WO2014013721A1 - Nitrogen-containing heteroaromatic ring compound and organic electroluminescence element using same - Google Patents

Nitrogen-containing heteroaromatic ring compound and organic electroluminescence element using same Download PDF

Info

Publication number
WO2014013721A1
WO2014013721A1 PCT/JP2013/004339 JP2013004339W WO2014013721A1 WO 2014013721 A1 WO2014013721 A1 WO 2014013721A1 JP 2013004339 W JP2013004339 W JP 2013004339W WO 2014013721 A1 WO2014013721 A1 WO 2014013721A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
group
unsubstituted
carbon atoms
ring
Prior art date
Application number
PCT/JP2013/004339
Other languages
French (fr)
Japanese (ja)
Inventor
圭 吉田
裕基 中野
英明 長島
亮平 橋本
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Publication of WO2014013721A1 publication Critical patent/WO2014013721A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1074Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene

Definitions

  • the present invention relates to a nitrogen-containing heteroaromatic ring compound and an organic electroluminescence device using the same.
  • Organic electroluminescence (EL) elements include a fluorescent type and a phosphorescent type, and an optimum element design has been studied according to each light emission mechanism.
  • phosphorescent organic EL elements it is known from their light emission characteristics that high-performance elements cannot be obtained by simple diversion of fluorescent element technology. Since phosphorescence emission is emission using triplet excitons, the energy gap of the compound used for the light emitting layer must be large. This is because the value of the energy gap (hereinafter also referred to as singlet energy) of a compound usually refers to the triplet energy of the compound (in the present invention, the energy difference between the lowest excited triplet state and the ground state). This is because it is larger than the value of).
  • materials for such phosphorescent organic EL elements compounds having a structure in which a plurality of heterocycles are bonded have been studied (see Patent Documents 1 to 6).
  • a phosphorescent organic EL element that emits blue light it is necessary to use a compound having a large triplet energy in the light emitting layer and its peripheral layer as compared with a phosphorescent organic EL element that emits green to red light.
  • the triplet energy of the host material used for the light emitting layer is 3.0 eV or more.
  • a molecular design based on a new concept different from materials for fluorescent elements and materials used for phosphorescent elements emitting green to red light is necessary.
  • the inventors of the present invention have a structure including a nitrogen-containing heteroaromatic ring excellent in carrier injection property and having at least four heterocycles bonded thereto, and at least two of the heterocycles are nitrogen-containing heteroaromatic rings and Thus, the present inventors have found a material that can suppress deterioration of the material by introducing an appropriate substituent while maintaining high triplet energy.
  • the following nitrogen-containing heteroaromatic ring compounds and the like are provided. 1.
  • X represents an oxygen atom or a sulfur atom
  • Y 11 to Y 18 , Y 21 to Y 28 and Y 31 to Y 38 each represent CR 1 or a nitrogen atom
  • R 1 is a single bond, a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms, a substituted or unsubstituted carbon atom having 1 to 20 alkoxy groups, substituted or unsubstituted cycloalkoxy groups having 3 to 20 ring carbon atoms, substituted or unsubstituted aromatic hydrocarbon rings having 6 to 18 ring carbon atoms, substituted or unsubstituted ring carbon atoms 6-18 aryloxy group, substituted or unsubstituted heteroaromatic ring having 5 to 18 ring atoms, substituted or unsubstituted amino group
  • Aryloxy group having 6 to 18 carbon atoms, substituted or unsubstituted heteroaromatic ring having 5 to 18 ring atoms, substituted or unsubstituted amino group, fluorine atom, substituted or unsubstituted carbon atoms having 1 to 20 carbon atoms Represents a fluoroalkyl group, a substituted or unsubstituted fluoroalkoxy group having 1 to 20 carbon atoms, or a cyano group;
  • HAr represents a substituted or unsubstituted monocyclic or condensed nitrogen-containing aromatic ring having 5 to 18 ring atoms, a dibenzofuran ring having a substituent, or a substituted or unsubstituted
  • a low voltage phosphorescent organic EL device By using the nitrogen-containing heteroaromatic ring compound of the present invention for the light emitting layer, a low voltage phosphorescent organic EL device can be obtained. Further, by using the compound of the present invention as a material for the electron transport layer, a highly efficient and long-lived phosphorescent organic EL device can be obtained.
  • the nitrogen-containing heteroaromatic ring compound of the present invention is a compound represented by the following formula (1).
  • the nitrogen-containing heteroaromatic ring compound represented by the formula (1) has a structure in which at least four heterocycles are bonded, and two or more of the heterocycles are nitrogen-containing heteroaromatic rings. Both the nitrogen-containing heteroaromatic ring represented by the formula (1) and the central condensed heterocycle have high triplet energy, and by connecting them with an appropriate bond, a structure suitable for phosphorescence emission is obtained. .
  • X represents an oxygen atom or a sulfur atom.
  • X is preferably an oxygen atom.
  • Y 11 to Y 18 , Y 21 to Y 28 and Y 31 to Y 38 each represent CR 1 or a nitrogen atom.
  • R 1 is a single bond, a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms, a substituted or unsubstituted carbon atom having 1 to 20 alkoxy groups, substituted or unsubstituted cycloalkoxy groups having 3 to 20 ring carbon atoms, substituted or unsubstituted aromatic hydrocarbon rings having 6 to 18 ring carbon atoms, substituted or unsubstituted ring carbon atoms 6-18 aryloxy group, substituted or unsubstituted heteroaromatic ring having 5 to 18 ring atoms, substituted or unsubstituted amino group, fluorine atom, substituted or unsubstituted fluoroalkyl having 1 to 20 carbon atoms Represents a group or a cyano group.
  • One of Y 11 to Y 14 has a single bond R 1 and is bonded to the nitrogen atom of the nitrogen-containing heteroaromatic ring.
  • one of Y 15 to Y 18 and one of Y 31 to Y 34 have a single bond that is bonded to each other.
  • each R 1 may be the same or different.
  • a 2 and A 3 are each a single bond, an oxygen atom, a sulfur atom, or a group represented by any of the following formulas (a) to (e).
  • R 2 to R 6 are each a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms, or a substituted or unsubstituted carbon number.
  • a 2 and A 3 are preferably both single bonds.
  • HAr represents a substituted or unsubstituted monocyclic or condensed nitrogen-containing aromatic ring having 5 to 18 ring atoms, a dibenzofuran ring having a substituent, or a substituted or unsubstituted dibenzothiophene ring.
  • a nitrogen-containing heteroaromatic ring represented by the following formula (A-1) and a heteroaromatic ring represented by the following formula (A-2) are preferable.
  • Y 1a to Y 1e each represents CR 1a or a nitrogen atom. At least one of Y 1a to Y 1e is a nitrogen atom.
  • R 1a is a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms.
  • Examples of the nitrogen-containing heteroaromatic ring represented by the above formula (A-1) include the following structures.
  • the nitrogen-containing heteroaromatic ring represented by the above formula (A-1) is preferably (a), (b), (c), (e), (g) or (j), and (a) or (b ) Is more preferable.
  • Y 2a to Y 2i each represent CR 2a or a nitrogen atom.
  • X 2 represents an oxygen atom, a sulfur atom or —NR 2b .
  • R 2a is a single bond, a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms, a substituted or unsubstituted carbon number of 1 to 20 alkoxy groups, substituted or unsubstituted cycloalkoxy groups having 3 to 20 ring carbon atoms, substituted or unsubstituted aromatic hydrocarbon rings having 6 to 18 ring carbon atoms, substituted or unsubstituted ring carbon atoms 6-18 aryloxy group, substituted or unsubstituted heteroaromatic ring having 5 to 18 ring atoms, substituted or unsubstituted amino group, fluorine
  • R 2a represents a nitrogen atom
  • R 2b represents a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms, or a substituted or unsubstituted aromatic group having 6 to 18 ring carbon atoms. It represents a hydrocarbon ring or a substituted or unsubstituted heteroaromatic ring having 5 to 18 ring atoms.
  • Y 2g is preferably CR 2a , in which case R 2a is a substituted or unsubstituted aromatic hydrocarbon ring having 6 to 18 ring carbon atoms, a substituted or unsubstituted ring A aryloxy group having 6 to 18 ring carbon atoms, a substituted or unsubstituted heteroaromatic ring having 5 to 18 ring atoms, or a cyano group is preferable.
  • at least one of Y 2a to Y 2i is preferably a nitrogen atom.
  • a nitrogen-containing heteroaromatic ring compound represented by the following formula (2) is preferable.
  • X, Y 11 , Y 13 to Y 18 , Y 21 to Y 28 , Y 31 to Y 38 and HAr are the same as in the formula (1).
  • the compound of the formula (2) corresponds to the compound in which R 1 of Y 12 in the formula (1) is a single bond, and the nitrogen bond of the nitrogen-containing heteroaromatic ring and the heterocycle having an X atom are bonded by this single bond. is doing.
  • R 1 of Y 12 in the formula (1) is a single bond
  • the nitrogen bond of the nitrogen-containing heteroaromatic ring and the heterocycle having an X atom are bonded by this single bond. is doing.
  • the compound represented by the formula (3) has a high triplet energy and is relatively easy to synthesize.
  • the aromatic hydrocarbon ring includes a monocyclic aromatic hydrocarbon ring group and a condensed aromatic hydrocarbon ring group in which a plurality of hydrocarbon rings are condensed, and the heteroaromatic ring is a monocyclic heterocycle.
  • An aromatic ring group, a hetero-fused aromatic ring group in which a plurality of heteroaromatic rings are condensed, and a hetero-fused aromatic ring group in which an aromatic hydrocarbon ring and a heteroaromatic ring are condensed are included.
  • unsubstituted in “substituted or unsubstituted...” Means that a hydrogen atom is bonded.
  • the hydrogen atom includes isotopes having different numbers of neutrons, that is, light hydrogen (protium), deuterium (deuterium), and tritium.
  • alkyl group having 1 to 20 carbon atoms include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, n-pentyl group, n -Hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl, n-tridecyl, n-tetradecyl, n-pentadecyl, n -Hexadecyl group, n-heptadecyl group, n-octadecyl group, neopentyl group, 1-methylpentyl group, 2-methylpentyl group, 1-pentylhexyl group, 1-butylpentyl group,
  • cycloalkyl group having 3 to 20 ring carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a norbornyl group, an adamantyl group, and the like. Those of 5 or 6 are preferred.
  • the “ring-forming carbon” means a carbon atom constituting a saturated ring, an unsaturated ring, or an aromatic ring.
  • alkoxy group having 1 to 20 carbon atoms examples include methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group and the like, and those having 3 or more carbon atoms are linear, cyclic or branched Among them, those having 1 to 6 carbon atoms are preferable.
  • Examples of the cycloalkoxy group having 3 to 20 ring carbon atoms include cyclopentoxy group, cyclohexyloxy group, etc. Among them, those having 5 or 6 ring carbon atoms are preferable.
  • aromatic hydrocarbon ring (aryl group) having 6 to 18 ring carbon atoms include phenyl group, tolyl group, xylyl group, mesityl group, o-biphenyl group, m-biphenyl group, p-biphenyl group, Examples thereof include o-terphenyl group, m-terphenyl group, p-terphenyl group, naphthyl group, phenanthryl group, triphenylene group and the like. Of these, a phenyl group, m-biphenyl group, and m-terphenyl group are preferred.
  • Examples of the aryloxy group having 6 to 18 ring carbon atoms include a phenoxy group and a biphenyloxy group, and a phenoxy group is preferable.
  • heteroaromatic ring having 5 to 18 ring atoms include pyrrolyl group, pyrazinyl group, pyridinyl group, pyrimidinyl group, pyridazinyl group, triazinyl group, indolyl group, isoindolyl group, furyl group, Benzofuranyl group, isobenzofuranyl group, dibenzofuranyl group, dibenzothiophenyl group, quinolyl group, isoquinolyl group, quinoxalinyl group, carbazolyl group, azacarbazolyl group, phenanthridinyl group, acridinyl group, phenanthrolinyl group, thienyl Group, pyrrolidinyl group, dioxanyl group, piperidinyl group, morpholinyl group, piperazinyl group, carbazolyl group, thiophenyl group, o
  • the substituted amino group is represented by —N (R a ) (R b ), and examples of (R a ) and (R b ) include the alkyl group, aryl group, and heteroaryl group described above. Specific examples include a dimethylamino group, a diphenylamino group, a dibiphenylamino group, a phenyl dibenzofuranylamino group, a dibenzofuranylbiphenylamino group, and a di (N-phenyl) carbazolylamino group.
  • Examples of the fluoroalkyl group having 1 to 20 carbon atoms include groups in which one or more fluorine atoms are substituted on the above alkyl group having 1 to 20 carbon atoms. Specific examples include a trifluoromethyl group, pentafluoroethyl group, and the like. Group, 2,2,2-trifluoroethyl group and the like are preferable.
  • Examples of the fluoroalkoxy group having 1 to 20 carbon atoms include groups in which one or more fluorine atoms are substituted on the above-described alkoxy group having 1 to 20 carbon atoms. Specific examples include trifluoromethoxy groups, pentafluoroethoxy groups. Group, 2,2,2-trifluoroethoxy group and the like are preferable.
  • Examples of the diarylphosphino group having 12 to 30 carbon atoms include groups in which the above-described aromatic hydrocarbon ring (aryl group) is substituted on the phosphino group, and specifically, a diphenylphosphino group and the like are preferable.
  • Examples of the diarylphosphine oxide group having 12 to 30 carbon atoms include groups in which the above-described aromatic hydrocarbon ring (aryl group) is substituted on the phosphine oxide group. Specifically, a diphenylphosphine oxide group and the like are preferable.
  • diarylphosphinoaryl group having 18 to 30 carbon atoms examples include groups in which the above-described aromatic hydrocarbon ring (aryl group) is substituted on the phosphino group of the phosphinoaryl group, specifically, diphenylphosphinophenyl. Groups and the like are preferred.
  • the substituents of “substituted or unsubstituted...” Of each group include the above alkyl group, aryl group, heteroaryl group, alkoxy group, fluoroalkyl group, fluoro Alkoxy groups and other halogen atoms (fluorine, chlorine, bromine, iodine are mentioned, preferably fluorine atoms), silyl groups, hydroxyl groups, nitro groups, cyano groups, carboxy groups, aryloxy groups, aralkyl groups , Diarylphosphino group, diarylphosphine oxide group, diarylphosphinoaryl group and the like.
  • HAR substituents include phenyl groups, biphenyl groups, aryl groups such as terphenyl groups, carbazole groups, dibenzofuran groups, dibenzothiophene groups, heteroaryl groups such as azacarbazole groups, A diarylphosphino group (such as a diphenylphosphino group), a diarylphosphine oxide group (such as a diphenylphosphine oxide group), and a diarylphosphinoaryl group (such as a diphenylphosphinophenyl group) are preferable. These substituents may further have a substituent such as a cyano group, an aryl group, or a heteroaryl group.
  • substituent of the dibenzofuran ring having a substituent and the substituent (R 2a ) of the dibenzothiophene ring represented by HAr a heteroaryl group such as a cyano group, a carbazole group, an azacarbazole group, a diarylphosphino group (diphenylphosphino group) And a diarylphosphine oxide group (such as a diphenylphosphine oxide group) and a diarylphosphinoaryl group (such as a diphenylphosphinophenyl group) are preferred.
  • substituents may further have a substituent such as a cyano group, an aryl group, or a heteroaryl group. Specific examples of the compound represented by the above formula (1) are shown below.
  • the synthesis of the compound represented by the formula (1) is carried out by using the conditions described in International Publication Nos. WO2009-008100 and International Publication No. 2011-132684, and a carbazole derivative and a halogenated aromatic compound in accordance with Tetrahedron 1435-1456. Page (1984) or the copper catalyst described in J. Am. Chem. Soc. It can be carried out by referring to the production conditions for the reaction using the palladium catalyst described on pages 7727-7729 (2001).
  • the material for an organic EL device of the present invention includes the above-described compound of the present invention.
  • the material for an organic EL device of the present invention can be suitably used as a material for an organic thin film layer constituting the organic EL device.
  • the organic EL device of the present invention has one or more organic thin film layers including a light emitting layer between an anode and a cathode. And at least one layer of an organic thin film layer contains the organic EL element material of this invention.
  • the light emitting layer preferably contains the material for an organic EL device of the present invention, and more preferably contains it as a host material in the light emitting layer.
  • the light emitting layer preferably contains a phosphorescent material, and the phosphorescent material is an ortho metalated complex of metal atoms selected from iridium (Ir), osmium (Os) and platinum (Pt).
  • the organic EL element of this invention has an organic thin film layer in the electron transport zone between a cathode and a light emitting layer, and it is preferable that this organic thin film layer contains the organic EL element material of this invention.
  • the organic thin film layer in the electron transport zone include an electron injection layer, an electron transport layer, and a hole blocking layer.
  • FIG. 1 is a schematic view showing a layer structure of an embodiment of the organic EL device of the present invention.
  • the organic EL element 1 has a configuration in which an anode 20, a hole transport zone 30, a phosphorescent light emitting layer 40, an electron transport zone 50, and a cathode 60 are laminated on a substrate 10 in this order.
  • the hole transport zone 30 means a hole transport layer, a hole injection layer, an electron blocking layer, or the like.
  • the electron transport zone 50 means an electron transport layer, an electron injection layer, a hole blocking layer, or the like. These need not be formed, but preferably one or more layers are formed.
  • the organic thin film layer is each organic layer provided in the hole transport zone 30, each phosphor layer and the organic layer provided in the electron transport zone 50.
  • at least one layer contains the organic EL element material of the present invention. Thereby, the drive voltage of an organic EL element can be lowered.
  • the content of this material with respect to the organic thin film layer containing the organic EL device material of the present invention is preferably 1 to 100% by weight.
  • the phosphorescent light emitting layer 40 preferably contains the organic EL device material of the present invention, and more preferably used as a host material of the light emitting layer. Since the triplet energy of the material of the present invention is sufficiently large, even when a blue phosphorescent dopant material is used, the triplet energy of the phosphorescent dopant material can be efficiently confined in the light emitting layer. .
  • the light emitting layer can be used not only for the blue light emitting layer but also for light emitting layers of longer wavelengths (such as green to red), but is preferably used for the blue light emitting layer.
  • the phosphorescent light emitting layer contains a phosphorescent material (phosphorescent dopant).
  • phosphorescent dopant include metal complex compounds, preferably a compound having a metal atom selected from Ir, Pt, Os, Au, Cu, Re and Ru and a ligand.
  • the ligand preferably has an ortho metal bond.
  • the phosphorescent dopant is preferably a compound containing a metal atom selected from Ir, Os and Pt in that the phosphorescent quantum yield is high and the external quantum efficiency of the light-emitting element can be further improved, and an iridium complex, It is more preferable that it is a metal complex such as an osmium complex and a platinum complex, among which an iridium complex and a platinum complex are more preferable, and an orthometalated iridium complex is most preferable.
  • the dopant may be a single type or a mixture of two or more types.
  • the addition concentration of the phosphorescent dopant in the phosphorescent light emitting layer is not particularly limited, but is preferably 0.1 to 40% by weight (wt%), more preferably 0.1 to 30% by weight (wt%).
  • the material of the present invention for the organic thin film layer adjacent to the phosphorescent light emitting layer 40.
  • the layer functions as a hole blocking layer or as an exciton blocking layer. It has a function.
  • the barrier layer (blocking layer) is a layer having a function of a carrier movement barrier or an exciton diffusion barrier.
  • the organic layer for preventing electrons from leaking from the light-emitting layer to the hole transport zone is mainly defined as an electron barrier layer, and the organic layer for preventing holes from leaking from the light-emitting layer to the electron transport zone is defined as a hole barrier.
  • an exciton blocking layer is an organic layer for preventing triplet excitons generated in the light emitting layer from diffusing into a peripheral layer having triplet energy lower than that of the light emitting layer. It may be defined as Further, the material of the present invention can be used for an organic thin film layer adjacent to the phosphorescent light emitting layer 40 and further used for another organic thin film layer bonded to the adjacent organic thin film layer.
  • the organic EL element of the present invention can employ various known configurations. Further, light emission of the light emitting layer can be taken out from the anode side, the cathode side, or both sides.
  • an electron donating dopant and an organometallic complex is added to the interface region between the cathode and the organic thin film layer.
  • the electron donating dopant include at least one selected from alkali metals, alkali metal compounds, alkaline earth metals, alkaline earth metal compounds, rare earth metals, rare earth metal compounds, and the like.
  • the organometallic complex include at least one selected from an organometallic complex containing an alkali metal, an organometallic complex containing an alkaline earth metal, an organometallic complex containing a rare earth metal, and the like.
  • alkali metal examples include lithium (Li) (work function: 2.93 eV), sodium (Na) (work function: 2.36 eV), potassium (K) (work function: 2.28 eV), rubidium (Rb) (work Function: 2.16 eV), cesium (Cs) (work function: 1.95 eV) and the like, and those having a work function of 2.9 eV or less are particularly preferable.
  • K, Rb, and Cs are preferred, Rb and Cs are more preferred, and Cs is most preferred.
  • alkaline earth metal examples include calcium (Ca) (work function: 2.9 eV), strontium (Sr) (work function: 2.0 eV to 2.5 eV), barium (Ba) (work function: 2.52 eV).
  • a work function of 2.9 eV or less is particularly preferable.
  • the rare earth metal examples include scandium (Sc), yttrium (Y), cerium (Ce), terbium (Tb), ytterbium (Yb) and the like, and those having a work function of 2.9 eV or less are particularly preferable.
  • preferred metals are particularly high in reducing ability, and by adding a relatively small amount to the electron injection region, it is possible to improve the light emission luminance and extend the life of the organic EL element.
  • alkali metal compound examples include lithium oxide (Li 2 O), cesium oxide (Cs 2 O), alkali oxides such as potassium oxide (K 2 O), lithium fluoride (LiF), sodium fluoride (NaF), fluorine.
  • alkali halides such as cesium fluoride (CsF) and potassium fluoride (KF), and lithium fluoride (LiF), lithium oxide (Li 2 O), and sodium fluoride (NaF) are preferable.
  • alkaline earth metal compound examples include barium oxide (BaO), strontium oxide (SrO), calcium oxide (CaO), and barium strontium oxide (Ba x Sr 1-x O) (0 ⁇ x ⁇ 1), Examples thereof include barium calcium oxide (Ba x Ca 1-x O) (0 ⁇ x ⁇ 1), and BaO, SrO, and CaO are preferable.
  • the rare earth metal compound ytterbium fluoride (YbF 3), scandium fluoride (ScF 3), scandium oxide (ScO 3), yttrium oxide (Y 2 O 3), cerium oxide (Ce 2 O 3), gadolinium fluoride (GdF 3), include such terbium fluoride (TbF 3) is, YbF 3, ScF 3, TbF 3 are preferable.
  • the organometallic complex is not particularly limited as long as it contains at least one of an alkali metal ion, an alkaline earth metal ion, and a rare earth metal ion as a metal ion as described above.
  • the ligands include quinolinol, benzoquinolinol, acridinol, phenanthridinol, hydroxyphenyl oxazole, hydroxyphenyl thiazole, hydroxydiaryl thiadiazole, hydroxydiaryl thiadiazole, hydroxyphenylpyridine, hydroxyphenylbenzimidazole, hydroxybenzotriazole, Hydroxyfulborane, bipyridyl, phenanthroline, phthalocyanine, porphyrin, cyclopentadiene, ⁇ -diketones, azomethines, and derivatives thereof are preferred, but are not limited thereto.
  • the electron donating dopant and the organometallic complex it is preferable to form a layer or an island in the interface region.
  • a forming method while depositing at least one of an electron donating dopant and an organometallic complex by a resistance heating vapor deposition method, an organic material as a light emitting material or an electron injection material for forming an interface region is simultaneously deposited, and an electron is deposited in the organic material.
  • a method of dispersing at least one of a donor dopant and an organometallic complex reducing dopant is preferable.
  • the dispersion concentration is usually organic substance: electron donating dopant and / or organometallic complex in a molar ratio of 100: 1 to 1: 100, preferably 5: 1 to 1: 5.
  • At least one of the electron donating dopant and the organometallic complex is formed in a layered form
  • at least one of the electron donating dopant and the organometallic complex is formed.
  • These are vapor-deposited by a resistance heating vapor deposition method alone, preferably with a layer thickness of 0.1 nm to 15 nm.
  • an electron donating dopant and an organometallic complex is formed in an island shape
  • a light emitting material or an electron injecting material which is an organic layer at the interface is formed in an island shape, and then the electron donating dopant and the organometallic complex are formed. At least one of them is vapor-deposited by a resistance heating vapor deposition method, preferably with an island thickness of 0.05 nm to 1 nm.
  • the ratio of at least one of the main component (light-emitting material or electron injection material), the electron-donating dopant, and the organometallic complex is, as a molar ratio, the main component: the electron-donating dopant.
  • / or organometallic complex 5: 1 to 1: 5, preferably 2: 1 to 1: 2.
  • the configuration other than the layer using the organic EL element material of the present invention described above is not particularly limited, and a known material or the like can be used.
  • a known material or the like can be used.
  • the layer of the element of Embodiment 1 is demonstrated easily, the material applied to the organic EL element of this invention is not limited to the following.
  • a glass plate, a polymer plate or the like can be used as the substrate.
  • the glass plate include soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfone, and polysulfone.
  • the anode is made of, for example, a conductive material, and a conductive material having a work function larger than 4 eV is suitable.
  • the conductive material include carbon, aluminum, vanadium, iron, cobalt, nickel, tungsten, silver, gold, platinum, palladium, and their alloys, ITO substrate, tin oxide used for NESA substrate, indium oxide, and the like.
  • examples thereof include metal oxides and organic conductive resins such as polythiophene and polypyrrole.
  • the anode may be formed with a layer structure of two or more layers if necessary.
  • the cathode is made of, for example, a conductive material, and a conductive material having a work function smaller than 4 eV is suitable.
  • the conductive material include, but are not limited to, magnesium, calcium, tin, lead, titanium, yttrium, lithium, ruthenium, manganese, aluminum, lithium fluoride, and alloys thereof.
  • the alloy include magnesium / silver, magnesium / indium, lithium / aluminum, and the like, but are not limited thereto.
  • the ratio of the alloy is controlled by the temperature of the vapor deposition source, the atmosphere, the degree of vacuum, etc., and is selected to an appropriate ratio.
  • the cathode may be formed with a layer structure of two or more layers, and the cathode can be produced by forming a thin film from the conductive material by a method such as vapor deposition or sputtering.
  • the transmittance of the cathode for light emission is preferably greater than 10%.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually 10 nm to 1 ⁇ m, preferably 50 to 200 nm.
  • the phosphorescent light emitting layer is formed of a material other than the organic EL element layer material of the present invention
  • a known material can be used as the material of the phosphorescent light emitting layer.
  • Japanese Patent Application No. 2005-517938 may be referred to.
  • the organic EL device of the present invention may have a fluorescent light emitting layer like the device shown in FIG. A known material can be used for the fluorescent light emitting layer.
  • the light emitting layer may be a double host (also referred to as a host / cohost). Specifically, the carrier balance in the light emitting layer may be adjusted by combining an electron transporting host and a hole transporting host in the light emitting layer. Moreover, it is good also as a double dopant.
  • each dopant emits light by adding two or more dopant materials having a high quantum yield. For example, a yellow light emitting layer may be realized by co-evaporating a host, a red dopant, and a green dopant.
  • the light emitting layer may be a single layer or a laminated structure. When the light emitting layer is stacked, the recombination region can be concentrated on the light emitting layer interface by accumulating electrons and holes at the light emitting layer interface. This improves the quantum efficiency.
  • the hole injection / transport layer is a layer that assists hole injection into the light emitting layer and transports it to the light emitting region, and has a high hole mobility and a low ionization energy.
  • a material that transports holes to the light emitting layer with lower electric field strength is preferable.
  • an electric field is applied with a hole mobility of, for example, 10 4 to 10 6 V / cm, At least 10 ⁇ 4 cm 2 / V ⁇ sec is preferable.
  • a cross-linkable material can be used as the material for the hole injection / transport layer.
  • the electron injection / transport layer is a layer that assists the injection of electrons into the light emitting layer and transports it to the light emitting region, and has a high electron mobility.
  • an electrode for example, a cathode
  • the electron injecting / transporting layer is appropriately selected with a film thickness of several nm to several ⁇ m.
  • the electron mobility is preferably at least 10 ⁇ 5 cm 2 / Vs or more when an electric field of V / cm is applied.
  • an aromatic heterocyclic compound containing one or more heteroatoms in the molecule is preferably used, and a nitrogen-containing ring derivative is particularly preferable.
  • the nitrogen-containing ring derivative is preferably an aromatic ring having a nitrogen-containing 6-membered ring or 5-membered ring skeleton, or a condensed aromatic ring compound having a nitrogen-containing 6-membered ring or 5-membered ring skeleton, such as a pyridine ring. , Pyrimidine ring, triazine ring, benzimidazole ring, phenanthroline ring, quinazoline ring and the like.
  • an organic layer having semiconductivity may be formed by doping a donor material (n) and acceptor material (p).
  • a donor material (n) and acceptor material (p) may be doped by doping a donor material (n) and acceptor material (p).
  • N doping is to dope a metal such as Li or Cs into an electron transporting material
  • P doping is to dope an acceptor material such as F4TCNQ into a hole transporting material (for example, see Japanese Patent No. 3695714).
  • each layer of the organic EL device of the present invention a known method such as a dry film forming method such as vacuum deposition, sputtering, plasma, or ion plating, or a wet film forming method such as spin coating, dipping, or flow coating is applied. be able to.
  • the thickness of each layer is not particularly limited, but must be set to an appropriate thickness. If the film thickness is too thick, a large applied voltage is required to obtain a constant light output, resulting in poor efficiency. If the film thickness is too thin, pinholes and the like are generated, and sufficient light emission luminance cannot be obtained even when an electric field is applied.
  • the normal film thickness is suitably in the range of 5 nm to 10 ⁇ m, but more preferably in the range of 10 nm to 0.2 ⁇ m.
  • the reaction mixture was concentrated, 1500 ml of dichloromethane and 3000 ml of 1N hydrochloric acid were added, and the mixture was stirred for 1 hour in an ice-water bath.
  • the organic phase was separated and dried over anhydrous magnesium sulfate, and the filtrate was concentrated.
  • the obtained solid was suspended and washed with a mixed solvent of hexane-toluene to obtain 23 g of intermediate B (yield 61%) as a white solid.
  • intermediate C 3.5 g (7 mmol), intermediate F 1.74 g (7 mmol), tris (dibenzylideneacetone) dipalladium 0.26 g (0.28 mmol), tri-t-butylphosphonium tetrafluoroborate 0 .33 g (1.12 mmol), t-butoxy sodium 0.94 g (9.8 mmol), and dehydrated xylene 50 ml were sequentially added, and the mixture was heated to reflux with stirring for 24 hours.
  • intermediate C 3.5 g (7 mmol), intermediate I 2.27 g (7 mmol), tris (dibenzylideneacetone) dipalladium 0.26 g (0.28 mmol), tri-t-butylphosphonium tetrafluoroborate 0.33 g (1.12 mmol), 0.94 g (9.8 mmol) of t-butoxy sodium, and 50 ml of dehydrated xylene were sequentially added, and the mixture was heated to reflux with stirring for 16 hours.
  • Example 1 A 25 mm ⁇ 75 mm ⁇ 1.1 mm glass substrate with an ITO transparent electrode (manufactured by Geomatic) was subjected to ultrasonic cleaning for 5 minutes in isopropyl alcohol, and further subjected to UV (Ultraviolet) ozone cleaning for 30 minutes.
  • the glass substrate with the transparent electrode thus cleaned is attached to the substrate holder of the vacuum evaporation apparatus, and first, on the surface of the glass substrate on which the transparent electrode line is formed, the transparent electrode is covered, The following compound I was vapor-deposited with a thickness of 20 nm to obtain a hole injection layer.
  • the following compound II was vapor-deposited with a thickness of 60 nm on this film to obtain a hole transport layer.
  • Compound A as a phosphorescent host material and the following compound D-1 as a phosphorescent material were co-deposited at a thickness of 50 nm to obtain a phosphorescent layer.
  • the concentration of Compound A in the phosphorescent light emitting layer was 80% by mass, and the concentration of Compound D-1 was 20% by mass.
  • the following compound H-1 was vapor-deposited with a thickness of 10 nm on this phosphorescent light-emitting layer, whereby an electron transport layer 1 was obtained.
  • the following compound III was vapor-deposited with a thickness of 10 nm to obtain the electron transport layer 2, and then a cathode was formed by sequentially laminating 1 nm thick LiF and 80 nm thick metal Al to produce an organic EL device. did. Note that LiF was formed at a rate of 1 ⁇ / min.
  • the organic EL element produced as described above was caused to emit light by direct current drive, the current density was measured, and the voltage at a current density of 1 mA / cm 2 was obtained. The results are shown in Table 1.
  • Example 2 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that Compound A was used instead of Compound H-1 as the material for the electron transport layer 1. The results are shown in Table 1.
  • Example 3 An organic EL device was produced in the same manner as in Example 1 except that Compound B was used instead of Compound A as the phosphorescent host material, and Compound B was used instead of Compound H-1 as the material for the electron transport layer 1. ,evaluated. The results are shown in Table 1.
  • Example 4 An organic EL device was prepared in the same manner as in Example 1 except that Compound C was used instead of Compound A as the phosphorescent host material and Compound C was used instead of Compound H-1 as the material for the electron transport layer 1. ,evaluated. The results are shown in Table 1.
  • Example 5 An organic EL device was produced in the same manner as in Example 1 except that Compound D was used instead of Compound A as the phosphorescent host material, and Compound D was used instead of Compound H-1 as the material for the electron transport layer 1. ,evaluated. The results are shown in Table 1.
  • Comparative Example 1 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that Compound H-1 was used instead of Compound A as the phosphorescent host material. The results are shown in Table 1.
  • Comparative Example 2 Organic EL in the same manner as in Example 1 except that Compound H-2 was used instead of Compound A as the phosphorescent host material and Compound H-2 was used instead of Compound H-1 as the material for the electron transport layer 1. A device was fabricated and evaluated. The results are shown in Table 1.
  • Comparative Example 3 Organic EL in the same manner as in Example 1 except that Compound H-4 was used instead of Compound A as the phosphorescent host material and Compound H-4 was used instead of Compound H-1 as the material for the electron transport layer 1.
  • a device was fabricated and evaluated. The results are shown in Table 1.
  • Example 6 An organic EL device was prepared in the same manner as in Example 1, except that Compound H-1 was used instead of Compound A as the phosphorescent host material, and Compound A was used instead of Compound H-1 as the material for the electron transport layer 1. Prepared and evaluated. The results are shown in Table 2.
  • Example 7 An organic EL device was prepared in the same manner as in Example 1, except that Compound H-1 was used instead of Compound A as the phosphorescent host material, and Compound B was used instead of Compound H-1 as the material for the electron transport layer 1. Prepared and evaluated. The results are shown in Table 2.
  • Example 8 An organic EL device was prepared in the same manner as in Example 1, except that Compound H-1 was used instead of Compound A as the phosphorescent host material, and Compound C was used instead of Compound H-1 as the material for the electron transport layer 1. Prepared and evaluated. The results are shown in Table 2.
  • Example 9 An organic EL device was prepared in the same manner as in Example 1 except that Compound H-1 was used instead of Compound A as the phosphorescent host material, and Compound D was used instead of Compound H-1 as the material for the electron transport layer 1. Prepared and evaluated. The results are shown in Table 2.
  • Comparative Example 4 Organic EL in the same manner as in Example 1 except that Compound H-1 was used instead of Compound A as the phosphorescent host material and Compound H-2 was used instead of Compound H-1 as the material for the electron transport layer 1. A device was fabricated and evaluated. The results are shown in Table 2.
  • Comparative Example 5 Organic EL in the same manner as in Example 1 except that Compound H-1 was used instead of Compound A as the phosphorescent host material, and Compound H-4 was used instead of Compound H-1 as the material for the electron transport layer 1. A device was fabricated and evaluated. The results are shown in Table 2.
  • Example 10 An organic EL device was prepared in the same manner as in Example 1, except that Compound H-3 was used instead of Compound A as the phosphorescent host material, and Compound A was used instead of Compound H-1 as the material for the electron transport layer 1. Prepared and evaluated. The results are shown in Table 2.
  • Example 11 An organic EL device was prepared in the same manner as in Example 1 except that Compound H-3 was used instead of Compound A as the phosphorescent host material, and Compound B was used instead of Compound H-1 as the material for the electron transport layer 1. Prepared and evaluated. The results are shown in Table 2.
  • Example 12 An organic EL device was prepared in the same manner as in Example 1 except that Compound H-3 was used instead of Compound A as the phosphorescent host material, and Compound C was used instead of Compound H-1 as the material for the electron transport layer 1. Prepared and evaluated. The results are shown in Table 2.
  • Comparative Example 6 Organic EL in the same manner as in Example 1 except that Compound H-3 was used instead of Compound A as the phosphorescent host material and Compound H-2 was used instead of Compound H-1 as the material for the electron transport layer 1. A device was fabricated and evaluated. The results are shown in Table 2.
  • Comparative Example 7 Organic EL device in the same manner as in Example 1 except that Compound H-3 was used instead of Compound A as the host material, and Compound H-4 was used instead of Compound H-1 as the material for the electron transport layer 1 Were made and evaluated. The results are shown in Table 2.
  • the organic EL device produced as described above was caused to emit light by direct current drive, the luminance and current density were measured, and the light emission efficiency (external quantum efficiency) at a current density of 1 mA / cm 2 was obtained. Furthermore, the brightness
  • the nitrogen-containing heteroaromatic ring compound of the present invention is suitable for a material for an organic EL device, for example, a host material for an emission layer or an electron transport layer material.
  • the organic EL element material of the present invention that can also be used for blue phosphorescent light emitting elements can be used for organic semiconductors, organic solar cells, and the like in addition to organic EL elements.
  • the organic EL device of the present invention can be used for a flat light emitter such as a flat panel display of a wall-mounted television, a light source such as a copying machine, a printer, a backlight of a liquid crystal display or an instrument, a display board, a marker lamp, an illumination device, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

A nitrogen-containing heteroaromatic ring compound represented by formula (1).

Description

含窒素ヘテロ芳香族環化合物、それを用いた有機エレクトロルミネッセンス素子Nitrogen-containing heteroaromatic ring compound and organic electroluminescence device using the same
 本発明は、含窒素ヘテロ芳香族環化合物、及びそれを用いた有機エレクトロルミネッセンス素子に関する。 The present invention relates to a nitrogen-containing heteroaromatic ring compound and an organic electroluminescence device using the same.
 有機エレクトロルミネッセンス(EL)素子には、蛍光型及び燐光型があり、それぞれの発光メカニズムに応じ、最適な素子設計が検討されている。燐光型の有機EL素子については、その発光特性から、蛍光素子技術の単純な転用では高性能な素子が得られないことが知られている。
 燐光発光は、三重項励起子を利用した発光であるため、発光層に用いる化合物のエネルギーギャップが大きくなくてはならない。何故なら、ある化合物のエネルギーギャップ(以下、一重項エネルギーともいう。)の値は、通常、その化合物の三重項エネルギー(本発明では、最低励起三重項状態と基底状態とのエネルギー差をいう。)の値よりも大きいからである。
 このような燐光型の有機EL素子の材料として、複素環を複数結合した構造を有する化合物が検討されている(特許文献1~6参照。)。
Organic electroluminescence (EL) elements include a fluorescent type and a phosphorescent type, and an optimum element design has been studied according to each light emission mechanism. With respect to phosphorescent organic EL elements, it is known from their light emission characteristics that high-performance elements cannot be obtained by simple diversion of fluorescent element technology.
Since phosphorescence emission is emission using triplet excitons, the energy gap of the compound used for the light emitting layer must be large. This is because the value of the energy gap (hereinafter also referred to as singlet energy) of a compound usually refers to the triplet energy of the compound (in the present invention, the energy difference between the lowest excited triplet state and the ground state). This is because it is larger than the value of).
As materials for such phosphorescent organic EL elements, compounds having a structure in which a plurality of heterocycles are bonded have been studied (see Patent Documents 1 to 6).
国際公開第WO2008-156105号International Publication No. WO2008-156105 国際公開第WO2007-77810号International Publication No. WO2007-77810 国際公開第WO2008-140114号International Publication No. WO2008-140114 国際公開第WO2008-146838号International Publication No. WO2008-146838 特開2007-180147号JP 2007-180147 A 国際公開第WO2011-19156号International Publication No. WO2011-19156
 青色発光する燐光型の有機EL素子の場合、緑~赤色発光する燐光型の有機EL素子と比べて、発光層やその周辺層に三重項エネルギーが大きい化合物を使用する必要がある。具体的に、青色の燐光発光を得るためには、発光層に使用するホスト材料の三重項エネルギーは3.0eV以上であることが理想である。このような材料を得るためには、蛍光型素子用の材料や、緑~赤色発光する燐光型素子に用いる材料とは異なる、新たな思想による分子設計が必要であった。 In the case of a phosphorescent organic EL element that emits blue light, it is necessary to use a compound having a large triplet energy in the light emitting layer and its peripheral layer as compared with a phosphorescent organic EL element that emits green to red light. Specifically, in order to obtain blue phosphorescence, it is ideal that the triplet energy of the host material used for the light emitting layer is 3.0 eV or more. In order to obtain such a material, a molecular design based on a new concept different from materials for fluorescent elements and materials used for phosphorescent elements emitting green to red light is necessary.
 本発明者らは、キャリア注入性に優れた含窒素ヘテロ芳香族環を含み少なくとも4つの複素環が結合した構造を有し、かつ、複素環のうち2つ以上は含窒素ヘテロ芳香族環とすることにより、高い三重項エネルギーを保ちつつ、適切な置換基の導入によって、材料の劣化を抑制できる材料を見出した。
 本発明によれば、以下の含窒素ヘテロ芳香族環化合物等が提供される。
1.下記式(1)で表される含窒素ヘテロ芳香族環化合物。
Figure JPOXMLDOC01-appb-C000001
[式(1)中、
 Xは酸素原子又は硫黄原子を表し、
 Y11~Y18、Y21~Y28及びY31~Y38はそれぞれ、CR又は窒素原子を表し、
 Rは、単結合、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の環形成炭素数3~20のシクロアルコキシ基、置換もしくは無置換の環形成炭素数6~18の芳香族炭化水素環、置換もしくは無置換の環形成炭素数6~18のアリールオキシ基、置換もしくは無置換の環形成原子数5~18のヘテロ芳香族環、置換もしくは無置換のアミノ基、フッ素原子、置換もしくは無置換の炭素数1~20のフルオロアルキル基、置換もしくは無置換の炭素数1~20のフルオロアルコキシ基、又はシアノ基を表し、複数のCRが存在する場合、Rはそれぞれ、同一又は異なっていてもよく、
 A及びAは、それぞれ、単結合、酸素原子、硫黄原子、又は下記の式(a)~(e)で示される基であり、
Figure JPOXMLDOC01-appb-C000002
 R~Rは、それぞれ、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の環形成炭素数3~20のシクロアルコキシ基、置換もしくは無置換の環形成炭素数6~18の芳香族炭化水素環、置換もしくは無置換の環形成炭素数6~18のアリールオキシ基、置換もしくは無置換の環形成原子数5~18のヘテロ芳香族環、置換もしくは無置換のアミノ基、フッ素原子、置換もしくは無置換の炭素数1~20のフルオロアルキル基、置換もしくは無置換の炭素数1~20のフルオロアルコキシ基、又はシアノ基を表し、
 HArは、置換もしくは無置換の環形成原子数5~18の単環もしくは縮合環の含窒素芳香族環、置換基を有するジベンゾフラン環、又は置換もしくは無置換のジベンゾチオフェン環を表す。]
The inventors of the present invention have a structure including a nitrogen-containing heteroaromatic ring excellent in carrier injection property and having at least four heterocycles bonded thereto, and at least two of the heterocycles are nitrogen-containing heteroaromatic rings and Thus, the present inventors have found a material that can suppress deterioration of the material by introducing an appropriate substituent while maintaining high triplet energy.
According to the present invention, the following nitrogen-containing heteroaromatic ring compounds and the like are provided.
1. A nitrogen-containing heteroaromatic ring compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000001
[In Formula (1),
X represents an oxygen atom or a sulfur atom,
Y 11 to Y 18 , Y 21 to Y 28 and Y 31 to Y 38 each represent CR 1 or a nitrogen atom;
R 1 is a single bond, a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms, a substituted or unsubstituted carbon atom having 1 to 20 alkoxy groups, substituted or unsubstituted cycloalkoxy groups having 3 to 20 ring carbon atoms, substituted or unsubstituted aromatic hydrocarbon rings having 6 to 18 ring carbon atoms, substituted or unsubstituted ring carbon atoms 6-18 aryloxy group, substituted or unsubstituted heteroaromatic ring having 5 to 18 ring atoms, substituted or unsubstituted amino group, fluorine atom, substituted or unsubstituted fluoroalkyl having 1 to 20 carbon atoms group, a substituted or unsubstituted fluoroalkoxy group having 1 to 20 carbon atoms, or a cyano group, when a plurality of CR 1 is present, R 1 is each the same or different Well,
A 2 and A 3 are each a single bond, an oxygen atom, a sulfur atom, or a group represented by the following formulas (a) to (e):
Figure JPOXMLDOC01-appb-C000002
R 2 to R 6 are each a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms, or a substituted or unsubstituted carbon number. 1-20 alkoxy group, substituted or unsubstituted cycloalkoxy group having 3-20 carbon atoms, substituted or unsubstituted aromatic hydrocarbon ring having 6-18 carbon atoms, substituted or unsubstituted ring formation Aryloxy group having 6 to 18 carbon atoms, substituted or unsubstituted heteroaromatic ring having 5 to 18 ring atoms, substituted or unsubstituted amino group, fluorine atom, substituted or unsubstituted carbon atoms having 1 to 20 carbon atoms Represents a fluoroalkyl group, a substituted or unsubstituted fluoroalkoxy group having 1 to 20 carbon atoms, or a cyano group;
HAr represents a substituted or unsubstituted monocyclic or condensed nitrogen-containing aromatic ring having 5 to 18 ring atoms, a dibenzofuran ring having a substituent, or a substituted or unsubstituted dibenzothiophene ring. ]
 本発明の含窒素ヘテロ芳香族環化合物を発光層に用いることにより、低電圧な燐光発光有機EL素子が得られる。また、本発明の化合物を電子輸送層の材料として用いることにより、高効率かつ長寿命な燐光発光有機EL素子が得られる。 By using the nitrogen-containing heteroaromatic ring compound of the present invention for the light emitting layer, a low voltage phosphorescent organic EL device can be obtained. Further, by using the compound of the present invention as a material for the electron transport layer, a highly efficient and long-lived phosphorescent organic EL device can be obtained.
本発明の有機EL素子の一実施形態の層構成を示す概略図である。It is the schematic which shows the layer structure of one Embodiment of the organic EL element of this invention.
 本発明の含窒素ヘテロ芳香族環化合物は、下記式(1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000003
The nitrogen-containing heteroaromatic ring compound of the present invention is a compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000003
 式(1)で表される含窒素ヘテロ芳香族環化合物は、少なくとも4つ複素環を結合した構造を有し、かつ、複素環のうち2つ以上は含窒素ヘテロ芳香族環である。式(1)で示す含窒素ヘテロ芳香族環及び中心の縮合ヘテロ環はいずれも高い三重項エネルギーを有しており、これらを適切な結合で連結することにより、燐光発光に適した構造となる。 The nitrogen-containing heteroaromatic ring compound represented by the formula (1) has a structure in which at least four heterocycles are bonded, and two or more of the heterocycles are nitrogen-containing heteroaromatic rings. Both the nitrogen-containing heteroaromatic ring represented by the formula (1) and the central condensed heterocycle have high triplet energy, and by connecting them with an appropriate bond, a structure suitable for phosphorescence emission is obtained. .
 式(1)において、Xは酸素原子又は硫黄原子を表す。Xは酸素原子であることが好ましい。
 Y11~Y18、Y21~Y28及びY31~Y38はそれぞれ、CR又は窒素原子を表す。
In the formula (1), X represents an oxygen atom or a sulfur atom. X is preferably an oxygen atom.
Y 11 to Y 18 , Y 21 to Y 28 and Y 31 to Y 38 each represent CR 1 or a nitrogen atom.
 Rは、単結合、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の環形成炭素数3~20のシクロアルコキシ基、置換もしくは無置換の環形成炭素数6~18の芳香族炭化水素環、置換もしくは無置換の環形成炭素数6~18のアリールオキシ基、置換もしくは無置換の環形成原子数5~18のヘテロ芳香族環、置換もしくは無置換のアミノ基、フッ素原子、置換もしくは無置換の炭素数1~20のフルオロアルキル基、又はシアノ基を表す。 R 1 is a single bond, a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms, a substituted or unsubstituted carbon atom having 1 to 20 alkoxy groups, substituted or unsubstituted cycloalkoxy groups having 3 to 20 ring carbon atoms, substituted or unsubstituted aromatic hydrocarbon rings having 6 to 18 ring carbon atoms, substituted or unsubstituted ring carbon atoms 6-18 aryloxy group, substituted or unsubstituted heteroaromatic ring having 5 to 18 ring atoms, substituted or unsubstituted amino group, fluorine atom, substituted or unsubstituted fluoroalkyl having 1 to 20 carbon atoms Represents a group or a cyano group.
 尚、Y11~Y14の1つは単結合であるRを有し、含窒素ヘテロ芳香族環の窒素原子と結合する。同様に、Y15~Y18の1つ及びY31~Y34の1つは、互いに結合する単結合を有する。
 複数のCRが存在する場合、Rはそれぞれ、同一又は異なっていてもよい。
One of Y 11 to Y 14 has a single bond R 1 and is bonded to the nitrogen atom of the nitrogen-containing heteroaromatic ring. Similarly, one of Y 15 to Y 18 and one of Y 31 to Y 34 have a single bond that is bonded to each other.
When a plurality of CR 1 are present, each R 1 may be the same or different.
 A及びAは、それぞれ、単結合、酸素原子、硫黄原子、又は下記の式(a)~(e)のいずれかで表される基である。
Figure JPOXMLDOC01-appb-C000004
A 2 and A 3 are each a single bond, an oxygen atom, a sulfur atom, or a group represented by any of the following formulas (a) to (e).
Figure JPOXMLDOC01-appb-C000004
 R~Rは、それぞれ、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の環形成炭素数3~20のシクロアルコキシ基、置換もしくは無置換の環形成炭素数6~18の芳香族炭化水素環、置換もしくは無置換の環形成炭素数6~18のアリールオキシ基、置換もしくは無置換の環形成原子数5~18のヘテロ芳香族環、置換もしくは無置換のアミノ基、フッ素原子、置換もしくは無置換の炭素数1~20のフルオロアルキル基、置換もしくは無置換の炭素数1~20のフルオロアルコキシ基、又はシアノ基を表す。
 A及びAは、共に単結合であることが好ましい。
R 2 to R 6 are each a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms, or a substituted or unsubstituted carbon number. 1-20 alkoxy group, substituted or unsubstituted cycloalkoxy group having 3-20 carbon atoms, substituted or unsubstituted aromatic hydrocarbon ring having 6-18 carbon atoms, substituted or unsubstituted ring formation Aryloxy group having 6 to 18 carbon atoms, substituted or unsubstituted heteroaromatic ring having 5 to 18 ring atoms, substituted or unsubstituted amino group, fluorine atom, substituted or unsubstituted carbon atoms having 1 to 20 carbon atoms It represents a fluoroalkyl group, a substituted or unsubstituted fluoroalkoxy group having 1 to 20 carbon atoms, or a cyano group.
A 2 and A 3 are preferably both single bonds.
 HArは、置換もしくは無置換の環形成原子数5~18の単環もしくは縮合環の含窒素芳香族環、置換基を有するジベンゾフラン環、又は置換もしくは無置換のジベンゾチオフェン環を表す。具体的には、下記式(A-1)で表される含窒素ヘテロ芳香族環、及び下記式(A-2)で表されるヘテロ芳香族環が好ましい。 HAr represents a substituted or unsubstituted monocyclic or condensed nitrogen-containing aromatic ring having 5 to 18 ring atoms, a dibenzofuran ring having a substituent, or a substituted or unsubstituted dibenzothiophene ring. Specifically, a nitrogen-containing heteroaromatic ring represented by the following formula (A-1) and a heteroaromatic ring represented by the following formula (A-2) are preferable.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(A-1)中、Y1a~Y1eはそれぞれ、CR1a又は窒素原子を表す。Y1a~Y1eの少なくとも1つは窒素原子である。
 R1aは、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の環形成炭素数3~20のシクロアルコキシ基、置換もしくは無置換の環形成炭素数6~18の芳香族炭化水素環、置換もしくは無置換の環形成炭素数6~18のアリールオキシ基、置換もしくは無置換の環形成原子数5~18のヘテロ芳香族環、置換もしくは無置換のアミノ基、フッ素原子、置換もしくは無置換の炭素数1~20のフルオロアルキル基、置換もしくは無置換の炭素数1~20のフルオロアルコキシ基、置換もしくは無置換の炭素数12~30のジアリールホスフィノ基、置換もしくは無置換の炭素数12~30のジアリールホスフィンオキシド基、置換もしくは無置換の炭素数18~30のジアリールホスフィノアリール基又はシアノ基を表す。複数のCR1aが存在する場合、R1aはそれぞれ、同一又は異なっていてもよい。
In formula (A-1), Y 1a to Y 1e each represents CR 1a or a nitrogen atom. At least one of Y 1a to Y 1e is a nitrogen atom.
R 1a is a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms. Group, substituted or unsubstituted cycloalkoxy group having 3 to 20 ring carbon atoms, substituted or unsubstituted aromatic hydrocarbon ring having 6 to 18 ring carbon atoms, substituted or unsubstituted ring carbon atoms having 6 to 18 carbon atoms Aryloxy group, substituted or unsubstituted heteroaromatic ring having 5 to 18 ring atoms, substituted or unsubstituted amino group, fluorine atom, substituted or unsubstituted fluoroalkyl group having 1 to 20 carbon atoms, substituted Or an unsubstituted fluoroalkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted diarylphosphino group having 12 to 30 carbon atoms, a substituted or unsubstituted carbon number 12 Represents a diarylphosphine oxide group having ˜30, a substituted or unsubstituted diarylphosphinoaryl group having 18 to 30 carbon atoms, or a cyano group. When a plurality of CR 1a are present, each R 1a may be the same or different.
 上記式(A-1)の示す含窒素ヘテロ芳香族環としては、下記の構造が挙げられる。
Figure JPOXMLDOC01-appb-C000006
Examples of the nitrogen-containing heteroaromatic ring represented by the above formula (A-1) include the following structures.
Figure JPOXMLDOC01-appb-C000006
 上記式(A-1)の示す含窒素ヘテロ芳香族環としては、(a)、(b)、(c)、(e)、(g)又は(j)が好ましく、(a)又は(b)がより好ましい。 The nitrogen-containing heteroaromatic ring represented by the above formula (A-1) is preferably (a), (b), (c), (e), (g) or (j), and (a) or (b ) Is more preferable.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(A-2)中、Y2a~Y2iはそれぞれ、CR2a又は窒素原子を表す。
 Xは、酸素原子、硫黄原子又は-NR2bを表す。
 R2aは、単結合、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の環形成炭素数3~20のシクロアルコキシ基、置換もしくは無置換の環形成炭素数6~18の芳香族炭化水素環、置換もしくは無置換の環形成炭素数6~18のアリールオキシ基、置換もしくは無置換の環形成原子数5~18のヘテロ芳香族環、置換もしくは無置換のアミノ基、フッ素原子、置換もしくは無置換の炭素数1~20のフルオロアルキル基、置換もしくは無置換の炭素数1~20のフルオロアルコキシ基、置換もしくは無置換の炭素数12~30のジアリールホスフィノ基、置換もしくは無置換の炭素数12~30のジアリールホスフィンオキシド基、置換もしくは無置換の炭素数18~30のジアリールホスフィノアリール基又はシアノ基を表し、複数のCR2aが存在する場合、R2aはそれぞれ、同一又は異なっていてもよい。
 Xが酸素原子を表すと同時にR2aが全て単結合もしくは水素原子を表す場合は、Y2a~Y2iの少なくとも1つは窒素原子を表す。
 R2bは、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、置換もしくは無置換の環形成炭素数6~18の芳香族炭化水素環、又は、置換もしくは無置換の環形成原子数5~18のヘテロ芳香族環を表す。
In formula (A-2), Y 2a to Y 2i each represent CR 2a or a nitrogen atom.
X 2 represents an oxygen atom, a sulfur atom or —NR 2b .
R 2a is a single bond, a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms, a substituted or unsubstituted carbon number of 1 to 20 alkoxy groups, substituted or unsubstituted cycloalkoxy groups having 3 to 20 ring carbon atoms, substituted or unsubstituted aromatic hydrocarbon rings having 6 to 18 ring carbon atoms, substituted or unsubstituted ring carbon atoms 6-18 aryloxy group, substituted or unsubstituted heteroaromatic ring having 5 to 18 ring atoms, substituted or unsubstituted amino group, fluorine atom, substituted or unsubstituted fluoroalkyl having 1 to 20 carbon atoms Group, substituted or unsubstituted fluoroalkoxy group having 1 to 20 carbon atoms, substituted or unsubstituted diarylphosphino group having 12 to 30 carbon atoms, substituted or unsubstituted carbon Represents a diarylphosphine oxide group having a prime number of 12 to 30, a substituted or unsubstituted diarylphosphinoaryl group having a carbon number of 18 to 30, or a cyano group, and when a plurality of CR 2a are present, each R 2a is the same or different. May be.
When X 2 represents an oxygen atom and R 2a all represents a single bond or a hydrogen atom, at least one of Y 2a to Y 2i represents a nitrogen atom.
R 2b represents a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms, or a substituted or unsubstituted aromatic group having 6 to 18 ring carbon atoms. It represents a hydrocarbon ring or a substituted or unsubstituted heteroaromatic ring having 5 to 18 ring atoms.
 式(A-2)において、Y2gがCR2aであることが好ましく、その場合のR2aは、置換もしくは無置換の環形成炭素数6~18の芳香族炭化水素環、置換もしくは無置換の環形成炭素数6~18のアリールオキシ基、置換もしくは無置換の環形成原子数5~18のヘテロ芳香族環、又はシアノ基であることが好ましい。
 また、式(A-2)において、Y2a~Y2iの少なくとも1つが窒素原子であることが好ましい。
In formula (A-2), Y 2g is preferably CR 2a , in which case R 2a is a substituted or unsubstituted aromatic hydrocarbon ring having 6 to 18 ring carbon atoms, a substituted or unsubstituted ring A aryloxy group having 6 to 18 ring carbon atoms, a substituted or unsubstituted heteroaromatic ring having 5 to 18 ring atoms, or a cyano group is preferable.
In Formula (A-2), at least one of Y 2a to Y 2i is preferably a nitrogen atom.
 式(1)で表される含窒素ヘテロ芳香族環化合物のうち、下記式(2)で表される含窒素ヘテロ芳香族環化合物が好ましい。
Figure JPOXMLDOC01-appb-C000008
[式(2)中、X、Y11、Y13~Y18、Y21~Y28、Y31~Y38及びHArは、式(1)と同様である。]
Of the nitrogen-containing heteroaromatic ring compounds represented by the formula (1), a nitrogen-containing heteroaromatic ring compound represented by the following formula (2) is preferable.
Figure JPOXMLDOC01-appb-C000008
[In the formula (2), X, Y 11 , Y 13 to Y 18 , Y 21 to Y 28 , Y 31 to Y 38 and HAr are the same as in the formula (1). ]
 式(2)の化合物は、式(1)のY12のRが単結合であるものに相当し、この単結合によって含窒素ヘテロ芳香族環の窒素原子とX原子を有する複素環が結合している。このような構造を有することにより、高い三重項エネルギーを保つことができ、燐光発光素子のホスト材料として好適となる。 The compound of the formula (2) corresponds to the compound in which R 1 of Y 12 in the formula (1) is a single bond, and the nitrogen bond of the nitrogen-containing heteroaromatic ring and the heterocycle having an X atom are bonded by this single bond. is doing. By having such a structure, high triplet energy can be maintained, which is suitable as a host material for a phosphorescent light-emitting element.
 式(2)の化合物でも、下記式(3)~(6)のいずれかで表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000009
[式中、X、Y11、Y13~Y18、Y21~Y28、Y31~Y38、HArは、式(1)と同様である。]
Among the compounds of formula (2), those represented by any of the following formulas (3) to (6) are preferred.
Figure JPOXMLDOC01-appb-C000009
[Wherein, X, Y 11 , Y 13 to Y 18 , Y 21 to Y 28 , Y 31 to Y 38 , and HAr are the same as those in formula (1). ]
 上記の化合物のうち、式(3)で表される化合物は、三重項エネルギーが高く、また、合成が比較的容易である。 Among the above compounds, the compound represented by the formula (3) has a high triplet energy and is relatively easy to synthesize.
 以下、上述した式(1)~(6)の各基の例について説明する。
 本明細書において、芳香族炭化水素環は、単環の芳香族炭化水素環基及び複数の炭化水素環が縮合した縮合芳香族炭化水素環基を含み、ヘテロ芳香族環は、単環のヘテロ芳香族環基、並びに複数のヘテロ芳香族環が縮合したヘテロ縮合芳香族環基、及び芳香族炭化水素環とヘテロ芳香族環とが縮合したヘテロ縮合芳香族環基を含む。
Hereinafter, examples of the groups of the above formulas (1) to (6) will be described.
In this specification, the aromatic hydrocarbon ring includes a monocyclic aromatic hydrocarbon ring group and a condensed aromatic hydrocarbon ring group in which a plurality of hydrocarbon rings are condensed, and the heteroaromatic ring is a monocyclic heterocycle. An aromatic ring group, a hetero-fused aromatic ring group in which a plurality of heteroaromatic rings are condensed, and a hetero-fused aromatic ring group in which an aromatic hydrocarbon ring and a heteroaromatic ring are condensed are included.
 本発明において、「置換もしくは無置換の・・・」の「無置換」とは、水素原子が結合していることを意味する。また、水素原子とは、中性子数が異なる同位体、即ち、軽水素(protium)、重水素(deuterium)、三重水素(tritium)、を包含する。 In the present invention, “unsubstituted” in “substituted or unsubstituted...” Means that a hydrogen atom is bonded. The hydrogen atom includes isotopes having different numbers of neutrons, that is, light hydrogen (protium), deuterium (deuterium), and tritium.
 炭素数1~20のアルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、ネオペンチル基、1-メチルペンチル基、2-メチルペンチル基、1-ペンチルヘキシル基、1-ブチルペンチル基、1-ヘプチルオクチル基、3-メチルペンチル基等が挙げられ、このうち炭素数1~6のものが好ましい。 Specific examples of the alkyl group having 1 to 20 carbon atoms include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, n-pentyl group, n -Hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl, n-tridecyl, n-tetradecyl, n-pentadecyl, n -Hexadecyl group, n-heptadecyl group, n-octadecyl group, neopentyl group, 1-methylpentyl group, 2-methylpentyl group, 1-pentylhexyl group, 1-butylpentyl group, 1-heptyloctyl group, 3-methyl Examples thereof include a pentyl group, and among these, those having 1 to 6 carbon atoms are preferred.
 環形成炭素数3~20のシクロアルキル基の具体例としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、ノルボルニル基、アダマンチル基等が挙げられ、このうち環形成炭素数5又は6のものが好ましい。
 尚、「環形成炭素」とは飽和環、不飽和環、又は芳香環を構成する炭素原子を意味する。
Specific examples of the cycloalkyl group having 3 to 20 ring carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a norbornyl group, an adamantyl group, and the like. Those of 5 or 6 are preferred.
The “ring-forming carbon” means a carbon atom constituting a saturated ring, an unsaturated ring, or an aromatic ring.
 炭素数1~20のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基等が挙げられ、炭素数が3以上のものは直鎖状、環状又は分岐を有するものでもよく、このうち炭素数1~6のものが好ましい。 Examples of the alkoxy group having 1 to 20 carbon atoms include methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group and the like, and those having 3 or more carbon atoms are linear, cyclic or branched Among them, those having 1 to 6 carbon atoms are preferable.
 環形成炭素数3~20のシクロアルコキシ基としては、シクロペントキシ基、シクロヘキシルオキシ基等が挙げられ、このうち環形成炭素数5又は6のものが好ましい。 Examples of the cycloalkoxy group having 3 to 20 ring carbon atoms include cyclopentoxy group, cyclohexyloxy group, etc. Among them, those having 5 or 6 ring carbon atoms are preferable.
 環形成炭素数6~18の芳香族炭化水素環(アリール基)の具体例としては、フェニル基、トリル基、キシリル基、メシチル基、o-ビフェニル基、m-ビフェニル基、p-ビフェニル基、o-ターフェニル基、m-ターフェニル基、p-ターフェニル基、ナフチル基、フェナントリル基、トリフェニレン基等が挙げられる。中でもフェニル基、m-ビフェニル基、m-ターフェニル基が好ましい。 Specific examples of the aromatic hydrocarbon ring (aryl group) having 6 to 18 ring carbon atoms include phenyl group, tolyl group, xylyl group, mesityl group, o-biphenyl group, m-biphenyl group, p-biphenyl group, Examples thereof include o-terphenyl group, m-terphenyl group, p-terphenyl group, naphthyl group, phenanthryl group, triphenylene group and the like. Of these, a phenyl group, m-biphenyl group, and m-terphenyl group are preferred.
 環形成炭素数6~18のアリールオキシ基としては、フェノキシ基、ビフェニルオキシ基等が挙げられ、フェノキシ基が好ましい。 Examples of the aryloxy group having 6 to 18 ring carbon atoms include a phenoxy group and a biphenyloxy group, and a phenoxy group is preferable.
 環形成原子数5~18のヘテロ芳香族環(ヘテロアリール基)の具体例としては、ピロリル基、ピラジニル基、ピリジニル基、ピリミジニル基、ピリダジニル基、トリアジニル基、インドリル基、イソインドリル基、フリル基、ベンゾフラニル基、イソベンゾフラニル基、ジベンゾフラニル基、ジベンゾチオフェニル基、キノリル基、イソキノリル基、キノキサリニル基、カルバゾリル基、アザカルバゾリル基、フェナントリジニル基、アクリジニル基、フェナントロリニル基、チエニル基、ピロリジニル基、ジオキサニル基、ピペリジニル基、モルフォリニル基、ピペラジニル基、カルバゾリル基、チオフェニル基、オキサゾリル基、オキサジアゾリル基、ベンゾオキサゾリル基、チアゾリル基、チアジアゾリル基、ベンゾチアゾリル基、トリアゾリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラニル基、ベンゾ[c]ジベンゾフラニル基等が挙げられ、このうち環形成原子数6~14のものが好ましい。
 尚、「環形成原子」とは飽和環、不飽和環、又は芳香環を構成する原子を意味する。
Specific examples of the heteroaromatic ring having 5 to 18 ring atoms (heteroaryl group) include pyrrolyl group, pyrazinyl group, pyridinyl group, pyrimidinyl group, pyridazinyl group, triazinyl group, indolyl group, isoindolyl group, furyl group, Benzofuranyl group, isobenzofuranyl group, dibenzofuranyl group, dibenzothiophenyl group, quinolyl group, isoquinolyl group, quinoxalinyl group, carbazolyl group, azacarbazolyl group, phenanthridinyl group, acridinyl group, phenanthrolinyl group, thienyl Group, pyrrolidinyl group, dioxanyl group, piperidinyl group, morpholinyl group, piperazinyl group, carbazolyl group, thiophenyl group, oxazolyl group, oxadiazolyl group, benzoxazolyl group, thiazolyl group, thiadiazolyl group, benzothiazolyl group, Riazoriru group, an imidazolyl group, benzimidazolyl group, pyranyl group, benzo [c] dibenzofuranyl group, and the like, are preferred for these ring atoms 6 to 14.
The “ring-forming atom” means an atom constituting a saturated ring, an unsaturated ring, or an aromatic ring.
 置換アミノ基は、-N(R)(R)と表され、(R)及び(R)の例としては、上述したアルキル基、アリール基又はヘテロアリール基が挙げられる。具体的には、ジメチルアミノ基、ジフェニルアミノ基、ジビフェニルアミノ基、フェニルジベンゾフラニルアミノ基、ジベンゾフラニルビフェニルアミノ基、ジ(N-フェニル)カルバゾリルアミノ基等がある。 The substituted amino group is represented by —N (R a ) (R b ), and examples of (R a ) and (R b ) include the alkyl group, aryl group, and heteroaryl group described above. Specific examples include a dimethylamino group, a diphenylamino group, a dibiphenylamino group, a phenyl dibenzofuranylamino group, a dibenzofuranylbiphenylamino group, and a di (N-phenyl) carbazolylamino group.
 炭素数1~20のフルオロアルキル基としては、上述した炭素数1~20のアルキル基に1つ以上のフッ素原子が置換した基が挙げられ、具体的には、トリフルオロメチル基、ペンタフルオロエチル基、2,2,2-トリフルオロエチル基等が好ましい。
 炭素数1~20のフルオロアルコキシ基としては、上述した炭素数1~20のアルコキシ基に1つ以上のフッ素原子が置換した基が挙げられ、具体的には、トリフルオロメトキシ基、ペンタフルオロエトキシ基、2,2,2-トリフルオロエトキシ基等が好ましい。
Examples of the fluoroalkyl group having 1 to 20 carbon atoms include groups in which one or more fluorine atoms are substituted on the above alkyl group having 1 to 20 carbon atoms. Specific examples include a trifluoromethyl group, pentafluoroethyl group, and the like. Group, 2,2,2-trifluoroethyl group and the like are preferable.
Examples of the fluoroalkoxy group having 1 to 20 carbon atoms include groups in which one or more fluorine atoms are substituted on the above-described alkoxy group having 1 to 20 carbon atoms. Specific examples include trifluoromethoxy groups, pentafluoroethoxy groups. Group, 2,2,2-trifluoroethoxy group and the like are preferable.
 炭素数12~30のジアリールホスフィノ基としては、ホスフィノ基に上述した芳香族炭化水素環(アリール基)が置換した基が挙げられ、具体的には、ジフェニルホスフィノ基等が好ましい。
 炭素数12~30のジアリールホスフィンオキシド基としては、ホスフィンオキシド基に上述した芳香族炭化水素環(アリール基)が置換した基が挙げられ、具体的には、ジフェニルホスフィンオキシド基等が好ましい。
 炭素数18~30のジアリールホスフィノアリール基としては、ホスフィノアリール基のホスフィノ基に上述した芳香族炭化水素環(アリール基)が置換した基が挙げられ、具体的には、ジフェニルホスフィノフェニル基等が好ましい。
Examples of the diarylphosphino group having 12 to 30 carbon atoms include groups in which the above-described aromatic hydrocarbon ring (aryl group) is substituted on the phosphino group, and specifically, a diphenylphosphino group and the like are preferable.
Examples of the diarylphosphine oxide group having 12 to 30 carbon atoms include groups in which the above-described aromatic hydrocarbon ring (aryl group) is substituted on the phosphine oxide group. Specifically, a diphenylphosphine oxide group and the like are preferable.
Examples of the diarylphosphinoaryl group having 18 to 30 carbon atoms include groups in which the above-described aromatic hydrocarbon ring (aryl group) is substituted on the phosphino group of the phosphinoaryl group, specifically, diphenylphosphinophenyl. Groups and the like are preferred.
 式(1)で表される化合物の、各基の「置換若しくは無置換の・・・」の置換基としては、上記のアルキル基、アリール基、ヘテロアリール基、アルコキシ基、フルオロアルキル基、フルオロアルコキシ基や、その他にハロゲン原子(フッ素、塩素、臭素、ヨウ素が挙げられ、好ましくはフッ素原子である。)、シリル基、ヒドロキシル基、ニトロ基、シアノ基、カルボキシ基、アリールオキシ基、アラルキル基、ジアリールホスフィノ基、ジアリールホスフィンオキシド基、ジアリールホスフィノアリール基等が挙げられる。 In the compound represented by the formula (1), the substituents of “substituted or unsubstituted...” Of each group include the above alkyl group, aryl group, heteroaryl group, alkoxy group, fluoroalkyl group, fluoro Alkoxy groups and other halogen atoms (fluorine, chlorine, bromine, iodine are mentioned, preferably fluorine atoms), silyl groups, hydroxyl groups, nitro groups, cyano groups, carboxy groups, aryloxy groups, aralkyl groups , Diarylphosphino group, diarylphosphine oxide group, diarylphosphinoaryl group and the like.
 HArの置換基(R1a,R2a,R2b)としては、フェニル基、ビフェニル基、ターフェニル基等のアリール基、カルバゾール基、ジベンゾフラン基、ジベンゾチオフェン基、アザカルバゾール基等のヘテロアリール基、ジアリールホスフィノ基(ジフェニルホスフィノ基等)、ジアリールホスフィンオキシド基(ジフェニルホスフィンオキシド基等)、ジアリールホスフィノアリール基(ジフェニルホスフィノフェニル基等)が好ましい。
 これらの置換基は、さらに、シアノ基、アリール基、ヘテロアリール基等の置換基を有していてもよい。
HAR substituents (R 1a , R 2a , R 2b ) include phenyl groups, biphenyl groups, aryl groups such as terphenyl groups, carbazole groups, dibenzofuran groups, dibenzothiophene groups, heteroaryl groups such as azacarbazole groups, A diarylphosphino group (such as a diphenylphosphino group), a diarylphosphine oxide group (such as a diphenylphosphine oxide group), and a diarylphosphinoaryl group (such as a diphenylphosphinophenyl group) are preferable.
These substituents may further have a substituent such as a cyano group, an aryl group, or a heteroaryl group.
 HArが示す、置換基を有するジベンゾフラン環の置換基、及びジベンゾチオフェン環の置換基(R2a)としては、シアノ基、カルバゾール基、アザカルバゾール基等のヘテロアリール基、ジアリールホスフィノ基(ジフェニルホスフィノ基等)、ジアリールホスフィンオキシド基(ジフェニルホスフィンオキシド基等)、ジアリールホスフィノアリール基(ジフェニルホスフィノフェニル基等)が好ましい。
 これらの置換基は、さらに、シアノ基、アリール基、ヘテロアリール基等の置換基を有していてもよい。
 上記式(1)で表される化合物の具体例を以下に示す。
As the substituent of the dibenzofuran ring having a substituent and the substituent (R 2a ) of the dibenzothiophene ring represented by HAr, a heteroaryl group such as a cyano group, a carbazole group, an azacarbazole group, a diarylphosphino group (diphenylphosphino group) And a diarylphosphine oxide group (such as a diphenylphosphine oxide group) and a diarylphosphinoaryl group (such as a diphenylphosphinophenyl group) are preferred.
These substituents may further have a substituent such as a cyano group, an aryl group, or a heteroaryl group.
Specific examples of the compound represented by the above formula (1) are shown below.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 式(1)で表される化合物の合成は、国際公開第WO2009-008100号パンフレット、国際公開第2011-132684号パンフレットに記載の条件や、カルバゾール誘導体とハロゲン化芳香族化合物を、Tetrahedron 1435~1456ページ(1984年)に記載される銅触媒、又は、J.Am.Chem.Soc. 7727~7729ページ(2001年)に記載されるパラジウム触媒を用いて反応させる製造条件等を参照することにより実施できる。 The synthesis of the compound represented by the formula (1) is carried out by using the conditions described in International Publication Nos. WO2009-008100 and International Publication No. 2011-132684, and a carbazole derivative and a halogenated aromatic compound in accordance with Tetrahedron 1435-1456. Page (1984) or the copper catalyst described in J. Am. Chem. Soc. It can be carried out by referring to the production conditions for the reaction using the palladium catalyst described on pages 7727-7729 (2001).
 本発明の有機EL素子用材料(以下、本発明の材料ということがある)は、上記本発明の化合物を含むことを特徴とする。
 本発明の有機EL素子用材料は、有機EL素子を構成する有機薄膜層の材料として好適に使用できる。
The material for an organic EL device of the present invention (hereinafter sometimes referred to as the material of the present invention) includes the above-described compound of the present invention.
The material for an organic EL device of the present invention can be suitably used as a material for an organic thin film layer constituting the organic EL device.
 続いて、本発明の有機EL素子について説明する。
 本発明の有機EL素子は、陽極と陰極の間に、発光層を含む一層以上の有機薄膜層を有する。そして、有機薄膜層の少なくとも一層が、本発明の有機EL素子用材料を含有する。
 本発明の有機EL素子においては、発光層が、本発明の有機EL素子用材料を含有することが好ましく、発光層にホスト材料として含有するのがさらに好ましい。
 発光層が燐光発光材料を含有し、燐光発光材料がイリジウム(Ir)、オスミウム(Os)及び白金(Pt)から選択される金属原子のオルトメタル化錯体であることが好ましい。
 また、本発明の有機EL素子においては、陰極と発光層の間である電子輸送帯域に有機薄膜層を有し、この有機薄膜層が本発明の有機EL素子用材料を含むことが好ましい。電子輸送帯域の有機薄膜層には、電子注入層や電子輸送層、正孔阻止層等がある。
Next, the organic EL element of the present invention will be described.
The organic EL device of the present invention has one or more organic thin film layers including a light emitting layer between an anode and a cathode. And at least one layer of an organic thin film layer contains the organic EL element material of this invention.
In the organic EL device of the present invention, the light emitting layer preferably contains the material for an organic EL device of the present invention, and more preferably contains it as a host material in the light emitting layer.
The light emitting layer preferably contains a phosphorescent material, and the phosphorescent material is an ortho metalated complex of metal atoms selected from iridium (Ir), osmium (Os) and platinum (Pt).
Moreover, in the organic EL element of this invention, it has an organic thin film layer in the electron transport zone between a cathode and a light emitting layer, and it is preferable that this organic thin film layer contains the organic EL element material of this invention. Examples of the organic thin film layer in the electron transport zone include an electron injection layer, an electron transport layer, and a hole blocking layer.
 図1は、本発明の有機EL素子の一実施形態の層構成を示す概略図である。
 有機EL素子1は、基板10上に、陽極20、正孔輸送帯域30、燐光発光層40、電子輸送帯域50及び陰極60を、この順で積層した構成を有する。正孔輸送帯域30は、正孔輸送層又は正孔注入層、電子阻止層等を意味する。同様に、電子輸送帯域50は、電子輸送層又は電子注入層、正孔阻止層等を意味する。これらは形成しなくともよいが、好ましくは1層以上形成する。この素子において有機薄膜層は、正孔輸送帯域30に設けられる各有機層、燐光発光層40及び電子輸送帯域50に設けられる各有機層である。これら有機薄膜層のうち、少なくとも1層が本発明の有機EL素子用材料を含有する。これにより、有機EL素子の駆動電圧を低くできる。
 尚、本発明の有機EL素子用材料を含有する有機薄膜層に対するこの材料の含有量は、好ましくは1~100重量%である。
FIG. 1 is a schematic view showing a layer structure of an embodiment of the organic EL device of the present invention.
The organic EL element 1 has a configuration in which an anode 20, a hole transport zone 30, a phosphorescent light emitting layer 40, an electron transport zone 50, and a cathode 60 are laminated on a substrate 10 in this order. The hole transport zone 30 means a hole transport layer, a hole injection layer, an electron blocking layer, or the like. Similarly, the electron transport zone 50 means an electron transport layer, an electron injection layer, a hole blocking layer, or the like. These need not be formed, but preferably one or more layers are formed. In this element, the organic thin film layer is each organic layer provided in the hole transport zone 30, each phosphor layer and the organic layer provided in the electron transport zone 50. Among these organic thin film layers, at least one layer contains the organic EL element material of the present invention. Thereby, the drive voltage of an organic EL element can be lowered.
The content of this material with respect to the organic thin film layer containing the organic EL device material of the present invention is preferably 1 to 100% by weight.
 本発明の有機EL素子においては、燐光発光層40が本発明の有機EL素子用材料を含有することが好ましく、発光層のホスト材料として使用することがさらに好ましい。本発明の材料は、3重項エネルギーが十分に大きいため、青色の燐光発光性ドーパント材料を使用しても、燐光発光性ドーパント材料の三重項エネルギーを効率的に発光層内に閉じ込めることができる。尚、青色発光層に限らず、より長波長の光(緑~赤色等)の発光層にも使用できるが、青色発光層に使用するのが好ましい。 In the organic EL device of the present invention, the phosphorescent light emitting layer 40 preferably contains the organic EL device material of the present invention, and more preferably used as a host material of the light emitting layer. Since the triplet energy of the material of the present invention is sufficiently large, even when a blue phosphorescent dopant material is used, the triplet energy of the phosphorescent dopant material can be efficiently confined in the light emitting layer. . The light emitting layer can be used not only for the blue light emitting layer but also for light emitting layers of longer wavelengths (such as green to red), but is preferably used for the blue light emitting layer.
 燐光発光層は、燐光発光性材料(燐光ドーパント)を含有する。燐光ドーパントとしては、金属錯体化合物が挙げられ、好ましくはIr,Pt,Os,Au,Cu,Re及びRuから選択される金属原子と、配位子とを有する化合物である。配位子は、オルトメタル結合を有すると好ましい。
 燐光量子収率が高く、発光素子の外部量子効率をより向上させることができるという点で、燐光ドーパントは、Ir,Os及びPtから選ばれる金属原子を含有する化合物であると好ましく、イリジウム錯体、オスミウム錯体、白金錯体等の金属錯体であるとさらに好ましく、中でもイリジウム錯体及び白金錯体がより好ましく、オルトメタル化イリジウム錯体が最も好ましい。ドーパントは、1種単独でも、2種以上の混合物でもよい。
The phosphorescent light emitting layer contains a phosphorescent material (phosphorescent dopant). Examples of the phosphorescent dopant include metal complex compounds, preferably a compound having a metal atom selected from Ir, Pt, Os, Au, Cu, Re and Ru and a ligand. The ligand preferably has an ortho metal bond.
The phosphorescent dopant is preferably a compound containing a metal atom selected from Ir, Os and Pt in that the phosphorescent quantum yield is high and the external quantum efficiency of the light-emitting element can be further improved, and an iridium complex, It is more preferable that it is a metal complex such as an osmium complex and a platinum complex, among which an iridium complex and a platinum complex are more preferable, and an orthometalated iridium complex is most preferable. The dopant may be a single type or a mixture of two or more types.
 燐光発光層における燐光ドーパントの添加濃度は特に限定されるものではないが、好ましくは0.1~40重量%(wt%)、より好ましくは0.1~30重量%(wt%)である The addition concentration of the phosphorescent dopant in the phosphorescent light emitting layer is not particularly limited, but is preferably 0.1 to 40% by weight (wt%), more preferably 0.1 to 30% by weight (wt%).
 また、燐光発光層40に隣接する有機薄膜層に本発明の材料を使用することも好ましい。例えば、燐光発光層40と電子輸送帯域50の間に本発明の材料を含有する層(陰極側隣接層)を形成した場合、該層は正孔障壁層としての機能や励起子阻止層としての機能を有する。
 尚、障壁層(阻止層)とは、キャリアの移動障壁、又は励起子の拡散障壁の機能を有する層である。発光層から正孔輸送帯域へ電子が漏れることを防ぐための有機層を主に電子障壁層と定義し、発光層から電子輸送帯域へ正孔が漏れることを防ぐための有機層を正孔障壁層と定義することがある。また、発光層で生成された三重項励起子が、三重項エネルギーが発光層よりも低い準位を有する周辺層へ拡散することを防止するための有機層を励起子阻止層(トリプレット障壁層)と定義することがある。
 また本発明の材料を燐光発光層40に隣接する有機薄膜層に用い、かつさらにその隣接する有機薄膜層に接合する他の有機薄膜層に用いることもできる。
It is also preferable to use the material of the present invention for the organic thin film layer adjacent to the phosphorescent light emitting layer 40. For example, when a layer (cathode side adjacent layer) containing the material of the present invention is formed between the phosphorescent light emitting layer 40 and the electron transport zone 50, the layer functions as a hole blocking layer or as an exciton blocking layer. It has a function.
The barrier layer (blocking layer) is a layer having a function of a carrier movement barrier or an exciton diffusion barrier. The organic layer for preventing electrons from leaking from the light-emitting layer to the hole transport zone is mainly defined as an electron barrier layer, and the organic layer for preventing holes from leaking from the light-emitting layer to the electron transport zone is defined as a hole barrier. Sometimes defined as a layer. In addition, an exciton blocking layer (triplet barrier layer) is an organic layer for preventing triplet excitons generated in the light emitting layer from diffusing into a peripheral layer having triplet energy lower than that of the light emitting layer. It may be defined as
Further, the material of the present invention can be used for an organic thin film layer adjacent to the phosphorescent light emitting layer 40 and further used for another organic thin film layer bonded to the adjacent organic thin film layer.
 上述した実施形態の他に、本発明の有機EL素子は、公知の様々な構成を採用できる。また、発光層の発光は、陽極側、陰極側、あるいは両側から取り出すことができる。 In addition to the above-described embodiments, the organic EL element of the present invention can employ various known configurations. Further, light emission of the light emitting layer can be taken out from the anode side, the cathode side, or both sides.
 本発明の有機EL素子は、陰極と有機薄膜層との界面領域に電子供与性ドーパント及び有機金属錯体の少なくともいずれかを添加してあることが好ましい。このような構成によれば、有機EL素子における発光輝度の向上や長寿命化が図られる。
 電子供与性ドーパントとしては、アルカリ金属、アルカリ金属化合物、アルカリ土類金属、アルカリ土類金属化合物、希土類金属、及び希土類金属化合物等から選ばれた少なくとも一種類が挙げられる。
 有機金属錯体としては、アルカリ金属を含む有機金属錯体、アルカリ土類金属を含む有機金属錯体、及び希土類金属を含む有機金属錯体等から選ばれた少なくとも一種類が挙げられる。
In the organic EL device of the present invention, it is preferable that at least one of an electron donating dopant and an organometallic complex is added to the interface region between the cathode and the organic thin film layer. According to such a configuration, it is possible to improve the light emission luminance and extend the life of the organic EL element.
Examples of the electron donating dopant include at least one selected from alkali metals, alkali metal compounds, alkaline earth metals, alkaline earth metal compounds, rare earth metals, rare earth metal compounds, and the like.
Examples of the organometallic complex include at least one selected from an organometallic complex containing an alkali metal, an organometallic complex containing an alkaline earth metal, an organometallic complex containing a rare earth metal, and the like.
 アルカリ金属としては、リチウム(Li)(仕事関数:2.93eV)、ナトリウム(Na)(仕事関数:2.36eV)、カリウム(K)(仕事関数:2.28eV)、ルビジウム(Rb)(仕事関数:2.16eV)、セシウム(Cs)(仕事関数:1.95eV)等が挙げられ、仕事関数が2.9eV以下のものが特に好ましい。これらのうち好ましくはK、Rb、Cs、さらに好ましくはRb又はCsであり、最も好ましくはCsである。
 アルカリ土類金属としては、カルシウム(Ca)(仕事関数:2.9eV)、ストロンチウム(Sr)(仕事関数:2.0eV以上2.5eV以下)、バリウム(Ba)(仕事関数:2.52eV)等が挙げられ、仕事関数が2.9eV以下のものが特に好ましい。
 希土類金属としては、スカンジウム(Sc)、イットリウム(Y)、セリウム(Ce)、テルビウム(Tb)、イッテルビウム(Yb)等が挙げられ、仕事関数が2.9eV以下のものが特に好ましい。
 以上の金属のうち好ましい金属は、特に還元能力が高く、電子注入域への比較的少量の添加により、有機EL素子における発光輝度の向上や長寿命化が可能である。
Examples of the alkali metal include lithium (Li) (work function: 2.93 eV), sodium (Na) (work function: 2.36 eV), potassium (K) (work function: 2.28 eV), rubidium (Rb) (work Function: 2.16 eV), cesium (Cs) (work function: 1.95 eV) and the like, and those having a work function of 2.9 eV or less are particularly preferable. Of these, K, Rb, and Cs are preferred, Rb and Cs are more preferred, and Cs is most preferred.
Examples of the alkaline earth metal include calcium (Ca) (work function: 2.9 eV), strontium (Sr) (work function: 2.0 eV to 2.5 eV), barium (Ba) (work function: 2.52 eV). A work function of 2.9 eV or less is particularly preferable.
Examples of the rare earth metal include scandium (Sc), yttrium (Y), cerium (Ce), terbium (Tb), ytterbium (Yb) and the like, and those having a work function of 2.9 eV or less are particularly preferable.
Among the above metals, preferred metals are particularly high in reducing ability, and by adding a relatively small amount to the electron injection region, it is possible to improve the light emission luminance and extend the life of the organic EL element.
 アルカリ金属化合物としては、酸化リチウム(LiO)、酸化セシウム(CsO)、酸化カリウム(K2O)等のアルカリ酸化物、フッ化リチウム(LiF)、フッ化ナトリウム(NaF)、フッ化セシウム(CsF)、フッ化カリウム(KF)等のアルカリハロゲン化物等が挙げられ、フッ化リチウム(LiF)、酸化リチウム(LiO)、フッ化ナトリウム(NaF)が好ましい。
 アルカリ土類金属化合物としては、酸化バリウム(BaO)、酸化ストロンチウム(SrO)、酸化カルシウム(CaO)及びこれらを混合したストロンチウム酸バリウム(BaxSr1-xO)(0<x<1)、カルシウム酸バリウム(BaxCa1-xO)(0<x<1)等が挙げられ、BaO、SrO、CaOが好ましい。
 希土類金属化合物としては、フッ化イッテルビウム(YbF)、フッ化スカンジウム(ScF)、酸化スカンジウム(ScO)、酸化イットリウム(Y)、酸化セリウム(Ce)、フッ化ガドリニウム(GdF)、フッ化テルビウム(TbF)等が挙げられ、YbF、ScF、TbFが好ましい。
Examples of the alkali metal compound include lithium oxide (Li 2 O), cesium oxide (Cs 2 O), alkali oxides such as potassium oxide (K 2 O), lithium fluoride (LiF), sodium fluoride (NaF), fluorine. Examples thereof include alkali halides such as cesium fluoride (CsF) and potassium fluoride (KF), and lithium fluoride (LiF), lithium oxide (Li 2 O), and sodium fluoride (NaF) are preferable.
Examples of the alkaline earth metal compound include barium oxide (BaO), strontium oxide (SrO), calcium oxide (CaO), and barium strontium oxide (Ba x Sr 1-x O) (0 <x <1), Examples thereof include barium calcium oxide (Ba x Ca 1-x O) (0 <x <1), and BaO, SrO, and CaO are preferable.
The rare earth metal compound, ytterbium fluoride (YbF 3), scandium fluoride (ScF 3), scandium oxide (ScO 3), yttrium oxide (Y 2 O 3), cerium oxide (Ce 2 O 3), gadolinium fluoride (GdF 3), include such terbium fluoride (TbF 3) is, YbF 3, ScF 3, TbF 3 are preferable.
 有機金属錯体としては、上記の通り、それぞれ金属イオンとしてアルカリ金属イオン、アルカリ土類金属イオン、希土類金属イオンの少なくとも一つ含有するものであれば特に限定はない。また、配位子にはキノリノール、ベンゾキノリノール、アクリジノール、フェナントリジノール、ヒドロキシフェニルオキサゾール、ヒドロキシフェニルチアゾール、ヒドロキシジアリールオキサジアゾール、ヒドロキシジアリールチアジアゾール、ヒドロキシフェニルピリジン、ヒドロキシフェニルベンゾイミダゾール、ヒドロキシベンゾトリアゾール、ヒドロキシフルボラン、ビピリジル、フェナントロリン、フタロシアニン、ポルフィリン、シクロペンタジエン、β-ジケトン類、アゾメチン類、及びそれらの誘導体等が好ましいが、これらに限定されるものではない。 The organometallic complex is not particularly limited as long as it contains at least one of an alkali metal ion, an alkaline earth metal ion, and a rare earth metal ion as a metal ion as described above. The ligands include quinolinol, benzoquinolinol, acridinol, phenanthridinol, hydroxyphenyl oxazole, hydroxyphenyl thiazole, hydroxydiaryl thiadiazole, hydroxydiaryl thiadiazole, hydroxyphenylpyridine, hydroxyphenylbenzimidazole, hydroxybenzotriazole, Hydroxyfulborane, bipyridyl, phenanthroline, phthalocyanine, porphyrin, cyclopentadiene, β-diketones, azomethines, and derivatives thereof are preferred, but are not limited thereto.
 電子供与性ドーパント及び有機金属錯体の添加形態としては、界面領域に層状又は島状に形成することが好ましい。形成方法としては、抵抗加熱蒸着法により電子供与性ドーパント及び有機金属錯体の少なくともいずれかを蒸着しながら、界面領域を形成する発光材料や電子注入材料である有機物を同時に蒸着させ、有機物中に電子供与性ドーパント及び有機金属錯体還元ドーパントの少なくともいずれかを分散する方法が好ましい。分散濃度は通常、モル比で有機物:電子供与性ドーパント及び/又は有機金属錯体=100:1~1:100であり、好ましくは5:1~1:5である。 As the addition form of the electron donating dopant and the organometallic complex, it is preferable to form a layer or an island in the interface region. As a forming method, while depositing at least one of an electron donating dopant and an organometallic complex by a resistance heating vapor deposition method, an organic material as a light emitting material or an electron injection material for forming an interface region is simultaneously deposited, and an electron is deposited in the organic material. A method of dispersing at least one of a donor dopant and an organometallic complex reducing dopant is preferable. The dispersion concentration is usually organic substance: electron donating dopant and / or organometallic complex in a molar ratio of 100: 1 to 1: 100, preferably 5: 1 to 1: 5.
 電子供与性ドーパント及び有機金属錯体の少なくともいずれかを層状に形成する場合は、界面の有機層である発光材料や電子注入材料を層状に形成した後に、電子供与性ドーパント及び有機金属錯体の少なくともいずれかを単独で抵抗加熱蒸着法により蒸着し、好ましくは層の厚み0.1nm以上15nm以下で形成する。 In the case where at least one of the electron donating dopant and the organometallic complex is formed in a layered form, after forming the light emitting material or the electron injecting material that is the organic layer at the interface in a layered form, at least one of the electron donating dopant and the organometallic complex is formed. These are vapor-deposited by a resistance heating vapor deposition method alone, preferably with a layer thickness of 0.1 nm to 15 nm.
 電子供与性ドーパント及び有機金属錯体の少なくともいずれかを島状に形成する場合は、界面の有機層である発光材料や電子注入材料を島状に形成した後に、電子供与性ドーパント及び有機金属錯体の少なくともいずれかを単独で抵抗加熱蒸着法により蒸着し、好ましくは島の厚み0.05nm以上1nm以下で形成する。 In the case where at least one of an electron donating dopant and an organometallic complex is formed in an island shape, a light emitting material or an electron injecting material which is an organic layer at the interface is formed in an island shape, and then the electron donating dopant and the organometallic complex are formed. At least one of them is vapor-deposited by a resistance heating vapor deposition method, preferably with an island thickness of 0.05 nm to 1 nm.
 また、本発明の有機EL素子における、主成分(発光材料又は電子注入材料)と、電子供与性ドーパント及び有機金属錯体の少なくともいずれかの割合としては、モル比で、主成分:電子供与性ドーパント及び/又は有機金属錯体=5:1~1:5であると好ましく、2:1~1:2であるとさらに好ましい。 In the organic EL device of the present invention, the ratio of at least one of the main component (light-emitting material or electron injection material), the electron-donating dopant, and the organometallic complex is, as a molar ratio, the main component: the electron-donating dopant. And / or organometallic complex = 5: 1 to 1: 5, preferably 2: 1 to 1: 2.
 本発明の有機EL素子では、上述した本発明の有機EL素子用材料を使用した層以外の構成については、特に限定されず、公知の材料等を使用できる。以下、実施形態1の素子の層について簡単に説明するが、本発明の有機EL素子に適用される材料は以下に限定されない。 In the organic EL element of the present invention, the configuration other than the layer using the organic EL element material of the present invention described above is not particularly limited, and a known material or the like can be used. Hereinafter, although the layer of the element of Embodiment 1 is demonstrated easily, the material applied to the organic EL element of this invention is not limited to the following.
[基板]
 基板としてはガラス板、ポリマー板等を用いることができる。
 ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等が挙げられる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルフォン、ポリサルフォン等を挙げることができる。
[substrate]
As the substrate, a glass plate, a polymer plate or the like can be used.
Examples of the glass plate include soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. Examples of the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfone, and polysulfone.
[陽極]
 陽極は例えば導電性材料からなり、4eVより大きな仕事関数を有する導電性材料が適している。
 上記導電性材料としては、炭素、アルミニウム、バナジウム、鉄、コバルト、ニッケル、タングステン、銀、金、白金、パラジウム等及びそれらの合金、ITO基板、NESA基板に使用される酸化スズ、酸化インジウム等の酸化金属、さらにはポリチオフェンやポリピロール等の有機導電性樹脂が挙げられる。
 陽極は、必要があれば2層以上の層構成により形成されていてもよい。
[anode]
The anode is made of, for example, a conductive material, and a conductive material having a work function larger than 4 eV is suitable.
Examples of the conductive material include carbon, aluminum, vanadium, iron, cobalt, nickel, tungsten, silver, gold, platinum, palladium, and their alloys, ITO substrate, tin oxide used for NESA substrate, indium oxide, and the like. Examples thereof include metal oxides and organic conductive resins such as polythiophene and polypyrrole.
The anode may be formed with a layer structure of two or more layers if necessary.
[陰極]
 陰極は例えば導電性材料からなり、4eVより小さな仕事関数を有する導電性材料が適している。
 上記導電性材料としては、マグネシウム、カルシウム、錫、鉛、チタニウム、イットリウム、リチウム、ルテニウム、マンガン、アルミニウム、フッ化リチウム等及びこれらの合金が挙げられるが、これらに限定されるものではない。
 また、上記合金としては、マグネシウム/銀、マグネシウム/インジウム、リチウム/アルミニウム等が代表例として挙げられるが、これらに限定されるものではない。合金の比率は、蒸着源の温度、雰囲気、真空度等により制御され、適切な比率に選択される。
 陰極は、必要があれば2層以上の層構成により形成されていてもよく、陰極は上記導電性材料を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。
[cathode]
The cathode is made of, for example, a conductive material, and a conductive material having a work function smaller than 4 eV is suitable.
Examples of the conductive material include, but are not limited to, magnesium, calcium, tin, lead, titanium, yttrium, lithium, ruthenium, manganese, aluminum, lithium fluoride, and alloys thereof.
Examples of the alloy include magnesium / silver, magnesium / indium, lithium / aluminum, and the like, but are not limited thereto. The ratio of the alloy is controlled by the temperature of the vapor deposition source, the atmosphere, the degree of vacuum, etc., and is selected to an appropriate ratio.
If necessary, the cathode may be formed with a layer structure of two or more layers, and the cathode can be produced by forming a thin film from the conductive material by a method such as vapor deposition or sputtering.
 発光層からの発光を陰極から取り出す場合、陰極の発光に対する透過率は10%より大きくすることが好ましい。
 また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~1μmであり、好ましくは50~200nmである。
When light emitted from the light emitting layer is taken out from the cathode, the transmittance of the cathode for light emission is preferably greater than 10%.
The sheet resistance as the cathode is preferably several hundred Ω / □ or less, and the film thickness is usually 10 nm to 1 μm, preferably 50 to 200 nm.
[発光層]
 本発明の有機EL素子層材料以外の材料で燐光発光層を形成する場合、燐光発光層の材料として公知の材料が使用できる。具体的には、特願2005-517938等を参照すればよい。
 本発明の有機EL素子は、図2に示す素子のように蛍光発光層を有していてもよい。蛍光発光層としては、公知の材料が使用できる。
[Light emitting layer]
When the phosphorescent light emitting layer is formed of a material other than the organic EL element layer material of the present invention, a known material can be used as the material of the phosphorescent light emitting layer. Specifically, Japanese Patent Application No. 2005-517938 may be referred to.
The organic EL device of the present invention may have a fluorescent light emitting layer like the device shown in FIG. A known material can be used for the fluorescent light emitting layer.
 発光層は、ダブルホスト(ホスト・コホストともいう)としてもよい。具体的に、発光層において電子輸送性のホストと正孔輸送性のホストを組み合わせることで、発光層内のキャリアバランスを調整してもよい。
 また、ダブルドーパントとしてもよい。発光層において、量子収率の高いドーパント材料を2種類以上入れることによって、それぞれのドーパントが発光する。例えば、ホストと赤色ドーパント、緑色のドーパントを共蒸着することによって、黄色の発光層を実現することがある。
 発光層は単層でもよく、また、積層構造でもよい。発光層を積層させると、発光層界面に電子と正孔を蓄積させることによって再結合領域を発光層界面に集中させることができる。これによって、量子効率を向上させる。
The light emitting layer may be a double host (also referred to as a host / cohost). Specifically, the carrier balance in the light emitting layer may be adjusted by combining an electron transporting host and a hole transporting host in the light emitting layer.
Moreover, it is good also as a double dopant. In the light emitting layer, each dopant emits light by adding two or more dopant materials having a high quantum yield. For example, a yellow light emitting layer may be realized by co-evaporating a host, a red dopant, and a green dopant.
The light emitting layer may be a single layer or a laminated structure. When the light emitting layer is stacked, the recombination region can be concentrated on the light emitting layer interface by accumulating electrons and holes at the light emitting layer interface. This improves the quantum efficiency.
[正孔注入層及び正孔輸送層]
 正孔注入・輸送層は、発光層への正孔注入を助け、発光領域まで輸送する層であって、正孔移動度が大きく、イオン化エネルギーが小さい層である。
 正孔注入・輸送層の材料としては、より低い電界強度で正孔を発光層に輸送する材料が好ましく、さらに正孔の移動度が、例えば10~10V/cmの電界印加時に、少なくとも10-4cm/V・秒であれば好ましい。
 正孔注入・輸送層の材料には架橋型材料を用いることができる。
[Hole injection layer and hole transport layer]
The hole injection / transport layer is a layer that assists hole injection into the light emitting layer and transports it to the light emitting region, and has a high hole mobility and a low ionization energy.
As the material for the hole injection / transport layer, a material that transports holes to the light emitting layer with lower electric field strength is preferable. Further, when an electric field is applied with a hole mobility of, for example, 10 4 to 10 6 V / cm, At least 10 −4 cm 2 / V · sec is preferable.
A cross-linkable material can be used as the material for the hole injection / transport layer.
[電子注入層及び電子輸送層]
 電子注入・輸送層は、発光層への電子の注入を助け、発光領域まで輸送する層であって、電子移動度が大きい層である。
 有機EL素子は発光した光が電極(例えば陰極)により反射するため、直接陽極から取り出される発光と、電極による反射を経由して取り出される発光とが干渉することが知られている。この干渉効果を効率的に利用するため、電子注入・輸送層は数nm~数μmの膜厚で適宜選ばれるが、特に膜厚が厚いとき、電圧上昇を避けるために、10~10V/cmの電界印加時に電子移動度が少なくとも10-5cm/Vs以上であることが好ましい。
[Electron injection layer and electron transport layer]
The electron injection / transport layer is a layer that assists the injection of electrons into the light emitting layer and transports it to the light emitting region, and has a high electron mobility.
In the organic EL element, since emitted light is reflected by an electrode (for example, a cathode), it is known that light emitted directly from the anode interferes with light emitted via reflection by the electrode. In order to efficiently use this interference effect, the electron injecting / transporting layer is appropriately selected with a film thickness of several nm to several μm. However, particularly when the film thickness is large, in order to avoid a voltage increase, 10 4 to 10 6. The electron mobility is preferably at least 10 −5 cm 2 / Vs or more when an electric field of V / cm is applied.
 電子注入・輸送層に用いる電子輸送性材料としては、分子内にヘテロ原子を1個以上含有する芳香族ヘテロ環化合物が好ましく用いられ、特に含窒素環誘導体が好ましい。また、含窒素環誘導体としては、含窒素6員環もしくは5員環骨格を有する芳香族環、又は含窒素6員環もしくは5員環骨格を有する縮合芳香族環化合物が好ましく、例えば、ピリジン環、ピリミジン環、トリアジン環、ベンズイミダゾール環、フェナントロリン環、キナゾリン環等を骨格に含む化合物が挙げられる。 As the electron transporting material used for the electron injection / transport layer, an aromatic heterocyclic compound containing one or more heteroatoms in the molecule is preferably used, and a nitrogen-containing ring derivative is particularly preferable. The nitrogen-containing ring derivative is preferably an aromatic ring having a nitrogen-containing 6-membered ring or 5-membered ring skeleton, or a condensed aromatic ring compound having a nitrogen-containing 6-membered ring or 5-membered ring skeleton, such as a pyridine ring. , Pyrimidine ring, triazine ring, benzimidazole ring, phenanthroline ring, quinazoline ring and the like.
 その他、ドナー性材料のドーピング(n)、アクセプター材料のドーピング(p)により、半導体性を備えた有機層を形成してもよい。Nドーピングの代表例は、電子輸送性材料にLiやCs等の金属をドーピングさせるものであり、Pドーピングの代表例は、正孔輸送性材料にF4TCNQ等のアクセプター材をドープするものである(例えば、特許3695714参照)。 In addition, an organic layer having semiconductivity may be formed by doping a donor material (n) and acceptor material (p). A typical example of N doping is to dope a metal such as Li or Cs into an electron transporting material, and a typical example of P doping is to dope an acceptor material such as F4TCNQ into a hole transporting material ( For example, see Japanese Patent No. 3695714).
 本発明の有機EL素子の各層の形成は、真空蒸着、スパッタリング、プラズマ、イオンプレーティング等の乾式成膜法やスピンコーティング、ディッピング、フローコーティング等の湿式成膜法等の公知の方法を適用することができる。
 各層の膜厚は特に限定されるものではないが、適切な膜厚に設定する必要がある。膜厚が厚すぎると、一定の光出力を得るために大きな印加電圧が必要になり効率が悪くなる。膜厚が薄すぎるとピンホール等が発生して、電界を印加しても充分な発光輝度が得られない。通常の膜厚は5nm~10μmの範囲が適しているが、10nm~0.2μmの範囲がさらに好ましい。
For the formation of each layer of the organic EL device of the present invention, a known method such as a dry film forming method such as vacuum deposition, sputtering, plasma, or ion plating, or a wet film forming method such as spin coating, dipping, or flow coating is applied. be able to.
The thickness of each layer is not particularly limited, but must be set to an appropriate thickness. If the film thickness is too thick, a large applied voltage is required to obtain a constant light output, resulting in poor efficiency. If the film thickness is too thin, pinholes and the like are generated, and sufficient light emission luminance cannot be obtained even when an electric field is applied. The normal film thickness is suitably in the range of 5 nm to 10 μm, but more preferably in the range of 10 nm to 0.2 μm.
[含窒素へテロ芳香族環化合物]
合成例1[化合物Aの合成]
(1)中間体Bの合成
 以下の工程により中間体Bを合成した。
Figure JPOXMLDOC01-appb-C000022
[Nitrogen-containing heteroaromatic ring compound]
Synthesis Example 1 [Synthesis of Compound A]
(1) Synthesis of Intermediate B Intermediate B was synthesized by the following steps.
Figure JPOXMLDOC01-appb-C000022
 アルゴン雰囲気下、国際公開第2009-008100号パンフレットに記載の方法に従って合成した中間体A41g(100mmol)に脱水THF500mlを加え、-70℃で撹拌した。次いで、1.6Mのn-ブチルリチウムn-ヘキサン溶液62.5mlを滴下した。-70℃で1時間撹拌した後、ホウ酸トリイソプロピル56g(300mmol)を加え、-70℃で1時間撹拌した後、室温で5時間撹拌した。反応液を濃縮後、ジクロロメタン1500mlと1N塩酸3000mlを加えて、氷水浴下で、1時間撹拌した。有機相を分取して、無水硫酸マグネシウムで乾燥してから、濾液を濃縮した。得られた固体をヘキサン-トルエンの混合溶媒で懸濁洗浄することにより、中間体B23g(収率61%)を白色固体として得た。 In an argon atmosphere, 500 ml of dehydrated THF was added to 41 g (100 mmol) of intermediate A synthesized according to the method described in International Publication No. 2009-008100 pamphlet, and the mixture was stirred at -70 ° C. Subsequently, 62.5 ml of 1.6M n-butyllithium n-hexane solution was added dropwise. After stirring at −70 ° C. for 1 hour, 56 g (300 mmol) of triisopropyl borate was added, stirred at −70 ° C. for 1 hour, and then stirred at room temperature for 5 hours. The reaction mixture was concentrated, 1500 ml of dichloromethane and 3000 ml of 1N hydrochloric acid were added, and the mixture was stirred for 1 hour in an ice-water bath. The organic phase was separated and dried over anhydrous magnesium sulfate, and the filtrate was concentrated. The obtained solid was suspended and washed with a mixed solvent of hexane-toluene to obtain 23 g of intermediate B (yield 61%) as a white solid.
(2)中間体Cの合成
 以下の工程により中間体Cを合成した。
Figure JPOXMLDOC01-appb-C000023
(2) Synthesis of Intermediate C Intermediate C was synthesized by the following steps.
Figure JPOXMLDOC01-appb-C000023
 アルゴン雰囲気下、中間体B20g(53mmol)、3-ブロモカルバゾール(53mmol)、2M炭酸ナトリウム水溶液80ml、1,2-ジメトキシエタン(DME)240mlを加え、次いで、テトラキス(トリフェニルホスフィン)パラジウム1.8g(1.6mmol)を加えて、8時間加熱還流撹拌した。有機相を分別し、水相をジクロロメタン300mlで2回抽出した。有機相を合わせて、減圧下で濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/ジクロロメタン=3/2)で精製することにより、中間体C14.5g(収率55%)を淡黄色固体として得た。 Under an argon atmosphere, 20 g (53 mmol) of Intermediate B, 3-bromocarbazole (53 mmol), 80 ml of 2M aqueous sodium carbonate solution, 240 ml of 1,2-dimethoxyethane (DME) were added, and then 1.8 g of tetrakis (triphenylphosphine) palladium. (1.6 mmol) was added and the mixture was heated to reflux with stirring for 8 hours. The organic phase was separated off and the aqueous phase was extracted twice with 300 ml of dichloromethane. The organic phases were combined and concentrated under reduced pressure, and the resulting residue was purified by silica gel column chromatography (hexane / dichloromethane = 3/2) to obtain 14.5 g of intermediate C (yield 55%) as a pale yellow color. Obtained as a solid.
(3)(3)中間体Dの合成
 以下の工程により中間体Dを合成した。
Figure JPOXMLDOC01-appb-C000024
(3) (3) Synthesis of Intermediate D Intermediate D was synthesized by the following steps.
Figure JPOXMLDOC01-appb-C000024
 アルゴン雰囲気下、カルバゾール16.7g(100mmol)、3,5-ジブロモピリジン23.7g(100mmol)、ヨウ化銅19.0g(100mmol)、trans-1,2-シクロヘキサンジアミン11.4g(100mmol)、リン酸三カリウム42.4g(200mmol)を脱水1,4-ジオキサン200mlに加えて、96時間加熱還流撹拌した。反応溶液を減圧下で濃縮して得られた残渣に、トルエン500mlを加えて120℃に加熱し、不溶物を濾別した。濾液を減圧下で濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/トルエン=4/1)で精製することにより、中間体D6.8g(収率21%)を白色固体として得た。 Under an argon atmosphere, carbazole 16.7 g (100 mmol), 3,5-dibromopyridine 23.7 g (100 mmol), copper iodide 19.0 g (100 mmol), trans-1,2-cyclohexanediamine 11.4 g (100 mmol), 42.4 g (200 mmol) of tripotassium phosphate was added to 200 ml of dehydrated 1,4-dioxane, and the mixture was heated to reflux with stirring for 96 hours. To the residue obtained by concentrating the reaction solution under reduced pressure, 500 ml of toluene was added and heated to 120 ° C., and the insoluble material was filtered off. The residue obtained by concentrating the filtrate under reduced pressure was purified by silica gel column chromatography (hexane / toluene = 4/1) to obtain 6.8 g of intermediate D (yield 21%) as a white solid.
(4)化合物Aの合成
 以下の工程により、化合物Aを合成した。
Figure JPOXMLDOC01-appb-C000025
(4) Synthesis of Compound A Compound A was synthesized by the following steps.
Figure JPOXMLDOC01-appb-C000025
 アルゴン雰囲気下、中間体C3.0g(6mmol)、中間体D1.94g(6mmol)、トリス(ジベンジリデンアセトン)ジパラジウム0.22g(0.24mmol)、トリ-t-ブチルホスホニウムテトラフルオロほう酸塩0.28g(0.96mmol)、t-ブトキシナトリウム0.81g(8.4mmol)、脱水キシレン40mlを順次加えて8時間加熱還流撹拌した。反応溶液を減圧下で濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=1/4)で精製することにより、化合物A2.5g(収率56%)を白色固体として得た。
 本固体のNMR測定結果を以下に示す。
 H-NMR(400MHz、CDCl)δ7.28-7.55(15H、m)、7.59-7.66(2H、m)、7.73-7.88(4H、m)、8.15-8.24(8H、m)、8.42(1H、d、J=2.0Hz)、9.04(2H、d、J=2.0Hz and 4.8Hz)
 また、FD-MS分析の結果、分子量740に対してm/e=740であった。
Under an argon atmosphere, Intermediate C 3.0 g (6 mmol), Intermediate D 1.94 g (6 mmol), Tris (dibenzylideneacetone) dipalladium 0.22 g (0.24 mmol), Tri-t-butylphosphonium tetrafluoroborate 0 .28 g (0.96 mmol), t-butoxy sodium 0.81 g (8.4 mmol) and dehydrated xylene 40 ml were sequentially added, and the mixture was heated to reflux with stirring for 8 hours. The residue obtained by concentrating the reaction solution under reduced pressure was purified by silica gel column chromatography (hexane / ethyl acetate = 1/4) to obtain 2.5 g (yield 56%) of Compound A as a white solid. .
The NMR measurement results of this solid are shown below.
1 H-NMR (400 MHz, CDCl 3 ) δ 7.28-7.55 (15H, m), 7.59-7.66 (2H, m), 7.73-7.88 (4H, m), 8 .15-8.24 (8H, m), 8.42 (1H, d, J = 2.0 Hz), 9.04 (2H, d, J = 2.0 Hz and 4.8 Hz)
Further, as a result of FD-MS analysis, m / e = 740 with respect to the molecular weight of 740.
合成例2[化合物Bの合成]
(1)中間体Eの合成
 以下の工程により、中間体Eを合成した。
Figure JPOXMLDOC01-appb-C000026
Synthesis Example 2 [Synthesis of Compound B]
(1) Synthesis of Intermediate E Intermediate E was synthesized by the following steps.
Figure JPOXMLDOC01-appb-C000026
 窒素雰囲気下、三口フラスコに2-ブロモ‐3‐ヒドロキシピリジン100.1g(575mmol)、2-フルオロフェニルボロン酸88.5g(632.5mmol)、炭酸カリウム88.5g(2300mmol)、N,N-ジメチルアセトアミド1150ml、テトラキス(トリフェニルホスフィン)パラジウム13.3g(11.5mmol)を入れ、90℃で12時間加熱撹拌した後、160℃で8時間過熱撹拌した。
 反応終了後、室温まで冷却した後、試料溶液にトルエン1000ml、水1000mlを加え、分液ロートに移して良く振り、トルエン相を回収し、水相からトルエンで数回抽出した。このトルエン溶液をさらに水で数回洗浄した後、無水硫酸マグネシウムで乾燥し、シリカゲルショートカラムを通し、濃縮した。得られた試料をヘキサン200mlから再結晶することにより、中間体E54.4g(収率56%)を淡黄色固体として得た。
Under a nitrogen atmosphere, in a three-necked flask, 100.1 g (575 mmol) of 2-bromo-3-hydroxypyridine, 88.5 g (632.5 mmol) of 2-fluorophenylboronic acid, 88.5 g (2300 mmol) of potassium carbonate, N, N— 1150 ml of dimethylacetamide and 13.3 g (11.5 mmol) of tetrakis (triphenylphosphine) palladium were added, and the mixture was heated and stirred at 90 ° C. for 12 hours and then heated and stirred at 160 ° C. for 8 hours.
After completion of the reaction, after cooling to room temperature, 1000 ml of toluene and 1000 ml of water were added to the sample solution, transferred to a separatory funnel and shaken well, the toluene phase was recovered, and extracted from the aqueous phase with toluene several times. The toluene solution was further washed several times with water, dried over anhydrous magnesium sulfate, passed through a silica gel short column and concentrated. The obtained sample was recrystallized from 200 ml of hexane to obtain 54.4 g of Intermediate E (yield 56%) as a pale yellow solid.
(2)中間体Fの合成
 以下の工程により、中間体Fを合成した。
Figure JPOXMLDOC01-appb-C000027
(2) Synthesis of Intermediate F Intermediate F was synthesized by the following steps.
Figure JPOXMLDOC01-appb-C000027
 大気雰囲気下、三口フラスコに中間体E52.6g(310mmol)、ニトロベンゼン155ml、臭素19.1ml(372mmol)を入れ、140℃で12時間加熱撹拌した。反応終了後、室温まで冷却した後、反応溶液を氷水浴で冷やしながらチオ硫酸ナトリウム水溶液を加えて残存臭素を失活させ、さらに水酸化ナトリウム水溶液を加えて水相がpH10になるよう調製した。溶液を分液ロートに移し、トルエンにて数回抽出した。これを無水硫酸マグネシウムで乾燥し、ろ過、濃縮した。これをシリカゲルカラムクロマトグラフィー(ジクロロメタン/酢酸エチル=4/1)で精製し、得られた固体をヘキサンで分散洗浄、ろ取、真空乾燥(40℃、6時間)することにより、中間体F32.1g(収率42%)を淡黄色固体として得た。 In an air atmosphere, 52.6 g (310 mmol) of intermediate E, 155 ml of nitrobenzene, and 19.1 ml (372 mmol) of bromine were placed in a three-necked flask, and the mixture was heated and stirred at 140 ° C. for 12 hours. After completion of the reaction, the reaction solution was cooled to room temperature, and then the reaction solution was cooled in an ice water bath to add a sodium thiosulfate aqueous solution to deactivate residual bromine, and further an aqueous sodium hydroxide solution was added to adjust the aqueous phase to pH 10. The solution was transferred to a separatory funnel and extracted several times with toluene. This was dried over anhydrous magnesium sulfate, filtered and concentrated. This was purified by silica gel column chromatography (dichloromethane / ethyl acetate = 4/1), and the resulting solid was dispersed and washed with hexane, collected by filtration, and vacuum-dried (40 ° C., 6 hours) to obtain intermediate F32. 1 g (42% yield) was obtained as a pale yellow solid.
(3)化合物Bの合成
 以下の工程により、化合物Bを合成した。
Figure JPOXMLDOC01-appb-C000028
(3) Synthesis of Compound B Compound B was synthesized by the following steps.
Figure JPOXMLDOC01-appb-C000028
 アルゴン雰囲気下、中間体C3.5g(7mmol)、中間体F1.74g(7mmol)、トリス(ジベンジリデンアセトン)ジパラジウム0.26g(0.28mmol)、トリ-t-ブチルホスホニウムテトラフルオロほう酸塩0.33g(1.12mmol)、t-ブトキシナトリウム0.94g(9.8mmol)、脱水キシレン50mlを順次加えて24時間加熱還流撹拌した。反応溶液を減圧下で濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=1/1)で精製することにより、化合物B3.2g(収率68%)を白色固体として得た。
 FD-MS分析の結果、分子量665に対してm/e=665であった。
Under an argon atmosphere, intermediate C 3.5 g (7 mmol), intermediate F 1.74 g (7 mmol), tris (dibenzylideneacetone) dipalladium 0.26 g (0.28 mmol), tri-t-butylphosphonium tetrafluoroborate 0 .33 g (1.12 mmol), t-butoxy sodium 0.94 g (9.8 mmol), and dehydrated xylene 50 ml were sequentially added, and the mixture was heated to reflux with stirring for 24 hours. The residue obtained by concentrating the reaction solution under reduced pressure was purified by silica gel column chromatography (hexane / ethyl acetate = 1/1) to obtain 3.2 g (yield 68%) of compound B as a white solid. .
As a result of FD-MS analysis, m / e = 665 with respect to the molecular weight of 665.
合成例3[化合物Cの合成]
(1)中間体Gの合成
 以下の工程により、中間体Gを合成した。
Figure JPOXMLDOC01-appb-C000029
Synthesis Example 3 [Synthesis of Compound C]
(1) Synthesis of Intermediate G Intermediate G was synthesized by the following steps.
Figure JPOXMLDOC01-appb-C000029
 アルゴン雰囲気下、3-アミノ-2-クロロピリジン50g(390mmol)、ヨードベンゼン(936mmol)、酢酸パラジウム0.88g(3.9mmol)、トリ-t-ブチルホスフィンの2Mトルエン溶液4ml、t-ブトキシナトリウム150g(1560mmol)を脱水トルエン1560mlに順次加えて、24時間加熱還流撹拌した。反応溶液を減圧下で濃縮して得られた残差をシリカゲルカラムクロマトグラフィー(ヘキサン/ジクロロメタン=1/2)で精製することにより、目的物78.8g(収率72%)を得た。 Under an argon atmosphere, 50 g (390 mmol) of 3-amino-2-chloropyridine, iodobenzene (936 mmol), 0.88 g (3.9 mmol) of palladium acetate, 4 ml of 2M toluene solution of tri-t-butylphosphine, sodium t-butoxy 150 g (1560 mmol) was sequentially added to 1560 ml of dehydrated toluene, and the mixture was stirred with heating under reflux for 24 hours. The residue obtained by concentrating the reaction solution under reduced pressure was purified by silica gel column chromatography (hexane / dichloromethane = 1/2) to obtain 78.8 g of the desired product (yield 72%).
(2)中間体Hの合成
 以下の工程により、中間体Hを合成した。
Figure JPOXMLDOC01-appb-C000030
(2) Synthesis of Intermediate H Intermediate H was synthesized by the following steps.
Figure JPOXMLDOC01-appb-C000030
 アルゴン雰囲気下、中間体G11.2g(40mmol)、酢酸パラジウム0.45g(2mmol)、トリシクロヘキシルホスホニウムテトラフルオロほう酸塩1.47g(4mmol)をN,N-ジメチルアセトアミド40ml、トルエン40mlを順次加えて、Dean-Starkトラップを付けて、水を系外に排出しながら、6時間加熱還流撹拌した。反応溶液を減圧下で濃縮して得られた残差をシリカゲルカラムクロマトグラフィー(ヘキサン/ジクロロメタン=1/10)で精製することにより、目的物4.4g(収率45%)を淡黄色固体として得た。 Under an argon atmosphere, 11.2 g (40 mmol) of intermediate G, 0.45 g (2 mmol) of palladium acetate, 1.47 g (4 mmol) of tricyclohexylphosphonium tetrafluoroborate, 40 ml of N, N-dimethylacetamide, and 40 ml of toluene were added successively. Then, a Dean-Stark trap was attached, and the mixture was heated to reflux with stirring for 6 hours while discharging water out of the system. The residue obtained by concentrating the reaction solution under reduced pressure was purified by silica gel column chromatography (hexane / dichloromethane = 1/10) to give 4.4 g (yield 45%) of the target product as a pale yellow solid. Obtained.
(3)中間体Iの合成
 以下の工程により、中間体Iを合成した。
Figure JPOXMLDOC01-appb-C000031
(3) Synthesis of Intermediate I Intermediate I was synthesized by the following steps.
Figure JPOXMLDOC01-appb-C000031
 大気雰囲気下、中間体H8.9g(36.4mmol)、酢酸100ml、臭素18.7ml(36.4mmol)を入れ、100℃で12時間加熱撹拌した。反応終了後、室温まで冷却した後、反応溶液にジクロロメタンを加えて、氷水浴で冷やしながらチオ硫酸ナトリウム水溶液を加えて残存臭素を失活させ、さらに水酸化ナトリウム水溶液を加えて水相がpH10になるよう調製した。溶液を分液ロートに移し、ジクロロメタンにて数回抽出した。これを無水硫酸マグネシウムで乾燥し、ろ過、濃縮した。これをショートシリカゲルカラムクロマトグラフィーで精製し、濾液を減圧下で濃縮して得られた固体をヘキサン-酢酸エチルの混合溶媒で分散洗浄、ろ取、真空乾燥(40℃、5時間)することにより、中間体I9.6g(収率81%)を白色固体として得た。 Under an air atmosphere, 8.9 g (36.4 mmol) of the intermediate H, 100 ml of acetic acid, and 18.7 ml (36.4 mmol) of bromine were added and stirred with heating at 100 ° C. for 12 hours. After completion of the reaction, after cooling to room temperature, dichloromethane was added to the reaction solution, sodium thiosulfate aqueous solution was added while cooling in an ice water bath to deactivate residual bromine, and further aqueous sodium hydroxide solution was added to bring the aqueous phase to pH 10. It was prepared so that it might become. The solution was transferred to a separatory funnel and extracted several times with dichloromethane. This was dried over anhydrous magnesium sulfate, filtered and concentrated. This was purified by short silica gel column chromatography, and the filtrate was concentrated under reduced pressure. The solid obtained was dispersed and washed with a mixed solvent of hexane-ethyl acetate, collected by filtration, and vacuum dried (40 ° C., 5 hours). Intermediate 9.6 g (81% yield) was obtained as a white solid.
(4)化合物Cの合成
 以下の工程により、化合物Cを合成した。
Figure JPOXMLDOC01-appb-C000032
(4) Synthesis of Compound C Compound C was synthesized by the following steps.
Figure JPOXMLDOC01-appb-C000032
 アルゴン雰囲気下、中間体C3.5g(7mmol)、中間体I 2.27g(7mmol)、トリス(ジベンジリデンアセトン)ジパラジウム0.26g(0.28mmol)、トリ-t-ブチルホスホニウムテトラフルオロほう酸塩0.33g(1.12mmol)、t-ブトキシナトリウム0.94g(9.8mmol)、脱水キシレン50mlを順次加えて16時間加熱還流撹拌した。反応溶液を減圧下で濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=2/1)で精製することにより、化合物C3.5g(収率86%)を白色固体として得た。
 FD-MS分析の結果、分子量740に対してm/e=740であった。
Under argon atmosphere, intermediate C 3.5 g (7 mmol), intermediate I 2.27 g (7 mmol), tris (dibenzylideneacetone) dipalladium 0.26 g (0.28 mmol), tri-t-butylphosphonium tetrafluoroborate 0.33 g (1.12 mmol), 0.94 g (9.8 mmol) of t-butoxy sodium, and 50 ml of dehydrated xylene were sequentially added, and the mixture was heated to reflux with stirring for 16 hours. The residue obtained by concentrating the reaction solution under reduced pressure was purified by silica gel column chromatography (hexane / ethyl acetate = 2/1) to give 3.5 g (yield 86%) of compound C as a white solid. .
As a result of FD-MS analysis, m / e = 740 with respect to the molecular weight of 740.
合成例4[化合物Dの合成]
 以下の工程により、化合物Dを合成した。
Figure JPOXMLDOC01-appb-C000033
Synthesis Example 4 [Synthesis of Compound D]
Compound D was synthesized by the following steps.
Figure JPOXMLDOC01-appb-C000033
 アルゴン雰囲気下、中間体C3.5g(7mmol)、中間体A2.9g(7mmol)、トリス(ジベンジリデンアセトン)ジパラジウム0.26g(0.28mmol)、トリ-t-ブチルホスホニウムテトラフルオロほう酸塩0.33g(1.12mmol)、t-ブトキシナトリウム0.94g(9.8mmol)、脱水キシレン50mlを順次加えて8時間加熱還流撹拌した。反応溶液を減圧下で濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/トルエン=1/1)で精製することにより、化合物D2.1g(収率36%)を白色固体として得た。
 FD-MS分析の結果、分子量829に対してm/e=829であった。
Under an argon atmosphere, Intermediate C 3.5 g (7 mmol), Intermediate A 2.9 g (7 mmol), Tris (dibenzylideneacetone) dipalladium 0.26 g (0.28 mmol), Tri-t-butylphosphonium tetrafluoroborate 0 .33 g (1.12 mmol), t-butoxy sodium 0.94 g (9.8 mmol), and 50 ml of dehydrated xylene were sequentially added, and the mixture was heated to reflux with stirring for 8 hours. The residue obtained by concentrating the reaction solution under reduced pressure was purified by silica gel column chromatography (hexane / toluene = 1/1) to obtain 2.1 g (yield 36%) of compound D as a white solid.
As a result of FD-MS analysis, it was m / e = 829 with respect to a molecular weight of 829.
[有機EL素子]
実施例1
 25mm×75mm×1.1mmのITO透明電極付きガラス基板(ジオマティック社製)に、イソプロピルアルコール中で5分間の超音波洗浄を施し、さらに、30分間のUV(Ultraviolet)オゾン洗浄を施した。
 このようにして洗浄した透明電極付きガラス基板を、真空蒸着装置の基板ホルダーに装着し、まず、ガラス基板の透明電極ラインが形成されている側の面上に、透明電極を覆うようにして、下記化合物Iを厚さ20nmで蒸着し、正孔注入層を得た。次いで、この膜上に、下記化合物IIを厚さ60nmで蒸着し、正孔輸送層を得た。
 この正孔輸送層上に、燐光ホスト材料として化合物Aと燐光発光材料である下記化合物D-1とを厚さ50nmで共蒸着し、燐光発光層を得た。燐光発光層内における化合物A濃度は80質量%、化合物D-1の濃度は20質量%であった。
 続いて、この燐光発光層上に下記化合物H-1を厚さ10nmで蒸着し、電子輸送層1を得た。さらに、下記化合物IIIを厚さ10nmで蒸着して電子輸送層2を得た後、厚さ1nmのLiF、厚さ80nmの金属Alを順次積層して陰極を形成して、有機EL素子を作製した。尚、LiFについては、1Å/minの速度で形成した。
[Organic EL device]
Example 1
A 25 mm × 75 mm × 1.1 mm glass substrate with an ITO transparent electrode (manufactured by Geomatic) was subjected to ultrasonic cleaning for 5 minutes in isopropyl alcohol, and further subjected to UV (Ultraviolet) ozone cleaning for 30 minutes.
The glass substrate with the transparent electrode thus cleaned is attached to the substrate holder of the vacuum evaporation apparatus, and first, on the surface of the glass substrate on which the transparent electrode line is formed, the transparent electrode is covered, The following compound I was vapor-deposited with a thickness of 20 nm to obtain a hole injection layer. Subsequently, the following compound II was vapor-deposited with a thickness of 60 nm on this film to obtain a hole transport layer.
On this hole transport layer, Compound A as a phosphorescent host material and the following compound D-1 as a phosphorescent material were co-deposited at a thickness of 50 nm to obtain a phosphorescent layer. The concentration of Compound A in the phosphorescent light emitting layer was 80% by mass, and the concentration of Compound D-1 was 20% by mass.
Subsequently, the following compound H-1 was vapor-deposited with a thickness of 10 nm on this phosphorescent light-emitting layer, whereby an electron transport layer 1 was obtained. Further, the following compound III was vapor-deposited with a thickness of 10 nm to obtain the electron transport layer 2, and then a cathode was formed by sequentially laminating 1 nm thick LiF and 80 nm thick metal Al to produce an organic EL device. did. Note that LiF was formed at a rate of 1 Å / min.
 上記のように作製した有機EL素子を直流電流駆動により発光させ、電流密度を測定し、電流密度1mA/cmにおける電圧を求めた。結果を表1に示す。 The organic EL element produced as described above was caused to emit light by direct current drive, the current density was measured, and the voltage at a current density of 1 mA / cm 2 was obtained. The results are shown in Table 1.
実施例2
 電子輸送層1の材料として化合物H-1の代わりに化合物Aを用いた以外は、実施例1と同様にして有機EL素子を作製し、評価した。結果を表1に示す。
Example 2
An organic EL device was prepared and evaluated in the same manner as in Example 1 except that Compound A was used instead of Compound H-1 as the material for the electron transport layer 1. The results are shown in Table 1.
実施例3
 燐光ホスト材料として化合物Aの代わりに化合物Bを用いて、電子輸送層1の材料として化合物H-1の代わりに化合物Bを用いた以外は、実施例1と同様にして有機EL素子を作製し、評価した。結果を表1に示す。
Example 3
An organic EL device was produced in the same manner as in Example 1 except that Compound B was used instead of Compound A as the phosphorescent host material, and Compound B was used instead of Compound H-1 as the material for the electron transport layer 1. ,evaluated. The results are shown in Table 1.
実施例4
 燐光ホスト材料として化合物Aの代わりに化合物Cを用いて、電子輸送層1の材料として化合物H-1の代わりに化合物Cを用いた以外は、実施例1と同様にして有機EL素子を作製し、評価した。結果を表1に示す。
Example 4
An organic EL device was prepared in the same manner as in Example 1 except that Compound C was used instead of Compound A as the phosphorescent host material and Compound C was used instead of Compound H-1 as the material for the electron transport layer 1. ,evaluated. The results are shown in Table 1.
実施例5
 燐光ホスト材料として化合物Aの代わりに化合物Dを用いて、電子輸送層1の材料として化合物H-1の代わりに化合物Dを用いた以外は、実施例1と同様にして有機EL素子を作製し、評価した。結果を表1に示す。
Example 5
An organic EL device was produced in the same manner as in Example 1 except that Compound D was used instead of Compound A as the phosphorescent host material, and Compound D was used instead of Compound H-1 as the material for the electron transport layer 1. ,evaluated. The results are shown in Table 1.
比較例1
 燐光ホスト材料として化合物Aの代わりに化合物H-1を用いた以外は、実施例1と同様にして有機EL素子を作製し、評価した。結果を表1に示す。
Comparative Example 1
An organic EL device was prepared and evaluated in the same manner as in Example 1 except that Compound H-1 was used instead of Compound A as the phosphorescent host material. The results are shown in Table 1.
比較例2
 燐光ホスト材料として化合物Aの代わりに化合物H-2を用いて、電子輸送層1の材料として化合物H-1の代わりに化合物H-2を用いた以外は、実施例1と同様にして有機EL素子を作製し、評価した。結果を表1に示す。
Comparative Example 2
Organic EL in the same manner as in Example 1 except that Compound H-2 was used instead of Compound A as the phosphorescent host material and Compound H-2 was used instead of Compound H-1 as the material for the electron transport layer 1. A device was fabricated and evaluated. The results are shown in Table 1.
比較例3
 燐光ホスト材料として化合物Aの代わりに化合物H-4を用いて、電子輸送層1の材料として化合物H-1の代わりに化合物H-4を用いた以外は、実施例1と同様にして有機EL素子を作製し、評価した。結果を表1に示す。
Comparative Example 3
Organic EL in the same manner as in Example 1 except that Compound H-4 was used instead of Compound A as the phosphorescent host material and Compound H-4 was used instead of Compound H-1 as the material for the electron transport layer 1. A device was fabricated and evaluated. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 実施例1~5の結果より、本発明の化合物を発光層に用いた場合、比較例化合物より低電圧化する青色発光素子が得られることが分かった。 From the results of Examples 1 to 5, it was found that when the compound of the present invention was used for the light emitting layer, a blue light emitting device having a voltage lower than that of the comparative compound was obtained.
実施例6
 燐光ホスト材料として化合物Aの代わりに化合物H-1を用いて、電子輸送層1の材料として化合物H-1の代わりに化合物Aを用いた以外は、実施例1と同様にして有機EL素子を作製し、評価した。結果を表2に示す。
Example 6
An organic EL device was prepared in the same manner as in Example 1, except that Compound H-1 was used instead of Compound A as the phosphorescent host material, and Compound A was used instead of Compound H-1 as the material for the electron transport layer 1. Prepared and evaluated. The results are shown in Table 2.
実施例7
 燐光ホスト材料として化合物Aの代わりに化合物H-1を用いて、電子輸送層1の材料として化合物H-1の代わりに化合物Bを用いた以外は、実施例1と同様にして有機EL素子を作製し、評価した。結果を表2に示す。
Example 7
An organic EL device was prepared in the same manner as in Example 1, except that Compound H-1 was used instead of Compound A as the phosphorescent host material, and Compound B was used instead of Compound H-1 as the material for the electron transport layer 1. Prepared and evaluated. The results are shown in Table 2.
実施例8
 燐光ホスト材料として化合物Aの代わりに化合物H-1を用いて、電子輸送層1の材料として化合物H-1の代わりに化合物Cを用いた以外は、実施例1と同様にして有機EL素子を作製し、評価した。結果を表2に示す。
Example 8
An organic EL device was prepared in the same manner as in Example 1, except that Compound H-1 was used instead of Compound A as the phosphorescent host material, and Compound C was used instead of Compound H-1 as the material for the electron transport layer 1. Prepared and evaluated. The results are shown in Table 2.
実施例9
 燐光ホスト材料として化合物Aの代わりに化合物H-1を用いて、電子輸送層1の材料として化合物H-1の代わりに化合物Dを用いた以外は、実施例1と同様にして有機EL素子を作製し、評価した。結果を表2に示す。
Example 9
An organic EL device was prepared in the same manner as in Example 1 except that Compound H-1 was used instead of Compound A as the phosphorescent host material, and Compound D was used instead of Compound H-1 as the material for the electron transport layer 1. Prepared and evaluated. The results are shown in Table 2.
比較例4
 燐光ホスト材料として化合物Aの代わりに化合物H-1を用いて、電子輸送層1の材料として化合物H-1の代わりに化合物H-2を用いた以外は、実施例1と同様にして有機EL素子を作製し、評価した。結果を表2に示す。
Comparative Example 4
Organic EL in the same manner as in Example 1 except that Compound H-1 was used instead of Compound A as the phosphorescent host material and Compound H-2 was used instead of Compound H-1 as the material for the electron transport layer 1. A device was fabricated and evaluated. The results are shown in Table 2.
比較例5
 燐光ホスト材料として化合物Aの代わりに化合物H-1を用いて、電子輸送層1の材料として化合物H-1の代わりに化合物H-4を用いた以外は、実施例1と同様にして有機EL素子を作製し、評価した。結果を表2に示す。
Comparative Example 5
Organic EL in the same manner as in Example 1 except that Compound H-1 was used instead of Compound A as the phosphorescent host material, and Compound H-4 was used instead of Compound H-1 as the material for the electron transport layer 1. A device was fabricated and evaluated. The results are shown in Table 2.
実施例10
 燐光ホスト材料として化合物Aの代わりに化合物H-3を用いて、電子輸送層1の材料として化合物H-1の代わりに化合物Aを用いた以外は、実施例1と同様にして有機EL素子を作製し、評価した。結果を表2に示す。
Example 10
An organic EL device was prepared in the same manner as in Example 1, except that Compound H-3 was used instead of Compound A as the phosphorescent host material, and Compound A was used instead of Compound H-1 as the material for the electron transport layer 1. Prepared and evaluated. The results are shown in Table 2.
実施例11
 燐光ホスト材料として化合物Aの代わりに化合物H-3を用いて、電子輸送層1の材料として化合物H-1の代わりに化合物Bを用いた以外は、実施例1と同様にして有機EL素子を作製し、評価した。結果を表2に示す。
Example 11
An organic EL device was prepared in the same manner as in Example 1 except that Compound H-3 was used instead of Compound A as the phosphorescent host material, and Compound B was used instead of Compound H-1 as the material for the electron transport layer 1. Prepared and evaluated. The results are shown in Table 2.
実施例12
 燐光ホスト材料として化合物Aの代わりに化合物H-3を用いて、電子輸送層1の材料として化合物H-1の代わりに化合物Cを用いた以外は、実施例1と同様にして有機EL素子を作製し、評価した。結果を表2に示す。
Example 12
An organic EL device was prepared in the same manner as in Example 1 except that Compound H-3 was used instead of Compound A as the phosphorescent host material, and Compound C was used instead of Compound H-1 as the material for the electron transport layer 1. Prepared and evaluated. The results are shown in Table 2.
比較例6
 燐光ホスト材料として化合物Aの代わりに化合物H-3を用いて、電子輸送層1の材料として化合物H-1の代わりに化合物H-2を用いた以外は、実施例1と同様にして有機EL素子を作製し、評価した。結果を表2に示す。
Comparative Example 6
Organic EL in the same manner as in Example 1 except that Compound H-3 was used instead of Compound A as the phosphorescent host material and Compound H-2 was used instead of Compound H-1 as the material for the electron transport layer 1. A device was fabricated and evaluated. The results are shown in Table 2.
比較例7
 ホスト材料として化合物Aの代わりに化合物H-3を用いて、電子輸送層1の材料として化合物H-1の代わりに化合物H-4を用いた以外は、実施例1と同様にして有機EL素子を作製し、評価した。結果を表2に示す。
Comparative Example 7
Organic EL device in the same manner as in Example 1 except that Compound H-3 was used instead of Compound A as the host material, and Compound H-4 was used instead of Compound H-1 as the material for the electron transport layer 1 Were made and evaluated. The results are shown in Table 2.
 上記のように作製した有機EL素子を直流電流駆動により発光させ、輝度、電流密度を測定し、電流密度1mA/cmにおける発光効率(外部量子効率)を求めた。さらに初期輝度3,000cd/mにおける輝度70%寿命(輝度が70%まで低下する時間)を求めた。結果を表2に示す。 The organic EL device produced as described above was caused to emit light by direct current drive, the luminance and current density were measured, and the light emission efficiency (external quantum efficiency) at a current density of 1 mA / cm 2 was obtained. Furthermore, the brightness | luminance 70% lifetime (time when a brightness | luminance falls to 70%) in initial stage brightness | luminance 3,000cd / m < 2 > was calculated | required. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例6~12の結果より、本発明の化合物を電子輸送層材料として用いた場合、比較例化合物より高効率化し、長寿命な素子が得られることが分かった。 From the results of Examples 6 to 12, it was found that when the compound of the present invention was used as an electron transport layer material, a device having higher efficiency and longer life than the comparative compound was obtained.
 本発明の含窒素ヘテロ芳香族環化合物は、有機EL素子用材料、例えば発光層のホスト材料や電子輸送層材料に好適である。また、青色燐光発光素子にも使用できる
 本発明の有機EL素子用材料は、有機EL素子の他、有機半導体、有機太陽電池等に利用できる。
 本発明の有機EL素子は、壁掛けテレビのフラットパネルディスプレイ等の平面発光体、複写機、プリンター、液晶ディスプレイのバックライト又は計器類等の光源、表示板、標識灯、照明装置等に利用できる。
The nitrogen-containing heteroaromatic ring compound of the present invention is suitable for a material for an organic EL device, for example, a host material for an emission layer or an electron transport layer material. Moreover, the organic EL element material of the present invention that can also be used for blue phosphorescent light emitting elements can be used for organic semiconductors, organic solar cells, and the like in addition to organic EL elements.
The organic EL device of the present invention can be used for a flat light emitter such as a flat panel display of a wall-mounted television, a light source such as a copying machine, a printer, a backlight of a liquid crystal display or an instrument, a display board, a marker lamp, an illumination device, and the like.
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 本願のパリ優先の基礎となる日本出願明細書の内容を全てここに援用する。
 
Although several embodiments and / or examples of the present invention have been described in detail above, those skilled in the art will appreciate that these exemplary embodiments and / or embodiments are substantially without departing from the novel teachings and advantages of the present invention. It is easy to make many changes to the embodiment. Accordingly, many of these modifications are within the scope of the present invention.
All the contents of the Japanese application specification that is the basis of the priority of Paris in this application are incorporated herein.

Claims (17)

  1.  下記式(1)で表される含窒素ヘテロ芳香族環化合物。
    Figure JPOXMLDOC01-appb-C000035
    [式(1)中、
     Xは酸素原子又は硫黄原子を表し、
     Y11~Y18、Y21~Y28及びY31~Y38はそれぞれ、CR又は窒素原子を表し、
     Rは、単結合、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の環形成炭素数3~20のシクロアルコキシ基、置換もしくは無置換の環形成炭素数6~18の芳香族炭化水素環、置換もしくは無置換の環形成炭素数6~18のアリールオキシ基、置換もしくは無置換の環形成原子数5~18のヘテロ芳香族環、置換もしくは無置換のアミノ基、フッ素原子、置換もしくは無置換の炭素数1~20のフルオロアルキル基、置換もしくは無置換の炭素数1~20のフルオロアルコキシ基、又はシアノ基を表し、複数のCRが存在する場合、Rはそれぞれ、同一又は異なっていてもよく、
     A及びAは、それぞれ、単結合、酸素原子、硫黄原子、又は下記の式(a)~(e)で示される基であり、
    Figure JPOXMLDOC01-appb-C000036
     R~Rは、それぞれ、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の環形成炭素数3~20のシクロアルコキシ基、置換もしくは無置換の環形成炭素数6~18の芳香族炭化水素環、置換もしくは無置換の環形成炭素数6~18のアリールオキシ基、置換もしくは無置換の環形成原子数5~18のヘテロ芳香族環、置換もしくは無置換のアミノ基、フッ素原子、置換もしくは無置換の炭素数1~20のフルオロアルキル基、置換もしくは無置換の炭素数1~20のフルオロアルコキシ基、又はシアノ基を表し、
     HArは、置換もしくは無置換の環形成原子数5~18の単環もしくは縮合環の含窒素芳香族環、置換基を有するジベンゾフラン環、又は置換もしくは無置換のジベンゾチオフェン環を表す。]
    A nitrogen-containing heteroaromatic ring compound represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000035
    [In Formula (1),
    X represents an oxygen atom or a sulfur atom,
    Y 11 to Y 18 , Y 21 to Y 28 and Y 31 to Y 38 each represent CR 1 or a nitrogen atom;
    R 1 is a single bond, a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms, a substituted or unsubstituted carbon atom having 1 to 20 alkoxy groups, substituted or unsubstituted cycloalkoxy groups having 3 to 20 ring carbon atoms, substituted or unsubstituted aromatic hydrocarbon rings having 6 to 18 ring carbon atoms, substituted or unsubstituted ring carbon atoms 6-18 aryloxy group, substituted or unsubstituted heteroaromatic ring having 5 to 18 ring atoms, substituted or unsubstituted amino group, fluorine atom, substituted or unsubstituted fluoroalkyl having 1 to 20 carbon atoms group, a substituted or unsubstituted fluoroalkoxy group having 1 to 20 carbon atoms, or a cyano group, when a plurality of CR 1 is present, R 1 is each the same or different Well,
    A 2 and A 3 are each a single bond, an oxygen atom, a sulfur atom, or a group represented by the following formulas (a) to (e):
    Figure JPOXMLDOC01-appb-C000036
    R 2 to R 6 are each a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms, or a substituted or unsubstituted carbon number. 1-20 alkoxy group, substituted or unsubstituted cycloalkoxy group having 3-20 carbon atoms, substituted or unsubstituted aromatic hydrocarbon ring having 6-18 carbon atoms, substituted or unsubstituted ring formation Aryloxy group having 6 to 18 carbon atoms, substituted or unsubstituted heteroaromatic ring having 5 to 18 ring atoms, substituted or unsubstituted amino group, fluorine atom, substituted or unsubstituted carbon atoms having 1 to 20 carbon atoms Represents a fluoroalkyl group, a substituted or unsubstituted fluoroalkoxy group having 1 to 20 carbon atoms, or a cyano group;
    HAr represents a substituted or unsubstituted monocyclic or condensed nitrogen-containing aromatic ring having 5 to 18 ring atoms, a dibenzofuran ring having a substituent, or a substituted or unsubstituted dibenzothiophene ring. ]
  2.  前記A及びAが共に単結合である、請求項1に記載の含窒素ヘテロ芳香族環化合物。 Wherein A 2 and A 3 are both single bonds, nitrogen-containing heteroaromatic ring compound of claim 1.
  3.  下記式(2)で表される含窒素ヘテロ芳香族環化合物である、請求項1又は2に記載の含窒素ヘテロ芳香族環化合物。
    Figure JPOXMLDOC01-appb-C000037
    [式(2)中、X、Y11、Y13~Y18、Y21~Y28、Y31~Y38及びHArは、前記式(1)と同様である。]
    The nitrogen-containing heteroaromatic ring compound according to claim 1 or 2, which is a nitrogen-containing heteroaromatic ring compound represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000037
    [In the formula (2), X, Y 11 , Y 13 to Y 18 , Y 21 to Y 28 , Y 31 to Y 38 and HAr are the same as those in the formula (1). ]
  4.  下記式(3)で表される含窒素ヘテロ芳香族環化合物である、請求項1~3のいずれかに記載の含窒素ヘテロ芳香族環化合物。
    Figure JPOXMLDOC01-appb-C000038
    [式(3)中、X、Y11、Y13~Y18、Y21~Y28、Y31、Y33~Y38、HArは、前記式(1)と同様である。]
    The nitrogen-containing heteroaromatic ring compound according to any one of claims 1 to 3, which is a nitrogen-containing heteroaromatic ring compound represented by the following formula (3):
    Figure JPOXMLDOC01-appb-C000038
    [In Formula (3), X, Y 11 , Y 13 to Y 18 , Y 21 to Y 28 , Y 31 , Y 33 to Y 38 , and HAr are the same as those in Formula (1). ]
  5.  下記式(4)で表される含窒素ヘテロ芳香族環化合物である、請求項1~3のいずれかに記載の含窒素ヘテロ芳香族環化合物。
    Figure JPOXMLDOC01-appb-C000039
    [式(4)中、X、Y11、Y13~Y18、Y21~Y28、Y32~Y38、HArは、前記式(1)と同様である。]
    The nitrogen-containing heteroaromatic ring compound according to any one of claims 1 to 3, which is a nitrogen-containing heteroaromatic ring compound represented by the following formula (4):
    Figure JPOXMLDOC01-appb-C000039
    [In the formula (4), X, Y 11 , Y 13 to Y 18 , Y 21 to Y 28 , Y 32 to Y 38 , and HAr are the same as those in the formula (1). ]
  6.  下記式(5)で表される含窒素ヘテロ芳香族環化合物である、請求項1~3のいずれかに記載の含窒素ヘテロ芳香族環化合物。
    Figure JPOXMLDOC01-appb-C000040
    [式(5)中、X、Y11、Y13~Y18、Y21~Y28、Y31~Y32、Y34~Y38、HArは、前記式(1)と同様である。]
    The nitrogen-containing heteroaromatic ring compound according to any one of claims 1 to 3, which is a nitrogen-containing heteroaromatic ring compound represented by the following formula (5).
    Figure JPOXMLDOC01-appb-C000040
    [In the formula (5), X, Y 11 , Y 13 to Y 18 , Y 21 to Y 28 , Y 31 to Y 32 , Y 34 to Y 38 , and HAr are the same as those in the formula (1). ]
  7.  下記式(6)で表される含窒素ヘテロ芳香族環化合物である、請求項1~3のいずれかに記載の含窒素ヘテロ芳香族環化合物。
    Figure JPOXMLDOC01-appb-C000041
    [式(6)中、X、Y11、Y13~Y18、Y21~Y28、Y31~Y33、Y35~Y38、HArは、前記式(1)と同様である。]
    The nitrogen-containing heteroaromatic ring compound according to any one of claims 1 to 3, which is a nitrogen-containing heteroaromatic ring compound represented by the following formula (6).
    Figure JPOXMLDOC01-appb-C000041
    [In the formula (6), X, Y 11 , Y 13 to Y 18 , Y 21 to Y 28 , Y 31 to Y 33 , Y 35 to Y 38 , and HAr are the same as in the above formula (1). ]
  8.  前記HArが、下記式(A-1)で表される請求項1~7のいずれかに記載の含窒素ヘテロ芳香族環化合物。
    Figure JPOXMLDOC01-appb-C000042
    [式(A-1)中、
     Y1a~Y1eはそれぞれ、CR1a又は窒素原子を表し、
     Y1a~Y1eの少なくとも1つ以上は窒素原子を表し、
     R1aは、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の環形成炭素数3~20のシクロアルコキシ基、置換もしくは無置換の環形成炭素数6~18の芳香族炭化水素環、置換もしくは無置換の環形成炭素数6~18のアリールオキシ基、置換もしくは無置換の環形成原子数5~18のヘテロ芳香族環、置換もしくは無置換のアミノ基、フッ素原子、置換もしくは無置換の炭素数1~20のフルオロアルキル基、置換もしくは無置換の炭素数1~20のフルオロアルコキシ基、置換もしくは無置換の炭素数12~30のジアリールホスフィノ基、置換もしくは無置換の炭素数12~30のジアリールホスフィンオキシド基、置換もしくは無置換の炭素数18~30のジアリールホスフィノアリール基又はシアノ基を表し、複数のCR1aが存在する場合、R1aはそれぞれ、同一又は異なっていてもよい。]
    The nitrogen-containing heteroaromatic ring compound according to any one of claims 1 to 7, wherein the HAr is represented by the following formula (A-1).
    Figure JPOXMLDOC01-appb-C000042
    [In the formula (A-1),
    Y 1a to Y 1e each represents CR 1a or a nitrogen atom;
    At least one of Y 1a to Y 1e represents a nitrogen atom;
    R 1a is a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms. Group, substituted or unsubstituted cycloalkoxy group having 3 to 20 ring carbon atoms, substituted or unsubstituted aromatic hydrocarbon ring having 6 to 18 ring carbon atoms, substituted or unsubstituted ring carbon atoms having 6 to 18 carbon atoms Aryloxy group, substituted or unsubstituted heteroaromatic ring having 5 to 18 ring atoms, substituted or unsubstituted amino group, fluorine atom, substituted or unsubstituted fluoroalkyl group having 1 to 20 carbon atoms, substituted Or an unsubstituted fluoroalkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted diarylphosphino group having 12 to 30 carbon atoms, a substituted or unsubstituted carbon number 12 Represents a diarylphosphine oxide group of ˜30, a substituted or unsubstituted diarylphosphinoaryl group of 18 to 30 carbon atoms or a cyano group, and when a plurality of CR 1a are present, R 1a may be the same or different Good. ]
  9.  前記HArが、下記式(A-2)で表される請求項1~7のいずれかに記載の含窒素ヘテロ芳香族環化合物。
    Figure JPOXMLDOC01-appb-C000043
    [式(A-2)中、
     Y2a~Y2iはそれぞれ、CR2a又は窒素原子を表し、
     Xは、酸素原子、硫黄原子又は-NR2bを表し、
     R2aは、単結合、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の環形成炭素数3~20のシクロアルコキシ基、置換もしくは無置換の環形成炭素数6~18の芳香族炭化水素環、置換もしくは無置換の環形成炭素数6~18のアリールオキシ基、置換もしくは無置換の環形成原子数5~18のヘテロ芳香族環、置換もしくは無置換のアミノ基、フッ素原子、置換もしくは無置換の炭素数1~20のフルオロアルキル基、置換もしくは無置換の炭素数1~20のフルオロアルコキシ基、置換もしくは無置換の炭素数12~30のジアリールホスフィノ基、置換もしくは無置換の炭素数12~30のジアリールホスフィンオキシド基、置換もしくは無置換の炭素数18~30のジアリールホスフィノアリール基又はシアノ基を表し、複数のCR2aが存在する場合、R2aはそれぞれ、同一又は異なっていてもよく、
     Xが酸素原子を表すと同時にR2aが全て単結合もしくは水素原子を表す場合は、Y2a~Y2iの少なくとも1つは窒素原子を表し、
     R2bは、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、置換もしくは無置換の環形成炭素数6~18の芳香族炭化水素環、又は、置換もしくは無置換の環形成原子数5~18のヘテロ芳香族環を表す。]
    The nitrogen-containing heteroaromatic ring compound according to any one of claims 1 to 7, wherein the HAr is represented by the following formula (A-2).
    Figure JPOXMLDOC01-appb-C000043
    [In the formula (A-2),
    Y 2a to Y 2i each represents CR 2a or a nitrogen atom,
    X 2 represents an oxygen atom, a sulfur atom or —NR 2b ,
    R 2a is a single bond, a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms, a substituted or unsubstituted carbon number of 1 to 20 alkoxy groups, substituted or unsubstituted cycloalkoxy groups having 3 to 20 ring carbon atoms, substituted or unsubstituted aromatic hydrocarbon rings having 6 to 18 ring carbon atoms, substituted or unsubstituted ring carbon atoms 6-18 aryloxy group, substituted or unsubstituted heteroaromatic ring having 5 to 18 ring atoms, substituted or unsubstituted amino group, fluorine atom, substituted or unsubstituted fluoroalkyl having 1 to 20 carbon atoms Group, substituted or unsubstituted fluoroalkoxy group having 1 to 20 carbon atoms, substituted or unsubstituted diarylphosphino group having 12 to 30 carbon atoms, substituted or unsubstituted carbon Represents a diarylphosphine oxide group having a prime number of 12 to 30, a substituted or unsubstituted diarylphosphinoaryl group having a carbon number of 18 to 30, or a cyano group, and when a plurality of CR 2a are present, each R 2a is the same or different. You can,
    When X 2 represents an oxygen atom and R 2a all represent a single bond or a hydrogen atom, at least one of Y 2a to Y 2i represents a nitrogen atom;
    R 2b represents a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms, or a substituted or unsubstituted aromatic group having 6 to 18 ring carbon atoms. It represents a hydrocarbon ring or a substituted or unsubstituted heteroaromatic ring having 5 to 18 ring atoms. ]
  10.  前記式(A-2)において、Y2a~Y2iの少なくとも1つが窒素原子である請求項9に記載の含窒素ヘテロ芳香族環化合物。 The nitrogen-containing heteroaromatic ring compound according to claim 9, wherein in formula (A-2), at least one of Y 2a to Y 2i is a nitrogen atom.
  11.  請求項1~10のいずれかに記載の含窒素ヘテロ芳香族環化合物を含む有機エレクトロルミネッセンス素子用材料。 An organic electroluminescent element material comprising the nitrogen-containing heteroaromatic ring compound according to any one of claims 1 to 10.
  12.  陰極と陽極との間に、発光層を含む一層以上の有機薄膜層を有し、
     前記有機薄膜層の少なくとも一層が、請求項11に記載の有機エレクトロルミネッセンス素子用材料を含有する有機エレクトロルミネッセンス素子。
    Between the cathode and the anode, having one or more organic thin film layers including a light emitting layer,
    The organic electroluminescent element in which at least one layer of the said organic thin film layer contains the organic electroluminescent element material of Claim 11.
  13.  前記発光層が前記有機エレクトロルミネッセンス素子用材料を含む請求項12に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to claim 12, wherein the light emitting layer contains the material for an organic electroluminescence device.
  14.  前記発光層が燐光発光材料を含有し、燐光発光材料がイリジウム(Ir),オスミウム(Os)及び白金(Pt)から選択される金属原子のオルトメタル化錯体である請求項12又は13に記載の有機エレクトロルミネッセンス素子。 14. The light-emitting layer contains a phosphorescent material, and the phosphorescent material is an orthometalated complex of a metal atom selected from iridium (Ir), osmium (Os), and platinum (Pt). Organic electroluminescence device.
  15.  前記陰極と前記発光層の間に有機薄膜層を有し、該有機薄膜層が前記有機エレクトロルミネッセンス素子用材料を含む請求項12~14のいずれかに記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to any one of claims 12 to 14, further comprising an organic thin film layer between the cathode and the light emitting layer, wherein the organic thin film layer contains the material for the organic electroluminescence device.
  16.  前記有機薄膜層が前記発光層に隣接する請求項15に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescent element according to claim 15, wherein the organic thin film layer is adjacent to the light emitting layer.
  17.  前記陰極と前記有機薄膜層との界面領域に電子供与性ドーパント及び有機金属錯体の少なくとも一方を添加してある請求項12~16のいずれかに記載の有機エレクトロルミネッセンス素子。
     
    The organic electroluminescence device according to any one of claims 12 to 16, wherein at least one of an electron donating dopant and an organometallic complex is added to an interface region between the cathode and the organic thin film layer.
PCT/JP2013/004339 2012-07-20 2013-07-16 Nitrogen-containing heteroaromatic ring compound and organic electroluminescence element using same WO2014013721A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-161467 2012-07-20
JP2012161467 2012-07-20

Publications (1)

Publication Number Publication Date
WO2014013721A1 true WO2014013721A1 (en) 2014-01-23

Family

ID=49948563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004339 WO2014013721A1 (en) 2012-07-20 2013-07-16 Nitrogen-containing heteroaromatic ring compound and organic electroluminescence element using same

Country Status (2)

Country Link
TW (1) TW201412731A (en)
WO (1) WO2014013721A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5831654B1 (en) * 2015-02-13 2015-12-09 コニカミノルタ株式会社 Aromatic heterocycle derivative, organic electroluminescence device using the same, illumination device and display device
JP2016149522A (en) * 2015-08-24 2016-08-18 コニカミノルタ株式会社 Aromatic heterocyclic derivative, organic electroluminescent element using the same, illumination device, and display device
JP2016149523A (en) * 2015-08-24 2016-08-18 コニカミノルタ株式会社 Aromatic heterocyclic derivative, organic electroluminescent element using the same, illumination device, and display device
EP3061759A1 (en) 2015-02-24 2016-08-31 Idemitsu Kosan Co., Ltd Nitrile substituted dibenzofurans
JP2016207954A (en) * 2015-04-28 2016-12-08 コニカミノルタ株式会社 Organic electroluminescent element and organic electroluminescent element material
US10302339B2 (en) * 2014-10-29 2019-05-28 Bsh Hausgeraete Gmbh Refrigeration appliance with a heat exchanging element

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009008100A1 (en) * 2007-07-10 2009-01-15 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence element, and organic electroluminescence element prepared by using the material
JP2010135467A (en) * 2008-12-03 2010-06-17 Konica Minolta Holdings Inc Organic electroluminescent element, lighting system equipped with the element, and display device
WO2010090077A1 (en) * 2009-02-06 2010-08-12 コニカミノルタホールディングス株式会社 Organic electroluminescent element, and illumination device and display device each comprising the element
WO2010150593A1 (en) * 2009-06-24 2010-12-29 コニカミノルタホールディングス株式会社 Organic electroluminescent element, display device, illuminating device and condensed polycyclic heterocyclic compound
WO2011019156A1 (en) * 2009-08-10 2011-02-17 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
JP2011084531A (en) * 2009-10-19 2011-04-28 Konica Minolta Holdings Inc Material for organic electroluminescent element, organic electroluminescent element, illumination device and display device
WO2011122132A1 (en) * 2010-03-31 2011-10-06 出光興産株式会社 Material for organic electroluminescence element, and organic electroluminescence element using same
US20120018714A1 (en) * 2001-03-01 2012-01-26 Konica Minolta Holdings, Inc. Organic electroluminescent device, display apparatus, and lighting apparatus
WO2012029253A1 (en) * 2010-08-31 2012-03-08 出光興産株式会社 Nitrogen-containing aromatic heterocyclic derivative and organic electroluminescence device using same
WO2012090967A1 (en) * 2010-12-28 2012-07-05 出光興産株式会社 Material for organic electroluminescent elements, and organic electroluminescent element using same
WO2012098996A1 (en) * 2011-01-17 2012-07-26 コニカミノルタホールディングス株式会社 Organic electroluminescent element, display device, lighting device, and organic electroluminescent element material
WO2012160859A1 (en) * 2011-05-24 2012-11-29 コニカミノルタホールディングス株式会社 Organic electroluminescence element, display device and lighting device
WO2013042446A1 (en) * 2011-09-21 2013-03-28 コニカミノルタホールディングス株式会社 Organic electroluminescent element, display device, and illumination device
JP2013110262A (en) * 2011-11-21 2013-06-06 Konica Minolta Holdings Inc Organic el element and organic el module and manufacturing method therefor

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120018714A1 (en) * 2001-03-01 2012-01-26 Konica Minolta Holdings, Inc. Organic electroluminescent device, display apparatus, and lighting apparatus
WO2009008100A1 (en) * 2007-07-10 2009-01-15 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence element, and organic electroluminescence element prepared by using the material
JP2010135467A (en) * 2008-12-03 2010-06-17 Konica Minolta Holdings Inc Organic electroluminescent element, lighting system equipped with the element, and display device
WO2010090077A1 (en) * 2009-02-06 2010-08-12 コニカミノルタホールディングス株式会社 Organic electroluminescent element, and illumination device and display device each comprising the element
WO2010150593A1 (en) * 2009-06-24 2010-12-29 コニカミノルタホールディングス株式会社 Organic electroluminescent element, display device, illuminating device and condensed polycyclic heterocyclic compound
WO2011019156A1 (en) * 2009-08-10 2011-02-17 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
JP2011084531A (en) * 2009-10-19 2011-04-28 Konica Minolta Holdings Inc Material for organic electroluminescent element, organic electroluminescent element, illumination device and display device
WO2011122132A1 (en) * 2010-03-31 2011-10-06 出光興産株式会社 Material for organic electroluminescence element, and organic electroluminescence element using same
WO2011125680A1 (en) * 2010-03-31 2011-10-13 出光興産株式会社 Material for organic electroluminescent element, and organic electroluminescent element using same
WO2012029253A1 (en) * 2010-08-31 2012-03-08 出光興産株式会社 Nitrogen-containing aromatic heterocyclic derivative and organic electroluminescence device using same
WO2012090967A1 (en) * 2010-12-28 2012-07-05 出光興産株式会社 Material for organic electroluminescent elements, and organic electroluminescent element using same
WO2012098996A1 (en) * 2011-01-17 2012-07-26 コニカミノルタホールディングス株式会社 Organic electroluminescent element, display device, lighting device, and organic electroluminescent element material
WO2012160859A1 (en) * 2011-05-24 2012-11-29 コニカミノルタホールディングス株式会社 Organic electroluminescence element, display device and lighting device
WO2013042446A1 (en) * 2011-09-21 2013-03-28 コニカミノルタホールディングス株式会社 Organic electroluminescent element, display device, and illumination device
JP2013110262A (en) * 2011-11-21 2013-06-06 Konica Minolta Holdings Inc Organic el element and organic el module and manufacturing method therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10302339B2 (en) * 2014-10-29 2019-05-28 Bsh Hausgeraete Gmbh Refrigeration appliance with a heat exchanging element
JP5831654B1 (en) * 2015-02-13 2015-12-09 コニカミノルタ株式会社 Aromatic heterocycle derivative, organic electroluminescence device using the same, illumination device and display device
EP3061759A1 (en) 2015-02-24 2016-08-31 Idemitsu Kosan Co., Ltd Nitrile substituted dibenzofurans
JP2016207954A (en) * 2015-04-28 2016-12-08 コニカミノルタ株式会社 Organic electroluminescent element and organic electroluminescent element material
JP2016149522A (en) * 2015-08-24 2016-08-18 コニカミノルタ株式会社 Aromatic heterocyclic derivative, organic electroluminescent element using the same, illumination device, and display device
JP2016149523A (en) * 2015-08-24 2016-08-18 コニカミノルタ株式会社 Aromatic heterocyclic derivative, organic electroluminescent element using the same, illumination device, and display device

Also Published As

Publication number Publication date
TW201412731A (en) 2014-04-01

Similar Documents

Publication Publication Date Title
JP5926421B2 (en) Biscarbazole derivative and organic electroluminescence device using the same
US9604972B2 (en) Nitrogen-containing heteroaromatic ring compound
CN104837834B (en) Aromatic amine derivative and organic electroluminescent element
JP6196554B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
WO2012108389A1 (en) Biscarbazole derivative and organic electroluminescent element using same
KR20140043043A (en) Organic light emitting device and materials for use in same
TW201118150A (en) Fluorene-containing aromatic compound, material for organic electroluminescent element, and organic electroluminescent element using same
TW201313695A (en) Fused heterocyclic aromatic derivative, organic electroluminescence element material, and organic electroluminescence element using same
JP2016122672A (en) Light emitting device
KR20120032054A (en) Novel organic luminescent compounds and organic electroluminescent device using the same
EP2544257A1 (en) Material for organic electroluminescent element, and organic electroluminescent element using same
KR20120116282A (en) Novel organic electroluminescence compounds and organic electroluminescence device using the same
TW201317326A (en) Material for organic electroluminescent element, and organic electroluminescent element produced using same
WO2013069242A1 (en) Material for organic electroluminescent elements, and organic electroluminescent element using same
TW201329059A (en) Aromatic amine derivative, material for organic electroluminescent element, and organic electroluminescent element
JP6189296B2 (en) Organic electroluminescence device
WO2013179645A1 (en) Organic-electroluminescent-element material, and organic electroluminescent element using same
WO2014013721A1 (en) Nitrogen-containing heteroaromatic ring compound and organic electroluminescence element using same
KR102216817B1 (en) Amine compound having hetero-fused ring and organic electroluminescent element using amine compound
JP2014094935A (en) Compound, and organic electroluminescent element using the same
JP2015078169A (en) Novel compound
JP6031302B2 (en) Heteroaromatic compound and organic electroluminescence device using the same
WO2023246449A1 (en) Metal iridium complexes and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13819920

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13819920

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP