WO2014016457A1 - Compuestos relacionados con la diimida de silicio, método de obtención, y su aplicación en la preparación de un material poroso amorfo - Google Patents

Compuestos relacionados con la diimida de silicio, método de obtención, y su aplicación en la preparación de un material poroso amorfo Download PDF

Info

Publication number
WO2014016457A1
WO2014016457A1 PCT/ES2013/070500 ES2013070500W WO2014016457A1 WO 2014016457 A1 WO2014016457 A1 WO 2014016457A1 ES 2013070500 W ES2013070500 W ES 2013070500W WO 2014016457 A1 WO2014016457 A1 WO 2014016457A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
reaction
compound
ammonia
limits
Prior art date
Application number
PCT/ES2013/070500
Other languages
English (en)
French (fr)
Inventor
Ana Isabel SAUGAR FERNÁNDEZ
Joaquín PÉREZ PARIENTE
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic) filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Publication of WO2014016457A1 publication Critical patent/WO2014016457A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/0215Silicon carbide; Silicon nitride; Silicon oxycarbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/087Compounds containing nitrogen and non-metals and optionally metals containing one or more hydrogen atoms
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/087Compounds containing nitrogen and non-metals and optionally metals containing one or more hydrogen atoms
    • C01B21/092Compounds containing nitrogen and non-metals and optionally metals containing one or more hydrogen atoms containing also one or more metal atoms
    • C01B21/0923Metal imides or amides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0045Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by a process involving the formation of a sol or a gel, e.g. sol-gel or precipitation processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/009Porous or hollow ceramic granular materials, e.g. microballoons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter

Definitions

  • the present invention falls within various application sectors, among which are the chemical sector in general, the ceramic and the luminescent materials.
  • these materials can be used in two different ways.
  • catalysts for the synthesis of a very large set of chemical compounds of high added value because they contain basic centers that are capable of catalyzing chemical reactions.
  • they can be used as catalyst supports, for example as a support for noble metal nanoparticles, which are capable of giving rise to bifunctional reactions, in which both the support with its basic catalytic centers and the supported metal would intervene in the reaction.
  • catalytic could also be used in the preparation of membranes for the filtration of gases and liquids or as a stationary phase for chromatography.
  • the ceramic sector could be used as precursors of the corresponding nitrides, such as silicon nitride or aluminum nitride, with a high specific surface area and small crystal size.
  • the materials described in the present invention could also be used as a basis for the preparation of luminescent materials, by their suitable combination with metals belonging to the alkali metal, alkaline earth metal or rare earth groups.
  • the properties of this type of materials are determined by the nature of the bond between silicon atoms, and eventually also aluminum, and the oxygen atoms that make up the structure.
  • the networks of this type of materials are constituted by M0 4 tetrahedra, where M represents a silicon or aluminum atom, joined together through the oxygen atoms of the vertices, so that their physicochemical properties are determined by the nature of the atoms that make up the network, both those in tetrahedral coordination, such as silicon and aluminum, and those of oxygen, which binds to two tetrahedra.
  • M represents a silicon or aluminum atom
  • oxygen which binds to two tetrahedra.
  • the physicochemical properties of the various crystalline forms of silica, Si0 2 are very different from that of an analogous compound such as silicon nitride, Si 3 N 4 .
  • silicon atom is in tetrahedral coordination linked to four oxygen atoms of the vertices of a tetrahedron in the first case, [Si0 4 ], or four of nitrogen in the second, forming units [SiN 4 ]
  • each oxygen atom is shared between two tetrahedra, due to the valence (II) of oxygen, while in the case of nitrogen each atom of this element is shared by three tetrahedra, because it is trivalent .
  • the properties of silicon nitride are very different from those of silicon oxide, which makes the former have a specific field of application within ceramic materials that silicon oxide does not have.
  • the group formed by a nitrogen atom linked to a hydrogen atom expressed in a simplified way as [NH]
  • the oxygen atom is isoelectronic with the oxygen atom, and has two free valences of the three which possesses the nitrogen to bond with other atoms, for example silicon atoms. That is, the group Si- [NH] -Si would be equivalent to the group of Si-O-Si atoms, the latter characteristic of the silica and the various silicates.
  • materials could be obtained that from the point of organization of the chemical bonds would be analogous to amorphous silica, but that would have very different chemical properties due to the presence of the group
  • this type of materials would be precursors of silicon nitride, since its treatment at a very high temperature would cause the release of ammonia and its consequent transformation into silicon nitride Si 3 N 4 , in which there would no longer be any hydrogen atom attached to nitrogen atoms.
  • silicon diimide entails a polymerization process of silicon atoms, since as stated above, silicon diimide contains Si-N-Si bonds that do not exist in the initial silicon tetrachloride, which is a molecular compound in which there are only bonds between the atom of silicon and each of the four chlorine atoms in the molecule.
  • This polymerization process is extremely important, since it affects the properties of the resulting material, such as the surface area, the pore volume, the pore volume distribution and its chemical properties.
  • the process of forming silicon diimide by the reaction between a molecular compound containing silicon, such as silicon tetrachloride, and ammonia is analogous to the process of forming silica gels that occurs when hydrolyze, that is, when silicon molecular compounds are reacted with water, such as silicon halides or alkoxysilanes, such as tetraethoxysilane, well known processes that result in obtaining very diverse materials characterized by having properties textural, such as surface area and porosity, which depend on the particular method with which they were obtained.
  • Equation (1) has been carried out under different conditions, for example by using organic solvents, as described in US 4,196,178 (1980) and in Mazdiyasni and Cooke, J. Am. Ceram. Soc. 56 (1973) 628, using the latter n-hexane as solvent.
  • organic solvents as described in US 4,196,178 (1980) and in Mazdiyasni and Cooke, J. Am. Ceram. Soc. 56 (1973) 628, using the latter n-hexane as solvent.
  • These procedures also present an additional problem such as the separation of the ammonium chloride formed in the reaction, which requires the treatment of the solid with liquid ammonia to dissolve the ammonium chloride, leaving a silicon diimide residue (Cornell, Lin and Philipp, NASA Technical Memorandum 102570, 1990).
  • silicon diimide Other methods for the formation of silicon diimide involve the use of precursors other than silicon halides, that is, silicon compounds that can also react with ammonia.
  • precursors other than silicon halides that is, silicon compounds that can also react with ammonia.
  • tetraaminoalkyl silanes has been described, compounds with the general formula Si (NRR ') 4 , where R is an organic group (US 5,258,169 (1993)).
  • silicon diimide as a precursor for the synthesis of silicon nitride has been described in various publications (Kaskel et al., Phys. Chem. Chem. Phys., 4 (2002) 1675-1681); Lange, Wótting and Winter, Angew. Chem. Int. Ed. Engl. 30 (1991) 1579-1597).
  • silicon diimide has an interest in itself as a basic catalyst (Kaskel and Schlichte, J. Catal., 201 (2001) 270-274); as a support for metal catalysts (Cheng et al., Chem.
  • silicon diimide not only contains Si-NH-Si groups, where the NH group would constitute a basic active center capable of catalyzing reactions typically catalyzed by bases, but also It has a variable proportion of Si-NH 2 terminal groups that are also basic centers.
  • aminosilane type compounds have been used as a precursor , in particular tris (dimethylamino) silylamine [(CH 3 ) 2 N] 3 SiNH 2 , which is reacted with ammonia in acetonitrile and in the presence of various long chain amines, which act as pore size modifiers (Farrusseng et al. ., Angew. Chem. Int. Ed. 40 (2001) 4204-4206).
  • Kaskel et al. (Phys. Chem. Chem. Phys., 4 (2002) 1675-1681) report that the treatment at a temperature of at least 800 ° C of the mixture resulting from the reaction (1), which is carried out in order to eliminate Ammonium chloride and obtaining solids containing less than 2% chlorine, gives rise to non-stoichiometric solid silicon and nitrogen mesoporous products.
  • these materials have a severe drawback for use in catalysis, and they contain a very small number of NH groups, because the NH groups that are coordinated to two silicon atoms, forming the Si-NH-Si cluster , are active in catalysis, while the dehydrogenation of silicon diimide that occurs at high temperature according to the procedure described by Kaskel et al. It results in the formation of compounds that have the nitrogen atom coordinated to 3 silicon atoms, which is strongly prevented from activating molecules through basic catalysis mechanisms. This inconvenience not only affects the use of these materials as catalysts, but would also exist for all those applications that require the presence of a high proportion of NH groups in the material.
  • the present invention relates, in a first object, to a compound of the general formula:
  • M refers to at least one element of the group formed by germanium, aluminum and gallium; x is between 0 and 0.5; and is between 2 and 4; and z is between 2 and 8; said compound containing bonds between silicon atoms and nitrogen atoms and between element M and nitrogen atoms.
  • the compound described is a compound related to silicon diimide, which is prepared by the reaction between precursor chemical compounds of the elements that compose it and ammonia gas in an ionic liquid.
  • a second object of the present invention is constituted by a method of obtaining the compound described above, characterized in that it comprises the step of subjecting a mixture of precursors of said compound containing the elements M and Si in a liquid to an ammonolysis reaction. ionic, using a stream of gaseous ammonia at a temperature between - 15 ° C and 200 ° C, including both limits.
  • the method has the peculiarity that it is carried out without the presence of organic compounds that tend to act as structure directing agents, unlike the procedures known so far in the field.
  • the process described in this invention is based on the use of an ionic liquid as a reaction medium.
  • Ammonia is very soluble in ionic liquids (Yokozeki et al., Ind. Eng. Chem. Res., 46 (2007) 1258; Applied Energy, 84 (2007) 1258), reaching a solubility close to what it has in water, which is much higher than what it has in the organic solvents commonly used in the ammonolysis reaction.
  • This high solubility of ammonia in ionic liquids allows it to act as a mineralizing element in the polymerization reactions that lead to the formation of the compound network from the ammonolysis reaction of silicon tetrachloride with ammonia, that is, in In the present case the solvent plays an active role in the process of preparing the compound related to silicon diimide.
  • Ionic liquids have the characteristics suitable for use in the present invention, since, in addition to being excellent solvents for ammonia, they are liquid at room temperature and in the temperature range used in the present invention and have high chemical stability, so that they do not react with the reagents present in the synthesis medium.
  • the solid thus obtained after being washed with methanol and filtered, can be thermally treated in an ammonia stream at an elevated temperature to obtain an amorphous solid material having a high specific surface area and a high pore volume, and can have a size distribution narrow pore in the range between 1 nm and 50 nm.
  • This procedure has the additional advantage that the ionic liquid can be recovered from the methanol used in the washing, and reused.
  • a third object of the present invention is a method of preparing an amorphous porous material from the compound of interest herein, characterized in that it comprises the step of thermally treating said compound, by means of an atmosphere of gaseous ammonia at a temperature between 500 ° C and 1200 ° C, including both limits, for a time between 30 minutes and 10 hours, including both limits.
  • the present invention is characterized in that the heat treatment of the compound described in an atmosphere of ammonia at a temperature between 500 ° C and 1200 ° C for a time between 30 minutes and 10 hours results in a solid material having a high surface area and it can have an average pore size between 1 nm and 50 nm, and which has a very small sulfur and residual carbon content.
  • this process leads to the formation of a product resulting from the heat treatment that has a high concentration of NH groups, which are active centers capable of promoting reactions catalyzed by bases.
  • the efficiency of this process of heat treatment in ammonia to remove the remains of ionic liquid and other organic compounds that may be occluded in the uncalcined product can be determined by analyzing the nitrogen and sulfur content.
  • the infrared spectrum of the calcined products shows the presence of bands that are assigned to different vibration modes of Si-N links, and N-H links. The presence of these N-H bonds is particularly relevant from the point of view of catalytic applications, since N-H groups are active centers in basic catalysis reactions.
  • a fourth object of the present invention is a porous amorphous material obtainable by the above procedure, characterized in that it comprises a pore volume distribution between 1 nm and 50 nm, including both limits.
  • the fifth and final object of the invention is the use of porous amorphous material as a catalyst, as a catalyst support, in membranes for filtration of gases and liquids, as a precursor to nitrides in the manufacture of ceramic products, or in the manufacture of luminescent materials. .
  • amorphous porous materials can be used as catalysts for the synthesis of a very large set of chemical compounds of high added value, because they contain basic centers that are capable of catalyzing chemical reactions.
  • they can be used as catalyst supports, for example as a support for noble metal nanoparticles, which are capable of giving rise to bifunctional reactions, in which both the support with its basic catalytic centers and the supported metal would intervene in the reaction.
  • nitrides such as silicon nitride or aluminum nitride, of high specific surface area and small crystal size.
  • the materials described in the present invention could also be used as a basis for the preparation of luminescent materials, by their suitable combination with metals belonging to the alkali metal, alkaline earth metal or rare earth groups.
  • the silicon precursors used are preferably selected from the group consisting of: silicon halides of formula SiX 4 where X designates chlorine, bromine or iodine (for example, and more preferably, silicon tetrachloride) ;
  • aminosilanes of general formula SiX 4 (NRR ') x where R and R' are identical or different and represent alkyl groups with a number of carbon atoms between 1 and 6, or vinyl, phenyl or hydrogen groups, where X represents chlorine , bromine, iodine or hydrogen, the value of x being between 0 and 4 (for example, and more preferably, chloroaminosilanes); and any mix of them.
  • the precursors of M are preferably compounds of general formula MX, where M represents germanium, aluminum or gallium; e y is 4 for germanium and 3 for aluminum and gallium, while X represents a halogen atom (for example, and more preferably, anhydrous chlorides of the indicated elements).
  • M represents germanium, aluminum or gallium
  • e y is 4 for germanium and 3 for aluminum and gallium
  • X represents a halogen atom (for example, and more preferably, anhydrous chlorides of the indicated elements).
  • the precursor can be anhydrous aluminum trichloride, anhydrous gallium trichloride, or germanium tetrachloride.
  • ionic liquids in the present invention that have a preferably hydrophobic character, but in no way can this be considered a limitation of the invention
  • the 1- ethyl-3-methylimidazolium bis [(trifluoromethyl) sulfonyl] amide ionic liquid has a melting point of -18 ° C, has a high thermal stability and the solubility of ammonia in it is very high, so it results an ionic liquid suitable for the present invention.
  • Other ionic liquids also suitable for use according to the process described in the present invention are derivatives of the imidazolium ring having the general formula
  • R and R ' designate alkyl organic groups that may be the same or different and represent organic groups with a number of carbon atoms between 1 and 10, and where X designates an anion, as for example it may preferably be selected within the group consisting of: bis [(trifluoromethyl) sulfonyl] amide anion, chloride, tetrafluoroborate and tetrafluorophosphate anion.
  • the number of carbon atoms is between 1 and 6, and more preferably between 1 and.
  • the method in question can be carried out in ammonia stream either at atmospheric pressure or under ammonia pressure, at a pressure between atmospheric pressure and 200 atm, including both limits. If the method is performed under ammonia pressure, said pressure is preferably between 1 and 50 atm.
  • the method of obtaining the compound is carried out at a temperature between 20 ° C and 200 ° C, more preferably still between 15 ° C and 180 ° C.
  • the reaction time of ammonolysis is between 5 minutes and 50 days, more preferably between 1 hour and 10 days. In a preferred embodiment, this reaction time is between 30 minutes and 7 days, and in another preferred case between 30 minutes and one day.
  • This ammonolysis reaction is usually carried out in a flask through which the ammonia current is passed, although this practice should not be considered as limiting the invention.
  • the product obtained from said reaction is heated to a temperature between 20 ° C and 200 ° C for a reaction time between 1 hour and 10 days, with or without ammonia gas pressure , and if it is under pressure it is between 1 and 200 atmospheres.
  • This stage of maturation of the compound has a decisive influence on the properties of the material that can subsequently be obtained from it, and is usually carried out in an autoclave, although this aspect is not limiting of the invention. After this stage, it is convenient to keep the product in an inert atmosphere to avoid contact with the atmosphere and, as a consequence, its oxidation.
  • the product obtained from said reaction is washed with a solvent, to remove both the remains of leftover elements (excess liquid ionic) such as those formed during the reaction (ammonium chloride), and then the product is filtered, to have the compound in its purest form that can be used as raw material in the preparation of an amorphous porous material as described in section Description General.
  • the solvent is methanol.
  • An advantage of the present invention is that the ionic liquid left over from the reaction is dissolved in the solvent used in the washing, which is preferably methanol, and can be recovered and reused by well known methods that also allow the recycling of methanol used in the washing .
  • the solvent used in the washing which is preferably methanol
  • a precursor compound or mixture of several precursor compounds is arranged in a flask, to which at least one ionic liquid derived from the imidazolium cation is added according to the formula described above, where R and R 'can be the same or different and represent organic groups with a number of carbon atoms between 1 and 10, preferably between 1 and 4;
  • X represents an anion, such as bis [(trifluoromethyl) sulfonyl] amide anion or the chloride anion.
  • the reaction mixture is introduced into a flask that is maintained at a temperature between -15 ° C and 200 ° C, and is contacted with gaseous ammonia, for a time between 5 minutes and a week, preferably between 30 minutes and one day.
  • the reaction mixture is preferably introduced into an autoclave provided with a Teflon sheath, and heated to temperatures between 20 ° C and 200 ° C.
  • the autoclave is cooled to room temperature and introduced into a closed system containing an inert atmosphere, such as nitrogen, or helium, such as a glove bag or a "box seca ", to avoid its contact with the air and therefore its oxidation.
  • the contents of the autoclave are washed with dry methanol to remove excess reagents, and filtered to recover a solid product.
  • the reaction mixture obtained after the reaction of ammonolysis with gas ammonia and introduced into the stainless steel autoclaves is treated with high purity ammonia at temperatures between 20 and 200 ° C, and pressures comprised between 1 and 200 atmospheres. After a reaction time between 1 hour and 10 days, the autoclave is cooled and its content is treated with methanol as explained above.
  • the washed and filtered compound can be further subjected to heat treatment to obtain an amorphous porous material, under the conditions specified in the previous section.
  • the temperature of the heat treatment which is between 500 ° C and 1200 ° C, is preferably between 600 ° C and 800 ° C.
  • the porous amorphous material as a catalyst, said use is preferred in reactions catalyzed by bases, such as those selected from reactions of alkylation of compounds. alkylaromatics with methanol or condensation reactions of organic compounds containing active CH 2 methylene groups, such as Michael condensation reactions.
  • said catalyst is preferably constituted by nanoparticles of noble metals.
  • Figure 4 Pore size distribution of the sample treated in ammonia stream at a temperature of 600 ° C prepared according to example 3.
  • Example 1 In a reaction vessel, 47.5 g of the ionic liquid l-ethyl-3- methylimidazolium bis [(trifluoromethyl) sulfonyl] amide are weighed and then 14.2 g of SiCl 4 are added. The reaction vessel is immersed in an ice-water bath and connected to a silicone bubbler and a safety glass. The gaseous ammonia is then added while maintaining the mixture under constant magnetic stirring. After the reaction a highly viscous white gel is obtained.
  • the contents of the reaction vessel are extracted, homogenized and introduced into stainless steel autoclaves of 17 ml volume with glass sleeves provided with a valve.
  • the autoclaves are then contacted with gaseous ammonia at a partial pressure of ammonia in the 7.5 atm system, 0.6 g of gaseous ammonia being dissolved in the mixture contained in the autoclaves.
  • the autoclaves are then heated in an oven at 180 ° C for 43 hours under static conditions.
  • the solids obtained are extracted inside the glove bag, washed with previously re-distilled dry methanol and filtered under a stream of nitrogen.
  • Figure 1 shows the nitrogen adsorption isotherm of the calcined material, whose surface area determined from the adsorption isotherm was found to be 629 m 2 / g, and the pore volume of 1.43 cm 3 / g.
  • Figure 2 shows the pore volume distribution, showing that the distribution is centered at 12 nm, that is, in the range of the mesopores.
  • the infrared spectrum of the material is shown in Figure 3, in which the bands due to the presence of Si-N and NH bonds are clearly identified.
  • Example 2 The ammonolysis reaction is carried out following the procedure described in Example 1.
  • the gel obtained is extracted inside a glove bag, homogenized and introduced into 60 ml volume stainless steel autoclaves provided with covers of Teflon and heated in an oven at 180 ° C for 43 hours on a static basis.
  • the solids obtained after this process are subjected to the same washing and filtering treatment described in Example 1.
  • the solid product is treated with ammonia at 600 ° C under the same conditions as those described in Example 1.
  • the product thus treated has a surface area of 251 m 2 / g and a pore volume of 0.07 cm 3 / g.
  • reaction vessel 47.5 g of the ionic liquid l-ethyl-3- methylimidazolium bis [(trifluoromethyl) sulfonyl] amide are weighed and then 14.2 g of SiCl 4 and 1.11 g of A1C1 3 are added .
  • the reaction vessel is immersed in an ice-water bath and connected to a silicone bubbler and a safety glass. The gaseous ammonia is then added while maintaining the mixture under constant magnetic stirring. After the reaction a highly viscous white gel is obtained.
  • the contents of the reaction vessel are extracted, homogenized, introduced into stainless steel autoclaves of 17 ml volume with glass sleeves provided with a valve.
  • the autoclaves are then contacted with gaseous ammonia at a partial pressure of ammonia in the 7.5 atm system, 0.6 g of gaseous ammonia being dissolved in the mixture contained in the autoclaves.
  • the Autoclaves are heated in an oven at 180 ° C for 43 hours on a static basis.
  • the solids obtained are extracted inside the glove bag, washed with previously re-distilled dry methanol and filtered under a stream of nitrogen.
  • the product thus obtained is subjected to ammonia treatment at a temperature of 600 ° C as described in Example 1.
  • the solid thus obtained has a surface area of 336 m 2 / g and a pore volume of 1.06 cm 3 / g.
  • the pore volume distribution is shown in Figure 4, showing that the distribution is centered at 13 nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

