WO2014013972A1 - Parking brake control device - Google Patents

Parking brake control device Download PDF

Info

Publication number
WO2014013972A1
WO2014013972A1 PCT/JP2013/069258 JP2013069258W WO2014013972A1 WO 2014013972 A1 WO2014013972 A1 WO 2014013972A1 JP 2013069258 W JP2013069258 W JP 2013069258W WO 2014013972 A1 WO2014013972 A1 WO 2014013972A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
value
gradient
abnormality
time
Prior art date
Application number
PCT/JP2013/069258
Other languages
French (fr)
Japanese (ja)
Inventor
雅敏 半澤
賢太郎 湯浅
崇裕 白木
Original Assignee
株式会社アドヴィックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドヴィックス filed Critical 株式会社アドヴィックス
Publication of WO2014013972A1 publication Critical patent/WO2014013972A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/14Actuating mechanisms for brakes; Means for initiating operation at a predetermined position
    • F16D65/16Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake
    • F16D65/18Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake adapted for drawing members together, e.g. for disc brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/58Combined or convertible systems
    • B60T13/585Combined or convertible systems comprising friction brakes and retarders
    • B60T13/586Combined or convertible systems comprising friction brakes and retarders the retarders being of the electric type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • B60T13/741Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive acting on an ultimate actuator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D55/00Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes
    • F16D55/02Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members
    • F16D55/22Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads
    • F16D55/224Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a common actuating member for the braking members
    • F16D55/225Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a common actuating member for the braking members the braking members being brake pads
    • F16D55/226Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a common actuating member for the braking members the braking members being brake pads in which the common actuating member is moved axially, e.g. floating caliper disc brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2121/00Type of actuator operation force
    • F16D2121/18Electric or magnetic
    • F16D2121/24Electric or magnetic using motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2125/00Components of actuators
    • F16D2125/18Mechanical mechanisms
    • F16D2125/20Mechanical mechanisms converting rotation to linear movement or vice versa
    • F16D2125/34Mechanical mechanisms converting rotation to linear movement or vice versa acting in the direction of the axis of rotation
    • F16D2125/40Screw-and-nut
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2125/00Components of actuators
    • F16D2125/18Mechanical mechanisms
    • F16D2125/44Mechanical mechanisms transmitting rotation
    • F16D2125/46Rotating members in mutual engagement
    • F16D2125/48Rotating members in mutual engagement with parallel stationary axes, e.g. spur gears

Definitions

  • the present invention relates to an EPB control device applied to a vehicle brake system having an electric parking brake (hereinafter referred to as EPB (Electric parking) brake).
  • EPB Electric parking brake
  • an EPB for a vehicle for example, when an abnormality such as cutting of a cable for driving the EPB occurs, the EPB cannot be operated, so that it is desired to be able to detect this immediately.
  • Patent Document 1 proposes a technique for determining an EPB abnormality by calculating a current change amount during EPB operation and comparing the current change amount with a predetermined threshold value indicating a normal range. Has been. Specifically, as shown in FIG. 27, when the motor current value is monitored and the current change amount is calculated, and the current change amount exceeds a normal threshold uniquely determined by the motor characteristics and the rigidity of the friction part, the cable It is detected that an abnormality such as motor lock due to disconnection has occurred.
  • Patent Document 2 proposes a technique for monitoring a motor current value during operation of an EPB and detecting an abnormality by comparing a threshold value indicating a normal range with an actual value.
  • Patent Document 1 can detect abnormalities that show a large change in current value, such as disconnection of a cable for driving an EPB and adhesion of an operating part of the EPB, but a current monitor amplifier circuit ( Hereinafter, it is impossible to detect an abnormality in which only a relatively small change in current value is caused to the extent that the performance or function is reduced, such as a gain abnormality in an amplifier). That is, only the occurrence of an abnormality that shows a large current value change can be detected. Then, abnormality determination is performed based on the current differential value that is the current change amount at each moment, and an abnormality that slightly deviates from the threshold value is not detected.
  • the region in which the determination can be performed as in Patent Document 1 is not limited to the operation region in which the motor current value is increasing.
  • the abnormality judgment is performed using the motor current value itself, and the abnormality is based on the maximum current (restraint current) when the motor is locked and the minimum current (no load current) when the motor is driven in a no-load state. Since only the determination is performed, it is possible to determine only an abnormality such as a malfunction indicating an abnormal value that is not possible originally, a disconnection or short circuit of the cable, or an adhesion of the working part of the EPB.
  • an object of the present invention is to provide an EPB control device that can detect an abnormality that shows only a relatively small current value change, such as an amplifier gain abnormality, and can take measures against the abnormality.
  • the reference value setting means changes the motor current value during the lock control for setting the reference value at the start of the lock control. It is divided into three areas: the inrush current, the no-load current that becomes a constant value after the inrush current, and the current rise that rises from the no-load current, and the descending slope of the motor current value at the inrush current Current descent norms that serve as reference values for motors, no-load current norms that serve as reference values for motor current values at no-load current, and current up-gradient norms that serve as reference values for motor current values that rise when current increases And are set.
  • the motor current value is decreased during the inrush current based on the motor current value during the lock control.
  • the current descending slope that becomes the gradient, the no-load current value that becomes the motor current value at the time of no-load current, and the current rising slope that becomes the increasing slope of the motor current value when the current rises are calculated.
  • a gain abnormality is determined by comparing the slope with the current descending slope norm, comparing the no-load current value with the no-load current norm, and comparing the current rising gradient with the current ascending norm.
  • the correction means (250) corrects the lock operation time which is the time during which the electric motor (10) is operated.
  • the norm setting means (115 to 125) at least the current rising gradient norm is memorized by executing the lock control at a normal time before the friction material (11) is worn. Or set as a constant at the time of design, and in the abnormality determination means (155 to 165), the current descending gradient is larger than the current descending gradient norm, the no-load current value is larger than the no-load current value norm, or , Gain abnormality due to current rising gradient larger than current rising gradient norm, current falling gradient smaller than current falling gradient norm, no load current value smaller than no load current norm, or current rising gradient current rising Whether the gain is abnormal due to being smaller than the gradient criterion can be determined.
  • the correction means (250) performs a correction to increase the lock operation time when the abnormality determination means (155 to 165) determines that the gain is abnormal due to a large value, and locks when it is determined that the gain is abnormal due to a small value. What is necessary is just to make correction
  • the norm setting means (115 to 125) stores at least the current rising gradient norm by executing lock control at the time of abnormality after the friction material (11) is worn. Or it can be set as a constant at the time of design.
  • the invention according to claim 4 further comprises display instruction means for displaying that a gain abnormality has occurred to the notification device (27) when the abnormality determination means (155 to 165) determines that a gain abnormality has occurred. It is characterized by having.
  • the driver may be informed that a gain abnormality has occurred through the notification device (27). Thereby, the driver can grasp that the gain abnormality has occurred, and can take measures such as repair of the amplifier.
  • the wear determination means (180) for determining the wear of the friction material (11) is provided, and the wear determination means (180) is a current set by the standard value setting means (125). Ascending slope norm is set to a value that takes into account variations due to wear of the friction material (11), and a current ascending slope norm with a value that does not take into account variations due to wear is set, and the abnormality determining means (155) determines that there is no gain abnormality. When it is determined, it is determined whether or not the gain is abnormal by comparing the current increasing gradient with a current increasing gradient standard that does not take into account variations due to wear. If it is determined that the gain is abnormal, the friction material (11) It is characterized in that it is determined that the wear of the material has occurred.
  • the driver can take measures such as replacing the friction material (11) by notifying the driver, for example.
  • the reference value setting means (125) includes the first current increase gradient reference and the second current increase gradient in at least two different periods (T1 ′, T2 ′) as the current increase gradient reference.
  • a standard is set, and the abnormality determination means (165) corresponds to each of the first and second current increase gradient standards when the current rises based on the motor current value during the lock control when the wheel is actually locked.
  • the first and second current rising gradients that are current rising gradients in the period (T1, T2) are calculated, and the first and second current rising gradients are compared with the first and second current rising gradient norms, respectively. By doing so, it is characterized by determining a gain abnormality.
  • abnormality detection at the time of current rise can be performed with at least two abnormality detection timings.
  • 1 is a schematic diagram showing an overall outline of a vehicle brake device according to a first embodiment of the present invention. It is a cross-sectional schematic diagram of the brake mechanism of the rear-wheel system with which a brake device for vehicles is equipped.
  • 6 is a timing chart showing changes in the monitor value of the motor current value during lock control in normal cases and when gain is abnormal due to an amplifier failure or the like. It is a whole flowchart of the parking brake control process concerning release operation
  • FIG. 1 is a schematic diagram showing an overall outline of a vehicle brake device according to the present embodiment.
  • FIG. 2 is a schematic sectional view of a rear-wheel brake mechanism provided in the vehicle brake device.
  • the vehicular brake device includes a service brake 1 that generates a service brake force based on a driver's stepping force and an EPB 2 that regulates the movement of the vehicle during parking.
  • the service brake 1 is a hydraulic brake mechanism that generates a brake hydraulic pressure based on depression of the brake pedal 3 by a driver and generates a service brake force based on the brake hydraulic pressure. Specifically, the service brake 1 boosts the pedaling force according to the depression of the brake pedal 3 by the driver with the booster 4, and then applies the brake fluid pressure according to the boosted pedaling force to the master cylinder (hereinafter referred to as the master cylinder). , M / C). Then, the brake fluid pressure is transmitted to a wheel cylinder (hereinafter referred to as W / C) 6 provided in the brake mechanism of each wheel, thereby generating a service brake force.
  • W / C wheel cylinder
  • an actuator 7 for controlling the brake fluid pressure is provided between the M / C 5 and the W / C 6, and various types for improving the safety of the vehicle by adjusting the service brake force generated by the service brake 1.
  • the structure is such that control (for example, anti-skid control) can be performed.
  • Various controls using the actuator 7 are executed by an ESC (Electronic Stability Control) -ECU 8 that controls the service brake force. For example, by outputting a control current for controlling various control valves (not shown) provided in the actuator 7 and a motor for driving the pump from the ESC-ECU 8, the hydraulic circuit provided in the actuator 7 is controlled, and the W / C 6 The W / C pressure transmitted to is controlled. Thereby, avoidance of wheel slip is performed, and the safety of the vehicle is improved.
  • the actuator 7 is a pressure increase control that controls whether the brake fluid pressure generated in the M / C5 or the brake fluid pressure generated by the pump drive is applied to the W / C6 for each wheel.
  • the actuator 7 can realize the automatic pressurizing function of the service brake 1, and automatically applies W / C6 even when there is no brake operation based on the pump drive and control of various control valves. It is possible to press. Since the configuration of the actuator 7 has been conventionally known, the details are omitted here.
  • the EPB 2 generates a parking brake force by controlling the brake mechanism with the motor 10 and has an EPB control device (hereinafter referred to as EPB-ECU) 9 for controlling the driving of the motor 10.
  • EPB-ECU EPB control device
  • the brake mechanism is a mechanical structure that generates a braking force in the vehicle brake device according to the present embodiment, and the front wheel brake mechanism is configured to generate a service brake force by operating the service brake 1.
  • the wheel system brake mechanism has a common structure for generating a braking force for both the operation of the service brake 1 and the operation of the EPB 2. Since the front-wheel brake mechanism is a brake mechanism that is generally used from the past without a mechanism that generates a parking brake force based on the operation of the EPB 2 with respect to the rear-wheel brake mechanism, The description is omitted, and in the following description, a rear wheel brake mechanism will be described.
  • the brake mechanism rotates the motor 10 directly fixed to the body 14 of the W / C 6 for pressing the brake pad 11 as shown in FIG. 2 in the caliper 13 shown in FIG.
  • the spur gear 15 provided on the drive shaft 10a of the motor 10 is rotated.
  • the brake pad 11 is moved by transmitting the rotational force (output) of the motor 10 to the spur gear 16 meshed with the spur gear 15, and the parking brake force by EPB2 is generated.
  • the W / C 6 can generate a W / C pressure in the hollow portion 14a which is a brake fluid storage chamber by introducing the brake fluid pressure into the hollow portion 14a of the cylindrical body 14 through the passage 14b.
  • the rotary shaft 17, the propulsion shaft 18, the piston 19 and the like are provided in the hollow portion 14a.
  • the rotating shaft 17 is connected to the spur gear 16 at one end through an insertion hole 14 c formed in the body 14.
  • the rotating shaft 17 is rotated with the rotation of the spur gear 16.
  • a male screw groove 17 a is formed on the outer peripheral surface of the rotary shaft 17 at the end of the rotary shaft 17 opposite to the end connected to the spur gear 16.
  • the other end of the rotating shaft 17 is pivotally supported by being inserted into the insertion hole 14c.
  • the insertion hole 14c is provided with a bearing 21 together with an O-ring 20 so that the brake fluid does not leak through the O-ring 20 between the rotary shaft 17 and the inner wall surface of the insertion hole 14c.
  • the bearing 21 supports the other end of the rotating shaft 17.
  • the propulsion shaft 18 is constituted by a nut made of a hollow cylindrical member, and a female screw groove 18a that is screwed with the male screw groove 17a of the rotary shaft 17 is formed on the inner wall surface.
  • the propulsion shaft 18 is configured in a columnar shape or a polygonal column shape having a key for preventing rotation, for example, so that even if the rotation shaft 17 is rotated, the propulsion shaft 18 is rotated around the rotation center of the rotation shaft 17. It has no structure. For this reason, when the rotating shaft 17 is rotated, the rotational force of the rotating shaft 17 is changed to a force for moving the propulsion shaft 18 in the axial direction of the rotating shaft 17 due to the engagement between the male screw groove 17a and the female screw groove 18a. Convert.
  • the propulsion shaft 18 stops at the same position due to the frictional force generated by the engagement between the male screw groove 17a and the female screw groove 18a, resulting in a target parking brake force. If the driving of the motor 10 is stopped at that time, the propulsion shaft 18 is held at that position, and a desired parking brake force can be held and self-locking can be performed.
  • the piston 19 is disposed so as to surround the outer periphery of the propulsion shaft 18, is configured by a bottomed cylindrical member or a polygonal cylindrical member, and the outer peripheral surface is in contact with the inner wall surface of the hollow portion 14 a formed in the body 14.
  • a seal member 22 is provided on the inner wall surface of the body 14 and W / C pressure can be applied to the end surface of the piston 19 so as not to cause brake fluid leakage between the outer peripheral surface of the piston 19 and the inner wall surface of the body 14. It is said that.
  • the seal member 22 is used to generate a reaction force for pulling back the piston 19 during release control after lock control.
  • the seal member 22 Since the seal member 22 is provided, basically, even if the brake pad 11 and the piston 19 are pushed in by the brake disc 12 inclined during turning within a range not exceeding the elastic deformation amount of the seal member 22, they are braked. It can be pushed back to the disc 12 side so that the gap between the brake disc 12 and the brake pad 11 is held with a predetermined clearance.
  • the propulsion shaft 18 When the propulsion shaft 18 is provided with a key for preventing rotation so that the piston 19 is not rotated about the rotation center of the rotation shaft 17 even if the rotation shaft 17 rotates, the key is When a sliding keyway is provided and the propulsion shaft 18 has a polygonal column shape, it has a polygonal cylindrical shape with a corresponding shape.
  • the brake pad 11 is disposed at the tip of the piston 19, and the brake pad 11 is moved in the left-right direction on the paper surface as the piston 19 moves.
  • the piston 19 can move to the left in the drawing as the propulsion shaft 18 moves, and at the end of the piston 19 (the end opposite to the end where the brake pad 11 is disposed).
  • W / C pressure By applying the W / C pressure, it is configured to be movable in the left direction on the paper surface independently of the propulsion shaft 18.
  • the propulsion shaft 18 is in a release position (a state before the motor 10 is rotated), which is a standby position when the propulsion shaft 18 is in a normal release state, the brake fluid pressure in the hollow portion 14a is not applied (W / C).
  • the piston 19 is moved to the right in the drawing by the elastic force of the seal member 22 described later, so that the brake pad 11 can be separated from the brake disk 12. Further, when the motor 10 is rotated and the propulsion shaft 18 is moved leftward from the initial position, even if the W / C pressure becomes zero, the propulsion shaft 18 that has moved moves the piston 19 rightward on the paper surface. The brake pad 11 is held at that location.
  • the piston 19 when the service brake 1 is operated, the piston 19 is moved to the left in the drawing based on the W / C pressure generated thereby, so that the brake pad 11 is brake disc. 12 to generate a service brake force.
  • the spur gear 15 is rotated by driving the motor 10, and the spur gear 16 and the rotating shaft 17 are rotated accordingly, so that the male screw groove 17a and the female screw groove 18a are rotated.
  • the propulsion shaft 18 is moved to the brake disk 12 side (left direction in the drawing) based on the meshing of the two.
  • the EPB-ECU 9 is constituted by a known microcomputer having a CPU, ROM, RAM, I / O, etc., and performs parking brake control by controlling the rotation of the motor 10 according to a program stored in the ROM. It is.
  • This EPB-ECU 9 corresponds to the parking brake control device of the present invention.
  • the EPB-ECU 9 inputs, for example, a signal corresponding to the operation state of an operation switch (SW) 23 provided in an instrument panel (not shown) in the vehicle interior, and turns the motor 10 in accordance with the operation state of the operation SW 23. To drive. Further, the EPB-ECU 9 performs lock control, release control, and the like based on the motor current value, the lock control is being performed based on the control state, the wheel is in the locked state by the lock control, and The vehicle knows that the release control is in progress and that the wheel is in the release state (EPB release state). Then, the EPB-ECU 9 outputs a signal indicating whether or not the wheel is locked to the lock / release indicator lamp 24 provided on the instrument panel according to the driving state of the motor 10. .
  • SW operation switch
  • the vehicle brake device configured as described above basically performs an operation of generating a braking force on the vehicle by generating a service brake force by the service brake 1 when the vehicle travels.
  • the driver presses the operation SW 23 to operate the EPB 2 to generate the parking brake force, thereby maintaining the stopped state, and then releasing the parking brake force.
  • Perform the action That is, as an operation of the service brake 1, when a driver operates a brake pedal during vehicle travel, the brake fluid pressure generated in the M / C 5 is transmitted to the W / C 6 to generate a service brake force.
  • the operation of the EPB 2 is to move the piston 19 by driving the motor 10 and generate a parking brake force by pressing the brake pad 11 against the brake disc 12 to lock the wheel, By releasing the brake disc 12, the parking brake force is released and the wheel is released.
  • parking brake force is generated or released by lock / release control.
  • the EPB 2 is operated by rotating the motor 10 forward, and the rotation of the motor 10 is stopped at a position where a desired parking brake force can be generated by the EPB 2, and this state is maintained. Thereby, a desired parking brake force is generated.
  • EPB2 is operated by rotating motor 10 reversely, and the parking brake force generated in EPB2 is released.
  • FIG. 3 is a timing chart showing an example of changes in the monitor value of the motor current value during lock control in each case when the gain is abnormal due to a failure of the amplifier or the like.
  • the change of the motor current value in the three areas at the time of inrush current, no-load current at normal time, and current rise is stored as a reference value, which is used as the current value of the motor current value when using EPB2.
  • Abnormality detection is performed by comparison. For example, in the example shown in FIG. 3, at the time of inrush current, the descending gradient of the motor current value is larger in the abnormal time than in the normal time. At the time of no load current, the magnitude of the motor current value is larger at the time of abnormality than at normal time. When the current rises, the rising slope of the motor current value becomes larger when the abnormality is greater than when it is normal.
  • ⁇ Anomaly detection is performed based on this, and when an anomaly is detected, a corresponding action is taken. For example, as shown in FIG. 3, when an abnormality is detected when the current rises, it indicates that an abnormality has occurred by turning on an abnormality detection flag.
  • a target motor current value hereinafter referred to as a target current value
  • the lock operation time is corrected to be increased. .
  • the lock operation time is corrected to be longer by setting the target current value to be larger than the value set during normal operation.
  • FIG. 4 is an overall flowchart of the parking brake control process executed by the EPB-ECU 9. This process is executed for every predetermined control cycle during a period in which the ignition switch is turned on, for example.
  • step 100 it is determined whether or not it is an initial shipment time. Assuming that the initial shipment time is normal, this determination is performed to store the change in motor current value in three regions at the time of inrush current, no load current, and current rise as a reference value. . A flag to that effect is set until the first parking brake control process is executed for the first time, and by checking the state of this flag, it can be determined whether or not it is the initial shipment time. It has become.
  • step 105 it is determined whether or not there is a lock request, for example, whether or not the operation SW 23 is turned on.
  • the state in which the operation SW 23 is on means that the driver is operating the EPB 2 to make it locked. For this reason, if an affirmative determination is made in this step, the process proceeds to step 110 and lock control is executed. Details of the lock control will be described with reference to a flowchart of the lock control process shown in FIG.
  • the EPB 2 is operated by rotating the motor 10, the rotation of the motor 10 is stopped at a position where a desired braking force can be generated by the EPB 2, and this state is maintained. Since the change in the motor current value in the lock control at the time of initial shipment is assumed to be a change in the normal state, the lock control process is performed once in order to obtain each reference value.
  • step 200 it is determined whether or not the flag FIUPS is turned off when the current value starts to increase.
  • the current value increase start flag FIUPS is a flag that is turned on when the motor current value starts to increase, and is off until it is turned on in step 225 described later. If a positive determination is made here, the routine proceeds to step 205.
  • the target motor current value increase amount TMIUP is set.
  • the target motor current value increase amount TMIUP is an increase amount of the motor current value corresponding to the target braking force, specifically, an increase amount of the motor current value from the no-load current NOC.
  • the target motor current value increase amount TMIUP is set to be equal to or greater than the motor current value increase amount necessary for generating the W / C pressure corresponding to the target braking force.
  • FIG. 6 is a map showing an example thereof, and is a map in which the target motor current value increase amount TMIUP increases in proportion to the magnitude of the target braking force.
  • the target braking force is a braking force necessary for maintaining the vehicle stopped, and is a value determined according to the slope of the slope. Therefore, the target braking current increases in proportion to the slope of the slope. There may be. Since the slope is expressed as a value of the G sensor 25, the target motor current value increase amount may be set based on the value of the G sensor 25.
  • step 210 it is determined whether or not the lock control time counter CLT exceeds a predetermined minimum lock control time MINLT.
  • the lock control time counter CLT is a counter that measures an elapsed time since the lock control is started, and starts counting simultaneously with the start of the lock control process.
  • the minimum lock control time MINLT is a minimum time that is assumed to be applied to the lock control, and is a value determined in advance according to the rotational speed of the motor 10 or the like. As in step 255 described later, when the motor current value reaches the target current value MI # TARGET, it is determined that the braking force generated by the EPB 2 has reached or approached a desired value.
  • the motor current value may exceed the target current value MI # TARGET due to an inrush current at the initial stage. Therefore, by comparing the lock control time counter CLT with the minimum lock control time MINLT, the initial control period can be masked, and erroneous determination due to an inrush current or the like can be prevented.
  • step 215 where the release state flag FREL is turned off and the lock control time counter CLT is set.
  • the motor lock drive is turned on, that is, the motor 10 is rotated forward. Thereby, the brake pad 11 is moved to the brake disk 12 side with the forward rotation of the motor 10, and the locking operation by the EPB 2 is performed.
  • step 210 if an affirmative determination is made in step 210, the process proceeds to step 220, and a current value differential value ID obtained by differentiating the motor current value with respect to time is calculated.
  • a current value differential value ID obtained by differentiating the motor current value with respect to time is calculated.
  • the difference between the motor current values obtained during the current control cycle and the previous control cycle is defined as a current value differential value ID. Then, it is determined whether or not the current value differential value ID is larger than the current value differential threshold IDB.
  • the motor current value varies depending on the load applied to the motor 10.
  • the load applied to the motor 10 corresponds to the pressing force pressing the brake pad 11 against the brake disc 12, and therefore has a value corresponding to the pressing force generated by the motor current value.
  • the motor current value becomes a no-load current NOC, and when a load is applied to the motor 10, the motor current value starts to increase.
  • the current value differential threshold IDB is set to a value that is assumed that the motor current value starts to rise while excluding the noise-like fluctuation of the motor current value.
  • step 220 If an affirmative determination is made in step 220, the current value starting to increase indicating that the motor current value has started increasing is turned on in step 225, the flag FIUPS is turned on, and the process proceeds to step 230. If the determination in step 220 is negative, the motor 10 is not yet loaded, so the process of step 215 is executed again.
  • step 230 after detecting the M / C pressure based on the detection signal of the M / C pressure sensor 26, whether the detected M / C pressure exceeds zero, that is, whether the M / C pressure is generated. Determine whether or not. If the M / C pressure is generated, it can be considered that the service brake 1 generates the W / C pressure according to the depression of the brake pedal 3 by the driver, and the service brake 1 generates the braking force. . If the brake force is generated by the service brake 1, the brake force generated by the EPB 2 may become larger than necessary unless the brake force is taken into consideration. Therefore, whether or not the service brake 1 is operating is determined based on whether or not the M / C pressure is generated.
  • step 230 the process proceeds to step 235 to execute a process considering the brake force generated by the service brake 1. If a negative determination is made, the process of step 235 is not performed and step 240 is performed. Proceed to
  • the target motor current value increase amount TMIUP is corrected as a process in consideration of the brake force generated by the service brake 1. That is, when the brake force is generated by the service brake 1, correction is performed to reduce the target motor current value increase amount TMIUP, and in this embodiment, the target motor current value increase amount according to the magnitude of the brake force.
  • a subtraction value IDOWN of the target motor current value increase amount TMIUP that decreases TMIUP is obtained, and a value obtained by subtracting the subtraction value IDOWN from the target motor current value increase amount TMIUP obtained in step 205 is calculated.
  • the value of the subtraction value IDOWN corresponding to the M / C pressure is mapped, and the subtraction value IDOWN is obtained by extracting the value corresponding to the M / C pressure detected in step 230 based on the map. Seeking.
  • FIG. 7 shows an example of this, and is a map showing the relationship between the M / C pressure and the subtraction value IDOWN.
  • the map is such that the subtraction value IDOWN increases in proportion to the magnitude of the M / C pressure, that is, the depression (depression force) of the brake pedal 3 by the driver. Therefore, in the case of the present embodiment, the subtraction value IDOWN corresponding to the M / C pressure detected in step 230 is read from the map shown in FIG. 7, and the subtraction value IDOWN is subtracted from the target motor current value increase amount TMIUP. The motor current value increase amount TMIUP is obtained.
  • the target motor current value increase amount TMIUP is less than zero. Therefore, in step 235, the value obtained by subtracting the subtraction value IDOWN from the target motor current value increase amount TMIUP, or the value obtained by adding a predetermined value ⁇ (a positive constant) to the no-load current NOC, whichever is greater (MAX (TMIUP-IDOWN, NOC + ⁇ )) is the target motor current value increase TMIUP.
  • Inrush current gain abnormality means gain abnormality during inrush current
  • no-load current gain abnormality means gain abnormality during no-load current
  • rising current gain abnormality means gain abnormality during current rise.
  • changes in the motor current value in the three regions at the time of inrush current at normal time, at no load current, and at the time of current rise are stored as reference values, which are stored when EPB2 is used.
  • the abnormality is determined by comparing with the current value of the motor current value at. The presence or absence of abnormality is determined by comparison at this time. This determination is performed in various abnormality determination processes (see FIGS. 15 to 17), which will be described later, and it is determined whether there is an abnormality in this step based on the determination result.
  • step 245 a value obtained by adding the target motor current value increase amount TMIUP to the no-load current NOC is set to the target current value MI # TARGET. Further, when it is not at the time of initial shipment, if any one of the above three abnormalities is detected, the process proceeds to step 250. However, since the process does not proceed at the time of initial shipment, the explanation of step 250 is as follows. It will be described later.
  • step 255 it is determined whether or not the motor current value exceeds the target current value MI # TARGET.
  • MI # TARGET a state in which a desired braking force is generated by the generated pressing force, that is, the friction surface of the brake pad 11 on the inner wall surface of the brake disk 12 to some extent by EPB2. It will be in a state of being pressed down with force. Therefore, the process of step 215 is repeated until an affirmative determination is made in this step, and if an affirmative determination is made, the process proceeds to step 260.
  • step 260 the lock state flag FLOCK which means that the lock is completed is turned on, the lock control time counter CLT is set to 0, and the motor lock drive is turned off (stopped). Thereby, the rotation of the motor 10 is stopped and the braking force generated at that time is held. Thereby, the movement of the parked vehicle is regulated. Further, the current value starts to increase and the flag FIUPS is turned off. In this way, the lock control process is completed.
  • step 115 an inrush current time norm setting process is performed in which a current descending slope norm is set as a norm as a criterion for determining whether the change in the motor current value at the time of the inrush current is normal or abnormal.
  • a method of setting the current descending gradient standard will be described with reference to a comparison diagram of motor current values at the time of inrush current shown in FIG.
  • the current descending gradient is represented by (A′ ⁇ B) / T.
  • the time T from the point A ′ that is the peak of the inrush current that sets the current descent gradient standard to the point B that is the detection timing may be appropriately set based on the characteristics of the actuators that constitute the EPB 2.
  • FIG. 9 is a flowchart showing details of the current descent gradient norm setting process at the time of inrush current.
  • step 300 it is determined whether or not the value of the lock control time counter CLT representing the lock control elapsed time is less than a predetermined time, for example, less than 100 ms, which is assumed as a time during which an inrush current can occur. If the lock control elapsed time is equal to or longer than the predetermined time, it is considered that the inrush current has already been generated. Therefore, the processing after step 305 is executed only when the lock control elapsed time is less than the predetermined time, and lock control is performed. If the elapsed time is equal to or longer than the predetermined time, the process is terminated as it is.
  • a predetermined time for example, less than 100 ms
  • step 305 determines whether or not the storage of the current monitor A 'is complete. For example, this determination is performed based on whether or not a flag indicating that the storage of the current monitor A 'is completed is set.
  • the current monitor A ′ is the motor current value at the point A ′ in FIG. 8, that is, the peak value of the motor current value at the time of inrush current. In this step, the peak value of the motor current value is stored. It is determined whether or not. Since the storage has not been completed at first, the process proceeds to step 310.
  • step 310 it is determined whether or not the state where the motor current value is decreasing continues.
  • the motor current value monitored in the current control cycle is defined as the current monitor I (n), and the current current monitor I (n) is less than the previous current monitor I (n ⁇ 1), and the previous current monitor I (n When n-1) is less than the previous current monitor I (n-2), and the previous current monitor I (n-2) is less than the last current monitor I (n-3), it falls.
  • the inrush current continuously increases up to the peak value and decreases continuously after reaching the peak value. For this reason, the peak value is when the motor current value starts to decrease.
  • the peak value is adopted when the motor current value decreases continuously.
  • step 315 the peak of the current monitor I (n) at the time of the inrush current (hereinafter referred to as the inrush current monitor peak) is compared with the inrush current monitor peak up to the previous control cycle and this time. Is updated to the larger one of the current monitors I (n) of the control cycle. Then, the process of step 315 is continuously executed until an affirmative determination is made in step 310, and if an affirmative determination is made, the process proceeds to step 320, and the current monitor A ′ at that time is set to the current monitor A ′ and then the current monitor A ′ A flag indicating that the storage is completed is set, and the process ends.
  • the inrush current monitor peak the peak of the current monitor I (n) at the time of the inrush current
  • step 305 the routine proceeds to step 325, where the inrush current determination time T, that is, the time T taken from point A 'to point B shown in FIG. 8, is counted.
  • step 330 it is determined whether or not the current monitor I (n) has reached the current monitor B, that is, the motor current value at point B in FIG. 8 described above, and the current monitor I (n) is the current monitor.
  • Step 325 is incremented until it reaches less than B.
  • the routine proceeds to step 335, where the current descending gradient standard is set.
  • a value obtained by dividing the difference between the current monitor A ′ and the current monitor B by the inrush current determination time T is a current descent gradient standard. Set as. In this way, the inrush current time norm setting process in step 115 of FIG. 4 is completed.
  • a no-load current time norm setting process for setting a no-load current value norm as a norm as a criterion for determining whether the motor current value at the no-load current is normal or abnormal is performed.
  • a method for setting the no-load current reference will be described with reference to a comparison diagram of motor current values at no-load current shown in FIG.
  • a no-load current value norm that is a norm of the magnitude of the motor current value at the time of no-load current is set, and abnormality detection is performed based on this no-load current value norm.
  • the minimum value of the motor current value is measured from the end time of the inrush current, and after reaching the predetermined no-load current value reference after the end of the no-load current.
  • the no-load current value standard is set. Specifically, a current minimum normative value C that is the minimum value of the motor current value during the no-load current time T is obtained and stored as a no-load current value norm.
  • the no-load current time T may be set as appropriate based on the characteristics of the actuators constituting the EPB 2.
  • FIG. 11 is a flowchart showing details of the no-load current value norm setting process at the time of no-load current.
  • step 400 the value of the lock control time counter CLT representing the lock control elapsed time exceeds a predetermined time, for example, 100 ms, which is assumed as the time when the inrush current can be completed, and the current monitor I (n) is It is determined whether it is less than the no-load current value standard.
  • the no-load current value reference is a reference value assumed as the no-load current value, and when it is less than the no-load current value reference, it means that the no-load current value is approaching.
  • This no-load current value reference is set to a somewhat large value (for example, 3A) so as to cope with the case where the no-load current value becomes large. If the determination in step 400 is negative, it is not the timing for setting the no-load current value norm, so the processing is terminated as it is, and if an affirmative determination is made, the process proceeds to step 405.
  • step 405 the current minimum normative value C (n) of the current control cycle is calculated. Specifically, the current minimum normative value C (n-1) of the previous control cycle is compared with the current monitor I (n) of the current control cycle, and the lower one is the current minimum norm of the current control cycle. Let it be the value C (n).
  • the initial value of the minimum current reference value C (n) is set to the no-load current value reference, and when the current monitor I (n) falls below the no-load current value reference, the minimum current reference value C (n) is updated. To go. For this reason, the minimum value of the motor current value, that is, the no-load current value is set to the minimum current reference value C (n).
  • the calculation of the current minimum value reference C (n) is completed, and the current minimum value reference C (n) at that time is the final current.
  • the minimum normative value C is set, and this minimum current normative value C is stored as a no-load current value norm.
  • a current ascending gradient norm setting process for setting a current ascending gradient norm as a norm serving as a criterion for determining whether the change in the motor current value at the time of current increase is normal or abnormal is performed.
  • a method for setting the current rise gradient standard will be described with reference to a comparison diagram of motor current values at the time of current rise shown in FIG.
  • the point E ′ and the abnormality detection timing become the second current monitor value larger than the first current monitor value.
  • the current rising gradient is represented by (F′ ⁇ E ′) / T ′.
  • E ′ 6 A
  • F ′ 16 A
  • T ′ 500 ms
  • each actuator which comprises EPB2 may be set as appropriate based on the above.
  • FIG. 13 is a flowchart showing details of the current increase gradient norm setting process at the time of current increase.
  • step 500 the value of the lock control time counter CLT representing the lock control elapsed time exceeds a predetermined time, for example, 100 ms, which is assumed as a time during which an inrush current can occur, and the current monitor I (n) is It is determined whether or not the no-load current value standard is exceeded. Thereby, after the inrush current has been generated, it can be determined that the motor current value has increased from the no-load current. Only when an affirmative determination is made here, the processing from step 505 is executed, and when a negative determination is made, the processing ends.
  • a predetermined time for example, 100 ms, which is assumed as a time during which an inrush current can occur
  • the current monitor I (n) is It is determined whether or not the no-load current value standard is exceeded.
  • step 505 the monitor value of the motor current at the current control cycle is changed from the current monitor I (n-1), which is the monitor value of the motor current value at the previous control cycle, to a value less than the first current monitor value. It is determined whether or not a certain current monitor I (n) has changed to a state where it exceeds the first current monitor value. That is, it is determined whether or not the motor current value has reached the point E 'shown in FIG. If an affirmative determination is made here, the routine proceeds to step 510, where it is instructed to turn on the rising time elapsed counter that measures the time after the motor current value reaches the point E ', and then the routine proceeds to step 515. If a negative determination is made here, the motor current value has not yet reached point E ', or it has already reached point E' and the rising time elapsed counter is being turned on. Proceed to step 515.
  • step 515 the current monitor I (n) at the current control cycle exceeds the second current monitor value from the state in which the current monitor I (n-1) at the previous control cycle is less than the second current monitor value. It is determined whether or not the state has changed. That is, it is determined whether or not the motor current value has reached the point F ′ shown in FIG. If an affirmative determination is made here, the process proceeds to step 520, instructed to turn off the rising time elapsed counter, and then proceeds to step 525. If the determination in step 515 is negative, the motor current value has not yet reached the F ′ point, or has already reached the F ′ point and the rising time elapsed counter is turned off. Proceed to step 525.
  • step 525 it is determined whether or not the rising time elapsed counter is instructed to be turned on. If an affirmative determination is made here, the rising time elapsed counter is counted up and then the process proceeds to step 535. If a negative determination is made, the process proceeds to step 535 as it is. In this way, the count of the rising time elapsed counter is stopped when the rising time elapsed counter is switched on from the state instructed to turn off, so the count value at this time is The motor current value is a time T ′ taken from the point E ′ to the point F ′.
  • step 535 the rising time elapsed counter is on during the previous control cycle and the rising time elapsed counter is switched off during the current control cycle, that is, the motor current value at the abnormal timing is F ′. It is determined whether or not it is time to reach a point.
  • the process proceeds to step 540, where the second current monitor value is calculated using the count value of the rising time elapsed counter, that is, the time T ′ from the point E ′ to the point F ′.
  • a value obtained by dividing the difference from the first current monitor value by the count value of the rising time elapsed counter is set as the current rising gradient standard. In this way, the current increase gradient norm setting process in step 125 of FIG. 4 is completed.
  • FIG. 14 is a flowchart showing details of the lock / release display process. The lock / release display process will be described with reference to FIG.
  • step 600 it is determined whether or not the lock state flag FLOCK is turned on. If a negative determination is made here, the process proceeds to step 605 to turn off the lock / release display lamp 24, and if an affirmative determination is made, the process proceeds to step 610 to turn on the lock / release display lamp 24. In this way, the lock / release display lamp 24 is turned on in the locked state, and the lock / release display lamp 24 is turned off when the release state or release control is started. As a result, it is possible to make the driver recognize whether or not it is in the locked state. Then, if the lock operation has been completed in the lock control shown in step 110 of FIG. 4, the lock / release display lamp 24 is turned on in this process, and the locked state is displayed. In this way, the lock / release display process is completed.
  • step 105 if it is determined in step 135 that there is a release request, for example, the operation SW23 is turned off and the driver is operating the EPB 2 to enter the release state. If it is determined, the process proceeds to step 140 to perform release control. When there is no release request in addition to the lock request, the parking brake control process is terminated as it is. Details of the release control will be described later.
  • step 145 it is determined whether or not there is a lock request in the same manner as in step 105 described above. If an affirmative determination is made, the process proceeds to step 150 and lock control is executed. Specifically, the lock control is executed by the lock control process shown in FIG. When such lock control is executed, basically the same operation as at the time of initial shipment is performed. However, since the determination in step 240 is not at the time of initial shipment, if there is an abnormality among any of the three abnormalities of inrush current gain abnormality, no-load current gain abnormality, and rising current gain abnormality, step 250 is performed. Will go on. The determination of the presence / absence of various abnormalities is performed in various abnormality determination processes (see FIGS. 15 to 17) described later. Based on the determination results, it is determined whether there is an abnormality in this step. Yes.
  • the process proceeds to step 250, where the target current is obtained by multiplying the value obtained by adding the target motor current value increase amount TMIUP to the no-load current NOC and the current gain abnormality correction coefficient.
  • the current gain abnormality correction coefficient is the target current value MI # TARGET that is normally calculated as the value obtained by adding the target motor current value increase TMIUP to the no-load current NOC when an amplifier abnormality occurs. This is a coefficient for making a larger value. This coefficient is set to a value larger than 1, and may be a constant value used when any one of the three areas is determined to be abnormal. Depending on where in the three areas it is determined to be abnormal May have different values.
  • the target current value MI # TARGET is set to a value larger than the value set in the normal state, and the lock operation time required until the motor current value reaches the target current value MI # TARGET in step 255 is corrected. it can. Therefore, even when there is an abnormality, it is possible to appropriately perform the lock control, and it is possible to avoid stopping the EPB 2.
  • step 150 of FIG. 4 When the lock control in step 150 of FIG. 4 is executed in this way, the process proceeds to step 155, where current descent gradient abnormality determination processing at the time of inrush current is performed.
  • step 155 An outline of the current descending gradient abnormality determination process will be described with reference to FIG.
  • the current descending gradient abnormality determination process it is determined whether or not an inrush current gain abnormality has occurred by comparing the current descending gradient at the current inrush current with the current descending gradient standard.
  • the current descending gradient at the time of inrush current in the current lock control is calculated by the same method as the current descending gradient norm setting method described above. Specifically, as shown in FIG. 8, when the motor current value reaches a peak at the time of the inrush current, point A, abnormality detection timing B point, and time taken from point A to point B, T
  • FIG. 15 is a flowchart showing details of the current descent gradient abnormality determination process at the time of inrush current.
  • steps 700 to 735 processing similar to that in steps 300 to 335 in FIG. 9 is performed, and (AB) / T is calculated to calculate the current descending gradient at the current inrush current. Then, the process proceeds to step 740, where it is determined whether or not the ratio of the current descent gradient at the current inrush current to the current descent gradient standard is larger than a predetermined abnormality detection value for inrush current gradient comparison. That is, it is determined whether or not the current descending gradient at the current inrush current is larger than a predetermined ratio as compared with the current descending gradient norm.
  • step 745 there is no inrush current gain abnormality, for example, a flag indicating that an inrush current gain abnormality has occurred is reset and the processing is terminated. If an affirmative determination is made, an inrush current gain abnormality has occurred, so the routine proceeds to step 750, where there is an inrush current gain abnormality, for example, a flag indicating that an inrush current gain abnormality has occurred is set, and the process is terminated. In this way, it can be determined whether or not an inrush current gain abnormality has occurred.
  • a no-load current value abnormality determination process is performed, which is a determination of whether the motor current value at the time of no-load current is normal or abnormal. An outline of the no-load current abnormality determination process will be described with reference to FIG.
  • no-load current value abnormality determination process it is determined whether or not a no-load current gain abnormality has occurred by comparing the no-load current value at the current no-load current with the no-load current value standard.
  • the no-load current value at the no-load current in the current lock control is calculated by the same method as the above-described no-load current value norm setting method. Specifically, as shown in FIG. 10, the minimum value (hereinafter referred to as the current minimum value) D of the motor current value is measured from the end time of the inrush current, and after the no-load current ends, a predetermined no-load current value reference The minimum current value D during the no-load current time T until reaching the time ⁇ is obtained.
  • this current minimum value D becomes the current no-load current value, whether or not an abnormal no-load current gain has occurred is compared with the current minimum normative value C which is an already set no-load current value norm. It becomes possible to determine.
  • FIG. 16 is a flowchart showing details of the no-load current value abnormality determination process at the time of no-load current.
  • step 800 the same determination as in step 400 of FIG. 11 is performed.
  • the process proceeds to step 805 to calculate the current minimum value D (n) in the current control cycle.
  • the current minimum value D (n-1) of the previous control cycle is compared with the current monitor I (n) of the current control cycle, and the lower one is the current minimum value D of the current control cycle. (N).
  • the initial value of the minimum current value D (n) is set to the no-load current value reference.
  • the minimum current value D (n) is updated. . Therefore, the current minimum value D (n) is finally the minimum value of the motor current value, and the current minimum value D (n) at that time is the final current minimum value D, which is set as the no-load current value. Will be.
  • step 800 when a negative determination is made at step 800, the process proceeds to step 810. Then, the value of the lock control time counter CLT indicating the lock control elapsed time exceeds a predetermined time, for example, 100 ms, which is assumed as the time at which the inrush current can be completed, and the current monitor I (n ⁇ From the state in which 1) is less than the no-load current value reference, it is determined whether or not it is the timing when the current monitor I (n) of the current control cycle becomes greater than or equal to the no-load current value reference. That is, it is determined whether or not the no-load current has been completed. If an affirmative determination is made here, the process proceeds to a no-load current gain abnormality determination process shown in step 815 and thereafter, and if a negative determination is made, the process ends.
  • a predetermined time for example, 100 ms, which is assumed as the time at which the inrush current can be completed
  • step 815 the no-load current value reference C stored as the no-load current value reference is used, and the no-load current value upper limit CHiLimit and the no-load Calculate the current value lower limit CLowLimit.
  • the no-load current value upper limit CHiLimit and the no-load current value lower limit CLowLimit are calculated by multiplying the current minimum normative value C by a constant (1 ⁇ variation coefficient) with a predetermined variation coefficient. .
  • the current minimum normative value C is 1.1 A and the variation coefficient is 0.5
  • the current minimum normative value C is stored as a no-load current value norm, but these no-load current value upper limit CHiLimit and no-load current value lower limit CLowLimit are stored as no-load current value norms from the beginning. You can keep it.
  • step 820 the current minimum value D, that is, the current minimum value D (n) finally updated in step 805 is included in the range from the no-load current value upper limit CHiLimit to the no-load current value lower limit CLowLimit. It is determined whether or not.
  • step 825 no load current gain abnormality has occurred, for example, a flag indicating that no load current gain abnormality has occurred is reset and processing is performed. finish. If an affirmative determination is made, a no-load current gain abnormality has occurred. Therefore, the process proceeds to step 830, where there is a no-load current gain abnormality. For example, a flag indicating that a no-load current gain abnormality has occurred is set. finish. In this way, it can be determined whether or not a no-load current gain abnormality has occurred.
  • a current increase gradient abnormality determination process is performed, which is a determination of whether the motor current value at the time of current increase is normal or abnormal. The outline of this current rising gradient abnormality determination process will be described with reference to FIG.
  • the current rising gradient abnormality determination process it is determined whether or not the rising current gain abnormality has occurred by comparing the current rising gradient at the current current rising time with the current rising gradient norm.
  • the current rise gradient norm (F'-E ') / T is compared to determine whether or not a rise current gain abnormality has occurred. It becomes possible to judge.
  • FIG. 17 is a flowchart showing details of the current increase gradient abnormality determination process at the time of current increase.
  • steps 800 to 840 processing similar to that in steps 500 to 540 in FIG. 13 is performed, and (FE) / T is calculated to calculate the current increase gradient at the current current increase. Then, the process proceeds to step 845, where it is determined whether or not the ratio of the current rise gradient at the current rise to the current rise gradient norm is larger than a predetermined abnormality detection value for the current rise slope comparison. That is, it is determined whether or not the current increase gradient at the current current increase is greater than a predetermined ratio as compared with the current increase gradient norm.
  • step 850 there is no rising current gain abnormality, for example, a flag indicating that a rising current gain abnormality has occurred is reset and the processing is terminated. If an affirmative determination is made, a rise current gain abnormality has occurred, so that the routine proceeds to step 855 where a rise current gain abnormality has occurred, for example, a flag indicating that a rise current gain abnormality has occurred is set, and the process is terminated. In this way, it can be determined whether or not a rising current gain abnormality has occurred.
  • the determination results are used in the determination of step 240 in FIG.
  • the target current value MI # TARGET is corrected accordingly.
  • the lock operation time required for the motor current value to reach the target current value MI # TARGET is corrected so that the lock control can be appropriately performed even in an abnormal state. You can avoid having to stop.
  • the lock / release display process is executed in step 130 of FIG. This process is the same as above, but if the motor current value reaches the target current value MI # TARGET in the lock control and the lock operation is finished, the lock / release display lamp 24 is turned on and the lock state is established. Will be displayed. In this way, the lock / release display process is completed.
  • step 170 it is determined whether there is a release request, for example, whether the operation SW 23 is turned off.
  • the state in which the operation SW 23 is off means that the driver is operating the EPB 2 to enter the release state. If there is a release request, an affirmative determination is made at step 170, and the routine proceeds to step 175 where release control is performed. Details of the release control will be described with reference to a flowchart of release control processing shown in FIG. Note that the same operation as the release control process in step 175 is performed in the release control process in step 140 of FIG.
  • the EPB 2 is operated by rotating the motor 10, and the brake force generated by the EPB-ECU 9 is released.
  • step 900 the absolute value
  • the motor current value fluctuates in accordance with the load applied to the motor 10, and when the pressing force pressing the brake pad 11 against the brake disk 12 disappears, the motor current value is constant at the no-load current NOC. And there will be no fluctuations.
  • the release control end determination current value RENDI is set to a current change amount that is assumed to cause no load on the motor 10, and the absolute value
  • step 900 the routine proceeds to step 905, where the lock state flag FLOCK is turned off and the motor release drive is turned on, that is, the motor 10 is rotated in the reverse direction. As a result, the brake pad 11 is moved away from the brake disc 12 with the reverse rotation of the motor 10.
  • step 900 determines whether or not the release control end counter CREND has exceeded the release control end time TREND. .
  • the release control end time TREND is the time when the release control is continued from the timing when the load on the motor 10 is lost, the timing when the brake pad 11 is separated from the brake disk 12, and the brake pad 11 is moved by the motor 10 during the lock control. The longer the amount, the longer.
  • step 905 if the release control end counter CREND does not exceed the release control end time TREND, the release control is still continued, so the processing of step 905 is executed.
  • the process proceeds to step 920, where the release state flag FREL, which means that the release is completed, is turned on and the release control end counter CREND is set to 0 to drive the motor release. Turn off. Accordingly, the rotation of the motor 10 is stopped, and the brake pad 11 is held in a state of being separated from the brake disk 12. In this way, the release control process is completed. Thereafter, the process proceeds to the lock / release control process of step 130 and the above-described process is performed.
  • the release control is started, since the lock state flag FLOCK is turned off, the lock / release display lamp 24 is turned off, indicating that the lock state is not set. Thereby, the parking brake control process after the initial shipment ends.
  • the change in the motor current value in the three regions at the time of inrush current at normal time, at the time of no load current, and at the time of current rise is stored as a reference value, and this is used as the reference value of EPB2.
  • the abnormality is detected by comparing with the current value of the motor current value at the time.
  • the lock operation time is corrected to be longer by setting the target current value to be larger than the value set at the normal time.
  • the amplifier gain abnormality is exemplified as an abnormality that appears only with a relatively small current value change.
  • other abnormalities that cause a small current value change can be detected in the same manner. it can. Therefore, it is possible to identify performance and functional problems that cause such a small change in current value, and to take measures against them.
  • a second embodiment of the present invention will be described.
  • the present embodiment is configured to determine the wear of the brake pad 11 that is a friction material (hereinafter referred to as pad wear) in the parking brake control process. Since it is the same as the embodiment, only the parts different from the first embodiment will be described.
  • FIG. 19 is an overall flowchart of parking brake control processing related to the release operation of this embodiment.
  • the parking brake control process of this embodiment is substantially the same as the parking brake control process shown in FIG. 4 described in the first embodiment, but the current increase gradient abnormality determination process of step 165 is performed. After performing, it progresses to step 180 and performs pad wear determination processing.
  • FIG. 20 is a diagram showing the relationship between the actual current value to be output as the motor current value and the monitor value. As shown in this figure, the monitor value varies with respect to the actual current value. Variation factors mainly include variations due to current monitor variation, pad wear, and aging, and each abnormality detection value and variation coefficient are set as described above, taking into account variations due to these variation factors. .
  • FIG. 20 shows an example in which a normal range and an abnormal range are set with a current monitor variation of 7% and a pad wear variation of 30%.
  • the variation range due to current monitor variation is considered to be the normal range, but as the pad wear variation is included with use, the normal range including the variation range is included. Is set, and the outside of the range is set as the abnormal range.
  • Each abnormality detection value and variation coefficient are set so as to be in this abnormality range.
  • the influence of the variation due to pad wear basically occurs when the brake pad 11 comes into contact with the brake disc 12, and is therefore only relevant when the current rises, and is hardly relevant at the time of inrush current or no-load current.
  • the normal range and abnormal range are set only when the current rises, taking into account variations due to pad wear, and the normal range and abnormal range are set without taking into account variations due to pad wear during inrush current or no-load current. It may be.
  • each abnormality detection value and variation coefficient are set in consideration of various variation factors. And, if the abnormality detection value for the current rise gradient comparison is set without taking into account variations due to pad wear, it will be judged as abnormal even during pad wear, so the variations due to pad wear will be taken into account. And set it.
  • each abnormality detection value and variation coefficient are set with and without the variation due to pad wear, it is possible to detect the pad wear using them. For example, even if the abnormality detection value and variation coefficient for slope comparison at inrush current are set without considering the variation due to pad wear, the effect of variation due to pad wear at inrush current or no load current Therefore, it is determined that there is no gain abnormality even if pad wear occurs. Even if pad wear has occurred, it is determined that there is no gain abnormality if the abnormality detection value for current rise gradient comparison is set in consideration of variations due to pad wear. Then, when pad wear has occurred, if the abnormality detection value for gradient comparison during current rise is set without taking into account variations due to pad wear, it is determined that there is a gain abnormality. Based on this, pad wear is detected.
  • FIG. 21 is a flowchart showing details of the pad wear determination process. The pad wear determination process will be described with reference to this figure.
  • step 1000 it is determined whether or not all of inrush current gain abnormality, no load current gain abnormality, and no rising current gain abnormality are satisfied.
  • Each gain abnormality at this time is performed using an abnormality detection value for detecting pad wear and a variation coefficient.
  • the abnormality detection value and variation coefficient for inrush current gradient comparison are set without taking into account variations due to pad wear, and the error detection value for current rise gradient comparison is set taking into account variations due to pad wear. It is.
  • the abnormality detection value and the variation coefficient for inrush current gradient comparison may be set in consideration of variations due to pad wear.
  • step 1005 to indicate no pad wear. For example, resetting a flag indicating the presence of pad wear indicates no pad wear. If an affirmative determination is made, the process proceeds to step 1010.
  • Step 1010 it is determined whether or not the ratio of the current rise gradient at the current rise to the current rise gradient norm is larger than a predetermined abnormality detection value for current rise slope comparison.
  • an abnormal detection value for detecting pad wear that is, a value set without taking into account variations due to pad wear is used as an abnormal detection value for comparing the current rise gradient. Therefore, if the determination is affirmative here, it means that pad wear has occurred, and the routine proceeds to step 1015 to indicate that pad wear has occurred. For example, a flag indicating the presence of pad wear is set. If a negative determination is made, the process proceeds to step 1005 to indicate no pad wear. In this way, the pad wear determination process ends.
  • the EPB-ECU 9 If the pad wear is determined to be due to the pad wear determination, the EPB-ECU 9 outputs a signal to that effect to the notification device 27, and the notification device 27 displays that the pad wear has occurred. Thereby, it is possible to prompt the driver to replace the brake pad 11.
  • the pad wear determination can be performed in the parking brake control process. Thereby, the presence or absence of pad wear can be detected, the driver can be notified that pad wear has occurred, and the driver can take measures such as pad replacement. Further, based on the detection result of the presence or absence of pad wear, the abnormality detection value for inrush current gradient comparison, the variation coefficient, and the abnormality detection value for current rising gradient comparison can be corrected. That is, each abnormality detection value and variation coefficient can be set as a value that does not take into account pad wear when there is no pad wear, and a value that takes into account pad wear when there is pad wear.
  • a third embodiment of the present invention will be described.
  • the present embodiment is different from the first and second embodiments in the abnormality detection method at the time of current rise, and the other aspects are the same as those in the first and second embodiments. Only portions different from the embodiment will be described.
  • the abnormality detection timing is set when the motor current value becomes the second current monitor value, but in this embodiment, the abnormality detection is also performed when the motor current value becomes the third current monitor value.
  • Timing is set, and at least two or more abnormality detection timings are set.
  • FIG. 22 is a comparison diagram of motor current values at the time of current increase when normal and when gain is abnormal due to an amplifier failure or the like.
  • the point E is when the motor current value becomes the first current monitor value when the current rises
  • the point F when the abnormality detection timing becomes the second current monitor value.
  • the time taken from the G point and the E point to the F point as the third third current monitor value is T1
  • the time taken from the E point to the G point is T2.
  • two of (FE) / T1 and (GE) / T2 are calculated as current rising gradients. These are the first and second current rise gradients that are current rise gradients in the periods T1 and T2 corresponding to the first and second current rise gradient standards, respectively.
  • the abnormality detection at the time of current rise is performed with two or more abnormality detection timings, the following effects can be obtained.
  • the rising gradient at the time of current increase changes according to the characteristics of EPB2
  • the change in motor current value is not always linear, so the gradient changes depending on the setting of the abnormality detection timing. Therefore, by having two or more abnormality detection timings, it is possible to reduce the influence of the change in gradient according to the characteristics of EPB2, and it is possible to perform abnormality detection regardless of the characteristics of EPB2. It becomes.
  • the change in the motor current value when the EPB 2 is locked is as described above. After the rush current occurs, the motor current value decreases to the no-load current value, becomes constant at the no-load current value, and then increases. . As shown in FIG. 3, when a gain abnormality occurs due to an amplifier failure or the like, the motor current value becomes larger than that in the normal state. However, when the voltage fluctuation of the drive power source of EPB2 occurs, the motor current value changes even if it is normal. For this reason, it is preferable to correct the value compared with each standard value according to the voltage fluctuation of the drive power supply.
  • FIG. 23 is a diagram showing changes in the motor current value when voltage fluctuation (voltage increase) of the drive power source occurs. For example, assuming that the voltage of the drive power supply is 12V when it is normal and 14V when the voltage fluctuates, the current increase gradient becomes larger when the voltage fluctuates than when it is normal. Therefore, for example, if the current rise gradient is calculated during voltage fluctuations, the current rise gradient is calculated as a large value even if it is normal. It can be. For this reason, the current increase gradient calculated when the voltage fluctuates is corrected to the current increase gradient reference when normal is set.
  • the drive power supply voltage when the current rise gradient is calculated is the abnormality detection timing voltage
  • the drive power supply voltage when various reference values are set is the reference voltage.
  • the corrected current increase gradient is calculated, and the current increase gradient at the current increase in the current increase gradient abnormality determination process is compared with the current increase gradient standard (see step 845 in FIG. 17).
  • the corrected current increase gradient is used as the current increase gradient at the current increase.
  • the current rising gradient at the time of current rising has been described as an example, but the current falling gradient at the time of inrush current and the no-load current value at the time of no-load current are similarly determined according to the voltage fluctuation of the drive power supply. It can be corrected.
  • the standard value is set at the time of initial shipment, that is, normal, but the current rising gradient standard may vary depending on the material of the brake pad 11. Therefore, in the present embodiment, an abnormal state in which the brake pad 11 is worn out and is no longer in the normal use region, that is, a state after wear at which the influence of the material of the brake pad 11 is eliminated is used as the reference value.
  • FIG. 24 is a comparison diagram of motor current values at the time of current increase after the brake pad 11 is worn (when abnormal) and before wear (when normal).
  • the brake pad 11 when the brake pad 11 is worn, when the motor current value becomes the first current monitor value when the current rises, the point E ′, and the abnormality detection timing is the second current larger than the first current monitor value. Assuming that the time taken from the F ′ point and the E ′ point to the F ′ point as the monitor value is T ′, the time T ′ is a value corresponding to the current rising gradient. For this reason, this time T ′ is stored as a current rising gradient standard or set as a constant at the time of design.
  • FIG. 24 is a diagram showing an example when the brake pad 11 is worn, but it can be changed for each vehicle from what level of wear it is assumed not to be in the normal use region.
  • FIG. 25 is a flowchart showing details of the current rise gradient norm setting process at the time of current rise. For example, various normative values are set in a state where the brake pads 11 worn at the time of initial shipment are attached. This process is executed as the current increase gradient norm setting process in step 125 of FIG. 4 when such a worn brake pad 11 is attached.
  • steps 1100 to 1135 processing similar to that in steps 500 to 535 in FIG. 13 is performed.
  • the count value T when the count of the rising time elapsed counter is stopped by switching from the state instructed to turn on the rising time elapsed counter to the state instructed to turn off can be acquired. Since this count value T is a value corresponding to the time T ′ taken from the point E ′ to the point F ′ of the motor current value, the routine proceeds to step 1140, where the count value T of the rising time elapsed counter is changed to the current value.
  • the rising time reference value T ′ that is, the current rising gradient reference value is set. In this way, the current increase gradient norm setting process is completed.
  • the current rising gradient abnormality determination process it is determined whether or not the rising current gain abnormality has occurred by comparing the current rising gradient at the current current rising time with the current rising gradient norm. Specifically, this determination is performed by comparing the current rise time T at the current rise with the current rise time reference value T ′.
  • the current rise time T at the time of current rise in the current lock control is calculated by the same method as the method for setting the current rise time reference value described above. Specifically, as shown in FIG. 24, when the motor current value becomes the first current monitor value when the current rises, the point E is defined as point F, and the abnormality detection timing is point F as the second current monitor value.
  • the current rise time T is obtained by calculating the time taken to reach the point.
  • FIG. 26 is a flowchart showing details of the current climb gradient abnormality determination process.
  • the current increase gradient abnormality determination process shown in step 165 of FIG. 4 is executed, each process shown in FIG. 26 is executed.
  • steps 1200 to 1235 processing similar to that in steps 1100 to 1135 in FIG. 25 is performed, and the current rise time T is obtained by obtaining the count value T of the rise time elapsed counter. Then, the process proceeds to step 1240 to determine whether or not the current current rise time T is less than the current rise time reference value T ′. That is, it is determined whether or not the current increase gradient at the current current increase is larger than the current increase gradient standard.
  • step 1245 there is no rising current gain abnormality, for example, a flag indicating that a rising current gain abnormality has occurred is reset, and the process is terminated. If an affirmative determination is made, a rise current gain abnormality has occurred, so the routine proceeds to step 1250, where there is a rise current gain abnormality, for example, a flag indicating that a rise current gain abnormality has occurred is set, and the process ends. In this way, it can be determined whether or not a rising current gain abnormality has occurred.
  • the determination result is used in the determination of step 240 in FIG. 5, and any one of the three abnormalities of inrush current gain abnormality, no-load current gain abnormality, and rising current gain abnormality is selected. If there is such an abnormality, the target current value MI # TARGET is corrected accordingly. As a result, the lock operation time required for the motor current value to reach the target current value MI # TARGET is corrected so that the lock control can be appropriately performed even in an abnormal state. You can avoid having to stop.
  • an abnormal time when the brake pad 11 is worn out and is no longer in the normal use range can be used as a reference value. In this way, it is possible to detect a rising current gain abnormality without being affected by the material of the brake pad 11.
  • abnormality detection timing at the time of a current rise is set to one here, as described in the third embodiment, a plurality of abnormality detection timings may be used.
  • two or more abnormality detection timings it becomes possible to reduce the influence of the change in gradient according to the characteristics of EPB2, and it is possible to detect an abnormality regardless of the characteristics of EPB2. It becomes possible.
  • the lock operation time is corrected longer, and if it is less than the lower limit value, the lock operation time is corrected shorter. It ’s fine.
  • the lock operation time is corrected longer, and if it is less than the lower limit value, the lock operation time is corrected shorter. Just do it.
  • the lock operation time may be corrected to be longer if the no-load current value upper limit CHiLimit is exceeded, and the lock operation time may be corrected to be shorter if it is less than the no-load current value lower limit CLowLimit.
  • the driver may be notified that a gain abnormality has occurred through the notification device 27.
  • the driver can grasp that the gain abnormality has occurred, and can take measures such as repair of the amplifier or the EPB-ECU 9.
  • the abnormality detection value and the variation coefficient are set in consideration of variations due to current monitor variation and pad wear.
  • these values may be variable depending on the situation. .
  • these values can be set according to the temperature of the motor 10. As shown in FIG. 1, for example, the motor temperature can be detected based on the detection signal of the temperature sensor 28 provided in the motor 10 input to the EPB-ECU 9.
  • the disc brake has been described as an example.
  • the brake mechanism integrated with the brake mechanism of the service brake 1 and the pressure mechanism of the EPB 2 is also applied to other types of brake mechanisms such as a drum brake.
  • the present invention can be applied to a brake system that is a pressurizing mechanism.
  • a drum brake is employed as the brake mechanism, the friction material and the friction target material are a brake shoe and a drum, respectively.
  • the EPB-ECU 9 is exemplified as the electronic control means, but the present invention is not limited to this.
  • the configuration including the ESC-ECU 8 and the EPB-ECU 9 as the control device has been described as an example, but the electronic control unit may be configured by making these as an integral ECU. It may be realized by another ECU.
  • the current rise time T required to rise from the first current monitor value to the second current monitor value is adopted as a value corresponding to the current rise gradient, and the current rise time reference T is used as the reference. 'It was set.
  • the current increase gradient itself may be adopted and set as the current increase gradient reference. In this case, since the current rising gradient standard is set in a state where the brake pad 11 is worn, it is normal if the current rising gradient is smaller than the current rising gradient standard. Is small, it can be determined that the rising current gain is abnormal.
  • the ratio of the current rising gradient to the current rising gradient norm (current rising gradient / current rising gradient norm) is calculated, and this ratio is used for current rising gradient comparison. If it is smaller than the abnormality detection value, it may be determined to be normal, and if it is larger, it may be determined that there is a rising current gain abnormality.
  • the current rise time T required to rise from the first current monitor value to the second current monitor value as a value corresponding to the current rise gradient.
  • a current rise time standard T ′ may be set as the standard.
  • the brake pad 11 described in the first to fourth embodiments is in a normal state when the brake pad 11 is not worn. It is also possible to detect the rising current gain abnormality by using both of the set current rising gradient norms.
  • the steps shown in each figure correspond to means for executing various processes.
  • the part of the EPB-ECU 9 that executes the processes of steps 110 and 150 is the lock control means
  • the part that executes the processes of steps 115 to 125 is the normative value setting means
  • the part that executes the processes of steps 155 to 165 is The part that executes the processing of the abnormality determining means
  • step 180 corresponds to the wear determining means
  • the part that executes the processing of step 250 corresponds to the correcting means.
  • a portion of the EPB-ECU 9 that instructs the notification device 27 to display that a gain abnormality has occurred when a gain abnormality is determined is displayed. This corresponds to the instruction means.

Abstract

[Problem] To enable detection of an abnormality showing only a relatively small change in current value, such as abnormal gain of an amplifier, such that actions to correct the abnormality can be taken. [Solution] Changes in a motor current value in three regions, namely, an inrush current period, a no-load current period, and a current rise period, under normal circumstances are pre-stored as normative values, and an abnormality is detected by comparing the normative values with the present value of the motor current detected when EPB is used. When an abnormality is detected, a correction is made to increase a locking operation time by setting a target current value to be larger than a value that is set under normal circumstances, for example. Consequently, even in the presence of an abnormality, locking control can be properly carried out, so the EPB does not need to be stopped. Therefore, an abnormality that appears only in the form of a relatively small change in current value such as abnormal gain of an amplifier can be detected, and an action to correct the abnormality can be taken.

Description

駐車ブレーキ制御装置Parking brake control device
 本発明は、電動駐車ブレーキ(以下、EPB(Electric parking brake)という)を有する車両用ブレーキシステムに適用されるEPB制御装置に関するものである。 The present invention relates to an EPB control device applied to a vehicle brake system having an electric parking brake (hereinafter referred to as EPB (Electric parking) brake).
 車両用のEPBでは、例えばEPBを駆動するためのケーブルの切断などの異常が生じたときに、EPBを作動させられなくなることから、直ちにこれを検出できるようにすることが望まれる。 In the case of an EPB for a vehicle, for example, when an abnormality such as cutting of a cable for driving the EPB occurs, the EPB cannot be operated, so that it is desired to be able to detect this immediately.
 このため、特許文献1において、EPB作動時における電流変化量を演算し、この電流変化量と正常範囲を示す所定の閾値とを比較することで、EPBの異常判定を行うようにする技術が提案されている。具体的には、図27に示すように、モータ電流値をモニタしてその電流変化量を演算し、電流変化量がモータ特性や摩擦部の剛性によって一意に決まる正常閾値を超える場合に、ケーブル断線などに起因するモータロックなどの異常が発生したと検知している。また、特許文献2において、EPBの作動時におけるモータ電流値をモニタし、正常範囲を示す閾値と実際の値とを比較することで異常を検出する技術が提案されている。 For this reason, Patent Document 1 proposes a technique for determining an EPB abnormality by calculating a current change amount during EPB operation and comparing the current change amount with a predetermined threshold value indicating a normal range. Has been. Specifically, as shown in FIG. 27, when the motor current value is monitored and the current change amount is calculated, and the current change amount exceeds a normal threshold uniquely determined by the motor characteristics and the rigidity of the friction part, the cable It is detected that an abnormality such as motor lock due to disconnection has occurred. Patent Document 2 proposes a technique for monitoring a motor current value during operation of an EPB and detecting an abnormality by comparing a threshold value indicating a normal range with an actual value.
特開2003-2186号公報JP 2003-2186 A 特開2004-314756号公報JP 2004-314756 A
 しかしながら、特許文献1に示される技術では、EPBを駆動するためのケーブルの断線やEPBの作動部の固着などの大きな電流値変化を示す異常については検出できるが、経年劣化による電流モニタ増幅回路(以下、増幅器という)のゲイン異常のような性能や機能の低下をもたらす程度で比較的小さな電流値変化しか生じない異常については検出できない。つまり、大きな電流値変化を示すような異常の発生しか検出できない。そして、各瞬間の電流変化量である電流微分値に基づいて異常判定を行っており、閾値から僅かに外れるような異常は検出しないようにしているが、このような状態の中には、電流のノイズやEPBの作動部の引っ掛かりなど、一過性で使用上何ら問題ないものが含まれてくる。このような現象まで異常として判定してしまわないように、フィルタを設けたり、閾値の幅を広げたりして感度を鈍らせる必要があるため、さらに小さな電流値変化しか示さない異常の検出を困難にしている。仮に異常を検出することができたとしても、どのような異常かを特定することはできず、その後の処置に結びつけることができない。 However, the technique disclosed in Patent Document 1 can detect abnormalities that show a large change in current value, such as disconnection of a cable for driving an EPB and adhesion of an operating part of the EPB, but a current monitor amplifier circuit ( Hereinafter, it is impossible to detect an abnormality in which only a relatively small change in current value is caused to the extent that the performance or function is reduced, such as a gain abnormality in an amplifier). That is, only the occurrence of an abnormality that shows a large current value change can be detected. Then, abnormality determination is performed based on the current differential value that is the current change amount at each moment, and an abnormality that slightly deviates from the threshold value is not detected. Such as noise and the catch of the working part of the EPB are included temporarily and have no problem in use. In order to prevent such a phenomenon from being judged as abnormal, it is necessary to reduce the sensitivity by providing a filter or widening the threshold range, so it is difficult to detect abnormalities that show only a small current value change. I have to. Even if an abnormality can be detected, what kind of abnormality cannot be specified cannot be linked to the subsequent treatment.
 また、特許文献2に示される技術では、特許文献1のように判定を行える領域がモータ電流値の上昇中の作動領域に限定されることはない。ところが、モータ電流値そのものを使って異常判定を行っていて、モータロック時の最大電流(拘束電流)とモータが無負荷状態で駆動されているときの最低電流(無負荷電流)を基準として異常判定を行っているだけであるため、本来有り得ないような異常値を示す不具合、ケーブルの断線や短絡、EPBの作動部の固着などといった異常しか判定できない。 Further, in the technique disclosed in Patent Document 2, the region in which the determination can be performed as in Patent Document 1 is not limited to the operation region in which the motor current value is increasing. However, the abnormality judgment is performed using the motor current value itself, and the abnormality is based on the maximum current (restraint current) when the motor is locked and the minimum current (no load current) when the motor is driven in a no-load state. Since only the determination is performed, it is possible to determine only an abnormality such as a malfunction indicating an abnormal value that is not possible originally, a disconnection or short circuit of the cable, or an adhesion of the working part of the EPB.
 本発明は上記点に鑑みて、増幅器のゲイン異常など、比較的小さな電流値変化しか示さない異常を検出でき、それに対する処置を行うことができるEPB制御装置を提供することを目的とする。 In view of the above points, an object of the present invention is to provide an EPB control device that can detect an abnormality that shows only a relatively small current value change, such as an amplifier gain abnormality, and can take measures against the abnormality.
 上記目的を達成するため、請求項1に記載の発明では、規範値設定手段(115~125)により、規範値設定のためのロック制御中におけるモータ電流値の変化を、該ロック制御開始時の突入電流時と、該突入電流時の後に一定値となる無負荷電流時と、該無負荷電流時から上昇していく電流上昇時の3領域に分け、突入電流時におけるモータ電流値の下降勾配の基準値となる電流下降勾配規範と、無負荷電流時におけるモータ電流値の基準値となる無負荷電流値規範と、電流上昇時におけるモータ電流値の上昇勾配の基準値となる電流上昇勾配規範とを設定している。そして、異常判定手段(155~165)にて、車輪を実際にロックする際にロック制御を実行するときに、該ロック制御中におけるモータ電流値に基づいて、突入電流時におけるモータ電流値の下降勾配となる電流下降勾配と、無負荷電流時におけるモータ電流値となる無負荷電流値と、電流上昇時におけるモータ電流値の上昇勾配となる電流上昇勾配を演算し、3領域それぞれにおいて、電流下降勾配と電流下降勾配規範との比較と無負荷電流値と無負荷電流値規範との比較および電流上昇勾配と電流上昇勾配規範との比較を行うことでゲイン異常の判定を行い、ゲイン異常が判定されると、補正手段(250)にて、電動モータ(10)を作動させている時間であるロック作動時間を補正することを特徴としている。 In order to achieve the above object, according to the first aspect of the present invention, the reference value setting means (115 to 125) changes the motor current value during the lock control for setting the reference value at the start of the lock control. It is divided into three areas: the inrush current, the no-load current that becomes a constant value after the inrush current, and the current rise that rises from the no-load current, and the descending slope of the motor current value at the inrush current Current descent norms that serve as reference values for motors, no-load current norms that serve as reference values for motor current values at no-load current, and current up-gradient norms that serve as reference values for motor current values that rise when current increases And are set. Then, when the lock control is executed when the wheels are actually locked by the abnormality determination means (155 to 165), the motor current value is decreased during the inrush current based on the motor current value during the lock control. The current descending slope that becomes the gradient, the no-load current value that becomes the motor current value at the time of no-load current, and the current rising slope that becomes the increasing slope of the motor current value when the current rises are calculated. A gain abnormality is determined by comparing the slope with the current descending slope norm, comparing the no-load current value with the no-load current norm, and comparing the current rising gradient with the current ascending norm. Then, the correction means (250) corrects the lock operation time which is the time during which the electric motor (10) is operated.
 このように、正常時における突入電流時や無負荷電流時および電流上昇時の3領域でのモータ電流値の変化を規範値として記憶しておき、それをEPB(2)の使用時におけるモータ電流値の現在値と比較することで異常検出を行い、異常が検出されると、補正手段(250)にてロック作動時間を補正するようにしている。これにより、異常時であっても、適切にロック制御を行うことが可能となり、EPB(2)を停止しなくても済むようにできる。したがって、ケーブルの断線や短絡、EPB(2)の機械的な破損のような故障だけでなく、増幅器のゲイン異常のような比較的小さな電流値変化しか示さない異常を検出でき、それに対する処置を行うことが可能となる。 In this way, changes in the motor current value in the three regions at the time of inrush current at normal time, at no load current, and at the time of current rise are stored as reference values, which are stored as motor currents when EPB (2) is used. An abnormality is detected by comparing with the current value, and when an abnormality is detected, the lock operation time is corrected by the correction means (250). As a result, even when there is an abnormality, it is possible to appropriately perform the lock control, so that it is not necessary to stop the EPB (2). Therefore, it is possible to detect not only failures such as cable breaks and short circuits, mechanical damage of EPB (2), but also abnormalities that show only a relatively small change in current value, such as amplifier gain abnormalities. Can be done.
 例えば、請求項2に記載したように、規範設定手段(115~125)にて、少なくとも電流上昇勾配規範については、摩擦材(11)の磨耗前となる正常時にロック制御を実行することで記憶するか、または設計時の定数として設定しておき、異常判定手段(155~165)にて、電流下降勾配が電流下降勾配規範より大きい、無負荷電流値が無負荷電流値規範より大きい、もしくは、電流上昇勾配が電流上昇勾配規範よりも大きいことによるゲイン異常か、電流下降勾配が電流下降勾配規範より小さい、無負荷電流値が無負荷電流値規範より小さい、もしくは、電流上昇勾配が電流上昇勾配規範よりも小さいことによるゲイン異常かを判定することができる。その場合、補正手段(250)により、異常判定手段(155~165)で大きいことによるゲイン異常と判定されたときにはロック作動時間を長くする補正を行い、小さいことによるゲイン異常と判定されたときにはロック作動時間を短くする補正を行うようにすれば良い。 For example, as described in claim 2, in the norm setting means (115 to 125), at least the current rising gradient norm is memorized by executing the lock control at a normal time before the friction material (11) is worn. Or set as a constant at the time of design, and in the abnormality determination means (155 to 165), the current descending gradient is larger than the current descending gradient norm, the no-load current value is larger than the no-load current value norm, or , Gain abnormality due to current rising gradient larger than current rising gradient norm, current falling gradient smaller than current falling gradient norm, no load current value smaller than no load current norm, or current rising gradient current rising Whether the gain is abnormal due to being smaller than the gradient criterion can be determined. In this case, the correction means (250) performs a correction to increase the lock operation time when the abnormality determination means (155 to 165) determines that the gain is abnormal due to a large value, and locks when it is determined that the gain is abnormal due to a small value. What is necessary is just to make correction | amendment which shortens an operating time.
 また、請求項3に記載したように、規範設定手段(115~125)にて、少なくとも電流上昇勾配規範については、摩擦材(11)の磨耗後となる異常時にロック制御を実行することで記憶するか、または設計時の定数として設定しておくこともできる。 In addition, as described in claim 3, the norm setting means (115 to 125) stores at least the current rising gradient norm by executing lock control at the time of abnormality after the friction material (11) is worn. Or it can be set as a constant at the time of design.
 請求項4に記載の発明では、異常判定手段(155~165)にてゲイン異常と判定されると報知装置(27)に対してゲイン異常が生じていることを表示させる表示指示手段を有していることを特徴としている。 The invention according to claim 4 further comprises display instruction means for displaying that a gain abnormality has occurred to the notification device (27) when the abnormality determination means (155 to 165) determines that a gain abnormality has occurred. It is characterized by having.
 このように、報知装置(27)を通じてドライバに対してゲイン異常が生じていることを報知するようにしても良い。これにより、ドライバはゲイン異常が生じていることを把握することができ、増幅器などの修理などの処置を取ることができる。 In this way, the driver may be informed that a gain abnormality has occurred through the notification device (27). Thereby, the driver can grasp that the gain abnormality has occurred, and can take measures such as repair of the amplifier.
 請求項5に記載の発明では、摩擦材(11)の磨耗を判定する磨耗判定手段(180)を有し、磨耗判定手段(180)は、規範値設定手段(125)にて設定された電流上昇勾配規範を摩擦材(11)の磨耗によるバラツキを加味した値として、さらに該磨耗によるバラツキを加味しない値の電流上昇勾配規範を設定し、異常判定手段(155)にてゲイン異常なしと判定されたときに、電流上昇勾配と磨耗によるバラツキを加味しない値の電流上昇勾配規範とを比較することでゲイン異常か否かを判定し、ゲイン異常であると判定されると摩擦材(11)の磨耗が生じていると判定することを特徴としている。 According to the fifth aspect of the present invention, the wear determination means (180) for determining the wear of the friction material (11) is provided, and the wear determination means (180) is a current set by the standard value setting means (125). Ascending slope norm is set to a value that takes into account variations due to wear of the friction material (11), and a current ascending slope norm with a value that does not take into account variations due to wear is set, and the abnormality determining means (155) determines that there is no gain abnormality. When it is determined, it is determined whether or not the gain is abnormal by comparing the current increasing gradient with a current increasing gradient standard that does not take into account variations due to wear. If it is determined that the gain is abnormal, the friction material (11) It is characterized in that it is determined that the wear of the material has occurred.
 このようにして、摩擦材(11)の磨耗判定を行うこともできる。そして、摩擦材(11)の磨耗が生じていることを検出したら、例えばドライバにその旨を報知するようにすれば、ドライバは摩擦材(11)の交換などの処置を取ることができる。 In this way, it is possible to determine the wear of the friction material (11). When it is detected that the friction material (11) is worn, the driver can take measures such as replacing the friction material (11) by notifying the driver, for example.
 請求項6に記載の発明では、規範値設定手段(125)は、電流上昇勾配規範として少なくとも異なる2つの期間(T1’、T2’)の第1の電流上昇勾配規範と第2の電流上昇勾配規範を設定し、異常判定手段(165)は、車輪を実際にロックする際のロック制御中におけるモータ電流値に基づいて、電流上昇時に、第1、第2の電流上昇勾配規範それぞれと対応する期間(T1、T2)における電流上昇勾配となる第1、第2の電流上昇勾配を演算し、これら第1、第2の電流上昇勾配と第1、第2の電流上昇勾配規範とをそれぞれ比較することでゲイン異常の判定を行うことを特徴としている。 In the invention described in claim 6, the reference value setting means (125) includes the first current increase gradient reference and the second current increase gradient in at least two different periods (T1 ′, T2 ′) as the current increase gradient reference. A standard is set, and the abnormality determination means (165) corresponds to each of the first and second current increase gradient standards when the current rises based on the motor current value during the lock control when the wheel is actually locked. The first and second current rising gradients that are current rising gradients in the period (T1, T2) are calculated, and the first and second current rising gradients are compared with the first and second current rising gradient norms, respectively. By doing so, it is characterized by determining a gain abnormality.
 このようにすれば、少なくとも2つの異常検出タイミングを持って電流上昇時の異常検出を行うことができる。これにより、EPB(2)の特性に応じた勾配の変化の影響を低減することが可能となり、EPB(2)の特性にかかわらず異常検出を行うことが可能となる。 In this way, abnormality detection at the time of current rise can be performed with at least two abnormality detection timings. As a result, it is possible to reduce the influence of a change in gradient according to the characteristics of EPB (2), and it is possible to detect an abnormality regardless of the characteristics of EPB (2).
 なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係の一例を示すものである。 In addition, the code | symbol in the bracket | parenthesis of each said means shows an example of a corresponding relationship with the specific means as described in embodiment mentioned later.
本発明の第1実施形態にかかる車両用ブレーキ装置の全体概要を示した模式図である。1 is a schematic diagram showing an overall outline of a vehicle brake device according to a first embodiment of the present invention. 車両用ブレーキ装置に備えられる後輪系のブレーキ機構の断面模式図である。It is a cross-sectional schematic diagram of the brake mechanism of the rear-wheel system with which a brake device for vehicles is equipped. 正常時と増幅器の故障等によるゲイン異常時、それぞれの場合におけるロック制御時のモータ電流値のモニタ値の変化を示したタイミングチャートである。6 is a timing chart showing changes in the monitor value of the motor current value during lock control in normal cases and when gain is abnormal due to an amplifier failure or the like. リリース動作にかかる駐車ブレーキ制御処理の全体フローチャートである。It is a whole flowchart of the parking brake control process concerning release operation | movement. ロック制御処理のフローチャートである。It is a flowchart of a lock control process. 目標制動力と目標モータ電流値上昇量TMIUPの関係を示したマップである。6 is a map showing a relationship between a target braking force and a target motor current value increase amount TMIUP. M/C圧と減算値IDOWNの関係を示したマップである。It is the map which showed the relationship between M / C pressure and the subtraction value IDOWN. 突入電流時のモータ電流値の比較図である。It is a comparison figure of the motor current value at the time of inrush current. 突入電流時の電流下降勾配規範設定処理の詳細を示したフローチャートである。It is the flowchart which showed the detail of the current descent | fall gradient norm setting process at the time of inrush current. 無負荷電流時のモータ電流値の比較図である。It is a comparison figure of the motor current value at the time of no load current. 無負荷電流時の無負荷電流値規範設定処理の詳細を示したフローチャートである。It is the flowchart which showed the detail of the no load current value norm setting process at the time of no load current. 電流上昇時のモータ電流値の比較図である。It is a comparison figure of the motor current value at the time of current rise. 電流上昇時の電流上昇勾配規範設定処理の詳細を示したフローチャートである。It is the flowchart which showed the detail of the electric current climb gradient norm setting process at the time of an electric current rise. ロック・リリース表示処理の詳細を示したフローチャートである。It is the flowchart which showed the detail of lock release display processing. 突入電流時の電流下降勾配異常判定処理の詳細を示したフローチャートである。It is the flowchart which showed the detail of the current descent gradient abnormality determination process at the time of inrush current. 無負荷電流時の無負荷電流値異常判定処理の詳細を示したフローチャートである。It is the flowchart which showed the detail of the no load current value abnormality determination process at the time of no load current. 電流上昇時の電流上昇勾配異常判定処理の詳細を示したフローチャートである。It is the flowchart which showed the detail of the current climb gradient abnormality determination process at the time of current rise. リリース制御処理のフローチャートである。It is a flowchart of a release control process. 本発明の第2実施形態で説明するリリース動作にかかわる駐車ブレーキ制御処理の全体フローチャートである。It is a whole flowchart of the parking brake control process in connection with release operation | movement demonstrated in 2nd Embodiment of this invention. モータ電流値として実際に出力しようとしている実電流値とモニタ値との関係を示した図である。It is the figure which showed the relationship between the actual electric current value which is actually going to output as a motor electric current value, and a monitor value. パッド磨耗判定処理の詳細を示したフローチャートである。It is the flowchart which showed the detail of the pad abrasion determination process. 正常時と増幅器の故障等によるゲイン異常時における電流上昇時のモータ電流値の比較図である。It is a comparison figure of the motor electric current value at the time of the electric current rise at the time of normal and the gain abnormality by amplifier failure. 駆動電源の電圧変動(電圧上昇)が生じた場合におけるモータ電流値の変化を示した図である。It is the figure which showed the change of the motor electric current value when the voltage fluctuation (voltage rise) of a drive power supply arises. ブレーキパッドが磨耗した時(異常時)と正常時の電流上昇時のモータ電流値の比較図である。It is a comparison figure of the motor current value at the time of a current rise when the brake pad is worn (at the time of abnormality) and normal. 電流上昇時の電流上昇勾配規範設定処理の詳細を示したフローチャートである。It is the flowchart which showed the detail of the electric current climb gradient norm setting process at the time of an electric current rise. 電流上昇時の電流上昇勾配異常判定処理の詳細を示したフローチャートである。It is the flowchart which showed the detail of the current climb gradient abnormality determination process at the time of current rise. 従来の異常判定の手法を示したタイミングチャートである。It is the timing chart which showed the method of the conventional abnormality determination.
 以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments, parts that are the same or equivalent to each other will be described with the same reference numerals.
 (第1実施形態)
 本発明の第1実施形態について説明する。本実施形態では、後輪系にディスクブレーキタイプのEPBを適用している車両用ブレーキ装置を例に挙げて説明する。図1は、本実施形態にかかる車両用ブレーキ装置の全体概要を示した模式図である。また、図2は、車両用ブレーキ装置に備えられる後輪系のブレーキ機構の断面模式図である。以下、これらの図を参照して説明する。
(First embodiment)
A first embodiment of the present invention will be described. In the present embodiment, a vehicle brake device in which a disc brake type EPB is applied to the rear wheel system will be described as an example. FIG. 1 is a schematic diagram showing an overall outline of a vehicle brake device according to the present embodiment. FIG. 2 is a schematic sectional view of a rear-wheel brake mechanism provided in the vehicle brake device. Hereinafter, description will be given with reference to these drawings.
 図1に示すように、車両用ブレーキ装置は、ドライバの踏力に基づいてサービスブレーキ力を発生させるサービスブレーキ1と駐車時などに車両の移動を規制するためのEPB2とが備えられている。 As shown in FIG. 1, the vehicular brake device includes a service brake 1 that generates a service brake force based on a driver's stepping force and an EPB 2 that regulates the movement of the vehicle during parking.
 サービスブレーキ1は、ドライバによるブレーキペダル3の踏み込みに基づいてブレーキ液圧を発生させ、このブレーキ液圧に基づいてサービスブレーキ力を発生させる液圧ブレーキ機構である。具体的には、サービスブレーキ1は、ドライバによるブレーキペダル3の踏み込みに応じた踏力を倍力装置4にて倍力したのち、この倍力された踏力に応じたブレーキ液圧をマスタシリンダ(以下、M/Cという)5内に発生させる。そして、このブレーキ液圧を各車輪のブレーキ機構に備えられたホイールシリンダ(以下、W/Cという)6に伝えることでサービスブレーキ力を発生させる。また、M/C5とW/C6との間にブレーキ液圧制御用のアクチュエータ7が備えられており、サービスブレーキ1により発生させるサービスブレーキ力を調整し、車両の安全性を向上させるための各種制御(例えば、アンチスキッド制御等)を行える構造とされている。 The service brake 1 is a hydraulic brake mechanism that generates a brake hydraulic pressure based on depression of the brake pedal 3 by a driver and generates a service brake force based on the brake hydraulic pressure. Specifically, the service brake 1 boosts the pedaling force according to the depression of the brake pedal 3 by the driver with the booster 4, and then applies the brake fluid pressure according to the boosted pedaling force to the master cylinder (hereinafter referred to as the master cylinder). , M / C). Then, the brake fluid pressure is transmitted to a wheel cylinder (hereinafter referred to as W / C) 6 provided in the brake mechanism of each wheel, thereby generating a service brake force. In addition, an actuator 7 for controlling the brake fluid pressure is provided between the M / C 5 and the W / C 6, and various types for improving the safety of the vehicle by adjusting the service brake force generated by the service brake 1. The structure is such that control (for example, anti-skid control) can be performed.
 アクチュエータ7を用いた各種制御は、サービスブレーキ力を制御するESC(Electronic Stability Control)-ECU8にて実行される。例えば、ESC-ECU8からアクチュエータ7に備えられる図示しない各種制御弁やポンプ駆動用のモータを制御するための制御電流を出力することにより、アクチュエータ7に備えられる液圧回路を制御し、W/C6に伝えられるW/C圧を制御する。これにより、車輪スリップの回避などを行い、車両の安全性を向上させる。例えば、アクチュエータ7は、各車輪毎に、W/C6に対してM/C5内に発生させられたブレーキ液圧もしくはポンプ駆動により発生させられたブレーキ液圧が加えられることを制御する増圧制御弁や、各W/C6内のブレーキ液をリザーバに供給することでW/C圧を減少させる減圧制御弁等を備えており、W/C圧を増圧・保持・減圧制御できる構成とされている。また、アクチュエータ7は、サービスブレーキ1の自動加圧機能を実現可能にしており、ポンプ駆動および各種制御弁の制御に基づいて、ブレーキ操作がない状態であっても自動的にW/C6を加圧できるようにしている。このアクチュエータ7の構成に関しては、従来より周知となっているため、ここでは詳細については省略する。 Various controls using the actuator 7 are executed by an ESC (Electronic Stability Control) -ECU 8 that controls the service brake force. For example, by outputting a control current for controlling various control valves (not shown) provided in the actuator 7 and a motor for driving the pump from the ESC-ECU 8, the hydraulic circuit provided in the actuator 7 is controlled, and the W / C 6 The W / C pressure transmitted to is controlled. Thereby, avoidance of wheel slip is performed, and the safety of the vehicle is improved. For example, the actuator 7 is a pressure increase control that controls whether the brake fluid pressure generated in the M / C5 or the brake fluid pressure generated by the pump drive is applied to the W / C6 for each wheel. It is equipped with a valve, a pressure reduction control valve that reduces the W / C pressure by supplying brake fluid in each W / C 6 to the reservoir, and is configured to increase, hold, and control the pressure reduction. ing. In addition, the actuator 7 can realize the automatic pressurizing function of the service brake 1, and automatically applies W / C6 even when there is no brake operation based on the pump drive and control of various control valves. It is possible to press. Since the configuration of the actuator 7 has been conventionally known, the details are omitted here.
 一方、EPB2は、モータ10にてブレーキ機構を制御することで駐車ブレーキ力を発生させるものであり、モータ10の駆動を制御するEPB制御装置(以下、EPB-ECUという)9を有して構成されている。 On the other hand, the EPB 2 generates a parking brake force by controlling the brake mechanism with the motor 10 and has an EPB control device (hereinafter referred to as EPB-ECU) 9 for controlling the driving of the motor 10. Has been.
 ブレーキ機構は、本実施形態の車両用ブレーキ装置においてブレーキ力を発生させる機械的構造であり、前輪系のブレーキ機構はサービスブレーキ1の操作によってサービスブレーキ力を発生させる構造とされているが、後輪系のブレーキ機構は、サービスブレーキ1の操作とEPB2の操作の双方に対してブレーキ力を発生させる共用の構造とされている。前輪系のブレーキ機構は、後輪系のブレーキ機構に対して、EPB2の操作に基づいて駐車ブレーキ力を発生させる機構をなくした従来から一般的に用いられているブレーキ機構であるため、ここでは説明を省略し、以下の説明では後輪系のブレーキ機構について説明する。 The brake mechanism is a mechanical structure that generates a braking force in the vehicle brake device according to the present embodiment, and the front wheel brake mechanism is configured to generate a service brake force by operating the service brake 1. The wheel system brake mechanism has a common structure for generating a braking force for both the operation of the service brake 1 and the operation of the EPB 2. Since the front-wheel brake mechanism is a brake mechanism that is generally used from the past without a mechanism that generates a parking brake force based on the operation of the EPB 2 with respect to the rear-wheel brake mechanism, The description is omitted, and in the following description, a rear wheel brake mechanism will be described.
 後輪系のブレーキ機構では、サービスブレーキ1を作動させたときだけでなくEPB2を作動させたときにも、図2に示す摩擦材であるブレーキパッド11を押圧し、ブレーキパッド11によって被摩擦材であるブレーキディスク12を挟み込むことにより、ブレーキパッド11とブレーキディスク12との間に摩擦力を発生させ、ブレーキ力を発生させる。 In the rear wheel brake mechanism, not only when the service brake 1 is operated but also when the EPB 2 is operated, the brake pad 11 which is a friction material shown in FIG. By sandwiching the brake disk 12, a frictional force is generated between the brake pad 11 and the brake disk 12 to generate a braking force.
 具体的には、ブレーキ機構は、図1に示すキャリパ13内において、図2に示すようにブレーキパッド11を押圧するためのW/C6のボディ14に直接固定されているモータ10を回転させることにより、モータ10の駆動軸10aに備えられた平歯車15を回転させる。そして、平歯車15に噛合わされた平歯車16にモータ10の回転力(出力)を伝えることによりブレーキパッド11を移動させ、EPB2による駐車ブレーキ力を発生させる。 Specifically, the brake mechanism rotates the motor 10 directly fixed to the body 14 of the W / C 6 for pressing the brake pad 11 as shown in FIG. 2 in the caliper 13 shown in FIG. Thus, the spur gear 15 provided on the drive shaft 10a of the motor 10 is rotated. And the brake pad 11 is moved by transmitting the rotational force (output) of the motor 10 to the spur gear 16 meshed with the spur gear 15, and the parking brake force by EPB2 is generated.
 キャリパ13内には、W/C6およびブレーキパッド11に加えて、ブレーキパッド11に挟み込まれるようにしてブレーキディスク12の端面の一部が収容されている。W/C6は、シリンダ状のボディ14の中空部14a内に通路14bを通じてブレーキ液圧を導入することで、ブレーキ液収容室である中空部14a内にW/C圧を発生させられるようになっており、中空部14a内に回転軸17、推進軸18、ピストン19などを備えて構成されている。 In the caliper 13, in addition to the W / C 6 and the brake pad 11, a part of the end surface of the brake disk 12 is accommodated so as to be sandwiched between the brake pads 11. The W / C 6 can generate a W / C pressure in the hollow portion 14a which is a brake fluid storage chamber by introducing the brake fluid pressure into the hollow portion 14a of the cylindrical body 14 through the passage 14b. In the hollow portion 14a, the rotary shaft 17, the propulsion shaft 18, the piston 19 and the like are provided.
 回転軸17は、一端がボディ14に形成された挿入孔14cを通じて平歯車16に連結され、平歯車16が回動させられると、平歯車16の回動に伴って回動させられる。この回転軸17における平歯車16と連結された端部とは反対側の端部において、回転軸17の外周面には雄ネジ溝17aが形成されている。一方、回転軸17の他端は、挿入孔14cに挿入されることで軸支されている。具体的には、挿入孔14cには、Oリング20と共に軸受け21が備えられており、Oリング20にて回転軸17と挿入孔14cの内壁面との間を通じてブレーキ液が漏れ出さないようにされながら、軸受け21により回転軸17の他端を軸支持している。 The rotating shaft 17 is connected to the spur gear 16 at one end through an insertion hole 14 c formed in the body 14. When the spur gear 16 is rotated, the rotating shaft 17 is rotated with the rotation of the spur gear 16. A male screw groove 17 a is formed on the outer peripheral surface of the rotary shaft 17 at the end of the rotary shaft 17 opposite to the end connected to the spur gear 16. On the other hand, the other end of the rotating shaft 17 is pivotally supported by being inserted into the insertion hole 14c. Specifically, the insertion hole 14c is provided with a bearing 21 together with an O-ring 20 so that the brake fluid does not leak through the O-ring 20 between the rotary shaft 17 and the inner wall surface of the insertion hole 14c. However, the bearing 21 supports the other end of the rotating shaft 17.
 推進軸18は、中空状の筒部材からなるナットにて構成され、内壁面に回転軸17の雄ネジ溝17aと螺合する雌ネジ溝18aが形成されている。この推進軸18は、例えば回転防止用のキーを備えた円柱状もしくは多角柱状に構成されることで、回転軸17が回動しても回転軸17の回動中心を中心として回動させられない構造になっている。このため、回転軸17が回動させられると、雄ネジ溝17aと雌ネジ溝18aとの噛合いにより、回転軸17の回転力を回転軸17の軸方向に推進軸18を移動させる力に変換する。推進軸18は、モータ10の駆動が停止されると、雄ネジ溝17aと雌ネジ溝18aとの噛合いによる摩擦力により同じ位置で止まるようになっており、目標とする駐車ブレーキ力になったときにモータ10の駆動を停止すれば、その位置に推進軸18が保持され、所望の駐車ブレーキ力を保持してセルフロックできるようになっている。 The propulsion shaft 18 is constituted by a nut made of a hollow cylindrical member, and a female screw groove 18a that is screwed with the male screw groove 17a of the rotary shaft 17 is formed on the inner wall surface. The propulsion shaft 18 is configured in a columnar shape or a polygonal column shape having a key for preventing rotation, for example, so that even if the rotation shaft 17 is rotated, the propulsion shaft 18 is rotated around the rotation center of the rotation shaft 17. It has no structure. For this reason, when the rotating shaft 17 is rotated, the rotational force of the rotating shaft 17 is changed to a force for moving the propulsion shaft 18 in the axial direction of the rotating shaft 17 due to the engagement between the male screw groove 17a and the female screw groove 18a. Convert. When the driving of the motor 10 is stopped, the propulsion shaft 18 stops at the same position due to the frictional force generated by the engagement between the male screw groove 17a and the female screw groove 18a, resulting in a target parking brake force. If the driving of the motor 10 is stopped at that time, the propulsion shaft 18 is held at that position, and a desired parking brake force can be held and self-locking can be performed.
 ピストン19は、推進軸18の外周を囲むように配置されるもので、有底の円筒部材もしくは多角筒部材にて構成され、外周面がボディ14に形成された中空部14aの内壁面と接するように配置されている。ピストン19の外周面とボディ14の内壁面との間のブレーキ液洩れが生じないように、ボディ14の内壁面にシール部材22が備えられ、ピストン19の端面にW/C圧を付与できる構造とされている。シール部材22は、ロック制御後のリリース制御時にピストン19を引き戻すための反力を発生させるために用いられる。このシール部材22を備えてあるため、基本的には旋回中に傾斜したブレーキディスク12によってブレーキパッド11およびピストン19がシール部材22の弾性変形量を超えない範囲で押し込まれても、それらをブレーキディスク12側に押し戻してブレーキディスク12とブレーキパッド11との間が所定のクリアランスで保持されるようにできる。 The piston 19 is disposed so as to surround the outer periphery of the propulsion shaft 18, is configured by a bottomed cylindrical member or a polygonal cylindrical member, and the outer peripheral surface is in contact with the inner wall surface of the hollow portion 14 a formed in the body 14. Are arranged as follows. A structure in which a seal member 22 is provided on the inner wall surface of the body 14 and W / C pressure can be applied to the end surface of the piston 19 so as not to cause brake fluid leakage between the outer peripheral surface of the piston 19 and the inner wall surface of the body 14. It is said that. The seal member 22 is used to generate a reaction force for pulling back the piston 19 during release control after lock control. Since the seal member 22 is provided, basically, even if the brake pad 11 and the piston 19 are pushed in by the brake disc 12 inclined during turning within a range not exceeding the elastic deformation amount of the seal member 22, they are braked. It can be pushed back to the disc 12 side so that the gap between the brake disc 12 and the brake pad 11 is held with a predetermined clearance.
 また、ピストン19は、回転軸17が回転しても回転軸17の回動中心を中心として回動させられないように、推進軸18に回転防止用のキーが備えられる場合にはそのキーが摺動するキー溝が備えられ、推進軸18が多角柱状とされる場合にはそれと対応する形状の多角筒状とされる。 When the propulsion shaft 18 is provided with a key for preventing rotation so that the piston 19 is not rotated about the rotation center of the rotation shaft 17 even if the rotation shaft 17 rotates, the key is When a sliding keyway is provided and the propulsion shaft 18 has a polygonal column shape, it has a polygonal cylindrical shape with a corresponding shape.
 このピストン19の先端にブレーキパッド11が配置され、ピストン19の移動に伴ってブレーキパッド11を紙面左右方向に移動させるようになっている。具体的には、ピストン19は、推進軸18の移動に伴って紙面左方向に移動可能で、かつ、ピストン19の端部(ブレーキパッド11が配置された端部と反対側の端部)にW/C圧が付与されることで推進軸18から独立して紙面左方向に移動可能な構成とされている。そして、推進軸18が通常リリースのときの待機位置であるリリース位置(モータ10が回転させられる前の状態)のときに、中空部14a内のブレーキ液圧が付与されていない状態(W/C圧=0)であれば、後述するシール部材22の弾性力によりピストン19が紙面右方向に移動させられ、ブレーキパッド11をブレーキディスク12から離間させられるようになっている。また、モータ10が回転させられて推進軸18が初期位置から紙面左方向に移動させられているときには、W/C圧が0になっても、移動した推進軸18によってピストン19の紙面右方向への移動が規制され、ブレーキパッド11がその場所で保持される。 The brake pad 11 is disposed at the tip of the piston 19, and the brake pad 11 is moved in the left-right direction on the paper surface as the piston 19 moves. Specifically, the piston 19 can move to the left in the drawing as the propulsion shaft 18 moves, and at the end of the piston 19 (the end opposite to the end where the brake pad 11 is disposed). By applying the W / C pressure, it is configured to be movable in the left direction on the paper surface independently of the propulsion shaft 18. When the propulsion shaft 18 is in a release position (a state before the motor 10 is rotated), which is a standby position when the propulsion shaft 18 is in a normal release state, the brake fluid pressure in the hollow portion 14a is not applied (W / C). If pressure = 0), the piston 19 is moved to the right in the drawing by the elastic force of the seal member 22 described later, so that the brake pad 11 can be separated from the brake disk 12. Further, when the motor 10 is rotated and the propulsion shaft 18 is moved leftward from the initial position, even if the W / C pressure becomes zero, the propulsion shaft 18 that has moved moves the piston 19 rightward on the paper surface. The brake pad 11 is held at that location.
 このように構成されたブレーキ機構では、サービスブレーキ1が操作されると、それにより発生させられたW/C圧に基づいてピストン19が紙面左方向に移動させられることでブレーキパッド11がブレーキディスク12に押圧され、サービスブレーキ力を発生させる。また、EPB2が操作されると、モータ10が駆動されることで平歯車15が回転させられ、それに伴って平歯車16および回転軸17が回転させられるため、雄ネジ溝17aおよび雌ネジ溝18aの噛合いに基づいて推進軸18がブレーキディスク12側(紙面左方向)に移動させられる。そして、それに伴って推進軸18の先端がピストン19の底面に当接してピストン19を押圧し、ピストン19も同方向に移動させられることでブレーキパッド11がブレーキディスク12に押圧され、駐車ブレーキ力を発生させる。このため、サービスブレーキ1の操作とEPB2の操作の双方に対してブレーキ力を発生させる共用のブレーキ機構とすることが可能となる。 In the brake mechanism configured as described above, when the service brake 1 is operated, the piston 19 is moved to the left in the drawing based on the W / C pressure generated thereby, so that the brake pad 11 is brake disc. 12 to generate a service brake force. Further, when the EPB 2 is operated, the spur gear 15 is rotated by driving the motor 10, and the spur gear 16 and the rotating shaft 17 are rotated accordingly, so that the male screw groove 17a and the female screw groove 18a are rotated. The propulsion shaft 18 is moved to the brake disk 12 side (left direction in the drawing) based on the meshing of the two. Accordingly, the tip of the propulsion shaft 18 abuts against the bottom surface of the piston 19 to press the piston 19, and the piston 19 is also moved in the same direction, whereby the brake pad 11 is pressed against the brake disk 12, and the parking brake force Is generated. For this reason, it becomes possible to set it as the common brake mechanism which generate | occur | produces braking force with respect to both operation of the service brake 1 and operation of EPB2.
 また、このようなブレーキ機構では、EPB2を作動させたときに、W/C圧が0でブレーキパッド11がブレーキディスク12に押圧される前の状態、もしくは、サービスブレーキ1が作動されることでW/C圧が発生させられていたとしても推進軸18がピストン19に接する前の状態のときには、推進軸18に掛かる負荷が軽減され、モータ10はほぼ無負荷状態で駆動される。そして、推進軸18がピストン19に接している状態でブレーキパッド11にてブレーキディスク12を押圧するときに、EPB2による駐車ブレーキ力が発生させられることになり、モータ10に負荷が掛かり、その負荷の大きさに応じてモータ10に流されるモータ電流値が変化する。このため、モータ電流値を確認することにより、EPB2による駐車ブレーキ力の発生状態を確認することができるようになっている。 In such a brake mechanism, when the EPB 2 is operated, the W / C pressure is 0 and the brake pad 11 is not pressed against the brake disc 12 or the service brake 1 is operated. Even if the W / C pressure is generated, when the propulsion shaft 18 is in a state before contacting the piston 19, the load applied to the propulsion shaft 18 is reduced, and the motor 10 is driven in a substantially no-load state. When the brake disc 12 is pressed by the brake pad 11 while the propulsion shaft 18 is in contact with the piston 19, the parking brake force by the EPB 2 is generated, and a load is applied to the motor 10, and the load The value of the motor current that flows to the motor 10 changes according to the magnitude of the motor. For this reason, the generation state of the parking brake force by EPB2 can be confirmed by confirming the motor current value.
 EPB-ECU9は、CPU、ROM、RAM、I/Oなどを備えた周知のマイクロコンピュータによって構成され、ROMなどに記憶されたプログラムにしたがってモータ10の回転を制御することにより駐車ブレーキ制御を行うものである。このEPB-ECU9が本発明の駐車ブレーキ制御装置に相当する。 The EPB-ECU 9 is constituted by a known microcomputer having a CPU, ROM, RAM, I / O, etc., and performs parking brake control by controlling the rotation of the motor 10 according to a program stored in the ROM. It is. This EPB-ECU 9 corresponds to the parking brake control device of the present invention.
 EPB-ECU9は、例えば車室内のインストルメントパネル(図示せず)に備えられた操作スイッチ(SW)23の操作状態に応じた信号等を入力し、操作SW23の操作状態に応じてモータ10を駆動する。さらに、EPB-ECU9は、モータ電流値に基づいてロック制御やリリース制御などを実行しており、その制御状態に基づいてロック制御中であることやロック制御によって車輪がロック状態であること、および、リリース制御中であることやリリース制御によって車輪がリリース状態(EPB解除状態)であることを把握している。そして、EPB-ECU9は、インストルメントパネルに備えられたロック/リリース表示ランプ24に対し、モータ10の駆動状態に応じて、車輪がロック状態となっているか否かを示す信号を出力している。 The EPB-ECU 9 inputs, for example, a signal corresponding to the operation state of an operation switch (SW) 23 provided in an instrument panel (not shown) in the vehicle interior, and turns the motor 10 in accordance with the operation state of the operation SW 23. To drive. Further, the EPB-ECU 9 performs lock control, release control, and the like based on the motor current value, the lock control is being performed based on the control state, the wheel is in the locked state by the lock control, and The vehicle knows that the release control is in progress and that the wheel is in the release state (EPB release state). Then, the EPB-ECU 9 outputs a signal indicating whether or not the wheel is locked to the lock / release indicator lamp 24 provided on the instrument panel according to the driving state of the motor 10. .
 以上のように構成された車両用ブレーキ装置では、基本的には、車両走行時にサービスブレーキ1によってサービスブレーキ力を発生させることで車両に制動力を発生させるという動作を行う。また、サービスブレーキ1によって停車させられた際に、ドライバが操作SW23を押下してEPB2を作動させて駐車ブレーキ力を発生させることで停車状態を維持したり、その後に駐車ブレーキ力を解除するという動作を行う。すなわち、サービスブレーキ1の動作としては、車両走行時にドライバによるブレーキペダル操作が行われると、M/C5に発生したブレーキ液圧がW/C6に伝えられることでサービスブレーキ力を発生させる。また、EPB2の動作としては、モータ10を駆動することでピストン19を移動させ、ブレーキパッド11をブレーキディスク12に押し付けることで駐車ブレーキ力を発生させて車輪をロック状態にしたり、ブレーキパッド11をブレーキディスク12から離すことで駐車ブレーキ力を解除して車輪をリリース状態にする。 The vehicle brake device configured as described above basically performs an operation of generating a braking force on the vehicle by generating a service brake force by the service brake 1 when the vehicle travels. In addition, when the vehicle is stopped by the service brake 1, the driver presses the operation SW 23 to operate the EPB 2 to generate the parking brake force, thereby maintaining the stopped state, and then releasing the parking brake force. Perform the action. That is, as an operation of the service brake 1, when a driver operates a brake pedal during vehicle travel, the brake fluid pressure generated in the M / C 5 is transmitted to the W / C 6 to generate a service brake force. The operation of the EPB 2 is to move the piston 19 by driving the motor 10 and generate a parking brake force by pressing the brake pad 11 against the brake disc 12 to lock the wheel, By releasing the brake disc 12, the parking brake force is released and the wheel is released.
 具体的には、ロック・リリース制御により、駐車ブレーキ力を発生させたり解除したりしている。ロック制御では、モータ10を正回転させることによりEPB2を作動させ、EPB2にて所望の駐車ブレーキ力を発生させられる位置でモータ10の回転を停止し、この状態を維持する。これにより、所望の駐車ブレーキ力を発生させる。リリース制御では、モータ10を逆回転させることによりEPB2を作動させ、EPB2にて発生させられている駐車ブレーキ力を解除する。 Specifically, parking brake force is generated or released by lock / release control. In the lock control, the EPB 2 is operated by rotating the motor 10 forward, and the rotation of the motor 10 is stopped at a position where a desired parking brake force can be generated by the EPB 2, and this state is maintained. Thereby, a desired parking brake force is generated. In release control, EPB2 is operated by rotating motor 10 reversely, and the parking brake force generated in EPB2 is released.
 続いて、上記のように構成されたブレーキシステムを用いてEPB-ECU9が上記各種機能部および図示しない内蔵のROMに記憶されたプログラムに従って実行する具体的な駐車ブレーキ制御について説明する。 Subsequently, specific parking brake control executed by the EPB-ECU 9 in accordance with a program stored in the various functional units and a built-in ROM (not shown) using the brake system configured as described above will be described.
 まず、具体的な駐車ブレーキ制御の説明に先立ち、駐車ブレーキ制御において実行される異常検出の考え方について、図3を参照して説明する。図3は、正常時と増幅器の故障等によるゲイン異常時、それぞれの場合におけるロック制御時のモータ電流値のモニタ値の変化の一例を示したタイミングチャートである。 First, prior to description of specific parking brake control, the concept of abnormality detection executed in parking brake control will be described with reference to FIG. FIG. 3 is a timing chart showing an example of changes in the monitor value of the motor current value during lock control in each case when the gain is abnormal due to a failure of the amplifier or the like.
 ロック制御の開始当初には、まだモータ10に対して負荷が掛かっていないため、ロック制御開始時に突入電流が発生したのち無負荷状態の際に流れる一定の無負荷電流となる。その後、ブレーキパッド11がブレーキディスク12に当接してモータ10に対して負荷が掛かると、その負荷に応じて徐々にモータ電流値が上昇していくという変化を示す。そして、増幅器の故障等によるゲイン異常時には、例えば、正常時と比較して、突入電流時や無負荷電流時および電流上昇時においてモータ電流値が大きな値となる。 Since the load is not applied to the motor 10 at the beginning of the lock control, a constant no-load current flows in the no-load state after an inrush current is generated at the start of the lock control. Thereafter, when the brake pad 11 contacts the brake disk 12 and a load is applied to the motor 10, the motor current value gradually increases according to the load. When the gain is abnormal due to an amplifier failure or the like, for example, the motor current value is larger at the time of inrush current, no load current, and current rise than at normal time.
 したがって、正常時における突入電流時や無負荷電流時および電流上昇時の3領域でのモータ電流値の変化を規範値として記憶しておき、それをEPB2の使用時におけるモータ電流値の現在値と比較することで異常検出を行う。例えば、図3に示した例で言えば、突入電流時には、モータ電流値の下降勾配が正常時と比較して異常時の方が大きくなる。無負荷電流時には、モータ電流値の大きさが正常時と比較して異常時の方が大きくなる。電流上昇時には、モータ電流値の上昇勾配が正常時と比較して異常時の方が大きくなる。 Therefore, the change of the motor current value in the three areas at the time of inrush current, no-load current at normal time, and current rise is stored as a reference value, which is used as the current value of the motor current value when using EPB2. Abnormality detection is performed by comparison. For example, in the example shown in FIG. 3, at the time of inrush current, the descending gradient of the motor current value is larger in the abnormal time than in the normal time. At the time of no load current, the magnitude of the motor current value is larger at the time of abnormality than at normal time. When the current rises, the rising slope of the motor current value becomes larger when the abnormality is greater than when it is normal.
 これに基づいて異常検出を行い、異常が検出されるとそれに応じた処置を行う。例えば図3中に示したように、電流上昇時に異常が検出された場合には、異常検出フラグをオンするなどによって異常時であることを示す。そして、異常時には、例えば正常時よりも早く目標とするモータ電流値(以下、目標電流値という)に到達してしまうことでロック作動時間が短くなるため、ロック作動時間を長くするように補正する。例えば、目標電流値を正常時に設定される値よりも大きくすることでロック作動時間を長くするように補正する。これにより、異常時であっても、適切にロック制御を行うことが可能となり、EPB2を停止しなくても済むようにできる。 異常 Anomaly detection is performed based on this, and when an anomaly is detected, a corresponding action is taken. For example, as shown in FIG. 3, when an abnormality is detected when the current rises, it indicates that an abnormality has occurred by turning on an abnormality detection flag. In an abnormal state, for example, a target motor current value (hereinafter referred to as a target current value) is reached earlier than in a normal state, so that the lock operation time is shortened. Therefore, the lock operation time is corrected to be increased. . For example, the lock operation time is corrected to be longer by setting the target current value to be larger than the value set during normal operation. As a result, even when there is an abnormality, it is possible to appropriately perform the lock control, and it is possible to avoid stopping the EPB 2.
 上記の考え方に基づいて、本実施形態の駐車ブレーキ制御を実行している。以下、本実施形態の駐車ブレーキ制御の詳細について説明する。図4は、EPB-ECU9が実行する駐車ブレーキ制御処理の全体フローチャートである。この処理は、例えばイグニッションスイッチがオンされている期間中に所定の制御周期毎に実行される。 Based on the above concept, the parking brake control of this embodiment is executed. Hereinafter, details of the parking brake control of the present embodiment will be described. FIG. 4 is an overall flowchart of the parking brake control process executed by the EPB-ECU 9. This process is executed for every predetermined control cycle during a period in which the ignition switch is turned on, for example.
 まず、ステップ100では、初期出荷時であるか否かを判定する。初期出荷時を正常時と想定し、そのときの突入電流時や無負荷電流時および電流上昇時の3領域でのモータ電流値の変化を規範値として記憶するために、本判定を行っている。本駐車ブレーキ制御処理が初めて実行されるまでその旨を示すフラグがセットされた状態となるようにしてあり、このフラグの状態を確認することで、初期出荷時であるか否かが判定できるようになっている。 First, in step 100, it is determined whether or not it is an initial shipment time. Assuming that the initial shipment time is normal, this determination is performed to store the change in motor current value in three regions at the time of inrush current, no load current, and current rise as a reference value. . A flag to that effect is set until the first parking brake control process is executed for the first time, and by checking the state of this flag, it can be determined whether or not it is the initial shipment time. It has become.
 ここで肯定判定されるとステップ105に進み、ロック要求ありか否か、例えば操作SW23がオンされたか否かを判定する。操作SW23がオンの状態とはドライバがEPB2を作動させてロック状態にしようとしていることを意味している。このため、本ステップで肯定判定されればステップ110に進み、ロック制御を実行する。このロック制御の詳細について、図5に示すロック制御処理のフローチャートを参照して説明する。 If a positive determination is made here, the routine proceeds to step 105, where it is determined whether or not there is a lock request, for example, whether or not the operation SW 23 is turned on. The state in which the operation SW 23 is on means that the driver is operating the EPB 2 to make it locked. For this reason, if an affirmative determination is made in this step, the process proceeds to step 110 and lock control is executed. Details of the lock control will be described with reference to a flowchart of the lock control process shown in FIG.
 ロック制御処理では、モータ10を回転させることによりEPB2を作動させ、EPB2にて所望のブレーキ力を発生させられる位置でモータ10の回転を停止し、この状態を維持するという処理を行う。初期出荷時のロック制御におけるモータ電流値の変化は正常時の変化と想定されることから、各規範値を求めるためにロック制御処理を一度行うようにしている。 In the lock control process, the EPB 2 is operated by rotating the motor 10, the rotation of the motor 10 is stopped at a position where a desired braking force can be generated by the EPB 2, and this state is maintained. Since the change in the motor current value in the lock control at the time of initial shipment is assumed to be a change in the normal state, the lock control process is performed once in order to obtain each reference value.
 まず、ステップ200では、電流値上昇し始めフラグFIUPSがオフになっているか否かを判定する。電流値上昇し始めフラグFIUPSとは、モータ電流値が上昇し始めたときにオンされるフラグであり、後述するステップ225でオンされるまではオフになっている。ここで肯定判定されればステップ205に進む。 First, in step 200, it is determined whether or not the flag FIUPS is turned off when the current value starts to increase. The current value increase start flag FIUPS is a flag that is turned on when the motor current value starts to increase, and is off until it is turned on in step 225 described later. If a positive determination is made here, the routine proceeds to step 205.
 ステップ205では、目標モータ電流値上昇量TMIUPを設定する。目標モータ電流値上昇量TMIUPは、目標制動力に対応するモータ電流値の上昇量、具体的には無負荷時電流NOCからのモータ電流値の上昇量である。モータ電流値の上昇量がこの目標モータ電流値上昇量TMIUPとなるようにすることで、駐車ブレーキ時に過度のW/C圧が発生することを抑制する。この目標モータ電流値上昇量TMIUPは、目標制動力に対応したW/C圧を発生させるために必要なモータ電流値の上昇量以上に設定される。 In step 205, the target motor current value increase amount TMIUP is set. The target motor current value increase amount TMIUP is an increase amount of the motor current value corresponding to the target braking force, specifically, an increase amount of the motor current value from the no-load current NOC. By causing the increase amount of the motor current value to be the target motor current value increase amount TMIUP, it is possible to suppress an excessive W / C pressure from being generated during parking braking. The target motor current value increase amount TMIUP is set to be equal to or greater than the motor current value increase amount necessary for generating the W / C pressure corresponding to the target braking force.
 ここでは、目標制動力もしくはそれに対応するW/C圧と目標モータ電流値上昇量TMIUPの関係をマップ化しておき、そのマップを用いて、目標制動力に対応する目標モータ電流値上昇量TMIUPを取得している。図6は、その一例を示したマップであり、目標制動力の大きさに比例して目標モータ電流値上昇量TMIUPが大きくなるようなマップとしてある。なお、目標制動力は、車両の停車維持に必要な制動力であり、坂路勾配に応じて決まる値であることから、坂路勾配に比例して目標モータ電流値上昇量が大きくなるようなマップであっても良い。坂路勾配は、Gセンサ25の値として表されることから、Gセンサ25の値に基づいて目標モータ電流値上昇量を設定すれば良い。 Here, the relationship between the target braking force or the corresponding W / C pressure and the target motor current value increase amount TMIUP is mapped, and the target motor current value increase amount TMIUP corresponding to the target braking force is calculated using the map. Have acquired. FIG. 6 is a map showing an example thereof, and is a map in which the target motor current value increase amount TMIUP increases in proportion to the magnitude of the target braking force. Note that the target braking force is a braking force necessary for maintaining the vehicle stopped, and is a value determined according to the slope of the slope. Therefore, the target braking current increases in proportion to the slope of the slope. There may be. Since the slope is expressed as a value of the G sensor 25, the target motor current value increase amount may be set based on the value of the G sensor 25.
 続いて、ステップ210に進み、ロック制御時間カウンタCLTが予め決められた最小ロック制御時間MINLTを超えているか否かを判定する。ロック制御時間カウンタCLTとは、ロック制御が開始されてからの経過時間を計測するカウンタであり、ロック制御処理開始と同時にカウントを始める。最小ロック制御時間MINLTとは、ロック制御に掛かると想定される最小時間のことであり、モータ10の回転速度などに応じて予め決まる値である。後述するステップ255のように、モータ電流値が目標電流値MI#TARGETに到達した時にEPB2が発生させたブレーキ力が所望の値に到達した、もしくは近づいたと判定するが、モータ10への電流供給初期時の突入電流などによりモータ電流値が目標電流値MI#TARGETを超えることもあり得る。このため、ロック制御時間カウンタCLTを最小ロック制御時間MINLTと比較することで、制御初期時をマスクでき、突入電流などによる誤判定を防止することが可能となる。 Subsequently, the process proceeds to step 210, and it is determined whether or not the lock control time counter CLT exceeds a predetermined minimum lock control time MINLT. The lock control time counter CLT is a counter that measures an elapsed time since the lock control is started, and starts counting simultaneously with the start of the lock control process. The minimum lock control time MINLT is a minimum time that is assumed to be applied to the lock control, and is a value determined in advance according to the rotational speed of the motor 10 or the like. As in step 255 described later, when the motor current value reaches the target current value MI # TARGET, it is determined that the braking force generated by the EPB 2 has reached or approached a desired value. The motor current value may exceed the target current value MI # TARGET due to an inrush current at the initial stage. Therefore, by comparing the lock control time counter CLT with the minimum lock control time MINLT, the initial control period can be masked, and erroneous determination due to an inrush current or the like can be prevented.
 したがって、ロック制御時間カウンタCLTが最小時間を超えていない状態であれば、まだロック制御が継続されることになるため、ステップ215に進んでリリース状態フラグFRELをオフすると共にロック制御時間カウンタCLTをインクリメントし、モータロック駆動をオン、つまりモータ10を正回転させる。これにより、モータ10の正回転に伴ってブレーキパッド11がブレーキディスク12側に移動させられ、EPB2によるロック動作が行われていく。 Accordingly, if the lock control time counter CLT does not exceed the minimum time, the lock control is still continued. Therefore, the process proceeds to step 215, where the release state flag FREL is turned off and the lock control time counter CLT is set. The motor lock drive is turned on, that is, the motor 10 is rotated forward. Thereby, the brake pad 11 is moved to the brake disk 12 side with the forward rotation of the motor 10, and the locking operation by the EPB 2 is performed.
 一方、ステップ210で肯定判定されると、ステップ220に進み、モータ電流値を時間に対して微分した電流値微分値IDを演算する。例えば、今回と前回の制御周期の際に得られたモータ電流値の差を電流値微分値IDとする。そして、この電流値微分値IDが電流値微分閾値IDBよりも大きいか否かを判定する。 On the other hand, if an affirmative determination is made in step 210, the process proceeds to step 220, and a current value differential value ID obtained by differentiating the motor current value with respect to time is calculated. For example, the difference between the motor current values obtained during the current control cycle and the previous control cycle is defined as a current value differential value ID. Then, it is determined whether or not the current value differential value ID is larger than the current value differential threshold IDB.
 モータ電流値は、モータ10に加えられる負荷に応じて変動する。例えば、本実施形態の場合にはモータ10に加えられる負荷はブレーキパッド11をブレーキディスク12に押し付けている押圧力に相当するため、モータ電流値が発生させた押圧力と対応した値となる。このため、モータ10が無負荷状態のときには、モータ電流値が無負荷時電流NOCとなり、モータ10に対して負荷が加えられると、モータ電流値が上昇し始める。 The motor current value varies depending on the load applied to the motor 10. For example, in the case of the present embodiment, the load applied to the motor 10 corresponds to the pressing force pressing the brake pad 11 against the brake disc 12, and therefore has a value corresponding to the pressing force generated by the motor current value. For this reason, when the motor 10 is in a no-load state, the motor current value becomes a no-load current NOC, and when a load is applied to the motor 10, the motor current value starts to increase.
 したがって、モータ電流値を時間に対して微分した電流値微分値IDを求めることで、モータ電流値の変化を検知することができ、電流値微分値IDを電流値微分閾値IDBと比較することで、モータ電流値の上昇し始めを検知することができる。なお、電流値微分閾値IDBは、ノイズ的なモータ電流値の変動を除外しつつ、モータ電流値が上昇し始めたと想定される値に設定される。 Therefore, by obtaining the current value differential value ID obtained by differentiating the motor current value with respect to time, a change in the motor current value can be detected, and by comparing the current value differential value ID with the current value differential threshold IDB, The start of increase in the motor current value can be detected. The current value differential threshold IDB is set to a value that is assumed that the motor current value starts to rise while excluding the noise-like fluctuation of the motor current value.
 そして、ステップ220で肯定判定されると、ステップ225でモータ電流値が上昇し始めたことを示す電流値上昇し始めフラグFIUPSをオンし、ステップ230に進む。また、ステップ220で否定判定された場合には、まだモータ10に負荷が掛かっていないため、再びステップ215の処理を実行する。 If an affirmative determination is made in step 220, the current value starting to increase indicating that the motor current value has started increasing is turned on in step 225, the flag FIUPS is turned on, and the process proceeds to step 230. If the determination in step 220 is negative, the motor 10 is not yet loaded, so the process of step 215 is executed again.
 続く、ステップ230では、M/C圧センサ26の検出信号に基づいてM/C圧を検出したのち、検出したM/C圧が零を超えているか、つまりM/C圧が発生しているか否かを判定する。M/C圧が発生していれば、ドライバによるブレーキペダル3の踏み込みに応じてサービスブレーキ1がW/C圧を発生させており、サービスブレーキ1によってブレーキ力を発生させている状況と考えられる。そして、サービスブレーキ1によってブレーキ力が発生させられている状況下であれば、そのブレーキ力分を考慮しないと、EPB2によって発生させられるブレーキ力が必要以上に大きくなる可能性がある。このため、M/C圧が発生しているか否かにより、サービスブレーキ1が作動しているか否かを判定している。ただし、初期出荷時には基本的にはM/C圧を発生させていないため、通常は否定判定されることになる。そして、ステップ230で肯定判定されればステップ235に進んでサービスブレーキ1によって発生させられているブレーキ力分を考慮した処理を実行し、否定判定されればステップ235の処理を行わずにステップ240に進む。 In step 230, after detecting the M / C pressure based on the detection signal of the M / C pressure sensor 26, whether the detected M / C pressure exceeds zero, that is, whether the M / C pressure is generated. Determine whether or not. If the M / C pressure is generated, it can be considered that the service brake 1 generates the W / C pressure according to the depression of the brake pedal 3 by the driver, and the service brake 1 generates the braking force. . If the brake force is generated by the service brake 1, the brake force generated by the EPB 2 may become larger than necessary unless the brake force is taken into consideration. Therefore, whether or not the service brake 1 is operating is determined based on whether or not the M / C pressure is generated. However, since the M / C pressure is not basically generated at the time of initial shipment, a negative determination is usually made. If an affirmative determination is made in step 230, the process proceeds to step 235 to execute a process considering the brake force generated by the service brake 1. If a negative determination is made, the process of step 235 is not performed and step 240 is performed. Proceed to
 具体的には、ステップ235では、サービスブレーキ1によって発生させられているブレーキ力分を考慮した処理として、目標モータ電流値上昇量TMIUPの補正を行う。すなわち、サービスブレーキ1によってブレーキ力が発生させられている場合、目標モータ電流値上昇量TMIUPを小さくする補正を行い、本実施形態では、そのブレーキ力の大きさに応じて目標モータ電流値上昇量TMIUPを小さくする目標モータ電流値上昇量TMIUPの減算値IDOWNを求め、ステップ205で求められた目標モータ電流値上昇量TMIUPから減算値IDOWNを差し引いた値を演算する。 Specifically, in step 235, the target motor current value increase amount TMIUP is corrected as a process in consideration of the brake force generated by the service brake 1. That is, when the brake force is generated by the service brake 1, correction is performed to reduce the target motor current value increase amount TMIUP, and in this embodiment, the target motor current value increase amount according to the magnitude of the brake force. A subtraction value IDOWN of the target motor current value increase amount TMIUP that decreases TMIUP is obtained, and a value obtained by subtracting the subtraction value IDOWN from the target motor current value increase amount TMIUP obtained in step 205 is calculated.
 本実施形態では、M/C圧に対応する減算値IDOWNの値をマップ化しておき、そのマップに基づき、ステップ230で検出したM/C圧と対応する値を抽出することにより減算値IDOWNを求めている。 In the present embodiment, the value of the subtraction value IDOWN corresponding to the M / C pressure is mapped, and the subtraction value IDOWN is obtained by extracting the value corresponding to the M / C pressure detected in step 230 based on the map. Seeking.
 図7は、その一例を示しもので、M/C圧と減算値IDOWNの関係を示したマップである。この図に示すように、M/C圧の大きさ、つまりドライバによるブレーキペダル3の踏込み(踏力)の大きさに比例して減算値IDOWNが大きくなるようなマップとしてある。このため、本実施形態の場合、ステップ230で検出したM/C圧と対応する減算値IDOWNを図7に示すマップから読み出し、目標モータ電流値上昇量TMIUPから減算値IDOWNを差し引くことにより、目標モータ電流値上昇量TMIUPを求めている。 FIG. 7 shows an example of this, and is a map showing the relationship between the M / C pressure and the subtraction value IDOWN. As shown in this figure, the map is such that the subtraction value IDOWN increases in proportion to the magnitude of the M / C pressure, that is, the depression (depression force) of the brake pedal 3 by the driver. Therefore, in the case of the present embodiment, the subtraction value IDOWN corresponding to the M / C pressure detected in step 230 is read from the map shown in FIG. 7, and the subtraction value IDOWN is subtracted from the target motor current value increase amount TMIUP. The motor current value increase amount TMIUP is obtained.
 ただし、目標モータ電流値上昇量TMIUPが零以下になるのは好ましくない。このため、ステップ235では、目標モータ電流値上昇量TMIUPから減算値IDOWNを差し引いた値と、無負荷時電流NOCに対して所定値α(正の定数)を足した値とのいずれか大きい方(MAX(TMIUP-IDOWN, NOC+α))を目標モータ電流値上昇量TMIUPとしている。 However, it is not preferable that the target motor current value increase amount TMIUP is less than zero. Therefore, in step 235, the value obtained by subtracting the subtraction value IDOWN from the target motor current value increase amount TMIUP, or the value obtained by adding a predetermined value α (a positive constant) to the no-load current NOC, whichever is greater (MAX (TMIUP-IDOWN, NOC + α)) is the target motor current value increase TMIUP.
 この後、ステップ240に進み、初期出荷時でない場合、かつ、突入電流ゲイン異常、無負荷電流ゲイン異常、上昇電流ゲイン異常の3つの異常のうちのいずれかの異常ありの場合に該当するか否かを判定する。突入電流ゲイン異常とは突入電流時のゲイン異常、無負荷電流ゲイン異常とは無負荷電流時のゲイン異常、上昇電流ゲイン異常とは電流上昇時のゲイン異常を意味している。上記したように、本実施形態では、正常時における突入電流時や無負荷電流時および電流上昇時の3領域でのモータ電流値の変化を規範値として記憶しておき、それをEPB2の使用時におけるモータ電流値の現在値と比較することで異常判定を行うようにする。このときの比較により異常の有無を判定している。この判定は、後述する各種異常判定処理(図15~図17参照)において行われており、その判定結果に基づいて本ステップにおける異常ありか否かの判定を行うようにしている。 Thereafter, the process proceeds to step 240, and whether or not the case is not at the time of initial shipment, and if any of the three abnormalities of inrush current gain abnormality, no-load current gain abnormality, and rising current gain abnormality is present. Determine whether. Inrush current gain abnormality means gain abnormality during inrush current, no-load current gain abnormality means gain abnormality during no-load current, and rising current gain abnormality means gain abnormality during current rise. As described above, in the present embodiment, changes in the motor current value in the three regions at the time of inrush current at normal time, at no load current, and at the time of current rise are stored as reference values, which are stored when EPB2 is used. The abnormality is determined by comparing with the current value of the motor current value at. The presence or absence of abnormality is determined by comparison at this time. This determination is performed in various abnormality determination processes (see FIGS. 15 to 17), which will be described later, and it is determined whether there is an abnormality in this step based on the determination result.
 ここで初期出荷時であれば否定判定されるため、ステップ245に進んで無負荷時電流NOCに対して目標モータ電流値上昇量TMIUP分を加算した値を目標電流値MI#TARGETに設定する。また、初期出荷時ではない場合に上記3つの異常のうちのいずれか1つの異常でもあった場合にステップ250に進むことになるが、初期出荷時には進むことはないため、ステップ250の説明については後述する。 Here, since negative determination is made at the time of initial shipment, the process proceeds to step 245, and a value obtained by adding the target motor current value increase amount TMIUP to the no-load current NOC is set to the target current value MI # TARGET. Further, when it is not at the time of initial shipment, if any one of the above three abnormalities is detected, the process proceeds to step 250. However, since the process does not proceed at the time of initial shipment, the explanation of step 250 is as follows. It will be described later.
 そして、ステップ255に進み、モータ電流値が目標電流値MI#TARGETを超えたか否かを判定する。モータ電流値が目標電流値MI#TARGETを超えると、発生させた押圧力により所望のブレーキ力を発生させられた状態、つまりEPB2によりブレーキパッド11の摩擦面がブレーキディスク12の内壁面にある程度の力で押さえ付けられた状態となる。したがって、本ステップで肯定判定されるまではステップ215の処理を繰り返し、肯定判定されるとステップ260に進む。 Then, the process proceeds to step 255, and it is determined whether or not the motor current value exceeds the target current value MI # TARGET. When the motor current value exceeds the target current value MI # TARGET, a state in which a desired braking force is generated by the generated pressing force, that is, the friction surface of the brake pad 11 on the inner wall surface of the brake disk 12 to some extent by EPB2. It will be in a state of being pressed down with force. Therefore, the process of step 215 is repeated until an affirmative determination is made in this step, and if an affirmative determination is made, the process proceeds to step 260.
 そして、ステップ260において、ロックが完了したことを意味するロック状態フラグFLOCKをオンすると共にロック制御時間カウンタCLTを0にし、モータロック駆動をオフ(停止)する。これにより、モータ10の回転が停止され、その時に発生させたブレーキ力が保持される。これにより、駐車中の車両の移動が規制される。さらに、電流値上昇し始めフラグFIUPSをオフにする。このようにして、ロック制御処理が完了する。 In step 260, the lock state flag FLOCK which means that the lock is completed is turned on, the lock control time counter CLT is set to 0, and the motor lock drive is turned off (stopped). Thereby, the rotation of the motor 10 is stopped and the braking force generated at that time is held. Thereby, the movement of the parked vehicle is regulated. Further, the current value starts to increase and the flag FIUPS is turned off. In this way, the lock control process is completed.
 このようなロック制御処理が実行されている期間中に、図4のステップ115~125に進み、正常時における突入電流時や無負荷電流時および電流上昇時の3領域でのモータ電流値の変化を規範値として記憶するための処理を行う。 While the lock control process is being executed, the process proceeds to steps 115 to 125 in FIG. 4 and changes in the motor current value in three regions at the time of normal inrush current, no load current, and current rise. Is stored as a reference value.
 具体的には、ステップ115では、突入電流時のモータ電流値の変化が正常であるか異常であるかの判定基準となる規範として電流下降勾配規範を設定する突入電流時規範設定処理を行う。この電流下降勾配規範の設定方法について、図8に示す突入電流時のモータ電流値の比較図を参照して説明する。 Specifically, in step 115, an inrush current time norm setting process is performed in which a current descending slope norm is set as a norm as a criterion for determining whether the change in the motor current value at the time of the inrush current is normal or abnormal. A method of setting the current descending gradient standard will be described with reference to a comparison diagram of motor current values at the time of inrush current shown in FIG.
 増幅器の故障時には、増幅器のゲイン異常が発生するため、正常時と比較して、例えば図8に示すように、増幅器の故障時の方が突入電流時におけるモータ電流値が大きな値となる。このため、突入電流が収まるときのモータ電流値の下降勾配も、正常時と比較して異常時の方が大きくなる。したがって、突入電流時に関しては、モータ電流値の下降勾配の規範である電流下降勾配規範を設定し、この電流下降勾配規範に基づいて異常検出を行う。 When the amplifier is faulty, an amplifier gain abnormality occurs. Therefore, as shown in FIG. 8, for example, the motor current value at the time of the inrush current is larger when the amplifier is faulty than when the amplifier is normal. For this reason, the descending slope of the motor current value when the inrush current is settled is larger in the abnormal time than in the normal time. Accordingly, for the inrush current, a current descending slope norm that is a norm of the descending slope of the motor current value is set, and abnormality detection is performed based on this current descending slope norm.
 本実施形態の場合、初期出荷時において、突入電流時にモータ電流値がピークとなるときをA’点、異常検出タイミングをB点、A’点~B点に至るまでに掛かる時間をTとすると、電流下降勾配は(A’-B)/Tで表される。例えば、A’=26A、B=6A、T=24msとすると、電流下降勾配は(26-6)/0.025=800.0A/sとなる。これを電流下降勾配規範として記憶しておく。 In the present embodiment, at the time of initial shipment, when the motor current value peaks at the inrush current, point A ′, abnormality detection timing B point, and time taken from point A ′ to B point T The current descending gradient is represented by (A′−B) / T. For example, when A ′ = 26 A, B = 6 A, and T = 24 ms, the current descending gradient is (26−6) /0.025=800.0 A / s. This is stored as a current descent gradient standard.
 なお、電流下降勾配規範を設定する突入電流のピークとなるA’点から検出タイミングとなるB点までの時間Tについては、EPB2を構成する各アクチュエータの特性に基づいて適宜設定すれば良い。 It should be noted that the time T from the point A ′ that is the peak of the inrush current that sets the current descent gradient standard to the point B that is the detection timing may be appropriately set based on the characteristics of the actuators that constitute the EPB 2.
 図9は、突入電流時の電流下降勾配規範設定処理の詳細を示したフローチャートである。ステップ115に示す電流下降勾配規範設定処理が実行されると、図9に示す各処理が実行される。 FIG. 9 is a flowchart showing details of the current descent gradient norm setting process at the time of inrush current. When the current descending gradient norm setting process shown in step 115 is executed, each process shown in FIG. 9 is executed.
 まず、ステップ300では、ロック制御経過時間を表すロック制御時間カウンタCLTの値が突入電流の発生し得る時間として想定される所定時間、例えば100ms未満であるか否かを判定する。ロック制御経過時間が所定時間以上であれば、既に突入電流は発生し終えていると考えられることから、ロック制御経過時間が所定時間未満の場合にのみステップ305以降の処理を実行し、ロック制御経過時間が所定時間以上であればそのまま処理を終了する。 First, in step 300, it is determined whether or not the value of the lock control time counter CLT representing the lock control elapsed time is less than a predetermined time, for example, less than 100 ms, which is assumed as a time during which an inrush current can occur. If the lock control elapsed time is equal to or longer than the predetermined time, it is considered that the inrush current has already been generated. Therefore, the processing after step 305 is executed only when the lock control elapsed time is less than the predetermined time, and lock control is performed. If the elapsed time is equal to or longer than the predetermined time, the process is terminated as it is.
 ここで肯定判定されればステップ305に進み、電流モニタA’の記憶が完了しているか否かを判定する。例えば、電流モニタA’の記憶が完了したことを示すフラグがセットされているか否かに基づいて本判定を行っている。電流モニタA’とは、上記した図8のA’点でのモータ電流値、つまり突入電流時のモータ電流値のピーク値のことであり、本ステップでは、そのモータ電流値のピーク値を記憶したか否かを判定している。最初はまだ記憶を完了していないため、ステップ310に進む。 If an affirmative determination is made here, the process proceeds to step 305 to determine whether or not the storage of the current monitor A 'is complete. For example, this determination is performed based on whether or not a flag indicating that the storage of the current monitor A 'is completed is set. The current monitor A ′ is the motor current value at the point A ′ in FIG. 8, that is, the peak value of the motor current value at the time of inrush current. In this step, the peak value of the motor current value is stored. It is determined whether or not. Since the storage has not been completed at first, the process proceeds to step 310.
 そして、ステップ310で、モータ電流値が下降している状態が連続したか否かを判定する。ここでは、今回の制御周期にモニタされたモータ電流値を電流モニタI(n)として、今回の電流モニタI(n)が前回の電流モニタI(n-1)未満、前回の電流モニタI(n-1)が前々回の電流モニタI(n-2)未満、前々回の電流モニタI(n-2)が前々々回の電流モニタI(n-3)未満の3つが成り立つ時に、下降している状態が連続したと判定している。突入電流はピーク値までは連続的に増加し、ピーク値に至った後は連続的に減少する。このため、モータ電流値が減少し始めたときをピーク値としている。ただし、ノイズ的にモータ電流値が減少した場合も有り得るため、それを排除するために、モータ電流値が連続的に減少したときをピーク値として採用している。 Then, in step 310, it is determined whether or not the state where the motor current value is decreasing continues. Here, the motor current value monitored in the current control cycle is defined as the current monitor I (n), and the current current monitor I (n) is less than the previous current monitor I (n−1), and the previous current monitor I (n When n-1) is less than the previous current monitor I (n-2), and the previous current monitor I (n-2) is less than the last current monitor I (n-3), it falls. Is determined to be continuous. The inrush current continuously increases up to the peak value and decreases continuously after reaching the peak value. For this reason, the peak value is when the motor current value starts to decrease. However, since the motor current value may decrease due to noise, in order to eliminate it, the peak value is adopted when the motor current value decreases continuously.
 したがって、ステップ310で否定判定されれば、ステップ315に進み、突入電流時の電流モニタI(n)のピーク(以下、突入電流モニタピークという)を前回の制御周期までの突入電流モニタピークと今回の制御周期の電流モニタI(n)のうちいずれか大きい方に更新する。そして、ステップ310で肯定判定されるまでステップ315の処理を実行し続け、肯定判定されるとステップ320に進み、そのときの突入電流モニタピークを電流モニタA’に設定したのち電流モニタA’の記憶を完了したことを示すフラグをセットして処理を終了する。 Therefore, if a negative determination is made in step 310, the process proceeds to step 315, where the peak of the current monitor I (n) at the time of the inrush current (hereinafter referred to as the inrush current monitor peak) is compared with the inrush current monitor peak up to the previous control cycle and this time. Is updated to the larger one of the current monitors I (n) of the control cycle. Then, the process of step 315 is continuously executed until an affirmative determination is made in step 310, and if an affirmative determination is made, the process proceeds to step 320, and the current monitor A ′ at that time is set to the current monitor A ′ and then the current monitor A ′ A flag indicating that the storage is completed is set, and the process ends.
 その後はステップ305で肯定判定されることになるため、ステップ325に進んで突入電流時判定時間T、つまり図8に示されるA’点~B点に至るまでに掛かる時間Tのカウントを行う。そして、ステップ330で今回の電流モニタI(n)が電流モニタB、つまり上記した図8のB点でのモータ電流値未満に至ったか否かを判定し、電流モニタI(n)が電流モニタB未満に至るまでステップ325のカウントUPを行う。この後、電流モニタI(n)が電流モニタB未満に至ると、ステップ335に進んで電流下降勾配規範を設定する。具体的には、電流モニタA’と電流モニタBの差を突入電流時判定時間Tで割った値((電流モニタA’-電流モニタB)/突入電流時判定時間T)を電流下降勾配規範として設定する。このようにして、図4のステップ115における突入電流時規範設定処理が終了する。 Thereafter, since an affirmative determination is made at step 305, the routine proceeds to step 325, where the inrush current determination time T, that is, the time T taken from point A 'to point B shown in FIG. 8, is counted. In step 330, it is determined whether or not the current monitor I (n) has reached the current monitor B, that is, the motor current value at point B in FIG. 8 described above, and the current monitor I (n) is the current monitor. Step 325 is incremented until it reaches less than B. Thereafter, when the current monitor I (n) reaches less than the current monitor B, the routine proceeds to step 335, where the current descending gradient standard is set. Specifically, a value obtained by dividing the difference between the current monitor A ′ and the current monitor B by the inrush current determination time T ((current monitor A′−current monitor B) / inrush current determination time T) is a current descent gradient standard. Set as. In this way, the inrush current time norm setting process in step 115 of FIG. 4 is completed.
 次に、図4のステップ120において、無負荷電流時のモータ電流値が正常であるか異常であるかの判定基準となる規範として無負荷電流値規範を設定する無負荷電流時規範設定処理を行う。この無負荷電流時規範の設定方法について、図10に示す無負荷電流時のモータ電流値の比較図を参照して説明する。 Next, in step 120 of FIG. 4, a no-load current time norm setting process for setting a no-load current value norm as a norm as a criterion for determining whether the motor current value at the no-load current is normal or abnormal is performed. Do. A method for setting the no-load current reference will be described with reference to a comparison diagram of motor current values at no-load current shown in FIG.
 増幅器の故障時には、増幅器のゲイン異常が発生するため、正常時と比較して、例えば図10に示すように、増幅器の故障時の方が無負荷電流時におけるモータ電流値が大きな値となる。したがって、無負荷電流時に関しては、無負荷電流時におけるモータ電流値の大きさの規範である無負荷電流値規範を設定し、この無負荷電流値規範に基づいて異常検出を行う。 Since an amplifier gain abnormality occurs when the amplifier fails, the motor current value at the time of no-load current is larger when the amplifier is faulty, as shown in FIG. 10, for example, than when the amplifier is normal. Therefore, regarding no-load current, a no-load current value norm that is a norm of the magnitude of the motor current value at the time of no-load current is set, and abnormality detection is performed based on this no-load current value norm.
 本実施形態の場合、初期出荷時において、突入電流の終了時間からモータ電流値の最低値を計測し、無負荷電流終了後さらに所定の無負荷電流値基準に達するまでの時間αに至るまでを無負荷電流時間Tとして、無負荷電流値規範を設定している。具体的には、無負荷電流時間T中におけるモータ電流値の最小値である電流最小規範値Cを求め、これを無負荷電流値規範として記憶する。 In the case of this embodiment, at the time of initial shipment, the minimum value of the motor current value is measured from the end time of the inrush current, and after reaching the predetermined no-load current value reference after the end of the no-load current. As the no-load current time T, the no-load current value standard is set. Specifically, a current minimum normative value C that is the minimum value of the motor current value during the no-load current time T is obtained and stored as a no-load current value norm.
 なお、無負荷電流時間Tについては、EPB2を構成する各アクチュエータの特性に基づいて適宜設定すれば良い。 Note that the no-load current time T may be set as appropriate based on the characteristics of the actuators constituting the EPB 2.
 図11は、無負荷電流時の無負荷電流値規範設定処理の詳細を示したフローチャートである。ステップ120に示す無負荷電流値規範設定処理が実行されると、図11に示す各処理が実行される。 FIG. 11 is a flowchart showing details of the no-load current value norm setting process at the time of no-load current. When the no-load current value norm setting process shown in step 120 is executed, each process shown in FIG. 11 is executed.
 まず、ステップ400では、ロック制御経過時間を表すロック制御時間カウンタCLTの値が突入電流が終了し得る時間として想定される所定時間、例えば100msを超えており、かつ、電流モニタI(n)が無負荷電流値基準未満であるか否かを判定する。無負荷電流値基準とは無負荷電流値として想定される基準値であり、この無負荷電流値基準未満になると無負荷電流値に近づいていることを意味している。この無負荷電流値基準については、無負荷電流値が大きくなった場合にも対応できるように、ある程度大きな値(例えば3A)に設定してある。ステップ400で否定判定された場合には、無負荷電流値規範を設定するタイミングではないため、そのまま処理を終了し、肯定判定されるとステップ405に進む。 First, in step 400, the value of the lock control time counter CLT representing the lock control elapsed time exceeds a predetermined time, for example, 100 ms, which is assumed as the time when the inrush current can be completed, and the current monitor I (n) is It is determined whether it is less than the no-load current value standard. The no-load current value reference is a reference value assumed as the no-load current value, and when it is less than the no-load current value reference, it means that the no-load current value is approaching. This no-load current value reference is set to a somewhat large value (for example, 3A) so as to cope with the case where the no-load current value becomes large. If the determination in step 400 is negative, it is not the timing for setting the no-load current value norm, so the processing is terminated as it is, and if an affirmative determination is made, the process proceeds to step 405.
 ステップ405では、今回の制御周期の電流最小規範値C(n)を演算する。具体的には、前回の制御周期の電流最小規範値C(n-1)と今回の制御周期の電流モニタI(n)とを比較し、いずれか低い方を今回の制御周期の電流最小規範値C(n)とする。電流最小規範値C(n)の初期値は、無負荷電流値基準に設定されており、電流モニタI(n)が無負荷電流値基準を下回ると電流最小規範値C(n)が更新されていく。このため、モータ電流値の最小値、つまり無負荷電流値が電流最小規範値C(n)に設定されることになる。そして、電流モニタI(n)が再び無負荷電流値基準を超えたときに電流最小値規範C(n)の演算が終了となり、そのときの電流最小値規範C(n)が最終的な電流最小規範値Cとされ、この電流最小規範値Cを無負荷電流値規範として記憶する。 In step 405, the current minimum normative value C (n) of the current control cycle is calculated. Specifically, the current minimum normative value C (n-1) of the previous control cycle is compared with the current monitor I (n) of the current control cycle, and the lower one is the current minimum norm of the current control cycle. Let it be the value C (n). The initial value of the minimum current reference value C (n) is set to the no-load current value reference, and when the current monitor I (n) falls below the no-load current value reference, the minimum current reference value C (n) is updated. To go. For this reason, the minimum value of the motor current value, that is, the no-load current value is set to the minimum current reference value C (n). When the current monitor I (n) again exceeds the no-load current value reference, the calculation of the current minimum value reference C (n) is completed, and the current minimum value reference C (n) at that time is the final current. The minimum normative value C is set, and this minimum current normative value C is stored as a no-load current value norm.
 続いて、図4のステップ125において、電流上昇時のモータ電流値の変化が正常であるか異常であるかの判定基準となる規範として電流上昇勾配規範を設定する電流上昇勾配規範設定処理を行う。この電流上昇勾配規範の設定方法について、図12に示す電流上昇時のモータ電流値の比較図を参照して説明する。 Subsequently, in step 125 of FIG. 4, a current ascending gradient norm setting process for setting a current ascending gradient norm as a norm serving as a criterion for determining whether the change in the motor current value at the time of current increase is normal or abnormal is performed. . A method for setting the current rise gradient standard will be described with reference to a comparison diagram of motor current values at the time of current rise shown in FIG.
 増幅器の故障時には、増幅器のゲイン異常が発生するため、正常時と比較して、例えば図12に示すように、増幅器の故障時の方が電流上昇時におけるモータ電流値が大きな値となる。このため、ブレーキパッド11がブレーキディスク12に当接してモータ10に負荷が掛かり始めてモータ電流値が上昇する電流上昇時の上昇勾配も、正常時と比較して異常時の方が大きくなる。したがって、電流上昇時に関しては、モータ電流値の上昇勾配の規範である電流上昇勾配規範を設定し、この電流上昇勾配規範に基づいて異常検出を行う。 When the amplifier is faulty, an amplifier gain abnormality occurs. Therefore, as shown in FIG. 12, for example, the motor current value at the time of current rise is larger when the amplifier is faulty than when the amplifier is normal. For this reason, the rising gradient at the time of current rise in which the brake pad 11 comes into contact with the brake disc 12 and a load is applied to the motor 10 to increase the motor current value is larger in the abnormal time than in the normal time. Accordingly, when the current rises, a current rise gradient norm that is a norm of the motor current value rise gradient is set, and abnormality detection is performed based on this current rise gradient norm.
 本実施形態の場合、初期出荷時において、電流上昇時にモータ電流値が第1電流モニタ値となるときをE’点、異常検出タイミングを第1電流モニタ値よりも大きな第2電流モニタ値となるF’点、E’点からF’点に至るまでに掛かる時間をT’とすると、電流上昇勾配は(F’-E’)/T’で表される。例えば、E’=6A、F’=16A、T’=500msとすると、電流上昇勾配は(16-6)/0.5=20.0A/sとなる。これを電流上昇勾配規範として記憶しておく。 In the case of this embodiment, at the time of initial shipment, when the motor current value becomes the first current monitor value when the current rises, the point E ′ and the abnormality detection timing become the second current monitor value larger than the first current monitor value. Assuming that the time taken from the F ′ point and the E ′ point to the F ′ point is T ′, the current rising gradient is represented by (F′−E ′) / T ′. For example, when E ′ = 6 A, F ′ = 16 A, and T ′ = 500 ms, the current increase gradient is (16−6) /0.5=20.0 A / s. This is memorized as a current rising gradient standard.
 なお、電流上昇勾配規範を設定する第1電流モニタ値や第2電流モニタ値となる各点(E’、F’)およびそれらの間の時間T’については、EPB2を構成する各アクチュエータの特性に基づいて適宜設定すれば良い。 In addition, about each point (E ', F') used as the 1st current monitor value and 2nd current monitor value which sets an electric current climb gradient norm, and the time T 'between them, the characteristic of each actuator which comprises EPB2 It may be set as appropriate based on the above.
 図13は、電流上昇時の電流上昇勾配規範設定処理の詳細を示したフローチャートである。ステップ125に示す電流上昇勾配規範設定処理が実行されると、図13に示す各処理が実行される。 FIG. 13 is a flowchart showing details of the current increase gradient norm setting process at the time of current increase. When the current increase gradient norm setting process shown in step 125 is executed, each process shown in FIG. 13 is executed.
 まず、ステップ500では、ロック制御経過時間を表すロック制御時間カウンタCLTの値が突入電流の発生し得る時間として想定される所定時間、例えば100msを超えており、かつ、電流モニタI(n)が無負荷電流値基準を超えているか否かを判定する。これにより、突入電流が発生し終えた後、無負荷電流からモータ電流値が上昇したことを判定できる。ここで肯定判定された場合にのみステップ505以降の処理を実行し、否定判定されればそのまま処理を終了する。 First, in step 500, the value of the lock control time counter CLT representing the lock control elapsed time exceeds a predetermined time, for example, 100 ms, which is assumed as a time during which an inrush current can occur, and the current monitor I (n) is It is determined whether or not the no-load current value standard is exceeded. Thereby, after the inrush current has been generated, it can be determined that the motor current value has increased from the no-load current. Only when an affirmative determination is made here, the processing from step 505 is executed, and when a negative determination is made, the processing ends.
 ステップ505では、前回の制御周期のときのモータ電流値のモニタ値である電流モニタI(n-1)が第1電流モニタ値未満の状態から今回の制御周期のときのモータ電流のモニタ値である電流モニタI(n)が第1電流モニタ値を超えた状態に変ったか否かを判定する。つまり、モータ電流値が図12に示したE’点に至ったか否かを判定する。ここで肯定判定されるとステップ510に進み、モータ電流値がE’点に至ってからの時間を計測する上昇時間経過カウンタをオンすることを指示し、その後ステップ515に進む。また、ここで否定判定された場合にはまだモータ電流値がE’点に至っていないか、もしくは、既にE’点に至っていて上昇時間経過カウンタがオンされている最中であることから、そのままステップ515に進む。 In step 505, the monitor value of the motor current at the current control cycle is changed from the current monitor I (n-1), which is the monitor value of the motor current value at the previous control cycle, to a value less than the first current monitor value. It is determined whether or not a certain current monitor I (n) has changed to a state where it exceeds the first current monitor value. That is, it is determined whether or not the motor current value has reached the point E 'shown in FIG. If an affirmative determination is made here, the routine proceeds to step 510, where it is instructed to turn on the rising time elapsed counter that measures the time after the motor current value reaches the point E ', and then the routine proceeds to step 515. If a negative determination is made here, the motor current value has not yet reached point E ', or it has already reached point E' and the rising time elapsed counter is being turned on. Proceed to step 515.
 ステップ515では、前回の制御周期のときの電流モニタI(n-1)が第2電流モニタ値未満の状態から今回の制御周期のときの電流モニタI(n)が第2電流モニタ値を超えた状態に変ったか否かを判定する。つまり、モータ電流値が図12に示したF’点に至ったか否かを判定する。ここで肯定判定されるとステップ520に進み、上昇時間経過カウンタをオフすることを指示したのち、ステップ525に進む。また、ステップ515で否定判定された場合にはまだモータ電流値がF’点に至っていないか、もしくは、既にF’点に至っていて上昇時間経過カウンタがオフされている状況であることから、そのままステップ525に進む。 In step 515, the current monitor I (n) at the current control cycle exceeds the second current monitor value from the state in which the current monitor I (n-1) at the previous control cycle is less than the second current monitor value. It is determined whether or not the state has changed. That is, it is determined whether or not the motor current value has reached the point F ′ shown in FIG. If an affirmative determination is made here, the process proceeds to step 520, instructed to turn off the rising time elapsed counter, and then proceeds to step 525. If the determination in step 515 is negative, the motor current value has not yet reached the F ′ point, or has already reached the F ′ point and the rising time elapsed counter is turned off. Proceed to step 525.
 ステップ525では、上昇時間経過カウンタのオンが指示されているか否かを判定する。ここで肯定判定されると上昇時間経過カウンタをカウントアップしてからステップ535に進み、否定判定されればそのままステップ535に進む。このようにすると、上昇時間経過カウンタのオンが指示されていた状態からオフが指示された状態に切り替わったときに上昇時間経過カウンタのカウントが停止されることになるため、このときのカウント値が、モータ電流値がE’点からF’点に至るまでに掛かった時間T’となる。 In step 525, it is determined whether or not the rising time elapsed counter is instructed to be turned on. If an affirmative determination is made here, the rising time elapsed counter is counted up and then the process proceeds to step 535. If a negative determination is made, the process proceeds to step 535 as it is. In this way, the count of the rising time elapsed counter is stopped when the rising time elapsed counter is switched on from the state instructed to turn off, so the count value at this time is The motor current value is a time T ′ taken from the point E ′ to the point F ′.
 ステップ535では、前回の制御周期のときに上昇時間経過カウンタがオンされていて、今回の制御周期のときに上昇時間経過カウンタがオフに切り替わった状態、つまり異常タイミングとなるモータ電流値がF’点に至ったタイミングであるか否かを判定する。そして、ステップ535で肯定判定されたときには、ステップ540に進み、上昇時間経過カウンタのカウント値、つまりE’点からF’点に至るまでに掛かる時間T’を用いて、第2電流モニタ値と第1電流モニタ値との差を上昇時間経過カウンタのカウント値で割った値を電流上昇勾配規範として設定する。このようにして、図4のステップ125における電流上昇勾配規範設定処理が終了する。 In step 535, the rising time elapsed counter is on during the previous control cycle and the rising time elapsed counter is switched off during the current control cycle, that is, the motor current value at the abnormal timing is F ′. It is determined whether or not it is time to reach a point. When an affirmative determination is made in step 535, the process proceeds to step 540, where the second current monitor value is calculated using the count value of the rising time elapsed counter, that is, the time T ′ from the point E ′ to the point F ′. A value obtained by dividing the difference from the first current monitor value by the count value of the rising time elapsed counter is set as the current rising gradient standard. In this way, the current increase gradient norm setting process in step 125 of FIG. 4 is completed.
 この後、図4のステップ130に進み、ロック・リリース表示処理を行う。図14にロック・リリース表示処理の詳細を示したフローチャートを示し、この図を参照してロック・リリース表示処理について説明する。 Thereafter, the process proceeds to step 130 in FIG. 4 to perform lock / release display processing. FIG. 14 is a flowchart showing details of the lock / release display process. The lock / release display process will be described with reference to FIG.
 ステップ600では、ロック状態フラグFLOCKがオンされているか否かを判定する。ここで否定判定されればステップ605に進んでロック・リリース表示ランプ24を消灯し、肯定判定されればステップ610に進んでロック・リリース表示ランプ24を点灯させる。このように、ロック状態であればロック・リリース表示ランプ24を点灯し、リリース状態もしくはリリース制御が開始された状態のときにはロック・リリース表示ランプ24を消灯する。これにより、ドライバ等にロック状態であるか否かを認識させることが可能となる。そして、図4のステップ110に示したロック制御においてロック動作が終了していれば、本処理においてロック・リリース表示ランプ24が点灯させられ、ロック状態であることが表示されることになる。このようにして、ロック・リリース表示処理が完了する。 In step 600, it is determined whether or not the lock state flag FLOCK is turned on. If a negative determination is made here, the process proceeds to step 605 to turn off the lock / release display lamp 24, and if an affirmative determination is made, the process proceeds to step 610 to turn on the lock / release display lamp 24. In this way, the lock / release display lamp 24 is turned on in the locked state, and the lock / release display lamp 24 is turned off when the release state or release control is started. As a result, it is possible to make the driver recognize whether or not it is in the locked state. Then, if the lock operation has been completed in the lock control shown in step 110 of FIG. 4, the lock / release display lamp 24 is turned on in this process, and the locked state is displayed. In this way, the lock / release display process is completed.
 以上により、初期出荷時に駐車ブレーキ制御処理にて行われるロック制御を実施することによる各種規範の設定が完了する。そして、各種規範の設定が完了すると、初期出荷時であることを示すフラグがリセットされ、この後の処理において初期出荷時ではないことが確認できるようにしている。なお、初期出荷時には、最初にロック要求が出されることを想定しているが、ロック要求前にリリース要求が出されることも有り得る。このため、ステップ105で否定判定された場合であってもステップ135でリリース要求ありと判定された場合、例えば操作SW23がオフされてドライバがEPB2を作動させてリリース状態にしようとしている状態であると判定された場合、ステップ140に進んでリリース制御を行うようにしている。そして、ロック要求に加えてリリース要求も無かった場合に、そのまま駐車ブレーキ制御処理を終了する。なお、このリリース制御の詳細については後で説明する。 Thus, setting of various norms by completing the lock control performed in the parking brake control process at the time of initial shipment is completed. When the setting of various norms is completed, the flag indicating the initial shipment time is reset so that it can be confirmed that it is not the initial shipment time in the subsequent processing. In the initial shipment, it is assumed that a lock request is issued first, but a release request may be issued before the lock request. Therefore, even if a negative determination is made in step 105, if it is determined in step 135 that there is a release request, for example, the operation SW23 is turned off and the driver is operating the EPB 2 to enter the release state. If it is determined, the process proceeds to step 140 to perform release control. When there is no release request in addition to the lock request, the parking brake control process is terminated as it is. Details of the release control will be described later.
 続いて、車両が出荷されて、実際に使用されるときには、図4のステップ100において否定判定されることになるため、ステップ145に進む。そして、ステップ145において、上記したステップ105と同様にロック要求ありか否かを判定し、肯定判定されるとステップ150に進んでロック制御を実行する。具体的には、上記した図5に示すロック制御処理によりロック制御を実行している。このようなロック制御を実行すると、基本的には初期出荷時と同様の動作を行うことになる。ただし、ステップ240の判定については、初出荷時ではないことから、突入電流ゲイン異常、無負荷電流ゲイン異常、上昇電流ゲイン異常の3つの異常のうちのいずれかの異常ありの場合、ステップ250に進むことになる。各種異常の有無の判定については、後述する各種異常判定処理(図15~図17参照)において行われており、その判定結果に基づいて本ステップにおける異常ありか否かの判定を行うようにしている。 Subsequently, when the vehicle is shipped and actually used, a negative determination is made in step 100 of FIG. In step 145, it is determined whether or not there is a lock request in the same manner as in step 105 described above. If an affirmative determination is made, the process proceeds to step 150 and lock control is executed. Specifically, the lock control is executed by the lock control process shown in FIG. When such lock control is executed, basically the same operation as at the time of initial shipment is performed. However, since the determination in step 240 is not at the time of initial shipment, if there is an abnormality among any of the three abnormalities of inrush current gain abnormality, no-load current gain abnormality, and rising current gain abnormality, step 250 is performed. Will go on. The determination of the presence / absence of various abnormalities is performed in various abnormality determination processes (see FIGS. 15 to 17) described later. Based on the determination results, it is determined whether there is an abnormality in this step. Yes.
 そして、異常ありであった場合には、ステップ250に進み、無負荷時電流NOCに対して目標モータ電流値上昇量TMIUP分を加算した値に電流ゲイン異常時補正係数を掛けた値を目標電流値MI#TARGETに設定する。電流ゲイン異常時補正係数とは、増幅器の異常が発生した時に、通常は無負荷時電流NOCに対して目標モータ電流値上昇量TMIUP分を加算した値として演算される目標電流値MI#TARGETをより大きな値にするための係数である。この係数は1よりも大きな値に設定され、3領域のいずれか1つでも異常と判定されたときに用いられる一定値とされていても良いし、3領域のどこで異常と判定されたかに応じて異なる値とされていても良い。 If there is an abnormality, the process proceeds to step 250, where the target current is obtained by multiplying the value obtained by adding the target motor current value increase amount TMIUP to the no-load current NOC and the current gain abnormality correction coefficient. Set to the value MI # TARGET. The current gain abnormality correction coefficient is the target current value MI # TARGET that is normally calculated as the value obtained by adding the target motor current value increase TMIUP to the no-load current NOC when an amplifier abnormality occurs. This is a coefficient for making a larger value. This coefficient is set to a value larger than 1, and may be a constant value used when any one of the three areas is determined to be abnormal. Depending on where in the three areas it is determined to be abnormal May have different values.
 これにより、目標電流値MI#TARGETが正常時に設定される値よりも大きな値とされ、ステップ255においてモータ電流値が目標電流値MI#TARGETに至るまでに掛かるロック作動時間が長くなるように補正できる。したがって、異常時であっても、適切にロック制御を行うことが可能となり、EPB2を停止しなくても済むようにできる。 As a result, the target current value MI # TARGET is set to a value larger than the value set in the normal state, and the lock operation time required until the motor current value reaches the target current value MI # TARGET in step 255 is corrected. it can. Therefore, even when there is an abnormality, it is possible to appropriately perform the lock control, and it is possible to avoid stopping the EPB 2.
 このようにして図4のステップ150におけるロック制御が実行されると、続いて、ステップ155に進み、突入電流時の電流下降勾配異常判定処理を行う。この電流下降勾配異常判定処理の概略について、図8を参照して説明する。 When the lock control in step 150 of FIG. 4 is executed in this way, the process proceeds to step 155, where current descent gradient abnormality determination processing at the time of inrush current is performed. An outline of the current descending gradient abnormality determination process will be described with reference to FIG.
 電流下降勾配異常判定処理では、今回の突入電流時の電流下降勾配を電流下降勾配規範と比較することで突入電流ゲイン異常が発生しているか否かを判定する。 In the current descending gradient abnormality determination process, it is determined whether or not an inrush current gain abnormality has occurred by comparing the current descending gradient at the current inrush current with the current descending gradient standard.
 まず、上記した電流下降勾配規範の設定方法と同様の手法によって、今回のロック制御における突入電流時の電流下降勾配を演算する。具体的には、図8に示すように、突入電流時にモータ電流値がピークとなるときをA点、異常検出タイミングをB点、A点~B点に至るまでに掛かる時間をTとして、(A-B)/Tを演算することで電流下降勾配を求める。例えば、A=46A、B=6A、T=40msとすると、電流下降勾配は(46-6)/0.04=1000.0A/sとなる。 First, the current descending gradient at the time of inrush current in the current lock control is calculated by the same method as the current descending gradient norm setting method described above. Specifically, as shown in FIG. 8, when the motor current value reaches a peak at the time of the inrush current, point A, abnormality detection timing B point, and time taken from point A to point B, T The current descending gradient is obtained by calculating (AB) / T. For example, if A = 46 A, B = 6 A, and T = 40 ms, the current descending gradient is (46−6) /0.04=1000.0 A / s.
 これが今回の突入電流時の電流下降勾配となるため、既に設定されている電流下降勾配規範(A’-B)/Tと比較することにより、突入電流ゲイン異常が発生しているか否かを判定することが可能となる。 Since this is the current descending slope at the current inrush current, it is determined whether or not an inrush current gain abnormality has occurred by comparing with the current descending slope norm (A'-B) / T that has already been set. It becomes possible to do.
 図15は、突入電流時の電流下降勾配異常判定処理の詳細を示したフローチャートである。ステップ155に示す電流下降勾配異常判定処理が実行されると、図15に示す各処理が実行される。 FIG. 15 is a flowchart showing details of the current descent gradient abnormality determination process at the time of inrush current. When the current descending gradient abnormality determination process shown in step 155 is executed, each process shown in FIG. 15 is executed.
 まず、ステップ700~735において、図9のステップ300~335と同様の処理を行い、(A-B)/Tを演算することで今回の突入電流時の電流下降勾配を演算する。そして、ステップ740に進み、電流下降勾配規範に対する今回の突入電流時の電流下降勾配の比が予め決めておいた突入電流時勾配比較用の異常検出値よりも大きいか否かを判定する。つまり、今回の突入電流時の電流下降勾配が電流下降勾配規範と比較して所定の比率以上大きくなっているか否かを判定する。 First, in steps 700 to 735, processing similar to that in steps 300 to 335 in FIG. 9 is performed, and (AB) / T is calculated to calculate the current descending gradient at the current inrush current. Then, the process proceeds to step 740, where it is determined whether or not the ratio of the current descent gradient at the current inrush current to the current descent gradient standard is larger than a predetermined abnormality detection value for inrush current gradient comparison. That is, it is determined whether or not the current descending gradient at the current inrush current is larger than a predetermined ratio as compared with the current descending gradient norm.
 ここで否定判定されれば突入電流ゲイン異常が発生していないことからステップ745に進んで突入電流ゲイン異常なし、例えば突入電流ゲイン異常が発生したことを示すフラグをリセットして処理を終了する。そして、肯定判定されれば突入電流ゲイン異常が発生していることからステップ750に進んで突入電流ゲイン異常あり、例えば突入電流ゲイン異常が発生したことを示すフラグをセットして処理を終了する。このようにして、突入電流ゲイン異常が発生したか否かを判定することができる。 If a negative determination is made here, since no inrush current gain abnormality has occurred, the routine proceeds to step 745, where there is no inrush current gain abnormality, for example, a flag indicating that an inrush current gain abnormality has occurred is reset and the processing is terminated. If an affirmative determination is made, an inrush current gain abnormality has occurred, so the routine proceeds to step 750, where there is an inrush current gain abnormality, for example, a flag indicating that an inrush current gain abnormality has occurred is set, and the process is terminated. In this way, it can be determined whether or not an inrush current gain abnormality has occurred.
 次に、図4のステップ160において、無負荷電流時のモータ電流値が正常であるか異常であるかの判定である無負荷電流値異常判定処理を行う。この無負荷電流時異常判定処理の概略について、図10を参照して説明する。 Next, in step 160 of FIG. 4, a no-load current value abnormality determination process is performed, which is a determination of whether the motor current value at the time of no-load current is normal or abnormal. An outline of the no-load current abnormality determination process will be described with reference to FIG.
 無負荷電流値異常判定処理では、今回の無負荷電流時の無負荷電流値を無負荷電流値規範と比較することで無負荷電流ゲイン異常が発生しているか否かを判定する。 In the no-load current value abnormality determination process, it is determined whether or not a no-load current gain abnormality has occurred by comparing the no-load current value at the current no-load current with the no-load current value standard.
 まず、上記した無負荷電流値規範の設定方法と同様の手法によって、今回のロック制御における無負荷電流時の無負荷電流値を演算する。具体的には、図10に示すように、突入電流の終了時間からモータ電流値の最小値(以下、電流最小値という)Dを計測し、無負荷電流終了後さらに所定の無負荷電流値基準に達するまでの時間αに至るまでの無負荷電流時間T中における電流最小値Dを求めている。 First, the no-load current value at the no-load current in the current lock control is calculated by the same method as the above-described no-load current value norm setting method. Specifically, as shown in FIG. 10, the minimum value (hereinafter referred to as the current minimum value) D of the motor current value is measured from the end time of the inrush current, and after the no-load current ends, a predetermined no-load current value reference The minimum current value D during the no-load current time T until reaching the time α is obtained.
 この電流最小値Dが今回の無負荷電流値となるため、既に設定されている無負荷電流値規範である電流最小規範値Cと比較することにより、無負荷電流ゲイン異常が発生しているか否かを判定することが可能となる。 Since this current minimum value D becomes the current no-load current value, whether or not an abnormal no-load current gain has occurred is compared with the current minimum normative value C which is an already set no-load current value norm. It becomes possible to determine.
 図16は、無負荷電流時の無負荷電流値異常判定処理の詳細を示したフローチャートである。ステップ160に示す無負荷電流値異常判定処理が実行されると、図16に示す各処理が実行される。 FIG. 16 is a flowchart showing details of the no-load current value abnormality determination process at the time of no-load current. When the no-load current value abnormality determination process shown in step 160 is executed, each process shown in FIG. 16 is executed.
 まず、ステップ800において、図11のステップ400と同様の判定を行い、肯定判定されたときにはステップ805に進んで、今回の制御周期における電流最小値D(n)を演算する。具体的には、前回の制御周期の電流最小値D(n-1)と今回の制御周期の電流モニタI(n)とを比較し、いずれか低いほうを今回の制御周期の電流最小値D(n)とする。電流最小値D(n)の初期値は、無負荷電流値基準に設定されており、電流モニタI(n)が無負荷電流値基準を下回ると電流最小値D(n)が更新されていく。このため、最終的には電流最小値D(n)がモータ電流値の最小値となり、そのときの電流最小値D(n)が最終的な電流最小値Dとされ、無負荷電流値として設定されることになる。 First, in step 800, the same determination as in step 400 of FIG. 11 is performed. When an affirmative determination is made, the process proceeds to step 805 to calculate the current minimum value D (n) in the current control cycle. Specifically, the current minimum value D (n-1) of the previous control cycle is compared with the current monitor I (n) of the current control cycle, and the lower one is the current minimum value D of the current control cycle. (N). The initial value of the minimum current value D (n) is set to the no-load current value reference. When the current monitor I (n) falls below the no-load current value reference, the minimum current value D (n) is updated. . Therefore, the current minimum value D (n) is finally the minimum value of the motor current value, and the current minimum value D (n) at that time is the final current minimum value D, which is set as the no-load current value. Will be.
 一方、ステップ800で否定判定されたときにはステップ810に進む。そして、ロック制御経過時間を表すロック制御時間カウンタCLTの値が突入電流が終了し得る時間として想定される所定時間、例えば100msを超えており、かつ、前回の制御周期の電流モニタI(n-1)が無負荷電流値基準未満であった状態から今回の制御周期の電流モニタI(n)が無負荷電流値基準以上になったタイミングか否かを判定する。つまり、無負荷電流が終了した状態であるか否かを判定する。ここで肯定判定されるとステップ815以降に示す無負荷電流ゲイン異常の判定処理に進み、否定判定されるとそのまま処理を終了する。 On the other hand, when a negative determination is made at step 800, the process proceeds to step 810. Then, the value of the lock control time counter CLT indicating the lock control elapsed time exceeds a predetermined time, for example, 100 ms, which is assumed as the time at which the inrush current can be completed, and the current monitor I (n− From the state in which 1) is less than the no-load current value reference, it is determined whether or not it is the timing when the current monitor I (n) of the current control cycle becomes greater than or equal to the no-load current value reference. That is, it is determined whether or not the no-load current has been completed. If an affirmative determination is made here, the process proceeds to a no-load current gain abnormality determination process shown in step 815 and thereafter, and if a negative determination is made, the process ends.
 ステップ815では、無負荷電流値規範として記憶しておいた電流最小規範値Cを用いて無負荷電流値規範の範囲、つまり正常範囲の上限および下限を規定する無負荷電流値上限CHiLimitおよび無負荷電流値下限CLowLimitを演算する。具体的には、電流最小規範値Cに対して所定のバラツキ係数を加味した定数(1±バラツキ係数)を掛けることにより、無負荷電流値上限CHiLimitおよび無負荷電流値下限CLowLimitを演算している。例えば、電流最小規範値Cが1.1Aでバラツキ係数が0.5であったとすると、無負荷電流値上限CHiLimitが1.65A(=1.1×(1+0.5))、無負荷電流値下限CLowLimitが0.55A(=1.1×(1-0.5))となる。なお、本実施形態では電流最小規範値Cを無負荷電流値規範として記憶しておいたが、これら無負荷電流値上限CHiLimitおよび無負荷電流値下限CLowLimitを初めから無負荷電流値規範として記憶しておいても良い。 In step 815, the no-load current value reference C stored as the no-load current value reference is used, and the no-load current value upper limit CHiLimit and the no-load Calculate the current value lower limit CLowLimit. Specifically, the no-load current value upper limit CHiLimit and the no-load current value lower limit CLowLimit are calculated by multiplying the current minimum normative value C by a constant (1 ± variation coefficient) with a predetermined variation coefficient. . For example, if the current minimum normative value C is 1.1 A and the variation coefficient is 0.5, the no-load current value upper limit CHiLimit is 1.65 A (= 1.1 × (1 + 0.5)), the no-load current value The lower limit CLowLimit is 0.55 A (= 1.1 × (1-0.5)). In this embodiment, the current minimum normative value C is stored as a no-load current value norm, but these no-load current value upper limit CHiLimit and no-load current value lower limit CLowLimit are stored as no-load current value norms from the beginning. You can keep it.
 そして、ステップ820に進み、電流最小値D、つまりステップ805にて最終的に更新された電流最小値D(n)が無負荷電流値上限CHiLimitから無負荷電流値下限CLowLimitの範囲内に含まれているか否かを判定する。 Then, the process proceeds to step 820, where the current minimum value D, that is, the current minimum value D (n) finally updated in step 805 is included in the range from the no-load current value upper limit CHiLimit to the no-load current value lower limit CLowLimit. It is determined whether or not.
 ここで否定判定されれば無負荷電流ゲイン異常は発生していないことからステップ825に進んで無負荷電流ゲイン異常なし、例えば無負荷電流ゲイン異常が発生したことを示すフラグをリセットして処理を終了する。そして、肯定判定されれば無負荷電流ゲイン異常は発生していることからステップ830に進んで無負荷電流ゲイン異常あり、例えば無負荷電流ゲイン異常が発生したことを示すフラグをセットして処理を終了する。このようにして、無負荷電流ゲイン異常が発生したか否かを判定することができる。 If a negative determination is made here, no no-load current gain abnormality has occurred, and therefore, the process proceeds to step 825, where no load current gain abnormality has occurred, for example, a flag indicating that no load current gain abnormality has occurred is reset and processing is performed. finish. If an affirmative determination is made, a no-load current gain abnormality has occurred. Therefore, the process proceeds to step 830, where there is a no-load current gain abnormality. For example, a flag indicating that a no-load current gain abnormality has occurred is set. finish. In this way, it can be determined whether or not a no-load current gain abnormality has occurred.
 次に、図4のステップ165において、電流上昇時のモータ電流値が正常であるか異常であるかの判定である電流上昇勾配異常判定処理を行う。この電流上昇勾配異常判定処理の概略について、図12を参照して説明する。 Next, in step 165 of FIG. 4, a current increase gradient abnormality determination process is performed, which is a determination of whether the motor current value at the time of current increase is normal or abnormal. The outline of this current rising gradient abnormality determination process will be described with reference to FIG.
 電流上昇勾配異常判定処理では、今回の電流上昇時の電流上昇勾配を電流上昇勾配規範と比較することで上昇電流ゲイン異常が発生しているか否かを判定する。 In the current rising gradient abnormality determination process, it is determined whether or not the rising current gain abnormality has occurred by comparing the current rising gradient at the current current rising time with the current rising gradient norm.
 まず、上記した電流上昇勾配規範の設定方法と同様の手法によって、今回のロック制御における電流上昇時の電流上昇勾配を演算する。具体的には、図12に示すように、電流上昇時にモータ電流値が第1電流モニタ値となるときをE点、異常検出タイミングを第2電流モニタ値となるF点、E点からF点に至るまでに掛かる時間をTとして、電流上昇勾配を(F-E)/Tから演算する。例えば、E=6A、F=16A、T=200msとすると、電流上昇勾配は(16-6)/0.2=50.0A/sとなる。 First, the current increase gradient at the time of current increase in the current lock control is calculated by the same method as the current increase gradient norm setting method described above. More specifically, as shown in FIG. 12, when the motor current value becomes the first current monitor value when the current rises, point E, abnormality detection timing becomes the second current monitor value F point, E point to F point Assuming that the time taken to reach T is T, the current rise gradient is calculated from (FE) / T. For example, if E = 6 A, F = 16 A, and T = 200 ms, the current rise gradient is (16−6) /0.2=50.0 A / s.
 これが今回の電流上昇時の電流上昇勾配となるため、既に設定されている電流上昇勾配規範(F’-E’)/Tと比較することにより、上昇電流ゲイン異常が発生しているか否かを判定することが可能となる。 Since this is the current rise gradient at the current rise, the current rise gradient norm (F'-E ') / T is compared to determine whether or not a rise current gain abnormality has occurred. It becomes possible to judge.
 図17は、電流上昇時の電流上昇勾配異常判定処理の詳細を示したフローチャートである。ステップ165に示す電流上昇勾配異常判定処理が実行されると、図17に示す各処理が実行される。 FIG. 17 is a flowchart showing details of the current increase gradient abnormality determination process at the time of current increase. When the current increase gradient abnormality determination process shown in step 165 is executed, each process shown in FIG. 17 is executed.
 まず、ステップ800~840において、図13のステップ500~540と同様の処理を行い、(F-E)/Tを演算することで今回の電流上昇時の電流上昇勾配を演算する。そして、ステップ845に進み、電流上昇勾配規範に対する今回の電流上昇時の電流上昇勾配の比が予め決めておいた電流上昇時勾配比較用の異常検出値よりも大きいか否かを判定する。つまり、今回の電流上昇時の電流上昇勾配が電流上昇勾配規範と比較して所定の比率以上大きくなっているか否かを判定する。 First, in steps 800 to 840, processing similar to that in steps 500 to 540 in FIG. 13 is performed, and (FE) / T is calculated to calculate the current increase gradient at the current current increase. Then, the process proceeds to step 845, where it is determined whether or not the ratio of the current rise gradient at the current rise to the current rise gradient norm is larger than a predetermined abnormality detection value for the current rise slope comparison. That is, it is determined whether or not the current increase gradient at the current current increase is greater than a predetermined ratio as compared with the current increase gradient norm.
 ここで否定判定されれば上昇電流ゲイン異常が発生していないことからステップ850に進んで上昇電流ゲイン異常なし、例えば上昇電流ゲイン異常が発生したことを示すフラグをリセットして処理を終了する。そして、肯定判定されれば上昇電流ゲイン異常が発生していることからステップ855に進んで上昇電流ゲイン異常あり、例えば上昇電流ゲイン異常が発生したことを示すフラグをセットして処理を終了する。このようにして、上昇電流ゲイン異常が発生したか否かを判定することができる。 If a negative determination is made here, since no rising current gain abnormality has occurred, the routine proceeds to step 850, where there is no rising current gain abnormality, for example, a flag indicating that a rising current gain abnormality has occurred is reset and the processing is terminated. If an affirmative determination is made, a rise current gain abnormality has occurred, so that the routine proceeds to step 855 where a rise current gain abnormality has occurred, for example, a flag indicating that a rise current gain abnormality has occurred is set, and the process is terminated. In this way, it can be determined whether or not a rising current gain abnormality has occurred.
 このようにして、各種異常判定処理が実行されると、その判定結果が図5のステップ240の判定において用いられる。そして、突入電流ゲイン異常、無負荷電流ゲイン異常、上昇電流ゲイン異常の3つの異常のうちのいずれかの異常ありの場合には、それに対応して目標電流値MI#TARGETが補正される。これにより、モータ電流値が目標電流値MI#TARGETに至るまでに掛かるロック作動時間が長くなるように補正されるため、異常時であっても、適切にロック制御を行うことが可能となり、EPB2を停止しなくても済むようにできる。 In this way, when various abnormality determination processes are executed, the determination results are used in the determination of step 240 in FIG. Then, if any of the three abnormalities of inrush current gain abnormality, no-load current gain abnormality, and rising current gain abnormality is present, the target current value MI # TARGET is corrected accordingly. As a result, the lock operation time required for the motor current value to reach the target current value MI # TARGET is corrected so that the lock control can be appropriately performed even in an abnormal state. You can avoid having to stop.
 また、各種異常判定処理が終了すると、図4のステップ130においてロック・リリース表示処理が実行される。この処理は、上記と同様であるが、ロック制御においてモータ電流値が目標電流値MI#TARGETに至ってロック動作が終了していれば、ロック・リリース表示ランプ24が点灯させられ、ロック状態であることが表示されることになる。このようにして、ロック・リリース表示処理が完了する。 When the various abnormality determination processes are completed, the lock / release display process is executed in step 130 of FIG. This process is the same as above, but if the motor current value reaches the target current value MI # TARGET in the lock control and the lock operation is finished, the lock / release display lamp 24 is turned on and the lock state is established. Will be displayed. In this way, the lock / release display process is completed.
 さらに、車両が出荷されてからリリース要求が有った場合などのときには、ステップ145において否定判定されてステップ170に進む。そして、ステップ170において、リリース要求ありか否か、例えば操作SW23がオフされたか否かを判定する。操作SW23がオフの状態とはドライバがEPB2を作動させてリリース状態にしようとしていることを意味している。リリース要求があった場合には、ステップ170で肯定判定され、ステップ175に進んでリリース制御を行う。このリリース制御の詳細について、図18に示すリリース制御処理のフローチャートを参照して説明する。なお、図4のステップ140におけるリリース制御処理についても、ステップ175のリリース制御処理と同様の動作が行われる。 Furthermore, when there is a release request after the vehicle is shipped, a negative determination is made at step 145 and the routine proceeds to step 170. In step 170, it is determined whether there is a release request, for example, whether the operation SW 23 is turned off. The state in which the operation SW 23 is off means that the driver is operating the EPB 2 to enter the release state. If there is a release request, an affirmative determination is made at step 170, and the routine proceeds to step 175 where release control is performed. Details of the release control will be described with reference to a flowchart of release control processing shown in FIG. Note that the same operation as the release control process in step 175 is performed in the release control process in step 140 of FIG.
 リリース制御処理では、モータ10を回転させることによりEPB2を作動させ、EPB-ECU9にて発生させられているブレーキ力を解除するという処理を行う。 In the release control process, the EPB 2 is operated by rotating the motor 10, and the brake force generated by the EPB-ECU 9 is released.
 まず、ステップ900では、前回の制御周期の電流モニタI(n-1)と今回の制御周期の電流モニタI(n)の差の絶対値|I(n-1)-I(n)|がリリース制御終了判定電流値RENDI未満になっているか否かを判定する。 First, in step 900, the absolute value | I (n-1) -I (n) | of the difference between the current monitor I (n-1) in the previous control cycle and the current monitor I (n) in the current control cycle is It is determined whether or not the release control end determination current value is less than RENDI.
 上述したように、モータ電流値は、モータ10に加えられる負荷に応じて変動し、ブレーキパッド11をブレーキディスク12に押し付けている押圧力がなくなると、モータ電流値が無負荷時電流NOCで一定となり、変動が無くなる。このため、リリース制御終了判定電流値RENDIをモータ10に対する負荷がなくなったと想定される電流変化量に設定しておき、絶対値|I(n-1)-I(n)|がリリース制御終了判定電流値RENDI未満になると、ブレーキパッド11がブレーキディスク12から離れてモータ10に対する負荷が無くなったと判定する。 As described above, the motor current value fluctuates in accordance with the load applied to the motor 10, and when the pressing force pressing the brake pad 11 against the brake disk 12 disappears, the motor current value is constant at the no-load current NOC. And there will be no fluctuations. For this reason, the release control end determination current value RENDI is set to a current change amount that is assumed to cause no load on the motor 10, and the absolute value | I (n-1) -I (n) | When the current value is less than RENDI, it is determined that the brake pad 11 has moved away from the brake disk 12 and the load on the motor 10 has been removed.
 したがって、ステップ900で否定判定されれば、ステップ905に進んでロック状態フラグFLOCKをオフすると共に、モータリリース駆動をオン、つまりモータ10を逆回転させる。これにより、モータ10の逆回転に伴って、ブレーキパッド11がブレーキディスク12から離れる方向に移動させられる。 Therefore, if a negative determination is made in step 900, the routine proceeds to step 905, where the lock state flag FLOCK is turned off and the motor release drive is turned on, that is, the motor 10 is rotated in the reverse direction. As a result, the brake pad 11 is moved away from the brake disc 12 with the reverse rotation of the motor 10.
 また、ステップ900で肯定判定されると、ステップ910に進んでリリース制御終了カウンタCRENDをインクリメントしたのち、ステップ915に進んでリリース制御終了カウンタCRENDがリリース制御終了時間TRENDを超えたか否かを判定する。 If the determination in step 900 is affirmative, the process proceeds to step 910 to increment the release control end counter CREND, and then proceeds to step 915 to determine whether or not the release control end counter CREND has exceeded the release control end time TREND. .
 リリース制御終了時間TRENDは、モータ10への負荷が無くなったタイミング、ブレーキパッド11がブレーキディスク12から離れたタイミングからリリース制御を継続する時間であり、ロック制御時にモータ10によってブレーキパッド11を移動させた量が多いほど長くなる。 The release control end time TREND is the time when the release control is continued from the timing when the load on the motor 10 is lost, the timing when the brake pad 11 is separated from the brake disk 12, and the brake pad 11 is moved by the motor 10 during the lock control. The longer the amount, the longer.
 ここで、リリース制御終了カウンタCRENDがリリース制御終了時間TRENDを超えていない状態であれば、まだリリース制御が継続されることになるため、ステップ905の処理を実行する。そして、リリース制御終了カウンタCRENDがリリース制御終了時間TRENDを超えると、ステップ920に進み、リリースが完了したことを意味するリリース状態フラグFRELをオンすると共にリリース制御終了カウンタCRENDを0にし、モータリリース駆動をオフする。したがって、モータ10の回転が停止され、ブレーキパッド11がブレーキディスク12から離れた状態のままで保持される。このようにして、リリース制御処理が完了する。その後、ステップ130のロック・リリース制御処理に進み、上記した処理を行う。リリース制御開始後の場合には、ロック状態フラグFLOCKがオフされていることから、ロック・リリース表示ランプ24が消灯され、ロック状態ではないことが示される。これにより、初期出荷後の駐車ブレーキ制御処理が終了する。 Here, if the release control end counter CREND does not exceed the release control end time TREND, the release control is still continued, so the processing of step 905 is executed. When the release control end counter CREND exceeds the release control end time TREND, the process proceeds to step 920, where the release state flag FREL, which means that the release is completed, is turned on and the release control end counter CREND is set to 0 to drive the motor release. Turn off. Accordingly, the rotation of the motor 10 is stopped, and the brake pad 11 is held in a state of being separated from the brake disk 12. In this way, the release control process is completed. Thereafter, the process proceeds to the lock / release control process of step 130 and the above-described process is performed. When the release control is started, since the lock state flag FLOCK is turned off, the lock / release display lamp 24 is turned off, indicating that the lock state is not set. Thereby, the parking brake control process after the initial shipment ends.
 以上説明したように、本実施形態では、正常時における突入電流時や無負荷電流時および電流上昇時の3領域でのモータ電流値の変化を規範値として記憶しておき、それをEPB2の使用時におけるモータ電流値の現在値と比較することで異常検出を行うようにしている。そして、異常が検出されると、例えば、目標電流値を正常時に設定される値よりも大きくすることでロック作動時間を長くするように補正する。これにより、異常時であっても、適切にロック制御を行うことが可能となり、EPB2を停止しなくても済むようにできる。したがって、ケーブルの断線や短絡、EPB2の機械的な破損のような故障だけでなく、増幅器のゲイン異常のような比較的小さな電流値変化でしか現れない異常を検出でき、それに対する処置を行うことが可能となる。 As described above, in the present embodiment, the change in the motor current value in the three regions at the time of inrush current at normal time, at the time of no load current, and at the time of current rise is stored as a reference value, and this is used as the reference value of EPB2. The abnormality is detected by comparing with the current value of the motor current value at the time. When an abnormality is detected, for example, the lock operation time is corrected to be longer by setting the target current value to be larger than the value set at the normal time. As a result, even when there is an abnormality, it is possible to appropriately perform the lock control, and it is possible to avoid stopping the EPB 2. Therefore, it is possible to detect not only failures such as cable disconnection and short circuit, mechanical damage of EPB2, but also abnormalities that appear only with relatively small current value changes such as amplifier gain abnormalities, and take measures against them. Is possible.
 なお、本実施形態では、比較的小さな電流値変化でしか現れない異常として、増幅器のゲイン異常を例に挙げたが、その他の小さな電流値変化を及ぼすような異常についても同様に検出することができる。したがって、そのような小さな電流値変化を及ぼすような性能、機能上の問題を特定でき、それに対する処置を行うことが可能となる。 In this embodiment, the amplifier gain abnormality is exemplified as an abnormality that appears only with a relatively small current value change. However, other abnormalities that cause a small current value change can be detected in the same manner. it can. Therefore, it is possible to identify performance and functional problems that cause such a small change in current value, and to take measures against them.
 (第2実施形態)
 本発明の第2実施形態について説明する。本実施形態は、第1実施形態に対し、駐車ブレーキ制御処理において摩擦材であるブレーキパッド11の磨耗(以下、パッド磨耗という)の判定を行えるようにしたものであり、その他に関しては第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
(Second Embodiment)
A second embodiment of the present invention will be described. Compared to the first embodiment, the present embodiment is configured to determine the wear of the brake pad 11 that is a friction material (hereinafter referred to as pad wear) in the parking brake control process. Since it is the same as the embodiment, only the parts different from the first embodiment will be described.
 図19は、本実施形態のリリース動作にかかわる駐車ブレーキ制御処理の全体フローチャートである。この図に示すように、本実施形態の駐車ブレーキ制御処理は、ほぼ第1実施形態で説明した図4に示した駐車ブレーキ制御処理と同様であるが、ステップ165の電流上昇勾配異常判定処理を行ったのち、ステップ180に進んでパッド磨耗判定処理を行うことが相違している。 FIG. 19 is an overall flowchart of parking brake control processing related to the release operation of this embodiment. As shown in this figure, the parking brake control process of this embodiment is substantially the same as the parking brake control process shown in FIG. 4 described in the first embodiment, but the current increase gradient abnormality determination process of step 165 is performed. After performing, it progresses to step 180 and performs pad wear determination processing.
 駐車ブレーキ制御処理において、突入電流時や無負荷電流時および電流上昇時に異常判定処理を行っているが、各異常判定処理に用いている突入電流時勾配比較用の異常検出値やバラツキ係数および電流上昇時勾配比較用の異常検出値は、パッド磨耗等を加味して決めている。図20は、モータ電流値として実際に出力しようとしている実電流値とモニタ値との関係を示した図である。この図に示すように、実電流値に対してモニタ値にバラツキが発生する。バラツキ要因としては、主に、電流モニタバラツキとパッド磨耗や経年変化などによるバラツキがあり、これらのバラツキ要因による変動分を加味して上記したように各異常検出値やバラツキ係数を設定している。 In the parking brake control process, abnormality determination processing is performed at the time of inrush current, no load current, and current rise, but the abnormality detection value, variation coefficient and current for inrush current gradient comparison used for each abnormality determination process The abnormality detection value for comparing the rising gradient is determined in consideration of pad wear and the like. FIG. 20 is a diagram showing the relationship between the actual current value to be output as the motor current value and the monitor value. As shown in this figure, the monitor value varies with respect to the actual current value. Variation factors mainly include variations due to current monitor variation, pad wear, and aging, and each abnormality detection value and variation coefficient are set as described above, taking into account variations due to these variation factors. .
 例えば、図20では、電流モニタバラツキを7%、パッド磨耗分等のバラツキを30%として正常範囲と異常範囲を設定した例を示してある。パッド磨耗分等のバラツキがない初期出荷時には電流モニタバラツキによる変動範囲が正常範囲と考えられるが、使用に伴ってパッド磨耗分等のバラツキも含まれてくるため、その変動範囲を含めて正常範囲を設定し、その範囲外を異常範囲として設定している。この異常範囲となるように、各異常検出値やバラツキ係数を設定している。なお、パッド磨耗によるバラツキの影響は、基本的にはブレーキパッド11がブレーキディスク12に当接したときに生じることから、電流上昇時のみ関係し、突入電流時や無負荷電流時には殆ど関係しない。このため、電流上昇時のみパッド磨耗によるバラツキを加味して正常範囲および異常範囲を設定し、突入電流時や無負荷電流時にはパッド磨耗によるバラツキを加味せずに正常範囲および異常範囲を設定するようにしてもよい。 For example, FIG. 20 shows an example in which a normal range and an abnormal range are set with a current monitor variation of 7% and a pad wear variation of 30%. In the initial shipment when there is no variation such as pad wear, the variation range due to current monitor variation is considered to be the normal range, but as the pad wear variation is included with use, the normal range including the variation range is included. Is set, and the outside of the range is set as the abnormal range. Each abnormality detection value and variation coefficient are set so as to be in this abnormality range. Note that the influence of the variation due to pad wear basically occurs when the brake pad 11 comes into contact with the brake disc 12, and is therefore only relevant when the current rises, and is hardly relevant at the time of inrush current or no-load current. For this reason, the normal range and abnormal range are set only when the current rises, taking into account variations due to pad wear, and the normal range and abnormal range are set without taking into account variations due to pad wear during inrush current or no-load current. It may be.
 このようにして、各種バラツキ要因を加味して各異常検出値やバラツキ係数が設定されている。そして、電流上昇時勾配比較用の異常検出値については、パッド磨耗によるバラツキを加味せずに設定してしまうと、パッド磨耗時にも異常と判定されることになるため、パッド磨耗によるバラツキを加味して設定している。 In this way, each abnormality detection value and variation coefficient are set in consideration of various variation factors. And, if the abnormality detection value for the current rise gradient comparison is set without taking into account variations due to pad wear, it will be judged as abnormal even during pad wear, so the variations due to pad wear will be taken into account. And set it.
 しかしながら、各異常検出値やバラツキ係数をパッド磨耗によるバラツキを加味した場合と加味しない場合それぞれで設定しておけば、それを用いてパッド磨耗を検出することが可能となる。例えば、突入電流時勾配比較用の異常検出値やバラツキ係数について、パッド磨耗によるバラツキを加味せずに設定して異常判定を行っても、突入電流時や無負荷電流時にはパッド磨耗によるバラツキの影響は殆どないため、パッド磨耗が生じていてもゲイン異常なしと判定される。また、パッド磨耗が生じていても、電流上昇時勾配比較用の異常検出値をパッド磨耗によるバラツキを加味して設定してあれば、ゲイン異常なしと判定される。そして、パッド磨耗が生じている場合に、電流上昇時勾配比較用の異常検出値をパッド磨耗によるバラツキを加味せずに設定してあれば、ゲイン異常ありと判定される。これに基づいて、パッド磨耗を検出する。 However, if each abnormality detection value and variation coefficient are set with and without the variation due to pad wear, it is possible to detect the pad wear using them. For example, even if the abnormality detection value and variation coefficient for slope comparison at inrush current are set without considering the variation due to pad wear, the effect of variation due to pad wear at inrush current or no load current Therefore, it is determined that there is no gain abnormality even if pad wear occurs. Even if pad wear has occurred, it is determined that there is no gain abnormality if the abnormality detection value for current rise gradient comparison is set in consideration of variations due to pad wear. Then, when pad wear has occurred, if the abnormality detection value for gradient comparison during current rise is set without taking into account variations due to pad wear, it is determined that there is a gain abnormality. Based on this, pad wear is detected.
 図21は、パッド磨耗判定処理の詳細を示したフローチャートである。この図を参照してパッド磨耗判定処理について説明する。 FIG. 21 is a flowchart showing details of the pad wear determination process. The pad wear determination process will be described with reference to this figure.
 まず、ステップ1000では、突入電流ゲイン異常なし、無負荷電流ゲイン異常なし、上昇電流ゲイン異常なしのすべてを満たしているか否かを判定する。このときの各ゲイン異常については、パッド磨耗検出用の異常検出値やバラツキ係数を用いて行っている。例えば、突入電流時勾配比較用の異常検出値やバラツキ係数について、パッド磨耗によるバラツキを加味せずに設定し、電流上昇時勾配比較用の異常検出値をパッド磨耗によるバラツキを加味して設定してある。ただし、突入電流時勾配比較用の異常検出値やバラツキ係数については、パッド磨耗によるバラツキを加味して設定しても良い。 First, in step 1000, it is determined whether or not all of inrush current gain abnormality, no load current gain abnormality, and no rising current gain abnormality are satisfied. Each gain abnormality at this time is performed using an abnormality detection value for detecting pad wear and a variation coefficient. For example, the abnormality detection value and variation coefficient for inrush current gradient comparison are set without taking into account variations due to pad wear, and the error detection value for current rise gradient comparison is set taking into account variations due to pad wear. It is. However, the abnormality detection value and the variation coefficient for inrush current gradient comparison may be set in consideration of variations due to pad wear.
 ここで否定判定されればパッド磨耗のバラツキ以上のゲイン異常が発生している状態であることから、ステップ1005に進み、パッド磨耗なしを示す。例えば、パッド磨耗ありを示すフラグをリセットすることでパッド磨耗なしを示している。そして、肯定判定された場合には、ステップ1010に進む。 If a negative determination is made here, it means that a gain abnormality greater than the pad wear variation has occurred, and therefore, the process proceeds to step 1005 to indicate no pad wear. For example, resetting a flag indicating the presence of pad wear indicates no pad wear. If an affirmative determination is made, the process proceeds to step 1010.
 ステップ1010では、電流上昇勾配規範に対する今回の電流上昇時の電流上昇勾配の比が予め決めておいた電流上昇時勾配比較用の異常検出値よりも大きいか否かを判定する。このとき、電流上昇時勾配比較用の異常検出値として、パッド磨耗検出用の異常検出値、つまりパッド磨耗によるバラツキを加味せずに設定した値を用いるようにしている。したがって、ここで肯定判定された場合には、パッド磨耗が発生している場合であることから、ステップ1015に進んでパッド磨耗ありを示す。例えば、パッド磨耗ありを示すフラグをセットする。そして、否定判定された場合には、ステップ1005に進んでパッド磨耗なしを示す。このようにして、パッド磨耗判定処理が終了する。そして、このパッド磨耗判定によってパッド磨耗ありとされた場合には、EPB-ECU9から報知装置27に対してその旨の信号を出力し、報知装置27によってパッド磨耗が生じていることを表示する。これにより、ドライバにブレーキパッド11の交換を促すことができる。 In Step 1010, it is determined whether or not the ratio of the current rise gradient at the current rise to the current rise gradient norm is larger than a predetermined abnormality detection value for current rise slope comparison. At this time, an abnormal detection value for detecting pad wear, that is, a value set without taking into account variations due to pad wear is used as an abnormal detection value for comparing the current rise gradient. Therefore, if the determination is affirmative here, it means that pad wear has occurred, and the routine proceeds to step 1015 to indicate that pad wear has occurred. For example, a flag indicating the presence of pad wear is set. If a negative determination is made, the process proceeds to step 1005 to indicate no pad wear. In this way, the pad wear determination process ends. If the pad wear is determined to be due to the pad wear determination, the EPB-ECU 9 outputs a signal to that effect to the notification device 27, and the notification device 27 displays that the pad wear has occurred. Thereby, it is possible to prompt the driver to replace the brake pad 11.
 以上説明したように、駐車ブレーキ制御処理においてパッド磨耗判定を行うこともできる。これにより、パッド磨耗の有無を検出し、ドライバにパッド磨耗が生じていることを報知することができ、ドライバはパッド交換などの処置を取ることができる。また、パッド磨耗の有無の検出結果に基づいて、突入電流時勾配比較用の異常検出値やバラツキ係数および電流上昇時勾配比較用の異常検出値を補正することもできる。すなわち、パッド磨耗なしのときにはパッド磨耗を加味しない値とし、パッド磨耗ありのときにはパッド磨耗を加味した値として、各異常検出値やバラツキ係数を設定できる。 As described above, the pad wear determination can be performed in the parking brake control process. Thereby, the presence or absence of pad wear can be detected, the driver can be notified that pad wear has occurred, and the driver can take measures such as pad replacement. Further, based on the detection result of the presence or absence of pad wear, the abnormality detection value for inrush current gradient comparison, the variation coefficient, and the abnormality detection value for current rising gradient comparison can be corrected. That is, each abnormality detection value and variation coefficient can be set as a value that does not take into account pad wear when there is no pad wear, and a value that takes into account pad wear when there is pad wear.
 (第3実施形態)
 本発明の第3実施形態について説明する。本実施形態は、第1、第2実施形態に対し、電流上昇時の異常検出方法を変更したものであり、その他に関しては第1、第2実施形態と同様であるため、第1、第2実施形態と異なる部分についてのみ説明する。
(Third embodiment)
A third embodiment of the present invention will be described. The present embodiment is different from the first and second embodiments in the abnormality detection method at the time of current rise, and the other aspects are the same as those in the first and second embodiments. Only portions different from the embodiment will be described.
 具体的には、上記第1、第2実施形態では、電流上昇時における異常検出タイミングを1つとしているが、本実施形態では、異常検出タイミングを複数とする。例えば、第1、第2実施形態では、異常検出タイミングをモータ電流値が第2電流モニタ値となったときとしているが、本実施形態では、さらに第3電流モニタ値となったときも異常検出タイミングとしており、少なくとも2つ以上の異常検出タイミングを設定している。 Specifically, in the first and second embodiments described above, there is one abnormality detection timing at the time of current rise, but in this embodiment, there are a plurality of abnormality detection timings. For example, in the first and second embodiments, the abnormality detection timing is set when the motor current value becomes the second current monitor value, but in this embodiment, the abnormality detection is also performed when the motor current value becomes the third current monitor value. Timing is set, and at least two or more abnormality detection timings are set.
 図22は、正常時と増幅器の故障等によるゲイン異常時における電流上昇時のモータ電流値の比較図である。まず、初期出荷時において、電流上昇時にモータ電流値が第1電流モニタ値となるときをE’点、異常検出タイミングを第2電流モニタ値となるF’点とそれよりも小さな第3電流モニタ値となるG’点、E’点からF’点に至るまでに掛かる時間をT1、E’点からG’点に至るまでに掛かる時間をT2’とする。すると、電流上昇勾配は(F’-E’)/T1’と(G’-E’)/T2’の2つで表される。これらを第1、第2の電流上昇勾配規範として記憶しておく。 FIG. 22 is a comparison diagram of motor current values at the time of current increase when normal and when gain is abnormal due to an amplifier failure or the like. First, at the time of initial shipment, when the motor current value becomes the first current monitor value when the current rises, the point E ′, the abnormality detection timing becomes the point F ′ that becomes the second current monitor value, and a third current monitor smaller than that. The time taken from the G ′ point and the E ′ point to the F ′ point as values is T1, and the time taken from the E ′ point to the G ′ point is T2 ′. Then, the current rising gradient is expressed by two of (F'-E ') / T1' and (G'-E ') / T2'. These are stored as the first and second current rising gradient norms.
 そして、電流上昇勾配異常判定処理の際にも同様に、電流上昇時にモータ電流値が第1電流モニタ値となるときをE点、異常検出タイミングを第2電流モニタ値となるF点とそれよりも小さな第3電流モニタ値となるG点、E点からF点に至るまでに掛かる時間をT1、E点からG点に至るまでに掛かる時間をT2とする。すると、電流上昇勾配として(F-E)/T1と(G-E)/T2の2つが演算される。これらが第1、第2の電流上昇勾配規範それぞれと対応する期間T1、T2における電流上昇勾配となる第1、第2の電流上昇勾配となる。 Similarly, in the current rise gradient abnormality determination process, the point E is when the motor current value becomes the first current monitor value when the current rises, and the point F when the abnormality detection timing becomes the second current monitor value. The time taken from the G point and the E point to the F point as the third third current monitor value is T1, and the time taken from the E point to the G point is T2. Then, two of (FE) / T1 and (GE) / T2 are calculated as current rising gradients. These are the first and second current rise gradients that are current rise gradients in the periods T1 and T2 corresponding to the first and second current rise gradient standards, respectively.
 したがって、これら第1、第2の電流上昇勾配をそれぞれ第1、第2の電流上昇勾配規範と比較することで、上昇電流ゲイン異常ありか否かを判定することができる。このように、2つ以上の異常検出タイミングを持って電流上昇時の異常検出を行うと次の効果を得ることができる。EPB2の特性に応じて電流上昇時の上昇勾配が変化するが、モータ電流値の変化が直線状になるとは限らないことから、異常検出タイミングの設定次第で勾配が変わる。このため、2つ以上の異常検出タイミングを持つようにすることで、EPB2の特性に応じた勾配の変化の影響を低減することが可能となり、EPB2の特性にかかわらず異常検出を行うことが可能となる。 Therefore, it is possible to determine whether or not there is an abnormality in the rising current gain by comparing the first and second current rising gradients with the first and second current rising gradient standards, respectively. As described above, when the abnormality detection at the time of current rise is performed with two or more abnormality detection timings, the following effects can be obtained. Although the rising gradient at the time of current increase changes according to the characteristics of EPB2, the change in motor current value is not always linear, so the gradient changes depending on the setting of the abnormality detection timing. Therefore, by having two or more abnormality detection timings, it is possible to reduce the influence of the change in gradient according to the characteristics of EPB2, and it is possible to perform abnormality detection regardless of the characteristics of EPB2. It becomes.
 (第4実施形態)
 本発明の第4実施形態について説明する。本実施形態は、第1~第3実施形態に対し、EPB2の駆動電源の電圧変動を加味して駐車ブレーキ制御処理を行うようにしたものであり、その他に関しては第1~第3実施形態と同様であるため、第1~第3実施形態と異なる部分についてのみ説明する。
(Fourth embodiment)
A fourth embodiment of the present invention will be described. In the present embodiment, the parking brake control process is performed in consideration of the voltage fluctuation of the drive power source of the EPB 2 with respect to the first to third embodiments, and the others are the same as the first to third embodiments. Since this is the same, only the differences from the first to third embodiments will be described.
 EPB2をロック動作させてときのモータ電流値の変化は上記した通りであり、突入電流発生後に無負荷電流値まで低下したのち、無負荷電流値で一定になり、その後、上昇するという変化となる。そして、図3に示したように、増幅器の故障等によるゲイン異常が発生したときには、正常時と比較してモータ電流値が大きくなる。しかしながら、EPB2の駆動電源の電圧変動が生じたときは、正常な場合であってもモータ電流値が変化する。このため、各規範値と比較される値を駆動電源の電圧変動に応じて補正すると好ましい。 The change in the motor current value when the EPB 2 is locked is as described above. After the rush current occurs, the motor current value decreases to the no-load current value, becomes constant at the no-load current value, and then increases. . As shown in FIG. 3, when a gain abnormality occurs due to an amplifier failure or the like, the motor current value becomes larger than that in the normal state. However, when the voltage fluctuation of the drive power source of EPB2 occurs, the motor current value changes even if it is normal. For this reason, it is preferable to correct the value compared with each standard value according to the voltage fluctuation of the drive power supply.
 図23は、駆動電源の電圧変動(電圧上昇)が生じた場合におけるモータ電流値の変化を示した図である。例えば駆動電源の電圧が正常時に12V、電圧変動時に14Vであったとすると、電圧変動時の方が正常時と比較して電流上昇勾配が大きくなる。したがって、例えば電圧変動時に電流上昇勾配を演算すると、正常であっても電流上昇勾配が大きな値として演算されることになり、本来であれば電流上昇勾配規範との差が殆ど無いはずなのに大きな差となり兼ねない。このため、電圧変動時に演算した電流上昇勾配を正常時に設定した場合の電流上昇勾配規範に補正する。 FIG. 23 is a diagram showing changes in the motor current value when voltage fluctuation (voltage increase) of the drive power source occurs. For example, assuming that the voltage of the drive power supply is 12V when it is normal and 14V when the voltage fluctuates, the current increase gradient becomes larger when the voltage fluctuates than when it is normal. Therefore, for example, if the current rise gradient is calculated during voltage fluctuations, the current rise gradient is calculated as a large value even if it is normal. It can be. For this reason, the current increase gradient calculated when the voltage fluctuates is corrected to the current increase gradient reference when normal is set.
 具体的には、電流上昇勾配を演算した時の駆動電源の電圧を異常検出タイミング電圧、各種規範値を設定したときの駆動電源の電圧を規範電圧として、補正前の電流上昇勾配に対して規範電圧を異常検出タイミング電圧で割った値を掛けることで補正後の電流上昇勾配を演算している。例えば、電流上昇勾配が50A、異常検出タイミング電圧が14V、規範電圧が12Vであった場合には、補正後の電流上昇勾配は42.8(=50×14/12)となる。 Specifically, the drive power supply voltage when the current rise gradient is calculated is the abnormality detection timing voltage, and the drive power supply voltage when various reference values are set is the reference voltage. The corrected current rise gradient is calculated by multiplying the voltage divided by the abnormality detection timing voltage. For example, when the current increase gradient is 50 A, the abnormality detection timing voltage is 14 V, and the reference voltage is 12 V, the corrected current increase gradient is 42.8 (= 50 × 14/12).
 このようにして、補正後の電流上昇勾配を演算し、電流上昇勾配異常判定処理における今回の電流上昇時の電流上昇勾配と電流上昇勾配規範とを比較する時(図17のステップ845参照)に、今回の電流上昇時の電流上昇勾配として補正後の電流上昇勾配を用いる。これにより、電源電圧の変動の影響なく、正確に電流上昇勾配と電流上昇勾配規範とを比較することができ、より正確に電流上昇時のゲイン異常判定を行うことが可能となる。 In this way, the corrected current increase gradient is calculated, and the current increase gradient at the current increase in the current increase gradient abnormality determination process is compared with the current increase gradient standard (see step 845 in FIG. 17). The corrected current increase gradient is used as the current increase gradient at the current increase. As a result, it is possible to accurately compare the current rise gradient and the current rise gradient norm without being affected by fluctuations in the power supply voltage, and more accurately determine the gain abnormality when the current rises.
 なお、ここでは電流上昇時における電流上昇勾配を例に挙げて説明したが、突入電流時における電流下降勾配や無負荷電流時における無負荷電流値についても同様に、駆動電源の電圧変動に応じて補正することができる。 Here, the current rising gradient at the time of current rising has been described as an example, but the current falling gradient at the time of inrush current and the no-load current value at the time of no-load current are similarly determined according to the voltage fluctuation of the drive power supply. It can be corrected.
 (第5実施形態)
 本発明の第5実施形態について説明する。本実施形態は、第1~第4実施形態に対し、異常状態のときに規範値を設定するものであり、その他に関しては第1~第4実施形態と同様であるため、第1~第4実施形態と異なる部分についてのみ説明する。
(Fifth embodiment)
A fifth embodiment of the present invention will be described. In the present embodiment, a reference value is set in an abnormal state with respect to the first to fourth embodiments, and the other aspects are the same as those of the first to fourth embodiments. Only portions different from the embodiment will be described.
 上記各実施形態では、初期出荷時、つまり正常時に規範値を設定しているが、電流上昇勾配規範については、ブレーキパッド11の材質によりバラツキが生じ得る。そこで、本実施形態では、ブレーキパッド11が磨耗して通常使用領域ではなくなった異常時、つまりブレーキパッド11の材質の影響が無くなる磨耗後の状態を規範値として用いるようにする。 In each of the above embodiments, the standard value is set at the time of initial shipment, that is, normal, but the current rising gradient standard may vary depending on the material of the brake pad 11. Therefore, in the present embodiment, an abnormal state in which the brake pad 11 is worn out and is no longer in the normal use region, that is, a state after wear at which the influence of the material of the brake pad 11 is eliminated is used as the reference value.
 図24は、ブレーキパッド11の磨耗後(異常時)と磨耗前(正常時)の電流上昇時のモータ電流値の比較図である。 FIG. 24 is a comparison diagram of motor current values at the time of current increase after the brake pad 11 is worn (when abnormal) and before wear (when normal).
 増幅器の故障時には、増幅器のゲイン異常が発生するため、例えば図24に示すように、正常時と比較して増幅器の故障時の方が電流上昇時におけるモータ電流値が大きな値となる。このため、ブレーキパッド11がブレーキディスク12に当接してモータ10に負荷が掛かり始めてモータ電流値が上昇する電流上昇時の上昇勾配も、正常時と比較して異常時の方が大きくなる。したがって、電流上昇時に関しては、異常時にモータ電流値の上昇勾配の規範である電流上昇勾配規範を設定し、この電流上昇勾配規範に基づいて異常検出を行う。 When the amplifier fails, an amplifier gain abnormality occurs. Therefore, for example, as shown in FIG. 24, the motor current value at the time of current rise is larger in the amplifier failure than in the normal state. For this reason, the rising gradient at the time of current rise in which the brake pad 11 comes into contact with the brake disc 12 and a load is applied to the motor 10 to increase the motor current value is larger in the abnormal time than in the normal time. Accordingly, when the current rises, a current rise gradient norm that is a norm of the motor current value rise gradient is set at the time of abnormality, and abnormality detection is performed based on this current rise gradient norm.
 本実施形態の場合、ブレーキパッド11が磨耗したときにおいて、電流上昇時にモータ電流値が第1電流モニタ値となるときをE’点、異常検出タイミングを第1電流モニタ値よりも大きな第2電流モニタ値となるF’点、E’点からF’点に至るまでに掛かる時間をT’とすると、時間T’は電流上昇勾配に対応した値となる。このため、この時間T’を電流上昇勾配規範として記憶するか、または設計時の定数として設定しておく。 In the case of the present embodiment, when the brake pad 11 is worn, when the motor current value becomes the first current monitor value when the current rises, the point E ′, and the abnormality detection timing is the second current larger than the first current monitor value. Assuming that the time taken from the F ′ point and the E ′ point to the F ′ point as the monitor value is T ′, the time T ′ is a value corresponding to the current rising gradient. For this reason, this time T ′ is stored as a current rising gradient standard or set as a constant at the time of design.
 なお、電流上昇勾配規範を設定する第1電流モニタ値や第2電流モニタ値となる各点(E’、F’)およびそれらの間の時間T’については、EPB2を構成する各アクチュエータの特性に基づいて適宜設定すれば良い。また、図24は、ブレーキパッド11の磨耗時の一例を示した図であるが、どの程度の磨耗から通常使用領域でないとするかは、車両ごとに変更できる。 In addition, about each point (E ', F') used as the 1st current monitor value and 2nd current monitor value which sets an electric current climb gradient norm, and the time T 'between them, the characteristic of each actuator which comprises EPB2 It may be set as appropriate based on the above. FIG. 24 is a diagram showing an example when the brake pad 11 is worn, but it can be changed for each vehicle from what level of wear it is assumed not to be in the normal use region.
 図25は、電流上昇時の電流上昇勾配規範設定処理の詳細を示したフローチャートである。例えば、初期出荷時に磨耗したブレーキパッド11を取り付けた状態で各種規範値を設定する。本処理は、そのような磨耗したブレーキパッド11を取り付けた場合に、図4のステップ125の電流上昇勾配規範設定処理として実行される。 FIG. 25 is a flowchart showing details of the current rise gradient norm setting process at the time of current rise. For example, various normative values are set in a state where the brake pads 11 worn at the time of initial shipment are attached. This process is executed as the current increase gradient norm setting process in step 125 of FIG. 4 when such a worn brake pad 11 is attached.
 まず、ステップ1100~1135において、図13のステップ500~535と同様の処理を行う。これにより、上昇時間経過カウンタのオンが指示されていた状態からオフが指示された状態に切り替わって上昇時間経過カウンタのカウントが停止したときのカウント値Tを取得することができる。このカウント値Tが、モータ電流値がE’点からF’点に至るまでに掛かった時間T’に相当する値であるため、ステップ1140に進んで、上昇時間経過カウンタのカウント値Tを電流上昇時間規範値T’、つまり電流上昇勾配規範として設定する。このようにして、電流上昇勾配規範設定処理が終了する。 First, in steps 1100 to 1135, processing similar to that in steps 500 to 535 in FIG. 13 is performed. Thereby, the count value T when the count of the rising time elapsed counter is stopped by switching from the state instructed to turn on the rising time elapsed counter to the state instructed to turn off can be acquired. Since this count value T is a value corresponding to the time T ′ taken from the point E ′ to the point F ′ of the motor current value, the routine proceeds to step 1140, where the count value T of the rising time elapsed counter is changed to the current value. The rising time reference value T ′, that is, the current rising gradient reference value is set. In this way, the current increase gradient norm setting process is completed.
 まず、本実施形態での電流上昇勾配異常判定処理の概略について、図24を参照して説明する。 First, the outline of the current rising gradient abnormality determination process in this embodiment will be described with reference to FIG.
 電流上昇勾配異常判定処理では、今回の電流上昇時の電流上昇勾配を電流上昇勾配規範と比較することで上昇電流ゲイン異常が発生しているか否かを判定する。具体的には、今回の電流上昇時の電流上昇時間Tを電流上昇時間規範値T’と比較することで本判定を行っている。 In the current rising gradient abnormality determination process, it is determined whether or not the rising current gain abnormality has occurred by comparing the current rising gradient at the current current rising time with the current rising gradient norm. Specifically, this determination is performed by comparing the current rise time T at the current rise with the current rise time reference value T ′.
 まず、上記した電流上昇時間規範値の設定方法と同様の手法によって、今回のロック制御における電流上昇時の電流上昇時間Tを演算する。具体的には、図24に示すように、電流上昇時にモータ電流値が第1電流モニタ値となるときをE点、異常検出タイミングを第2電流モニタ値となるF点として、E点からF点に至るまでに掛かる時間を演算することで電流上昇時間Tを求める。 First, the current rise time T at the time of current rise in the current lock control is calculated by the same method as the method for setting the current rise time reference value described above. Specifically, as shown in FIG. 24, when the motor current value becomes the first current monitor value when the current rises, the point E is defined as point F, and the abnormality detection timing is point F as the second current monitor value. The current rise time T is obtained by calculating the time taken to reach the point.
 これが今回の電流上昇時の電流上昇時間Tとなるため、既に設定されている電流上昇時間規範値T’と比較することにより、上昇電流ゲイン異常が発生しているか否かを判定することが可能となる。 Since this is the current rise time T at the current rise, it is possible to determine whether or not a rise current gain abnormality has occurred by comparing with the preset current rise time reference value T ′. It becomes.
 図26は、この電流上昇勾配異常判定処理の詳細を示したフローチャートである。図4のステップ165に示す電流上昇勾配異常判定処理が実行されると、図26に示す各処理が実行される。 FIG. 26 is a flowchart showing details of the current climb gradient abnormality determination process. When the current increase gradient abnormality determination process shown in step 165 of FIG. 4 is executed, each process shown in FIG. 26 is executed.
 まず、ステップ1200~1235において、図25のステップ1100~1135と同様の処理を行い、上昇時間経過カウンタのカウント値Tを取得することで、今回の電流上昇時間Tを取得する。そして、ステップ1240に進み、今回の電流上昇時間Tが電流上昇時間規範値T’未満であるか否かを判定する。つまり、今回の電流上昇時の電流上昇勾配が電流上昇勾配規範と比較して大きくなっているか否かを判定する。 First, in steps 1200 to 1235, processing similar to that in steps 1100 to 1135 in FIG. 25 is performed, and the current rise time T is obtained by obtaining the count value T of the rise time elapsed counter. Then, the process proceeds to step 1240 to determine whether or not the current current rise time T is less than the current rise time reference value T ′. That is, it is determined whether or not the current increase gradient at the current current increase is larger than the current increase gradient standard.
 ここで否定判定されれば上昇電流ゲイン異常が発生していないことからステップ1245に進んで上昇電流ゲイン異常なし、例えば上昇電流ゲイン異常が発生したことを示すフラグをリセットして処理を終了する。そして、肯定判定されれば上昇電流ゲイン異常が発生していることからステップ1250に進んで上昇電流ゲイン異常あり、例えば上昇電流ゲイン異常が発生したことを示すフラグをセットして処理を終了する。このようにして、上昇電流ゲイン異常が発生したか否かを判定することができる。 If a negative determination is made here, since no rising current gain abnormality has occurred, the routine proceeds to step 1245, where there is no rising current gain abnormality, for example, a flag indicating that a rising current gain abnormality has occurred is reset, and the process is terminated. If an affirmative determination is made, a rise current gain abnormality has occurred, so the routine proceeds to step 1250, where there is a rise current gain abnormality, for example, a flag indicating that a rise current gain abnormality has occurred is set, and the process ends. In this way, it can be determined whether or not a rising current gain abnormality has occurred.
 そして、各種異常判定処理が実行されると、その判定結果が図5のステップ240の判定において用いられ、突入電流ゲイン異常、無負荷電流ゲイン異常、上昇電流ゲイン異常の3つの異常のうちのいずれかの異常ありの場合には、それに対応して目標電流値MI#TARGETが補正される。これにより、モータ電流値が目標電流値MI#TARGETに至るまでに掛かるロック作動時間が長くなるように補正されるため、異常時であっても、適切にロック制御を行うことが可能となり、EPB2を停止しなくても済むようにできる。 Then, when various abnormality determination processes are executed, the determination result is used in the determination of step 240 in FIG. 5, and any one of the three abnormalities of inrush current gain abnormality, no-load current gain abnormality, and rising current gain abnormality is selected. If there is such an abnormality, the target current value MI # TARGET is corrected accordingly. As a result, the lock operation time required for the motor current value to reach the target current value MI # TARGET is corrected so that the lock control can be appropriately performed even in an abnormal state. You can avoid having to stop.
 以上説明したように、ブレーキパッド11が磨耗して通常使用領域ではなくなった異常時を規範値として用いることもできる。このようにすれば、ブレーキパッド11の材質の影響を受けることなく、上昇電流ゲイン異常を検出することができる。 As described above, an abnormal time when the brake pad 11 is worn out and is no longer in the normal use range can be used as a reference value. In this way, it is possible to detect a rising current gain abnormality without being affected by the material of the brake pad 11.
 なお、ここでは電流上昇時における異常検出タイミングを1つとしているが、第3実施形態で説明したように、異常検出タイミングを複数とすることもできる。このように、2つ以上の異常検出タイミングを持つようにすることで、EPB2の特性に応じた勾配の変化の影響を低減することが可能となり、EPB2の特性にかかわらず異常検出を行うことが可能となる。 In addition, although the abnormality detection timing at the time of a current rise is set to one here, as described in the third embodiment, a plurality of abnormality detection timings may be used. Thus, by having two or more abnormality detection timings, it becomes possible to reduce the influence of the change in gradient according to the characteristics of EPB2, and it is possible to detect an abnormality regardless of the characteristics of EPB2. It becomes possible.
 (他の実施形態)
 上記各実施形態では、ゲイン異常検出時にロック作動時間を長くするように補正する場合について説明した。これは、各規範値よりも3領域でのモータ電流値が大きい場合を想定したものであり、この場合、正常時よりも早くモータ電流値が目標電流値に到達してしまうことでロック作動時間が短くなるためにロック作動時間を長くするように補正している。このため、逆に各規範値よりも3領域でのモータ電流値が小さい場合には、ロック作動時間が短くなるようにすれば良く、例えば正常時よりも目標電流値を低く補正すれば良い。これを実現するには、例えば電流下降勾配比較用の異常検出値や電流上昇勾配比較用の異常検出値を上限値と下限値の2つずつ設定しておけば良い。
(Other embodiments)
In each of the above-described embodiments, a case has been described in which correction is performed so that the lock operation time is lengthened when gain abnormality is detected. This is based on the assumption that the motor current value in the three regions is larger than each standard value. In this case, the lock operation time is reached because the motor current value reaches the target current value earlier than normal. Is corrected to increase the lock operation time. Therefore, on the contrary, when the motor current value in the three regions is smaller than each reference value, the lock operation time may be shortened, for example, the target current value may be corrected to be lower than that in the normal state. In order to realize this, for example, an abnormality detection value for current falling gradient comparison and an abnormality detection value for current rising gradient comparison may be set for each of an upper limit value and a lower limit value.
 例えば、突入電流時の電流下降勾配と電流下降勾配規範との比が異常検出値の上限値を超えていればロック作動時間を長く補正し、下限値未満であればロック作動時間を短く補正すれば良い。同様に、電流上昇時の電流上昇勾配と電流上昇勾配規範との比が異常検出値の上限値を超えていればロック作動時間を長く補正し、下限値未満であればロック作動時間を短く補正すれば良い。また、無負荷電流値については、無負荷電流値上限CHiLimitを超えていればロック作動時間を長く補正し、無負荷電流値下限CLowLimit未満であればロック作動時間を短く補正すれば良い。 For example, if the ratio between the current descent gradient at the inrush current and the current descent gradient standard exceeds the upper limit value of the abnormality detection value, the lock operation time is corrected longer, and if it is less than the lower limit value, the lock operation time is corrected shorter. It ’s fine. Similarly, if the ratio between the current rise gradient at the time of current rise and the current rise slope norm exceeds the upper limit value of the abnormal detection value, the lock operation time is corrected longer, and if it is less than the lower limit value, the lock operation time is corrected shorter. Just do it. As for the no-load current value, the lock operation time may be corrected to be longer if the no-load current value upper limit CHiLimit is exceeded, and the lock operation time may be corrected to be shorter if it is less than the no-load current value lower limit CLowLimit.
 また、ロック作動時間の補正に加えて、報知装置27を通じてドライバに対してゲイン異常が生じていることを報知するようにしても良い。これにより、ドライバはゲイン異常が生じていることを把握することができ、増幅器もしくはEPB-ECU9の修理などの処置を取ることができる。 Further, in addition to the correction of the lock operation time, the driver may be notified that a gain abnormality has occurred through the notification device 27. Thus, the driver can grasp that the gain abnormality has occurred, and can take measures such as repair of the amplifier or the EPB-ECU 9.
 また、上記第2実施形態で説明したように、電流モニタバラツキやパッド磨耗によるバラツキを加味して異常検出値やバラツキ係数を設定しているが、それらの値を状況に応じて可変としても良い。例えば、モータ10の温度に応じてそれらの値を設定することができる。モータ温度については、例えば、図1中に示したように、EPB-ECU9にモータ10に備えた温度センサ28の検出信号が入力されるようにし、この検出信号に基づいて検出することができる。 In addition, as described in the second embodiment, the abnormality detection value and the variation coefficient are set in consideration of variations due to current monitor variation and pad wear. However, these values may be variable depending on the situation. . For example, these values can be set according to the temperature of the motor 10. As shown in FIG. 1, for example, the motor temperature can be detected based on the detection signal of the temperature sensor 28 provided in the motor 10 input to the EPB-ECU 9.
 また、上記各実施形態では、ディスクブレーキを例に挙げて説明したが、ドラムブレーキなどの他の形態のブレーキ機構についても、サービスブレーキ1とEPB2の加圧機構が一体化された駐車ブレーキ一体型加圧機構とされるブレーキシステムについて、本発明を適用できる。ブレーキ機構としてドラムブレーキが採用される場合、摩擦材と被摩擦材は、それぞれブレーキシューとドラムとなる。 In each of the above embodiments, the disc brake has been described as an example. However, the brake mechanism integrated with the brake mechanism of the service brake 1 and the pressure mechanism of the EPB 2 is also applied to other types of brake mechanisms such as a drum brake. The present invention can be applied to a brake system that is a pressurizing mechanism. When a drum brake is employed as the brake mechanism, the friction material and the friction target material are a brake shoe and a drum, respectively.
 さらに、上記各実施形態では、電子制御手段としてEPB-ECU9を例に挙げたが、これに限るものではない。例えば、上記実施形態では、制御装置としてESC-ECU8やEPB-ECU9を備えた構成を例に挙げたが、これらが一体的なECUとされることで電子制御手段を構成していても良いし、他のECUによって実現されても良い。 Furthermore, in each of the above embodiments, the EPB-ECU 9 is exemplified as the electronic control means, but the present invention is not limited to this. For example, in the above-described embodiment, the configuration including the ESC-ECU 8 and the EPB-ECU 9 as the control device has been described as an example, but the electronic control unit may be configured by making these as an integral ECU. It may be realized by another ECU.
 また、第5実施形態では、電流上昇勾配に相当する値として、第1電流モニタ値から第2電流モニタ値まで上昇するのに掛かる電流上昇時間Tを採用し、その規範として電流上昇時間規範T’を設定した。しかしながら、上記第1~第4実施形態と同様に、電流上昇勾配そのものを採用し、その規範として電流上昇勾配規範として設定しても良い。その場合、ブレーキパッド11が磨耗している状態で電流上昇勾配規範を設定することになるため、電流上昇勾配が電流上昇勾配規範と比較して小さければ正常で、電流上昇勾配と電流上昇勾配規範との差が小さければ上昇電流ゲイン異常と判定することができる。勿論、上記各実施形態のように、電流上昇勾配と電流上昇勾配規範との比(電流上昇勾配/電流上昇勾配規範)を演算し、この比が予め決めておいた電流上昇時勾配比較用の異常検出値よりも小さければ正常、大きければ上昇電流ゲイン異常であると判定するようにしても良い。逆に、第1~第4実施形態について、第5実施形態のように、電流上昇勾配に相当する値として、第1電流モニタ値から第2電流モニタ値まで上昇するのに掛かる電流上昇時間Tを採用し、その規範として電流上昇時間規範T’を設定するようにしても良い。 Further, in the fifth embodiment, the current rise time T required to rise from the first current monitor value to the second current monitor value is adopted as a value corresponding to the current rise gradient, and the current rise time reference T is used as the reference. 'It was set. However, as in the first to fourth embodiments, the current increase gradient itself may be adopted and set as the current increase gradient reference. In this case, since the current rising gradient standard is set in a state where the brake pad 11 is worn, it is normal if the current rising gradient is smaller than the current rising gradient standard. Is small, it can be determined that the rising current gain is abnormal. Of course, as in each of the above embodiments, the ratio of the current rising gradient to the current rising gradient norm (current rising gradient / current rising gradient norm) is calculated, and this ratio is used for current rising gradient comparison. If it is smaller than the abnormality detection value, it may be determined to be normal, and if it is larger, it may be determined that there is a rising current gain abnormality. On the other hand, in the first to fourth embodiments, as in the fifth embodiment, the current rise time T required to rise from the first current monitor value to the second current monitor value as a value corresponding to the current rise gradient. And a current rise time standard T ′ may be set as the standard.
 また、第5実施形態では、ブレーキパッド11が磨耗した異常時に設定した電流上昇勾配規範を用いる場合について説明したが、第1~第4実施形態で説明したブレーキパッド11が磨耗していない正常時に設定した電流上昇勾配規範と両方共に用いて上昇電流ゲイン異常を検出するようにしても良い。 Further, in the fifth embodiment, the case of using the current rising gradient norm set at the time of abnormality when the brake pad 11 is worn has been described. However, the brake pad 11 described in the first to fourth embodiments is in a normal state when the brake pad 11 is not worn. It is also possible to detect the rising current gain abnormality by using both of the set current rising gradient norms.
 なお、各図中に示したステップは、各種処理を実行する手段に対応するものである。例えば、EPB-ECU9のうちステップ110、150の処理を実行する部分がロック制御手段、ステップ115~125の処理を実行する部分が規範値設定手段、ステップ155~ステップ165の処理を実行する部分が異常判定手段、ステップ180の処理を実行する部分が磨耗判定手段、ステップ250の処理を実行する部分が補正手段に相当する。また、図中ステップとしては記載していないが、EPB-ECU9のうち、ゲイン異常が判定されたときに報知装置27に対してゲイン異常が生じていることを表示させることを指示する部分が表示指示手段に相当する。 Note that the steps shown in each figure correspond to means for executing various processes. For example, the part of the EPB-ECU 9 that executes the processes of steps 110 and 150 is the lock control means, the part that executes the processes of steps 115 to 125 is the normative value setting means, and the part that executes the processes of steps 155 to 165 is The part that executes the processing of the abnormality determining means, step 180 corresponds to the wear determining means, and the part that executes the processing of step 250 corresponds to the correcting means. Although not shown as steps in the figure, a portion of the EPB-ECU 9 that instructs the notification device 27 to display that a gain abnormality has occurred when a gain abnormality is determined is displayed. This corresponds to the instruction means.
 1…サービスブレーキ、2…EPB、5…M/C、6…W/C、7…アクチュエータ、8…ESC-ECU、9…EPB-ECU、10…モータ、11…ブレーキパッド、12…ブレーキディスク、13…キャリパ、14…ボディ、14a…中空部、14b…通路、17…回転軸、17a…雄ネジ溝、18…推進軸、18a…雌ネジ溝、19…ピストン、23…操作SW、24…ロック・リリース表示ランプ、25…Gセンサ、26…M/C圧センサ、27…報知装置、28…温度センサ DESCRIPTION OF SYMBOLS 1 ... Service brake, 2 ... EPB, 5 ... M / C, 6 ... W / C, 7 ... Actuator, 8 ... ESC-ECU, 9 ... EPB-ECU, 10 ... Motor, 11 ... Brake pad, 12 ... Brake disc , 13 ... caliper, 14 ... body, 14a ... hollow part, 14b ... passage, 17 ... rotating shaft, 17a ... male screw groove, 18 ... propulsion shaft, 18a ... female screw groove, 19 ... piston, 23 ... operation SW, 24 ... Lock / release indication lamp, 25 ... G sensor, 26 ... M / C pressure sensor, 27 ... notification device, 28 ... temperature sensor

Claims (6)

  1.  電動モータ(10)を駆動することにより、摩擦材(11)を車輪に取り付けられた被摩擦材(12)に押し当てるための押圧力を発生させ、前記摩擦材(11)と前記被摩擦材(12)との摩擦によって駐車ブレーキ力を発生させる電動パーキングブレーキ(2)を有するブレーキシステムを用いて駐車ブレーキの制御を行う駐車ブレーキ制御装置であって、
     モータ電流を供給することで前記電動モータ(10)を駆動し、前記摩擦材(11)を前記被摩擦材(11)に押し当てて前記車輪をロックするロック制御を実行するロック制御手段(110、150)と、
     規範値設定のためにロック制御を実行し、該ロック制御中におけるモータ電流値の変化を、該ロック制御開始時の突入電流時と、該突入電流時の後に一定値となる無負荷電流時と、該無負荷電流時から上昇していく電流上昇時の3領域に分け、前記突入電流時における前記モータ電流値の下降勾配の基準値となる電流下降勾配規範と、前記無負荷電流時における前記モータ電流値の基準値となる無負荷電流値規範と、前記電流上昇時における前記モータ電流値の上昇勾配の基準値となる電流上昇勾配規範とを設定する規範値設定手段(115~125)と、
     前記車輪を実際にロックする際にロック制御を実行するときに、該ロック制御中における前記モータ電流値に基づいて、前記突入電流時における前記モータ電流値の下降勾配となる電流下降勾配と、前記無負荷電流時における前記モータ電流値となる無負荷電流値と、前記電流上昇時における前記モータ電流値の上昇勾配となる電流上昇勾配を演算し、前記3領域それぞれにおいて、前記電流下降勾配と前記電流下降勾配規範との比較と前記無負荷電流値と前記無負荷電流値規範との比較および前記電流上昇勾配と前記電流上昇勾配規範との比較を行うことでゲイン異常の判定を行う異常判定手段(155~165)と、を有し、
     前記ロック制御手段(150)は、前記車輪を実際にロックする際に前記異常判定手段(155~165)にてゲイン異常と判定されると、前記電動モータ(10)を作動させている時間であるロック作動時間を補正する補正手段(250)を備えていることを特徴とする駐車ブレーキ制御装置。
    Driving the electric motor (10) generates a pressing force for pressing the friction material (11) against the friction material (12) attached to the wheel, and the friction material (11) and the friction material A parking brake control device that controls the parking brake using a brake system having an electric parking brake (2) that generates a parking brake force by friction with (12),
    A lock control means (110) for driving the electric motor (10) by supplying a motor current and pressing the friction material (11) against the friction target material (11) to lock the wheel. 150)
    The lock control is executed for setting the reference value, and the change in the motor current value during the lock control is determined by the inrush current at the start of the lock control and the no-load current that becomes a constant value after the inrush current. , Divided into three regions at the time of rising current from the time of no load current, a current descending slope norm serving as a reference value for the descending slope of the motor current value at the time of the inrush current, and the current at the time of the no load current Normative value setting means (115 to 125) for setting a no-load current value norm that serves as a reference value for the motor current value and a current ascending slope norm that serves as a reference value for the ascending slope of the motor current value when the current increases. ,
    When performing lock control when actually locking the wheel, based on the motor current value during the lock control, a current descending gradient that is a descending gradient of the motor current value at the inrush current; A no-load current value that becomes the motor current value at the time of no-load current and a current increase gradient that becomes an increase gradient of the motor current value at the time of current increase are calculated, and in each of the three regions, the current decrease gradient and the An abnormality determination means for determining a gain abnormality by comparing with a current descending slope norm, comparing the no-load current value with the no-load current value norm, and comparing the current rising gradient with the current ascending slope norm. (155 to 165)
    When the lock control means (150) determines that the gain is abnormal by the abnormality determination means (155 to 165) when actually locking the wheel, the lock control means (150) is a time during which the electric motor (10) is operated. A parking brake control device comprising correction means (250) for correcting a certain lock operation time.
  2.  前記規範設定手段(115~125)は、少なくとも前記電流上昇勾配規範については、前記摩擦材(11)の磨耗前となる正常時に前記ロック制御を実行することで設定しており、
     前記異常判定手段(155~165)は、前記電流下降勾配が前記電流下降勾配規範より大きい、前記無負荷電流値が前記無負荷電流値規範より大きい、もしくは、前記電流上昇勾配が前記電流上昇勾配規範よりも大きいことによるゲイン異常か、前記電流下降勾配が前記電流下降勾配規範より小さい、前記無負荷電流値が前記無負荷電流値規範より小さい、もしくは、前記電流上昇勾配が前記電流上昇勾配規範よりも小さいことによるゲイン異常かを判定し、
     前記補正手段(250)は、前記異常判定手段(155~165)にて、大きいことによるゲイン異常と判定されたときには前記ロック作動時間を長くする補正を行い、小さいことによるゲイン異常と判定されたときには前記ロック作動時間を短くする補正を行うことを特徴とする請求項1に記載の駐車ブレーキ制御装置。
    The norm setting means (115 to 125) sets at least the current rising gradient norm by executing the lock control at a normal time before the friction material (11) is worn,
    The abnormality determining means (155 to 165) is configured such that the current descending gradient is larger than the current descending gradient norm, the no-load current value is larger than the no-load current value norm, or the current increasing gradient is the current increasing gradient. Gain abnormality due to being larger than the norm, the current falling gradient is smaller than the current descending gradient norm, the no-load current value is smaller than the no-load current value norm, or the current rising gradient is the current rising gradient norm To determine if the gain is abnormal due to
    The correction means (250) corrects the lock operation time to be longer when the abnormality determination means (155 to 165) determines that the gain is abnormal due to a large value, and determines that the gain is abnormal due to a small value. The parking brake control device according to claim 1, wherein correction for shortening the lock operation time is sometimes performed.
  3.  前記規範設定手段(115~125)は、少なくとも前記電流上昇勾配規範については、前記摩擦材(11)の磨耗後となる異常時に前記ロック制御を実行することで記憶するか、または設計時の定数として設定しており、
     前記異常判定手段(155~165)は、前記電流下降勾配が前記電流下降勾配規範より大きい、前記無負荷電流値が前記無負荷電流値規範より大きい、もしくは、前記電流上昇勾配が前記電流上昇勾配規範よりも大きいことによるゲイン異常か、前記電流下降勾配が前記電流下降勾配規範より小さい、前記無負荷電流値が前記無負荷電流値規範より小さい、もしくは、前記電流上昇勾配が前記電流上昇勾配規範より小さいことによるゲイン異常かを判定し、
     前記補正手段(250)は、前記異常判定手段(155~165)にて、大きいことによるゲイン異常と判定されたときには前記ロック作動時間を長くする補正を行い、小さいことによるゲイン異常と判定されたときには前記ロック作動時間を短くする補正を行うことを特徴とする請求項1に記載の駐車ブレーキ制御装置。
    The norm setting means (115 to 125) stores at least the current rising gradient norm by executing the lock control at the time of abnormality after the friction material (11) is worn, or a design constant. Is set as
    The abnormality determining means (155 to 165) is configured such that the current descending gradient is larger than the current descending gradient norm, the no-load current value is larger than the no-load current value norm, or the current increasing gradient is the current increasing gradient. Gain abnormality due to being larger than the norm, the current falling gradient is smaller than the current descending gradient norm, the no-load current value is smaller than the no-load current value norm, or the current rising gradient is the current rising gradient norm Determine if the gain is abnormal due to being smaller,
    The correction means (250) corrects the lock operation time to be longer when the abnormality determination means (155 to 165) determines that the gain is abnormal due to a large value, and determines that the gain is abnormal due to a small value. The parking brake control device according to claim 1, wherein correction for shortening the lock operation time is sometimes performed.
  4.  前記異常判定手段(155~165)にてゲイン異常と判定されると報知装置(27)に対してゲイン異常が生じていることを表示させる表示指示手段を有していることを特徴とする請求項1ないし3のいずれか1つに記載の駐車ブレーキ制御装置。 When the abnormality determining means (155 to 165) determines that a gain abnormality has occurred, the notification apparatus (27) has a display instruction means for displaying that a gain abnormality has occurred. The parking brake control device according to any one of Items 1 to 3.
  5.  前記摩擦材(11)の磨耗を判定する磨耗判定手段(180)を有し、
     前記磨耗判定手段(180)は、前記規範値設定手段(125)にて設定された前記電流上昇勾配規範を前記摩擦材(11)の磨耗によるバラツキを加味した値として、さらに該磨耗によるバラツキを加味しない値の電流上昇勾配規範を設定し、前記異常判定手段(155)にてゲイン異常なしと判定されたときに、前記電流上昇勾配と前記磨耗によるバラツキを加味しない値の電流上昇勾配規範とを比較することでゲイン異常か否かを判定し、ゲイン異常であると判定されると前記摩擦材(11)の磨耗が生じていると判定することを特徴とする請求項1ないし4のいずれか1つに記載の駐車ブレーキ制御装置。
    Wear determination means (180) for determining wear of the friction material (11),
    The wear determination means (180) takes the current increase gradient reference set by the reference value setting means (125) as a value taking into account the variation due to wear of the friction material (11), and further reduces the variation due to the wear. A current rising gradient standard with a value not taken into account is set, and when it is determined that there is no gain abnormality in the abnormality determining means (155), a current rising gradient standard with a value not taking into account the variation due to the current rising gradient and the wear Whether the gain is abnormal is determined by comparing the two, and if it is determined that the gain is abnormal, it is determined that the friction material (11) is worn. The parking brake control device according to claim 1.
  6.  前記規範値設定手段(125)は、前記電流上昇勾配規範として少なくとも異なる2つの期間(T1’、T2’)の第1の電流上昇勾配規範と第2の電流上昇勾配規範を設定し、
     前記異常判定手段(165)は、前記車輪を実際にロックする際のロック制御中におけるモータ電流値に基づいて、前記電流上昇時に、前記第1、第2の電流上昇勾配規範それぞれと対応する期間(T1、T2)における電流上昇勾配となる第1、第2の電流上昇勾配を演算し、これら第1、第2の電流上昇勾配と前記第1、第2の電流上昇勾配規範とをそれぞれ比較することでゲイン異常の判定を行うことを特徴とする請求項1ないし5のいずれか1つに記載の駐車ブレーキ制御装置。
    The reference value setting means (125) sets a first current increase gradient reference and a second current increase gradient reference for at least two different periods (T1 ′, T2 ′) as the current increase gradient reference,
    The abnormality determination means (165) is a period corresponding to each of the first and second current increase gradient norms at the time of the current increase based on a motor current value during lock control when the wheel is actually locked. The first and second current rising gradients that are current rising gradients at (T1, T2) are calculated, and the first and second current rising gradients are compared with the first and second current rising gradient norms, respectively. The parking brake control device according to any one of claims 1 to 5, wherein a gain abnormality is determined by doing so.
PCT/JP2013/069258 2012-07-16 2013-07-16 Parking brake control device WO2014013972A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012158217A JP2014019235A (en) 2012-07-16 2012-07-16 Parking brake control system
JP2012-158217 2012-07-16

Publications (1)

Publication Number Publication Date
WO2014013972A1 true WO2014013972A1 (en) 2014-01-23

Family

ID=49948799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069258 WO2014013972A1 (en) 2012-07-16 2013-07-16 Parking brake control device

Country Status (2)

Country Link
JP (1) JP2014019235A (en)
WO (1) WO2014013972A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113200030A (en) * 2021-06-11 2021-08-03 精诚工科汽车系统有限公司 Vehicle, parking control method and device thereof, and storage medium
CN114274939A (en) * 2021-12-23 2022-04-05 上海易咖智车科技有限公司 EPB motor working state monitoring method and device, VCU and storage medium

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016006695A1 (en) * 2014-07-11 2016-01-14 ナブテスコオートモーティブ 株式会社 Parking brake system
JP6457260B2 (en) * 2014-12-27 2019-01-23 日立オートモティブシステムズ株式会社 Brake device
JP6498579B2 (en) * 2015-09-29 2019-04-10 日立オートモティブシステムズ株式会社 Brake device
KR101836628B1 (en) 2016-05-03 2018-03-08 현대자동차주식회사 Electro-mechanical brake system and control method thereof
WO2020044569A1 (en) * 2018-08-31 2020-03-05 株式会社安川電機 Brake diagnostic device and brake diagnostic system
KR20210051928A (en) * 2019-10-31 2021-05-10 주식회사 만도 Electronic parking brake system and control method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63189874U (en) * 1987-05-28 1988-12-06
JP2003002186A (en) * 2001-06-20 2003-01-08 Aisin Seiki Co Ltd Abnormality determination device for electric parking brake for vehicle
JP2004314756A (en) * 2003-04-15 2004-11-11 Asmo Co Ltd Electric parking brake system
JP2006232259A (en) * 2005-01-27 2006-09-07 Hitachi Ltd Electrically powered brake system and control unit for electrically powered brake system
US20110308898A1 (en) * 2009-02-27 2011-12-22 Toyota Jidosha Kabushiki Kaisha Brake apparatus
JP2012127418A (en) * 2010-12-15 2012-07-05 Toyota Motor Corp Disc brake apparatus and control method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63189874U (en) * 1987-05-28 1988-12-06
JP2003002186A (en) * 2001-06-20 2003-01-08 Aisin Seiki Co Ltd Abnormality determination device for electric parking brake for vehicle
JP2004314756A (en) * 2003-04-15 2004-11-11 Asmo Co Ltd Electric parking brake system
JP2006232259A (en) * 2005-01-27 2006-09-07 Hitachi Ltd Electrically powered brake system and control unit for electrically powered brake system
US20110308898A1 (en) * 2009-02-27 2011-12-22 Toyota Jidosha Kabushiki Kaisha Brake apparatus
JP2012127418A (en) * 2010-12-15 2012-07-05 Toyota Motor Corp Disc brake apparatus and control method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113200030A (en) * 2021-06-11 2021-08-03 精诚工科汽车系统有限公司 Vehicle, parking control method and device thereof, and storage medium
CN114274939A (en) * 2021-12-23 2022-04-05 上海易咖智车科技有限公司 EPB motor working state monitoring method and device, VCU and storage medium
CN114274939B (en) * 2021-12-23 2023-01-31 上海易咖智车科技有限公司 EPB motor working state monitoring method and device, VCU and storage medium

Also Published As

Publication number Publication date
JP2014019235A (en) 2014-02-03

Similar Documents

Publication Publication Date Title
WO2014013972A1 (en) Parking brake control device
WO2013047599A1 (en) Parking brake control apparatus
JP5737224B2 (en) Brake device for vehicle
JP5320931B2 (en) Parking brake control device
WO2011033983A1 (en) Parking brake control device
US8103421B2 (en) Parking brake control device
US11919493B2 (en) Brake control device
JP4968099B2 (en) Parking brake control device
CN109311467B (en) Method for monitoring the braking force in a vehicle
JP2010058536A (en) Parking brake control device
JP5109807B2 (en) Parking brake control device
JP6205821B2 (en) Electric parking brake control device
US11440524B2 (en) Brake control device
KR102419313B1 (en) Electric brakes and controls
JP5998636B2 (en) Brake device for vehicle
JP5962279B2 (en) Brake device for vehicle
JP5716525B2 (en) Brake control device
JP6191142B2 (en) Electric parking brake control device
JP6743780B2 (en) Braking control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13820580

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13820580

Country of ref document: EP

Kind code of ref document: A1