舵補助力)により補助するいわゆる電動パワーステアリング装置(EPS(Electric Power Steering)装置)である。前輪操舵装置9は、この操舵駆動器9dにより操舵力補助機能が実現される。前輪操舵装置9は、例えば、操舵駆動器9dによって、運転者からステアリングホイール9aに加えられた操舵力に応じた操舵補助力を得られるように電動機等を駆動することにより、運転者のステアリングホイール9aに対する操舵操作(ステアリング操作)を補助することができる。前輪操舵装置9は、ECU7に電気的に接続され、このECU7によってVGRS装置9c、操舵駆動器9d等が制御される。 Typically, the front wheel steering device 9 includes a steering wheel (handle) 9a as a steering member that is a steering operator by the driver, and a steering that drives the steering wheel 9a to steer the front wheels 3F. And an angle imparting mechanism 9b. As the turning angle imparting mechanism 9b, for example, a so-called rack and pinion mechanism including a rack gear and a pinion gear can be used, but the present invention is not limited thereto. Further, the front wheel steering device 9 includes a VGRS (Variable Gear Ratio Steering) device 9c provided between the steering wheel 9a and the turning angle imparting mechanism 9b, a front wheel steering drive device (boost device) 9d, and the like. Composed. The VGRS device 9c is a gear ratio variable steering mechanism that can change the gear ratio of the steering wheel 9a. The front wheel steering device 9 has a steering characteristic changing function realized by the VGRS device 9c. The front wheel steering device 9 is, for example, a front wheel with respect to a steering wheel steering angle (cutting angle) that is an operation amount of the steering wheel 9a according to the driving state of the vehicle 2 (for example, the vehicle speed that is the traveling speed of the vehicle 2) by the VGRS device 9c. The steering angle of 3F (hereinafter sometimes referred to as “front wheel steering angle”) can be changed. The steering driver 9d is a so-called electric power steering device (EPS) that assists the steering force applied by the driver to the steering wheel 9a with power (steering assisting force) of an electric motor or the like. In the front wheel steering device 9, a steering force assisting function is realized by the steering driver 9d. The front wheel steering device 9 drives the driver's steering wheel by, for example, driving an electric motor or the like so that a steering assist force corresponding to the steering force applied to the steering wheel 9a from the driver can be obtained by the steering driver 9d. The steering operation (steering operation) for 9a can be assisted. The front wheel steering device 9 is electrically connected to the ECU 7, and the ECU 7 controls the VGRS device 9c, the steering driver 9d, and the like.
 後輪操舵装置10は、いわゆるARS(Active Rear Steering)装置である。後輪操舵装置10は、電動機等の動力により駆動し後輪3Rを転舵させる後輪用の操舵駆動器10aを備えている。後輪操舵装置10は、この操舵駆動器10aにより操舵特性変更機能が実現される。後輪操舵装置10は、前輪操舵装置9と同様に、例えば、操舵駆動器10aによって、車両2の運転状態(例えば車速)に応じて、ハンドル操舵角に対する後輪3Rの操舵角(以下、「後輪操舵角」という場合がある。)を変更することができる。後輪操舵装置10は、ECU7に電気的に接続され、このECU7によって操舵駆動器10a等が制御される。後輪操舵装置10は、ECU7によって、車両2の運転状態(例えば車速や旋回状態)に応じて、前輪3Fの操舵角と同位相、あるいは逆位相で後輪3Rを操舵する。 The rear wheel steering device 10 is a so-called ARS (Active Rear Steering) device. The rear wheel steering device 10 includes a rear wheel steering driver 10a that is driven by power from an electric motor or the like to steer the rear wheel 3R. In the rear wheel steering device 10, a steering characteristic changing function is realized by the steering driver 10a. Similar to the front wheel steering device 9, the rear wheel steering device 10, for example, uses a steering driver 10 a to control the steering angle of the rear wheel 3 </ b> R with respect to the steering wheel steering angle (hereinafter, “ It may be referred to as “rear wheel steering angle”). The rear wheel steering device 10 is electrically connected to the ECU 7, and the steering driver 10a and the like are controlled by the ECU 7. The rear wheel steering device 10 uses the ECU 7 to steer the rear wheel 3R with the same phase as or opposite to the steering angle of the front wheel 3F according to the driving state of the vehicle 2 (for example, vehicle speed or turning state).
 車両制御システム1は、上記のように前輪操舵装置9及び後輪操舵装置10により4輪操舵機構である操舵装置6が構成され、左前輪3FL及び右前輪3FRとともに、左後輪3RL及び右後輪3RRも操舵輪となる。また、前輪操舵装置9、後輪操舵装置10は、ECU7の制御により運転者による操舵操作とは無関係に前輪3F、後輪3Rの操舵角を変化させることもできる。 In the vehicle control system 1, as described above, the front wheel steering device 9 and the rear wheel steering device 10 constitute the steering device 6 that is a four-wheel steering mechanism, and together with the left front wheel 3FL and the right front wheel 3FR, the left rear wheel 3RL and the right rear wheel. The wheel 3RR is also a steering wheel. Further, the front wheel steering device 9 and the rear wheel steering device 10 can change the steering angle of the front wheels 3F and the rear wheels 3R regardless of the steering operation by the driver under the control of the ECU 7.
 ECU7は、車両2の各部の駆動を制御するものであり、CPU、ROM、RAM及びインターフェースを含む周知のマイクロコンピュータを主体とする電子回路を含んで構成される。ECU7は、例えば、種々のセンサ、検出器類が電気的に接続され、検出結果に対応した電気信号が入力される。そして、ECU7は、各種センサ、検出器類等から入力された各種入力信号や各種マップに基づいて、格納されている制御プログラムを実行することにより、駆動装置4や前輪操舵装置9、後輪操舵装置10等の車両2の各部に駆動信号を出力しこれらの駆動を制御する。 The ECU 7 controls driving of each part of the vehicle 2 and includes an electronic circuit mainly composed of a known microcomputer including a CPU, a ROM, a RAM, and an interface. For example, various sensors and detectors are electrically connected to the ECU 7 and an electric signal corresponding to the detection result is input. Then, the ECU 7 executes the stored control program based on various input signals and various maps input from various sensors, detectors, etc., so that the drive device 4, the front wheel steering device 9, and the rear wheel steering are executed. A drive signal is output to each part of the vehicle 2 such as the device 10 to control the drive.
 本実施形態の車両制御システム1は、種々のセンサ、検出器類として、例えば、車輪速センサ11、ヨーレート/横加速度センサ12、検出装置として前方検出装置13等を備えている。車輪速センサ11は、左前輪3FL、右前輪3FR、左後輪3RL、右後輪3RRに対してそれぞれ1つずつ、合計4つが設けられる。各車輪速センサ11は、それぞれ左前輪3FL、右前輪3FR、左後輪3RL、右後輪3RRの回転速度である車輪速VwFL、VwFR、VwRL、VwRRを検出する。ヨーレート/横加速度センサ12は、車両2のヨーレートγ、及び、車両2の車体に生じる横方向(前進方向Yと交差(直交)する方向)の加速度である横加速度Gyを検出する。前方検出装置13は、車両2の進行方向(前進方向Yに沿った方向)前方側の状況を検出する。前方検出装置13は、車両2の進行方向前方側において、予め設定される所定の検出範囲内の状況を検出する。ここでは、前方検出装置13は、車両2の車体の前面側に左右一対で設けられる。 The vehicle control system 1 of the present embodiment includes, for example, a wheel speed sensor 11, a yaw rate / lateral acceleration sensor 12, and a forward detection device 13 as a detection device as various sensors and detectors. Four wheel speed sensors 11 are provided, one for each of the left front wheel 3FL, the right front wheel 3FR, the left rear wheel 3RL, and the right rear wheel 3RR. Each wheel speed sensor 11 detects wheel speeds VwFL, VwFR, VwRL, and VwRR, which are rotational speeds of the left front wheel 3FL, the right front wheel 3FR, the left rear wheel 3RL, and the right rear wheel 3RR, respectively. The yaw rate / lateral acceleration sensor 12 detects the yaw rate γ of the vehicle 2 and the lateral acceleration Gy that is acceleration in the lateral direction (direction intersecting (orthogonal) with the forward direction Y) generated in the vehicle body of the vehicle 2. The front detection device 13 detects the situation in the forward direction of the vehicle 2 (the direction along the forward direction Y). The front detection device 13 detects a situation within a predetermined detection range set in advance on the front side in the traveling direction of the vehicle 2. Here, the front detection device 13 is provided in a pair of left and right on the front side of the vehicle body of the vehicle 2.
 前方検出装置13は、車両2の進行方向前方側の状況として、例えば、車両2の進行方向前方側の周辺物体の有無、検出した周辺物体と車両2との相対位置関係を示す相対物理量、車両2が走行する道路の形状、レーン等のうちの少なくとも1つを検出するようにしてもよい。車両2の進行方向前方側の周辺物体は、例えば、車両2の進行方向前方側の障害物等の物体、車両2の進行方向前方側を走行する前走車等である。また、前方検出装置13は、前方検出装置13が検出する上記相対物理量として、例えば、車両2と周辺物体との相対速度(m/s)、相対距離(m)、相対減速度(m/s2)、TTC(Time-To-Collision:接触余裕時間)(s)等のうちの少なくとも1つを検出するようにしてもよい。ここで、TTC(以下、「相対時間」という場合がある。)とは、車両2が周辺物体に至るまでの時間に相当し、車両2と周辺物体との相対距離を相対速度に応じて変換した時間に相当する。前方検出装置13は、例えば、ミリ波レーダ、レーザや赤外線などを用いたレーダ、UWB(Ultra Wide Band)レーダ等の近距離用レーダ、可聴域の音波又は超音波を用いたソナー、CCDカメラなどの撮像装置により車両2の走行方向前方を撮像した画像データを解析することで車両2の進行方向前方側の状況を検出する画像認識装置等を用いてもよい。 The front detection device 13 includes, for example, the presence or absence of a peripheral object on the front side in the traveling direction of the vehicle 2, the relative physical quantity indicating the relative positional relationship between the detected peripheral object and the vehicle 2, You may make it detect at least 1 of the shape of the road where 2 drive | works, a lane, etc. The peripheral object on the front side in the traveling direction of the vehicle 2 is, for example, an object such as an obstacle on the front side in the traveling direction of the vehicle 2, a forward vehicle that travels on the front side in the traveling direction of the vehicle 2, or the like. Further, the front detection device 13 uses, for example, a relative speed (m / s), a relative distance (m), a relative deceleration (m / s) between the vehicle 2 and a surrounding object as the relative physical quantity detected by the front detection device 13. 2 ), at least one of TTC (Time-To-Collision) (s) may be detected. Here, TTC (hereinafter sometimes referred to as “relative time”) corresponds to the time until the vehicle 2 reaches the surrounding object, and the relative distance between the vehicle 2 and the surrounding object is converted according to the relative speed. It corresponds to the time. The forward detection device 13 is, for example, a millimeter wave radar, a radar using a laser or an infrared ray, a short-range radar such as a UWB (Ultra Wide Band) radar, a sonar using a sound wave or an ultrasonic wave in an audible range, a CCD camera, etc. An image recognition device or the like that detects the situation on the front side in the traveling direction of the vehicle 2 by analyzing image data obtained by imaging the front in the traveling direction of the vehicle 2 with the imaging device of FIG.