La presente invención se refiere a un compuesto de fórmula general: SixM1-xNyHz donde M se refiere al menos a un elemento del grupo formado por germanio, aluminio y galio; x está comprendido entre 0 y 0.5; y está comprendido entre 2 y 4; y z está comprendido entre 2 y 8; dicho compuesto conteniendo enlaces entre los átomos de silicio y átomos de nitrógeno y entre el elemento M y los átomos de nitrógeno. Asimismo, la presente invención se refiere a un método de obtención del compuesto mediante reacción de amonolisis con los compuestos precursores en liquido iónico y amoniaco gaseoso a una temperatura comprendida entre -15 °C y 200 °C. Otro objeto de la invención es el método de preparación de un material poroso amorfo a partir del compuesto descrito, así como el propio material y sus múltiples usos.

Description

DESCRIPCIÓN
COMPUESTOS RELACIONADOS CON LA DIIMIDA DE SILICIO, MÉTODO DE OBTENCIÓN, Y SU APLICACIÓN EN LA PREPARACIÓN DE UN MATERIAL POROSO
AMORFO
Campo de la invención
La presente invención se encuadra en diversos sectores de aplicación, entre los que se encuentran el sector químico en general, el cerámico y el de los materiales luminiscentes. En el primer caso, estos materiales pueden utilizarse de dos maneras distintas. En primer lugar, como catalizadores para la síntesis de un muy amplio conjunto de compuestos químicos de alto valor añadido, debido a que contienen centros básicos que por sí mismos son capaces de catalizar reacciones químicas. En segundo lugar, pueden utilizarse como soportes de catalizadores, por ejemplo como soporte de nanopartículas de metales nobles, que son capaces de dar lugar a reacciones bifuncionales , en las que tanto el soporte con sus centros catalíticos básicos como el metal soportado intervendrían en la reacción catalítica. Asimismo, podrían utilizarse en la preparación de membranas para la filtración de gases y líquidos o como fase estacionaria para cromatografía.
En lo que respecta al sector cerámico, podrían utilizarse como precursores de los correspondientes nitruros, tales como nitruro de silicio o nitruro de aluminio, de alta superficie específica y pequeño tamaño de cristal.
Los materiales descritos en la presente invención también podrían utilizarse como base la preparación de materiales luminiscentes, mediante su adecuada combinación con metales pertenecientes a los grupos de los metales alcalinos, alcalinotérreos o a las tierras raras .
Estado de la técnica Los materiales inorgánicos porosos basados en redes que contienen enlaces entre átomos de silicio y átomos de oxigeno, y que también pueden contener átomos de aluminio, de los que los silicatos microporosos cristalinos como las zeolitas serian los ejemplos más conocidos, tienen una gran aplicación como catalizadores, adsorbentes selectivos o intercambiadores iónicos en numerosos sectores industriales. Las propiedades de este tipo de materiales están determinadas por la naturaleza del enlace entre los átomos de silicio, y eventualmente también aluminio, y los átomos de oxigeno que conforman la estructura. Las redes de ese tipo de materiales están constituidas por tetraedros M04, en donde M representa un átomo de silicio o de aluminio, unidos entre si a través de los átomos de oxigeno de los vértices, de tal manera que sus propiedades fisicoquímicas están determinadas por la naturaleza de los átomos que conforman la red, tanto los que se encuentran en coordinación tetraédrica, como el silicio y el aluminio, como las del oxígeno, que se enlaza a dos tetraedros. Así, la sustitución de átomos de oxígeno por átomos de nitrógeno, cuyas propiedades atómicas intrínsecas son muy diferentes a las del átomo de oxígeno, da lugar a compuestos con propiedades particulares que difieren de las de los compuestos basados en oxígeno. Por ese motivo, las propiedades fisicoquímicas de las diversas formas cristalinas de la sílice, Si02, por ejemplo, son muy distintas a la de un compuesto análogo como sería el nitruro de silicio, Si3N4. En efecto, aunque en ambos casos el átomo de silicio se encuentra en coordinación tetraédrica enlazado a cuatro átomos de oxígeno de los vértices de un tetraedro en el primer caso, [Si04] , o a cuatro de nitrógeno en el segundo, formando unidades [SiN4] , en el primer caso cada átomo de oxígeno se comparte entre dos tetraedros, debido a la valencia (II) del oxígeno, mientras que en el caso del nitrógeno cada átomo de este elemento está compartido por tres tetraedros, debido a que es trivalente. A causa de esas diferencias químicas y estructurales, las propiedades del nitruro de silicio son muy diferentes de las del óxido de silicio, lo que hace que el primero tenga un campo de aplicación específico dentro de los materiales cerámicos que no tiene el óxido de silicio. Desde el punto de vista de la estructura electrónica, el grupo formado por un átomo de nitrógeno enlazado a un átomo de hidrógeno, expresado de manera simplificada como [NH] , es isoelectrónico con el átomo de oxigeno, y posee dos valencias libres de las tres que posee el nitrógeno para enlazarse con otros átomos, por ejemplo átomos de silicio. Es decir, el grupo Si-[NH]-Si seria equivalente al grupo de átomos Si-O-Si, característico este último de la sílice y los diversos silicatos. De esta manera, se podrían obtener materiales que desde el punto de la organización de los enlaces químicos serían análogos a la sílice amorfa, pero que tendrían propiedades químicas muy distintas debido a la presencia del grupo
[NH] . Este tipo de compuestos tendría una fórmula empírica general Si[NH]2, análogo a la fórmula Si02 en el caso de la sílice, en la que dos átomos de oxígeno habrían sido remplazados por dos grupos
[NH] . Además, este tipo de materiales serían precursores del nitruro de silicio, ya que su tratamiento a muy alta temperatura provocaría el desprendimiento de amoniaco y su consiguiente transformación en nitruro de silicio Si3N4, en el que ya no existiría ningún átomo de hidrógeno unido a átomos de nitrógeno.
Se han descrito diferentes métodos para la preparación del compuesto Si[NH]2 , que se denomina diimida de silicio. Estos métodos están basados generalmente en la reacción entre un compuesto de silicio reactivo y amoniaco, en distintas condiciones de reacción. El ejemplo más antiguo (M. Persoz, Ann. Chim. Phys . 44 (1830) 315) consiste en la reacción entre haluros de silicio, en particular tetracloruro de silicio, con amoniaco, según la reacción :
SiCl4 + 6NH3 → Si(NH)2 + 4 NH4CI (1)
Aunque esta es una reacción aparentemente sencilla, hay que tener en cuenta que la síntesis de la diimida de silicio conlleva un proceso de polimerización de los átomos de silicio, ya que como se expuso anteriormente, la diimida de silicio contiene enlaces Si-N- Si que no existen en el tetracloruro de silicio, inicial, que es un compuesto molecular en el que sólo existen enlaces entre el átomo de silicio y cada uno de los cuatro átomos de cloro de la molécula. Ese proceso de polimerización es de extrema importancia, ya que afecta a las propiedades del material resultante, tales como el área superficial, el volumen de poro, la distribución de volumen de poro y sus propiedades químicas. En efecto, el proceso de formación de la diimida de silicio mediante la reacción entre un compuesto molecular que contenga silicio, tal como el tetracloruro de silicio, y el amoniaco, es análogo al proceso de formación de geles de sílice de que se produce cuando se hidrolizan, es decir, cuando se hacen reaccionar con agua, compuestos moleculares de silicio, tales como los haluros de silicio o alcoxisilanos , tales, como el tetraetoxisilano , procesos bien conocidos y que dan como resultado la obtención de materiales muy diversos caracterizados por poseer propiedades texturales, tales como área superficial y porosidad, que dependen del método particular con el que se obtuvieron.
La reacción descrita en la ecuación (1) se ha llevado a cabo en diferentes condiciones, por ejemplo mediante el empleo de disolventes orgánicos, según se describe en US 4,196.178 (1980) y en Mazdiyasni y Cooke, J. Am. Ceram. Soc. 56 (1973) 628, empleando este último n-hexano como disolvente. Estos procedimientos presentan además un problema añadido como es la separación del cloruro amónico formado en la reacción, que requiere el tratamiento del sólido con amoniaco líquido para disolver el cloruro amónico, dejando un residuo de diimida de silicio (Cornell, Lin y Philipp, NASA Technical Memorándum 102570, 1990) .
Otros métodos para la formación de diimida de silicio conllevan el empleo de otros precursores distintos a los haluros de silicio, es decir, compuestos de silicio que también puedan reaccionar con amoniaco. Con esta finalidad, se ha descrito el empleo de tetraaminoalkil silanos, compuestos con la fórmula general Si (NRR' ) 4 , siendo R un grupo orgánico (US 5,258,169 (1993)) .
Se ha descrito en diversas publicaciones el empleo de la diimida de silicio como precursor para la síntesis de nitruro de silicio (Kaskel y col., Phys . Chem. Chem. Phys . , 4 (2002) 1675-1681); Lange, Wótting y Winter, Angew. Chem. Int. Ed. Engl . 30 (1991) 1579-1597) . Además de su interés como precursor para la síntesis de nitruro de silicio, la diimida de silicio tiene interés por sí misma como catalizador básico (Kaskel y Schlichte, J. Catal., 201 (2001) 270-274); como soporte de catalizadores metálicos (Cheng y col., Chem. Mater . , 18 (2006) 5996-6005); como precursor en la preparación de membranas de filtración (Cheng y col., J. Membr. Sci., 280 (2006) 530-535); y en la preparación de materiales luminiscentes (Schlieper y col., Z. Anorg. Allg. Chem. 621 (1995) 1380; Zeuner y col., Chem. Mater. 21 (2009) 2467) .
Un aspecto muy importante con vistas a la aplicación de la diimida de silicio en esos diversos campos lo constituyen sus propiedades texturales, es decir, su superficie específica, distribución y tamaño medio de poro, así como la naturaleza de los grupos funcionales que presenta. Respecto a este último aspecto, hay que tener en cuenta que la diimida de silicio no solo contiene grupos Si-NH-Si, en donde el grupo NH constituiría un centro activo de carácter básico capaz de catalizar reacciones típicamente catalizadas por bases, sino que además presenta una proporción variable de grupos terminales Si-NH2 que también son centros básicos. Con el fin de controlar el tamaño de poro de los materiales resultantes del tratamiento térmico de la diimida de silicio, una etapa necesaria cuando se desea utilizar este material a temperaturas elevadas, como por ejemplo en catálisis, se ha utilizado como precursor compuestos de tipo aminosilanos , en particular tris (dimetilamino) sililamina [ (CH3) 2N] 3SiNH2 , que se hace reaccionar con amoniaco en acetonitrilo y en presencia de diversas aminas de cadena larga, que actúan como modificadores del tamaño de poro (Farrusseng y col., Angew. Chem. Int. Ed. 40 (2001) 4204- 4206). Los materiales así obtenido calentados en una corriente de amoniaco a una temperatura de 550 °C son microporosos , con un diámetro de poro comprendido entre 11 y 16 Á. En esta misma línea, Rovai y col. (Angew. Chem. Int. Ed. 38 (1999) 2036-2038) reportan que cuando el mismo aminosilano descrito en la referencia anterior se calienta en presencia de amoniaco a 110 °C, se obtiene diimida de silicio con un área superficial muy pequeña, de solo 50 m2/g. Cuando este sólido se trata con ácido trifluorometanosulfónico se forman ciclosilazanos (compuestos cíclicos que contienen enlaces Si-N-Si), que tratados con amoniaco dan lugar a un gel similar a la diimida de silicio pero que contiene grupos metilo residuales, que hay que tratar en una corriente de amoniaco a 50 °C y 15 horas para la completa eliminación de esos grupos metilo y la obtención de un gel poroso de diimida de silicio. El mismo método ha sido utilizado por Roser y col., Microp. Mesop. Mater., 156 (2012) 196-201. También se han utilizado como compuestos de silicio de partida metilclorosilanos (Bradley y col., Adv. Mater., 10 (1998) 938-942; Vollmer y col., J. Mol. Cat . A: Chemical, 146 (1999) 87-96), que se hacen reaccionar en una primera etapa con amoniaco en un disolvente como el tetrahidrofurano para dar ciclosilazanos, que a continuación polimerizan mediante adición de cantidades catalíticas de hidruro de potasio y idouro de metilo. El producto sólido así obtenido se trata en una corriente de amoniaco a 650 °C, y el material resultante es microporoso, con un diámetro medio de poro de 7 Á y una superficie de alrededor de 400 m2/g.
Kaskel y col. (Phys. Chem. Chem. Phys . , 4 (2002) 1675-1681) reportan que el tratamiento a una temperatura de al menos 800 °C de la mezcla resultante de la reacción (1), que se realiza con el objeto de eliminar el cloruro amónico y obtener sólidos que contengan menos del 2% de cloro, da lugar a productos sólidos mesoporosos no estequiométricos de silicio y nitrógeno. Sin embargo, estos materiales presentan un severo inconveniente para su empleo en catálisis, y es que contienen una cantidad muy reducida de grupos NH, debido a que los grupos NH que están coordinados a dos átomos de silicio, formando la agrupación Si-NH- Si, son activos en catálisis, mientras que la deshidrogenación de la diimida de silicio que se produce a alta temperatura según el procedimiento descrito por Kaskel y col. da lugar a la formación de compuestos que tienen el átomo de nitrógeno coordinado a 3 átomos de silicio, con lo que está fuertemente impedido para activar moléculas mediante mecanismos de catálisis básica. Este inconveniente no solo afecta al empleo de esos materiales como catalizadores, sino que también existiría para todas aquellas aplicaciones que requieran la presencia de una alta proporción de grupos NH en el material.
En definitiva, los procedimientos que se han descrito hasta ahora para la obtención de materiales porosos derivados de la diimida de silicio requieren el empleo de precursores de silicio costosos, con varias etapas de reacción y de separación de los productos intermedios formados, y además conducen generalmente a la formación de sólidos que en la mayoría de los casos son microporosos , es decir, poseen diámetros de poro menores de 2.0 nm, o bien son mesoporosos pero tienen el inconveniente de contener una pequeña proporción de grupos NH activos. Estos hechos suponen un grave inconveniente para su utilización como catalizadores, sobre todo en fase líquida y cuando se desea procesar moléculas de gran tamaño, debido a los problemas que esas moléculas voluminosas tienen para acceder a los centros activos del catalizador.
Por tanto, en base a los antecedentes expuestos, es un objetivo de la presente invención el proporcionar un nuevo método para la obtención de compuestos relacionados con la diimida de silicio porosa que no presente los inconvenientes de los métodos descritos anteriormente, en la que, además, una parte de los átomos de silicio está sustituida por átomos de otros elementos que también forman enlaces del tipo MN4, como por ejemplo el germanio, el aluminio y el galio. Es también un objetivo de la presente invención los materiales nanoporosos de alta área superficial obtenidos mediante el tratamiento térmico de esos compuestos en corriente de amoniaco a alta temperatura.
Descripción general de la invención
La presente invención se refiere, en un primer objeto, a un compuesto de fórmula general:
SixM!-x yHz donde M se refiere al menos a un elemento del grupo formado por germanio, aluminio y galio; x está comprendido entre 0 y 0.5; y está comprendido entre 2 y 4; y z está comprendido entre 2 y 8; dicho compuesto conteniendo enlaces entre los átomos de silicio y átomos de nitrógeno y entre el elemento M y los átomos de nitrógeno .
El compuesto descrito es un compuesto relacionado con la diimida de silicio, que se prepara mediante la reacción entre compuestos químicos precursores de los elementos que lo componen y amoniaco gas en un líquido iónico.
Así, un segundo objeto de la presente invención está constituido por un método de obtención del compuesto descrito anteriormente, caracterizado por que comprende la etapa de someter a reacción de amonolisis una mezcla de precursores de dicho compuesto que contienen los elementos M y Si en un líquido iónico, mediante una corriente de amoniaco gaseoso a una temperatura comprendida entre - 15°C y 200°C, incluidos ambos límites. El método tiene la particularidad de que se lleva a cabo sin la presencia de compuestos orgánicos que suelen actuar de agentes directores de estructura, a diferencia de los procedimientos conocidos hasta ahora en el campo .
El procedimiento descrito en esta invención está basado en el empleo de un líquido iónico como medio de reacción. El amoniaco es muy soluble en líquidos iónicos (Yokozeki y col., Ind. Eng. Chem. Res., 46 (2007) 1258; Applied Energy, 84 (2007) 1258), llegando a alcanzar una solubilidad cercana a la que tiene en el agua, que es muy superior a la que tiene en los disolventes orgánicos utilizados habitualmente en la reacción de amonolisis. Esta elevada solubilidad del amoniaco en líquidos iónicos permite que aquel actúe como un elemento mineralizante en las reacciones de polimerización que conducen a la formación de la red del compuesto a partir de la reacción de amonolisis del tetracloruro de silicio con el amoniaco, es decir, en el presente caso el disolvente desempeña un papel activo en el proceso de preparación del compuesto relacionado con la diimida de silicio. Éste es un hecho diferencial de la presente invención que está ausente del resto de procedimientos reportados hasta el momento, en los que el disolvente orgánico utilizado es simplemente un medio de controlar la temperatura que produce la reacción de amonolisis, que es fuertemente exotérmica, mientras que en la presente invención el amoniaco disuelto en el liquido iónico desempeña el papel de agente mineralizante, al igual que lo desempeñan los iones hidroxilos, por ejemplo, en la preparación de geles de sílice mediante hidrólisis en medio básico de compuestos de silicio tales como alcóxidos de silicio .
Los líquidos iónicos tienen las características adecuadas para ser utilizados en la presente invención, ya que, además de que son excelentes disolventes del amoniaco, son líquidos a temperatura ambiente y en el rango de temperaturas utilizados en la presente invención y tienen una alta estabilidad química, de manera que no reaccionan con los reactivos presentes en el medio de síntesis.
El sólido así obtenido, tras ser lavado con metanol y filtrado, puede tratarse térmicamente en corriente de amoniaco a una temperatura elevada para obtener un material sólido amorfo que presenta una alta superficie específica y un alto volumen de poro, y pueden presentar una distribución de tamaños de poro estrecha en el rango comprendido entre 1 nm y 50 nm. Este procedimiento tiene la ventaja adicional de que el líquido iónico puede recuperarse a partir del metanol utilizado en el lavado, y ser reutilizado.
Puede contemplarse también la posibilidad de obtener un material poroso amorfo a partir del compuesto aquí descrito relacionado con la diimida de silicio sin necesidad de obtener éste último previamente, es decir, partiendo de dicho derivado en estado puro, una vez ya preparado. De esta forma, un tercer objeto de la presente invención es un método de preparación de un material poroso amorfo a partir del compuesto objeto de interés de la presente memoria, caracterizado por que comprende la etapa de someter a tratamiento térmico dicho compuesto, mediante atmósfera de amoniaco gaseoso a una temperatura comprendida entre 500°C y 1200°C, incluidos ambos limites, durante un tiempo comprendido entre 30 minutos y 10 horas, incluidos ambos limites.
La presente invención se caracteriza porque el tratamiento térmico del compuesto descrito en una atmósfera de amoniaco a una temperatura entre 500°C y 1200 °C por un tiempo comprendido entre 30 minutos y 10 horas da lugar a un material sólido que tiene una alta área superficial y puede tener un tamaño de poro medio comprendido entre 1 nm y 50 nm, y que presenta un contenido muy pequeño de azufre y carbono residual. Además, este procedimiento conduce a la formación de un producto resultante del tratamiento térmico que presenta una alta concentración de grupos NH, que son centros activos capaces de promover reacciones catalizadas por bases .
La eficiencia de este procedimiento de tratamiento térmico en amoniaco para eliminar los restos de liquido iónico y otros compuestos orgánicos que puedan estar ocluidos en el producto no calcinado se puede determinar mediante el análisis del contenido de nitrógeno y de azufre. El espectro infrarrojo de los productos calcinados muestra la presencia de bandas que se asignan a diferentes modos de vibración de enlaces Si-N, y de enlaces N-H. La presencia de estos enlaces N-H cobra especial relevancia desde el punto de vista de las aplicaciones catalíticas, ya que los grupos N-H son centros activos en reacciones de catálisis básica.
Un cuarto objeto de la presente invención lo constituye un material poroso amorfo obtenible mediante el procedimiento anterior, caracterizado por que comprende una distribución de volumen de poro comprendida entre 1 nm y 50 nm, incluidos ambos límites.
Dado que el material poroso amorfo presenta unas propiedades novedosas que lo diferencian de otros materiales similares ya conocidos, la presente invención cubre asimismo el propio material poroso amorfo independientemente de que sea obtenido por el procedimiento descrito anteriormente. El quinto y último objeto de la invención es el uso del material poroso amorfo como catalizador, como soporte para catalizador, en membranas para filtración de gases y líquidos, como precursor de nitruros en la fabricación de productos cerámicos, o en la fabricación de materiales luminiscentes.
En primer lugar, los materiales porosos amorfos pueden emplearse como catalizadores para la síntesis de un muy amplio conjunto de compuestos químicos de alto valor añadido, debido a que contienen centros básicos que por sí mismos son capaces de catalizar reacciones químicas. En segundo lugar, pueden utilizarse como soportes de catalizadores, por ejemplo como soporte de nanopartículas de metales nobles, que son capaces de dar lugar a reacciones bifuncionales , en las que tanto el soporte con sus centros catalíticos básicos como el metal soportado intervendrían en la reacción catalítica.
Asimismo, como se ha afirmado, podrían utilizarse en la preparación de membranas para la filtración de gases y líquidos, o como fase estacionaria para cromatografía.
Podrían utilizarse también como precursores de los correspondientes nitruros, tales como nitruro de silicio o nitruro de aluminio, de alta superficie específica y pequeño tamaño de cristal.
Los materiales descritos en la presente invención también podrían utilizarse como base la preparación de materiales luminiscentes, mediante su adecuada combinación con metales pertenecientes a los grupos de los metales alcalinos, alcalinotérreos o a las tierras raras .
Descripción detallada de la invención
De manera preferida, en la fórmula general del compuesto x está comprendido entre 0.05 y 0.5; es decir, presenta siempre cierta cantidad de Si unido a los átomos de N, acompañando al elemento M. En cuanto al procedimiento de obtención del compuesto, los precursores de silicio utilizados son preferentemente seleccionados dentro del grupo compuesto por: haluros de silicio de fórmula SiX4 donde X designa cloro, bromo o yodo (por ejemplo, y más preferentemente, tetracloruro de silicio) ;
aminosilanos de fórmula general SiX4(NRR')x, donde R y R' son idénticos o diferentes y representan grupos alquilo con un número de átomos de carbono comprendido entre 1 y 6, o grupos vinilo, fenilo o hidrógeno, donde X representa cloro, bromo, yodo o hidrógeno, estando el valor de x comprendido entre 0 y 4 (por ejemplo, y más preferentemente, cloroaminosilanos ) ; y cualquier mezcla de ellos.
Por su parte, los precursores de M son preferiblemente compuestos de fórmula general MX, donde M representa germanio, aluminio o galio; e y es 4 para germanio y 3 para aluminio y galio, mientras que X representa un átomo de halógeno (por ejemplo, y más preferentemente, cloruros anhidros de los elementos indicados). De esta forma, el precursor puede ser tricloruro de aluminio anhidro, tricloruro de galio anhidro, o tetracloruro de germanio.
Dado que el tipo de compuestos como el aquí descrito, como es la diimida de silicio, es sensible al aire y la humedad, es preferible emplear en la presente invención líquidos iónicos que tengan un carácter preferentemente hidrófobo, pero en modo alguno ello puede considerarse una limitación de la invención. El líquido iónico 1- etil-3-metilimidazolio bis [ (trifluorometil) sulfonil] amida tiene un punto de fusión de -18 °C, tiene una alta estabilidad térmica y la solubilidad del amoniaco en el mismo es muy elevada, por lo que resulta un líquido iónico adecuado para la presente invención. Otros líquidos iónicos también adecuados para ser utilizados según el procedimiento descrito en la presente invención son derivados del anillo imidazolio que presentan la fórmula general
N x en la que R y R' designan grupos orgánicos alquilo que pueden ser iguales o distintos y representan grupos orgánicos con un número de átomos de carbono comprendido entre 1 y 10, y en donde X designa a un anión, como por ejemplo puede ser preferiblemente seleccionado dentro del grupo compuesto por: el anión bis [ (trifluorometil) sulfonil] amida, el anión cloruro, tetrafluoroborato y tetrafluorofosfato . Preferentemente, el número de átomos de carbono está comprendido entre 1 y 6, y más preferentemente entre 1 y .
El método en cuestión puede realizarse en corriente de amoniaco bien a presión atmosférica o bien bajo presión de amoniaco, a una presión comprendida entre la presión atmosférica y 200 atm, incluidos ambos limites. Si el método se realiza bajo presión de amoniaco, dicha presión está comprendida preferentemente entre 1 y 50 atm.
De manera preferida, el método de obtención del compuesto se realiza a una temperatura comprendida entre 20°C y 200°C, estando más preferentemente todavía comprendidos entre 15°C y 180°C.
El tiempo de reacción de amonolisis está comprendido entre 5 minutos y 50 días, estando más preferentemente comprendido entre 1 hora y 10 días. En una realización preferida, este tiempo de reacción está comprendido entre 30 minutos y 7 días, y en otro caso preferido entre 30 minutos y un día.
Esta reacción de amonolisis se realiza habitualmente en un matraz por el que se hace pasar la corriente de amoniaco, aunque esta práctica no debe considerarse limitante de la invención. En una realización preferida, tras la reacción de amonolisis el producto obtenido de dicha reacción se calienta a una temperatura comprendida entre 20 °C y 200 °C durante un tiempo de reacción comprendido entre 1 hora y 10 días, con o sin presión de amoniaco gas, y si es con presión ésta está comprendida entre 1 y 200 atmósferas. Esta etapa de maduración del compuesto influye de manera determinante en las propiedades del material que posteriormente se puede obtener a partir de él, y se suele realizar en un autoclave, aunque este aspecto no es limitante de la invención. Tras esta etapa, es conveniente mantener el producto en atmósfera inerte para evitar el contacto con la atmósfera y, como consecuencia, su oxidación.
Preferiblemente, tras la reacción de amonolisis o tras el calentamiento del producto con o sin corriente de gas amoniaco cuando se lleva a cabo, el producto obtenido de dicha reacción se lava con un disolvente, para eliminar tanto los restos de elementos sobrantes (exceso de liquido iónico) como los que se forman durante la reacción (cloruro amónico), y posteriormente se filtra dicho producto, para disponer del compuesto en estado puro susceptible de utilizarse como materia prima en la preparación de un material poroso amorfo como el descrito en el apartado Descripción General. En el caso más preferido, el disolvente es metanol .
Una ventaja de la presente invención es que el liquido iónico sobrante de la reacción se disuelve en el disolvente utilizado en el lavado, que es preferentemente metanol, y puede recuperarse y reutilizarse mediante procedimientos bien conocidos que también permiten el reciclado del metanol utilizado en el lavado.
En un ejemplo de realización preferido del método de obtención del compuesto relacionado con la diimida de silicio, un compuesto precursor o mezcla de varios compuestos precursores se dispone en un matraz, al que se añade al menos un liquido iónico derivado del catión imidazolio según la fórmula descrita anteriormente, en donde R y R' pueden ser iguales o distintos y representan grupos orgánicos con un número de átomos de carbono comprendido entre 1 y 10, preferentemente entre 1 y 4; X representa un anión, tal como anión bis [( trifluorometil ) sulfonil ] amida o el anión cloruro.
La mezcla de reacción se introduce en un matraz que se mantiene a una temperatura comprendida entre -15 °C y 200 °C, y se pone en contacto con amoniaco gaseoso, durante un tiempo comprendido entre 5 minutos y una semana, preferentemente entre 30 minutos y un día. Al cabo de ese tiempo, la mezcla de reacción es preferiblemente introducida en una autoclave provista de una funda de teflón, y calentada a temperaturas comprendidas entre 20 °C y 200 °C. Al cabo de un tiempo de reacción comprendido entre 30 minutos y 10 días, la autoclave se enfria hasta temperatura ambiente y se introduce en un sistema cerrado que contenga una atmósfera inerte, como nitrógeno, o helio, como una bolsa de guantes o una "caja seca", para evitar su contacto con el aire y por lo tanto su oxidación. El contenido de la autoclave se lava con metanol seco para eliminar el exceso de reactivos, y se filtra para recuperar un producto sólido.
En una aplicación preferente de esta invención, la mezcla de reacción obtenida tras la reacción de amonolisis con amoniaco gas e introducida en las autoclaves de acero inoxidable, se trata con amoniaco de alta pureza a temperaturas comprendidas entre 20 y 200 °C, y presiones comprendidas entre 1 y 200 atmósferas. Después de un tiempo de reacción comprendido entre 1 hora y 10 días, la autoclave se enfria y su contenido se trata con metanol como se explicó anteriormente.
El compuesto lavado y filtrado se puede someter adicionalmente a tratamiento térmico para obtener un material poroso amorfo, en las condiciones especificadas en el apartado anterior. En este caso la temperatura del tratamiento térmico, que está comprendida entre 500°C y 1200°C, está preferentemente comprendida entre 600°C y 800°C.
Respecto al uso del material poroso amorfo como catalizador, dicho uso es preferido en reacciones catalizadas por bases, como son las seleccionadas entre reacciones de alquilación de compuestos alquilaromáticos con metanol o reacciones de condensación de compuestos orgánicos que contienen grupos metileno CH2 activos, tales como reacciones de condensación de Michael .
En caso de que el material se utilice como soporte de catalizadores, dicho catalizador está preferentemente constituido por nanoparticulas de metales nobles .
Descripción de las figuras
Figura 1. Isoterma de adsorción/desorción de nitrógeno de la muestra tratada en amoniaco a una temperatura de 600 °C preparada según se describe en el Ejemplo 1.
Figura 2. Distribución de tamaño de poro de la muestra cuya isoterma se muestra en la Figura 1.
Figura 3. Espectros FTIR de las muestras tratadas en amoniaco a 600 °C preparadas en los Ejemplos 1 (espectro b) y 2 (espectro a) . En la región del espectro comprendida entre 1400-600 cnf1, las muestras presentan dos bandas a 925 y 1030 cnf1 que pueden asignarse a las vibraciones de tensión asimétricas del enlace Si-N (uas(Si-N)) y una banda en torno a 1200 cnf1 que puede atribuirse a la deformación de los grupos NH unidos a los átomos de silicio (δ(ΝΗ)) . Ambos espectros presentan además, una banda en torno a 786 cnf1 correspondiente a la deformación de los grupos Si-NH2 (5(Si- NH2) ) .
Figura 4. Distribución de tamaño de poro de la muestra tratada en corriente de amoniaco a una temperatura de 600 °C preparada según el ejemplo 3.
Ejemplos
A continuación se describen tres ejemplos de la presente invención, que en ningún caso pueden considerarse como ejemplos limitantes de la invención.
Ejemplo 1: En un vaso de reacción se pesan 47.5 g del liquido iónico l-etil-3- metilimidazolio bis [ (trifluorometil) sulfonil] amida y a continuación se añaden 14.2 g de SiCl4. El vaso de reacción se sumerge en un baño de agua-hielo y se conecta a un burbujeador con silicona y a un vaso de seguridad. Seguidamente se adiciona el amoniaco gaseoso mientras se mantiene la mezcla bajo agitación magnética constante. Tras la reacción se obtiene un gel blanco altamente viscoso.
A continuación, en una bolsa de guantes se extrae el contenido del vaso de reacción, se homogeniza se introduce en autoclaves de acero inoxidable de de 17 mi de volumen con fundas de vidrio provistos de una válvula.
A continuación, se pone en contacto las autoclaves con amoniaco gaseoso a una presión parcial de amoniaco en el sistema de 7.5 atm, disolviéndose 0.6 g de amoniaco gaseoso en la mezcla contenida en las autoclaves. A continuación, las autoclaves se calientan en una estufa a 180 °C durante 43 horas en régimen estático.
Tras este proceso, los sólidos obtenidos se extraen en el interior de la bolsa de guantes, se lavan con metanol seco previamente redestilado y se filtran bajo corriente de nitrógeno.
El producto obtenido se introduce en un reactor tubular de cuarzo y se trata en corriente de amoniaco a una temperatura de 600 °C durante dos horas. En la Figura 1 se representa la isoterma de adsorción de nitrógeno del material calcinado, cuyo área superficial determinado partir de la isoterma de adsorción resultó ser de 629 m2/g, y el volumen de poro de 1.43 cm3/g. En la Figura 2 se representa la distribución de volumen de poro, observándose en ella que la distribución está centrada en 12 nm, es decir, en el rango de los mesoporos . En la Figura 3 se representa el espectro de infrarrojo del material, en el que se identifican claramente las bandas debidas a la presencia de enlaces Si-N y N-H.
Ejemplo 2 : La reacción de amonolisis se lleva a cabo siguiendo el procedimiento descrito en el Ejemplo 1. El gel obtenido se extrae en el interior de una bolsa de guantes, se homogeniza y se introduce en autoclaves de acero inoxidable de 60 mi de volumen provistas de fundas de teflón y se calientan en una estufa a 180 °C durante 43 horas en régimen estático.
Los sólidos obtenidos tras este proceso se someten al mismo tratamiento de lavado y filtrado descrito en el Ejemplo 1. El producto sólido se trata con amoniaco a 600 °C en las mismas condiciones que las descritas en el Ejemplo 1. El producto asi tratado tiene un área superficial de 251 m2/g y un volumen de poro de 0.07 cm3/g.
En la Figura 3 representa el espectro de infrarrojo del material, en el que se identifican claramente las bandas debidas a la presencia de enlaces Si-N y N-H.
Ejemplo 3:
En un vaso de reacción se pesan 47.5 g del liquido iónico l-etil-3- metilimidazolio bis [ (trifluorometil) sulfonil] amida y a continuación se añaden 14.2 g de SiCl4 y 1,11 g de A1C13. El vaso de reacción se sumerge en un baño de agua-hielo y se conecta a un burbujeador con silicona y a un vaso de seguridad. Seguidamente se adiciona el amoniaco gaseoso mientras se mantiene la mezcla bajo agitación magnética constante. Tras la reacción se obtiene un gel blanco altamente viscoso.
A continuación, en una bolsa de guantes se extrae el contenido del vaso de reacción, se homogeniza, se introduce en autoclaves de acero inoxidable de de 17 mi de volumen con fundas de vidrio provistos de una válvula. A continuación, se pone en contacto las autoclaves con amoniaco gaseoso a una presión parcial de amoniaco en el sistema de 7.5 atm, disolviéndose 0.6 g de amoniaco gaseoso en la mezcla contenida en las autoclaves. A continuación, las autoclaves se calientan en una estufa a 180 °C durante 43 horas en régimen estático.
Tras este proceso, los sólidos obtenidos se extraen en el interior de la bolsa de guantes, se lavan con metanol seco previamente redestilado y se filtran bajo corriente de nitrógeno. El producto asi obtenido se somete al tratamiento con amoniaco a una temperatura de 600 °C tal y como se describe en el Ejemplo 1. El sólido asi obtenido tiene un área superficial de 336 m2/g y un volumen de poro de 1.06 cm3/g. En la Figura 4 se representa la distribución de volumen de poro, observándose en ella que la distribución está centrada en 13 nm.

Claims

REIVINDICACIONES
1. Un compuesto de fórmula general:
xMi_xNyHz donde M se refiere al menos a un elemento del grupo formado por germanio, aluminio y galio; x está comprendido entre 0 y 0.5; y está comprendido entre 2 y 4; y z está comprendido entre 2 y 8; dicho compuesto conteniendo enlaces entre los átomos de silicio y átomos de nitrógeno y entre el elemento M y los átomos de nitrógeno .
2. El compuesto descrito en la reivindicación anterior, donde x está comprendido entre 0.05 y 5, incluidos ambos limites.
3. Un método de obtención del compuesto descrito en una cualquiera de las reivindicaciones 1 ó 2, caracterizado por que comprende someter a reacción de amonolisis una mezcla de precursores del compuesto que contienen los elementos Si y M en un liquido iónico, mediante una corriente de amoniaco gaseoso a una temperatura comprendida entre -15°C y 200°C, incluidos ambos limites.
4 . El método según la reivindicación anterior, donde los precursores de silicio utilizados son seleccionados dentro del grupo compuesto por: haluros de silicio de fórmula SiX4 donde X designa cloro, bromo o yodo;
aminosilanos de fórmula general SiX4(NRR')x, donde R y R' son idénticos o diferentes y representan grupos alquilo con un número de átomos de carbono comprendido entre 1 y 10, o grupos vinilo, fenilo o hidrógeno, donde X representa cloro, bromo, yodo o hidrógeno, estando el valor de x comprendido entre 0 y 4; y
cualquier mezcla de ellos.
5 . El método según la reivindicación anterior, donde el haluro de silicio es tetracloruro de silicio, y el aminosilano es un cloroaminosilano .
6 . El método según una cualquiera de las reivindicaciones 3 a 5, donde los precursores de M son compuestos de fórmula general MX, donde M representa germanio, aluminio o galio; e y es 4 para germanio y 3 para aluminio y galio, mientras que X representa un átomo de halógeno.
7 . El método según la reivindicación anterior, donde el precursor de M es seleccionado dentro del grupo compuesto por tricloruro de aluminio anhidro, tricloruro de galio anhidro y tetracloruro de germanio .
8 . El método según una cualquiera de las reivindicaciones 3 a 7, donde el liquido iónico es un liquido hidrófobo.
9 . El método según la reivindicación anterior, donde el liquido iónico es seleccionado entre l-etil-3-metilimidazolio bis [( trifluorometil ) sulfonil ] amida y un derivado del anillo imidazolio que presentan la fórmula general:
Figure imgf000022_0001
donde R y R' designan grupos orgánicos alquilo iguales o distintos con un número de átomos de carbono comprendido entre 1 y 10, y en donde X designa un anión.
10 . El método según la reivindicación anterior, donde el número de átomos está comprendido entre 1 y 4.
11 . El método según una cualquiera de las reivindicaciones 9 ó 10, donde el anión X es seleccionado dentro del grupo compuesto por: el anión bis [ ( trifluorometil ) sulfonil] amida, el anión cloruro, tetrafluoroborato y tetrafluorofosfato .
12 . El método según una cualquiera de las reivindicaciones 3 a 11, donde la corriente de amoniaco está a presión atmosférica o a una presión comprendida entre la presión atmosférica y 200 atm, incluidos ambos limites .
13 . El método según la reivindicación anterior, donde la presión de amoniaco está comprendida preferentemente entre 1 y 50 atm.
14 . El método según una cualquiera de las reivindicaciones 3 a 13, donde la temperatura de reacción de amonolisis está comprendida entre 20°C y 200°C, incluidos ambos limites.
15 . El método según una cualquiera de las reivindicaciones 3 a 14, donde el tiempo de reacción de amonolisis está comprendido entre 5 minutos y 50 días.
16 . El método según una cualquiera de las reivindicaciones 3 a 15, donde tras la reacción de amonolisis el producto obtenido de dicha reacción se somete a una etapa de calentamiento a una temperatura comprendida entre 20 °C y 200 °C durante un tiempo de reacción comprendido entre 1 hora y 10 días, con o sin presión de amoniaco gas, a presiones comprendidas entre 1 y 200 atm cuando se realiza con presión de amoniaco gas.
17 . El método según una cualquiera de las reivindicaciones 3 a 16, donde tras la reacción de amonolisis o tras la etapa de calentamiento, el producto de dicha reacción se lava con un disolvente y se filtra.
18 . El método según la reivindicación anterior, donde el disolvente es metanol .
19 . El método según una cualquiera de las reivindicaciones 17 ó 18, donde el liquido iónico sobrante de la reacción se disuelve en disolvente utilizado durante el lavado, recuperándose tanto disolvente como el liquido iónico.
20. El método según la reivindicación anterior, donde el liquido iónico se recupera y se reutiliza en la reacción de amonolisis.
21. El método según una cualquiera de las reivindicaciones 17 a 20, donde el compuesto se somete a tratamiento térmico mediante atmósfera de amoniaco gaseoso a una temperatura comprendida entre 500°C y 1200°C, incluidos ambos limites, durante un tiempo comprendido entre 30 minutos y 10 horas, incluidos ambos limites, hasta obtener un material poroso amorfo.
22. Un material poroso amorfo obtenible mediante el procedimiento descrito en la reivindicación 21, que comprende una distribución de volumen de poro comprendida entre 1 nm y 50 nm, incluidos ambos limites .
23. Un material poroso amorfo derivado de un compuesto de fórmula general
SixMi_xNyHz donde M se refiere al menos a un elemento del grupo formado por germanio, aluminio y galio; x está comprendido entre 0 y 0.5; y está comprendido entre 2 y 4; y z está comprendido entre 2 y 8; dicho compuesto conteniendo enlaces entre los átomos de silicio y átomos de nitrógeno y entre el elemento M y los átomos de nitrógeno ;
que comprende una distribución de volumen de poro comprendida entre 1 nm y 50 nm, incluidos ambos limites.
24. Uso del material poroso amorfo descrito en una cualquiera de las reivindicaciones 22 ó 23, como catalizador.
25. Uso del material poroso amorfo descrito en una cualquiera de las reivindicaciones 22 ó 23, como soporte para catalizador.
26. Uso del material poroso amorfo descrito en una cualquiera de las reivindicaciones 22 ó 23, en membranas para filtración de gases y líquidos .
27. Uso del material poroso amorfo descrito en una cualquiera de las reivindicaciones 22 ó 23, como precursor de nitruros en la fabricación de productos cerámicos .
28. Uso del material poroso amorfo descrito en una cualquiera de las reivindicaciones 22 ó 23, en la fabricación de materiales luminiscentes, combinado con metales pertenecientes a los grupos de los metales alcalinos, alcalinotérreos o a las tierras rara.
PCT/ES2013/070500 2012-07-25 2013-07-12 Compuestos relacionados con la diimida de silicio, método de obtención, y su aplicación en la preparación de un material poroso amorfo WO2014016457A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201231192 2012-07-25
ES201231192A ES2444515B1 (es) 2012-07-25 2012-07-25 Compuestos relacionados con la diimida de silicio, método de obtención, y su aplicación en la preparación de un material poroso amorfo

Publications (1)

Publication Number Publication Date
WO2014016457A1 true WO2014016457A1 (es) 2014-01-30

Family

ID=49996647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2013/070500 WO2014016457A1 (es) 2012-07-25 2013-07-12 Compuestos relacionados con la diimida de silicio, método de obtención, y su aplicación en la preparación de un material poroso amorfo

Country Status (2)

Country Link
ES (1) ES2444515B1 (es)
WO (1) WO2014016457A1 (es)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006046012A1 (en) * 2004-10-25 2006-05-04 The University Of Hull Novel nanoporous materials

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006046012A1 (en) * 2004-10-25 2006-05-04 The University Of Hull Novel nanoporous materials

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
F. CHENG ET AL.: "Catalytic ammonolytic sol-gel preparation of a mesoporous silicon aluminium nitride from a single-source precursor", J. ORGANOMET. CHEM., vol. 692, 2007, pages 3816 - 3822 *
F. CHENG ET AL.: "General method of preparation of mesoporous M/Si3N4 nano-composites via a non-aqueous sol-gel route", CHEM. COMMUN., vol. 45, 2005, pages 5662 - 5664 *
F. CHENG ET AL.: "Preparation of a mesoporous siliconaluminium nitride via non-aqueous sol-gel route", J. MATER. CHEM., vol. 15, 2005, pages 772 - 777 *

Also Published As

Publication number Publication date
ES2444515B1 (es) 2014-12-11
ES2444515A1 (es) 2014-02-25

Similar Documents

Publication Publication Date Title
US5082641A (en) Silicon/titanium oxide mfi zeolites
JP4968431B2 (ja) 球状シリカ系メソ多孔体及びその製造方法、並びにそれを用いた塩基触媒
Polarz et al. Preparation of a periodically ordered mesoporous organosilica material using chiral building blocks
CN104525130B (zh) 一种偕胺肟基乙烷桥键介孔二氧化硅的制备方法
Aravind et al. Porous silicon oxycarbide glasses from hybrid ambigels
Liu et al. Facile synthesis of ZIF-8 nanocrystals in eutectic mixture
Harrison et al. Preparation and characterization of octasilsesquioxane cage monomers
Cerveau et al. Sol–gel process: influence of the temperature on the textural properties of organosilsesquioxane materials
Gunathilake et al. Mesoporous isocyanurate-containing organosilica–alumina composites and their thermal treatment in nitrogen for carbon dioxide sorption at elevated temperatures
JP6955700B2 (ja) Co2吸着材
ES2660887T3 (es) Síntesis de tamiz molecular ITQ-32
Xia et al. High surface area ethylene-bridged mesoporous and supermicroporous organosilica spheres
ES2444515B1 (es) Compuestos relacionados con la diimida de silicio, método de obtención, y su aplicación en la preparación de un material poroso amorfo
Cheng et al. Preparation of a mesoporous silicon aluminium nitride via a non-aqueous sol–gel route
Inagaki et al. Direct synthesis of porous organosilicas containing chiral organic groups within their framework and a new analytical method for enantiomeric purity of organosilicas
Zhang et al. Tartardiamide‐Functionalized Chiral Organosilicas with Highly Ordered Mesoporous Structure
US4830999A (en) Zeolite containing entrapped anionic material
US20070249744A1 (en) Template-Directed Synthesis of Porous Materials Using Dendrimer Precursors
Lohse et al. Synthesis of zeolite beta Part 2.—Formation of zeolite beta and titanium-beta via an intermediate layer structure
Cheng et al. Preparation of a mesoporous silicon boron nitride via a non-aqueous sol–gel route
Hagiwara et al. Formation of reactive microporous networks from alkoxyvinylsilylated siloxane cages
Ojeda et al. Incorporation of a tungsten Fischer-type metal carbene covalently bound to functionalized SBA-15
Xia et al. Improvement of the hydrothermal stability of siliceous MCM-48 by fluorination
CA2591193C (en) Method for the production of water-free rare earth metal halogenides, synthesis mixtures containing water-free rare earth metal halogenides and use thereof
Davis et al. Formation of 1, 1, 1-trimethyl-N-sulfinylsilanamine from the direct reaction of sulfur dioxide with hexamethyldisilazane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13822397

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13822397

Country of ref document: EP

Kind code of ref document: A1