WO2014013744A1 - Method for providing plants with resistance to stress - Google Patents

Method for providing plants with resistance to stress Download PDF

Info

Publication number
WO2014013744A1
WO2014013744A1 PCT/JP2013/004430 JP2013004430W WO2014013744A1 WO 2014013744 A1 WO2014013744 A1 WO 2014013744A1 JP 2013004430 W JP2013004430 W JP 2013004430W WO 2014013744 A1 WO2014013744 A1 WO 2014013744A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
unsubstituted
substituted
compound represented
Prior art date
Application number
PCT/JP2013/004430
Other languages
French (fr)
Japanese (ja)
Inventor
智津子 影山
浩幸 伊代住
秀樹 貫井
加藤 公彦
潤哉 万年
冨田 和之
愼亮 佐野
英樹 加藤
牧田 悟
利夫 水野
Original Assignee
日本曹達株式会社
静岡県
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本曹達株式会社, 静岡県 filed Critical 日本曹達株式会社
Priority to US14/415,285 priority Critical patent/US20150126368A1/en
Priority to BR112015001016A priority patent/BR112015001016A2/en
Priority to CA2879519A priority patent/CA2879519A1/en
Priority to EP13820583.6A priority patent/EP2875730A4/en
Priority to AU2013291440A priority patent/AU2013291440B2/en
Publication of WO2014013744A1 publication Critical patent/WO2014013744A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N57/00Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds
    • A01N57/10Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds having phosphorus-to-oxygen bonds or phosphorus-to-sulfur bonds
    • A01N57/16Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds having phosphorus-to-oxygen bonds or phosphorus-to-sulfur bonds containing heterocyclic radicals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/02Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms
    • A01N43/04Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom
    • A01N43/06Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom five-membered rings
    • A01N43/08Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom five-membered rings with oxygen as the ring hetero atom
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/02Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms
    • A01N43/04Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom
    • A01N43/14Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom six-membered rings
    • A01N43/16Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom six-membered rings with oxygen as the ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/56Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/62Three oxygen atoms, e.g. ascorbic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/655Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms
    • C07F9/65515Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms the oxygen atom being part of a five-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6558Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing at least two different or differently substituted hetero rings neither condensed among themselves nor condensed with a common carbocyclic ring or ring system
    • C07F9/65586Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing at least two different or differently substituted hetero rings neither condensed among themselves nor condensed with a common carbocyclic ring or ring system at least one of the hetero rings does not contain nitrogen as ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/26Acyclic or carbocyclic radicals, substituted by hetero rings

Definitions

  • the present invention relates to a method for imparting resistance to stress to plants. More particularly, the present invention relates to a method of imparting to plants resistance to biological, physical or chemical stress that affects plant growth.
  • Plants grown in farmland or ordinary households are always exposed to various biological and abiotic stresses. Cultivated crops generally tend to be less resistant to these stresses. Agricultural chemicals such as bactericides, insecticides and herbicides are used to reduce biological stress such as pests and weeds and maintain yield. However, the effects of pesticides are insufficient, if they are used incorrectly, they cause phytotoxicity, pests and weeds develop resistance to pesticides, and there are concerns about the safety of environmental organisms. In addition, environmental stresses such as temperature, moisture, illuminance, soil pH, and salt concentration are dealt with by appropriate cultivation, breeding improvement, irrigation, greenhouse and soil improvement. Attempts to impart stress resistance with plant growth regulators have been made, but the effect is not sufficient. In addition, plant viral diseases cause serious damage to important crops such as cereals, vegetables and fruit trees. However, until now no drug has been found that sufficiently exerts a practical effect on plant viral diseases.
  • Non-Patent Document 1 reports that ascorbic acid is involved in disease resistance, hormonal action, etc.
  • Non-Patent Document 2 reports that ascorbic acid affects plant aging.
  • ascorbic acid is present in a high concentration in the plant body, even if ascorbic acid is given to the plant from the outside, its physiological influence is slight and there is almost no practical effect.
  • Patent Document 1 proposes that certain derivatives of ascorbic acid are applied to plants as having a preventive and therapeutic effect on viral diseases of plants.
  • Patent Document 2 discloses a composition containing an antibacterial antibiotic such as neomycin sulfate and ascorbic acid, and states that plant diseases can be suppressed by this composition.
  • Vitamin 79 (2): 116-117 (2005) Horticultural studies 6 (2): 169-175
  • An object of the present invention is to provide a method of imparting resistance to biological stress, physical stress or chemical stress that affects plant growth.
  • R 1 ⁇ R 4 are each independently a hydrogen atom, -SO 3 H, -PO 3 H 2, a glycosyl group, or -COR 11.
  • R 11 represents an unsubstituted or substituted C1-30 alkyl group or an unsubstituted or substituted C2-30 alkenyl group.
  • R 5 and R 6 each independently represents a hydrogen atom, —SO 3 H, —PO 3 H 2 , a glycosyl group or —COR 11 .
  • R 11 represents an unsubstituted or substituted C1-30 alkyl group or an unsubstituted or substituted C2-30 alkenyl group.
  • the substance (A) is represented by the formula (I) [However, not all R 1 to R 4 are hydrogen atoms at the same time. Or a salt thereof.
  • material (A) has the formula (I) [provided that at least one of R 1 ⁇ R 4 represents a -COR 11, R 11 are, C12 ⁇ 30 alkyl group having an unsubstituted or substituted Or an unsubstituted or substituted C12-30 alkenyl group. Or a salt thereof.
  • material (A) has the formula (I) [provided that at least one of R 1 ⁇ R 4 represents a -COR 11, R 11 are, C12 ⁇ 30 alkyl group having an unsubstituted or substituted Or an unsubstituted or substituted C12-30 alkenyl group. Or a salt thereof.
  • R 11 are, C12 ⁇ 30 alkyl group having an unsubstituted or substituted Or an unsubstituted or substituted C12-30 alkenyl group.
  • the substance (A) is represented by the formula (I) [wherein R 1 to R 4 each independently represents a hydrogen atom or —COR 11 , and at least one of R 1 to R 4 is — COR 11 is shown.
  • R 11 represents an unsubstituted or substituted C1-30 alkyl group or an unsubstituted or substituted C2-30 alkenyl group.
  • At least one of -COR 11 represents R 11 therein, a C12 ⁇ 30 alkenyl group having C12 ⁇ 30 alkyl group or an unsubstituted or substituted group having an unsubstituted or substituted group. Or a salt thereof.
  • the substance (A) is a water-soluble substance (A1) selected from the group consisting of a compound represented by the formula (I), a compound represented by the formula (II), and a salt thereof (A1) And a fat-soluble composition (A2) selected from the group consisting of a compound represented by formula (I), a compound represented by formula (II), and a salt thereof.
  • A1 water-soluble substance selected from the group consisting of a compound represented by the formula (I), a compound represented by the formula (II), and a salt thereof.
  • the stress is a biological stress caused by plant viruses, phytopathogenic bacteria, phytopathogenic fungi, pests or weeds; or high temperature, low temperature, high illuminance, low illuminance, excessive humidity, drying, salinity, acidity, pesticides,
  • a composition for imparting stress resistance to plants comprising at least two substances (A) selected from the group consisting of a compound represented by formula (I), a compound represented by formula (II), and salts thereof object.
  • R 1 to R 4 each independently represents a hydrogen atom, —SO 3 H, —PO 3 H 2 , a glycosyl group or —COR 11 .
  • R 11 represents an unsubstituted or substituted C1-30 alkyl group or an unsubstituted or substituted C2-30 alkenyl group.
  • R 5 and R 6 each independently represents a hydrogen atom, —SO 3 H, —PO 3 H 2 , a glycosyl group or —COR 11 .
  • R 11 represents an unsubstituted or substituted C1-30 alkyl group or an unsubstituted or substituted C2-30 alkenyl group.
  • One substance (A) is a water-soluble substance selected from the group consisting of a compound represented by formula (I), a compound represented by formula (II), and a salt thereof (A1
  • the other one substance (A) is a fat-soluble substance selected from the group consisting of the compound represented by the formula (I), the compound represented by the formula (II), and a salt thereof.
  • a plant stress resistance imparting agent composition comprising at least one fat-soluble substance (A2) selected from the group consisting of a compound represented by the formula (Ib), a compound represented by the formula (IIb), and a salt thereof. object.
  • R 1a to R 4a each independently represents a hydrogen atom, —SO 3 H, —PO 3 H 2 , or a glycosyl group.
  • R 5a and R 6a each independently represent a hydrogen atom, —SO 3 H, —PO 3 H 2 , or a glycosyl group.
  • R 1b to R 4b each independently represents a hydrogen atom or —COR 11 . At least one of R 1b ⁇ R 4b represents a -COR 11, R 11 represents a C2 ⁇ 30 alkenyl group having C1 ⁇ 30 alkyl group or an unsubstituted or substituted group having an unsubstituted or substituted . ]
  • R 5b and R 6b each independently represent a hydrogen atom or —COR 11 . At least one of R 5b and R 6b represents a -COR 11, R 11 represents a C2 ⁇ 30 alkenyl group having C1 ⁇ 30 alkyl group or an unsubstituted or substituted group having an unsubstituted or substituted . ]
  • a method for reducing plant phytotoxicity caused by agricultural chemicals comprising imparting resistance to stress to a plant by the method according to any one of [1] to [6].
  • the method for reducing plant phytotoxicity caused by the agricultural chemical according to [10] wherein the agricultural chemical comprises at least one selected from the group consisting of a fungicide, an insecticide, a plant growth regulator, and a herbicide.
  • the method of the present invention it is possible to impart resistance to biological stress, physical stress, or chemical stress, which affects plant growth, to a plant.
  • it is possible to reduce phytotoxicity caused by agricultural chemicals including substances that affect the physiological function of plants, and to reduce damage of plant diseases including viral diseases.
  • it is possible to prevent a decrease in yield and quality even under poor environmental conditions such as high temperature, low temperature, drying, and soil conditions.
  • the method for imparting resistance to stress according to the present invention to a plant includes applying the substance (A) to the plant.
  • the substance (A) is at least one selected from the group consisting of a compound represented by the formula (I), a compound represented by the formula (II), and a salt thereof.
  • R 1 to R 4 each independently represents a hydrogen atom, —SO 3 H, —PO 3 H 2 , a glycosyl group or —COR 11 .
  • R 5 and R 6 each independently represents a hydrogen atom, —SO 3 H, —PO 3 H 2 , a glycosyl group or —COR 11 .
  • the glycosyl group is a sugar residue such as a monosaccharide or a low molecular weight oligosaccharide (specifically, a partial structure of a molecule in which the hemiacetal hydroxy group of the sugar moiety is removed to form a binding position).
  • monosaccharides include glucose, galactose, fructose, and rhamnose.
  • oligosaccharides include rutinose, vicyanose, lactose, maltose, and sucrose.
  • the glycosyl group includes, for example, a glucosyl group, a galactosyl group, a fructosyl group, a rhamnosyl group, and the like.
  • the glycosyl group also includes a group in which any combination of these groups is bonded by a 1 ⁇ 2 bond, a 1 ⁇ 3 bond, a 1 ⁇ 4 bond, or a 1 ⁇ 6 bond to form a disaccharide.
  • R 11 represents an unsubstituted or substituted C1-30 alkyl group or an unsubstituted or substituted C2-30 alkenyl group.
  • the term “unsubstituted” means that the group is only a group serving as a mother nucleus.
  • the term “having a substituent” means that any hydrogen atom of a group serving as a mother nucleus is substituted with a group having a structure different from or the same as that of the mother nucleus.
  • the “substituent” is another group substituted with a group serving as a mother nucleus.
  • the number of substituents may be one, or two or more. Two or more substituents may be the same or different.
  • a C1-30 alkyl group having a substituent is a group in which the parent nucleus is a C1-30 alkyl group, and any one of these hydrogen atoms is substituted with a group having a different structure (“substituent") It is.
  • the “C1-30 alkyl group” in R 11 is a saturated hydrocarbon group composed of 1 to 30 carbon atoms.
  • the C1-30 alkyl group may be linear or branched.
  • Examples of the C1-30 alkyl group include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, i-propyl group, i -Butyl group, s-butyl group, t-butyl group, i-pentyl group, neopentyl group, 2-methylbutyl group, 2,2-dimethylpropyl group, i-hexyl group, heptyl group, octyl, nonyl group, decyl group , Undecyl group, dodecyl group, tridecyl group, tetradec
  • the “C2-30 alkenyl group” in R 11 is an unsaturated hydrocarbon group composed of 2 to 30 carbon atoms having at least one carbon-carbon double bond.
  • the C2-30 alkenyl group may be linear or branched.
  • C2-30 alkenyl groups include vinyl, 1-propenyl, isopropenyl, allyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3- Pentenyl group, 4-pentenyl group, 1-hexenyl group, 2-hexenyl group, 3-hexenyl group, 4-hexenyl group, 5-hexenyl group, 1-heptenyl group, 6-heptenyl group, 1-octenyl group, 7- Octenyl group, 1-methyl-allyl group, 2-methyl-allyl group, 1-methyl-2-butenyl group, 2-methyl-2-butenyl group, octenyl group, nonenyl group,
  • Examples of a group that can be a “substituent” of a C1-30 alkyl group or a C2-30 alkenyl group include a hydroxyl group; a mercapto group; an amino group; a nitro group; a halogen atom such as a chlorine atom, a fluorine atom, and a bromine atom; Alkoxy groups such as ethoxy group, isopropoxy group, n-propoxy group, n-butoxy group, isobutoxy group, s-butoxy group and t-butoxy group; aryloxy groups such as phenoxy group and 1-naphthyloxy group; fluoromethoxy Groups, difluoromethoxy groups, trifluoromethoxy groups, 2-chloroethoxy groups, 2,2,2-trichloroethoxy groups, 1,1,1,3,3,3-hexafluoro-2-propoxy groups, etc.
  • alkylthio group such as methylthio group and ethylthio group
  • aryl such as phenylthio group and 1-naphthylthio group Thio
  • anilino group an arylamino group such as a 1-naphthylamino group
  • methylamino group, an alkylamino group such as a diethylamino group can be exemplified such as cyano group.
  • R 11 is preferably an unsubstituted or substituted C8-20 alkyl group or an unsubstituted or substituted C8-20 alkenyl group.
  • the substance (A) is preferably a compound represented by the formula (I) or a salt thereof. Further, it is preferable that R 1 to R 4 in formula (I) are not hydrogen atoms at the same time.
  • the substance (A) is represented by the formula (I) [at least one of R 1 to R 4 represents —COR 11 .
  • R 11 represents an unsubstituted or substituted C12-30 alkyl group or an unsubstituted or substituted C12-30 alkenyl group. ] Or a salt thereof is preferable.
  • C12-30 alkyl group examples include dodecyl group, tridecyl group, tetradecyl group (myristyl group), pentadecyl group, hexadecyl group (cetyl group, palmityl group), heptadecyl group, octadecyl group (stearyl group), Nonadecyl group, icosyl group, henicosyl group, triacontyl group and the like can be mentioned.
  • substituted C12-30 alkyl group examples include 2-hydroxytridecyl group, 1-hydroxypentadecyl group, 11-hydroxyheptadecyl group, 1-aminoheptadecyl group and the like.
  • Examples of the “C12-30 alkenyl group” include a dodecenyl group, a tridecenyl group, a tetradecenyl group, a pentadecenyl group, a hexadecenyl group, a heptadecenyl group, an octadecenyl group, a nonadecenyl group, an icosenyl group, a henicocenyl group, a triaconenyl group, and the like. .
  • Examples of the “substituted C12-30 alkenyl group” include 7-hydroxy-8-pentadecenyl group, 1-hydroxy-8-peptadecenyl group, 1-amino-8-heptadecenyl group and the like.
  • the substance (A) has the formula (I) [R 1 to R 4 each independently represents a hydrogen atom or —COR 11, and at least one of R 1 to R 4 represents —COR 11 .
  • R 11 represents an unsubstituted or substituted C1-30 alkyl group or an unsubstituted or substituted C2-30 alkenyl group, and at least one of —COR 11 is R 11 therein.
  • substance (A) examples include ascorbic acid 6-myristate, ascorbic acid 6-palmitate, ascorbic acid 6-stearate, ascorbic acid 2-myristate, ascorbic acid 2-palmitate, ascorbic acid 2 -Stearate, ascorbic acid 2,6-dimyristate, ascorbic acid 2,6-dipalmitate, ascorbic acid 2,6-distearate and the like.
  • the salt of the compound represented by the formula (I) and the salt of the compound represented by the formula (II) used in the present invention are not particularly limited as long as they are agro-horticulturally acceptable salts. Examples thereof include alkali metal salts such as sodium salt and potassium salt; alkaline earth metal salts such as calcium salt and magnesium salt.
  • the substance (A) used in the present invention can be obtained by a known synthesis method.
  • R 1 ⁇ esterification reaction of fatty acid compounds and ascorbic acid for introducing -COR 11 to one of R 4, phosphorus either to introduce -PO 3 H 2 of R 1 ⁇ R 4 Synthesis using an esterification reaction between an acid compound and ascorbic acid, an esterification reaction between a sulfuric acid compound and ascorbic acid for introducing —SO 3 H into any of R 1 to R 4 , and other known reactions can do.
  • the substance (A) obtained by the said synthesis method can be refine
  • the substances (A) used in the present invention are commercially available, they can also be used.
  • the structure of the substance (A) can be identified and confirmed by known analysis means such as IR spectrum, NMR spectrum, mass spectrum, and elemental analysis.
  • the substance (A) may be used alone, but is preferably used in combination of at least two.
  • the substance (A) is a water-soluble substance selected from the group consisting of a compound represented by the formula (I), a compound represented by the formula (II), and a salt thereof.
  • the substance (A) is at least one selected from the group consisting of a compound represented by the formula (Ia), a compound represented by the formula (IIa), and a salt thereof.
  • a compound represented by the formula (Ia) a compound represented by the formula (IIa)
  • a salt thereof a compound represented by the formula (IIa)
  • R 1a to R 4a each independently represents a hydrogen atom, —SO 3 H, —PO 3 H 2 , or a glycosyl group.
  • each R 5a and R 6a independently represent a hydrogen atom, -SO 3 H, a -PO 3 H 2 or glycosyl groups.
  • R 1b to R 4b each independently represents a hydrogen atom or —COR 11 . At least one of R 1b ⁇ R 4b represents a -COR 11, R 11 is a C2 ⁇ 30 alkenyl group having C1 ⁇ 30 alkyl group or an unsubstituted or substituted group having an unsubstituted or substituted, Preferably, it is an unsubstituted or substituted C12-30 alkyl group or an unsubstituted or substituted C12-30 alkenyl group. ]
  • R 5b and R 6b each independently represent a hydrogen atom or —COR 11 . At least one of R 5b and R 6b represents a -COR 11, R 11 is a C2 ⁇ 30 alkenyl group having C1 ⁇ 30 alkyl group or an unsubstituted or substituted group having an unsubstituted or substituted, Preferably, it is an unsubstituted or substituted C12-30 alkyl group or an unsubstituted or substituted C12-30 alkenyl group. ]
  • the mass ratio of the fat-soluble substance (A2) to the water-soluble substance (A1) is usually 0.001 to 1000, preferably 0.1 to 10.
  • Substance (A) can be prepared into preparations such as wettable powders, emulsions, aqueous solvents, granular wettable powders, powders and tablets.
  • the preparation method to a formulation is not specifically limited, A well-known preparation method can be employ
  • the method of applying the substance (A) to the plant is not particularly limited, and a known application method can be adopted in the field of agriculture and horticulture. Moreover, the method of application to a plant can be appropriately determined according to the type of plant to be targeted. For example, application by foliage spraying, dipping treatment, soil irrigation, seed treatment, hydroponic solution treatment, smoking treatment, room temperature fuming treatment, etc. can be mentioned as preferred.
  • the method of this invention can be used without being restrict
  • the application amount of the substance (A) in the method of the present invention can be appropriately determined according to weather conditions, formulation form, application time, application method, application location, disease to be controlled, target crop, and the like.
  • the plant to which the method of the present invention is applicable is not particularly limited and may be either an edible plant or a non-edible plant.
  • grains such as rice, wheat, corn, beans such as soybean, adzuki, peanut, fruits such as citrus, apple, pear, grape, peach, vegetables such as tomato, lettuce, cabbage, onion, leek, peppers, Cucumbers, watermelons, melons, pumpkins and other potatoes, potatoes, sweet potatoes, potatoes, carrots, radish and other root vegetables, cotton, sugar beet, hops, sugar cane, rubber, coffee, tobacco, tea and other crops for processing, ryegrass, Examples include grasses such as timosi and orchardgrass, and grasses such as bentgrass and mulberry.
  • the stress include plant viruses, phytopathogenic bacteria, phytopathogenic fungi, pests, weeds, microorganisms used as biopesticides, arthropods, etc .; high temperature, low temperature, high illuminance, low illuminance, excessive humidity , Physical stress or chemical stress due to dryness, salinity, acidity, pesticides, chemicals or heavy metals.
  • the plant virus that causes stress is not particularly limited.
  • geminiviruses with single-stranded DNA as genome cauliflower mosaic virus with double-stranded DNA as genome, tobacco mosaic virus with single-stranded RNA as genome, tomato bushy stunt virus, double-stranded RNA as genome
  • the rice rug stunt virus etc. which it has can be mentioned as a preferable thing.
  • Phytopathogenic bacteria that cause stress are not particularly limited.
  • rice seedling blight (Burkholderia plantarii), brown streak (Acidovorax avenae), blight blight (Burkholderia glumae), leaf blight (Xanthomonas campestris pv. Oryzae), cucumber spotted bacterial disease (Pseudomonas lachrymans) And Chinese cabbage soft rot (Erwinia carotovora).
  • Phytopathogenic fungi causing stress are not particularly limited.
  • rice blast (Pyricularia oryzae), idiot seedling (Gibberella fujikuroi), sesame leaf blight (Cochliobolus miyabeanus), wheat powdery mildew (Erysiphe graminisspf.sp.tritici), red mold (Gibberella zeae) , Red rust (Puccinia recondita), leaf blight (Septoria tritici), blight (Leptosphaeria nodorum), barley bare smut (Ustilago tritici), cucumber powdery mildew (Sphaerotheca fuliginea), downy mildew (Pseudoperonosp) ), Vine blight (Mycosphaerella melonis), vine split disease (Fusarium oxysporum), gray mold (Botrytis cinerea), anthracnose (Colle
  • the pests that cause stress are not particularly limited. , Corn borer, European corn borer, white-faced butterfly, genus Heliotis, genus Helicoberpa, agrotis, iga, scallop, white butterfly, tobacco bad worm, stag beetle, scallop Hemiptera pests, for example, aphids such as phantom aphid, wheat aphid, peach aphid, cotton aphid, bean aphid; whitefly, tobacco whitefly, white leaf whitefly, whitefly Hawksbill beetle, sorghum scale, stag beetle, pterfly lice, pear beetle, flying planthopper, brown planthopper, white planthopper, leafhopper, etc .;
  • aphids such as phantom aphid, wheat aphid, peach aphid, cotton aphid, bean aphid
  • whitefly tobacco whitefly, white leaf
  • Coleopterous pests e.g., Kizunami beetle, cucumber potato beetle, Colorado potato beetle, mustard beetle, rice weevil, weevil, azuki beetle, beetle, beetle, corn rootworm, diabrotica, tobacco beetle, winged beetle, pine beetle, Nijuya Hoshi Tento, Kokunust, Cotton weevil, etc .; Straight-eyed pests, such as locusts and locusts; Thrips-like pests, such as Southern thrips, Canopy thrips, Negia thrips, Thrips thrips, etc .; Diptera pests, for example, cucumber flies, citrus flies, rice flies, etc .; Mites, for example, spider mite, spider mite, kanzawa spider mite, citrus spider mite, apple spider mite, spider spider mite, and other spider mit
  • Weeds that cause stress are not particularly limited, but grasses such as Inobie, Yasei Sorghum, Akino no Ezologosa, Enocologosa, Aedes albopictus, Prunus terrestris, Barnyard grass, Oshiba, Suzunokatabira, Inobie, etc., Onamomi, Ragosa Pteris arena, weeping weeds such as oleander, crocodile, chitinose, sendangusa, mugwort, butterflies, psyllium, tadpole, tuna, red-footed beetle, yamgra, ichibi, chimemegusa, red-footed moth, red-footed moth, red-footed moth, red-footed moth American King Deer, White clover, Ebisu rush, Firefly, Matsubai, Sphagnum, Kogi, Azena, Mizohakobe,
  • glyphosate-tolerant weeds include Amaranthaceae (Amaranthaceae), Ragweed (Asteraceae) and Kenashihimemukashimugigi.
  • ⁇ High and low temperatures that cause stress are not particularly limited.
  • high-temperature damage and low-temperature damage that reduce the growth and quality of rice high-temperature damage that reduces the fruiting rate of solanaceous crops such as tomatoes
  • high-temperature damage that tends to occur especially in tunnel and greenhouse cultivation such as lettuce
  • Western turf High-temperature damage that inhibits the growth of fruit
  • frost and frost damage of fruit trees such as tea and citrus fruits.
  • ⁇ Overhumidity and drying that cause stress are not particularly limited.
  • crop growth failure due to excessive rainfall, irrigation, or excessive moisture due to poorly drained soil, reduced resistance to disease, or lack of rainfall, irrigation, or drying due to sandy soil Such as wilting.
  • ⁇ Soil properties that cause stress are not particularly limited.
  • crop growth failure in soil containing salt, acidic soil or alkaline soil are not particularly limited.
  • the effects on growth failure in salt-containing soil and acidic soil, especially on the growth failure of crops that are vulnerable to acidic soil such as spinach, pea, broad bean, onion, asparagus, lettuce, burdock, etc. has the effect of improving the yield and quality.
  • Chemical substances that cause stress are not particularly limited, but herbicides, growth regulators, plant hormones, disease resistance inducers, fungicides such as fungicides, insecticides, acaricides, fertilizers, surfactants, other Examples include at least one compound selected from allelopathic substances produced by plants and affecting crops.
  • the pesticide that causes stress is not particularly limited, and examples thereof include those exemplified as substances that affect the physiological functions of plants.
  • the phytotoxicity causing stress is, for example, phytotoxicity that occurs when the concentration exceeds the standard of use or when it is applied to non-applicable crops, and phytotoxicity that occurs under high temperature conditions or strong light conditions. By suppressing these phytotoxicity by this invention, it is also possible to make the application range of an agrochemical wider than what was applied conventionally.
  • the heavy metal that causes stress is not particularly limited, and examples thereof include iron, zinc, copper, manganese, nickel, cobalt, tin, chromium, lead, cadmium, mercury, and arsenic.
  • Pesticides include herbicides, growth regulators, plant hormones, pathogen-resistant agents, fungicides, insecticides, acaricides, repellents, fertilizers, surfactants, etc. that show phytotoxicity at higher concentrations. It is done. Of these, at least one selected from the group consisting of fungicides, insecticides, plant growth regulators, and herbicides is preferred.
  • the agrochemical is preferably a respiratory inhibitor.
  • the pesticide is preferably a strobilurin compound.
  • Bactericides include captan, folpette, thiuram, diram, dineb, mannebu, mancozeb, propineb, polycarbamate, chlorothalonil, quintozen, captaphor, iprodione, procymidone, fluoroimide, mepronil, flutolanil, pencyclon, oxycarboxyl, fosetyl aluminum , Propamocarb, hexaconazole, imibenconazole, tebuconazole, difenoconazole, prothioconazole, fenbuconazole, diclobutrazole, vitertanol, microbutanyl, flusilazole, hexaconazole, ethaconazole, fluotrimazole, triadimethone, triadimenol, Flutriaphen, penconazole, diniconazole, cyproconazole, phenalimol, tri
  • Pesticides include fenthion, fenitrothion, diazinon, chlorpyrifos, ESP, bamidthione, phentoate, dimethoate, formothion, marathon, trichlorphone, thiomethone, phosmet, dichlorvos, acephate, EPBP, methyl parathion, oxydimethone methyl, ethion, salithione, , Pyridafenthion, hosalon, methidathion, sulprophos, chlorfenvinphos, tetrachlorbinphos, dimethylvinphos, propaphos, isofenphos, ethylthiomethone, propenofos, pyracrophos, monocrotophos, azinephosmethyl, aldicarb, mesomil, thiodicarb, carbofuran, carbofuran , Benfuracarb, Frathiocarb, propoxy Organic phosphorus
  • Plant hormones include gibberellins (eg, gibberellin A3, gibberellin A4, gibberellin A7, etc.), auxins (eg, 2,4-D, IAA, NAA, etc.), cytokinins (eg, kinetin, benzyladenine, etc.), abscisic acid, Examples include jasmonic acids, brassinosteroids, strigolactones, salicylic acid and the like.
  • Plant growth regulators include, in addition to the above plant hormones, hymexazole, uniconazole, trinexapack, daminozide, cyanamide and the like.
  • Fertilizers include nitrogenous fertilizer, phosphate fertilizer, potash fertilizer, calcareous fertilizer, mafic fertilizer, siliceous fertilizer, trace element fertilizer, moving substance fertilizer, plant fertilizer and the like. If the concentration of water-soluble components in the fertilizer is too high, the plant may be damaged by fertilizers such as roots and leaves withering and withering. In addition, when a large amount of a specific type of fertilizer such as ammonium sulfate is used, plant growth may be damaged through acidification of the soil.
  • Surfactant is used as an auxiliary component for agricultural chemical preparations, as an active ingredient for some insecticides and acaricides, or as a spreading agent.
  • Surfactants include alkylphenyl ethers added with polyoxyethylene, alkyl ethers added with polyoxyethylene, higher fatty acid esters added with polyoxyethylene, sorbitan higher fatty acid esters added with polyoxyethylene, and polyoxyethylene.
  • Nonionic surfactants such as added tristyrylphenyl ether; sulfates of alkylphenyl ethers added with polyoxyethylene, alkylbenzene sulfonates, sulfates of higher alcohols, alkylnaphthalene sulfonates, polycarboxylic acids
  • Anionic surfactants such as salts, lignin sulfonates, alkylnaphthalene sulfonate formaldehyde condensates, isobutylene-maleic anhydride copolymers; Id, methyl, polyoxyethylene, alkylammonium chloride, alkyl, N-methylpyridium bromide, mono- or dialkylmethylated ammonium chloride, alkylpentamethylpropylenediamine dichloride, alkyldimethylbenzalkonium chloride, benzethonium chloride, etc.
  • amphoteric surfactants such as dialkyldiaminoethylbetaine, alkyldimethylbenzylbetaine, dialkyldiaminoethylglycine, and alkyldimethylbenzylglycine;
  • the formulation of the preparation is not limited to the examples of the preparation, and can be changed in a wide range.
  • the part in a formulation example shows a weight part.
  • Test Example 1 Evaluation Test for Reducing Effect of High Temperature Damage on Tomato An N, N-dimethylformamide solution was prepared according to the formulation shown in Table 3 and used as a test chemical.
  • Tomato seedlings variety: Momotaro
  • the above chemical solution was sprayed onto the stem and leaves of the tomato seedlings, and then air-dried.
  • the plants were grown at 30 ° C. under conditions of 16 hours in the light and 8 hours in the dark for 2 days. Thereafter, the cells were grown for 6 days under the conditions of 16 hours of light at 40 ° C. and 8 hours of dark at 30 ° C.
  • Test Example 3 Evaluation Test for Reduction Effect of Low Temperature Damage on Cucumber An N, N-dimethylformamide solution was prepared according to the formulation shown in Table 5 and used as a test chemical.
  • Cucumber seedlings (variety: Sagamihanjiro) grown to 1.5 leaf stage in a greenhouse were prepared.
  • the chemical solution was sprayed on the stems and leaves of the cucumber seedling so that the solution dripped, and then air-dried.
  • the plants were grown at 25 ° C. under conditions of 16 hours in the light and 8 hours in the dark for 2 days. Thereafter, the cells were grown for 9 days under the conditions of 16 hours of light at 10 ° C and 8 hours of darkness at 7 ° C.
  • the low-temperature damage alleviation rate was calculated according to the following equation compared with the treatment group (chemical solution 3) containing only the solvent DMF.
  • Low temperature damage reduction rate ((solvent index of solvent only treatment area)-(failure index of each treatment area)) / (Disability index of solvent-only treatment zone) x 100 The results are shown in Table 5.
  • Test Example 4 Evaluation Test for Reducing Effect of Low Temperature Damage on Eggplant Eggplants (variety: Senryo 2 and 3) grown to 4-6 leaf stage in a greenhouse were prepared. Ascorbic acid palmitate 30% granule wettable powder and pyraclostrobin dissolved in 40% with N, N-dimethylformamide are diluted with tap water to the concentrations shown in Table 6 and sufficient for the whole seedling. Sprayed. After air drying, the cells were grown for 1 day at 18 ° C in a light place for 16 hours and at 13 ° C in a dark place for 8 hours, and then grown at 13 ° C in a light place for 16 hours and at 8 ° C in a dark place for 8 hours. It was.
  • the degree of disability was investigated 15 days after the spraying treatment.
  • the obstacle is the area of the discolored portion of the developed leaf after processing: 0 (no discoloration), 1 (discolored to 1/4 of the whole), 2 (discolored to 1/2 of the whole), 3 (1/2 of the whole) Evaluation was made using the four-level disability index.
  • Disability reduction rate ((Disability index for untreated areas)-(Disability index for each treated area)) / (Disability index of untreated area) x 100 The results are shown in Table 6.
  • Test example 6 Evaluation test for the effect of reducing high temperature damage to Eustoma Ascorbic acid at the time when the latter half of the seeding emerged using Eustoma (variety King of Snow) grown in a cell tray indoors at a temperature of 22 ° C. and 16 hours light
  • a 30% granular wettable powder of palmitate was diluted with distilled water to a predetermined concentration, and a sufficient amount thereof was sprayed on the entire seedling. Thereafter, spraying by the same method was performed twice a week for a total of 10 times including the first time. In the meantime, 3 weeks after sowing, the leaves were transferred to a pair of leaves at the time of development at 35 ° C. for 16 hours in the light and 15 ° C.
  • Test Example 8 Evaluation Test for Mitigating Drug Damage to Tomato An N, N-dimethylformamide solution was prepared according to the formulation shown in Table 10 and used as a test drug solution.
  • Tomato seedlings variety: Momotaro
  • the above chemical solution was sprayed onto the stem and leaves of the tomato seedlings, and then air-dried. It was grown for 7 days under normal temperature and humidity conditions in March of Japan.
  • phytotoxicity such as leaf browning and elongation suppression was investigated. The phytotoxicity was evaluated with 11 phytotoxicity indices ranging from 0 (no injury) to 10 (dead).
  • Test Example 9 Green maintenance (high temperature damage reduction) effect test on wheat Using wheat grown in the field (variety Norin 61, 15 strains / m 2 / ku, 2 stations), 7 days from the day after the heading date in August At intervals, the amount of ascorbyl palmitate 30% granule wettable powder described in Table 11 was applied to the strain 4 times.
  • the leaf color index of the top 4 to 5 leaves of each strain in the treated area was investigated, and the effect of maintaining the leaf color on the untreated area was evaluated. The leaf color is 1 (less than 1/4 of the total color), 2 (less than 1/2 of the total color), 3 (less than 3/4 of the total color), 4 (over 3/4 of the total color)
  • the four-stage leaf color index was evaluated.
  • Green maintenance effect ((Leaf color index of untreated section)-(Leaf color index of each treated section)) / (Leaf color index of untreated zone) x 100 The results are shown in Table 11.
  • Test Example 10 Evaluation Test for Mitigating Submergence Damage to Cucumber A cucumber (variety: Sagami Hansakusei, 2) grown in the greenhouse until the second leaf stage was prepared. Ascorbic acid palmitate 30% granule wettable powder and pyraclostrobin adjusted to 40% with N, N-dimethylformamide were diluted with tap water to a predetermined concentration and sprayed in sufficient amounts. After 2 days from the spraying treatment, the mixture was flooded from just below the cotyledon, and 11 days after the spraying treatment, the fresh weight of the above-ground part and root part of the cucumber was measured. The failure reduction rate was calculated from the following equation. Submergence damage reduction rate ((raw weight of each treated area)-(raw weight of untreated area)) / (Raw weight of untreated area) ⁇ 100 The results are shown in Table 12.
  • Test Example 12 Evaluation Test for Reducing Effect of Acidic Damage on Cucumber Cucumber (variety: Sagami Hansakusei, 2 series) that was hydroponically grown up to the second leaf stage with 100 ml of Kolben was prepared.
  • a 30% granule wettable powder of ascorbyl palmitate and pyraclostrobin adjusted to 40% with N, N-dimethylformamide were diluted to a predetermined concentration with tap water, and a sufficient amount was sprayed over the entire seedling.
  • the hydroponic solution was adjusted to pH 4 with 1N hydrochloric acid and the cucumber was continuously hydroponically grown.
  • the cucumber leaf age was investigated 17 days after the spraying treatment.
  • the failure reduction rate was calculated from the following equation.
  • Reduction rate of acid damage ((leaf age of each treated area)-(leaf age of untreated area)) / (Leaf age of untreated section) x 100 The results are shown in Table 14.
  • Test Example 13 Evaluation Test for Reducing Effect of Acidic Damage on Soybean Soybean (cultivar: Enrei, 2 series) that was hydroponically grown up to the second leaf stage with 100 ml of Kolben was prepared.
  • a 30% granule wettable powder of ascorbyl palmitate and pyraclostrobin dissolved in 40% with N, N-dimethylformamide were diluted to a predetermined concentration with tap water, and a sufficient amount was sprayed over the entire seedling.
  • the hydroponic solution was adjusted to pH 4 with 1N hydrochloric acid, and the soybean was continuously hydroponically grown. The soybean damage was investigated 11 days after the spraying treatment.
  • Test Example 16 Symptom-reducing effect test for tomato yellow leaf curl virus disease An N, N-dimethylformamide solution was prepared according to the formulation shown in Table 18 to obtain a test drug solution.
  • Tomato seedlings (variety: Momotaro) grown to the 8th leaf stage in the greenhouse were prepared.
  • Tomato seedlings afflicted with tomato yellow leaf curl virus (TYLCV) were used as the inoculation source.
  • the stems of diseased strains were cut diagonally and inoculated to tomato seedlings.
  • parafilm was wrapped around the grafted portion to protect it. After grafting inoculation, the chemical solution was sprayed onto the tomato seedlings.
  • the chemical solution was sprayed three times in such an amount that the solution dripped at about one week intervals.
  • the symptoms of tomato yellow leaf curl disease were investigated. Symptoms were evaluated with a 5-stage disease index from 0 (no disease) to 4 (severe illness).
  • medical solution 3) only of solvent DMF was computed by following Formula.
  • Disease control rate ((Sickness index of solvent-only treatment section)-(Sickness index of each treatment section)) / (Sickness index of solvent only treatment area) x 100
  • the expected value of the disease suppression rate was calculated based on the Colby equation.
  • E is the expected value (%) of the disease suppression rate
  • M is the disease suppression rate (%) calculated from the measurement when the substance (A1) is used alone
  • N is the measurement when the substance (A2) is used alone.
  • the disease suppression rate (%) calculated from The results are shown in Table 18.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Dentistry (AREA)
  • Plant Pathology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Cultivation Of Plants (AREA)

Abstract

The present invention pertains to a method for providing plants with resistance to stress, wherein at least one substance (A) selected from a group comprising a compound represented by formula (I) etc. and a salt thereof is applied to plants. The method reduces the harmful effects of pesticides on plants by providing the plants with resistance to stress. [In formula (I): R1 to R4 each independently represent a hydrogen atom, -SO3H, -PO3H2, a glycosyl group or -COR11; and R11 represents an unsubstituted or substituted alkyl group with 1 to 30 carbons, or an unsubstituted or substituted alkenyl group with 2 to 30 carbons.]

Description

ストレスに対する抵抗性を植物に付与する方法Method for imparting resistance to stress to plants
 本発明は、ストレスに対する抵抗性を植物に付与する方法に関する。より詳細に、本発明は、植物の生長に影響を及ぼす、生物的ストレス、物理的ストレス若しくは化学的ストレスに対する抵抗性を植物に付与する方法に関する。 The present invention relates to a method for imparting resistance to stress to plants. More particularly, the present invention relates to a method of imparting to plants resistance to biological, physical or chemical stress that affects plant growth.
 農地あるいは一般家庭で栽培される植物は、常に様々な生物的あるいは非生物的なストレスに曝されている。品種改良が成された農作物は一般的にこれらのストレスに対する抵抗性が低い傾向がある。病害虫や雑草などの生物的ストレスを軽減し、収量を維持するために、殺菌剤、殺虫剤、除草剤などの農薬が使用されている。しかし、農薬は、効果が不十分であったり、使用方法を誤ると薬害を生じたり、病害虫や雑草が農薬に対して抵抗性を発達させたり、環境生物に対する安全性に懸念が生じたりする。また、温度、水分、照度、土壌pH、塩濃度などの環境ストレスに対しては、適地栽培、育種改良、灌漑、温室、土壌改良などで対応している。植物生長調節剤などによってストレス抵抗性を付与する試みも行なわれているが、効果は十分と言えない。さらに、植物ウイルス病は穀類、野菜類、果樹類などの重要作物に深刻な被害を与える。しかし、これまでに植物ウイルス病に対して実用的な効果を十分に発揮する薬剤は見出されていない。 Plants grown in farmland or ordinary households are always exposed to various biological and abiotic stresses. Cultivated crops generally tend to be less resistant to these stresses. Agricultural chemicals such as bactericides, insecticides and herbicides are used to reduce biological stress such as pests and weeds and maintain yield. However, the effects of pesticides are insufficient, if they are used incorrectly, they cause phytotoxicity, pests and weeds develop resistance to pesticides, and there are concerns about the safety of environmental organisms. In addition, environmental stresses such as temperature, moisture, illuminance, soil pH, and salt concentration are dealt with by appropriate cultivation, breeding improvement, irrigation, greenhouse and soil improvement. Attempts to impart stress resistance with plant growth regulators have been made, but the effect is not sufficient. In addition, plant viral diseases cause serious damage to important crops such as cereals, vegetables and fruit trees. However, until now no drug has been found that sufficiently exerts a practical effect on plant viral diseases.
 ところで、非特許文献1においてアスコルビン酸が病害抵抗性やホルモン作用などに関与すること、非特許文献2においてアスコルビン酸が植物の老化に影響していることがそれぞれ報告されている。しかし、アスコルビン酸は植物体内に高濃度で存在しているため、外部からアスコルビン酸を植物に与えてもそれによる生理的な影響は僅かであり、実用的な効果はほとんどない。 By the way, Non-Patent Document 1 reports that ascorbic acid is involved in disease resistance, hormonal action, etc., and Non-Patent Document 2 reports that ascorbic acid affects plant aging. However, since ascorbic acid is present in a high concentration in the plant body, even if ascorbic acid is given to the plant from the outside, its physiological influence is slight and there is almost no practical effect.
 これに対して、特許文献1は、アスコルビン酸のある種の誘導体が植物のウイルス病害に対して予防的および治療的に効果を発揮するとしてそれを植物に施用することを提案している。また、特許文献2は、硫酸ネオマイシンなどの抗菌性抗生物質とアスコルビン酸とを含有する組成物を開示し、この組成物によって植物疾患を抑制できると述べている。 On the other hand, Patent Document 1 proposes that certain derivatives of ascorbic acid are applied to plants as having a preventive and therapeutic effect on viral diseases of plants. Patent Document 2 discloses a composition containing an antibacterial antibiotic such as neomycin sulfate and ascorbic acid, and states that plant diseases can be suppressed by this composition.
WO2011/030816WO2011 / 030816 特表2001-508808号公報JP-T-2001-508808
 本発明の目的は、植物の生長に影響を及ぼす、生物的ストレス、物理的ストレス若しくは化学的ストレスに対する抵抗性を植物に付与する方法を提供することである。 An object of the present invention is to provide a method of imparting resistance to biological stress, physical stress or chemical stress that affects plant growth.
 本発明者らは上記目的を達成するために鋭意検討した結果、以下の態様の発明を完成するに至った。
〔1〕 式(I)で表される化合物、式(II)で表される化合物およびそれらの塩からなる群から選ばれる少なくとも一つの物質(A)を植物に施用することを含む、ストレスに対する抵抗性を植物に付与する方法。
As a result of intensive studies to achieve the above object, the present inventors have completed the invention of the following aspect.
[1] Applying to a plant at least one substance (A) selected from the group consisting of a compound represented by formula (I), a compound represented by formula (II) and a salt thereof, against stress A method of imparting resistance to plants.
Figure JPOXMLDOC01-appb-C000001
[式(I)中、R1~R4はそれぞれ独立して、水素原子、-SO3H、-PO32、グリコシル基または-COR11を示す。R11は、無置換の若しくは置換基を有するC1~30アルキル基または無置換の若しくは置換基を有するC2~30アルケニル基を示す。]
Figure JPOXMLDOC01-appb-C000001
[In the formula (I), R 1 ~ R 4 are each independently a hydrogen atom, -SO 3 H, -PO 3 H 2, a glycosyl group, or -COR 11. R 11 represents an unsubstituted or substituted C1-30 alkyl group or an unsubstituted or substituted C2-30 alkenyl group. ]
Figure JPOXMLDOC01-appb-C000002
[式(II)中、R5およびR6はそれぞれ独立して、水素原子、-SO3H、-PO32、グリコシル基または-COR11を示す。R11は、無置換の若しくは置換基を有するC1~30アルキル基または無置換の若しくは置換基を有するC2~30アルケニル基を示す。]
Figure JPOXMLDOC01-appb-C000002
[In the formula (II), R 5 and R 6 each independently represents a hydrogen atom, —SO 3 H, —PO 3 H 2 , a glycosyl group or —COR 11 . R 11 represents an unsubstituted or substituted C1-30 alkyl group or an unsubstituted or substituted C2-30 alkenyl group. ]
〔2〕 物質(A)が、式(I)[ただし、すべてのR1~R4が同時に水素原子であることはない。]で表される化合物またはその塩である、〔1〕に記載の方法。
〔3〕 物質(A)が、式(I)[ただし、R1~R4のうち少なくとも一つは-COR11を示し、R11は、無置換の若しくは置換基を有するC12~30アルキル基または無置換の若しくは置換基を有するC12~30アルケニル基を示す。]で表される化合物またはその塩である、〔1〕に記載の方法。
[2] The substance (A) is represented by the formula (I) [However, not all R 1 to R 4 are hydrogen atoms at the same time. Or a salt thereof. The method according to [1].
[3] material (A) has the formula (I) [provided that at least one of R 1 ~ R 4 represents a -COR 11, R 11 are, C12 ~ 30 alkyl group having an unsubstituted or substituted Or an unsubstituted or substituted C12-30 alkenyl group. Or a salt thereof. The method according to [1].
〔4〕 物質(A)が、式(I)[ただし、R1~R4はそれぞれ独立して、水素原子、または-COR11を示し、且つR1~R4のうち少なくとも一つは-COR11を示す。R11は、無置換の若しくは置換基を有するC1~30アルキル基または無置換の若しくは置換基を有するC2~30アルケニル基を示す。-COR11のうち少なくとも一つはその中のR11が、無置換の若しくは置換基を有するC12~30アルキル基または無置換の若しくは置換基を有するC12~30アルケニル基を示す。]で表される化合物またはその塩である、〔1〕に記載の方法。 [4] The substance (A) is represented by the formula (I) [wherein R 1 to R 4 each independently represents a hydrogen atom or —COR 11 , and at least one of R 1 to R 4 is — COR 11 is shown. R 11 represents an unsubstituted or substituted C1-30 alkyl group or an unsubstituted or substituted C2-30 alkenyl group. At least one of -COR 11 represents R 11 therein, a C12 ~ 30 alkenyl group having C12 ~ 30 alkyl group or an unsubstituted or substituted group having an unsubstituted or substituted group. Or a salt thereof. The method according to [1].
〔5〕 物質(A)が、式(I)で表される化合物、式(II)で表される化合物、およびそれらの塩からなる群から選ばれる物質のうちの水溶性のもの(A1)と、式(I)で表される化合物、式(II)で表される化合物、およびそれらの塩からなる群から選ばれる物質のうちの脂溶性のもの(A2)とを含有する組成物である、〔1〕に記載の方法。
〔6〕 前記ストレスが、植物ウイルス、植物病原細菌、植物病原糸状菌、害虫若しくは雑草による生物的ストレス;または、高温、低温、高照度、低照度、過湿、乾燥、塩分、酸性、農薬、化学物質若しくは重金属による物理的若しくは化学的ストレスである、〔1〕~〔5〕のいずれか一つに記載の方法。
[5] The substance (A) is a water-soluble substance (A1) selected from the group consisting of a compound represented by the formula (I), a compound represented by the formula (II), and a salt thereof (A1) And a fat-soluble composition (A2) selected from the group consisting of a compound represented by formula (I), a compound represented by formula (II), and a salt thereof. The method according to [1].
[6] The stress is a biological stress caused by plant viruses, phytopathogenic bacteria, phytopathogenic fungi, pests or weeds; or high temperature, low temperature, high illuminance, low illuminance, excessive humidity, drying, salinity, acidity, pesticides, The method according to any one of [1] to [5], which is a physical or chemical stress caused by a chemical substance or heavy metal.
〔7〕 式(I)で表される化合物、式(II)で表される化合物およびそれらの塩からなる群から選ばれる少なくとも二つの物質(A)を含有する植物用ストレス抵抗性付与剤組成物。 [7] A composition for imparting stress resistance to plants, comprising at least two substances (A) selected from the group consisting of a compound represented by formula (I), a compound represented by formula (II), and salts thereof object.
Figure JPOXMLDOC01-appb-C000003
[式(I)中、R1~R4はそれぞれ独立して、水素原子、-SO3H、-PO32、グリコシル基または-COR11を示す。R11は、無置換の若しくは置換基を有するC1~30アルキル基または無置換の若しくは置換基を有するC2~30アルケニル基を示す。]
Figure JPOXMLDOC01-appb-C000003
[In the formula (I), R 1 to R 4 each independently represents a hydrogen atom, —SO 3 H, —PO 3 H 2 , a glycosyl group or —COR 11 . R 11 represents an unsubstituted or substituted C1-30 alkyl group or an unsubstituted or substituted C2-30 alkenyl group. ]
Figure JPOXMLDOC01-appb-C000004
[式(II)中、R5およびR6はそれぞれ独立して、水素原子、-SO3H、-PO32、グリコシル基または-COR11を示す。R11は、無置換の若しくは置換基を有するC1~30アルキル基または無置換の若しくは置換基を有するC2~30アルケニル基を示す。]
Figure JPOXMLDOC01-appb-C000004
[In the formula (II), R 5 and R 6 each independently represents a hydrogen atom, —SO 3 H, —PO 3 H 2 , a glycosyl group or —COR 11 . R 11 represents an unsubstituted or substituted C1-30 alkyl group or an unsubstituted or substituted C2-30 alkenyl group. ]
〔8〕 一つの物質(A)が式(I)で表される化合物、式(II)で表される化合物、およびそれらの塩からなる群から選ばれる物質のうちの水溶性のもの(A1)であり、他の一つの物質(A)が式(I)で表される化合物、式(II)で表される化合物、およびそれらの塩からなる群から選ばれる物質のうちの脂溶性のもの(A2)である、〔7〕に記載の組成物。 [8] One substance (A) is a water-soluble substance selected from the group consisting of a compound represented by formula (I), a compound represented by formula (II), and a salt thereof (A1 And the other one substance (A) is a fat-soluble substance selected from the group consisting of the compound represented by the formula (I), the compound represented by the formula (II), and a salt thereof. The composition according to [7], which is (A2).
〔9〕 式(Ia)で表される化合物、式(IIa)で表される化合物およびそれらの塩からなる群から選ばれる少なくとも一つの水溶性物質(A1)と、
 式(Ib)で表される化合物、式(IIb)で表される化合物およびそれらの塩からなる群から選ばれる少なくとも一つの脂溶性物質(A2)とを含有する植物用ストレス抵抗性付与剤組成物。
[9] At least one water-soluble substance (A1) selected from the group consisting of a compound represented by the formula (Ia), a compound represented by the formula (IIa), and a salt thereof;
A plant stress resistance imparting agent composition comprising at least one fat-soluble substance (A2) selected from the group consisting of a compound represented by the formula (Ib), a compound represented by the formula (IIb), and a salt thereof. object.
Figure JPOXMLDOC01-appb-C000005
[式(Ia)中、R1a~R4aはそれぞれ独立して、水素原子、-SO3H、-PO32、またはグリコシル基を示す。]
Figure JPOXMLDOC01-appb-C000005
[In Formula (Ia), R 1a to R 4a each independently represents a hydrogen atom, —SO 3 H, —PO 3 H 2 , or a glycosyl group. ]
Figure JPOXMLDOC01-appb-C000006
[式(IIa)中、R5aおよびR6aはそれぞれ独立して、水素原子、-SO3H、-PO32、またはグリコシル基を示す。]
Figure JPOXMLDOC01-appb-C000006
[In Formula (IIa), R 5a and R 6a each independently represent a hydrogen atom, —SO 3 H, —PO 3 H 2 , or a glycosyl group. ]
Figure JPOXMLDOC01-appb-C000007
[式(Ib)中、R1b~R4bはそれぞれ独立して、水素原子、または-COR11を示す。R1b~R4bのうち少なくとも一つは-COR11を示し、R11は、無置換の若しくは置換基を有するC1~30アルキル基または無置換の若しくは置換基を有するC2~30アルケニル基を示す。]
Figure JPOXMLDOC01-appb-C000007
[In the formula (Ib), R 1b to R 4b each independently represents a hydrogen atom or —COR 11 . At least one of R 1b ~ R 4b represents a -COR 11, R 11 represents a C2 ~ 30 alkenyl group having C1 ~ 30 alkyl group or an unsubstituted or substituted group having an unsubstituted or substituted . ]
Figure JPOXMLDOC01-appb-C000008
[式(IIb)中、R5bおよびR6bはそれぞれ独立して、水素原子、または-COR11を示す。R5bおよびR6bのうち少なくとも一つは-COR11を示し、R11は、無置換の若しくは置換基を有するC1~30アルキル基または無置換の若しくは置換基を有するC2~30アルケニル基を示す。]
Figure JPOXMLDOC01-appb-C000008
[In the formula (IIb), R 5b and R 6b each independently represent a hydrogen atom or —COR 11 . At least one of R 5b and R 6b represents a -COR 11, R 11 represents a C2 ~ 30 alkenyl group having C1 ~ 30 alkyl group or an unsubstituted or substituted group having an unsubstituted or substituted . ]
〔10〕 〔1〕~〔6〕のいずれか一つに記載の方法によって植物にストレスに対する抵抗性を付与することを含む、農薬による植物の薬害を軽減する方法。
〔11〕 農薬が、殺菌剤、殺虫剤、植物成長調整剤、および除草剤からなる群から選ばれる少なくとも一つを含むものである、〔10〕に記載の農薬による植物の薬害を軽減する方法。
[10] A method for reducing plant phytotoxicity caused by agricultural chemicals, comprising imparting resistance to stress to a plant by the method according to any one of [1] to [6].
[11] The method for reducing plant phytotoxicity caused by the agricultural chemical according to [10], wherein the agricultural chemical comprises at least one selected from the group consisting of a fungicide, an insecticide, a plant growth regulator, and a herbicide.
 本発明の方法によれば、植物の生長に影響を及ぼす、生物的ストレス、物理的ストレス若しくは化学的ストレスに対する抵抗性を植物に付与することができる。その結果、例えば、植物の生理作用に影響を及ぼす物質などを含む農薬などによる薬害を軽減でき、またウイルス病を含む植物病害の被害を軽減できる。また、高温、低温、乾燥、土壌条件などの劣悪な環境条件においても収穫量の減少や品質の低下などを防止することができる。 According to the method of the present invention, it is possible to impart resistance to biological stress, physical stress, or chemical stress, which affects plant growth, to a plant. As a result, for example, it is possible to reduce phytotoxicity caused by agricultural chemicals including substances that affect the physiological function of plants, and to reduce damage of plant diseases including viral diseases. In addition, it is possible to prevent a decrease in yield and quality even under poor environmental conditions such as high temperature, low temperature, drying, and soil conditions.
 本発明に係るストレスに対する抵抗性を植物に付与する方法は、物質(A)を植物に施用することを含むものである。 The method for imparting resistance to stress according to the present invention to a plant includes applying the substance (A) to the plant.
(物質(A))
 物質(A)は、式(I)で表される化合物、式(II)で表される化合物、およびそれらの塩からなる群から選ばれる少なくとも一つである。
 式(I)中、R1~R4はそれぞれ独立して、水素原子、-SO3H、-PO32、グリコシル基または-COR11を示す。
 式(II)中、R5およびR6はそれぞれ独立して、水素原子、-SO3H、-PO32、グリコシル基または-COR11を示す。
(Substance (A))
The substance (A) is at least one selected from the group consisting of a compound represented by the formula (I), a compound represented by the formula (II), and a salt thereof.
In formula (I), R 1 to R 4 each independently represents a hydrogen atom, —SO 3 H, —PO 3 H 2 , a glycosyl group or —COR 11 .
In formula (II), R 5 and R 6 each independently represents a hydrogen atom, —SO 3 H, —PO 3 H 2 , a glycosyl group or —COR 11 .
 グリコシル基は、単糖若しくは低分子量の少糖などの糖残基(具体的には、糖部分のヘミアセタール性ヒドロキシ基を除去して結合位置とした分子の部分構造)である。単糖としては、グルコース、ガラクトース、フルクトース、ラムノース等が、少糖としては、ルチノース、ビシアノース、ラクトース、マルトース、シュクロース等が挙げられる。従って、グリコシル基は、例えば、グルコシル基、ガラクトシル基、フルクトシル基、ラムノシル基等を含む。また、グリコシル基にはこれら基の任意の組み合わせが、1→2結合、1→3結合、1→4結合又は1→6結合で結合し、二糖となった基も含まれる。 The glycosyl group is a sugar residue such as a monosaccharide or a low molecular weight oligosaccharide (specifically, a partial structure of a molecule in which the hemiacetal hydroxy group of the sugar moiety is removed to form a binding position). Examples of monosaccharides include glucose, galactose, fructose, and rhamnose. Examples of oligosaccharides include rutinose, vicyanose, lactose, maltose, and sucrose. Accordingly, the glycosyl group includes, for example, a glucosyl group, a galactosyl group, a fructosyl group, a rhamnosyl group, and the like. The glycosyl group also includes a group in which any combination of these groups is bonded by a 1 → 2 bond, a 1 → 3 bond, a 1 → 4 bond, or a 1 → 6 bond to form a disaccharide.
 -COR11における、R11は、無置換の若しくは置換基を有するC1~30アルキル基または無置換の若しくは置換基を有するC2~30アルケニル基を示す。
 ここで、「無置換の」の用語は、該基が母核となる基のみであることを意味する。なお、「置換基を有する」との記載がなく母核となる基の名称のみで記載しているときは、別段の断りがない限り「無置換の」の意味である。
 一方、「置換基を有する」の用語は、母核となる基のいずれかの水素原子が、母核と異なる若しくは同じ構造の基で置換されていることを意味する。従って、「置換基」は、母核となる基に置換された他の基である。置換基は一つであってもよいし、二つ以上であってもよい。二つ以上の置換基は同じものであってもよいし、異なるものであってもよい。例えば、置換基を有するC1~30アルキル基は、母核となる基がC1~30アルキル基で、これのいずれかの水素原子が異なる構造の基(「置換基」)で置換されているものである。
In —COR 11 , R 11 represents an unsubstituted or substituted C1-30 alkyl group or an unsubstituted or substituted C2-30 alkenyl group.
Here, the term “unsubstituted” means that the group is only a group serving as a mother nucleus. In addition, when there is no description of “having a substituent” and only the name of the group serving as a mother nucleus is described, it means “unsubstituted” unless otherwise specified.
On the other hand, the term “having a substituent” means that any hydrogen atom of a group serving as a mother nucleus is substituted with a group having a structure different from or the same as that of the mother nucleus. Therefore, the “substituent” is another group substituted with a group serving as a mother nucleus. The number of substituents may be one, or two or more. Two or more substituents may be the same or different. For example, a C1-30 alkyl group having a substituent is a group in which the parent nucleus is a C1-30 alkyl group, and any one of these hydrogen atoms is substituted with a group having a different structure ("substituent") It is.
 R11における「C1~30アルキル基」は、炭素原子1~30個で構成される飽和炭化水素基である。C1~30アルキル基は直鎖であってもよいし、分岐鎖であってもよい。C1~30アルキル基としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、i-プロピル基、i-ブチル基、s-ブチル基、t-ブチル基、i-ペンチル基、ネオペンチル基、2-メチルブチル基、2,2-ジメチルプロピル基、i-ヘキシル基、ヘプチル基、オクチル、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基(ミリスチル基)、ペンタデシル基、ヘキサデシル基(セチル基、パルミチル基)、ヘプタデシル基、オクタデシル基(ステアリル基)、ノナデシル基、イコシル基、ヘンイコシル基、トリアコンチル基などが挙げられる。 The “C1-30 alkyl group” in R 11 is a saturated hydrocarbon group composed of 1 to 30 carbon atoms. The C1-30 alkyl group may be linear or branched. Examples of the C1-30 alkyl group include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, i-propyl group, i -Butyl group, s-butyl group, t-butyl group, i-pentyl group, neopentyl group, 2-methylbutyl group, 2,2-dimethylpropyl group, i-hexyl group, heptyl group, octyl, nonyl group, decyl group , Undecyl group, dodecyl group, tridecyl group, tetradecyl group (myristyl group), pentadecyl group, hexadecyl group (cetyl group, palmityl group), heptadecyl group, octadecyl group (stearyl group), nonadecyl group, icosyl group, heicosyl group, triacontyl Group and the like.
 R11における「C2~30アルケニル基」は、炭素-炭素二重結合を少なくとも一つ有する炭素原子2~30個で構成される不飽和炭化水素基である。C2~30アルケニル基は直鎖であってもよいし、分岐鎖であってもよい。C2~30アルケニル基としては、ビニル基、1-プロペニル基、イソプロペニル基、アリル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、1-ペンテニル基、2-ペンテニル基、3-ペンテニル基、4-ペンテニル基、1-ヘキセニル基、2-ヘキセニル基、3-ヘキセニル基、4-ヘキセニル基、5-ヘキセニル基、1-ヘプテニル基、6-ヘプテニル基、1-オクテニル基、7-オクテニル基、1-メチル-アリル基、2-メチル-アリル基、1-メチル-2-ブテニル基、2-メチル-2-ブテニル基、オクテニル基、ノネニル基、デセニル基、ウンデセニル基、ドデセニル基、トリデセニル基、テトラデセニル基、ペンタデセニル基、ヘキサデセニル基、ヘプタデセニル基、オクタデセニル基、ノナデセニル基、イコセニル基、ヘンイコセニル基、トリアコンテニル基などが挙げられる。 The “C2-30 alkenyl group” in R 11 is an unsaturated hydrocarbon group composed of 2 to 30 carbon atoms having at least one carbon-carbon double bond. The C2-30 alkenyl group may be linear or branched. C2-30 alkenyl groups include vinyl, 1-propenyl, isopropenyl, allyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3- Pentenyl group, 4-pentenyl group, 1-hexenyl group, 2-hexenyl group, 3-hexenyl group, 4-hexenyl group, 5-hexenyl group, 1-heptenyl group, 6-heptenyl group, 1-octenyl group, 7- Octenyl group, 1-methyl-allyl group, 2-methyl-allyl group, 1-methyl-2-butenyl group, 2-methyl-2-butenyl group, octenyl group, nonenyl group, decenyl group, undecenyl group, dodecenyl group, Tridecenyl, tetradecenyl, pentadecenyl, hexadecenyl, heptadecenyl, octadecenyl, nonadecenyl, icos Group, henicosenyl group, such as thoria Conte sulfonyl group.
 C1~30アルキル基またはC2~30アルケニル基の「置換基」となり得る基としては、ヒドロキシル基;メルカプト基;アミノ基;ニトロ基;塩素原子、フッ素原子、臭素原子等のハロゲン原子;メトキシ基、エトキシ基、イソプロポキシ基、n-プロポキシ基、n-ブトキシ基、イソブトキシ基、s-ブトキシ基、t-ブトキシ基等のアルコキシ基;フェノキシ基、1-ナフチルオキシ基等のアリールオキシ基;フルオロメトキシ基、ジフルオロメトキシ基、トリフルオロメトキシ基、2-クロロエトキシ基、2,2,2-トリクロロエトキシ基、1,1,1,3,3,3-ヘキサフルオロ-2-プロポキシ基等のハロアルコキシ基;メチルチオ基、エチルチオ基等のアルキルチオ基;フェニルチオ基、1-ナフチルチオ基等のアリールチオ基;メチルアミノ基、ジエチルアミノ基等のアルキルアミノ基;アニリノ基、1-ナフチルアミノ基等のアリールアミノ基;シアノ基;等を例示することができる。
 上記R11は、無置換の若しくは置換基を有するC8~20アルキル基または無置換の若しくは置換基を有するC8~20アルケニル基が好ましい。
Examples of a group that can be a “substituent” of a C1-30 alkyl group or a C2-30 alkenyl group include a hydroxyl group; a mercapto group; an amino group; a nitro group; a halogen atom such as a chlorine atom, a fluorine atom, and a bromine atom; Alkoxy groups such as ethoxy group, isopropoxy group, n-propoxy group, n-butoxy group, isobutoxy group, s-butoxy group and t-butoxy group; aryloxy groups such as phenoxy group and 1-naphthyloxy group; fluoromethoxy Groups, difluoromethoxy groups, trifluoromethoxy groups, 2-chloroethoxy groups, 2,2,2-trichloroethoxy groups, 1,1,1,3,3,3-hexafluoro-2-propoxy groups, etc. Group: alkylthio group such as methylthio group and ethylthio group; aryl such as phenylthio group and 1-naphthylthio group Thio; anilino group, an arylamino group such as a 1-naphthylamino group; methylamino group, an alkylamino group such as a diethylamino group can be exemplified such as cyano group.
R 11 is preferably an unsubstituted or substituted C8-20 alkyl group or an unsubstituted or substituted C8-20 alkenyl group.
 物質(A)は、式(I)で表される化合物またはその塩が好ましい。さらに、式(I)中のR1~R4が同時に水素原子でないことが好ましい。
 また、物質(A)は、式(I)[R1~R4のうち少なくとも一つは-COR11を示す。R11は、無置換の若しくは置換基を有するC12~30アルキル基または無置換の若しくは置換基を有するC12~30アルケニル基を示す。]で表される化合物またはその塩であることが好ましい。
 なお、「C12~30アルキル基」としては、例えば、ドデシル基、トリデシル基、テトラデシル基(ミリスチル基)、ペンタデシル基、ヘキサデシル基(セチル基、パルミチル基)、ヘプタデシル基、オクタデシル基(ステアリル基)、ノナデシル基、イコシル基、ヘンイコシル基、トリアコンチル基などが挙げられる。
 「置換基を有するC12~30アルキル基」としては、例えば、2-ヒドロキシトリデシル基、1-ヒドロキシペンタデシル基、11-ヒドロキシヘプタデシル基、1-アミノヘプタデシル基などが挙げられる。
The substance (A) is preferably a compound represented by the formula (I) or a salt thereof. Further, it is preferable that R 1 to R 4 in formula (I) are not hydrogen atoms at the same time.
The substance (A) is represented by the formula (I) [at least one of R 1 to R 4 represents —COR 11 . R 11 represents an unsubstituted or substituted C12-30 alkyl group or an unsubstituted or substituted C12-30 alkenyl group. ] Or a salt thereof is preferable.
Examples of the “C12-30 alkyl group” include dodecyl group, tridecyl group, tetradecyl group (myristyl group), pentadecyl group, hexadecyl group (cetyl group, palmityl group), heptadecyl group, octadecyl group (stearyl group), Nonadecyl group, icosyl group, henicosyl group, triacontyl group and the like can be mentioned.
Examples of the “substituted C12-30 alkyl group” include 2-hydroxytridecyl group, 1-hydroxypentadecyl group, 11-hydroxyheptadecyl group, 1-aminoheptadecyl group and the like.
 「C12~30アルケニル基」としては、例えば、ドデセニル基、トリデセニル基、テトラデセニル基、ペンタデセニル基、ヘキサデセニル基、ヘプタデセニル基、オクタデセニル基、ノナデセニル基、イコセニル基、ヘンイコセニル基、トリアコンテニル基などが挙げられる。
 「置換基を有するC12~30アルケニル基」としては、例えば、7-ヒドロキシ-8-ペンタデセニル基、1-ヒドロキシ-8-ペプタデセニル基、1-アミノ-8-ヘプタデセニル基などが挙げられる。
Examples of the “C12-30 alkenyl group” include a dodecenyl group, a tridecenyl group, a tetradecenyl group, a pentadecenyl group, a hexadecenyl group, a heptadecenyl group, an octadecenyl group, a nonadecenyl group, an icosenyl group, a henicocenyl group, a triaconenyl group, and the like. .
Examples of the “substituted C12-30 alkenyl group” include 7-hydroxy-8-pentadecenyl group, 1-hydroxy-8-peptadecenyl group, 1-amino-8-heptadecenyl group and the like.
 さらに、物質(A)は、式(I)[R1~R4はそれぞれ独立して、水素原子、または-COR11を示し、R1~R4のうち少なくとも一つは-COR11を示し、R11は、無置換の若しくは置換基を有するC1~30アルキル基または無置換の若しくは置換基を有するC2~30アルケニル基を示し、且つ-COR11のうち少なくとも一つはその中のR11が、無置換の若しくは置換基を有するC12~30アルキル基または無置換の若しくは置換基を有するC12~30アルケニル基を示す。]で表される化合物またはその塩であることが好ましい。 Further, the substance (A) has the formula (I) [R 1 to R 4 each independently represents a hydrogen atom or —COR 11, and at least one of R 1 to R 4 represents —COR 11 . , R 11 represents an unsubstituted or substituted C1-30 alkyl group or an unsubstituted or substituted C2-30 alkenyl group, and at least one of —COR 11 is R 11 therein. Represents an unsubstituted or substituted C12-30 alkyl group or an unsubstituted or substituted C12-30 alkenyl group. It is preferable that it is a compound represented by these, or its salt.
 上記のような物質(A)の具体例としては、アスコルビン酸6-ミリステート、アスコルビン酸6-パルミテート、アスコルビン酸6-ステアレート、アスコルビン酸2-ミリステート、アスコルビン酸2-パルミテート、アスコルビン酸2-ステアレート、アスコルビン酸2,6-ジミリステート、アスコルビン酸2,6-ジパルミテート、アスコルビン酸2,6-ジステアレート等を挙げることができる。 Specific examples of the substance (A) include ascorbic acid 6-myristate, ascorbic acid 6-palmitate, ascorbic acid 6-stearate, ascorbic acid 2-myristate, ascorbic acid 2-palmitate, ascorbic acid 2 -Stearate, ascorbic acid 2,6-dimyristate, ascorbic acid 2,6-dipalmitate, ascorbic acid 2,6-distearate and the like.
 本発明に用いられる式(I)で表される化合物の塩、および式(II)で表される化合物の塩は、農園芸学的に許容される塩であれば、特に制限されない。例えば、ナトリウム塩、カリウム塩等のアルカリ金属塩;カルシウム塩、マグネシウム塩等のアルカリ土類金属塩等を挙げることができる。 The salt of the compound represented by the formula (I) and the salt of the compound represented by the formula (II) used in the present invention are not particularly limited as long as they are agro-horticulturally acceptable salts. Examples thereof include alkali metal salts such as sodium salt and potassium salt; alkaline earth metal salts such as calcium salt and magnesium salt.
 本発明に用いられる物質(A)は、公知の合成手法により得ることができる。例えば、R1~R4のいずれかに-COR11を導入するための脂肪酸化合物とアスコルビン酸とのエステル化反応、R1~R4のいずれかに-PO32を導入するためのリン酸化合物とアスコルビン酸とのエステル化反応、R1~R4のいずれかに-SO3Hを導入するための硫酸化合物とアスコルビン酸とのエステル化反応、およびその他の公知の反応を用いて合成することができる。また、上記合成法によって得られる物質(A)を、抽出、蒸留、クロマトグラフなどの公知の方法によって精製することができる。また本発明に用いられる物質(A)の多くは市販されているので、それらを使用することも可能である。
 なお、物質(A)の構造は、IRスペクトル、NMRスペクトル、マススペクトル、元素分析等の公知の分析手段により、同定、確認することができる。
The substance (A) used in the present invention can be obtained by a known synthesis method. For example, R 1 ~ esterification reaction of fatty acid compounds and ascorbic acid for introducing -COR 11 to one of R 4, phosphorus either to introduce -PO 3 H 2 of R 1 ~ R 4 Synthesis using an esterification reaction between an acid compound and ascorbic acid, an esterification reaction between a sulfuric acid compound and ascorbic acid for introducing —SO 3 H into any of R 1 to R 4 , and other known reactions can do. Moreover, the substance (A) obtained by the said synthesis method can be refine | purified by well-known methods, such as extraction, distillation, and a chromatograph. In addition, since many of the substances (A) used in the present invention are commercially available, they can also be used.
In addition, the structure of the substance (A) can be identified and confirmed by known analysis means such as IR spectrum, NMR spectrum, mass spectrum, and elemental analysis.
 物質(A)は、一つを単独で用いてもよいが、少なくとも二つを組み合わせて用いることが好ましい。二つを組み合わせて用いる場合、物質(A)は、式(I)で表される化合物、式(II)で表される化合物、およびそれらの塩からなる群から選ばれる物質のうちの水溶性のもの(A1)と、式(I)で表される化合物、式(II)で表される化合物、およびそれらの塩からなる群から選ばれる物質のうちの脂溶性のもの(A2)とを含有する組成物であることが、物質(A)の効果が相乗的に増強されるので好ましい。 The substance (A) may be used alone, but is preferably used in combination of at least two. When two are used in combination, the substance (A) is a water-soluble substance selected from the group consisting of a compound represented by the formula (I), a compound represented by the formula (II), and a salt thereof. (A1), a compound represented by formula (I), a compound represented by formula (II), and a fat-soluble substance (A2) selected from the group consisting of salts thereof It is preferable that the composition is contained because the effect of the substance (A) is synergistically enhanced.
 二つを組み合わせて用いる場合、より具体的に、物質(A)は、式(Ia)で表される化合物、式(IIa)で表される化合物およびそれらの塩からなる群から選ばれる少なくとも一つの水溶性物質(A1)と、式(Ib)で表される化合物、式(IIb)で表される化合物およびそれらの塩からなる群から選ばれる少なくとも一つの脂溶性物質(A2)とを含有する組成物であることが好ましい。 When two are used in combination, more specifically, the substance (A) is at least one selected from the group consisting of a compound represented by the formula (Ia), a compound represented by the formula (IIa), and a salt thereof. Contains one water-soluble substance (A1) and at least one fat-soluble substance (A2) selected from the group consisting of a compound represented by the formula (Ib), a compound represented by the formula (IIb), and salts thereof It is preferable that it is a composition to be.
Figure JPOXMLDOC01-appb-C000009
[式(Ia)中、R1a~R4aはそれぞれ独立して、水素原子、-SO3H、-PO32、またはグリコシル基を示す。]
Figure JPOXMLDOC01-appb-C000009
[In Formula (Ia), R 1a to R 4a each independently represents a hydrogen atom, —SO 3 H, —PO 3 H 2 , or a glycosyl group. ]
Figure JPOXMLDOC01-appb-C000010
[式(IIa)中、R5aおよびR6aはそれぞれ独立して、水素原子、-SO3H、-PO32、またはグリコシル基を示す。]
Figure JPOXMLDOC01-appb-C000010
Wherein (IIa), and each R 5a and R 6a independently represent a hydrogen atom, -SO 3 H, a -PO 3 H 2 or glycosyl groups. ]
Figure JPOXMLDOC01-appb-C000011
[式(Ib)中、R1b~R4bはそれぞれ独立して、水素原子、または-COR11を示す。R1b~R4bのうち少なくとも一つは-COR11を示し、R11は、無置換の若しくは置換基を有するC1~30アルキル基または無置換の若しくは置換基を有するC2~30アルケニル基を、好ましくは無置換の若しくは置換基を有するC12~30アルキル基または無置換の若しくは置換基を有するC12~30アルケニル基を示す。]
Figure JPOXMLDOC01-appb-C000011
[In the formula (Ib), R 1b to R 4b each independently represents a hydrogen atom or —COR 11 . At least one of R 1b ~ R 4b represents a -COR 11, R 11 is a C2 ~ 30 alkenyl group having C1 ~ 30 alkyl group or an unsubstituted or substituted group having an unsubstituted or substituted, Preferably, it is an unsubstituted or substituted C12-30 alkyl group or an unsubstituted or substituted C12-30 alkenyl group. ]
Figure JPOXMLDOC01-appb-C000012
[式(IIb)中、R5bおよびR6bはそれぞれ独立して、水素原子、または-COR11を示す。R5bおよびR6bのうち少なくとも一つは-COR11を示し、R11は、無置換の若しくは置換基を有するC1~30アルキル基または無置換の若しくは置換基を有するC2~30アルケニル基を、好ましくは無置換の若しくは置換基を有するC12~30アルキル基または無置換の若しくは置換基を有するC12~30アルケニル基を示す。]
Figure JPOXMLDOC01-appb-C000012
[In the formula (IIb), R 5b and R 6b each independently represent a hydrogen atom or —COR 11 . At least one of R 5b and R 6b represents a -COR 11, R 11 is a C2 ~ 30 alkenyl group having C1 ~ 30 alkyl group or an unsubstituted or substituted group having an unsubstituted or substituted, Preferably, it is an unsubstituted or substituted C12-30 alkyl group or an unsubstituted or substituted C12-30 alkenyl group. ]
 水溶性物質(A1)に対する脂溶性物質(A2)の質量比は、通常0.001~1000、好ましくは0.1~10である。 The mass ratio of the fat-soluble substance (A2) to the water-soluble substance (A1) is usually 0.001 to 1000, preferably 0.1 to 10.
 物質(A)は、水和剤、乳剤、水溶剤、顆粒水和剤、粉剤、錠剤などの製剤に調製することができる。製剤への調製方法は、特に制限されず、剤形に応じて公知の調製方法を採用することができる。 Substance (A) can be prepared into preparations such as wettable powders, emulsions, aqueous solvents, granular wettable powders, powders and tablets. The preparation method to a formulation is not specifically limited, A well-known preparation method can be employ | adopted according to a dosage form.
 物質(A)の植物への施用の仕方は、特に制限されず、農園芸分野において公知の施用方法を採用することができる。また、植物への施用の仕方は、対象となる植物の種類等に応じて適宜決定することができる。例えば、茎葉散布、浸漬処理、土壌潅注、種子処理、水耕液処理、くん煙処理、常温煙霧処理等による施用が好ましいものとして挙げることができる。本発明の方法は、土壌栽培、水耕栽培などの栽培形態によって制限されずに使用可能である。また、成長点培養等の特殊な環境での使用でも優れた効果を奏することができる。本発明の方法における物質(A)の施用量は、気象条件、製剤形態、施用時期、施用方法、施用場所、防除対象病害、対象作物等に応じて、適宜決定することができる。 The method of applying the substance (A) to the plant is not particularly limited, and a known application method can be adopted in the field of agriculture and horticulture. Moreover, the method of application to a plant can be appropriately determined according to the type of plant to be targeted. For example, application by foliage spraying, dipping treatment, soil irrigation, seed treatment, hydroponic solution treatment, smoking treatment, room temperature fuming treatment, etc. can be mentioned as preferred. The method of this invention can be used without being restrict | limited by cultivation forms, such as soil cultivation and hydroponics. In addition, excellent effects can be obtained even when used in special environments such as growth point culture. The application amount of the substance (A) in the method of the present invention can be appropriately determined according to weather conditions, formulation form, application time, application method, application location, disease to be controlled, target crop, and the like.
 本発明の方法が適用可能な植物は、特に限定されず、食用植物若しくは非食用植物のいずれでもよい。例えば、イネ、コムギ、トウモロコシ等の穀類、ダイズ、アズキ、ラッカセイ等の豆類、カンキツ、リンゴ、ナシ、ブドウ、モモ等の果樹類、トマト、レタス、キャベツ、タマネギ、ネギ、ピーマン等の野菜類、キュウリ、スイカ、メロン、カボチャ等の瓜類、ジャガイモ、サツマイモ、ナガイモ、ニンジン、ダイコン等の根菜類、ワタ、テンサイ、ホップ、サトウキビ、ゴム、コーヒー、タバコ、茶等の加工用作物類、ライグラス、チモシ、オーチャードグラス等の牧草、ベントグラス、コウライシバ等の芝類等が挙げられる。 The plant to which the method of the present invention is applicable is not particularly limited and may be either an edible plant or a non-edible plant. For example, grains such as rice, wheat, corn, beans such as soybean, adzuki, peanut, fruits such as citrus, apple, pear, grape, peach, vegetables such as tomato, lettuce, cabbage, onion, leek, peppers, Cucumbers, watermelons, melons, pumpkins and other potatoes, potatoes, sweet potatoes, potatoes, carrots, radish and other root vegetables, cotton, sugar beet, hops, sugar cane, rubber, coffee, tobacco, tea and other crops for processing, ryegrass, Examples include grasses such as timosi and orchardgrass, and grasses such as bentgrass and mulberry.
 本発明の方法によってストレスに対する抵抗性を植物に付与することができる。該ストレスとしては、植物ウイルス、植物病原細菌、植物病原糸状菌、害虫、雑草、若しくは生物農薬として用いられる微生物、節足動物等による生物的ストレス; 高温、低温、高照度、低照度、過湿、乾燥、塩分、酸性、農薬、化学物質若しくは重金属による物理的若しくは化学的ストレスが挙げられる。 It is possible to impart resistance to stress to plants by the method of the present invention. Examples of the stress include plant viruses, phytopathogenic bacteria, phytopathogenic fungi, pests, weeds, microorganisms used as biopesticides, arthropods, etc .; high temperature, low temperature, high illuminance, low illuminance, excessive humidity , Physical stress or chemical stress due to dryness, salinity, acidity, pesticides, chemicals or heavy metals.
 ストレスの原因になる植物ウイルスは、特に限定されない。例えば、一本鎖DNAをゲノムとして持つジェミニウイルス類、二本鎖DNAをゲノムとして持つカリフラワーモザイクウイルス、一本鎖RNAをゲノムとして持つタバコモザイクウイルス、トマトブッシースタントウイルス、二本鎖RNAをゲノムとして持つイネラギッドスタントウイルスなどを、好ましいものとして挙げることができる。 The plant virus that causes stress is not particularly limited. For example, geminiviruses with single-stranded DNA as genome, cauliflower mosaic virus with double-stranded DNA as genome, tobacco mosaic virus with single-stranded RNA as genome, tomato bushy stunt virus, double-stranded RNA as genome The rice rug stunt virus etc. which it has can be mentioned as a preferable thing.
 ストレスの原因になる植物病原細菌は、特に限定されない。例えば、イネの苗立枯細菌病(Burkholderia plantarii)、褐条病(Acidovorax avenae)、もみ枯細菌病(Burkholderia glumae)、白葉枯病(Xanthomonas campestris pv. oryzae)、キュウリ斑点細菌病(Pseudomonas lachrymans)、ハクサイ軟腐病(Erwinia carotovora)などが挙げられる。 Phytopathogenic bacteria that cause stress are not particularly limited. For example, rice seedling blight (Burkholderia plantarii), brown streak (Acidovorax avenae), blight blight (Burkholderia glumae), leaf blight (Xanthomonas campestris pv. Oryzae), cucumber spotted bacterial disease (Pseudomonas lachrymans) And Chinese cabbage soft rot (Erwinia carotovora).
 ストレスの原因になる植物病原糸状菌は特に限定されない。例えば、イネのいもち病(Pyricularia oryzae)、馬鹿苗病(Gibberella fujikuroi)、ごま葉枯病(Cochliobolus miyabeanus)、コムギのうどんこ病(Erysiphe graminis f.sp.tritici)、赤かび病(Gibberella zeae)、赤さび病(Puccinia recondita)、葉枯病(Septoria tritici)、ふ枯病(Leptosphaeria nodorum)、オオムギの裸黒穂病(Ustilago tritici) 、キュウリのうどんこ病(Sphaerotheca fuliginea)、べと病(Pseudoperonospora cubensis)、つる枯病(Mycosphaerella melonis)、つる割病(Fusarium oxysporum)、灰色かび病(Botrytis cinerea)、炭そ病(Colletotrichum orbiculare)、黒星病(Cladosporium cucumerinum)、褐斑病(Corynespora cassicola)、トマトの葉かび病(Cladosporium fulvum)、疫病(Phytophthora infestans)などが挙げられる。 Phytopathogenic fungi causing stress are not particularly limited. For example, rice blast (Pyricularia oryzae), idiot seedling (Gibberella fujikuroi), sesame leaf blight (Cochliobolus miyabeanus), wheat powdery mildew (Erysiphe graminisspf.sp.tritici), red mold (Gibberella zeae) , Red rust (Puccinia recondita), leaf blight (Septoria tritici), blight (Leptosphaeria nodorum), barley bare smut (Ustilago tritici), cucumber powdery mildew (Sphaerotheca fuliginea), downy mildew (Pseudoperonosp) ), Vine blight (Mycosphaerella melonis), vine split disease (Fusarium oxysporum), gray mold (Botrytis cinerea), anthracnose (Colletotrichum orbiculare), black scab (Cladosporium cucumerinum), brown spot (Corynespora cassicola), tomato Examples include leaf mold (Cladosporium fulvum), plague (Phytophthora infestans) and the like.
 ストレスの原因になる害虫は特に限定されないが、例えば
 鱗翅目害虫、例えば、ヨトウガ、アワヨトウ、ハスモンヨトウ、タマナヤガ、チャノコカクモンハマキ、チャハマキ、モモシンクイガ、ナシヒメシンクイ、ミカンハモグリガ、チャノホソガ、キンモンホソガ、マイマイガ、チャドクガ、ニカメイガ、コブノメイガ、ヨーロピアンコーンボーラー、アメリカシロヒトリ、スジマダラメイガ、ヘリオティス属、ヘリコベルパ属、アグロティス属、イガ、アワノメイガ、オオモンシロチョウ、タバコバッドワーム、コナガ、ネキリムシ(ヤガ科の一種)など;
 半翅目害虫、例えば、ニセダイコンアブラムシ、ムギクビレアブラムシ、モモアカアブラムシ、ワタアブラムシ、マメクロアブラムシ等のアブラムシ類;オンシツコナジラミ、タバココナジラミ、シルバーリーフコナジラミ等のコナジラミ類;ホシカメムシ、ホソヘリカメムシ、アオクサカメムシ、ヤノネカイガラムシ、クワコナカイガラムシ、ナシキジラミ、ナシグンバイムシ、トビイロウンカ、ヒメトビウンカ、セジロウンカ、ツマグロヨコバイなど;
The pests that cause stress are not particularly limited. , Corn borer, European corn borer, white-faced butterfly, genus Heliotis, genus Helicoberpa, agrotis, iga, scallop, white butterfly, tobacco bad worm, stag beetle, scallop
Hemiptera pests, for example, aphids such as phantom aphid, wheat aphid, peach aphid, cotton aphid, bean aphid; whitefly, tobacco whitefly, white leaf whitefly, whitefly Hawksbill beetle, sorghum scale, stag beetle, pterfly lice, pear beetle, flying planthopper, brown planthopper, white planthopper, leafhopper, etc .;
 甲虫目害虫、例えば、キスジノミハムシ、ウリハムシ、コロラドハムシ、マスタードビートル、イネミズゾウムシ、コクゾウムシ、アズキゾウムシ、マメコガネ、ヒメコガネ、コーンルートワーム、ジアブロティカ属、タバコシバンムシ、ヒラタキクイムシ、マツノマダラカミキリ、ゴマダラカミキリ、アグリオティス属、ニジュウヤホシテントウ、コクヌスト、ワタミゾウムシなど;
 直翅目害虫、例えば、イナゴ、トノサマバッタなど;
 アザミウマ目害虫、例えば、ミナミキイロアザミウマ、チャノキイロアザミウマ、ネギアザミウマ、ヒラズハナアザミウマなど;
 双翅目害虫、例えば、ウリミバエ、ミカンコミバエ、イネハモグリバエなど;
 ダニ類、例えば、ナミハダニ、ニセナミハダニ、カンザワハダニ、ミカンハダニ、リンゴハダニ、ヒメハダニ等のハダニ類;ミカンサビダニ、リンゴサビダニ、チャノホコリダニ、ロビンネダニなど;
等が挙げられる。この中で適用が特に好ましい害虫としては、植物ウイルスを媒介するアブラムシ類、コナジラミ類、アザミウマ類、ハダニ類などが挙げられる。
Coleopterous pests, e.g., Kizunami beetle, cucumber potato beetle, Colorado potato beetle, mustard beetle, rice weevil, weevil, azuki beetle, beetle, beetle, corn rootworm, diabrotica, tobacco beetle, winged beetle, pine beetle, Nijuya Hoshi Tento, Kokunust, Cotton weevil, etc .;
Straight-eyed pests, such as locusts and locusts;
Thrips-like pests, such as Southern thrips, Canopy thrips, Negia thrips, Thrips thrips, etc .;
Diptera pests, for example, cucumber flies, citrus flies, rice flies, etc .;
Mites, for example, spider mite, spider mite, kanzawa spider mite, citrus spider mite, apple spider mite, spider spider mite, and other spider mites;
Etc. Among these pests that are particularly preferred to be applied, aphids, whiteflies, thrips, spider mites and the like that mediate plant viruses are exemplified.
 ストレスの原因になる雑草は特に限定されないが、イヌビエ、ヤセイモロコシ、アキノエノコログサ、エノコログサ、キンエノコログサ、スズメノテッポウ、メヒシバ、オヒシバ、スズメノカタビラ、イヌビエなどのイネ科雑草、オナモミ、ブタクサ、オオブタクサ、ヒメジョオン、ハルジオン、ヒメムカシヨモギ、オオアレチノギク、オニタビラコ、アレチノギク、チチコグサ、センダングサ、ヨモギなどのキク科雑草、カタバミ、オオバコ、タデ、ナズナ、タネツケバナ、ヤエムグラ、イチビ、チドメグサ、イヌホオズキ、アメリカアサガオ、イヌビユ、アオビユ、アオゲイトウ、アカザ、シロザ、ツボスミレ、アメリカキンゴジカ、シロツメクサ、エビスグサ、ホタルイ、マツバイ、ミズガヤツリ、コナギ、アゼナ、ミゾハコベ、ウリカワ等が挙げられる。好ましくは、アフリカで穀物、豆類、ナス、トマト、などの作物に寄生し大幅な収穫量減を招いている、ゴマノハグサ科のストライガ属やハマウツボ科のオロバンキ属などの植物寄生植物などが挙げられ、また、グリホサート耐性雑草であるヒユ科のオオホナガアオゲイトウ、キク科のブタクサやケナシヒメムカシヨモギなどが挙げられる。 Weeds that cause stress are not particularly limited, but grasses such as Inobie, Yasei Sorghum, Akino no Ezologosa, Enocologosa, Aedes albopictus, Prunus terrestris, Barnyard grass, Oshiba, Suzunokatabira, Inobie, etc., Onamomi, Ragosa Pteris arena, weeping weeds such as oleander, crocodile, chitinose, sendangusa, mugwort, butterflies, psyllium, tadpole, tuna, red-footed beetle, yamgra, ichibi, chimemegusa, red-footed moth, red-footed moth, red-footed moth, red-footed moth American King Deer, White clover, Ebisu rush, Firefly, Matsubai, Sphagnum, Kogi, Azena, Mizohakobe, U River, and the like. Preferably, there are plant parasitic plants such as the Striga genus of the genus Sphagnum family and the genus Orobanki of the genus Crane family, which are parasitic on crops such as cereals, beans, eggplants, tomatoes, etc. in Africa, leading to a significant decrease in yield. Further, glyphosate-tolerant weeds include Amaranthaceae (Amaranthaceae), Ragweed (Asteraceae) and Kenashihimemukashimugigi.
 ストレスの原因になる高温や低温は特に限定されない。例えば、イネの生育および品質を低下させる高温障害や低温障害、トマトなどのナス科作物の着果率を低下させる高温障害、レタスなどの特にトンネル栽培や温室栽培において起こりがちな高温障害、西洋芝の生育を阻害する高温障害、茶や柑橘類等の果樹類の凍霜害などが挙げられる。 ¡High and low temperatures that cause stress are not particularly limited. For example, high-temperature damage and low-temperature damage that reduce the growth and quality of rice, high-temperature damage that reduces the fruiting rate of solanaceous crops such as tomatoes, high-temperature damage that tends to occur especially in tunnel and greenhouse cultivation, such as lettuce, and Western turf High-temperature damage that inhibits the growth of fruit, and frost and frost damage of fruit trees such as tea and citrus fruits.
 ストレスの原因になる過湿や乾燥は特に限定されない。例えば、過剰な降雨、潅水や、排水の悪い土壌に起因する過湿による作物の生育不良、病害に対する抵抗性の低下、あるいは、降雨、潅水の不足や、砂質土壌に起因する乾燥による作物の萎凋などである。 ¡Overhumidity and drying that cause stress are not particularly limited. For example, crop growth failure due to excessive rainfall, irrigation, or excessive moisture due to poorly drained soil, reduced resistance to disease, or lack of rainfall, irrigation, or drying due to sandy soil Such as wilting.
 ストレスの原因になる土壌物性は特に限定されない。例えば、塩分を含有する土壌、酸性土壌あるいはアルカリ性土壌における作物の生育障害などである。このうち、塩分を含有する土壌および酸性土壌における生育不良に対する効果、特にホウレンソウ、エンドウ、ソラマメ、タマネギ、アスパラガス、レタス、ゴボウなどの酸性土壌に弱い作物の生育不良に対する効果が高く、これらの作物の収量や品質を向上させる効果がある。 ¡Soil properties that cause stress are not particularly limited. For example, crop growth failure in soil containing salt, acidic soil or alkaline soil. Among these, the effects on growth failure in salt-containing soil and acidic soil, especially on the growth failure of crops that are vulnerable to acidic soil such as spinach, pea, broad bean, onion, asparagus, lettuce, burdock, etc. Has the effect of improving the yield and quality.
 ストレスの原因になる化学物質は特に限定されないが、除草剤、成長調節剤、植物ホルモン、病害抵抗性誘導剤、殺菌剤、殺虫剤、殺ダニ剤などの農薬、肥料、界面活性剤、他の植物により生産され作物に影響を与えるアレロパシー物質などから選ばれる少なくとも1種類の化合物が挙げられる。
 ストレスの原因になる農薬は特に限定されず、例えば、植物の生理作用に影響を及ぼす物質として例示したものが挙げられる。
 ストレスの原因になる薬害は、例えば、使用規準を超えた濃度や適用外の作物に処理した場合の薬害、さらに高温条件や強光条件下で生じる薬害などである。本発明によりこれらの薬害が抑制されることで、農薬の適用範囲を従来適用されていたものより広くすることも可能である。
Chemical substances that cause stress are not particularly limited, but herbicides, growth regulators, plant hormones, disease resistance inducers, fungicides such as fungicides, insecticides, acaricides, fertilizers, surfactants, other Examples include at least one compound selected from allelopathic substances produced by plants and affecting crops.
The pesticide that causes stress is not particularly limited, and examples thereof include those exemplified as substances that affect the physiological functions of plants.
The phytotoxicity causing stress is, for example, phytotoxicity that occurs when the concentration exceeds the standard of use or when it is applied to non-applicable crops, and phytotoxicity that occurs under high temperature conditions or strong light conditions. By suppressing these phytotoxicity by this invention, it is also possible to make the application range of an agrochemical wider than what was applied conventionally.
 ストレスの原因になる重金属は特に限定されず、例えば、鉄、亜鉛、銅、マンガン、ニッケル、コバルト、錫、クロム、鉛、カドミウム、水銀、ヒ素などが例示される。 The heavy metal that causes stress is not particularly limited, and examples thereof include iron, zinc, copper, manganese, nickel, cobalt, tin, chromium, lead, cadmium, mercury, and arsenic.
 本発明に係る方法によって農薬による植物の薬害を軽減することができる。農薬としては、除草剤、成長調節剤、植物ホルモン、病原菌に対する抵抗性誘導剤、使用濃度を高くすると薬害を示す殺菌剤、殺虫剤、殺ダニ剤、忌避剤、肥料、界面活性剤などが挙げられる。これらのうち、殺菌剤、殺虫剤、植物成長調整剤、および除草剤からなる群から選ばれる少なくとも一つが好ましい。また農薬は呼吸阻害剤であることが好ましい。さらに農薬はストロビルリン系化合物であることが好ましい。 The phytotoxicity of plants caused by agricultural chemicals can be reduced by the method according to the present invention. Pesticides include herbicides, growth regulators, plant hormones, pathogen-resistant agents, fungicides, insecticides, acaricides, repellents, fertilizers, surfactants, etc. that show phytotoxicity at higher concentrations. It is done. Of these, at least one selected from the group consisting of fungicides, insecticides, plant growth regulators, and herbicides is preferred. The agrochemical is preferably a respiratory inhibitor. Furthermore, the pesticide is preferably a strobilurin compound.
 殺菌剤としては、キャプタン、フォルペット、チウラム、ジラム、ジネブ、マンネブ、マンコゼブ、プロピネブ、ポリカーバメート、クロロタロニル、キントゼン、キャプタホル、イプロジオン、プロシミドン、フルオロイミド、メプロニル、フルトラニル、ペンシクロン、オキシカルボキシン、ホセチルアルミニウム、プロパモカーブ、ヘキサコナゾール、イミベンコナゾール、テブコナゾール、ジフェノコナゾール、プロチオコナゾール、フェンブコナゾール、ジクロブトラゾール、ビテルタノール、ミクロブタニル、フルシラゾール、ヘキサコナゾール、エタコナゾール、フルオトリマゾール、トリアジメホン、トリアジメノール、フルトリアフェン、ペンコナゾール、ジニコナゾール、シプロコナゾール、フェナリモール、トリフルミゾール、プロクロラズ、イマザリル、クレソキシムメチル、トリフロキシストロビン、アゾキシストロビン、ピラクロストロビン、オリサストロビン、ペフラゾエート、トリデモルフ、フェンプロピモルフ、トリホリン、ブチオベート、ピリフェノックス、アニラジン、ポリオキシン、メタラキシル、オキサジキシル、フララキシル、イソプロチオラン、プロベナゾール、ピロールニトリン、ブラストサイジンS、カスガマイシン、バリダマイシン、硫酸ジヒドロストレプトマイシン、ベノミル、カルベンダジム、チオファネートメチル、ヒメキサゾール、塩基性塩化銅、塩基性硫酸銅、フェンチンアセテート、水酸化トリフェニル錫、ジエトフェンカルブ、キノメチオナート、ビナパクリル、レシチン、重曹、ジチアノン、ジノカップ、フェナミノスルフ、ジクロメジン、グアザチン、ドジン、IBP、エディフェンホス、メパニピリム、フェルムゾン、トリクラミド、メタスルホカルブ、フルアジナム、エトキノラック、ジメトモルフ、ピロキロン、テクロフタラム、フサライド、フェナジンオキシド、チアベンダゾール、トリシクラゾール、ビンクロゾリン、シモキサニル、グアザチン、プロパモカルブ塩酸塩、オキソリニック酸、シフルフェナミド、イミノクタジン、トリアジン、フェンヘキサミド、シアゾファミド、シプロジニル、カルプロパミド、ボスカリド等の殺菌剤;また、プロベナゾール、チアジニル等の病原菌に対する抵抗性誘導剤が挙げられる。
 このうちで、クレソキシムメチル、トリフロキシストロビン、アゾキシストロビン、ピラクロストロビン、オリサストロビン等のストロビルリン系殺菌剤が特に好ましい。
Bactericides include captan, folpette, thiuram, diram, dineb, mannebu, mancozeb, propineb, polycarbamate, chlorothalonil, quintozen, captaphor, iprodione, procymidone, fluoroimide, mepronil, flutolanil, pencyclon, oxycarboxyl, fosetyl aluminum , Propamocarb, hexaconazole, imibenconazole, tebuconazole, difenoconazole, prothioconazole, fenbuconazole, diclobutrazole, vitertanol, microbutanyl, flusilazole, hexaconazole, ethaconazole, fluotrimazole, triadimethone, triadimenol, Flutriaphen, penconazole, diniconazole, cyproconazole, phenalimol, triflu Sol, prochloraz, imazalyl, cresoxime methyl, trifloxystrobin, azoxystrobin, pyraclostrobin, orissastrobin, pefazoate, tridemorph, fenpropimorph, triphorin, butiobate, pyrifenox, anilazine, polyoxin, metalaxyl, oxadixyl, fulaxyl, Isoprothiolane, probenazole, pyrrolnitrin, blasticidin S, kasugamycin, validamycin, dihydrostreptomycin sulfate, benomyl, carbendazim, thiophanate methyl, hymexazole, basic copper chloride, basic copper sulfate, fentin acetate, triphenyltin hydroxide, Dietofencarb, quinomethionate, binapacril, lecithin, baking soda, dithianon, zinocup, Enaminosulfur, dichromedin, guazatine, dozin, IBP, edifenphos, mepanipyrim, fermzone, trichlamide, metasulfocarb, fluazinam, etokinolac, dimethomorph, pyroxylone, teclophthalam, fusalide, phenazine oxide, thiabendazole, tricyclazole vinclomopagin Bactericides such as hydrochloride, oxolinic acid, cyflufenamide, iminotazine, triazine, phenhexamide, cyazofamide, cyprodinil, carpropamide, boscalid; and resistance inducers against pathogenic bacteria such as probenazole and thiazinyl.
Of these, strobilurin fungicides such as cresoxime methyl, trifloxystrobin, azoxystrobin, pyraclostrobin, orisatrobin are particularly preferred.
 除草剤としては、2,4-D、MCPA、クロメプロップ、ジカンバ、クロロトルロン、ジウロン、リニュロン、イソウロン、フェニュロン、ネブロン、シマジン、アトラジン、シメトリン、プロメトリン、ヘキサジノン、プロパジン、デスメトリン、テルブメトン、プロパニル、ブロモキシニル、アイオキシニル、ピリデート、クロリダゾン、ベンタゾン、クロメトキシフェン、ビフェノックス、アシフルオルフェンナトリウム塩、フルミオキサジン、チジアジミン、オキサジアゾン、スルフェントラゾン、ペントキサゾン、ピラクロニル、ピラゾリネート、ピラゾキシフェン、ベンゾフェナップ、メソトリオン、イソキサフルトール、イソキサクロロトール、アミトロール、アクロニフェン、ジフルフェニカン、ベンゾビシクロン、ジクロホップメチル、フルアジホップブチル、アロキシジムナトリウム塩、クレソジム、セトキシジム、トラルコキシジム、テプラロキシジム、ベンスルフロンメチル、ピラゾスルフロンエチル、リムスルフロン、イマゾスルフロン、プロスルフロン、フルメツラム、ジクロスラム、メトスルファム、イマザピル、イマザキン、ピリチオバックナトリウム塩、ビスピリバックナトリウム塩、ピリミノバックメチル、フルカーバゾン、プロポキシカルバゾン、グリホサート、グリホサートアンモニウム塩、グルホシネート、トリフルラリン、ペンディメタリン、ベンフルラリン、プロジアミン、プロファム、ジチオピル、アラクロール、メトラクロール、ペトキサマイド、アセトクロール、プロパクロール、ジメテナミド、ジフェナミド、ナプロパミド、メフェナセット、フェントラザミド、モリネート、ジメピペレート、シクロエート、エスプロカルブ、チオベンカルブ、チオカルバジル、ベンスリド、ダラポン、アシュラム、DNOC、ジノゼブ、フルポキサム、トリアジフラム、キンクロラック、シンメチリン、ダゾメット、ダイムロン、エトベンザニド、オキサジクロメホン、ピリブチカルブ等が挙げられる。 As herbicides, 2,4-D, MCPA, chromeprop, dicamba, chlorotolulone, diuron, linuron, isouron, phenuron, nebulon, simazine, atrazine, cimetrine, promethrin, hexazinone, propazine, desmethrin, terbumethone, propanyl, bromoxynil, ioxynil , Pyridate, chloridazone, bentazone, clomethoxyphen, biphenox, acifluorfen sodium salt, flumioxazin, thiazimine, oxadiazone, sulfentrazone, pentoxazone, pyraclonyl, pyrazolinate, pyrazoxifene, benzophenap, mesotrione, isoxaflutol, Isoxachlorotol, amitrole, acronifene, diflufenican, benzobicyclon, di Lohopmethyl, fluazifopbutyl, alloxidim sodium salt, cresodymium, cetoxidim, tralcoxidim, teplaloxidim, bensulfuronmethyl, pyrazosulfuronethyl, rimsulfuron, imazosulfuron, prosulfuron, flumeturum, diclosram, metsulfulm, imazapyr, imazaquin, pyri Thiobac sodium salt, Bispyribac sodium salt, Pyriminobacmethyl, Flucarbazone, Propoxycarbazone, Glyphosate, Glyphosate ammonium salt, Glufosinate, Trifluralin, Pendimethalin, Benfluralin, Prodiamine, Profam, Dithiopyr, Arachlor, Metolachlor , Petoxamide, acetochlor, propachlor, dimethenamide, diphenamide, napro Mido, mefenacet, fentolazamide, molinate, dimethylpiperate, cycloate, esprocarb, thiobencarb, thiocarbazyl, bensulide, darapon, ashram, DNOC, dinozeb, flupoxam, triadifram, quinchlorac, cinmethyline, dazomet, dimelon, ethobenzamide, oxybenzclomethib .
 殺虫剤としては、フェンチオン、フェニトロチオン、ダイアジノン、クロルピリホス、ESP、バミドチオン、フェントエート、ジメトエート、ホルモチオン、マラソン、トリクロルホン、チオメトン、ホスメット、ジクロルボス、アセフェート、EPBP、メチルパラチオン、オキシジメトンメチル、エチオン、サリチオン、シアノホス、イソキサチオン、ピリダフェンチオン、ホサロン、メチダチオン、スルプロホス、クロルフェンビンホス、テトラクロルビンホス、ジメチルビンホス、プロパホス、イソフェンホス、エチルチオメトン、プロフェノホス、ピラクロホス、モノクロトホス、アジンホスメチル、アルディカルブ、メソミル、チオジカルブ、カルボフラン、カルボスルファン、ベンフラカルブ、フラチオカルブ、プロポキスル、BPMC、MTMC、MIPC、カルバリル、ピリミカーブ、エチオフェンカルブ、フェノキシカルブ、カルタップ、チオシクラム、ベンスルタップ等の有機リン系殺虫剤及びカーバメート系殺虫剤;ペルメトリン、シペルメトリン、デルタメスリン、フェンバレレート、フェンプロパトリン、ピレトリン、アレスリン、テトラメスリン、レスメトリン、ジメスリン、プロパスリン、フェノトリン、プロトリン、フルバリネート、シフルトリン、シハロトリン、フルシトリネート、エトフェンプロックス、シクロプロトリン、トラロメトリン、シラフルオフェン、アクリナトリン等のピレスロイド系殺虫剤;イミダクロプリド、アセタミプリド、ニテンピラム、チアクロプリド、クロチアニジン、チアメトキサム、ジノテフラン、ニチアジン等のネオニコチノイド系殺虫剤;ジフルベンズロン、クロルフルアズロン、ヘキサフルムロン、トリフルムロン、フルフェノクスロン、フルシクロクスロン、ブプロフェジン、ピリプロキシフェン、メトプレン、ベンゾエピン、ジアフェンチウロン、フィプロニル、硫酸ニコチン、ロテノン、メタアルデヒド、アセタミプリド、クロルフェナピル、ニテンピラム、チアクロプリド、クロチアニジン、チアメトキサム、ジノテフラン、インドキサカルブ、ピメトロジン、スピノサド、エマメクチン、ピリダリル、テブフェノジド、クロマフェノジド、メトキシフェノジド、トルフェンピラド、フルベンジアミド、クロラントラニリプロール、シアントラニリプロール等のベンゾイルウレア系その他の殺虫剤;フェナミホス、ホスチアゼート、カズサホス等の殺線虫剤;クロルベンジレート、フェニソブロモレート、ジコホル、アミトラズ、BPPS、ベンゾメート、ヘキシチアゾクス、酸化フェンブタスズ、ポリナクチン、キノメチオネート、CPCBS、テトラジホン、アベルメクチン、ミルベメクチン、クロフェンテジン、シヘキサチン、ピリダベン、フェンピロキシメート、テブフェンピラド、シエノピラフェン、シフルメトフェン、ピリミジフェン、フェノチオカルブ、ジエノクロル、フルアクリピリム、アセキノシル、ビフェナゼート、エトキサゾール、スピロディクロフェン、フェナザキン等の殺ダニ剤;BT剤等の微生物由来製剤;等が挙げられる。
 このうちで、イミダクロプリド、アセタミプリド、ニテンピラム、チアクロプリド、クロチアニジン、チアメトキサム、ジノテフラン、ニチアジン等のネオニコチノイド系殺虫剤、およびクロルフェナピル、ピメトロジン、ピリダベン、フェンピロキシメート、トルフェンピラド、テブフェンピラド、シエノピラフェン、シフルメトフェン、フルアクリピリム、アセキノシル、フェナザキン等の呼吸阻害効果を有する殺虫剤若しくは殺ダニ剤が特に好ましい。
Pesticides include fenthion, fenitrothion, diazinon, chlorpyrifos, ESP, bamidthione, phentoate, dimethoate, formothion, marathon, trichlorphone, thiomethone, phosmet, dichlorvos, acephate, EPBP, methyl parathion, oxydimethone methyl, ethion, salithione, , Pyridafenthion, hosalon, methidathion, sulprophos, chlorfenvinphos, tetrachlorbinphos, dimethylvinphos, propaphos, isofenphos, ethylthiomethone, propenofos, pyracrophos, monocrotophos, azinephosmethyl, aldicarb, mesomil, thiodicarb, carbofuran, carbofuran , Benfuracarb, Frathiocarb, propoxy Organic phosphorus insecticides and carbamate insecticides such as BPMC, MTMC, MIPC, carbaryl, pyrimicarb, etiophencarb, phenoxycarb, cartap, thiocyclam, bensultap; permethrin, cypermethrin, deltamethrin, fenvalerate, fenpropatoline, pyrethrin, Pyrethroid insecticides such as allethrin, tetramethrin, resmethrin, dimethrin, propraslin, phenothrin, protorin, fluvalinate, cyfluthrin, cyhalothrin, flucitrinate, etofenprox, cycloprotorin, tralomethrin, silafluophene, acrinathrin, etc .; imidacloprid, acetamiprid , Thiacloprid, clothianidin, thiamethoxam, dinotefuran, nichia Neonicotinoid insecticides such as diflubenzuron, chlorfluazuron, hexaflumuron, triflumuron, flufenoxuron, flucycloxuron, buprofezin, pyriproxyfen, methoprene, benzoepin, diafenthiuron, fipronil, sulfuric acid Nicotine, rotenone, metaldehyde, acetamiprid, chlorfenapyr, nitenpyram, thiacloprid, clothianidin, thiamethoxam, dinotefuran, indoxacarb, pymetrozine, spinosad, emamectin, pyridalyl, tebufenozide, chromafenozide, flufenandropiranide, tolfenopiramide Benzoylurea and other insecticides such as cyantraniliprole; phenamifos, phostiazates, Nematicides such as kazusafos; chlorbenzilate, phenisobromolate, dicofol, amitraz, BPPS, benzomate, hexothiazox, fenbutazin oxide, polynactin, quinomethionate, CPCBS, tetradiphone, avermectin, milbemectin, clofentedine, cyhexatin, pyridaben, And miticides such as fenpyroximate, tebufenpyrad, sienopyrafen, ciflumethofene, pyrimidifen, phenothiocarb, dienochlor, fluacrylpyrim, acequinosyl, bifenazate, etoxazole, spirodiclofen, phenazaquin; and microbial agents such as BT;
Among these, neonicotinoid insecticides such as imidacloprid, acetamiprid, nitenpyram, thiacloprid, clothianidin, thiamethoxam, dinotefuran, nithiazine, and chlorfenapir, pymetrozine, pyridaben, fenpyroximate, tolfenpyrado, flufenapyrazide, flumetofenafenafluaza Particularly preferred are insecticides or acaricides having a respiratory inhibitory effect.
 植物ホルモンとしては、ジベレリン類(例えばジベレリンA3、ジベレリンA4、ジベレリンA7等)、オーキシン類(例えば2,4-D、IAA、NAA等)、サイトカイニン類(例えばカイネチン、ベンジルアデニン等)、アブシジン酸、ジャスモン酸類、ブラシノステロイド類、ストリゴラクトン類、サリチル酸等が挙げられる。 Plant hormones include gibberellins (eg, gibberellin A3, gibberellin A4, gibberellin A7, etc.), auxins (eg, 2,4-D, IAA, NAA, etc.), cytokinins (eg, kinetin, benzyladenine, etc.), abscisic acid, Examples include jasmonic acids, brassinosteroids, strigolactones, salicylic acid and the like.
 植物成長調整剤としては、上記の植物ホルモンのほか、ヒメキサゾール、ウニコナゾール、トリネキサパック、ダミノジッド、シアナミド等が挙げられる。 Plant growth regulators include, in addition to the above plant hormones, hymexazole, uniconazole, trinexapack, daminozide, cyanamide and the like.
 肥料としては、窒素質肥料、リン酸質肥料、カリ質肥料、石灰質肥料、苦土質肥料、ケイ酸質肥料、微量要素肥料、動物質肥料、植物質肥料等が挙げられる。肥料の水溶性成分濃度が高過ぎる場合、根や葉が萎れる、枯れるなどの肥料障害を植物に与える場合がある。また硫酸アンモニウムなどの特定の種類の肥料を大量使用した場合には土壌の酸性化を通じて植物の生育を害する場合がある。 Fertilizers include nitrogenous fertilizer, phosphate fertilizer, potash fertilizer, calcareous fertilizer, mafic fertilizer, siliceous fertilizer, trace element fertilizer, moving substance fertilizer, plant fertilizer and the like. If the concentration of water-soluble components in the fertilizer is too high, the plant may be damaged by fertilizers such as roots and leaves withering and withering. In addition, when a large amount of a specific type of fertilizer such as ammonium sulfate is used, plant growth may be damaged through acidification of the soil.
 界面活性剤は、農薬製剤の補助成分として、一部殺虫剤・殺ダニ剤の有効成分として、あるいは展着剤として用いられるものである。界面活性剤としては、ポリオキシエチレンが付加したアルキルフェニルエーテル、ポリオキシエチレンが付加したアルキルエーテル、ポリオキシエチレンが付加した高級脂肪酸エステル、ポリオキシエチレンが付加したソルビタン高級脂肪酸エステル、ポリオキシエチレンが付加したトリスチリルフェニルエーテル等の非イオン性界面活性剤;ポリオキシエチレンが付加したアルキルフェニルエーテルの硫酸エステル塩、アルキルベンゼンスルホン酸塩、高級アルコールの硫酸エステル塩、アルキルナフタレンスルホン酸塩、ポリカルボン酸塩、リグニンスルホン酸塩、アルキルナフタレンスルホン酸塩のホルムアルデヒド縮合物、イソブチレン-無水マレイン酸の共重合物等のアニオン性界面活性剤;アルキルトリメチルアンモニウムクロライド、メチル・ポリオキシエチレン・アルキルアンモニウムクロライド、アルキル・N-メチルピリジウムブロマイド、モノ又はジアルキルメチル化アンモニウムクロライド、アルキルペンタメチルプロピレンジアミンジクロライド、アルキルジメチルベンザルコニウムクロライド、ベンゼトニウムクロライド等のカチオン性界面活性剤;ジアルキルジアミノエチルベタイン、アルキルジメチルベンジルベタイン、ジアルキルジアミノエチルグリシン、アルキルジメチルベンジルグリシン等の両性界面活性剤;等が挙げられる。 Surfactant is used as an auxiliary component for agricultural chemical preparations, as an active ingredient for some insecticides and acaricides, or as a spreading agent. Surfactants include alkylphenyl ethers added with polyoxyethylene, alkyl ethers added with polyoxyethylene, higher fatty acid esters added with polyoxyethylene, sorbitan higher fatty acid esters added with polyoxyethylene, and polyoxyethylene. Nonionic surfactants such as added tristyrylphenyl ether; sulfates of alkylphenyl ethers added with polyoxyethylene, alkylbenzene sulfonates, sulfates of higher alcohols, alkylnaphthalene sulfonates, polycarboxylic acids Anionic surfactants such as salts, lignin sulfonates, alkylnaphthalene sulfonate formaldehyde condensates, isobutylene-maleic anhydride copolymers; Id, methyl, polyoxyethylene, alkylammonium chloride, alkyl, N-methylpyridium bromide, mono- or dialkylmethylated ammonium chloride, alkylpentamethylpropylenediamine dichloride, alkyldimethylbenzalkonium chloride, benzethonium chloride, etc. Activating agents; amphoteric surfactants such as dialkyldiaminoethylbetaine, alkyldimethylbenzylbetaine, dialkyldiaminoethylglycine, and alkyldimethylbenzylglycine;
 以下、本発明を実施例により具体的に説明するが、これらにより本発明の範囲が限定されるものではない。
 アスコルビン酸、イソアスコルビン酸またはデヒドロアスコルビン酸を公知の反応によってエステル化、グリコシル化、または酸化させることによって、各種の物質(A)を合成した。合成した物質(A)の一部を表1および表2に示す。表1中のR1~R4は、式(I)中のR1~R4に対応するものである。表2中のR5およびR6は、式(II)中のR5およびR6に対応するものである。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the scope of the present invention is not limited by these examples.
Various substances (A) were synthesized by esterifying, glycosylating or oxidizing ascorbic acid, isoascorbic acid or dehydroascorbic acid by a known reaction. A part of the synthesized substance (A) is shown in Tables 1 and 2. Table 1 R 1 ~ R 4 in is the counterpart to the R 1 ~ R 4 in formula (I). Table R 5 and R 6 in 2, which corresponds to R 5 and R 6 in the formula (II).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-I000011
Figure JPOXMLDOC01-appb-I000011
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-I000012
Figure JPOXMLDOC01-appb-I000012
Figure JPOXMLDOC01-appb-I000013
Figure JPOXMLDOC01-appb-I000013
 次に、本発明に関する製剤例を若干示す。製剤の配合処方は、本製剤実施例に限定されることなく、広い範囲で変更可能である。製剤実施例中の部は重量部を示す。 Next, some preparation examples relating to the present invention will be shown. The formulation of the preparation is not limited to the examples of the preparation, and can be changed in a wide range. The part in a formulation example shows a weight part.
(製剤実施例1)水和剤
 物質(A)                     20部
 ホワイトカーボン                  20部
 ケイソウ土                     52部
 アルキル硫酸ソーダ                  8部
以上を均一に混合、微細に粉砕して、水和剤を得る。
(Formulation Example 1) Wetting agent Substance (A) 20 parts White carbon 20 parts Diatomaceous earth 52 parts Sodium alkyl sulfate 8 parts or more are uniformly mixed and finely pulverized to obtain a wettable powder.
(製剤実施例2)乳剤
 物質(A)                     20部
 キシレン                      55部
 ジメチルホルムアミド                15部
 ポリオキシエチレンフェニルエーテル         10部
以上を混合、溶解して乳剤を得る。
(Formulation Example 2) Emulsion Substance (A) 20 parts Xylene 55 parts Dimethylformamide 15 parts Polyoxyethylene phenyl ether 10 parts or more are mixed and dissolved to obtain an emulsion.
(製剤実施例3)粒剤
 物質(A)                     10部
 タルク                       37部
 クレー                       36部
 ベントナイト                    10部
 アルキル硫酸ソーダ                  7部
以上を均一に混合して微細に粉砕後、造粒して粒剤を得る。
(Formulation Example 3) Granules Substance (A) 10 parts Talc 37 parts Clay 36 parts Bentonite 10 parts Sodium alkyl sulfate 7 parts or more are uniformly mixed, finely pulverized, and granulated to obtain granules.
(製剤実施例4)フロアブル剤
 物質(A)                     10部
 ポリオキシエチレンアリールフェニルエーテルエーテル  2部
 ジアルキルスルホサクシネートナトリウム塩     0.5部
 グリセリン                      5部
 キサンタンガム                  0.3部
 水                       82.2部
以上を混合し、湿式粉砕して、フロアブル剤を得る。
(Formulation Example 4) Flowable agent Substance (A) 10 parts Polyoxyethylene aryl phenyl ether ether 2 parts Dialkyl sulfosuccinate sodium salt 0.5 part Glycerin 5 parts Xanthan gum 0.3 part Water 82.2 parts or more , Wet pulverization to obtain a flowable agent.
(製剤実施例5)顆粒水和剤
 物質(A)                     30部
 無機担体                      70部
以上を均一に混合して微細に粉砕後、造粒して顆粒水和剤を得る。
(Formulation Example 5) Granule wettable powder Substance (A) 30 parts Inorganic carrier 70 parts or more are uniformly mixed, finely pulverized, and granulated to obtain a granule wettable powder.
試験例1 トマトに対する高温障害の軽減効果評価試験
 表3に示す処方にてN,N-ジメチルホルムアミド溶液を調製し、試験用の薬液とした。
 温室内で2.5葉期まで育成したトマト苗(品種:桃太郎)を用意した。
 該トマト苗の茎葉部に、液が垂れ落ちる程の量の上記薬液を散布し、次いで風乾した。30℃で明所16時間および暗所8時間の条件下で2日間生育させた。その後、40℃の明所16時間および30℃の暗所8時間の条件下で6日間生育させた。
 次いで、葉の褐変程度や伸長抑制などを観察し高温障害の状況を調査した。
 障害は0(障害なし)~10(枯死)の11段階の障害指数で評価した。
 溶媒DMFのみの処理区(薬液3)と比較した高温障害軽減率を次式により算出した。
 高温障害軽減率=((溶媒のみ処理区の障害指数)-(各処理区の障害指数))
              /(溶媒のみ処理区の障害指数) ×100
 その結果を表3に示す。
Test Example 1 Evaluation Test for Reducing Effect of High Temperature Damage on Tomato An N, N-dimethylformamide solution was prepared according to the formulation shown in Table 3 and used as a test chemical.
Tomato seedlings (variety: Momotaro) grown to 2.5 leaf stage in a greenhouse were prepared.
The above chemical solution was sprayed onto the stem and leaves of the tomato seedlings, and then air-dried. The plants were grown at 30 ° C. under conditions of 16 hours in the light and 8 hours in the dark for 2 days. Thereafter, the cells were grown for 6 days under the conditions of 16 hours of light at 40 ° C. and 8 hours of dark at 30 ° C.
Next, we observed the degree of browning of the leaves and the suppression of elongation, and investigated the situation of high temperature damage.
Disorders were evaluated with an 11-step disability index ranging from 0 (no disability) to 10 (dead).
The high-temperature damage alleviation rate was calculated according to the following equation compared with the treatment zone (chemical solution 3) containing only the solvent DMF.
High-temperature damage reduction rate = ((solvent index for solvent only treatment area)-(failure index for each treatment area))
/ (Disability index of solvent-only treatment zone) x 100
The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
試験例2 ミニトマト果実に対する高温障害の軽減効果評価試験
 温室内で育成したミニトマト(品種:レジナ、5連)を用意した。
 第一花房開花期の8月24日に4-クロロフェノキシ酢酸0.15%を散布し、さらに7日間隔で、表4に記載した量のアスコルビン酸パルミテート30%顆粒水和剤を株元に2回施用した。9月28日に全果実を収穫し、果実の色(赤色および緑色に分類する。)、果実重量および粒数を調査し、1果実当たりの重量および赤色果実率(%)を求めた。
 その結果を表4に示す。
Test Example 2 Evaluation test for reducing effects of high temperature damage on cherry tomato fruits Cherry tomatoes (variety: Resina, 5 series) grown in a greenhouse were prepared.
4-chlorophenoxyacetic acid 0.15% was sprayed on August 24 at the first flowering stage, and the amount of ascorbyl palmitate 30% granule wettable powder in the amount shown in Table 4 was added to the stock at intervals of 7 days. Applied twice. All the fruits were harvested on September 28, and the color of the fruits (classified as red and green), the weight of the fruits and the number of grains were examined, and the weight per fruit and the percentage of red fruits (%) were obtained.
The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
試験例3 キュウリに対する低温障害の軽減効果評価試験
 表5に示す処方にてN,N-ジメチルホルムアミド溶液を調製し、試験用の薬液とした。
 温室内で1.5葉期まで育成したキュウリ苗(品種:相模半白)を用意した。
 該キュウリ苗の茎葉部に、液が垂れ落ちる程の量の前記薬液を散布し、次いで風乾した。25℃で明所16時間および暗所8時間の条件下で2日間生育させた。その後、10℃の明所16時間および7℃の暗所8時間の条件下で9日間生育させた。
 次いで、葉の褐変程度や伸長抑制などを観察し低温障害の状況を調査した。
 障害は0(障害なし)~10(枯死)の11段階の障害指数で評価した。
 溶媒DMFのみの処理区(薬液3)と比較した低温障害軽減率を次式により算出した。
 低温障害軽減率=((溶媒のみ処理区の障害指数)-(各処理区の障害指数))
              /(溶媒のみ処理区の障害指数) ×100
 その結果を表5に示す。
Test Example 3 Evaluation Test for Reduction Effect of Low Temperature Damage on Cucumber An N, N-dimethylformamide solution was prepared according to the formulation shown in Table 5 and used as a test chemical.
Cucumber seedlings (variety: Sagamihanjiro) grown to 1.5 leaf stage in a greenhouse were prepared.
The chemical solution was sprayed on the stems and leaves of the cucumber seedling so that the solution dripped, and then air-dried. The plants were grown at 25 ° C. under conditions of 16 hours in the light and 8 hours in the dark for 2 days. Thereafter, the cells were grown for 9 days under the conditions of 16 hours of light at 10 ° C and 8 hours of darkness at 7 ° C.
Next, the degree of low temperature damage was investigated by observing the degree of browning of leaves and suppression of elongation.
Disorders were evaluated with an 11-step disability index ranging from 0 (no disability) to 10 (dead).
The low-temperature damage alleviation rate was calculated according to the following equation compared with the treatment group (chemical solution 3) containing only the solvent DMF.
Low temperature damage reduction rate = ((solvent index of solvent only treatment area)-(failure index of each treatment area))
/ (Disability index of solvent-only treatment zone) x 100
The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
試験例4 ナスに対する低温障害の軽減効果評価試験
 温室内で4-6葉期まで育成したナス(品種:千両2号、3連)を用意した。
 アスコルビン酸パルミテート30%顆粒水和剤と、N,N-ジメチルホルムアミドで40%に溶解したピラクロストロビンとを、水道水で表6に記載した濃度となるように希釈して苗全体に十分量を散布した。風乾後、18℃で明所16時間および13℃で暗所8時間の条件下で1日間生育させた後、13℃で明所16時間および8℃で暗所8時間の条件下で生育させた。散布処理15日後に障害程度を調査した。
 障害は処理後の展開葉で変色した部分の面積を、0(変色なし)、1(全体の1/4まで変色)、2(全体の1/2まで変色)、3(全体の1/2以上変色)の4段階の障害指数で評価した。
 障害軽減率=((無処理区の障害指数)-(各処理区の障害指数))
               /(無処理区の障害指数) ×100
 その結果を表6に示す。
Test Example 4 Evaluation Test for Reducing Effect of Low Temperature Damage on Eggplant Eggplants (variety: Senryo 2 and 3) grown to 4-6 leaf stage in a greenhouse were prepared.
Ascorbic acid palmitate 30% granule wettable powder and pyraclostrobin dissolved in 40% with N, N-dimethylformamide are diluted with tap water to the concentrations shown in Table 6 and sufficient for the whole seedling. Sprayed. After air drying, the cells were grown for 1 day at 18 ° C in a light place for 16 hours and at 13 ° C in a dark place for 8 hours, and then grown at 13 ° C in a light place for 16 hours and at 8 ° C in a dark place for 8 hours. It was. The degree of disability was investigated 15 days after the spraying treatment.
The obstacle is the area of the discolored portion of the developed leaf after processing: 0 (no discoloration), 1 (discolored to 1/4 of the whole), 2 (discolored to 1/2 of the whole), 3 (1/2 of the whole) Evaluation was made using the four-level disability index.
Disability reduction rate = ((Disability index for untreated areas)-(Disability index for each treated area))
/ (Disability index of untreated area) x 100
The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
試験例5 トマトに対する低温障害の軽減効果評価試験
 温室内で3.5葉期まで育成したトマト(品種:麗容、4連)を用意した。
 アスコルビン酸パルミテートの30%顆粒水和剤と、N,N-ジメチルホルムアミドで40%に溶解したピラクロストロビンとを、水道水で表7に記載した濃度となるように希釈して苗全体に十分量を散布した。風乾後夜間の平均気温が0.5℃の温室外に搬出し、翌朝に低温による障害程度を調査した。
 障害は、0(障害なし)~4(完全萎れ)の5段階の障害指数で評価した。これから次式により障害軽減率を算出した。
 低温障害軽減率=(無処理区の障害指数)-(各処理区の障害指数))
                 /(無処理区の障害指数) ×100
 その結果を表7に示す。
Test Example 5 Evaluation test for reducing effects of low-temperature injury on tomatoes Tomatoes (variety: Rei, 4 series) grown to 3.5 leaf stage in a greenhouse were prepared.
Dilute 30% granule wettable powder of ascorbyl palmitate and pyraclostrobin dissolved in 40% with N, N-dimethylformamide to the concentration shown in Table 7 with tap water to make it adequate for the whole seedling. The amount was sprayed. After air drying, the average temperature at night was taken out of the greenhouse with a temperature of 0.5 ° C.
Disability was evaluated with a five-point disability index from 0 (no disability) to 4 (complete wilt). The failure reduction rate was calculated from the following equation.
Low-temperature damage reduction rate = (Failure index for untreated areas)-(Failure index for each treated area))
/ (Disability index of untreated area) x 100
The results are shown in Table 7.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
試験例6 トルコギキョウに対する高温障害の軽減効果評価試験
 温度22℃、明所16時間の室内でセルトレイにて育成したトルコギキョウ(品種キングオブスノー)を用い、播種後半数程度が出芽した時点で、アスコルビン酸パルミテートの30%顆粒水和剤を蒸留水で所定濃度に希釈し、苗全体にその十分量を散布した。その後同じ方法による散布を週2回で初回を含め計10回行った。その間に、播種3週間後の本葉1対展開時期に明所16時間35℃・暗所8時間15℃の条件下に移し2週間育成した。さらにガラス温室に移して育成し、播種8週間後の本葉2対展開時に鉢上げを行い、そのまま温室にて育成し、その後、抽苔した株のうち開花した株の数を調査した。
 その結果を表8に示す。
Test example 6 Evaluation test for the effect of reducing high temperature damage to Eustoma Ascorbic acid at the time when the latter half of the seeding emerged using Eustoma (variety King of Snow) grown in a cell tray indoors at a temperature of 22 ° C. and 16 hours light A 30% granular wettable powder of palmitate was diluted with distilled water to a predetermined concentration, and a sufficient amount thereof was sprayed on the entire seedling. Thereafter, spraying by the same method was performed twice a week for a total of 10 times including the first time. In the meantime, 3 weeks after sowing, the leaves were transferred to a pair of leaves at the time of development at 35 ° C. for 16 hours in the light and 15 ° C. for 8 hours in the dark and grown for 2 weeks. Further, the plants were transferred to a glass greenhouse and grown. The plants were raised when two pairs of true leaves were developed 8 weeks after sowing. The plants were grown in the greenhouse as they were, and then the number of flowering strains among the extracted strains was investigated.
The results are shown in Table 8.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
試験例7 トマトに対する強光障害の軽減効果評価試験
 温室内で2葉期まで育成したトマト(品種:麗容、2連)を用意した。
 アスコルビン酸パルミテート30%顆粒水和剤とN,N-ジメチルホルムアミドで40%に溶解したピラクロストロビンを、各々水道水で表9に記載した濃度に希釈して苗全体に十分量を散布し、風乾後、夏季炎天下の強光に当てた。散布4日後に障害程度を調査した。
 障害は光による影響で生じた壊死の程度を、0(壊死なし)~10(枯死)の11段階の障害指数で評価した。これから次式により障害軽減率を算出した。
障害軽減率=((無処理区の障害指数)-(各処理区の障害指数))
                 /(無処理区の障害指数) ×100
 その結果を表9に示す。
Test Example 7 Evaluation test for reduction effect of strong light damage on tomatoes Tomatoes (variety: Rei, 2 series) grown to the second leaf stage in a greenhouse were prepared.
Ascorbic acid palmitate 30% granule wettable powder and pyraclostrobin dissolved in 40% with N, N-dimethylformamide were each diluted with tap water to the concentrations shown in Table 9 and sprayed in sufficient amounts throughout the seedling. After air drying, it was exposed to the strong light under the hot summer sun. The degree of disability was investigated 4 days after spraying.
The degree of necrosis caused by the influence of light was evaluated based on an 11-degree disability index from 0 (no necrosis) to 10 (death). The failure reduction rate was calculated from the following equation.
Disability reduction rate = ((Disability index for untreated areas)-(Disability index for each treated area))
/ (Disability index of untreated area) x 100
The results are shown in Table 9.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
試験例8 トマトに対する薬害の軽減効果評価試験
 表10に示す処方にてN,N-ジメチルホルムアミド溶液を調製し、試験用の薬液とした。
 温室内で4葉期まで育成したトマト苗(品種:桃太郎)を用意した。
 該トマト苗の茎葉部に、液が垂れ落ちる程の量の上記薬液を散布し、次いで風乾した。日本の3月の平年の温湿度条件下において7日間生育させた。
 次いで葉の褐変程度や伸長抑制などの薬害を調査した。
 薬害は0(障害なし)~10(枯死)の11段階の薬害指数で評価した。
 溶媒DMFのみの処理区と比較した薬害軽減率を次式により算出した。
 薬害軽減率=((溶媒のみ処理区の薬害指数)-(各処理区の薬害指数))
              /(溶媒のみ処理区の薬害指数) ×100
 その結果を表10に示す。
Test Example 8 Evaluation Test for Mitigating Drug Damage to Tomato An N, N-dimethylformamide solution was prepared according to the formulation shown in Table 10 and used as a test drug solution.
Tomato seedlings (variety: Momotaro) grown to the 4th leaf stage in the greenhouse were prepared.
The above chemical solution was sprayed onto the stem and leaves of the tomato seedlings, and then air-dried. It was grown for 7 days under normal temperature and humidity conditions in March of Japan.
Next, phytotoxicity such as leaf browning and elongation suppression was investigated.
The phytotoxicity was evaluated with 11 phytotoxicity indices ranging from 0 (no injury) to 10 (dead).
The phytotoxicity reduction rate compared with the treatment section of only solvent DMF was calculated by the following formula.
Chemical hazard reduction rate = ((chemical hazard index of solvent only treatment area)-(phytotoxicity index of each treatment area))
/ (Phytotoxicity index of solvent-only treatment zone) x 100
The results are shown in Table 10.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
試験例9 コムギに対する緑色維持(高温障害軽減)効果試験
 圃場で生育させたコムギ(品種農林61号、15株/m2/区、2連)を用い、8月の出穂日の翌日から7日間間隔で、表11に記載した量のアスコルビン酸パルミテート30%顆粒水和剤を株元に4回施用した。9月6日に処理区内の各株の上位4~5葉の葉色指数を調査し、無処理区に対する葉色の維持効果を評価した。
 葉色は、1(全体の1/4以下が変色)、2(全体の1/2以下が変色)、3(全体の3/4以下が変色)、4(全体の3/4以上が変色)の4段階の葉色指数で評価した。これから、平均葉色指数、および次式による緑色維持効果を算出した。
 緑色維持効果=((無処理区の葉色指数)-(各処理区の葉色指数))
                  /(無処理区の葉色指数) ×100
 その結果を表11に示す。
Test Example 9 Green maintenance (high temperature damage reduction) effect test on wheat Using wheat grown in the field (variety Norin 61, 15 strains / m 2 / ku, 2 stations), 7 days from the day after the heading date in August At intervals, the amount of ascorbyl palmitate 30% granule wettable powder described in Table 11 was applied to the strain 4 times. On September 6, the leaf color index of the top 4 to 5 leaves of each strain in the treated area was investigated, and the effect of maintaining the leaf color on the untreated area was evaluated.
The leaf color is 1 (less than 1/4 of the total color), 2 (less than 1/2 of the total color), 3 (less than 3/4 of the total color), 4 (over 3/4 of the total color) The four-stage leaf color index was evaluated. From this, the average leaf color index and the green maintenance effect by the following formula were calculated.
Green maintenance effect = ((Leaf color index of untreated section)-(Leaf color index of each treated section))
/ (Leaf color index of untreated zone) x 100
The results are shown in Table 11.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
試験例10 キュウリに対する冠水障害の軽減効果評価試験
 温室内で2葉期まで育成したキュウリ(品種:相模半白節成、2連)を用意した。
 アスコルビン酸パルミテートの30%顆粒水和剤と、N,N-ジメチルホルムアミドで40%に調整したピラクロストロビンを水道水で所定濃度に希釈して十分量を散布した。散布処理2日後から子葉の直下まで湛水状態にし、散布処理11日後にキュウリの地上部と根部それぞれの生重量を測定した。これから次式により障害軽減率を算出した。
 冠水障害軽減率=((各処理区の生重量)-(無処理区の生重量))
                  /(無処理区の生重量) ×100
 結果を表12に示す。
Test Example 10 Evaluation Test for Mitigating Submergence Damage to Cucumber A cucumber (variety: Sagami Hansakusei, 2) grown in the greenhouse until the second leaf stage was prepared.
Ascorbic acid palmitate 30% granule wettable powder and pyraclostrobin adjusted to 40% with N, N-dimethylformamide were diluted with tap water to a predetermined concentration and sprayed in sufficient amounts. After 2 days from the spraying treatment, the mixture was flooded from just below the cotyledon, and 11 days after the spraying treatment, the fresh weight of the above-ground part and root part of the cucumber was measured. The failure reduction rate was calculated from the following equation.
Submergence damage reduction rate = ((raw weight of each treated area)-(raw weight of untreated area))
/ (Raw weight of untreated area) × 100
The results are shown in Table 12.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
試験例11 ダイズに対する冠水障害の軽減効果評価試験
 温室内で2葉期まで育成したダイズ(品種:エンレイ、2連)を用意した。
 アスコルビン酸パルミテートの30%顆粒水和剤と、N,N-ジメチルホルムアミドで40%に調整したピラクロストロビンを水道水で所定濃度に希釈して十分量を散布した。散布処理2日後から子葉の直下まで湛水状態にし、散布処理11日後にダイズの地上部と根部それぞれの生重量を測定した。これから次式により障害軽減率を算出した。
 冠水障害軽減率=((各処理区の生重量)-(無処理区の生重量))
                 /(無処理区の生重量) ×100
 結果を表13に示す。
Test Example 11 Evaluation Test for Mitigating Flooding Damage to Soybeans Soybeans (variety: Enrei, 2 series) grown to the second leaf stage in a greenhouse were prepared.
Ascorbic acid palmitate 30% granule wettable powder and pyraclostrobin adjusted to 40% with N, N-dimethylformamide were diluted with tap water to a predetermined concentration and sprayed in sufficient amounts. After 2 days from the spraying treatment, the soil was flooded from just below the cotyledon, and 11 days after the spraying treatment, the fresh weight of the above-ground part and root part of soybean was measured. The failure reduction rate was calculated from the following equation.
Submergence damage reduction rate = ((raw weight of each treated area)-(raw weight of untreated area))
/ (Raw weight of untreated area) × 100
The results are shown in Table 13.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
試験例12 キュウリに対する酸性障害の軽減効果評価試験
 100mlのコルベンにて2葉期まで水耕育成したキュウリ(品種:相模半白節成、2連)を用意した。
 アスコルビン酸パルミテートの30%顆粒水和剤と、N,N-ジメチルホルムアミドで40%に調整したピラクロストロビンとを、水道水で所定濃度に希釈して苗全体に十分量を散布した。散布処理2日後に水耕液を1N塩酸でpH4に調整し該キュウリを継続して水耕育成した。散布処理17日後にキュウリの葉齢を調査した。これから次式により障害軽減率を算出した。
 酸性障害軽減率=((各処理区の葉齢)-(無処理区の葉齢))
                 /(無処理区の葉齢) ×100
 結果を表14に示す。
Test Example 12 Evaluation Test for Reducing Effect of Acidic Damage on Cucumber Cucumber (variety: Sagami Hansakusei, 2 series) that was hydroponically grown up to the second leaf stage with 100 ml of Kolben was prepared.
A 30% granule wettable powder of ascorbyl palmitate and pyraclostrobin adjusted to 40% with N, N-dimethylformamide were diluted to a predetermined concentration with tap water, and a sufficient amount was sprayed over the entire seedling. Two days after the spraying treatment, the hydroponic solution was adjusted to pH 4 with 1N hydrochloric acid and the cucumber was continuously hydroponically grown. The cucumber leaf age was investigated 17 days after the spraying treatment. The failure reduction rate was calculated from the following equation.
Reduction rate of acid damage = ((leaf age of each treated area)-(leaf age of untreated area))
/ (Leaf age of untreated section) x 100
The results are shown in Table 14.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
試験例13 ダイズに対する酸性障害の軽減効果評価試験
 100mlのコルベンにて2葉期まで水耕育成したダイズ(品種:エンレイ、2連)を用意した。
 アスコルビン酸パルミテートの30%顆粒水和剤と、N,N-ジメチルホルムアミドで40%に溶解したピラクロストロビンとを、水道水で所定濃度に希釈して苗全体に十分量を散布した。散布処理2日後に水耕液を1N塩酸でpH4に調整し該ダイズを継続して水耕育成した。散布処理11日後にダイズの障害を調査した。
 障害は壊死の程度を、0(壊死なし)~10(枯死)の11段階の障害指数で評価した。これから次式により障害軽減率を算出した。
 酸性障害軽減率=((無処理区の障害指数)-(各処理区の障害指数))
                /(無処理区の障害指数) ×100
 結果を表15に示す。
Test Example 13 Evaluation Test for Reducing Effect of Acidic Damage on Soybean Soybean (cultivar: Enrei, 2 series) that was hydroponically grown up to the second leaf stage with 100 ml of Kolben was prepared.
A 30% granule wettable powder of ascorbyl palmitate and pyraclostrobin dissolved in 40% with N, N-dimethylformamide were diluted to a predetermined concentration with tap water, and a sufficient amount was sprayed over the entire seedling. Two days after the spraying treatment, the hydroponic solution was adjusted to pH 4 with 1N hydrochloric acid, and the soybean was continuously hydroponically grown. The soybean damage was investigated 11 days after the spraying treatment.
The degree of injury was evaluated by an 11-level injury index ranging from 0 (no necrosis) to 10 (death). The failure reduction rate was calculated from the following equation.
Reduction rate of acid damage = ((Disability index of untreated area)-(Disability index of each treatment area))
/ (Disability index of untreated area) x 100
The results are shown in Table 15.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
試験例14 キュウリに対する塩障害の軽減効果評価試験
 温室内で2葉期まで水耕育成したキュウリ(品種:相模半白節成、2連)を用意した。
 アスコルビン酸パルミテートの30%顆粒水和剤と、N,N-ジメチルホルムアミドで40%に調整したピラクロストロビンとを、水道水で所定濃度に希釈して苗全体に十分量を散布し、風乾後、温室で通常の潅水で栽培した。その後、散布2日後から2cm深の0.1%塩化ナトリウム水溶液の湛水状態に切り替えて散布処理11日後まで栽培し、地上部および根部それぞれの生重量を測定した。これから次式により障害軽減率を算出した。
 塩障害軽減率=((各処理区の生重量)-(無処理区の生重量))
                 /(無処理区の生重量) ×100
 結果を表16に示す。
Test Example 14 Evaluation test for reducing salt damage to cucumber A cucumber (cultivar: Sagami Hansakusei, 2 series) that was hydroponically grown to the second leaf stage in a greenhouse was prepared.
30% granular wettable powder of ascorbyl palmitate and pyraclostrobin adjusted to 40% with N, N-dimethylformamide are diluted with tap water to a predetermined concentration and sprayed to the whole seedling, and after air drying Cultivated in a greenhouse with normal irrigation. Then, it switched to the flooded state of the 0.1-% sodium chloride aqueous solution of 2 cm depth from 2 days after spraying, and it was cultivated until 11 days after the spraying process, and measured the fresh weight of each above-ground part and a root part. The failure reduction rate was calculated from the following equation.
Reduction rate of salt damage = ((raw weight of each treated section)-(raw weight of untreated section))
/ (Raw weight of untreated area) × 100
The results are shown in Table 16.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
試験例15 ダイズに対する塩障害の軽減効果評価試験
 温室内で2葉期まで水耕育成したダイズ(品種:エンレイ、2連)を用意した。
 アスコルビン酸パルミテートの30%顆粒水和剤と、N,N-ジメチルホルムアミドで40%に調整したピラクロストロビンとを、水道水で所定濃度に希釈して苗全体に十分量を散布し、風乾後、温室で通常の潅水で栽培した。その後、散布2日後から2cm深の0.1%塩化ナトリウム水溶液の湛水状態に切り替えて散布処理11日後まで栽培し、地上部および根部それぞれの生重量を測定した。これから次式により障害軽減率を算出した。
 塩障害軽減率=((各処理区の生重量)-(無処理区の生重量))
                /(無処理区の生重量) ×100
 結果を表17に示す。
Test Example 15 Evaluation Test for Reduction of Salt Damage to Soybean Soybean (cultivar: Enrei, 2 series) that was hydroponically grown to the second leaf stage in a greenhouse was prepared.
30% granular wettable powder of ascorbyl palmitate and pyraclostrobin adjusted to 40% with N, N-dimethylformamide are diluted with tap water to a predetermined concentration and sprayed to the whole seedling, and after air drying Cultivated in a greenhouse with normal irrigation. Then, it switched to the flooded state of the 0.1-% sodium chloride aqueous solution of 2 cm depth from 2 days after spraying, and it was cultivated until 11 days after the spraying process, and measured the fresh weight of each above-ground part and a root part. The failure reduction rate was calculated from the following equation.
Reduction rate of salt damage = ((raw weight of each treated section)-(raw weight of untreated section))
/ (Raw weight of untreated area) × 100
The results are shown in Table 17.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
試験例16 トマト黄化葉巻ウイルス病に対する病徴軽減効果試験
 表18に示す処方にてN,N-ジメチルホルムアミド溶液を調製し、試験用の薬液を得た。
 温室内で8葉期まで育成したトマト苗(品種:桃太郎)を用意した。
 トマト黄化葉巻ウイルス(TYLCV)に罹病したトマト苗を接種源とした。
 罹病株の茎を斜めに輪切りして、トマト苗に接木接種した。乾燥を防ぐためパラフィルムを接木部分に巻きつけて保護した。
 接木接種後、トマト苗の茎葉部に、液が垂れ落ちる程の量の前記薬液を散布した。その後、約1週間間隔で液が垂れ落ちる程の量の前記薬液を3回散布した。接種から25日経過時にトマト黄化葉巻病の病徴を調査した。
 病徴は0(発病なし)~4(激症)の5段階の発病指数で評価した。
 溶媒DMFのみの処理区(薬液3)と比較した発病抑制率を次式により算出した。
 発病抑制率=((溶媒のみ処理区の発病指数)-(各処理区の発病指数))
              /(溶媒のみ処理区の発病指数) ×100
 また、コルビーの式に基づいて発病抑制率の期待値を算出した。
 なお、コルビーの式は、 E=M+N-MN/100 である。ここで、Eは発病抑制率の期待値(%)、Mは物質(A1)の単独使用時の測定から算出された発病抑制率(%)、Nは物質(A2)の単独使用時の測定から算出された発病抑制率(%)を示す。
 その結果を表18に示す。
Test Example 16 Symptom-reducing effect test for tomato yellow leaf curl virus disease An N, N-dimethylformamide solution was prepared according to the formulation shown in Table 18 to obtain a test drug solution.
Tomato seedlings (variety: Momotaro) grown to the 8th leaf stage in the greenhouse were prepared.
Tomato seedlings afflicted with tomato yellow leaf curl virus (TYLCV) were used as the inoculation source.
The stems of diseased strains were cut diagonally and inoculated to tomato seedlings. In order to prevent drying, parafilm was wrapped around the grafted portion to protect it.
After grafting inoculation, the chemical solution was sprayed onto the tomato seedlings. Thereafter, the chemical solution was sprayed three times in such an amount that the solution dripped at about one week intervals. At 25 days after inoculation, the symptoms of tomato yellow leaf curl disease were investigated.
Symptoms were evaluated with a 5-stage disease index from 0 (no disease) to 4 (severe illness).
The disease suppression rate compared with the treatment area (chemical | medical solution 3) only of solvent DMF was computed by following Formula.
Disease control rate = ((Sickness index of solvent-only treatment section)-(Sickness index of each treatment section))
/ (Sickness index of solvent only treatment area) x 100
Moreover, the expected value of the disease suppression rate was calculated based on the Colby equation.
The Colby equation is E = M + N−MN / 100. Here, E is the expected value (%) of the disease suppression rate, M is the disease suppression rate (%) calculated from the measurement when the substance (A1) is used alone, and N is the measurement when the substance (A2) is used alone. The disease suppression rate (%) calculated from
The results are shown in Table 18.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
試験例17 イネに対する病害ストレスの軽減効果試験
 イネ(品種:コシヒカリ、10連)の苗を用意した。アスコルビン酸パルミテートの30%顆粒水和剤と、N,N-ジメチルホルムアミドで5%に調整したピラクロストロビンとを、水道水で所定濃度に希釈し、これらの十分量を苗全体に散布し風乾した。その翌日にいもち病菌を接種し、接種の11日後にいもち病斑数を調査し、これから防除価を次式により算出した。
 防除価=((無処理区の病斑数)-(各処理区の病斑数))
                 /(無処理区の病斑数) ×100
 その結果を表19に示す。
Test Example 17 Disease Stress Reducing Effect Test for Rice Rice (cultivar: Koshihikari, 10 series) seedlings were prepared. 30% granular wettable powder of ascorbyl palmitate and pyraclostrobin adjusted to 5% with N, N-dimethylformamide are diluted with tap water to a predetermined concentration. did. The next day, the blast fungus was inoculated, and the number of blast spots was investigated 11 days after the inoculation, and the control value was calculated from the following formula.
Control value = ((number of lesions in untreated section)-(number of spots in each treated section))
/ (Number of lesions in untreated area) x 100
The results are shown in Table 19.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019

Claims (11)

  1.  式(I):
    Figure JPOXMLDOC01-appb-I000014

    [式(I)中、R1~R4はそれぞれ独立して、水素原子、-SO3H、-PO32、グリコシル基または-COR11を示す。R11は、無置換の若しくは置換基を有するC1~30アルキル基または無置換の若しくは置換基を有するC2~30アルケニル基を示す。]で表される化合物、
    式(II):
    Figure JPOXMLDOC01-appb-I000015

    [式(II)中、R5およびR6はそれぞれ独立して、水素原子、-SO3H、-PO32、グリコシル基または-COR11を示す。R11は、無置換の若しくは置換基を有するC1~30アルキル基または無置換の若しくは置換基を有するC2~30アルケニル基を示す。]で表される化合物およびそれらの塩からなる群から選ばれる少なくとも一つの物質(A)を植物に施用することを含む、ストレスに対する抵抗性を植物に付与する方法。
    Formula (I):
    Figure JPOXMLDOC01-appb-I000014

    [In the formula (I), R 1 to R 4 each independently represents a hydrogen atom, —SO 3 H, —PO 3 H 2 , a glycosyl group or —COR 11 . R 11 represents an unsubstituted or substituted C1-30 alkyl group or an unsubstituted or substituted C2-30 alkenyl group. A compound represented by
    Formula (II):
    Figure JPOXMLDOC01-appb-I000015

    [In the formula (II), R 5 and R 6 each independently represents a hydrogen atom, —SO 3 H, —PO 3 H 2 , a glycosyl group or —COR 11 . R 11 represents an unsubstituted or substituted C1-30 alkyl group or an unsubstituted or substituted C2-30 alkenyl group. A method for imparting stress resistance to a plant, comprising applying to the plant at least one substance (A) selected from the group consisting of a compound represented by the formula:
  2.  物質(A)が、式(I)[ただし、すべてのR1~R4が同時に水素原子であることはない。]で表される化合物またはその塩である、請求項1に記載の方法。 The substance (A) is represented by the formula (I) [wherein all R 1 to R 4 are not hydrogen atoms at the same time. The method of Claim 1 which is a compound represented by these, or its salt.
  3.  物質(A)が、式(I)[ただし、R1~R4のうち少なくとも一つは-COR11を示し、R11は、無置換の若しくは置換基を有するC12~30アルキル基または無置換の若しくは置換基を有するC12~30アルケニル基を示す。]で表される化合物またはその塩である、請求項1に記載の方法。 Material (A) has the formula (I) [provided that at least one of R 1 ~ R 4 represents a -COR 11, R 11 are, C12 ~ 30 alkyl group or unsubstituted having unsubstituted or substituted Or a C12-30 alkenyl group having a substituent. The method of Claim 1 which is a compound represented by these, or its salt.
  4.  物質(A)が、式(I)[ただし、R1~R4はそれぞれ独立して、水素原子、または-COR11を示し、且つR1~R4のうち少なくとも一つは-COR11を示す。R11は、無置換の若しくは置換基を有するC1~30アルキル基または無置換の若しくは置換基を有するC2~30アルケニル基を示す。-COR11のうち少なくとも一つはその中のR11が無置換の若しくは置換基を有するC12~30アルキル基または無置換の若しくは置換基を有するC12~30アルケニル基を示す。]で表される化合物またはその塩である、請求項1に記載の方法。 Material (A) has the formula (I) [where independently R 1 ~ R 4 each represents a hydrogen atom or -COR 11,, and at least one -COR 11 of R 1 ~ R 4 Show. R 11 represents an unsubstituted or substituted C1-30 alkyl group or an unsubstituted or substituted C2-30 alkenyl group. At least one of -COR 11 indicates the C12 ~ 30 alkenyl group having C12 ~ 30 alkyl group or an unsubstituted or substituted radical having R 11 is an unsubstituted or substituted group therein. The method of Claim 1 which is a compound represented by these, or its salt.
  5.  物質(A)が、式(I)で表される化合物、式(II)で表される化合物、およびそれらの塩からなる群から選ばれる物質のうちの水溶性のもの(A1)と、式(I)で表される化合物、式(II)で表される化合物、およびそれらの塩からなる群から選ばれる物質のうちの脂溶性のもの(A2)とを含有する組成物である、請求項1に記載の方法。 The substance (A) is a water-soluble substance (A1) selected from the group consisting of a compound represented by the formula (I), a compound represented by the formula (II), and a salt thereof; A composition comprising a compound represented by (I), a compound represented by formula (II), and a fat-soluble substance (A2) among substances selected from the group consisting of salts thereof, Item 2. The method according to Item 1.
  6.  前記ストレスが、植物ウイルス、植物病原細菌、植物病原糸状菌、害虫若しくは雑草による生物的ストレス;または、高温、低温、高照度、低照度、過湿、乾燥、塩分、酸性、農薬、化学物質若しくは重金属による物理的若しくは化学的ストレスのいずれか少なくとも一つである、請求項1~5のいずれか一つに記載の方法。 The stress is a biological stress caused by plant viruses, phytopathogenic bacteria, phytopathogenic fungi, pests or weeds; The method according to any one of claims 1 to 5, wherein the method is at least one of physical and chemical stresses caused by heavy metals.
  7.  式(I):
    Figure JPOXMLDOC01-appb-I000016

    [式(I)中、R1~R4はそれぞれ独立して、水素原子、-SO3H、-PO32、グリコシル基または-COR11を示す。R11は、無置換の若しくは置換基を有するC1~30アルキル基または無置換の若しくは置換基を有するC2~30アルケニル基を示す。]で表される化合物、
    式(II):
    Figure JPOXMLDOC01-appb-I000017

    [式(II)中、R5およびR6はそれぞれ独立して、水素原子、-SO3H、-PO32、グリコシル基または-COR11を示す。R11は、無置換の若しくは置換基を有するC1~30アルキル基または無置換の若しくは置換基を有するC2~30アルケニル基を示す。]で表される化合物およびそれらの塩からなる群から選ばれる少なくとも二つの物質(A)を含有する植物用ストレス抵抗性付与剤組成物。
    Formula (I):
    Figure JPOXMLDOC01-appb-I000016

    [In the formula (I), R 1 to R 4 each independently represents a hydrogen atom, —SO 3 H, —PO 3 H 2 , a glycosyl group or —COR 11 . R 11 represents an unsubstituted or substituted C1-30 alkyl group or an unsubstituted or substituted C2-30 alkenyl group. A compound represented by
    Formula (II):
    Figure JPOXMLDOC01-appb-I000017

    [In the formula (II), R 5 and R 6 each independently represents a hydrogen atom, —SO 3 H, —PO 3 H 2 , a glycosyl group or —COR 11 . R 11 represents an unsubstituted or substituted C1-30 alkyl group or an unsubstituted or substituted C2-30 alkenyl group. ] The stress resistance imparting agent composition for plants containing the at least 2 substance (A) chosen from the group which consists of the compound represented by these, and those salts.
  8.  一つの物質(A)が式(I)で表される化合物、式(II)で表される化合物、およびそれらの塩からなる群から選ばれる物質のうちの水溶性のもの(A1)であり、他の一つの物質(A)が式(I)で表される化合物、式(II)で表される化合物、およびそれらの塩からなる群から選ばれる物質のうちの脂溶性のもの(A2)である、請求項7に記載の組成物。 One substance (A) is a water-soluble substance (A1) selected from the group consisting of a compound represented by formula (I), a compound represented by formula (II), and a salt thereof. In addition, the other one substance (A) is a fat-soluble substance (A2) selected from the group consisting of a compound represented by formula (I), a compound represented by formula (II), and a salt thereof (A2) The composition according to claim 7, wherein
  9.  式(Ia):
    Figure JPOXMLDOC01-appb-I000018

    [式(Ia)中、R1a~R4aはそれぞれ独立して、水素原子、-SO3H、-PO32、またはグリコシル基を示す。]で表される化合物、
    式(IIa):
    Figure JPOXMLDOC01-appb-I000019

    [式(IIa)中、R5aおよびR6aはそれぞれ独立して、水素原子、-SO3H、-PO32、またはグリコシル基を示す。]で表される化合物およびそれらの塩からなる群から選ばれる少なくとも一つの水溶性物質(A1)と、
     式(Ib):
    Figure JPOXMLDOC01-appb-I000020

    [式(Ib)中、R1b~R4bはそれぞれ独立して、水素原子、または-COR11を示す。R1b~R4bのうち少なくとも一つは-COR11を示し、R11は、無置換の若しくは置換基を有するC1~30アルキル基または無置換の若しくは置換基を有するC2~30アルケニル基を示す。]で表される化合物、
    式(IIb):
    Figure JPOXMLDOC01-appb-I000021

    [式(IIb)中、R5bおよびR6bはそれぞれ独立して、水素原子、または-COR11を示す。R5bおよびR6bのうち少なくとも一つは-COR11を示し、R11は、無置換の若しくは置換基を有するC1~30アルキル基または無置換の若しくは置換基を有するC2~30アルケニル基を示す。]で表される化合物およびそれらの塩からなる群から選ばれる少なくとも一つの脂溶性物質(A2)とを含有する植物用ストレス抵抗性付与剤組成物。
    Formula (Ia):
    Figure JPOXMLDOC01-appb-I000018

    [In Formula (Ia), R 1a to R 4a each independently represents a hydrogen atom, —SO 3 H, —PO 3 H 2 , or a glycosyl group. A compound represented by
    Formula (IIa):
    Figure JPOXMLDOC01-appb-I000019

    [In Formula (IIa), R 5a and R 6a each independently represent a hydrogen atom, —SO 3 H, —PO 3 H 2 , or a glycosyl group. At least one water-soluble substance (A1) selected from the group consisting of compounds represented by the formula:
    Formula (Ib):
    Figure JPOXMLDOC01-appb-I000020

    [In the formula (Ib), R 1b to R 4b each independently represents a hydrogen atom or —COR 11 . At least one of R 1b ~ R 4b represents a -COR 11, R 11 represents a C2 ~ 30 alkenyl group having C1 ~ 30 alkyl group or an unsubstituted or substituted group having an unsubstituted or substituted . A compound represented by
    Formula (IIb):
    Figure JPOXMLDOC01-appb-I000021

    [In the formula (IIb), R 5b and R 6b each independently represent a hydrogen atom or —COR 11 . At least one of R 5b and R 6b represents a -COR 11, R 11 represents a C2 ~ 30 alkenyl group having C1 ~ 30 alkyl group or an unsubstituted or substituted group having an unsubstituted or substituted . ] The stress resistance imparting agent composition for plants containing the at least 1 fat-soluble substance (A2) chosen from the group which consists of the compound represented by these, and those salts.
  10.  請求項1~6のいずれか一つに記載の方法によって植物にストレスに対する抵抗性を付与することを含む、農薬による植物の薬害を軽減する方法。 A method for reducing the phytotoxicity of plants caused by agricultural chemicals, comprising imparting resistance to stress to plants by the method according to any one of claims 1 to 6.
  11.  農薬が、殺菌剤、殺虫剤、植物成長調整剤、および除草剤からなる群から選ばれる少なくとも一つを含むものである、請求項10に記載の農薬による植物の薬害を軽減する方法。 The method for reducing plant phytotoxicity caused by an agrochemical according to claim 10, wherein the agrochemical includes at least one selected from the group consisting of a fungicide, an insecticide, a plant growth regulator, and a herbicide.
PCT/JP2013/004430 2012-07-20 2013-07-19 Method for providing plants with resistance to stress WO2014013744A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/415,285 US20150126368A1 (en) 2012-07-20 2013-07-19 Method of providing plant with stress resistance
BR112015001016A BR112015001016A2 (en) 2012-07-20 2013-07-19 METHODS FOR PROVIDING A PLANT WITH STRESS RESISTANCE, AND FOR REDUCING PHYTOXICITY OF A PLANT DUE TO AN AGRICULTURAL CHEMICAL, AND COMPOSITION THAT CONFERS STRESS RESISTANCE TO A PLANT
CA2879519A CA2879519A1 (en) 2012-07-20 2013-07-19 Method of providing plants with stress resistance by applying an ascorbic acid derived compound
EP13820583.6A EP2875730A4 (en) 2012-07-20 2013-07-19 Method for providing plants with resistance to stress
AU2013291440A AU2013291440B2 (en) 2012-07-20 2013-07-19 Method of providing plant with stress resistance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012161898 2012-07-20
JP2012-161898 2012-07-20

Publications (1)

Publication Number Publication Date
WO2014013744A1 true WO2014013744A1 (en) 2014-01-23

Family

ID=49948582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004430 WO2014013744A1 (en) 2012-07-20 2013-07-19 Method for providing plants with resistance to stress

Country Status (7)

Country Link
US (1) US20150126368A1 (en)
EP (1) EP2875730A4 (en)
JP (1) JP2014037407A (en)
AU (1) AU2013291440B2 (en)
BR (1) BR112015001016A2 (en)
CA (1) CA2879519A1 (en)
WO (1) WO2014013744A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2524857A (en) * 2013-11-01 2015-10-07 Innospec Ltd Detergent compositions
WO2016063896A1 (en) * 2014-10-21 2016-04-28 サントリーホールディングス株式会社 Ascorbic acid derivative and glycoside production method using same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9345243B2 (en) * 2012-07-20 2016-05-24 Nippon Soda Co., Ltd. Chemicals composition for reducing stress on plant
BR112020010074A2 (en) * 2017-11-21 2020-11-03 Advanced Biological Marketing, Inc. compositions and methods to induce crop changes balancing the effects of an applied agricultural chemical
EP4075977B1 (en) * 2019-12-20 2024-02-07 Universiteit Gent Use of dehydroascorbic acid against nematode infection in plants
JP2023164255A (en) * 2022-04-28 2023-11-10 花王株式会社 Root nodule activity promoting agent
CN114903057B (en) * 2022-06-24 2023-09-05 西北农林科技大学 Plant regulator for improving stress resistance of crops

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04342507A (en) * 1991-05-17 1992-11-30 Meiji Seika Kaisha Ltd Plant growth controller and method for enhancing stress resistance of plant
JP2001508808A (en) 1996-02-20 2001-07-03 エイ. バダワイ、モハメッド How to increase the antibacterial properties of antibacterial antibiotics
JP2008538566A (en) * 2005-04-21 2008-10-30 グレン エー. ゴールドスタイン, N-acetylcysteine amide (NAC amide) to promote plant resistance and tolerance to environmental stress
WO2011030816A1 (en) 2009-09-14 2011-03-17 国立大学法人北海道大学 Anti-plant-virus agent

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3973032A (en) * 1975-09-19 1976-08-03 Board Of Regents, State Of Florida For And On Behalf Of The University Of Florida Treatment of citrus tree diseases
US5004493A (en) * 1988-06-10 1991-04-02 Norris Dale M Method for inducing resistance in plants using environmentally safe antioxidants
JPH05170605A (en) * 1991-12-20 1993-07-09 Iseki & Co Ltd Spray for tomato leaf
DE60222935T2 (en) * 2002-01-04 2008-07-24 University Of Guelph, Guelph PREPARATIONS FOR THE PRESERVATION OF FRUIT AND VEGETABLES
WO2004095926A2 (en) * 2003-04-28 2004-11-11 Monsanto Technology, Llc Treatment of plants and plant propagation materials with an antioxidant to improve plant health and/or yield
EP2468097A1 (en) * 2010-12-21 2012-06-27 Bayer CropScience AG Use of Isothiazolecarboxamides to create latent host defenses in a plant
EP2793574A4 (en) * 2011-12-22 2015-09-02 Vive Crop Prot Inc Strobilurin formulations

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04342507A (en) * 1991-05-17 1992-11-30 Meiji Seika Kaisha Ltd Plant growth controller and method for enhancing stress resistance of plant
JP2001508808A (en) 1996-02-20 2001-07-03 エイ. バダワイ、モハメッド How to increase the antibacterial properties of antibacterial antibiotics
JP2008538566A (en) * 2005-04-21 2008-10-30 グレン エー. ゴールドスタイン, N-acetylcysteine amide (NAC amide) to promote plant resistance and tolerance to environmental stress
WO2011030816A1 (en) 2009-09-14 2011-03-17 国立大学法人北海道大学 Anti-plant-virus agent

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
See also references of EP2875730A4
THE HORTICULTURE JOURNAL, vol. 6, no. 2, pages 169 - 175
VITAMINS, vol. 79, no. 2, 2005, pages 116 - 117

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2524857A (en) * 2013-11-01 2015-10-07 Innospec Ltd Detergent compositions
US9902707B2 (en) 2013-11-01 2018-02-27 Innospec Limited Detergent compositions
US9981933B2 (en) 2013-11-01 2018-05-29 Innospec Limited Detergent compositions
WO2016063896A1 (en) * 2014-10-21 2016-04-28 サントリーホールディングス株式会社 Ascorbic acid derivative and glycoside production method using same
JPWO2016063896A1 (en) * 2014-10-21 2017-08-03 サントリーホールディングス株式会社 Ascorbic acid derivative and method for producing glycosides using this derivative

Also Published As

Publication number Publication date
AU2013291440B2 (en) 2015-08-06
US20150126368A1 (en) 2015-05-07
EP2875730A4 (en) 2016-03-09
AU2013291440A1 (en) 2015-02-12
EP2875730A1 (en) 2015-05-27
CA2879519A1 (en) 2014-01-23
BR112015001016A2 (en) 2017-08-22
JP2014037407A (en) 2014-02-27

Similar Documents

Publication Publication Date Title
JP6212707B2 (en) Pharmaceutical composition for reducing stress on plants
WO2014013744A1 (en) Method for providing plants with resistance to stress
JP6752210B2 (en) Agricultural and horticultural fungicide composition
BRPI0806771A2 (en) pesticide combinations
WO2008062823A1 (en) Plant disease control composition and method for the prevention and control of plant diseases
WO2018101223A1 (en) Microorganism having ability to control plant disease
US20100144531A1 (en) Method for enhancing intrinsic productivity of a plant
JP5091470B2 (en) Agricultural and horticultural compositions
JPWO2019163868A1 (en) Agricultural and horticultural fungicide composition
JP5719644B2 (en) Bacterial disease control agent and bacterial disease control method for plants
US20210029995A1 (en) Use of Volatile Organic Compounds as Pesticides
CN110087463B (en) Solid composition for pest control containing cyclic bromodiamide or salt thereof
US20100173776A1 (en) Method for enhancing plant tolerance
JP2017184738A (en) Coated seed
JP5010204B2 (en) Composition for controlling plant diseases
JP2022031416A (en) Plant disease control method and bactericidal composition for agricultural and horticultural use
JPH0649039A (en) Pyrimidine derivative, herbicide and fungicide for agricultural and horticultural use
JP2020097575A (en) 1,3,5,6-TETRA SUBSTITUTED THIENO[2,3-d]PYRIMIDINE-2,4(1H,3H)DIONE COMPOUND AND HORTICULTURAL BACTERICIDE
KR102646989B1 (en) Agricultural and horticultural compositions
JP2003137703A (en) Pest-preventing agent for plant and method for preventing pest
WO2020225149A1 (en) Use of volatile organic compounds as molluscides

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13820583

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14415285

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2879519

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2013820583

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013820583

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013291440

Country of ref document: AU

Date of ref document: 20130719

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015001016

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015001016

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150115