 また、ECU7は、上述したように、VGRS装置9c、操舵駆動器9d、操舵駆動器10aに電気的に接続されている。そして、ECU7は、VGRS装置9cからハンドル操舵角センサが検出したハンドル操舵角(切れ角)δdに対応した電気信号が入力される。ハンドル操舵角δdは、ステアリングホイール9aの操舵角(ステアリングホイール9aの回転角度)である。また、ECU7は、操舵駆動器9dから前輪操舵角センサが検出した前輪操舵角δfに対応した電気信号が入力される。前輪操舵角δfは、前輪3Fの操舵角(前輪3Fの回転角度)である。同様に、ECU7は、操舵駆動器10aから後輪操舵角センサが検出した後輪操舵角δrに対応した電気信号が入力される。後輪操舵角δrは、後輪3Rの操舵角(後輪3Rの回転角度)である後輪操舵角δrに対応した電気信号が入力される。 Further, as described above, the ECU 7 is electrically connected to the VGRS device 9c, the steering driver 9d, and the steering driver 10a. The ECU 7 receives an electrical signal corresponding to the steering wheel steering angle (cutting angle) δd detected by the steering wheel steering angle sensor from the VGRS device 9c. The steering wheel steering angle δd is the steering angle of the steering wheel 9a (the rotation angle of the steering wheel 9a). The ECU 7 also receives an electrical signal corresponding to the front wheel steering angle δf detected by the front wheel steering angle sensor from the steering driver 9d. The front wheel steering angle δf is the steering angle of the front wheel 3F (the rotation angle of the front wheel 3F). Similarly, the ECU 7 receives an electric signal corresponding to the rear wheel steering angle δr detected by the rear wheel steering angle sensor from the steering driver 10a. As the rear wheel steering angle δr, an electric signal corresponding to the rear wheel steering angle δr, which is the steering angle of the rear wheel 3R (the rotation angle of the rear wheel 3R), is input.
 また、車両制御システム1は、車両2の車外との通信を行う通信システム14を備えてもよい。通信システム14は、例えば、車車間通信システム、インフラ協調システム、GPS(Global Positioning System)システム等のうちの少なくとも1つを含んでいてもよい。車車間通信システムは、他車両に車載された車車間通信機器等と通信することで種々の他車両情報を取得するシステムである。インフラ協調システムは、路側に設けられた路車間通信機等のインフラストラクチャーと通信することで種々のインフラ情報を取得するシステムである。GPSシステムは、GPS衛星が配信する車両2の位置情報(GPS情報)を表すGPS信号を受信するシステムである。ECU7は、通信システム14に電気的に接続されており、通信システム14から種々の情報に対応した電気信号が入力される。例えば、ECU7は、通信システム14が受信したGPS信号に基づいて、車両2の位置情報、例えば、GPS情報(X座標;X,Y座標;Y)を測位・演算すると共に、データベースに記憶された道路情報等の地図情報を参照することで、車両2の走行地点を認識することができる。なお、車両制御システム1は、さらにナビゲーション装置等を備えていてもよい。 Further, the vehicle control system 1 may include a communication system 14 that performs communication with the outside of the vehicle 2. The communication system 14 may include at least one of, for example, a vehicle-to-vehicle communication system, an infrastructure cooperation system, a GPS (Global Positioning System) system, and the like. The inter-vehicle communication system is a system that acquires various other vehicle information by communicating with an inter-vehicle communication device mounted on another vehicle. The infrastructure cooperation system is a system that acquires various infrastructure information by communicating with an infrastructure such as a road-to-vehicle communication device provided on the roadside. The GPS system is a system that receives a GPS signal representing position information (GPS information) of the vehicle 2 distributed by a GPS satellite. The ECU 7 is electrically connected to the communication system 14 and receives electrical signals corresponding to various information from the communication system 14. For example, the ECU 7 measures and calculates the position information of the vehicle 2, for example, GPS information (X coordinate; X, Y coordinate; Y), based on the GPS signal received by the communication system 14, and is stored in the database. The travel point of the vehicle 2 can be recognized by referring to map information such as road information. The vehicle control system 1 may further include a navigation device or the like.
 そして、本実施形態のECU7は、車両2の車体スリップ角特性に応じて操舵装置6の前輪操舵装置9、後輪操舵装置10を制御可能である。ここで、車体スリップ角特性とは、ECU7が操舵装置6(前輪操舵装置9、後輪操舵装置10)を制御する際の、ハンドル操舵角に対する車体スリップ角の特性である。車体スリップ角は、車両2の車体の前後方向中心線と車両2の進行方向(速度ベクトル)とがなす角度であり、例えば、車両2の旋回接線方向に対して車両2の車体の前後方向中心線がなす角度である。車体スリップ角は、例えば、相対的に大きな角度になるほど車両2の車体が旋回内側を向いていることを表す。車体スリップ角は、例えば、車両2の前輪操舵角、後輪操舵角等に応じて定まる。ECU7は、予め設定された車両2の車体スリップ角特性に応じて前輪操舵装置9、後輪操舵装置10を制御し前輪3F、後輪3Rを操舵して、前輪操舵角、後輪操舵角を変更する。ここでは、車両2の車体スリップ角特性は、後述のスリップ角ゲインKβに基づいて設定される。すなわち、ECU7は、後述するように、スリップ角ゲインKβを用いて操舵制御量を算出し前輪操舵装置9、後輪操舵装置10を制御することで、所定の車体スリップ角特性に応じて前輪操舵装置9、後輪操舵装置10を制御することができる。 The ECU 7 of this embodiment can control the front wheel steering device 9 and the rear wheel steering device 10 of the steering device 6 according to the vehicle body slip angle characteristic of the vehicle 2. Here, the vehicle body slip angle characteristic is a characteristic of the vehicle body slip angle with respect to the steering wheel steering angle when the ECU 7 controls the steering device 6 (the front wheel steering device 9 and the rear wheel steering device 10). The vehicle body slip angle is an angle formed by the longitudinal center line of the vehicle body of the vehicle 2 and the traveling direction (speed vector) of the vehicle 2, and is, for example, the longitudinal center of the vehicle body of the vehicle 2 with respect to the turning tangential direction of the vehicle 2. The angle formed by the line. The vehicle body slip angle represents, for example, that the vehicle body of the vehicle 2 is facing the inside of the turn as the angle becomes relatively large. The vehicle body slip angle is determined according to, for example, the front wheel steering angle, the rear wheel steering angle, or the like of the vehicle 2. The ECU 7 controls the front wheel steering device 9 and the rear wheel steering device 10 in accordance with the vehicle body slip angle characteristics of the vehicle 2 set in advance to steer the front wheels 3F and the rear wheels 3R, thereby setting the front wheel steering angle and the rear wheel steering angle. change. Here, the vehicle body slip angle characteristic of the vehicle 2 is set based on a slip angle gain Kβ described later. That is, as will be described later, the ECU 7 calculates the steering control amount by using the slip angle gain Kβ and controls the front wheel steering device 9 and the rear wheel steering device 10 to control the front wheel steering according to a predetermined vehicle body slip angle characteristic. The device 9 and the rear wheel steering device 10 can be controlled.
 またさらに、本実施形態のECU7は、前方検出装置13による検出結果に基づいて車両2を制御し自動運転制御を実行可能である。本実施形態の自動運転制御は、前方検出装置13による検出結果を用いた車両2の運転支援制御である。ここでは、自動運転制御は、例えば、前方検出装置13による検出結果に基づいて目標軌跡を生成し、当該目標軌跡に基づいて前輪操舵装置9、後輪操舵装置10を制御する軌跡制御である。ECU7は、前方検出装置13が検出した車両2の進行方向前方側の状況、例えば、車両2の進行方向前方側の周辺物体の有無、周辺物体と車両2との相対物理量、車両2が走行する道路の形状、レーン等に基づいて、車両2の目標とする走行軌跡である目標軌跡を生成する。この場合、ECU7は、例えば、自車である車両2を現在の車線(レーン)内に維持したまま走行させる走行軌跡(レーンキーピングアシスト)、車両2の進行方向前方側の障害物を回避する走行軌跡、車両2を前走車に追従走行させる走行軌跡等に応じて、車両2の目標軌跡を生成する。なお、ECU7は、さらに、通信システム14が取得した他車両情報、インフラ情報、GPS情報等を加味して目標軌跡を生成するようにしてもよい。そして、ECU7は、生成した目標軌跡に応じた進行方向及び姿勢で車両2が進行するように、上記車体スリップ角特性に応じて前輪操舵装置9、後輪操舵装置10を制御する。なお、この車両制御システム1は、例えば、切替スイッチ15を介した運転者の切り替え操作に応じて、任意に自動運転制御のオンとオフとを切り替えることができる。 Furthermore, the ECU 7 of the present embodiment can control the vehicle 2 based on the detection result by the front detection device 13 and execute automatic driving control. The automatic driving control of the present embodiment is driving support control of the vehicle 2 using the detection result by the front detection device 13. Here, the automatic driving control is, for example, trajectory control that generates a target trajectory based on a detection result by the front detection device 13 and controls the front wheel steering device 9 and the rear wheel steering device 10 based on the target trajectory. The ECU 7 detects the situation on the front side in the traveling direction of the vehicle 2 detected by the front detection device 13, for example, the presence or absence of a peripheral object on the front side in the traveling direction of the vehicle 2, the relative physical quantity between the peripheral object and the vehicle 2, and the vehicle 2 traveling. Based on the shape of the road, the lane, and the like, a target trajectory that is a target travel trajectory of the vehicle 2 is generated. In this case, for example, the ECU 7 travels while avoiding obstacles ahead of the traveling direction of the vehicle 2 (lane keeping assist) in which the vehicle 2 that is the host vehicle travels while being maintained in the current lane (lane). A target locus of the vehicle 2 is generated according to the locus, a traveling locus that causes the vehicle 2 to follow the preceding vehicle, and the like. The ECU 7 may further generate the target locus in consideration of other vehicle information acquired by the communication system 14, infrastructure information, GPS information, and the like. Then, the ECU 7 controls the front wheel steering device 9 and the rear wheel steering device 10 according to the vehicle body slip angle characteristic so that the vehicle 2 travels in the traveling direction and posture according to the generated target locus. Note that the vehicle control system 1 can arbitrarily switch automatic driving control on and off in accordance with, for example, a driver switching operation via the changeover switch 15.
 次に、図2のブロック図を参照してECU7の概略構成の一例について説明する。本図を参照してECU7の基本的な制御の一例について説明する。 Next, an example of a schematic configuration of the ECU 7 will be described with reference to the block diagram of FIG. An example of basic control of the ECU 7 will be described with reference to this drawing.
 本実施形態のECU7は、機能概念的に、車速決定部7a、目標軌跡生成部7b、操舵制御部7c、ゲイン設定部7d等を含んで構成される。 The ECU 7 of the present embodiment includes a vehicle speed determination unit 7a, a target locus generation unit 7b, a steering control unit 7c, a gain setting unit 7d, and the like in terms of functional concept.
 車速決定部7aは、各車輪速センサ11から入力される各車輪3の車輪速Vwi(i=FL、FR、RL、RR)に基づいて、車両2の走行速度である車速Vxを算出する。車速決定部7aは、算出した車速Vxを操舵制御部7cに出力する。 The vehicle speed determination unit 7a calculates a vehicle speed Vx that is the traveling speed of the vehicle 2 based on the wheel speed Vwi (i = FL, FR, RL, RR) of each wheel 3 input from each wheel speed sensor 11. The vehicle speed determination unit 7a outputs the calculated vehicle speed Vx to the steering control unit 7c.
 目標軌跡生成部7bは、前方検出装置13から入力される車両2の進行方向前方側の状況に基づいて、車両2の目標とする走行軌跡である目標軌跡を生成する。目標軌跡生成部7bは、例えば、前方検出装置13が検出した車両2の進行方向前方側の周辺物体の有無、周辺物体と車両2との相対物理量、車両2が走行する道路の形状、レーン等に基づいて、目標軌跡を生成する。目標軌跡生成部7bは、生成した目標軌跡に関する指標を操舵制御部7c、ゲイン設定部7dに出力する。目標軌跡生成部7bが生成する目標軌跡に関する指標は、例えば、目標軌跡に応じた旋回半径R、障害物までの距離Lx、横方向目標移動距離Lyt等のうちの少なくとも1つを含んでもよい。 The target trajectory generation unit 7b generates a target trajectory that is a target travel trajectory of the vehicle 2 based on the situation on the front side in the traveling direction of the vehicle 2 input from the front detection device 13. The target locus generation unit 7b is, for example, the presence or absence of a peripheral object on the front side in the traveling direction of the vehicle 2 detected by the front detection device 13, the relative physical quantity between the peripheral object and the vehicle 2, the shape of the road on which the vehicle 2 travels, the lane, etc. Based on the above, a target locus is generated. The target locus generation unit 7b outputs an index related to the generated target locus to the steering control unit 7c and the gain setting unit 7d. The index related to the target trajectory generated by the target trajectory generating unit 7b may include, for example, at least one of a turning radius R according to the target trajectory, a distance Lx to the obstacle, a lateral target moving distance Lyt, and the like.
 操舵制御部7cは、前輪操舵装置9、後輪操舵装置10を制御し、前輪3F、後輪3Rを操舵して、前輪操舵角、後輪操舵角を変更するものである。操舵制御部7cは、例えば、VGRS装置9cのハンドル操舵角センサから入力されるハンドル操舵角δd、車速決定部7aから入力される車速Vx、目標軌跡生成部7bから入力される目標軌跡に関する指標、後述のゲイン設定部7dから入力されるヨーレートゲインKγ、スリップ角ゲインKβに基づいて、伝達関数等を用いて目標ヨーレートγ及び目標車体スリップ角βを算出する。この場合、操舵制御部7cは、自動運転制御がオフである場合には目標軌跡に関する指標を用いずに目標ヨーレートγ及び目標車体スリップ角βを算出すればよい。操舵制御部7cが算出する目標ヨーレートγ、目標車体スリップ角βは、前輪操舵装置9、後輪操舵装置10を操舵制御する際に目標とするヨーレートγ、車体スリップ角βであり、例えば、車両2の挙動を安定化させる値に設定される。なお、操舵制御部7cは、さらに、ヨーレート/横加速度センサ12から入力される車両2のヨーレートγ、横加速度Gyに基づいて、目標ヨーレートγ、目標車体スリップ角βを補正してもよい。 The steering control unit 7c controls the front wheel steering device 9 and the rear wheel steering device 10, steers the front wheels 3F and the rear wheels 3R, and changes the front wheel steering angle and the rear wheel steering angle. The steering control unit 7c includes, for example, a steering wheel steering angle δd input from a steering wheel steering angle sensor of the VGRS device 9c, a vehicle speed Vx input from the vehicle speed determination unit 7a, and an index related to a target track input from the target track generation unit 7b, Based on a yaw rate gain Kγ and a slip angle gain Kβ input from a gain setting unit 7d described later, a target yaw rate γ and a target vehicle body slip angle β are calculated using a transfer function or the like. In this case, the steering control unit 7c may calculate the target yaw rate γ and the target vehicle body slip angle β without using the index related to the target trajectory when the automatic driving control is off. The target yaw rate γ and the target vehicle body slip angle β calculated by the steering control unit 7c are the yaw rate γ and the vehicle body slip angle β that are targets when the front wheel steering device 9 and the rear wheel steering device 10 are steering controlled. 2 is set to a value that stabilizes the behavior. The steering control unit 7c may further correct the target yaw rate γ and the target vehicle body slip angle β based on the yaw rate γ and the lateral acceleration Gy of the vehicle 2 input from the yaw rate / lateral acceleration sensor 12.
 そして、操舵制御部7cは、算出した目標ヨーレートγ、目標車体スリップ角βが実現できるように、前輪操舵角δf、後輪操舵角δrの制御量(操舵制御量)を算出する。操舵制御部7cは、例えば、予め記憶部に記憶されている車両2の車両モデルを用いて、目標ヨーレートγ、目標車体スリップ角βから前輪操舵角δf、後輪操舵角δrの制御量を逆演算する。そして、操舵制御部7cは、算出した前輪操舵角、後輪操舵角の制御量に基づいて、前輪操舵装置9、後輪操舵装置10に制御指令を出力する。すなわち、操舵制御部7cは、操舵駆動器9dの前輪操舵角センサ、操舵駆動器10aの後輪操舵角センサが検出する実際の前輪操舵角δf、後輪操舵角δrをフィードバック制御し、実際のヨーレートγ、車体スリップ角βが目標ヨーレートγ、目標車体スリップ角βに収束するように前輪操舵装置9、後輪操舵装置10を制御する。 Then, the steering control unit 7c calculates control amounts (steering control amounts) of the front wheel steering angle δf and the rear wheel steering angle δr so that the calculated target yaw rate γ and target vehicle body slip angle β can be realized. For example, the steering control unit 7c reverses the control amounts of the front wheel steering angle δf and the rear wheel steering angle δr from the target yaw rate γ and the target vehicle body slip angle β using the vehicle model of the vehicle 2 stored in advance in the storage unit. Calculate. Then, the steering control unit 7c outputs a control command to the front wheel steering device 9 and the rear wheel steering device 10 based on the calculated control amounts of the front wheel steering angle and the rear wheel steering angle. That is, the steering control unit 7c feedback-controls the actual front wheel steering angle δf and the rear wheel steering angle δr detected by the front wheel steering angle sensor of the steering driver 9d and the rear wheel steering angle sensor of the steering driver 10a, The front wheel steering device 9 and the rear wheel steering device 10 are controlled so that the yaw rate γ and the vehicle body slip angle β converge on the target yaw rate γ and the target vehicle body slip angle β.
 この結果、車両2は、前輪操舵装置9、後輪操舵装置10によって前輪3F、後輪3Rが車体スリップ角特性に応じて操舵されながら、目標軌跡に沿って走行することができる。 As a result, the vehicle 2 can travel along the target locus while the front wheels 3F and the rear wheels 3R are steered according to the vehicle body slip angle characteristics by the front wheel steering device 9 and the rear wheel steering device 10.
 ところで、上述したように、前輪操舵装置9及び後輪操舵装置10等からなる操舵装置6を備える車両2にて、例えば、車両安定化及び運転者フィーリングに沿った車両特性を実現しようとした場合を想定する。この場合、車両2の車体スリップ角特性は、例えば、車速が予め設定される所定車速以上である高速域の旋回状態において、車体スリップ角が0[rad]近傍になるように設定されることが好ましい。ここで、上記のように車体スリップ角特性が設定されると、4輪操舵の車両2は、車両安定化及び運転者フィーリングの向上を図ることができる一方、2輪操舵(2 Wheel Steering)の車両と比較して、図3に例示するように、車体2Aの前後方向中心線L1が旋回中心に対して相対的に旋回外側を向く傾向となる。これにより、図3に例示するように、車体2Aに設けられた前方検出装置13(図1参照)による検出範囲X1も、車両2の進行方向前方側において、旋回中心に対して相対的に旋回外側を向くこととなる。このため、車両2は、このような車両特性のまま、上記で説明した自動運転制御(軌跡制御)を実行すると、前方検出装置13の視野角等によっては、旋回中における前方検出装置13の検出範囲が適切な範囲とならず、自動運転制御に必要な進行方向前方側の状況を適切に検出することができないおそれがある。 By the way, as described above, in the vehicle 2 including the steering device 6 including the front wheel steering device 9 and the rear wheel steering device 10 and the like, for example, it is attempted to realize vehicle characteristics along with vehicle stabilization and driver feeling. Assume a case. In this case, the vehicle body slip angle characteristic of the vehicle 2 may be set such that, for example, the vehicle body slip angle is in the vicinity of 0 [rad] in a turning state in a high speed range where the vehicle speed is equal to or higher than a predetermined vehicle speed set in advance. preferable. Here, when the vehicle body slip angle characteristic is set as described above, the four-wheel steering vehicle 2 can improve the vehicle stability and the driver feeling, while the two-wheel steering (2 Wheel Steering). 3, the longitudinal center line L1 of the vehicle body 2A tends to face the turning outer side relative to the turning center, as illustrated in FIG. Accordingly, as illustrated in FIG. 3, the detection range X <b> 1 by the front detection device 13 (see FIG. 1) provided in the vehicle body 2 </ b> A also turns relative to the turning center on the front side in the traveling direction of the vehicle 2. It will turn to the outside. For this reason, when the vehicle 2 executes the automatic driving control (trajectory control) described above with such vehicle characteristics, depending on the viewing angle of the front detection device 13 or the like, the detection of the front detection device 13 during turning is detected. There is a possibility that the range does not become an appropriate range, and the situation on the front side in the traveling direction necessary for the automatic operation control cannot be properly detected.
 そこで、本実施形態のECU7は、自動運転制御の実行の有無に応じて車両2の車体スリップ角特性を変更する。つまり、ECU7は、自動運転制御を実行している場合と自動運転制御を実行していない場合とで、車体スリップ角特性を変更する。これにより、ECU7は、前輪3F及び後輪3Rが操舵輪となる車両2において適正に自動運転制御を実行することができるようにしている。なお、以下の説明では、自動運転制御を実行している場合を「自動運転制御時」、自動運転制御を実行していない場合を「運転者操舵時」という場合がある。 Therefore, the ECU 7 of the present embodiment changes the vehicle body slip angle characteristic of the vehicle 2 according to whether or not the automatic driving control is executed. That is, the ECU 7 changes the vehicle body slip angle characteristic between when the automatic driving control is executed and when the automatic driving control is not executed. Thereby, the ECU 7 can appropriately perform the automatic driving control in the vehicle 2 in which the front wheels 3F and the rear wheels 3R are the steering wheels. In the following description, the case where the automatic driving control is executed may be referred to as “at the time of automatic driving control”, and the case where the automatic driving control is not executed may be referred to as “at the time of driver steering”.
 ここでは、車両2の車体スリップ角特性は、上述したように、スリップ角ゲインKβに基づいて設定される。スリップ角ゲインKβは、上述したように目標車体スリップ角βを算出する際に用いられるものであり、例えば、車両2の車体スリップ角βと車両2のハンドル操舵角δdとの比に相当する。本実施形態のECU7は、このスリップ角ゲインKβを変更することで車両2の車体スリップ角特性を変更する。 Here, the vehicle body slip angle characteristic of the vehicle 2 is set based on the slip angle gain Kβ as described above. The slip angle gain Kβ is used when the target vehicle body slip angle β is calculated as described above, and corresponds to, for example, the ratio between the vehicle body slip angle β of the vehicle 2 and the steering wheel steering angle δd of the vehicle 2. The ECU 7 of the present embodiment changes the vehicle body slip angle characteristic of the vehicle 2 by changing the slip angle gain Kβ.
 典型的には、ECU7は、運転者操舵時と自動運転制御時とを比較した場合に、図3に例示するような傾向になるように車体スリップ角特性を変更する。すなわち、ECU7は、運転者操舵時に車両2の車体が相対的に旋回外側を向き(図3中、車体2A、前後方向中心線L1、検出範囲X1参照。)、自動運転制御時に車両2の車体が相対的に旋回内側を向くように(図3中、車体2B、前後方向中心線L2、検出範囲X2参照。)、車体スリップ角特性を変更する。 Typically, the ECU 7 changes the vehicle body slip angle characteristic so as to have a tendency as illustrated in FIG. 3 when comparing the driver steering and the automatic driving control. That is, the ECU 7 relatively faces the vehicle 2 turning outward during steering of the driver (refer to the vehicle body 2A, the front-rear direction center line L1, and the detection range X1 in FIG. 3), and the vehicle body of the vehicle 2 during automatic driving control. The vehicle body slip angle characteristic is changed so that the vehicle is relatively directed toward the inside of the turn (see the vehicle body 2B, the front-rear direction center line L2, and the detection range X2 in FIG. 3).
 ここでは、ECU7は、運転者操舵時と自動運転制御時とで車体スリップ角ゲインマップ(あるいは数式モデル)を切り替えることで、スリップ角ゲインKβを変更し車両2の車体スリップ角特性を変更する。なお、車体スリップ角ゲインマップとは、スリップ角ゲインKβを算出するためのマップである。 Here, the ECU 7 changes the vehicle body slip angle characteristic of the vehicle 2 by changing the vehicle slip angle gain Kβ by switching the vehicle body slip angle gain map (or mathematical model) between the driver steering and the automatic driving control. The vehicle body slip angle gain map is a map for calculating the slip angle gain Kβ.
 本実施形態のECU7は、ゲイン設定部7d(図2参照)が運転者操舵時と自動運転制御時とで、使用する車体スリップ角ゲインマップを切り替える。ゲイン設定部7dは、運転者操舵時、自動運転制御時に、それぞれに対応する車体スリップ角ゲインマップを用いて、車速決定部7aから入力される車速Vx、目標軌跡生成部7bから入力される目標軌跡に関する指標等に基づいてスリップ角ゲインKβを算出する。そして、ゲイン設定部7dは、状況に応じて算出したスリップ角ゲインKβを操舵制御部7cに出力する。 The ECU 7 of the present embodiment switches the vehicle body slip angle gain map to be used depending on whether the gain setting unit 7d (see FIG. 2) is at the time of driver steering or automatic driving control. The gain setting unit 7d uses the vehicle body slip angle gain maps corresponding to the steering operation and the automatic driving control, respectively, and the vehicle speed Vx input from the vehicle speed determination unit 7a and the target input from the target locus generation unit 7b. A slip angle gain Kβ is calculated based on an index related to the trajectory. Then, the gain setting unit 7d outputs the slip angle gain Kβ calculated according to the situation to the steering control unit 7c.
 ゲイン設定部7dは、運転者操舵時には、第1車体スリップ角ゲインマップを用いて、車速決定部7aから入力される車速Vxに応じて、運転者操舵時に用いるスリップ角ゲインKβを算出する。第1車体スリップ角ゲインマップは、典型的には、高速域の旋回状態において車体スリップ角が0[rad]近傍になり、車両安定化及び運転者フィーリングの向上を図ることができるような車体スリップ角特性となるように設定される。 The gain setting unit 7d calculates a slip angle gain Kβ used during driver steering according to the vehicle speed Vx input from the vehicle speed determining unit 7a using the first vehicle body slip angle gain map during driver steering. The first vehicle body slip angle gain map typically has a vehicle body slip angle in the vicinity of 0 [rad] in a turning state in a high speed region, and can achieve vehicle stabilization and improved driver feeling. The slip angle characteristic is set.
 図4は、運転者操舵時に用いる第1車体スリップ角ゲインマップm1の一例を示す線図である。この第1車体スリップ角ゲインマップm1は、横軸が車速、縦軸が運転者操舵時に用いるスリップ角ゲインKβを示す。第1車体スリップ角ゲインマップm1は、車速とスリップ角ゲインKβとの関係を記述したものである。第1車体スリップ角ゲインマップm1は、車速とスリップ角ゲインKβとの関係が実車評価等を踏まえて予め設定された上で、ECU7の記憶部に格納されている。第1車体スリップ角ゲインマップm1では、スリップ角ゲインKβは、車速が高くなるにしたがって小さくなり、予め設定される所定車速以上の高速域では0となるように設定されている。ゲイン設定部7dは、この第1車体スリップ角ゲインマップm1に基づいて、入力された車速から、運転者操舵時に用いるスリップ角ゲインKβを算出する。 FIG. 4 is a diagram showing an example of a first vehicle body slip angle gain map m1 used during driver steering. In the first vehicle body slip angle gain map m1, the horizontal axis represents the vehicle speed, and the vertical axis represents the slip angle gain Kβ used during driver steering. The first vehicle body slip angle gain map m1 describes the relationship between the vehicle speed and the slip angle gain Kβ. The first vehicle body slip angle gain map m1 is stored in the storage unit of the ECU 7 after the relationship between the vehicle speed and the slip angle gain Kβ is set in advance based on actual vehicle evaluation and the like. In the first vehicle body slip angle gain map m1, the slip angle gain Kβ decreases as the vehicle speed increases, and is set to 0 in a high-speed range that is equal to or higher than a predetermined vehicle speed. Based on the first vehicle body slip angle gain map m1, the gain setting unit 7d calculates a slip angle gain Kβ used during driver steering from the input vehicle speed.
 この場合、車両2は、車速が高くなり、ゲイン設定部7dにより算出されるスリップ角ゲインKβが0に近づくほど車体スリップ角が0[rad]近傍となり車体が旋回接線方向を向く傾向になる。この結果、この車両制御システム1は、運転者操舵時に高速域の旋回状態において、車両安定化及び運転者フィーリングの向上を図ることができる。 In this case, the vehicle 2 has a higher vehicle speed, and as the slip angle gain Kβ calculated by the gain setting unit 7d approaches 0, the vehicle body slip angle becomes near 0 [rad] and the vehicle body tends to turn in the tangential direction of the turn. As a result, the vehicle control system 1 can achieve vehicle stabilization and improvement of driver feeling in a turning state in a high speed region during driver steering.
 なお、本実施形態では、ゲイン設定部7dは、第1車体スリップ角ゲインマップm1を用いてスリップ角ゲインKβを算出、設定するものとして説明したが本実施形態はこれに限定されない。ゲイン設定部7dは、例えば、第1車体スリップ角ゲインマップm1に相当する数式モデルに基づいて、スリップ角ゲインKβを算出、設定するようにしてもよい。 In the present embodiment, the gain setting unit 7d has been described as calculating and setting the slip angle gain Kβ using the first vehicle body slip angle gain map m1, but the present embodiment is not limited to this. For example, the gain setting unit 7d may calculate and set the slip angle gain Kβ based on a mathematical model corresponding to the first vehicle body slip angle gain map m1.
 一方、ゲイン設定部7dは、自動運転制御時には、第2車体スリップ角ゲインマップを用いて、車速決定部7aから入力される車速Vxと目標軌跡生成部7bから入力される目標軌跡に関する指標とに応じて、自動運転制御時に用いるスリップ角ゲインKβを算出する。ここでは、ゲイン設定部7dは、車速Vxと目標軌跡に応じた旋回半径Rとに基づいてスリップ角ゲインKβを算出する。つまり、本実施形態のECU7は、少なくとも車両2の車速Vx、又は、車両の旋回半径Rのいずれか一方、ここでは両方に基づいて、車両2の車体スリップ角特性を変更する。言い換えれば、ECU7は、自動運転制御における車両2の目標とする走行軌跡である目標軌跡に基づいて、車両2の車体スリップ角特性を変更する。第2車体スリップ角ゲインマップは、典型的には、高速域の旋回状態においても、車速Vx、旋回半径Rに応じて、前方検出装置13による検出範囲が目標軌跡の軌跡方向のできるだけ先を向くような車体スリップ角特性となるように設定される。 On the other hand, at the time of automatic driving control, the gain setting unit 7d uses the second vehicle body slip angle gain map to convert the vehicle speed Vx input from the vehicle speed determination unit 7a and the index related to the target track input from the target track generation unit 7b. Accordingly, a slip angle gain Kβ used during automatic operation control is calculated. Here, the gain setting unit 7d calculates the slip angle gain Kβ based on the vehicle speed Vx and the turning radius R corresponding to the target locus. That is, the ECU 7 of the present embodiment changes the vehicle body slip angle characteristic of the vehicle 2 based on at least one of the vehicle speed Vx of the vehicle 2 or the turning radius R of the vehicle, here both. In other words, the ECU 7 changes the vehicle body slip angle characteristic of the vehicle 2 based on the target locus that is the target locus of the vehicle 2 in the automatic operation control. The second vehicle body slip angle gain map typically has the detection range of the front detection device 13 as far as possible in the trajectory direction of the target trajectory according to the vehicle speed Vx and the curving radius R even in a turning state in a high speed region. Such a vehicle body slip angle characteristic is set.
 図5は、自動運転制御時に用いる第2車体スリップ角ゲインマップm2の一例を示す線図である。この第2車体スリップ角ゲインマップm2は、横軸が車速、縦軸が自動運転制御時に用いるスリップ角ゲインKβを示す。第2車体スリップ角ゲインマップm2は、車速と旋回半径とスリップ角ゲインKβとの関係を記述したものである。第2車体スリップ角ゲインマップm2は、車速と旋回半径とスリップ角ゲインKβとの関係が実車評価等を踏まえて予め設定された上で、ECU7の記憶部に格納されている。概略的には、第2車体スリップ角ゲインマップm2は、高速域のスリップ角ゲインKβが第1車体スリップ角ゲインマップm1とは異なるように設定される。ゲイン設定部7dは、この第2車体スリップ角ゲインマップm2に基づいて、入力された車速、旋回半径から、自動運転制御時に用いるスリップ角ゲインKβを算出する。つまり、ECU7は、典型的には、高速域における車両の車体スリップ角特性を自動運転制御の実行の有無に応じて変更することとなる。 FIG. 5 is a diagram showing an example of a second vehicle body slip angle gain map m2 used during automatic operation control. In the second vehicle body slip angle gain map m2, the horizontal axis represents the vehicle speed, and the vertical axis represents the slip angle gain Kβ used during automatic operation control. The second vehicle body slip angle gain map m2 describes the relationship between the vehicle speed, the turning radius, and the slip angle gain Kβ. The second vehicle body slip angle gain map m2 is stored in the storage unit of the ECU 7 after the relationship between the vehicle speed, the turning radius, and the slip angle gain Kβ is set in advance based on actual vehicle evaluation and the like. Schematically, the second vehicle body slip angle gain map m2 is set such that the slip angle gain Kβ in the high speed region is different from the first vehicle body slip angle gain map m1. Based on the second vehicle body slip angle gain map m2, the gain setting unit 7d calculates a slip angle gain Kβ used during automatic operation control from the input vehicle speed and turning radius. That is, the ECU 7 typically changes the vehicle body slip angle characteristic in the high speed range according to whether or not the automatic driving control is executed.
 より詳細には、第2車体スリップ角ゲインマップm2は、現在の車速、目標軌跡に応じた旋回半径等から予測される将来の自車位置で、前方検出装置13の検出範囲が目標軌跡の軌跡方向を向くような車両姿勢となるように、スリップ角ゲインKβ(言い換えれば車体スリップ角特性)が設定される。この第2車体スリップ角ゲインマップm2では、スリップ角ゲインKβは、車速が高くなるにしたがって小さくなり、予め設定される所定車速で0となり、所定車速よりも高速域では徐々に0より小さくなるように設定されている。また、第2車体スリップ角ゲインマップm2では、スリップ角ゲインKβは、所定車速よりも高速域において、旋回半径が小さくなるにしたがって小さくなるように設定されている。つまり、第2車体スリップ角ゲインマップm2は、旋回半径に応じて運転者操舵時に比べてヘッドイン(車体が旋回内側向き)となる車体スリップ角特性となるように設定される。ゲイン設定部7dは、この第2車体スリップ角ゲインマップm2に基づいて、入力された車速、旋回半径から、運転者操舵時に用いるスリップ角ゲインKβを算出する。 More specifically, the second vehicle body slip angle gain map m2 is a future vehicle position predicted from the current vehicle speed, the turning radius according to the target locus, and the detection range of the front detection device 13 is the locus of the target locus. A slip angle gain Kβ (in other words, a vehicle body slip angle characteristic) is set so that the vehicle posture faces the direction. In the second vehicle body slip angle gain map m2, the slip angle gain Kβ decreases as the vehicle speed increases, becomes 0 at a predetermined vehicle speed set in advance, and gradually decreases below 0 in a higher speed range than the predetermined vehicle speed. Is set to Further, in the second vehicle body slip angle gain map m2, the slip angle gain Kβ is set to become smaller as the turning radius becomes smaller in a high speed range than the predetermined vehicle speed. That is, the second vehicle body slip angle gain map m2 is set so as to have a vehicle body slip angle characteristic that is head-in (the vehicle body is directed toward the inside of the vehicle) as compared with the case of driver steering in accordance with the turning radius. Based on the second vehicle body slip angle gain map m2, the gain setting unit 7d calculates a slip angle gain Kβ used during driver steering from the input vehicle speed and turning radius.
 この場合、車両2は、車速が高くなりゲイン設定部7dにより算出されるスリップ角ゲインKβが小さくなるほど、また、旋回半径が小さくなり算出されるスリップ角ゲインKβが小さくなるほど、車体スリップ角が相対的に大きくなり、車両2の車体が相対的に旋回内側を向くような傾向になる。つまり、ECU7は、自動運転制御を実行している場合、自動運転制御を実行していない場合と比較して、車両2の車体スリップ角が相対的に大きくなるように、すなわち、旋回内側を向くように車両2の車体スリップ角特性を変更することとなる。より詳細には、ECU7は、自動運転制御を実行している場合、車両2の車速が相対的に高くなるほど車両2の車体スリップ角が相対的に大きくなるように車両2の車体スリップ角特性を変更することとなる。同様に、ECU7は、自動運転制御を実行している場合、車両2の旋回半径が相対的に小さくなるほど車両2の車体スリップ角が相対的に大きくなるように車両2の車体スリップ角特性を変更することとなる。 In this case, in the vehicle 2, as the vehicle speed increases and the slip angle gain Kβ calculated by the gain setting unit 7d decreases, and as the turning radius decreases and the calculated slip angle gain Kβ decreases, the vehicle body slip angle becomes relative. The vehicle body of the vehicle 2 tends to turn relatively inside. That is, the ECU 7 is directed so that the vehicle body slip angle of the vehicle 2 is relatively larger when the automatic driving control is being executed than when the automatic driving control is not being executed, that is, facing the inside of the turn. Thus, the vehicle body slip angle characteristic of the vehicle 2 is changed. More specifically, when executing the automatic operation control, the ECU 7 sets the vehicle body slip angle characteristic of the vehicle 2 so that the vehicle body slip angle of the vehicle 2 becomes relatively larger as the vehicle speed of the vehicle 2 becomes relatively higher. Will be changed. Similarly, when executing the automatic driving control, the ECU 7 changes the vehicle body slip angle characteristic of the vehicle 2 so that the vehicle body slip angle of the vehicle 2 becomes relatively larger as the turning radius of the vehicle 2 becomes relatively smaller. Will be.
 この結果、この車両制御システム1は、自動運転制御時に、車両2の高速域の旋回状態においても、前方検出装置13による検出範囲が目標軌跡の軌跡方向のできるだけ先を向くようにすることができる。 As a result, the vehicle control system 1 can make the detection range of the front detection device 13 as far as possible in the trajectory direction of the target trajectory even when the vehicle 2 is turning in the high speed region during the automatic driving control. .
 なお、ECU7は、自動運転制御がオンからオフになる際、及び、自動運転制御がオフからオンになる際に、前輪3F及び後輪3Rの操舵角の変化率(単位時間当たりの変化量)を制限し、いわゆる、前輪操舵角、後輪操舵角の変化率ガードを行うようにしてもよい。ここで、自動運転制御がオンからオフになる際とは、自動運転制御を実行している状態から当該自動運転制御を実行しない状態に切り替える際である。また、自動運転制御がオフからオンになる際とは、自動運転制御を実行していない状態から当該自動運転制御を実行する状態に切り替える際である。つまり、ECU7は、自動運転制御を開始する際、及び、自動運転制御を終了する際に、操舵制御量(制御指令)を制限し、前輪操舵角、後輪操舵角の変化率を制限する。自動運転制御がオンからオフになる場合としては、例えば、運転者が大きく操舵操作を行った場合、前方検出装置13が前走車をロストし目標軌跡を生成できない場合、切替スイッチ15を介して運転者によりオンからオフに切り替えられた場合等が挙げられる。自動運転制御がオフからオンになる場合としては、例えば、切替スイッチ15を介して運転者によりオフからオンに切り替えられた場合等が挙げられる。 The ECU 7 changes the steering angle change rate (amount of change per unit time) of the front wheels 3F and the rear wheels 3R when the automatic driving control is switched from on to off and when the automatic driving control is switched from off to on. And so-called change rate guard of the front wheel steering angle and the rear wheel steering angle may be performed. Here, the time when the automatic driving control is switched from ON to OFF is a time when switching from the state in which the automatic driving control is executed to the state in which the automatic driving control is not executed. In addition, when automatic driving control is turned on from off is when switching from a state in which automatic driving control is not executed to a state in which automatic driving control is executed. That is, the ECU 7 limits the steering control amount (control command) when starting the automatic driving control and ending the automatic driving control, and limits the change rate of the front wheel steering angle and the rear wheel steering angle. As a case where the automatic driving control is switched from on to off, for example, when the driver performs a large steering operation, the forward detection device 13 loses the preceding vehicle and cannot generate the target locus. For example, when the driver switches from on to off. Examples of the case where the automatic driving control is turned on from off include a case where the driver switches from off to on via the changeover switch 15.
 次に、図6のフローチャートを参照してECU7による制御の一例を説明する。なお、これらの制御ルーチンは、数msないし数十ms毎の制御周期で繰り返し実行される。 Next, an example of control by the ECU 7 will be described with reference to the flowchart of FIG. Note that these control routines are repeatedly executed at a control cycle of several ms to several tens of ms.
 まず、ECU7は、運転支援システムが作動中であるか否か、すなわち、自動運転制御を実行中であるか否かを判定する(ステップST1)。 First, the ECU 7 determines whether or not the driving support system is operating, that is, whether or not automatic driving control is being executed (step ST1).
 ECU7は、運転支援システムが作動中である、すなわち、自動運転制御を実行中であると判定した場合(ステップST1:Yes)、図5で例示した第2車体スリップ角ゲインマップm2を使用して、スリップ角ゲインKβを算出する(ステップST2)。そして、ECU7は、算出したスリップ角ゲインKβを用いて目標車体スリップ角βを算出し、前輪操舵角、後輪操舵角の制御量を算出する。 If the ECU 7 determines that the driving support system is operating, that is, that automatic driving control is being executed (step ST1: Yes), the ECU 7 uses the second vehicle body slip angle gain map m2 illustrated in FIG. Then, the slip angle gain Kβ is calculated (step ST2). Then, the ECU 7 calculates the target vehicle body slip angle β using the calculated slip angle gain Kβ, and calculates the control amounts of the front wheel steering angle and the rear wheel steering angle.
 次に、ECU7は、自動運転制御(運転支援)のオン/オフの切り替え中であるか否かを判定する(ステップST3)。自動運転制御のオン/オフの切り替え中である場合とは、例えば、第1車体スリップ角ゲインマップm1を使用した場合の前輪操舵角、後輪操舵角から第2車体スリップ角ゲインマップm2を使用した場合の前輪操舵角、後輪操舵角に移行する途中である場合、あるいは、この逆の場合等である。 Next, the ECU 7 determines whether or not automatic driving control (driving support) is being switched on / off (step ST3). For example, when the automatic driving control is being switched on / off, the second vehicle body slip angle gain map m2 is used from the front wheel steering angle and the rear wheel steering angle when the first vehicle body slip angle gain map m1 is used. This is the case when the vehicle is in the process of shifting to the front wheel steering angle or the rear wheel steering angle, or vice versa.
 次に、ECU7は、自動運転制御のオン/オフの切り替え中であると判定した場合(ステップST3:Yes)、前輪操舵角、後輪操舵角の変化率を制限し、変化率ガードを行う(ステップST4)。 Next, when it is determined that the automatic driving control is being switched on / off (step ST3: Yes), the ECU 7 limits the change rate of the front wheel steering angle and the rear wheel steering angle, and performs the change rate guard ( Step ST4).
 そして、ECU7は、算出した前輪操舵角、後輪操舵角の制御量に基づいて前輪操舵装置9、後輪操舵装置10を制御し操舵制御を行い(ステップST5)、現在の制御周期を終了し、次の制御周期に移行する。 Then, the ECU 7 performs steering control by controlling the front wheel steering device 9 and the rear wheel steering device 10 based on the calculated control amounts of the front wheel steering angle and the rear wheel steering angle (step ST5), and ends the current control cycle. Then, the next control cycle is started.
 ECU7は、ステップST3にて自動運転制御のオン/オフの切り替え中でないと判定した場合(ステップST3:No)、変化率ガードを行わずに、ステップST5の処理に移行する。 ECU7 will transfer to the process of step ST5, without performing change rate guard, when it determines with not switching ON / OFF of automatic driving | operation control in step ST3 (step ST3: No).
 ECU7は、ステップST1にて、運転支援システムが作動中でない、すなわち、自動運転制御を実行中でないと判定した場合(ステップST1:No)、図4で例示した第1車体スリップ角ゲインマップm1を使用して、スリップ角ゲインKβを算出する(ステップST6)。そして、ECU7は、算出したスリップ角ゲインKβを用いて目標車体スリップ角βを算出し、前輪操舵角、後輪操舵角の制御量を算出し、ステップST3の処理に移行する。 When it is determined in step ST1 that the driving support system is not operating, that is, the automatic driving control is not being executed (step ST1: No), the ECU 7 displays the first vehicle body slip angle gain map m1 illustrated in FIG. In use, the slip angle gain Kβ is calculated (step ST6). Then, the ECU 7 calculates the target vehicle body slip angle β using the calculated slip angle gain Kβ, calculates the control amounts of the front wheel steering angle and the rear wheel steering angle, and proceeds to the processing of step ST3.
 上記のように構成される車両制御システム1は、自動運転制御を実行する自動運転制御時と、自動運転制御を実行しない運転者操舵時とで、車両の車体スリップ角特性を異ならせることができる。したがって、車両制御システム1は、前輪3F及び後輪3Rが操舵輪となる車両2において、自動運転制御時と運転者操舵時とで理想的な車両姿勢が異なる場合であっても、操舵に対する車体スリップ角姿勢を自動運転制御の有無に応じて任意に適切に制御することができる。これにより、車両制御システム1は、前輪3F及び後輪3Rが操舵輪となる車両2において適正に自動運転制御を実行することができる。 The vehicle control system 1 configured as described above can make the vehicle body slip angle characteristic different between automatic driving control for executing automatic driving control and driver steering without executing automatic driving control. . Therefore, in the vehicle 2 in which the front wheels 3F and the rear wheels 3R are the steering wheels, the vehicle control system 1 can detect the vehicle body with respect to steering even when the ideal vehicle posture is different between automatic driving control and driver steering. The slip angle posture can be arbitrarily controlled appropriately according to the presence or absence of automatic operation control. Thereby, the vehicle control system 1 can appropriately perform the automatic driving control in the vehicle 2 in which the front wheels 3F and the rear wheels 3R are the steering wheels.
 例えば、車両制御システム1は、例えば、運転者操舵時には、高速域の旋回状態で、車両2の車体スリップ角を0[rad]近傍とし車体が旋回接線方向を向くようにすることができる。この結果、車両制御システム1は、運転者操舵時には、高速域の旋回状態において、車両安定化及び運転者フィーリングの向上を図ることができる。 For example, the vehicle control system 1 can set the vehicle body slip angle of the vehicle 2 in the vicinity of 0 [rad] and turn the vehicle body in the turning tangential direction when the driver is steering, for example. As a result, the vehicle control system 1 can stabilize the vehicle and improve the driver feeling in a turning state in a high speed region at the time of driver steering.
 一方、車両制御システム1は、例えば、自動運転制御時には、運転者操舵時とは異なる車体スリップ角特性に変更し、車両2の車速、旋回半径等に基づいて、車両2の車体スリップ角特性を変更する。言い換えれば、車両制御システム1は、自動運転制御における車両2の目標とする走行軌跡である目標軌跡に基づいて車両2の車体スリップ角特性を変更する。これにより、車両制御システム1は、自動運転制御時には、例えば、高速域の旋回状態で、車両2の車体スリップ角を相対的に大きくし、車体が相対的に旋回内側を向くようにすることができる。この結果、この車両制御システム1は、自動運転制御時には、車両2の高速域の旋回状態においても、前方検出装置13による検出範囲が目標軌跡の軌跡方向を向くようにすることができる。この結果、車両制御システム1は、自動運転制御時に、旋回中における前方検出装置13の検出範囲を適切な範囲とすることができ、自動運転制御に必要な進行方向前方側の状況を適切に検出することができる。 On the other hand, the vehicle control system 1 changes the vehicle body slip angle characteristic to a vehicle body slip angle characteristic different from that during driver steering, for example, during automatic driving control, and changes the vehicle body slip angle characteristic of the vehicle 2 based on the vehicle speed, turning radius, etc. change. In other words, the vehicle control system 1 changes the vehicle body slip angle characteristic of the vehicle 2 based on the target locus that is the target locus of the vehicle 2 in the automatic driving control. Thereby, at the time of automatic driving control, for example, the vehicle control system 1 may relatively increase the vehicle body slip angle of the vehicle 2 in a turning state in a high speed range so that the vehicle body relatively faces the inside of the turn. it can. As a result, at the time of automatic driving control, the vehicle control system 1 can make the detection range by the front detection device 13 face the trajectory direction of the target trajectory even when the vehicle 2 is turning in the high speed range. As a result, the vehicle control system 1 can set the detection range of the front detection device 13 during turning during the automatic driving control to an appropriate range, and appropriately detect the situation on the front side in the traveling direction necessary for the automatic driving control. can do.
 したがって、車両制御システム1は、自動運転制御時と運転者操舵時とで高速域における車両の車体スリップ角特性を異ならせることで、運転者操舵時に、車両安定化及び運転者フィーリングの向上を図ることができると共に、自動運転制御時に、前方検出装置13により自動運転制御に必要な進行方向前方側の状況を適切に検出することができ、自動運転制御を適切に継続させることができる。この結果、車両制御システム1は、車両安定化及び運転者フィーリングの向上と、自動運転制御の継続とを両立することができる。 Therefore, the vehicle control system 1 varies the vehicle body slip angle characteristics in the high-speed range between automatic driving control and driver steering, thereby improving vehicle stabilization and driver feeling during driver steering. In addition, it is possible to properly detect the situation ahead in the traveling direction necessary for the automatic operation control by the front detection device 13 during the automatic operation control, and it is possible to appropriately continue the automatic operation control. As a result, the vehicle control system 1 can achieve both vehicle stabilization and improvement in driver feeling and continuation of automatic driving control.
 また、車両制御システム1は、自動運転制御のオン/オフの切り替えの際に、前輪操舵装置9、後輪操舵装置10の操舵制御量を制限し、前輪操舵角、後輪操舵角の変化率を制限する。これにより、車両制御システム1は、運転者操作時と自動運転制御時との切り替わりの際に、前輪操舵角、後輪操舵角が不連続に変化することを防止することができ、ショックが発生することを防止することができる。 Further, the vehicle control system 1 limits the steering control amounts of the front wheel steering device 9 and the rear wheel steering device 10 when switching on / off of the automatic driving control, and the rate of change of the front wheel steering angle and the rear wheel steering angle. Limit. As a result, the vehicle control system 1 can prevent the front wheel steering angle and the rear wheel steering angle from changing discontinuously at the time of switching between driver operation and automatic driving control, and a shock occurs. Can be prevented.
 以上で説明した実施形態に係る車両制御システム1によれば、車両2の前輪3F及び後輪3Rを操舵可能である操舵装置6と、車両2の進行方向前方側の状況を検出する前方検出装置13と、車両2の車体スリップ角特性に応じて操舵装置6を制御可能であると共に、前方検出装置13による検出結果に基づいて車両2を制御し自動運転制御を実行可能であり、該自動運転制御の実行の有無に応じて車両2の車体スリップ角特性を変更するECU7とを備える。したがって、車両制御システム1、ECU7は、前輪3F及び後輪3Rが操舵輪となる車両2において適正に自動運転制御を実行することができる。 According to the vehicle control system 1 according to the embodiment described above, the steering device 6 that can steer the front wheels 3F and the rear wheels 3R of the vehicle 2, and the front detection device that detects the situation on the front side in the traveling direction of the vehicle 2. 13, the steering device 6 can be controlled according to the vehicle body slip angle characteristic of the vehicle 2, the vehicle 2 can be controlled based on the detection result by the front detection device 13, and automatic driving control can be executed. ECU 7 which changes the vehicle body slip angle characteristic of vehicle 2 according to the presence or absence of execution of control. Therefore, the vehicle control system 1 and the ECU 7 can appropriately perform automatic driving control in the vehicle 2 in which the front wheels 3F and the rear wheels 3R are steering wheels.
[実施形態2]
 図7は、実施形態2に係る車両制御システムのECUによる制御の一例を説明するフローチャートである。実施形態2に係る車両制御システム、制御装置は、周辺の物体との接触予測に応じて車両の車体スリップ角特性を変更する点で実施形態1とは異なる。その他、上述した実施形態と共通する構成、作用、効果については、重複した説明はできるだけ省略する。また、実施形態2に係る車両制御システム、制御装置の各構成については、適宜、図1、図2等を参照する。
[Embodiment 2]
FIG. 7 is a flowchart illustrating an example of control by the ECU of the vehicle control system according to the second embodiment. The vehicle control system and the control device according to the second embodiment are different from the first embodiment in that the vehicle body slip angle characteristic of the vehicle is changed according to the contact prediction with the surrounding object. In addition, about the structure, operation | movement, and effect which are common in embodiment mentioned above, the overlapping description is abbreviate | omitted as much as possible. Moreover, about each structure of the vehicle control system which concerns on Embodiment 2, and a control apparatus, FIG.1, FIG.2 etc. are referred suitably.
 本実施形態の車両制御システム201(図1参照)は、ECU7が車両2と当該車両2の周辺の物体との接触予測に応じて車両の車体スリップ角特性を変更する。ECU7は、例えば、前方検出装置13による検出結果に基づいて車両2と車両2の周辺の物体との接触の予測を行い、これに応じて緊急回避プリクラッシュセーフティ(Pre-Crash Safety、「以下、「緊急回避PCS」という場合がある。)制御を実行する。 In the vehicle control system 201 (see FIG. 1) of the present embodiment, the ECU 7 changes the vehicle body slip angle characteristic according to the contact prediction between the vehicle 2 and an object around the vehicle 2. For example, the ECU 7 predicts contact between the vehicle 2 and an object around the vehicle 2 based on the detection result by the front detection device 13, and according to this, the emergency avoidance pre-crash safety (Pre-Crash Safety, “hereinafter, (It may be called “emergency avoidance PCS”.) Control is executed.
 ECU7は、例えば、前方検出装置13が検出した上記相対物理量に基づいて、車両2と周辺の物体との接触予測を行う。ECU7は、例えば、車両2と周辺の物体との相対距離が予め設定される相対距離閾値以下となった場合、TTC(相対時間)が予め設定されるTTC閾値以下となった場合等に「接触可能性あり」と予測する。相対距離閾値、TTC閾値は、実車評価等に基づいて予め設定され、ECU7の記憶部に記憶されている。ECU7は、「接触可能性あり」と予測した場合、緊急回避PCS制御として、車両2と周辺の物体との接触にそなえる各種処理を行う。この場合、ECU7は、例えば、制動装置5を制御して自動で緊急制動を行う。また、この場合、ECU7は、例えば、警告装置を駆動して運転者に対して、周辺の物体と接触する可能性がある旨の警告を行い、運転者に対して緊急制動を促すようにしてもよい。 ECU7 performs contact prediction with the vehicle 2 and a surrounding object based on the said relative physical quantity which the front detection apparatus 13 detected, for example. For example, when the relative distance between the vehicle 2 and a surrounding object is equal to or less than a preset relative distance threshold, or when the TTC (relative time) is equal to or less than a preset TTC threshold, the ECU 7 Presence. " The relative distance threshold value and the TTC threshold value are set in advance based on actual vehicle evaluation and the like, and are stored in the storage unit of the ECU 7. When the ECU 7 predicts “possibility of contact”, the emergency avoidance PCS control performs various processes to prepare for contact between the vehicle 2 and surrounding objects. In this case, for example, the ECU 7 automatically performs emergency braking by controlling the braking device 5. Further, in this case, for example, the ECU 7 drives the warning device to warn the driver that there is a possibility of contact with surrounding objects, and prompts the driver to perform emergency braking. Also good.
 そして、本実施形態のECU7は、上記のような車両2と周辺の物体との接触可能性の予測に応じて車両の車体スリップ角特性を変更する。より詳細には、ECU7は、車両2と当該車両2の周辺の物体との接触が予測される場合、自動運転制御を実行している場合であっても、車両2の車体スリップ角が自動運転制御を実行していない場合と同等となるように車両2の車体スリップ角特性を変更する。つまり、ECU7は、自動運転制御を実行している場合であっても、緊急回避PCSが作動するような状況下では、車体スリップ角特性を挙動安定重視の特性に切り替える。ここでは、ゲイン設定部7dは、車両2と当該車両2の周辺の物体との接触が予測される場合、図4で例示した第1車体スリップ角ゲインマップm1を用いてスリップ角ゲインKβを算出する。 Then, the ECU 7 of the present embodiment changes the vehicle body slip angle characteristic according to the prediction of the possibility of contact between the vehicle 2 and surrounding objects as described above. More specifically, the ECU 7 determines that the vehicle body slip angle of the vehicle 2 is automatically driven even when the contact between the vehicle 2 and an object in the vicinity of the vehicle 2 is predicted or when the automatic drive control is being executed. The vehicle body slip angle characteristic of the vehicle 2 is changed so as to be equivalent to the case where the control is not executed. That is, even when the automatic operation control is being executed, the ECU 7 switches the vehicle body slip angle characteristic to a characteristic that emphasizes behavioral stability under a situation where the emergency avoidance PCS is activated. Here, the gain setting unit 7d calculates the slip angle gain Kβ using the first vehicle body slip angle gain map m1 illustrated in FIG. 4 when the contact between the vehicle 2 and an object around the vehicle 2 is predicted. To do.
 次に、図7のフローチャートを参照してECU7による制御の一例を説明する。 Next, an example of control by the ECU 7 will be described with reference to the flowchart of FIG.
 ECU7は、ステップST1にて運転支援システムが作動中である、すなわち、自動運転制御を実行中であると判定した場合(ステップST1:Yes)、緊急回避PCSが作動するか否かを判定する(ステップST201)。ECU7は、例えば、前方検出装置13の検出結果に基づいて、車両2と周辺の物体との接触予測を行い、緊急回避PCSを作動するか否かを判定する。 When it is determined in step ST1 that the driving support system is operating, that is, the automatic driving control is being executed (step ST1: Yes), the ECU 7 determines whether or not the emergency avoidance PCS is operated (step ST1). Step ST201). For example, the ECU 7 performs contact prediction between the vehicle 2 and surrounding objects based on the detection result of the front detection device 13 and determines whether or not to operate the emergency avoidance PCS.
 ECU7は、緊急回避PCSを作動する、すなわち、「接触可能性あり」と予測された場合(ステップST201:Yes)、図4で例示した第1車体スリップ角ゲインマップm1を使用して、スリップ角ゲインKβを算出する(ステップST202)。そして、ECU7は、算出したスリップ角ゲインKβを用いて目標車体スリップ角βを算出し、前輪操舵角、後輪操舵角の制御量を算出し、ステップST3の処理に移行する。 When the ECU 7 operates the emergency avoidance PCS, that is, when it is predicted that “there is a possibility of contact” (step ST201: Yes), the ECU 7 uses the first vehicle body slip angle gain map m1 illustrated in FIG. Gain Kβ is calculated (step ST202). Then, the ECU 7 calculates the target vehicle body slip angle β using the calculated slip angle gain Kβ, calculates the control amounts of the front wheel steering angle and the rear wheel steering angle, and proceeds to the processing of step ST3.
 ECU7は、緊急回避PCSを作動しない、すなわち、「接触可能性なし」と予測された場合(ステップST201:No)、図5で例示した第2車体スリップ角ゲインマップm2を使用して、スリップ角ゲインKβを算出する(ステップST203)。そして、ECU7は、算出したスリップ角ゲインKβを用いて目標車体スリップ角βを算出し、前輪操舵角、後輪操舵角の制御量を算出し、ステップST3の処理に移行する。 When it is predicted that the emergency avoidance PCS does not operate, that is, “no contact possibility” (step ST201: No), the ECU 7 uses the second vehicle body slip angle gain map m2 illustrated in FIG. Gain Kβ is calculated (step ST203). Then, the ECU 7 calculates the target vehicle body slip angle β using the calculated slip angle gain Kβ, calculates the control amounts of the front wheel steering angle and the rear wheel steering angle, and proceeds to the processing of step ST3.
 以上で説明した実施形態に係る車両制御システム201、ECU7は、前輪3F及び後輪3Rが操舵輪となる車両2において適正に自動運転制御を実行することができる。 The vehicle control system 201 and the ECU 7 according to the embodiment described above can appropriately perform automatic driving control in the vehicle 2 in which the front wheels 3F and the rear wheels 3R are steering wheels.
 そして、以上で説明した実施形態に係る車両制御システム201は、ECU7が車両2と車両2の周辺の物体との接触予測に応じて車両2の車体スリップ角特性を変更する。これにより、車両制御システム201、ECU7は、自動運転制御を実行している場合であっても、緊急回避PCSが作動するような状況下では、車体スリップ角特性を挙動安定重視の特性に切り替えることができる。したがって、車両制御システム201、ECU7は、自動運転制御を実行している場合であっても、車両2と当該車両2の周辺の物体との接触が予測される場合に車両挙動を安定側に変更し、接触に対して安全に対処させることができる。 In the vehicle control system 201 according to the embodiment described above, the ECU 7 changes the vehicle body slip angle characteristic of the vehicle 2 according to the contact prediction between the vehicle 2 and an object around the vehicle 2. As a result, the vehicle control system 201 and the ECU 7 switch the vehicle body slip angle characteristic to a characteristic that emphasizes behavioral stability under a situation where the emergency avoidance PCS is activated even when the automatic driving control is being executed. Can do. Accordingly, the vehicle control system 201 and the ECU 7 change the vehicle behavior to the stable side when the contact between the vehicle 2 and an object around the vehicle 2 is predicted even when the automatic driving control is being executed. Thus, it is possible to safely deal with contact.
 なお、上述した本発明の実施形態に係る車両制御システム及び制御装置は、上述した実施形態に限定されず、請求の範囲に記載された範囲で種々の変更が可能である。本実施形態に係る車両制御システム及び制御装置は、以上で説明した各実施形態の構成要素を適宜組み合わせることで構成してもよい。 In addition, the vehicle control system and the control device according to the above-described embodiment of the present invention are not limited to the above-described embodiment, and various modifications can be made within the scope described in the claims. The vehicle control system and the control device according to the present embodiment may be configured by appropriately combining the components of the embodiments described above.
 以上の説明では、制御装置は、ECU7によって兼用されるものとして説明したがこれに限らない。例えば、制御装置は、ECU7とは別個に構成され、相互に検出信号や駆動信号、制御指令等の情報の授受を行う構成であってもよい。 In the above description, the control device has been described as being shared by the ECU 7, but is not limited thereto. For example, the control device may be configured separately from the ECU 7, and may be configured to mutually exchange information such as a detection signal, a drive signal, and a control command.
 以上で説明した操舵装置6は、ステアリングホイール9aと前輪3F、後輪3Rとの間に機械的な接続がない、いわゆるステアバイワイヤ方式のものであってもよい。 The steering device 6 described above may be of a so-called steer-by-wire system in which there is no mechanical connection between the steering wheel 9a and the front wheels 3F and the rear wheels 3R.
 以上の説明では、自動運転制御は、いわゆる軌跡制御であるものとして説明したが、これに限らず、単に、前方検出装置13による検出結果に基づいて駆動装置4、制動装置5、操舵装置6等を制御し前走車を自動で追従する追従制御等であってもよい。 In the above description, the automatic driving control has been described as so-called trajectory control. However, the present invention is not limited to this, and the driving device 4, the braking device 5, the steering device 6 and the like are simply based on the detection result by the front detection device 13. For example, follow-up control that automatically tracks the preceding vehicle may be possible.
 以上の説明では、制御装置は、スリップ角ゲインを変更することで車両2の車体スリップ角特性を変更するものとして説明したがこれに限らない。 In the above description, the control device has been described as changing the vehicle body slip angle characteristic of the vehicle 2 by changing the slip angle gain, but the present invention is not limited to this.
1、201  車両制御システム
2  車両
2A、2B  車体
3  車輪
3F  前輪
3R  後輪
4  駆動装置
5  制動装置
6  操舵装置
7  ECU(制御装置)
7a  車速決定部
7b  目標軌跡生成部
7c  操舵制御部
7d  ゲイン設定部
8a  アクセルペダル
8b  ブレーキペダル
9  前輪操舵装置
10  後輪操舵装置
11  車輪速センサ
12  ヨーレート/横加速度センサ
13  前方検出装置(検出装置)
14  通信システム
15  切替スイッチ
DESCRIPTION OF SYMBOLS 1,201 Vehicle control system 2 Vehicle 2A, 2B Car body 3 Wheel 3F Front wheel 3R Rear wheel 4 Drive device 5 Braking device 6 Steering device 7 ECU (control device)
7a Vehicle speed determination unit 7b Target locus generation unit 7c Steering control unit 7d Gain setting unit 8a Accelerator pedal 8b Brake pedal 9 Front wheel steering device 10 Rear wheel steering device 11 Wheel speed sensor 12 Yaw rate / lateral acceleration sensor 13 Forward detection device (detection device)
14 Communication system 15 Changeover switch

Claims (12)

  1.  車両の前輪及び後輪を操舵可能である操舵装置と、
     前記車両の進行方向前方側の状況を検出する検出装置と、
     前記車両の車体スリップ角特性に応じて前記操舵装置を制御可能であると共に、前記検出装置による検出結果に基づいて前記車両を制御し自動運転制御を実行可能であり、当該自動運転制御の実行の有無に応じて前記車両の車体スリップ角特性を変更する制御装置とを備えることを特徴とする、
     車両制御システム。
    A steering device capable of steering the front and rear wheels of the vehicle;
    A detection device for detecting a situation on the front side in the traveling direction of the vehicle;
    The steering device can be controlled according to the vehicle body slip angle characteristic of the vehicle, and the vehicle can be controlled based on the detection result of the detection device to execute automatic driving control. A control device that changes a vehicle body slip angle characteristic according to presence or absence of the vehicle,
    Vehicle control system.
  2.  前記制御装置は、前記車両の車速が予め設定される所定車速以上である高速域における前記車両の車体スリップ角特性を前記自動運転制御の実行の有無に応じて変更する、
     請求項1に記載の車両制御システム。
    The control device changes a vehicle body slip angle characteristic of the vehicle in a high speed range in which a vehicle speed of the vehicle is equal to or higher than a predetermined vehicle speed set in advance according to whether or not the automatic driving control is performed.
    The vehicle control system according to claim 1.
  3.  前記制御装置は、少なくとも前記車両の車速、又は、前記車両の旋回半径のいずれか一方に基づいて、前記車両の車体スリップ角特性を変更する、
     請求項1又は請求項2に記載の車両制御システム。
    The control device changes the vehicle body slip angle characteristic of the vehicle based on at least one of the vehicle speed or the turning radius of the vehicle.
    The vehicle control system according to claim 1 or 2.
  4.  前記制御装置は、前記検出装置による検出結果に基づいて生成される前記車両の目標とする走行軌跡である目標軌跡に基づいて、前記車両の車体スリップ角特性を変更する、
     請求項1乃至請求項3のいずれか1項に記載の車両制御システム。
    The control device changes a vehicle body slip angle characteristic of the vehicle based on a target trajectory that is a target travel trajectory of the vehicle generated based on a detection result by the detection device.
    The vehicle control system according to any one of claims 1 to 3.
  5.  前記制御装置は、前記自動運転制御を実行している場合、前記自動運転制御を実行していない場合と比較して、前記車両の車体スリップ角が相対的に大きくなるように前記車両の車体スリップ角特性を変更する、
     請求項1乃至請求項4のいずれか1項に記載の車両制御システム。
    When the automatic driving control is being executed, the control device causes the vehicle body slip angle of the vehicle to be relatively large compared to a case where the automatic driving control is not being executed. Change angular characteristics,
    The vehicle control system according to any one of claims 1 to 4.
  6.  前記制御装置は、前記自動運転制御を実行している場合、前記車両の車速が相対的に高くなるほど前記車両の車体スリップ角が相対的に大きくなるように前記車両の車体スリップ角特性を変更する、
     請求項1乃至請求項5のいずれか1項に記載の車両制御システム。
    The control device changes the vehicle body slip angle characteristic of the vehicle so that the vehicle body slip angle of the vehicle becomes relatively larger as the vehicle speed of the vehicle becomes relatively higher when the automatic driving control is executed. ,
    The vehicle control system according to any one of claims 1 to 5.
  7.  前記制御装置は、前記自動運転制御を実行している場合、前記車両の旋回半径が相対的に小さくなるほど前記車両の車体スリップ角が相対的に大きくなるように前記車両の車体スリップ角特性を変更する、
     請求項1乃至請求項6のいずれか1項に記載の車両制御システム。
    When performing the automatic driving control, the control device changes the vehicle body slip angle characteristic of the vehicle so that the vehicle body slip angle of the vehicle becomes relatively larger as the turning radius of the vehicle becomes relatively smaller. To
    The vehicle control system according to any one of claims 1 to 6.
  8.  前記制御装置は、前記自動運転制御を実行している状態から当該自動運転制御を実行しない状態に切り替える際、及び、前記自動運転制御を実行していない状態から当該自動運転制御を実行する状態に切り替える際に、前記前輪及び前記後輪の操舵角の変化率を制限する、
     請求項1乃至請求項7のいずれか1項に記載の車両制御システム。
    The control device switches from a state in which the automatic driving control is performed to a state in which the automatic driving control is not performed, and enters a state in which the automatic driving control is performed from a state in which the automatic driving control is not performed. When switching, the rate of change of the steering angle of the front wheels and the rear wheels is limited,
    The vehicle control system according to any one of claims 1 to 7.
  9.  前記制御装置は、前記車両と当該車両の周辺の物体との接触予測に応じて前記車両の車体スリップ角特性を変更する、
     請求項1乃至請求項8のいずれか1項に記載の車両制御システム。
    The control device changes a vehicle body slip angle characteristic of the vehicle according to a contact prediction between the vehicle and an object around the vehicle.
    The vehicle control system according to any one of claims 1 to 8.
  10.  前記制御装置は、前記車両と当該車両の周辺の物体との接触が予測される場合、前記自動運転制御を実行している場合であっても、前記車両の車体スリップ角が前記自動運転制御を実行していない場合と同等となるように前記車両の車体スリップ角特性を変更する、
     請求項1乃至請求項9のいずれか1項に記載の車両制御システム。
    In the case where the contact between the vehicle and an object in the vicinity of the vehicle is predicted, the control device determines whether the vehicle slip angle of the vehicle performs the automatic driving control even when the automatic driving control is executed. Changing the vehicle body slip angle characteristic to be equivalent to the case where it is not executed,
    The vehicle control system according to any one of claims 1 to 9.
  11.  前記車両の車体スリップ角特性は、前記車両の車体スリップ角と前記車両のハンドル操舵角との比に相当するスリップ角ゲインに基づいて設定され、
     前記制御装置は、前記スリップ角ゲインを変更することで前記車両の車体スリップ角特性を変更する、
     請求項1乃至請求項10のいずれか1項に記載の車両制御システム。
    The vehicle body slip angle characteristic of the vehicle is set based on a slip angle gain corresponding to a ratio of the vehicle body slip angle of the vehicle and the steering wheel steering angle of the vehicle,
    The control device changes a vehicle body slip angle characteristic of the vehicle by changing the slip angle gain;
    The vehicle control system according to any one of claims 1 to 10.
  12.  前輪及び後輪が操舵輪となる車両の進行方向前方側の状況を検出する検出装置による検出結果に基づいて、前記車両を制御し自動運転制御を実行可能であり、当該自動運転制御の実行の有無に応じて前記車両の車体スリップ角特性を変更することを特徴とする、
     制御装置。
    Based on the detection result by the detection device that detects the front side direction of the vehicle in which the front wheels and the rear wheels are the steering wheels, the vehicle can be controlled to execute the automatic driving control, and the automatic driving control can be executed. The vehicle body slip angle characteristic is changed according to the presence or absence of the vehicle,
    Control device.
PCT/JP2012/069030 2012-07-26 2012-07-26 Vehicle control system and control unit WO2014016947A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/069030 WO2014016947A1 (en) 2012-07-26 2012-07-26 Vehicle control system and control unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/069030 WO2014016947A1 (en) 2012-07-26 2012-07-26 Vehicle control system and control unit

Publications (1)

Publication Number Publication Date
WO2014016947A1 true WO2014016947A1 (en) 2014-01-30

Family

ID=49996780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069030 WO2014016947A1 (en) 2012-07-26 2012-07-26 Vehicle control system and control unit

Country Status (1)

Country Link
WO (1) WO2014016947A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020138603A (en) * 2019-02-27 2020-09-03 日産自動車株式会社 Travel control method and travel control device for vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06171540A (en) * 1992-12-02 1994-06-21 Honda Motor Co Ltd Control device for front and rear wheel steering vehicle
JPH07267126A (en) * 1994-02-10 1995-10-17 Nissan Motor Co Ltd Auxiliary steering angle control device
JP2007296947A (en) * 2006-04-28 2007-11-15 Toyota Motor Corp Steering device for vehicle
JP2007326415A (en) * 2006-06-06 2007-12-20 Jtekt Corp Vehicle steering device
JP2008094315A (en) * 2006-10-13 2008-04-24 Toyota Motor Corp Steering control device for vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06171540A (en) * 1992-12-02 1994-06-21 Honda Motor Co Ltd Control device for front and rear wheel steering vehicle
JPH07267126A (en) * 1994-02-10 1995-10-17 Nissan Motor Co Ltd Auxiliary steering angle control device
JP2007296947A (en) * 2006-04-28 2007-11-15 Toyota Motor Corp Steering device for vehicle
JP2007326415A (en) * 2006-06-06 2007-12-20 Jtekt Corp Vehicle steering device
JP2008094315A (en) * 2006-10-13 2008-04-24 Toyota Motor Corp Steering control device for vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020138603A (en) * 2019-02-27 2020-09-03 日産自動車株式会社 Travel control method and travel control device for vehicle
JP7275646B2 (en) 2019-02-27 2023-05-18 日産自動車株式会社 VEHICLE TRIP CONTROL METHOD AND TRIP CONTROL DEVICE

Similar Documents

Publication Publication Date Title
US11897459B2 (en) Collision avoidance assist apparatus
CN108216226B (en) Collision avoidance assistance device
JP5783204B2 (en) Driving support device and driving support method
JP6387948B2 (en) Vehicle driving support device
JP6474888B2 (en) Method for driving a vehicle at least semi-autonomously, driver assistance system and vehicle
US9296418B2 (en) Vehicle control device
US8855883B2 (en) Lane-change assistance system of vehicle and lane-change assistance method thereof
JP6555067B2 (en) Lane change support device
JP3571234B2 (en) Vehicle steering control device
CN108216224B (en) Collision avoidance assistance device
JP2017030472A (en) Drive support device
JP2017197005A (en) Traveling control device of vehicle
JP6763327B2 (en) Collision avoidance device
JP7272255B2 (en) Driving support device
KR20110134402A (en) Method and device for carrying out an avoidance manoeuvre
JP6961964B2 (en) Collision avoidance device
CN105050884B (en) Collision avoidance assistance device and collision avoidance assistance method
JP2017140857A (en) Vehicle control system
JP2001022444A (en) Steering control unit for vehicle
US20230382455A1 (en) Collision avoidance support apparatus
JP4778818B2 (en) Vehicle operation support device
JP7273370B2 (en) Collision avoidance support device
JP6803285B2 (en) Vehicle travel control device
JP2016175567A (en) Steering assist device
JP4384952B2 (en) Vehicle operation support device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12881627

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12881627

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP