WO2014016443A1 - Módulo bypass y estructura de refugio - Google Patents
Módulo bypass y estructura de refugio Download PDFInfo
- Publication number
- WO2014016443A1 WO2014016443A1 PCT/ES2012/070562 ES2012070562W WO2014016443A1 WO 2014016443 A1 WO2014016443 A1 WO 2014016443A1 ES 2012070562 W ES2012070562 W ES 2012070562W WO 2014016443 A1 WO2014016443 A1 WO 2014016443A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- module
- bypass module
- bypass
- tunnel
- panel
- Prior art date
Links
- 238000009423 ventilation Methods 0.000 claims abstract description 27
- 230000009970 fire resistant effect Effects 0.000 claims abstract description 9
- 238000009434 installation Methods 0.000 claims abstract description 8
- 230000002457 bidirectional effect Effects 0.000 claims description 14
- 238000009792 diffusion process Methods 0.000 claims description 8
- 238000001514 detection method Methods 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 7
- 230000007613 environmental effect Effects 0.000 claims description 6
- 239000000779 smoke Substances 0.000 claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- 239000013307 optical fiber Substances 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000003063 flame retardant Substances 0.000 abstract description 2
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000033228 biological regulation Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 208000015778 Undifferentiated pleomorphic sarcoma Diseases 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000005465 channeling Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000004402 ultra-violet photoelectron spectroscopy Methods 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21F—SAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
- E21F11/00—Rescue devices or other safety devices, e.g. safety chambers or escape ways
Definitions
- the present invention refers to a bypass module to be installed in the pedestrian and / or practicable galleries that connect two tubes of a tunnel, the lengths of the tubes being suitable for making escape routes and temporary shelters.
- a bypass module to be installed in the pedestrian and / or practicable galleries that connect two tubes of a tunnel, the lengths of the tubes being suitable for making escape routes and temporary shelters.
- it also refers to the shelter structure created by at least two of these bypass modules when they are installed inside the gallery creating a security space isolated from the rest of the tunnel, where in the event of an incident, such as a fire, users could take refuge.
- This module integrates all the mechanics and electronics necessary to serve as a escape route and as a temporary shelter in case of need for tunnel users who might be trapped inside.
- bypass modules The structure of the bypass modules is a "turnkey" product from the point of view of manufacturing, and installation as it is transported to the galleries, completely assembled and wired. Thus, once placed and having provided power and connection to the tunnel data network, the module is fully operational. This greatly reduces assembly and manufacturing costs and times while the bypass modules are provided with a high degree of safety.
- the galleries between the two pipes guarantee an escape route to the outside and the possibility, if properly sized, of building a temporary shelter for the safety of people in the event of a fire or other type of incident inside the tunnel.
- Said type of galleries in some cases have enclosed spaces where, in the event of an eventuality, users who are trapped inside the tunnel could take temporary shelter while waiting to be evacuated. These spaces, to date, are built in phases in the gallery itself. That is to say, professionals from different guilds that build the different parts of the structure and that subsequently incorporate the necessary electronics in each case are used.
- the present invention being a "turnkey" product, reduces the costs associated with its assembly and manufacturing by solving the problems set forth above. Specifically, the present invention is transported to its installation site completely assembled and wired, so that by placing the module in place and carrying out the Relevant power and data connections The present invention is fully operational.
- the present invention consists of a bypass module and a shelter structure for pedestrian galleries connecting tunnel tubes.
- a first object of the present invention is a bypass module to be installed in a pedestrian gallery that connects two tubes of a tunnel.
- the module has an external face oriented towards the tunnel tubes and an internal face oriented in opposition to the external face and into the security space created by the present invention.
- the module is prefabricated and pre-wired so its installation is almost immediate, so once placed in its position inside the gallery it is only necessary to seal it and connect it to the electrical and data network of the tunnel itself so that the present invention is completely operational
- it presents a profiled box shape that fits with the shape of the gallery where it is placed.
- the bypass module at least comprises:
- a ventilation system comprising at least one ventilation channel that communicates the external face and the internal face of the module and an axial fan located inside the ventilation channel; and, - a fire resistant insulating panel on the external face of the module.
- the bypass module is divided into an upper section and a lower section that are joined together in a compact and integral manner by means of a chassis made of metal profiles.
- the bypass module comprises an emergency communications system, a closed circuit audio and audio diffusion system, a sensor system and a videocontrol system.
- bypass module ventilation channel comprises in its interior a fire valve disposed between the internal face of the module and the axial fan.
- the space between the module profile and the gallery wall is sealed by a fire resistant material.
- the bypass module comprises a space prepared to accommodate at least:
- an electrical panel that is divided into an arrival section that at least integrates connection means with a preferred power line from the external electrical substation of the tunnel and a reserve power line, and a power section comprising means to feed the electrical and electronic components of the bypass module;
- a rack panel comprising an uninterruptible power supply section where the interrupted power supply system and a communications section are integrated.
- both the rack and the electrical panel share the same space, integrating all the elements that make up both frames in the same physical space, that is, all the elements would be integrated into the same frame.
- this space for housing the electrical panel and the rack panel is arranged in the lower section of the module and more specifically between the two access doors.
- the electrical panel comprises a unit
- PLC responsible for managing the bypass module, the PLC unit being connected to the tunnel data network through a network node inside the rack panel.
- This PLC unit manages the data received from the systems installed inside the electrical panel and the data from environmental sensors located in the module.
- the communications section of the rack frame of the bypass module at least comprises:
- splice panel for copper cables that connect the rack panel to the emergency communications system, the closed-circuit audio and video diffusion systems, the PLC unit and the video control system; Y,
- the Ethernet switch is of the industrial type and is suitable for operation in extreme temperature and humidity operating conditions.
- at least one unidirectional axial fan with preferably three-phase supply is integrated within the ventilation channel of the bypass module ventilation, although it could also be single-phase, and comprising a grid on the inner side of the ventilation duct , a motorized circular fire damper that connects to the fan, a non-return gate and a differential pressure switch.
- the emergency communications system of the bypass module at least comprises a call interface with a sanitary emergency button and a mechanical emergency button, at least one microphone for communication with a remote operator and at least one speaker for communication with the remote operator. It is also planned that the communications system has a double push button for sanitary and mechanical emergencies.
- the closed-loop audio and audio broadcasting system at least comprises a sound broadcasting system with an IP gateway interface and a video broadcasting system with an Ethernet encoder and user interface on an industrial display. All the elements that make up the audio and video broadcast system are connected to the tunnel data network through the Ethernet switch.
- bypass module sensor system comprises pressure sensors, temperature sensors and opacimeters.
- the sensor system further comprises at least one analog smoke detection sensor located on the external face of the module.
- the sensors are connected to an alarm center integrated in the distribution panel.
- the sensors are also connected to the PLC unit that manages the information coming from them.
- the video control system comprises at least one fixed surveillance camera of the IP type connected to the Ethernet switch.
- a second object of the present invention is a shelter structure for pedestrian galleries connecting two pipes of a tunnel.
- This structure includes the installation of two twin pedestrian bypass modules at both ends of the pedestrian gallery with the inner faces of both bypass modules facing each other. This creates a sealed space between the two modules for use as a refuge by users who may require their use in the event of an incident in a tunnel such as a fire.
- the at least one bidirectional data communication line is connected between the two twin bypass modules and the secondary electrical connection means is connected between the two twin bypass modules so that if necessary both modules can provide each other with power and can exchange data. This ensures that in the event of a power failure in one of the modules, the twin module will be supplied through the secondary electrical connection means.
- the PLC module of the twin module in case of failure of the PLC unit of one of the modules, for example, can take control of both bypass modules through the bidirectional line of data communication.
- the bidirectional data communication line is made with a multiple pre-wired cable and can have connectors for connection to the twin module.
- the bidirectional data line is a 100Mbps Ethernet data line made with twisted pair cable.
- Figure 1. Shows a perspective view of an example of realization of a bypass module seen from its external face.
- Figure 2. Shows a perspective view of an exemplary embodiment of a bypass module seen from its internal face.
- Figure 3. Shows an example of embodiment of the electrical panel and electrical panel that integrates the bypass module object of the present invention.
- Figure 4. It shows an example of the realization of a structure in which two bypass modules have been arranged inside a tunnel gallery, with their internal faces facing each other creating a security space inside, isolated from the vessels of The tunnels
- FIG. 1 shows an exemplary embodiment of the external face of a bypass module (1).
- the bypass module (1) is manufactured with a prefabricated structure in the form of a profiled box that adjusts in each case to the dimensions of the gallery in which it will be installed.
- This prefabricated structure is mainly composed of a lower section (2) approximately rectangular, where the access doors (4) and the electrical and electronic devices of the bypass module (1) and a semi-cylindrical upper section (3) are supported on the first one with the same depth as the lower section (2) and housing the axial fan for the introduction or evacuation of air from the interior of the space created by the bypass modules (1).
- the fan is housed inside the ventilation channel (7) that transversely crosses the upper section (3) of the bypass module (1) connecting its internal and external faces.
- the ventilation duct (7) has a fire damper (8) in proximity to the outer face of the module (1) which in its closed position has an external face made of fire-resistant material.
- the upper (3) and lower (2) sections are fixed in a compact and integral way to each other by means of a metal chassis (5) made with steel profiles.
- the bypass module (1) Since the galleries are not a complete cylinder, the bypass module (1) has a height of approximately 320 cm and a depth of about 110cm.
- the external wall, externally understood as the one that gives the tunnel tubes once the module has been installed, of the modules (1) is covered with a panel (6) made of a material that guarantees a fire resistance class REI120 .
- the fire resistance rating will depend on each country, meaning “R” in this case. stability, the element maintains its mechanical resistance, “E” tightness, ability not to let in or generate flames or smoke, and "I” thermal insulation, ability not to transmit heat up to 180 ° C on its 5 cold side, and being "120" the number of minutes during which it guarantees compliance with the aforementioned.
- different materials can be used in the manufacture of the module that guarantee different degrees of fire resistance depending on
- the module (1) has two doors (4) for pedestrians, which are also made of a material that guarantees the fire resistance of class REI120, which in a particular embodiment have dimensions of
- one of the doors (4) is to enter the security space created by the bypass module (1) and the other is to exit, so that users can exit and enter simultaneously without that jams occur
- FIG. 2 shows a view of the internal side of the bypass module (1). This internal face is the one that remains within the security space created by the bypass module (1) and will be accessible to users who
- the module has an integrated electrical panel (1) and an internal wiring that connects said electrical panel (11), through electrical outputs, with different electrical and / or electronic systems that are also integrated in the bypass module (1 ).
- these systems are the lighting system consisting of a pair of LED lamps (10), ventilation, closed-circuit television, sound / video broadcasting, etc.
- the gap (9) existing between both doors to house the electrical and electronic devices is composed of two panels: an electrical panel (11) that receives the main power lines (main line coming from the electrical substation and reserve or secondary line coming from of the twin module) and feeds the rest of the electrical and electronic components of the bypass module (1), and a rack box (12) containing the electronic and communications devices.
- the upper semi-cylindrical section (3) of the module is divided into three subsections so that the central subsection (13) is intended for the installation and channeling of the axial fan (not shown) located between the fire damper (8) and non-return gate (14 ) and the lateral subsections (15) designed to house the environmental control systems (environmental control sensors such as pressure, temperature and opacimeter sensors), and sound and lighting diffusion along with their corresponding wiring.
- the environmental control systems environmental control sensors such as pressure, temperature and opacimeter sensors
- FIG. 3 shows an exemplary embodiment of the components that are integrated in the recess (9) to house the electrical and electronic devices:
- the electrical panel (11) it is divided into two sections, an arrival section (16) of the power responsible for feeding the integrated uninterruptible power supply (21) (UPS), and a safety section (17 ) responsible for feeding the rest of the elements and systems that make up the bypass module (1).
- the arrival section (16) of the electrical panel (11) is characterized by the two input lines, the main one (18) from the external electrical substation and the reserve one (19) from the twin module.
- the use of one or another input line as a power supply is managed by a PLC (20) that makes use of electrical exchange elements (interactions of minimum voltage relays, retention coils and contactors) decides to use a power line or another at every moment.
- the security section (17) receives power from the arrival section (16) and distributes it between the different systems and elements that make up the bypass module.
- the lighting system (10), the ventilation system, an Ethernet switch (22), an emergency communications system the PLC (20), the videocontrol system, the sound diffusion system, the Video diffusion system, central fire detection, pressure sensors, volumetric and ambient thermostat and fire extinguisher detection contacts (31).
- the PLC (20) is of industrial type with an Ethernet interface connected directly to the local area network (LAN) of the tunnel through a network node of the rack frame (12).
- the PLC (20) collects all the data of interest from the electrical panel (11) (switch disconnection, command to the counters, status of the selectors, reading of the amperages, etc.) as well as of the environmental sensors of the bypass module (1) (flow detector, position of the fire closing (8), differential pressure switch, sensors of detection of environmental fire (29), etc. ) and performs the management of the bypass module (1) and, in case of having two modules connected through the bidirectional data line, allows the management of the two bypass modules.
- the electrical panel (11) switch disconnection, command to the counters, status of the selectors, reading of the amperages, etc.
- the environmental sensors of the bypass module (1) flow detector, position of the fire closing (8), differential pressure switch, sensors of detection of environmental fire (29), etc.
- the rack box (12) inside the devices of the uninterruptible power supply (21) and the communications section (23).
- the UPS (21) is a 5kVA rack run power system and is equipped with two battery packs.
- the communications section (23) is formed by: a splice panel of the optical fibers that form the interconnecting Ethernet LAN (data connection) inside the tunnel, a splice panel for the copper cables of the LAN (network internal data) of each bypass module (LAN that connects emergency communication systems, audio video systems over Ethernet, PLC (20), closed circuit TV and Ethernet switch (22) (local node).
- the Ethernet switch ( 22) installed inside the rack frame (12) is of industrial type suitable for operation in extreme operating conditions (extended temperature and humidity ranges, cooling by dissipation without the presence of fans that guarantee the perfect operation of the machine against the problems caused by dust and moisture).
- Ethernet switch (22) has the corresponding doors for connection to the multimodal fiber optic and copper (secondary LAN users) of the LAN inside the tunnel and integrates the necessary protocols for managing said data network.
- Each bypass module (2) has two connections with the outside, a first connection comprising a main single-phase main power line (18), although it could also be three-phase, from the external electrical substation located outside the tunnel, being said line made of fire-resistant cable and a second connection comprising a communication data line (24) in optical fiber and where the bypass module (1) represents an intermediate node.
- the main power line (18) feeds the electrical panel (11) and the communication line (24) uses the Ethernet switch (22) of the rack panel (12) as an interface.
- the ventilation system of the bypass modules (1) is composed of the following elements:
- the fan and the grill (not shown in the figures) are located between the fire damper (8) and the non-return gate (14);
- a monitored circular fire damper (8) attached to the fan through the corresponding electrical connection;
- said communication is performed using a standard user interface comprising:
- a call interface with double push-button (25) (one button for sanitary emergencies and another for mechanical emergencies; and,
- the electronics associated with the emergency communications system are of the Ethernet VoIP type directly interconnected to the LAN data network of the tunnel through the switch (22) inside the rack box (12).
- the communications interface is directly wired on the closing panel of the electrical panel (11) of the module.
- the present invention has provided for the incorporation of a closed circuit sound and video diffusion system.
- This system complying with current regulations, has independent channels for the retransmission of pre-registered messages and also allows communication between the user and the remote operator.
- the diffusion system comprises the following elements:
- a sound broadcasting system (27) with an IP Gateway interface; Y,
- the elements that make up the broadcast system are directly connected to the tunnel data network through the switch (22) of the bypass module (1).
- the position of the video and sound interfaces in the module (1) guarantees maximum user accessibility.
- Particular embodiments of the invention could incorporate a sensor system, consisting mainly of a fire detection sensor (29) located inside the space between the two bypass modules which in turn integrates an opacimeter. It could also include temperature sensors inside and outside the security space, presence (33) that detect the entry or exit of the user to the security space and a fire extinguisher sensor (31) that detects the presence or absence thereof.
- the fire detector (29) is an analog smoke detection sensor connected to an alarm panel located inside the upper section (3) of the module and directly wired to the PLC (22) of the electrical panel (11).
- the video surveillance system comprises at least one fixed color camera (30) of IP type.
- Said camera (30) is connected to the switch (22) of the bypass module (1) with static IP addressing inside the LAN data network of the tunnel, thus being accessible from any point of entry of the LAN network or any other device with connection to IP networks of the bypass module (1).
- the existence of a security camera (30) for each bypass module (1) means that with two modules facing each other, the redundancy of the system is guaranteed in the event that the surveillance system of any of the modules fails.
- Each of these cameras (30) covers the total space within the existing security space.
- FIG 4 shows an exemplary embodiment in which a pair of twin bypass modules (1) have been placed inside a gallery (34) that connects two independent tubes (35) of a tunnel.
- the present invention is preferably intended for placement in tunnels of rolling tracks although it is not restricted exclusively to them, and can be placed in any other type of tunnel.
- the modules (1) have been arranged in such a way that the internal faces (36) of both are facing each other creating a space (37) between them isolated from the rest of the tunnel.
- users could take refuge inside waiting to be evacuated or escape through the other tube (35) through the aforementioned bypass modules (1).
- the air chamber that remains inside the structure that makes up both modules is sealed by filling the space between the prefabricated structures of the modules (1 ) and the walls and floor of the gallery (34) with a fire retardant material that, like the doors (4) and the external face (38) of the module (1), will guarantee a fire resistance of class REI120.
- the distance at which they are located from each other must be the minimum necessary to ensure that the number of people stipulated by the regulations fits of security in each In this case, it may be, for example, the minimum to hold 50 people for a minimum of 30 minutes.
- Each bypass module (1) comprises a preferably single-phase input although it could also be three-phase, of power supply (18) directly connected to an external electrical substation (not shown) by means of an electric line made of fire-resistant cable and a connection point (36) on the internal electrical line of the tunnel. You will also have a connection (24) to the tunnel's internal LAN data network, connected directly to the switch (22) of each module (1).
- the modules (1) also have a multiple interconnection line (39) that will comprise at least: a power line (19), which in turn consists of a power line in each direction, that is, a line to feed the first module from the second module and a line to feed the second module from the first module; and a bidirectional data line that connects to the twin bypass module, so that in security structure installations where two facing bypass modules are used, both modules can exchange energy and information if necessary.
- the length of the multiple interconnection line (39) will depend on the distance at which the bypass modules (1) are arranged.
- the bidirectional data line will be a 100 Mbps Ethernet data line made with twisted pair cable.
- Uninterruptible power supply Inside the rack frame (12) an uninterruptible power supply is installed in a 19 '' rack run with its respective battery pack.
- Uninterrupted (21) allows the two bypass modules (1) and one of the two fans to be supplied, if necessary, regardless of whether the fan belongs to one or the other module: these operating conditions are those with the highest possible consumption since it is not provided the simultaneous operation of the two fans.
- the bidirectional interconnection line (39) between the two modules (1) allows the coexistence of two independent emergency communication systems in the same space.
- the interface of the switches (22) also guarantees the management and control of all the two modules with the highest degree of redundancy and fault tolerance possible since for each module there is a connection node with the tunnel data network and that since Each of the modules can be connected through both nodes.
- the PLC unit (20) of the other module could take over the management of both modules.
- the set of the two uninterruptible power supplies, one for each bypass module, guarantees an autonomy of 30 minutes over the declared nominal load. However, it is planned to use a larger quantity of batteries that give it an autonomy of more than 60 minutes.
- the ventilation unit of the module B that allows the pressurization is activated of the bypass space with clean smoke air from tunnel B.
- the activation of the ventilation unit of module B activates the opening of the firewall closure while the firewall closure of module A remains closed in order to maintain the REI120 protection on the outer face of the module TO.
- the differential pressure switch and the fan motor inverter confirm the operation of the ventilation unit of the module B detected the passage of air and the differential pressure switch allows to control the pressure inside the bypass space so that the pressure always allows the doors to open a pressure value of less than 20 Pa at the same time that the internal pressure guarantees no smoke introduction.
Landscapes
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Business, Economics & Management (AREA)
- Health & Medical Sciences (AREA)
- Emergency Management (AREA)
- Pulmonology (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- Alarm Systems (AREA)
Abstract
Módulo bypass para ser instalado en una galería peatonal que conecta dos tubos de un túnel, prefabricado y precableado y con una forma de caja perfilada que ajusta con la forma de la galería. El módulo presenta una conexión con una subestación eléctrica externa del túnel, una línea de comunicación de datos, medios de conexión eléctrica secundarios, una conexión con la red de datos interna del túnel, al menos una puerta de acceso resistente al fuego, un sistema de ventilación que dispone al menos un canal de ventilación y un ventilador axial situado en la sección superior del módulo y un panel aislante del fuego en la cara externa del módulo.
Description
MODULO BYPASS Y ESTRUCTURA DE REFUGIO
OBJE TO DE LA INVENCION
La presente invención, tal y como se expresa en el enunciado de esta memoria descriptiva se refiere a un módulo bypass para ser instalado en las galerías peatonales y/o practicables que conectan dos tubos de un túnel, siendo las longitudes de los tubos adecuadas para realizar vías de escape y refugios temporales. Además también se refiere a la estructura de refugio que crean al menos dos de estos módulos bypass cuando se instalan en el interior de la galería creando un espacio de seguridad aislado del resto del túnel, donde en caso de existir alguna incidencia, como un incendio, se pudieran refugiar los usuarios. Dicho módulo integra toda la mecánica y electrónica necesaria para servir como vía de fuga y como refugio temporal en caso de necesidad para los usuarios del túnel que pudieran quedar atrapados en su interior.
La estructura de los módulos bypass es un producto "llave en mano" desde el punto de vista de fabricación, e instalación ya que se transporta hasta las galerías, completamente montado y cableado. Así, una vez colocado y habiéndole proporcionado alimentación eléctrica y conexión a la red de datos del túnel, el módulo está completamente operativo. Esto reduce enormemente los costes y tiempos de montaje y fabricación a la vez que los módulos bypass están provistos de un alto grado de seguridad .
ANTECEDENTES DE LA INVENCIÓN
Las principales normas y directivas en materia de seguridad para túneles, imponen en determinados casos la
presencia de galerías peatonales y/o practicables entre los dos tubos de un túnel con una distancia entre ellos máxima igual a 300 metros.
Las galerías entre los dos tubos garantizan una vía de escape al exterior y la posibilidad si está correctamente dimensionado, de construir un refugio temporal para la seguridad de las personas en el caso de ocurrir un incendio u otro tipo de incidencia en el interior del túnel.
Dicho tipo de galerías en algunos casos disponen de espacios cerrados donde en caso de una eventualidad, los usuarios que quedasen atrapados en el interior del túnel, podrían refugiarse temporalmente a la espera de ser evacuados. Dichos espacios, hasta la fecha, se construyen por fases en la propia galería. Es decir, se emplean profesionales de diferentes gremios que van construyendo las diferentes partes de la estructura y que posteriormente van incorporando la electrónica necesaria en cada caso.
Es obvio que la construcción de este tipo de estructuras in situ, en el propio túnel, es más costosa económicamente ya que involucra a profesionales de diversos campos en su construcción y además es más costosa en términos de tiempo ya que no todos los profesionales pueden trabajar a la vez sino que algunos deben esperar a que otros hayan terminado para poder intervenir en la estructura. La presente invención, al tratarse de un producto "llave en mano", reduce los costes asociados a su montaje y fabricación solucionando los problemas anteriormente expuestos. Concretamente la presente invención se transporta hasta su lugar de instalación completamente montada y cableada, de manera que colocando el módulo en su lugar y realizando las
pertinentes conexiones de alimentación y datos la presente invención está completamente operativa.
DESCRIPCIÓN DE LA INVENCIÓN
Para lograr los objetivos y evitar los inconvenientes indicados anteriormente, la presente invención consiste en un módulo bypass y una estructura de refugio para galerías peatonales que conectan tubos de túneles .
Un primer objeto de la presente invención es un módulo bypass para ser instalado en una galería peatonal que conecta dos tubos de un túnel. El módulo presenta una cara externa orientada hacia los tubos del túnel y una cara interna orientada en oposición a la cara externa y hacia el interior del espacio de seguridad que crea la presente invención. El módulo está prefabricado y precableado por lo que su instalación es prácticamente inmediata, así una vez colocado en su posición dentro de la galería únicamente se hace necesario sellarlo y conectarlo a la red eléctrica y de datos del propio túnel para que la presente invención esté completamente operativa. Además, presenta una forma de caja perfilada que ajusta con la forma de la galería donde se coloca. Así el módulo bypass al menos comprende:
- medios de conexión con una subestación eléctrica del túnel situada en el exterior de dicho túnel;
- al menos una línea bidireccional de comunicación de datos ;
- medios de conexión eléctrica secundarios;
- medios de conexión con una red de datos del túnel;
- al menos una puerta de acceso resistente al fuego;
- un sistema de ventilación que comprende al menos un canal de ventilación que comunica la cara externa y
la cara interna del módulo y un ventilador axial situado en el interior del canal de ventilación; y, - un panel aislante resistente al fuego en la cara externa del módulo.
En una realización particular, el módulo bypass está dividido en una sección superior y una sección inferior que se unen entre si compacta y solidariamente mediante un chasis realizado con perfiles metálicos.
En otra realización particular, el módulo bypass comprende un sistema de comunicaciones de emergencia, un sistema de difusión de sonido y audio de circuito cerrado, un sistema de sensores y un sistema de videocontrol .
En otra realización particular, el canal de ventilación del módulo bypass comprende en su interior una válvula cortafuegos dispuesta entre la cara interna del módulo y el ventilador axial.
En otra realización particular, el espacio que queda entre el perfil del módulo y la pared de la galería se sella mediante un material resistente al fuego.
En otra realización particular, el módulo bypass comprende un espacio preparado para alojar al menos:
- un cuadro eléctrico que está dividido en una sección de llegada que al menos integra unos medios de conexión con una línea de alimentación preferente proveniente de la subestación eléctrica externa del túnel y una línea de alimentación de reserva, y una sección de alimentación que comprende medios para alimentar a los componentes eléctricos y electrónicos del módulo bypass; y,
- un cuadro rack que comprende una sección de alimentación ininterrumpida donde se integra el sistema de alimentación interrumpida y una sección de comunicaciones .
No obstante, también se ha previsto que tanto el cuadro rack como el cuadro eléctrico compartan el mismo espacio, integrándose todos los elementos que conforman ambos cuadros en un mismo espacio físico, es decir, todos los elementos se integrarían en el mismo cuadro.
En una realización más particular, este espacio para alojar el cuadro eléctrico y el cuadro rack se dispone en la sección inferior del módulo y más concretamente entre las dos puertas de acceso.
A su vez, el cuadro eléctrico comprende una unidad
PLC encargada de la gestión del módulo bypass, estando conectada la unidad PLC a la red de datos del túnel a través de un nudo de red comprendido en el interior del cuadro rack. Dicha unidad PLC gestiona los datos recibidos de los sistemas instalados en el interior del cuadro eléctrico y los datos procedentes de unos sensores ambientales situados en el módulo.
En otra realización particular, la sección de comunicaciones del cuadro rack del módulo bypass al menos comprende :
- un panel de empalme del cuadro rack con unas fibras ópticas de la red de datos del túnel;
- un panel de empalme para unos cables de cobre que conectan el cuadro rack con el sistema de comunicaciones de emergencia, los sistemas de difusión de audio y video de circuito cerrado, la unidad PLC y el sistema de videocontrol ; y,
- un conmutador Ethernet.
En una realización más particular, el conmutador Ethernet es de tipo industrial y es apto para funcionar en condiciones operativas de temperatura y humedad extremas .
En otra realización particular, dentro del canal de ventilación del sistema de ventilación del módulo bypass se integran al menos: un ventilador axial unidireccional con alimentación preferentemente trifásica, aunque también podría ser monofásica, y que comprende una rejilla en la cara interna del conducto de ventilación, una compuerta cortafuegos circular motorizada que se conecta al ventilador, una compuerta antirretorno y un presostato diferencial.
En otra realización particular, el sistema de comunicaciones de emergencia del módulo bypass al menos comprende una interfaz de llamada con un pulsante de emergencia sanitaria y un pulsante de emergencia mecánica, al menos un micrófono para la comunicación con un operador remoto y al menos un altavoz para la comunicación con el operador remoto. También se ha previsto que el sistema de comunicaciones disponga de un doble pulsante para emergencias sanitarias y mecánicas.
En otra realización particular, el sistema de difusión de sonido y audio a circuito cerrado al menos comprende un sistema de difusión de sonido con interfaz puerta de enlace IP y un sistema de difusión de video con codificador Ethernet e interfaz de usuario sobre pantalla industrial. Todos los elementos que conforman el sistema de difusión de audio y video se conectan a la red de datos del túnel a través del conmutador Ethernet.
En otra realización particular, el sistema de sensores del módulo bypass comprende sensores de presión, sensores de temperatura y opacímetros. En otra realización más particular el sistema de sensores además comprende al menos un sensor analógico de detección de humos situado en la cara externa del módulo. Los sensores se conectan a una central de alarmas integrada en el
cuadro eléctrico. Tambe se conectan los sensores a la unidad PLC que gestiona la información proveniente de ellos .
En otra realización particular, el sistema de videocontrol comprende al menos una cámara de vigilancia fija de tipo IP conectada al conmutador Ethernet.
Un segundo objeto de la presente invención es una estructura de refugio para galerías peatonales que conectan dos tubos de un túnel. Dicha estructura comprende la instalación de dos módulos bypass peatonales gemelos en ambos extremos de la galería peatonal con las caras interiores de ambos módulos bypass enfrentadas. Así se crea un espacio sellado entre ambos módulos para su uso como refugio por parte de los usuarios que puedan requerir su uso en el caso de una incidencia en un túnel como un incendio. La al menos una línea bidireccional de comunicación de datos se conecta entre los dos módulos bypass gemelos y los medios de conexión eléctrica secundarios se conectan entre los dos módulos bypass gemelos de manera que en caso de necesidad ambos módulos pueden proporcionarse alimentación eléctrica mutuamente y pueden intercambiar datos. Así se garantiza que en caso de fallo de alimentación en uno de los módulos el módulo gemelo se la suministrará a través de los medios de conexión eléctrica secundarios. Además se ha previsto que en una realización más particular de la invención, en caso de que falle por ejemplo la unidad PLC de uno de los módulos, la unidad PLC del módulo gemelo puede tomar el control de ambos módulos bypass a través de la línea bidireccional de comunicación de datos. Así la línea bidireccional de comunicación de datos se realiza con un cable precableado múltiple pudiendo disponer de conectores para la conexión con el módulo gemelo.
En una realización particular, la linea bidireccional de datos es una linea de datos Ethernet de 100Mbps realizada con cable de par trenzado.
BREVE DESCRIPCIÓN DE LAS FIGURAS
Figura 1.- Muestra una vista en perspectiva de un ejemplo de realización de un módulo bypass visto desde su cara externa.
Figura 2.- Muestra una vista en perspectiva de un ejemplo de realización de un módulo bypass visto desde su cara interna.
Figura 3.- Muestra un ejemplo de realización del cuadro eléctrico y cuadro eléctrico que integra el módulo bypass objeto de la presente invención.
Figura 4.- Muestra un ejemplo de realización de una estructura en la que se han dispuesto dos módulos bypass en el interior de una galería de un túnel, con sus caras internas enfrentadas creando un espacio de seguridad en su interior, aislado de los vasos de los túneles.
DESCRIPCIÓN DE VARIOS EJEMPLOS DE REALIZACIÓN DE LA
INVENCIÓN
Seguidamente se realizan, con carácter ilustrativo y no limitativo, una descripción de varios ejemplos de realización de la invención, haciendo referencia a la numeración adoptada en las figuras.
La figura 1 muestra un ejemplo de realización de la cara externa de un módulo bypass (1) . El módulo bypass (1) está fabricado con una estructura prefabricada en forma de caja perfilada que se ajusta en cada caso a las dimensiones de la galería en la que va a ser instalado.
Esta estructura prefabricada está compuesta principalmente por una sección inferior (2)
aproximadamente rectangular donde se alojan las puertas de acceso (4) y los aparatos eléctricos y electrónicos del módulo bypass (1) y una sección superior (3) semicilindrica apoyada sobre la primera con la misma profundidad que la sección inferior (2) y que aloja el ventilador axial para la introducción o evacuación de aire del interior del espacio creado por los módulos bypass (1) . El ventilador se aloja dentro del canal de ventilación (7) que atraviesa transversalmente la sección superior (3) del módulo bypass (1) conectando sus caras interna y externa. Además, el conducto de ventilación (7) dispone de una compuerta cortafuegos (8) en proximidad a la cara exterior del módulo (1) que en su posición de cierre presenta una cara externa fabricada en material resistente al fuego.
Las secciones superior (3) e inferior (2) se fijan de forma compacta y solidaria la una a la otra mediante un chasis metálico (5) realizado con perfiles de acero.
Generalmente, aunque dependiendo de las directivas en materia de seguridad de cada país, estas galerías tienen un radio aproximado de 170 cm, lo que resulta en módulos bypass (1) de 340 cm de dímetro del círculo sección .
Dado que las galerías no son un cilindro completo, el módulo bypass (1) tiene una altura de aproximadamente 320 cm y una profundidad de unos 110cm.
La pared externa, entendiéndose por externa la que da a los tubos del túnel una vez el módulo se ha instalado, de los módulos (1) está cubierta de un panel (6) fabricado en un material que garantiza una resistencia al fuego de clase REI120. Téngase en cuanta que la clasificación de resistencia frente al fuego dependerá de cada país, significando en este caso "R"
estabilidad, el elemento mantiene su resistencia mecánica, "E" hermeticidad, capacidad de no dejar entrar ni generar llamas o humo, e "I" aislamiento térmico, capacidad de no transmitir calor hasta los 180 °C por su 5 lado frío, y siendo "120" la cantidad de minutos durante los que garantiza el cumplimiento de lo anteriormente descrito. No obstante se pueden emplear distintos materiales en la fabricación del módulo que garanticen diferentes grados de resistencia al fuego dependiendo de
10 las necesidades.
Además el módulo (1) presenta dos puertas (4) para peatones, que también están fabricadas en un material que garantiza la resistencia al fuego de clase REI120, que en una realización particular tienen unas dimensiones de
15 215x90 cm. Se ha previsto en esta realización particular que una de las puertas (4) sea de entrada al espacio de seguridad creado por el módulo bypass (1) y la otra sea de salida, de manera que los usuarios puedan salir y entrar de manera simultanea sin que se produzcan atascos
20 o aglomeraciones.
La figura 2 muestra una vista de la cara interna del módulo bypass (1) . Esta cara interna es la que queda dentro del espacio de seguridad creado por el módulo bypass (1) y que será accesible a los usuarios que se
25 refugien en él.
En el hueco (9) existente entre ambas puertas se dispone un espacio para alojar los aparatos eléctricos y electrónicos necesarios para el funcionamiento del módulo bypass (1) . Dicho espacio comprende una puerta en la cara
30 interna del módulo (no mostrada) a través de la que un usuario puede acceder a su interior para su mantenimiento .
El módulo dispone de un cuadro eléctrico (1) integrado y de un cableado interno que conecta dicho cuadro eléctrico (11), a través de unas salidas eléctricas, con distintos sistemas eléctricos y/o electrónicos que también se integran en el módulo bypass (1) . Entre estos sistemas están el sistema de iluminación compuesto por un par de lámparas LED (10), el de ventilación, el de televisión de circuito cerrado, el de difusión de sonido/video, etc.
El hueco (9) existente entre ambas puertas para alojar los aparatos eléctricos y electrónicos está compuesto de dos cuadros: un cuadro eléctrico (11) que recibe las lineas de alimentación principales (linea principal proveniente de la subestación eléctrica y linea de reserva o secundaria proveniente del módulo gemelo) y alimenta al resto de componentes eléctricos y electrónicos del módulo bypass (1), y un cuadro rack (12) que contiene los aparatos electrónicos y de comunicaciones .
La sección semicilindrica superior (3) del módulo está dividida en tres subsecciones de modo que la subsección central (13) está destinada a la instalación y canalización del ventilador axial (no mostrado) situado entre la compuerta cortafuegos (8) y compuerta antirretorno (14) y las subsecciones laterales (15) destinadas a alojar los sistemas de control ambiental (sensores de controla ambiental como pueden ser sensores de presión, temperatura y opacimetros ) , y de difusión de sonido e iluminación junto con su cableado correspondiente.
La figura 3 muestra un ejemplo de realización de los componentes que se integran en el hueco (9) para alojar los aparatos eléctricos y electrónicos:
El cuadro eléctrico (11) : está divido a su vez en dos secciones, una sección de llegada (16) de la alimentación encargada de la alimentación al sistema de alimentación ininterrumpida (21) (SAI) integrado, y una sección de seguridad (17) encargada de alimentar al resto de elementos y sistemas que componen el módulo bypass (1) . La sección de llegada (16) del cuadro eléctrico (11) está caracterizada por las dos lineas de entrada, la principal (18) desde la subestación eléctrica externa y la de reserva (19) desde el módulo gemelo. El uso de una u otra linea de entrada como fuente de alimentación está gestionado por un PLC (20) que haciendo uso de unos elementos de intercambio eléctrico (interacciones de relés de mínimo voltaje, bobinas de retención y contactores) decide emplear una línea de alimentación u otra en cada momento. Por su parte la sección de seguridad (17) recibe la alimentación desde la sección de llegada (16) y la distribuye entre los diferentes sistemas y elementos que conforman el módulo bypass. Entre ellos están: el sistema de iluminación (10), el sistema de ventilación, un conmutador Ethernet (22), un sistema de comunicaciones de emergencia, el PLC (20), el sistema de videocontrol , el sistema de difusión de sonido, el sistema de difusión de video, la central de detección de incendios, los sensores de presión, volumétrico y el termostato ambiental y los contactos de detección del extintor (31) . En una realización particular el PLC (20) es de tipo industrial con un interfaz Ethernet conectada directamente a la red de área local (LAN) del túnel a través de un nudo de red del cuadro rack (12) . El PLC (20) recoge todos los datos de interés del cuadro eléctrico (11) (desenganche de interruptores, comando a los contadores, estado de los
selectores, lectura de los amperajes, etc.) asi como de los sensores ambientales del modulo bypass (1) (detector de flujo, posición del cierre cortafuego (8), presostato diferencial, sensores de detección de incendio ambiental (29), etc.) y realiza la gestión del módulo bypass (1) y, en caso de haber dos módulos conectados a través de la linea de datos bidireccional , permite la gestión de los dos módulos bypass.
El cuadro rack (12) : en su interior se alojan los aparatos del sistema de alimentación ininterrumpida (21) y la sección de comunicaciones (23) . El SAI (21) es un sistema de alimentación de 5kVA en ejecución de rack y está equipado con dos paquetes de baterías. La sección de comunicaciones (23) está formada por: un panel de empalme de las fibras ópticas que forman la LAN Ethernet (conexión de datos) de interconexión del interior del túnel, un panel de empalme para los cables de cobre de la LAN (red de datos interna) de cada módulo bypass (LAN que conecta los sistemas de comunicaciones de emergencia, sistemas de audio video sobre Ethernet, PLC (20), circuito cerrado de TV y conmutador Ethernet (22) (nudo local) . El conmutador Ethernet (22) instalado en el interior del cuadro rack (12) es de tipo industrial apto para funcionar en condiciones operativas extremas (rangos de temperaturas y humedad extendidos, enfriamiento por disipación sin la presencia de ventiladores que garantizan el perfecto funcionamiento de la máquina frente a los problemas causados de polvo y humedad) .
Además el conmutador Ethernet (22) dispone de las correspondientes puertas para su conexión a la fibra óptica multimodal y cobre (usuarios LAN secundarios) de la LAN del interior del túnel e integra los protocolos necesarios de gestión de dicha red de datos.
Cada módulo bypass (2) dispone de dos conexiones con el exterior, una primera conexión que comprende una linea de alimentación principal (18) preferentemente monofásica, aunque también podría ser trifásica, proveniente de la subestación eléctrica externa situada en el exterior del túnel, estando dicha línea realizada en cable resistente al fuego y una segunda conexión que comprende una línea de datos de comunicación (24) en fibra óptica y donde el módulo bypass (1) representa un nudo intermedio. La línea de alimentación principal (18) alimenta el cuadro eléctrico (11) y la línea de comunicaciones (24) emplea como interfaz el conmutador Ethernet (22) del cuadro rack (12) .
Por su parte el sistema de ventilación de los módulos bypass (1) está compuesta de los siguientes elementos :
- un ventilador con rejilla axial unidireccional con alimentación y con rejilla de protección situada en el interior de un conducto de ventilación (7) que conecta las caras interna y externa del módulo. El ventilador y la rejilla (no mostrados en las figuras) se encuentran situados entre la compuerta cortafuegos (8) y la compuerta antirretorno (14);
una compuerta cortafuegos (8) circular monitorizada unida al ventilador a través de la correspondiente conexión eléctrica;
- una compuerta antirretorno (14);
- un detector de flujo (no mostrado); y,
- un presostato diferencial.
Todos estos elementos están instalados en el interior del conducto de ventilación (7) .
En cuanto al sistema de comunicaciones de emergencia que incorpora el módulo bypass (1), dicha comunicación se
realiza mediante un interfaz de usuario estándar que comprende :
- Una interfaz de llamada con doble pulsante (25) (un pulsador para emergencias sanitarias y otro para emergencias mecánicas; y,
- micrófonos y altavoces (26) para la comunicación con el operador remoto.
La electrónica asociada al sistema de comunicaciones de emergencias es del tipo Ethernet VoIP directamente interconectada a la red LAN de datos del túnel a través del conmutador (22) del interior del cuadro rack (12) . La interfaz de comunicaciones esta directamente cableada sobre el panel de cierre del cuadro eléctrico (11) del módulo .
Además la presente invención ha previsto la incorporación de un sistema de difusión de sonido y video de circuito cerrado. Dicho sistema, cumpliendo con la normativa vigente, dispone de canales independientes para la retransmisión de mensajes pre-registrados y además permite la comunicación entre el usuario y el operador remoto. El sistema de difusión comprende los siguientes elementos :
un sistema de difusión del sonido (27) con interfaz Gateway IP; y,
- un sistema de difusión de video (28) con codificador Ethernet e interfaz de usuario sobre pantalla industrial .
Los elementos que conforman el sistema de difusión están directamente conectados a la red de datos del túnel a través del conmutador (22) del módulo bypass (1) . Además la posición de las interfaces de video y sonido en el módulo (1) garantizan la máxima accesibilidad al usuario .
Realizaciones particulares de la invención podría incorporar un sistema de sensores, compuesto principalmente por un sensor de detección de incendio (29) situado en el interior del espacio entre los dos módulos bypass que a su vez integra un opacímetro. También podría incluir sensores de temperatura del interior y exterior del espacio de seguridad, de presencia (33) que detectan la entrada o salida de usuario al espacio de seguridad y de un sensor de extintor (31) que detecta la presencia o ausencia del mismo. El detector de incendios (29) es un sensor analógico de detección de humos conectado a una central de alarma situada en el interior de la sección superior (3) del módulo y directamente cableado al PLC (22) del cuadro eléctrico (11) .
El sistema de vigilancia por video comprende al menos una cámara fija (30) a color de tipo IP. Dicha cámara (30) se conecta al conmutador (22) del módulo bypass (1) con direccionamiento IP estático en el interior de la red de datos LAN del túnel resultando así accesible desde cualquier punto de entrada de la red LAN o de cualquier otro aparato con conexión a redes IP del modulo bypass (1) . La existencia de una cámara (30) de seguridad por cada módulo bypass (1) hace que habiendo dos módulos enfrentados se garantice la redundancia del sistema en caso de que falle el sistema de vigilancia de alguno de los módulos. Cada una de estas cámaras (30) abarca el espacio total dentro del espacio de seguridad existente .
También se ha previsto la existencia de reflectores
(32) situados en la cara interna del módulo bypass (1) que se alinean con los reflectores (32) del módulo bypass (1) situado enfrente, para el funcionamiento del
opacimetro. Todos los sensores del módulo bypass se conectan directamente al conmutador (22) que envía señales de alarma a través de la red de datos del túnel al exterior.
La figura 4 muestra un ejemplo de realización en el que un par de módulos bypass gemelos (1) se han colocado en el interior de una galería (34) que conecta dos tubos (35) independientes de un túnel. La presente invención se ha previsto preferentemente para su colocación en túneles de vías rodadas aunque no se restringe exclusivamente a ellos, pudiendo colocarse en cualquier otro tipo de túnel. Los módulos (1) se han dispuesto de tal manera que las caras internas (36) de ambos se encuentran enfrentadas creando un espacio (37) entre ambas aislado del resto del túnel. Así en caso de incendio en uno de los tubos (35) del túnel, los usuarios podrían refugiarse en su interior a la espera de ser evacuados o bien escapar por el otro tubo (35) a través de los citados módulos bypass (1) .
Una vez instalados los módulos bypass (1) a la distancia que corresponda en cada caso, la cámara de aire que queda en el interior la estructura que conforman ambos módulos se sella mediante el relleno del espacio existente entre las estructuras prefabricadas de los módulos (1) y las paredes y suelo de la galería (34) con un material ignífugo que al igual que las puertas (4) y la cara externa (38) del módulo (1) garantizarán una resistencia al fuego de clase REI120.
Cuando se empleen dos módulos bypass (1) para cerrar un espacio (37) donde los usuarios puedan refugiarse, la distancia a la que se sitúan el uno del otro debe ser la mínima necesaria para garantizar que quepa la cantidad de gente que estipule la normativa de seguridad en cada
caso, pudiendo ser por ejemplo la mínima para contener a 50 personas durante un tiempo mínimo de 30 minutos.
Cada módulo bypass (1) comprende una entrada preferentemente monofásica aunque también podría ser trifásica, de alimentación eléctrica (18) directamente conectada a una subestación eléctrica exterior (no mostrada) mediante una línea eléctrica realizada en cable resistente al fuego y de un punto de conexión (36) sobre la línea eléctrica interna del túnel. Dispondrá también de una conexión (24) a la red de datos LAN interna del túnel, conectada directamente al conmutador (22) de cada módulo ( 1 ) .
Los módulos (1) también dispone de una línea de interconexión múltiple (39) que comprenderá al menos: una línea de alimentación (19), compuesta a su vez por una línea de alimentación en cada dirección, es decir una línea para alimentar el primer módulo desde el segundo módulo y una línea para alimentar el segundo módulo desde el primer módulo; y una línea de datos bidireccional que se conecta con el módulo bypass gemelo, de manera que en instalaciones de estructuras de seguridad en las que se hace uso de dos módulos bypass enfrentados, ambos módulos pueden intercambiar energía e información si fuese necesario. La longitud de la línea de interconexión múltiple (39) dependerá de la distancia a la que se dispongan los módulos bypass (1) . Además en una realización preferente, la línea de datos bidireccional será una línea de datos Ethernet de 100 Mbps realizada con cable de par trenzado.
En el interior del cuadro rack (12) está instalado un sistema de alimentación ininterrumpida en ejecución de rack 19'' con su respectivo paquete de baterías. La potencia de un único sistema de alimentación
ininterrumpida (21) permite alimentar si fuese necesario a los dos módulos bypass (1) y a uno de los dos ventiladores, independientemente de que el ventilador pertenezca a uno u otro módulo: estas condiciones operativas son las de mayor consumo posible ya que no esta previsto el funcionamiento simultaneo de los dos ventiladores .
La existencia de un sistema de alimentación ininterrumpida (21) en cada módulo bypass (1) y la presencia de una linea de interconexión múltiple (39) bidireccional para la alimentación de emergencia y el intercambio de datos garantizan la continuidad del funcionamiento de la estructura formada por los dos módulos en escenas de averias como las siguientes:
- Interrupción de una de las lineas de alimentación
(18) de la subestación eléctrica;
- Averia del sistema de alimentación ininterrumpida (21) de uno de los módulos; y,
- Contemporaneidad de los casos precedentes con modo de gestión automático diversificado, de manera que se alterna el uso de los SAI de ambos módulos y el uso de la alimentación proveniente de la estación eléctrica externa durante tiempos previamente programados.
Además la linea de interconexión bidireccional (39) entre los dos módulos (1) permite la coexistencia de dos sistemas de comunicaciones de emergencias independientes en un mismo espacio.
La interfaz de los conmutadores (22) garantiza además la gestión y el control del conjunto de los dos módulos con el mayor grado de redundancia y tolerancia a las averias posibles dado que por cada módulo hay un nudo de conexión con la red de datos del túnel y que desde
cada uno de los módulos es posible conectarse a través de ambos nudos.
En caso de fallo de la unidad PLC (20) de uno de los módulos bypass, la unidad PLC (20) del otro módulo podría asumir el control de la gestión de ambos módulos.
El conjunto de los dos sistemas de alimentación ininterrumpida, uno por cada módulo bypass, garantiza una autonomía de 30 minutos sobre la carga nominal declarada. No obstante se ha previsto el uso de una mayor cantidad de baterías que le de una autonomía superior a 60 minutos .
En un ejemplo practico del funcionamiento de los módulos bypass, en caso de que se detectara un incendio en la galería A o al detectar la apertura de la puerta de entrada al módulo A, se activa la unidad de ventilación del módulo B que permite el presurizado del espacio bypass con aire limpio de humos del túnel B. La activación de la unidad de ventilación del módulo B activa la apertura del cierre cortafuegos mientras que el cierre cortafuegos del módulo A permanece cerrado para poder mantener la protección REI120 en la cara exterior del módulo A.
El presostato diferencial y el inverter del motor del ventilador confirman el funcionamiento de la unidad de ventilación del módulo B detectado el paso de aire y el presostato diferencial permite controlar la presión en el interior del espacio bypass para que siempre la presión permita abrir las puertas habiendo un valor de presión inferior a 20 Pa al tiempo que la presión interna garantiza la no introducción de humos.
Claims
1.- Módulo bypass para ser instalado en una galería peatonal que conecta dos tubos de un túnel, que presenta una cara externa orientada a los tubos del túnel y una cara interna orientada en oposición a la cara externa, caracterizado porque comprende estar prefabricado y precableado, presentando el módulo bypass una forma de caja perfilada que ajusta con la forma de la galería y comprendiendo el módulo bypass:
- medios de conexión con una subestación eléctrica externa del túnel;
- al menos una línea bidireccional de comunicación de datos ;
- medios de conexión eléctrica secundarios;
- medios de conexión con una red de datos del túnel;
- al menos una puerta de acceso resistente al fuego;
- un sistema de ventilación que comprende al menos un canal de ventilación que comunica la cara externa y la cara interna del módulo y un ventilador axial situado en el interior del canal de ventilación; y,
- un panel aislante del fuego en la cara externa del módulo .
2.- Módulo bypass, según la reivindicación 1, caracterizado porque está dividido en una sección superior y una sección inferior unidas entre sí compacta y solidariamente mediante un chasis realizado con perfiles metálicos.
3.- Módulo bypass, según la reivindicación 1 o 2, caracterizado porque comprende un sistema de comunicaciones de emergencia, un sistema de difusión de
sonido y audio de circuito cerrado, un sistema de sensores y un sistema de videocontrol .
4.- Módulo bypass, según una cualquiera de las reivindicaciones anteriores, caracterizado porque el canal de ventilación comprende en su interior una válvula cortafuegos dispuesta entre la cara interna del módulo y el ventilador axial.
5.- Módulo bypass, según una cualquiera de las reivindicaciones anteriores, caracterizado porque el espacio que queda entre el perfil del módulo y la pared de la galería se sella mediante un material resistente al fuego .
6. - Módulo bypass, según una cualquiera de las reivindicaciones anteriores, caracterizado porque comprende un espacio preparado para alojar al menos:
- un cuadro eléctrico que está dividido en una sección de llegada que al menos integra unos medios de conexión con una línea de alimentación preferente proveniente de la subestación eléctrica externa del túnel y una línea de alimentación de reserva, y una sección de alimentación que comprende medios para alimentar a los componentes eléctricos y electrónicos del módulo bypass; y,
un cuadro rack que comprende una sección de alimentación ininterrumpida donde de integra el sistema de alimentación interrumpida y una sección de comunicaciones .
7. - Módulo bypass, según la reivindicación 6, caracterizado porque el cuadro eléctrico comprende una unidad PLC encargada de la gestión del módulo bypass,
estando conectada la unidad PLC a la red de datos del túnel a través de un nudo de red comprendido en el interior del cuadro rack.
8.- Módulo bypass, según la reivindicación 7, caracterizado porque la unidad PLC gestiona unos datos recibidos de los sistemas instalados en el interior del cuadro eléctrico y unos datos procedentes de unos sensores ambientales situados en el módulo.
9.- Módulo bypass, según una cualquiera de las reivindicaciones anteriores, caracterizado porque la sección de comunicaciones del cuadro rack al menos comprende :
- un panel de empalme del cuadro rack von unas fibras ópticas de la red de datos del túnel;
- un panel de empalme para unos cables de cobre que conectan el cuadro rack con el sistema de comunicaciones de emergencia, los sistemas de difusión de audio y video de circuito cerrado, la unidad PLC y el sistema de videocontrol ; y,
- un conmutador Ethernet.
10.- Módulo bypass, según la reivindicación 9, caracterizado porque el conmutador Ethernet es de tipo industrial y es apto para funcionar en condiciones operativas de temperatura y humedad extremas.
11.- Módulo bypass, según una cualquiera de las reivindicaciones anteriores, caracterizado porque el sistema de ventilación comprende al menos:
• un ventilador axial unidireccional y que comprende una rejilla en la cara interna del conducto de ventilación;
• una compuerta cortafuegos circular motorizada que se conecta al ventilador;
• una compuerta antirretorno ;
• un detector de flujo; y,
• un presostato diferencial;
integrados en el interior del canal de ventilación del sistema de ventilación.
12. - Módulo bypass, según una cualquiera de las reivindicaciones anteriores, caracterizado porque el sistema de comunicaciones de emergencia al menos comprende :
• un interfaz de llamada con al menos un pulsante de emergencia sanitaria y de emergencia mecánica;
• al menos un micrófono para la comunicación con un operador remoto; y,
• al menos un altavoz para la comunicación con el operador remoto.
13. - Módulo bypass, según una cualquiera de las reivindicaciones anteriores, caracterizado porque el sistema de difusión de sonido y audio a circuito cerrado al menos comprende:
- un sistema de difusión de sonido con interfaz puerta de enlace IP; y,
un sistema de difusión de video con codificador Ethernet e interfaz de usuario sobre pantalla industrial,
estando conectados todos los elementos que conforman el sistema de difusión a la red de datos del túnel a través del conmutador Ethernet.
5 14- Módulo bypass, según una cualquiera de las reivindicaciones anteriores, caracterizado porque el sistema de sensores comprende al menos un sensor analógico de detección de humos situado en la cara externa del módulo y conectado a una central de alarma 10 integrada en el cuadro eléctrico, sensores de presión, sensores de temperatura y opacimetros, estando conectados los sensores y la central de alarmas a la unidad PLC .
15- Módulo bypass, según una cualquiera de las 15 reivindicaciones anteriores, caracterizado porque el sistema de videocontrol comprende al menos una cámara de vigilancia fija de tipo IP conectada al conmutador Ethernet .
20 16.- Estructura de refugio para galerías peatonales que conectan dos tubos de un túnel, según una cualquiera de las reivindicaciones anteriores, caracterizado porque comprende la instalación de dos módulos bypass peatonales gemelos en ambos extremos de la galería peatonal con las
25 caras interiores de ambos módulos bypass enfrentadas creando un espacio sellado entre ambos módulos para su uso como refugio.
17.- Estructura de refugio para galerías peatonales que 30 conectan dos tubos de un túnel, según la reivindicación 16, caracterizado porque la al menos una línea bidireccional de comunicación de datos y los medios de
conexión eléctrica secundarios se conectan entre los dos módulos bypass gemelos.
18.- Estructura de refugio, según la reivindicación 17, caracterizado porque la linea de datos bidireccionales se realiza con un cable precableado múltiple y dispone de conectores para la conexión con el módulo bypass gemelo.
19.- Estructura de refugio, según la reivindicación 17, caracterizado porque la linea de datos bidireccionales es una linea de datos Ethernet de 100Mbps realizada con cable de par trenzado.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/ES2012/070562 WO2014016443A1 (es) | 2012-07-24 | 2012-07-24 | Módulo bypass y estructura de refugio |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/ES2012/070562 WO2014016443A1 (es) | 2012-07-24 | 2012-07-24 | Módulo bypass y estructura de refugio |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014016443A1 true WO2014016443A1 (es) | 2014-01-30 |
Family
ID=49996638
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/ES2012/070562 WO2014016443A1 (es) | 2012-07-24 | 2012-07-24 | Módulo bypass y estructura de refugio |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2014016443A1 (es) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3181811A2 (en) | 2015-12-16 | 2017-06-21 | Eureka Pumps AS | A tunnel emergency life support system |
EP3366882A1 (de) * | 2017-02-27 | 2018-08-29 | Elkuch Bator AG | Einschubmodul zum versetzen in einer auskleidung eines verkehrstunnels |
AT520931B1 (de) * | 2018-07-02 | 2019-09-15 | Walter Nowotny | Vorrichtung zur Sicherung eines Fluchtbereiches |
CN112814026A (zh) * | 2020-12-31 | 2021-05-18 | 南京大地建设科技有限责任公司 | 一种装配式综合管廊隐藏式通风口结构 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2221451A1 (en) * | 2009-02-23 | 2010-08-25 | Paver Costruzioni S.p.A. | Structural module for building prefrabricated arch tunnels |
EP2336490A1 (en) * | 2009-12-17 | 2011-06-22 | Prometeoegineering.IT S.r.l. | Survival module for one-way double barrel tunnels |
-
2012
- 2012-07-24 WO PCT/ES2012/070562 patent/WO2014016443A1/es active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2221451A1 (en) * | 2009-02-23 | 2010-08-25 | Paver Costruzioni S.p.A. | Structural module for building prefrabricated arch tunnels |
EP2336490A1 (en) * | 2009-12-17 | 2011-06-22 | Prometeoegineering.IT S.r.l. | Survival module for one-way double barrel tunnels |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3181811A2 (en) | 2015-12-16 | 2017-06-21 | Eureka Pumps AS | A tunnel emergency life support system |
EP3366882A1 (de) * | 2017-02-27 | 2018-08-29 | Elkuch Bator AG | Einschubmodul zum versetzen in einer auskleidung eines verkehrstunnels |
CH713488A1 (de) * | 2017-02-27 | 2018-08-31 | Elkuch Bator Ag | Einschubmodul zum Versetzen in einen Tübbing eines Verkehrstunnels. |
AT520931B1 (de) * | 2018-07-02 | 2019-09-15 | Walter Nowotny | Vorrichtung zur Sicherung eines Fluchtbereiches |
AT520931A4 (de) * | 2018-07-02 | 2019-09-15 | Walter Nowotny | Vorrichtung zur Sicherung eines Fluchtbereiches |
CN112814026A (zh) * | 2020-12-31 | 2021-05-18 | 南京大地建设科技有限责任公司 | 一种装配式综合管廊隐藏式通风口结构 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11008754B2 (en) | Ceiling panel | |
WO2014016443A1 (es) | Módulo bypass y estructura de refugio | |
NL2009314C2 (en) | Linear led system. | |
CN107633640A (zh) | 消防联动控制系统 | |
ES2345466T3 (es) | Mejoras en la refrigeracion de un centro de datos. | |
US6632995B1 (en) | Control cabinet | |
ES2198939T3 (es) | Detector de incendios y sistema de alarma de incendios. | |
US20150077248A1 (en) | Smoke Detectors with Wireless Local Area Network Capabilities | |
US6789363B1 (en) | Security room for information technology facilities | |
CA2843496C (en) | Container fitted out as a technical infrastructure | |
JP2020529819A (ja) | 一体型電力変換及び系統連携システム | |
JP6764107B1 (ja) | 防音室 | |
KR101334322B1 (ko) | 수밀형 분배전반 | |
CN211790373U (zh) | 一种装配式配电房 | |
ES2382407T3 (es) | Dispositivo de protección para conductos de ventilación | |
CN215632583U (zh) | 一种应用于综合楼消防控制室的防火系统 | |
WO2022030735A1 (ko) | 관통부 충전용 센서를 이용한, 방화 구획별 개별 실시간 화재 감지가 가능한 빌딩 모니터링 시스템 | |
JP2022060305A (ja) | 消火設備の取付構造 | |
CN210041091U (zh) | 一种紧凑型光伏发电系统开关站 | |
KR101597890B1 (ko) | 수막형성 방화문틀 및 그 시공방법 | |
KR200431190Y1 (ko) | 방화용 댐퍼 | |
KR20150006204A (ko) | 수배전반 | |
CN210947227U (zh) | 一种楼层防火电气间 | |
CN221385028U (zh) | 一种消防栓防护箱 | |
TWI810006B (zh) | 組合式路燈 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12881777 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12881777 Country of ref document: EP Kind code of ref document: A1 |