WO2014016153A1 - Verfahren zur minimierung des spalts zwischen einem läufer und einem gehäuse - Google Patents
Verfahren zur minimierung des spalts zwischen einem läufer und einem gehäuse Download PDFInfo
- Publication number
- WO2014016153A1 WO2014016153A1 PCT/EP2013/064901 EP2013064901W WO2014016153A1 WO 2014016153 A1 WO2014016153 A1 WO 2014016153A1 EP 2013064901 W EP2013064901 W EP 2013064901W WO 2014016153 A1 WO2014016153 A1 WO 2014016153A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rotor
- housing
- turbine
- gap
- monitoring system
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 15
- 238000012544 monitoring process Methods 0.000 claims abstract description 14
- 238000001514 detection method Methods 0.000 claims description 11
- 238000006073 displacement reaction Methods 0.000 claims description 10
- 238000002485 combustion reaction Methods 0.000 description 5
- 239000012530 fluid Substances 0.000 description 4
- 239000000446 fuel Substances 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005494 tarnishing Methods 0.000 description 1
- 239000012720 thermal barrier coating Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/08—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
- F01D11/14—Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing
- F01D11/20—Actively adjusting tip-clearance
- F01D11/22—Actively adjusting tip-clearance by mechanically actuating the stator or rotor components, e.g. moving shroud sections relative to the rotor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/08—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
- F01D11/12—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part
- F01D11/122—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part with erodable or abradable material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/08—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
- F01D11/14—Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing
- F01D11/20—Actively adjusting tip-clearance
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/30—Control parameters, e.g. input parameters
- F05D2270/334—Vibration measurements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/40—Type of control system
- F05D2270/44—Type of control system active, predictive, or anticipative
Definitions
- the invention relates to methods for minimizing the gap between a rotor, in particular a rotor, and a housing, in particular a housing of a turbine, wherein the gap between the rotor and the housing is adjustable, in particular by displacement of rotor and housing against each other. It further relates to a turbine, in particular a gas turbine comprising a rotor, in particular a run ⁇ scoop, and a housing, wherein the gap between the rotor and housing by means of an adjusting device is adjustable, in particular by displacement of rotor and housing against each other.
- a turbine is a flow machine, which the internal energy (enthalpy) into a flowing fluid (liquid or gas) into rotational energy and, ultimately, into mechanical energy to drive ⁇ . Said fluid stream is withdrawn through the possibility ⁇ lichst irrotational laminar flow around the turbine blades, a part of its internal energy, which is transferred to the running blades of the turbine. About this the door ⁇ binenwelle is rotated then, the useful power is delivered to an implement coupled to the working machine, such as in egg ⁇ NEN generator. Blades and shaft are parts of the movable rotor or rotor of the turbine, which is arranged within a housing.
- Blades mounted on the axle are mounted on the axle. Blades mounted in a plane each form a paddle wheel or impeller. The blades are slightly curved profiled, similar to an aircraft wing.
- ⁇ wheel is usually a stator. These Leitschau ⁇ feln protrude from the housing into the flowing medium and put it in a twist.
- the swirl generated in the stator (kinetic energy) is used in the following impeller to set the shaft on which the impeller blades are mounted in rotation.
- the stator and the impeller together are called stages. Often several such stages are connected in series. Since the stator is stationary, its vanes can be mounted both on the inside of the housing and on the outside of the housing, and thus provide a bearing for the shaft of the impeller.
- a gap Between the guide blade ends of the rotor and the housing is usually a gap, which serves for example to compensate for the thermal expansion during operation.
- the gap between the blade end and the housing should be minimal, since fluid flows past the rotor blades through the gap and thus does not contribute to the generation of energy.
- Cleavage minimization are known from DE 39 10 319 C2, DE 39 01 167 A1 and EP 1 524 411 Bl. In particular, from the latter is known to determine the gap size with the help of the determination of electrical resistance coefficients in electrically conductive contact between rotor and housing.
- Output signal of the rotor and / or housing associated structure-borne sound monitoring system is used as a measure of the size of the gap and thus to set a minimum gap.
- the invention is based on the consideration that a particularly easy way to monitor the gap size by as little invasive, to be mounted in the outer regions Senso ⁇ ren would be possible.
- a simple signal that is generated when touching rotor and housing is the sound that propagates to ⁇ through solid such as a turbine housing.
- an acoustic detection of vibrations generated by blade ends colliding with the housing is made possible in the outer areas of the housing.
- a structure-borne sound monitoring system allows a particularly simple and technically uncomplicated control of any contact of blade ends and housing in a displacement of ⁇ housing and rotor against each other. This allows a precise setting of a minimum gap.
- a structure-borne noise monitoring system is part of a foreign body detection system of the turbine.
- Foreign object detection systems are often used in turbines to detect any penetrating foreign bodies or even splintering parts of the turbine itself at an early stage and to cause a shutdown of the turbine.
- Foreign body detection systems are based on acoustic Detek ⁇ tion. Therefore, it is advantageous to use the sound monitoring system of the foreign body detection system in the manner of a double-use also for setting a minimum gap.
- the rotor is displaced until no output signals generating contact is present. That is, the rotor is displaced until the turbine blade comes into contact with the housing.
- This contact is monitored by means of a structure-borne noise monitoring system and the travel is thereby limited.
- the runner is fixed after a possibly short backward displacement - just at the border to the contact.
- a turbine in particular gas turbine, comprising a rotor, particularly a rotor blade and a casing
- the gap between the rotor and housing is advantageously minimized with ⁇ means of the described method.
- a structure-borne noise monitoring system is associated with the rotor and / or housing in a turbine, which is connected on the output side with the actuator.
- the structure-borne noise monitoring system ⁇ advantageously part of a FremdMechdetek- tion system and / or the runners for setting the size of the gap is advantageously in an axial direction relative to the housing is displaceable.
- the rotor in particular at the ends of the blades at least partially wearable. This means that there are corresponding abrasion points which are designed for easy contact with the housing during the adjustment process. At the Abriebstel ⁇ len material may then be removed, but these are designed so that thereby no structural damage to the rotor, in particular the rotor blade arise. This allows the runner to be safely moved to the point of light signal-generating contact, which enables optimum gap adjustment.
- a power plant advantageously comprises a be ⁇ written turbine.
- the FIG shows a turbine 100, here a gas turbine, in egg ⁇ nem longitudinal section.
- the gas turbine 100 has a rotor 103 rotatably mounted about an axis of rotation 102 (axial direction), which is also referred to as a turbine rotor.
- a turbine rotor Along the rotor 103 follow one another an intake housing 104, a compressor 105, a toroidal combustion chamber 110, in particular annular combustion chamber 106, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109.
- the annular combustion chamber 106 communicates with an annular hot-gas passage 111, where, for example, form four hinte purely ⁇ other turbine stages 112 form the turbine 108.
- Each turbine stage 112 is formed from two blade or vane rings. Seen in the flow direction of a working medium 113, in the hot-gas passage 111 a row of guide vanes 115 formed from rotor blades 120 ⁇ series 125th
- the guide vanes 130 are fastened to the stator 143, whereas the rotor blades 120 of a row 125 are attached to the rotor 103 by means of a turbine disk 133.
- the run ⁇ blades 120 thus form components of the rotor or Läu ⁇ fers 103.
- Coupled to the rotor 103 is a generator or a working machine (not shown).
- air 135 is sucked by the compressor 105 through the intake housing and ver ⁇ seals.
- the 105 ⁇ be compressed air provided at the turbine end of the compressor is supplied to the burners 107, where it is mixed with a fuel.
- the mixture is then burned to form the working fluid 113 in the combustion chamber 110.
- the working medium 113 flows along the hot gas channel 111 past the guide vanes 130 and the rotor blades 120.
- the working medium 113 expands on the rotor blades 120 in a pulse-transmitting manner, so that the rotor blades 120 drive the rotor 103 and drive the machine connected to it ,
- the components exposed to the hot working medium 113 are subject to thermal loads during operation of the gas turbine 100.
- the guide vanes 130 and rotor blades 120 of the first turbine stage 112, viewed in the direction of flow of the working medium 113, are subjected to the greatest thermal stress in addition to the heat shield bricks lining the annular combustion chamber 106. In order to withstand the temperatures prevailing there, they are cooled by means of a coolant.
- the guide vane 130 has an inner housing 138 of the turbine 108 facing guide vane root (not Darge here provides ⁇ ) and a side opposite the guide-blade root vane root.
- the vane head faces the rotor 103 and fixed to a mounting ring 140 of the stator 143.
- the gas turbine 100 On the control side, the gas turbine 100 according to the FIG a not-shown foreign body detection system. This serves to detect foreign bodies entering the gas turbine 100 with the air 135 or foreign bodies torn open by damage in the turbine 100 and, if necessary, to cause the turbine 100 to be quickly shut down.
- the foreign body detection system comprises a structure-borne sound monitoring system, which is connected to a plurality of sensors to runner 103 and housing 138, the output signals with respect to the sound vibrations generated in the turbine 100.
- the rotor 103 is axially displaceable along the axis 102. Due to the conicity of the rotor tip of the rotor 103 and the housing 138 to each other is the gap d between the rotor 103, especially the running of the blade ⁇ , and housing 138 is reduced by a Axi ⁇ alverschiebung of the rotor 103 or the housing 138 or enlarged.
- the Axial ⁇ shift is hydraulic.
- vanes 120 When a first contact has been made, the vanes 120 are fixed or, if the contact is still too strong, they are shifted back until there is no more contact indicated by a corresponding output signal. Then a minimum gap d is set. This ⁇ A position of the minimum gap, during operation, ty- pisch expediently take place after complete heating of the turbine 100th
- the turbine blade 120 has an outer wear layer.
- the outer wear layer is, for example, porous and / or ceramic, so that even a small contact does not cause permanent damage.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Turbines (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
- Hydraulic Turbines (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/416,071 US20150152743A1 (en) | 2012-07-25 | 2013-07-15 | Method for minimizing the gap between a rotor and a housing |
CN201380037767.5A CN104471194B (zh) | 2012-07-25 | 2013-07-15 | 将转子与机匣之间的间隙最小化的方法 |
EP13739397.1A EP2864596A1 (de) | 2012-07-25 | 2013-07-15 | Verfahren zur minimierung des spalts zwischen einem läufer und einem gehäuse |
JP2015523489A JP2015524530A (ja) | 2012-07-25 | 2013-07-15 | ローターとケーシング間の空隙を最小にする方法およびタービン |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102012213016.0 | 2012-07-25 | ||
DE102012213016.0A DE102012213016A1 (de) | 2012-07-25 | 2012-07-25 | Verfahren zur Minimierung des Spalts zwischen einem Läufer und einem Gehäuse |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014016153A1 true WO2014016153A1 (de) | 2014-01-30 |
Family
ID=48808322
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2013/064901 WO2014016153A1 (de) | 2012-07-25 | 2013-07-15 | Verfahren zur minimierung des spalts zwischen einem läufer und einem gehäuse |
Country Status (6)
Country | Link |
---|---|
US (1) | US20150152743A1 (de) |
EP (1) | EP2864596A1 (de) |
JP (1) | JP2015524530A (de) |
CN (1) | CN104471194B (de) |
DE (1) | DE102012213016A1 (de) |
WO (1) | WO2014016153A1 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3540182A1 (de) | 2018-03-14 | 2019-09-18 | Siemens Aktiengesellschaft | Verfahren zur steuerung einer spaltminimierung einer gasturbine |
DE102018214752A1 (de) * | 2018-08-30 | 2020-03-05 | Siemens Aktiengesellschaft | Verfahren zum Betrieb einer Gasturbine |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2397656A1 (de) * | 2010-06-14 | 2011-12-21 | Siemens Aktiengesellschaft | Verfahren zur Einstellung der zwischen Schaufelblattspitzen von Laufschaufeln und einer Kanalwand vorhandenen Radialspalte sowie Vorrichtung zur Messung eines Radialspalts einer axial durchströmbaren Turbomaschine |
DE102014203318A1 (de) * | 2014-02-25 | 2015-08-27 | Siemens Aktiengesellschaft | Verfahren zum Betrieb einer Gasturbine bei aktiver hydraulischer Spalteinstellung |
US10544803B2 (en) * | 2017-04-17 | 2020-01-28 | General Electric Company | Method and system for cooling fluid distribution |
CN108956106B (zh) * | 2018-05-17 | 2020-06-30 | 中国航发湖南动力机械研究所 | 双转子涡轮试验件 |
DE102019109638B4 (de) | 2019-04-11 | 2021-11-18 | Rittal Gmbh & Co. Kg | Schaltschrankanordnung mit einem Schaltschrankrahmengestell und einem auf einer Montageplatte montierten mehrpoligen Berührungsschutzmodul |
CN110725722B (zh) * | 2019-08-27 | 2022-04-19 | 中国科学院工程热物理研究所 | 一种适用于叶轮机械的动叶叶顶间隙动态连续可调结构 |
CN114251130B (zh) * | 2021-12-22 | 2022-12-02 | 清华大学 | 一种用于控制叶顶泄漏流的鲁棒性转子结构和动力系统 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3901167A1 (de) | 1989-01-17 | 1990-07-26 | Klein Schanzlin & Becker Ag | Spaltminimierung |
DE4223495A1 (de) | 1992-07-17 | 1994-01-20 | Asea Brown Boveri | Gasturbine |
DE3910319C2 (de) | 1988-03-31 | 2000-02-17 | Gen Electric | Spaltregelung für ein Gasturbinentriebwerk |
WO2000028190A1 (de) | 1998-11-11 | 2000-05-18 | Siemens Aktiengesellschaft | Wellenlager für eine strömungsmaschine, strömungsmaschine sowie verfahren zum betrieb einer strömungsmaschine |
GB2396438A (en) * | 2002-12-20 | 2004-06-23 | Rolls Royce Plc | Tip clearance control system |
US20050079048A1 (en) * | 2003-10-13 | 2005-04-14 | Mirko Milazar | Method of minimizing the gap between a rotating turbine blade and a casing of a turbine, a turbine, and a method of determining the wear behavior of a wheel of a rotor |
US20050286995A1 (en) * | 2004-06-23 | 2005-12-29 | Tonghuo Shang | Method and system for determining gas turbine tip clearance |
WO2008060164A1 (en) * | 2006-11-17 | 2008-05-22 | Dynatrend As | A method and a device for detection of rubbing between a stator and a rotor of a turbo-machine |
US20090226302A1 (en) * | 2008-03-10 | 2009-09-10 | General Electric Company | Method and apparatus for determining clearance between moving and static members in a machine |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2042646B (en) * | 1979-02-20 | 1982-09-22 | Rolls Royce | Rotor blade tip clearance control for gas turbine engine |
US4335600A (en) * | 1980-11-13 | 1982-06-22 | General Electric Company | Detecting internal abnormalities in turbines |
DE3544822A1 (de) * | 1985-12-18 | 1987-06-19 | Gutehoffnungshuette Man | Verfahren zur pumpgrenzregelung von turbokomporessoren |
GB8707187D0 (en) * | 1987-03-25 | 1987-04-29 | Hughes Ltd Stewart | Monitoring of foreign object in engines |
US5056986A (en) * | 1989-11-22 | 1991-10-15 | Westinghouse Electric Corp. | Inner cylinder axial positioning system |
US5070722A (en) * | 1990-09-21 | 1991-12-10 | United Technologies Corporation | Turbine engine debris ingestion monitor |
US5206816A (en) * | 1991-01-30 | 1993-04-27 | Westinghouse Electric Corp. | System and method for monitoring synchronous blade vibration |
SE470218B (sv) * | 1992-04-01 | 1993-12-06 | Abb Carbon Ab | Förfarande och anordning för reglering av skoveltoppspel hos en roterande maskin |
US5704759A (en) * | 1996-10-21 | 1998-01-06 | Alliedsignal Inc. | Abrasive tip/abradable shroud system and method for gas turbine compressor clearance control |
US6499350B1 (en) * | 2000-04-04 | 2002-12-31 | Swantech, L.L.C. | Turbine engine foreign object damage detection system |
DE10117231A1 (de) * | 2001-04-06 | 2002-10-31 | Hodson Howard | Rotorspalt-Steuermodul |
DE50112597D1 (de) * | 2001-04-12 | 2007-07-19 | Siemens Ag | Gasturbine mit axial verschiebbaren Gehäuseteilen |
US6668655B2 (en) * | 2001-09-27 | 2003-12-30 | Siemens Westinghouse Power Corporation | Acoustic monitoring of foreign objects in combustion turbines during operation |
EP1557536A1 (de) * | 2004-01-22 | 2005-07-27 | Siemens Aktiengesellschaft | Strömungsmaschine mit einem axial verschiebbaren Rotor |
EP1617174A1 (de) * | 2004-07-12 | 2006-01-18 | Siemens Aktiengesellschaft | Bestimmung des Spaltmasses eines Radialspaltes |
DE102005048982A1 (de) * | 2005-10-13 | 2007-04-19 | Mtu Aero Engines Gmbh | Vorrichtung und Verfahren zum axialen Verschieben eines Turbinenrotors |
US7652489B2 (en) * | 2005-12-06 | 2010-01-26 | General Electric Company | Multi-range clearance measurement system and method of operation |
US8177476B2 (en) * | 2009-03-25 | 2012-05-15 | General Electric Company | Method and apparatus for clearance control |
US8186945B2 (en) * | 2009-05-26 | 2012-05-29 | General Electric Company | System and method for clearance control |
US9598972B2 (en) * | 2010-03-30 | 2017-03-21 | United Technologies Corporation | Abradable turbine air seal |
DE102010045851A1 (de) * | 2010-09-17 | 2012-03-22 | Mtu Aero Engines Gmbh | Kompensation unterschiedlicher Längsdehnungen von Gehäuse und Rotorwelle einer Turbomaschine |
-
2012
- 2012-07-25 DE DE102012213016.0A patent/DE102012213016A1/de not_active Ceased
-
2013
- 2013-07-15 WO PCT/EP2013/064901 patent/WO2014016153A1/de active Application Filing
- 2013-07-15 CN CN201380037767.5A patent/CN104471194B/zh not_active Expired - Fee Related
- 2013-07-15 US US14/416,071 patent/US20150152743A1/en not_active Abandoned
- 2013-07-15 JP JP2015523489A patent/JP2015524530A/ja active Pending
- 2013-07-15 EP EP13739397.1A patent/EP2864596A1/de not_active Withdrawn
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3910319C2 (de) | 1988-03-31 | 2000-02-17 | Gen Electric | Spaltregelung für ein Gasturbinentriebwerk |
DE3901167A1 (de) | 1989-01-17 | 1990-07-26 | Klein Schanzlin & Becker Ag | Spaltminimierung |
DE4223495A1 (de) | 1992-07-17 | 1994-01-20 | Asea Brown Boveri | Gasturbine |
WO2000028190A1 (de) | 1998-11-11 | 2000-05-18 | Siemens Aktiengesellschaft | Wellenlager für eine strömungsmaschine, strömungsmaschine sowie verfahren zum betrieb einer strömungsmaschine |
GB2396438A (en) * | 2002-12-20 | 2004-06-23 | Rolls Royce Plc | Tip clearance control system |
US20050079048A1 (en) * | 2003-10-13 | 2005-04-14 | Mirko Milazar | Method of minimizing the gap between a rotating turbine blade and a casing of a turbine, a turbine, and a method of determining the wear behavior of a wheel of a rotor |
EP1524411B1 (de) | 2003-10-13 | 2011-07-20 | Siemens Aktiengesellschaft | Turbine und Verfahren zur Minimierung des Spaltes zwischen einer Laufschaufel und einem Gehäuse einer Turbine |
US20050286995A1 (en) * | 2004-06-23 | 2005-12-29 | Tonghuo Shang | Method and system for determining gas turbine tip clearance |
WO2008060164A1 (en) * | 2006-11-17 | 2008-05-22 | Dynatrend As | A method and a device for detection of rubbing between a stator and a rotor of a turbo-machine |
US20090226302A1 (en) * | 2008-03-10 | 2009-09-10 | General Electric Company | Method and apparatus for determining clearance between moving and static members in a machine |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3540182A1 (de) | 2018-03-14 | 2019-09-18 | Siemens Aktiengesellschaft | Verfahren zur steuerung einer spaltminimierung einer gasturbine |
WO2019175091A1 (de) | 2018-03-14 | 2019-09-19 | Siemens Aktiengesellschaft | Verfahren zur steuerung einer spaltminimierung einer gasturbine |
US11060412B2 (en) | 2018-03-14 | 2021-07-13 | Siemens Energy Global GmbH & Co. KG | Method for controlling a gap minimization of a gas turbine |
DE102018214752A1 (de) * | 2018-08-30 | 2020-03-05 | Siemens Aktiengesellschaft | Verfahren zum Betrieb einer Gasturbine |
WO2020043541A1 (de) | 2018-08-30 | 2020-03-05 | Siemens Aktiengesellschaft | Verfahren zum betrieb einer gasturbine |
Also Published As
Publication number | Publication date |
---|---|
US20150152743A1 (en) | 2015-06-04 |
DE102012213016A1 (de) | 2014-01-30 |
JP2015524530A (ja) | 2015-08-24 |
CN104471194A (zh) | 2015-03-25 |
EP2864596A1 (de) | 2015-04-29 |
CN104471194B (zh) | 2016-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014016153A1 (de) | Verfahren zur minimierung des spalts zwischen einem läufer und einem gehäuse | |
EP1945911A1 (de) | Dampfturbine | |
EP2565391B1 (de) | Reinigunsvorrichtung einer Abgasturbine und zugehörige Abgasturbine, Nutzturbine und Abgasturbolader | |
EP3000984A1 (de) | Leitschaufelverstellvorrichtung einer gasturbine | |
EP3064706A1 (de) | Leitschaufelreihe für eine axial durchströmte Strömungsmaschine | |
EP1739283A2 (de) | Rotorspalt Steuervorrichtung für eine Turbomaschine | |
WO2007006680A2 (de) | HEIßGASFÜHRENDES GEHÄUSEELEMENT, WELLENSCHUTZMANTEL UND GASTURBINENANLAGE | |
EP2877702A1 (de) | Verfahren zur herstellung einer leitschaufel sowie leitschaufel | |
EP2492452A1 (de) | Verfahren zur Konstruktion einer Strömungsmaschine | |
EP2984295B1 (de) | Dichtringsegment für einen stator einer turbine | |
EP2236759A1 (de) | Laufschaufelsystem | |
EP3392463B1 (de) | Strömungsmaschine | |
EP3029269A1 (de) | Turbinenlaufschaufel, zugehöriger rotor und strömungsmaschine | |
WO2009109430A1 (de) | Dichtungsanordnung und gasturbine | |
WO2014206822A1 (de) | Turbine und verfahren zur anstreiferkennung | |
WO2009130262A1 (de) | Trägerring einer leitvorrichtung mit sperrluftkanal | |
EP3274561B1 (de) | Laufschaufel für eine gasturbine, herstellungsverfahren und nachbearbeitungsverfahren | |
EP3017147B1 (de) | Rotor für eine turbine | |
DE102004037955A1 (de) | Turbomaschine, insbesondere Gasturbine | |
EP2725203A1 (de) | Kühlluftführung in einer Gehäusestruktur einer Strömungsmaschine | |
EP1524411B1 (de) | Turbine und Verfahren zur Minimierung des Spaltes zwischen einer Laufschaufel und einem Gehäuse einer Turbine | |
DE102012023626A1 (de) | Hochdruck-Verdichter, insbesondere einer Gasturbine | |
WO2016087337A1 (de) | Verfahren zur herstellung eines schwingungsdämpfers für eine turbinenschaufel mittels lasergenerieren | |
EP3921577A1 (de) | Rohrbrennkammersystem und gasturbinenanlage mit einem solchen rohrbrennkammersystem | |
WO2020043541A1 (de) | Verfahren zum betrieb einer gasturbine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13739397 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
REEP | Request for entry into the european phase |
Ref document number: 2013739397 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013739397 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2015523489 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14416071 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |