WO2014013623A1 - Method for producing steel sheet having excellent chemical conversion properties and galling resistance - Google Patents

Method for producing steel sheet having excellent chemical conversion properties and galling resistance Download PDF

Info

Publication number
WO2014013623A1
WO2014013623A1 PCT/JP2012/068744 JP2012068744W WO2014013623A1 WO 2014013623 A1 WO2014013623 A1 WO 2014013623A1 JP 2012068744 W JP2012068744 W JP 2012068744W WO 2014013623 A1 WO2014013623 A1 WO 2014013623A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc
steel sheet
chemical conversion
aqueous solution
galling resistance
Prior art date
Application number
PCT/JP2012/068744
Other languages
French (fr)
Japanese (ja)
Inventor
大塚 真司
平 章一郎
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201280074788.XA priority Critical patent/CN104471115A/en
Priority to KR1020147036256A priority patent/KR20150014517A/en
Priority to PCT/JP2012/068744 priority patent/WO2014013623A1/en
Publication of WO2014013623A1 publication Critical patent/WO2014013623A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes
    • C25D9/10Electrolytic coating other than with metals with inorganic materials by cathodic processes on iron or steel
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated

Definitions

  • the present invention relates to a method for producing a steel sheet excellent in chemical conversion treatment and mold galling resistance, which is suitably used as, for example, an automobile material.
  • Cold rolled steel sheets are widely used in fields such as automobiles, home appliances, and building materials. Particularly in the automotive field, cold-rolled steel sheets are used because of demands regarding sheet thickness accuracy and flatness. In recent years, the use of high-strength cold-rolled steel sheets as automobile steel sheets has increased rapidly from the viewpoint of reducing CO 2 emissions and ensuring safety in automobiles.
  • a high-strength steel plate is a steel plate to which Si, Mn, or the like is added as an element in the steel, and these elements form an oxide typified by, for example, SiO 2 or MnSiO 4 on the surface of the steel plate in the annealing process.
  • Si, Mn, or the like is added as an element in the steel, and these elements form an oxide typified by, for example, SiO 2 or MnSiO 4 on the surface of the steel plate in the annealing process.
  • the chemical conversion treatment property when a steel sheet having SiO 2 formed on the surface in this way is subjected to a chemical conversion treatment before coating, there is a so-called skein portion where no chemical conversion crystal is formed. If a site called a scale in which a chemical conversion treatment crystal is not formed is generated, when applied as a steel sheet for automobiles, it is not preferable because it may cause a decrease in coating adhesion and a decrease in corrosion resistance.
  • mold galling resistance when press-molding a high-strength steel sheet, not only the molding load increases, but also a problem called mold galling occurs due to the occurrence of a local high surface pressure portion. Die squeezing causes local adhesion due to contact and sliding between the steel plate and the metal that constitutes the press die at high surface pressure, and scratches may occur due to the accumulation of adhesions. This is thought to occur due to an increase in sliding resistance.
  • Patent Document 1 discloses that one or more metals of Ni, Mn, Co, Mo, and Cu are cooled. A technique for discontinuously depositing on the surface of a rolled steel sheet is disclosed.
  • Patent Document 2 discloses that a cold rolled steel sheet has a zero-valent zinc-based ultrathin coating on the lower layer, and an upper layer is a second element composed of one or more of divalent zinc, P, B, and Si.
  • a technique for forming a multi-layered amorphous film composed of a group of oxides is disclosed.
  • temper rolling is performed after powders of one or more metal oxides of Zn, Ni, Mn, Ti, Co, Mo, and Al are dispersed on the surface of a cold-rolled steel sheet.
  • a technique for forming a metal layer of 1000 mg / m 2 or less on a steel sheet surface in terms of metal is disclosed.
  • Patent Document 1 Even if the method described in Patent Document 1 is applied to a cold-rolled steel sheet containing Si, the Si oxide remains as it is on the surface of the steel sheet, so that the chemical conversion property is still poor.
  • elements such as Mo and Cu have an adverse effect on the chemical conversion treatment property, and there is a problem that the chemical conversion treatment property deteriorates due to elution from the steel sheet to the chemical conversion treatment solution during chemical conversion treatment.
  • Patent Document 2 since a forming load and a local surface pressure increase when pressing a high-strength steel sheet, a second element composed of one or more of divalent zinc and P, B, Si applied to the upper layer is used. When the oxide layer of the group is destroyed, the press formability is hindered by the adhesion between the lower-valent zinc and the die, and the mold galling resistance deteriorates. Moreover, in patent document 2, the steel plate surface distribution rate of the said film
  • Patent Document 3 it is considered that the powder and the steel sheet are in close contact with each other due to physical adhesion by temper rolling. In other words, the adhesion between the powder and the steel sheet is very low.
  • the powder is severely detached from the steel sheet, and the pressed powder accumulates. Scratches are likely to occur.
  • Patent Document 3 describes that a uniform chemical conversion film is formed by uniformly dispersing metal oxide on the surface of a steel sheet.
  • dot is not described, it is unclear, but it is generally considered that the coverage is 50% or less, and when the coverage is low, it is difficult to mold parts such as double beads. It is conceivable that the uncoated base steel sheet and the mold come into contact with each other to cause adhesion and cause mold galling.
  • Patent Document 4 zinc oxide and / or zinc hydroxide is formed on a steel sheet surface by electrolytic treatment using a steel sheet as a cathode in an aqueous solution containing zinc ions, and the coating amount is 70 in terms of metallic zinc. It has been found that it is effective to improve the chemical conversion treatment property and the mold galling resistance to have a coverage of 60% or more at ⁇ 500 mg / m 2 .
  • the present invention has been made in order to advantageously solve the above problems, and an object of the present invention is to provide a method for producing a steel sheet excellent in chemical conversion treatment property and mold galling resistance.
  • the inventors of the present invention have made extensive studies to solve the above problems.
  • zinc oxide and / or zinc hydroxide is formed on the surface of the steel sheet by electrolytic treatment using the steel sheet as a cathode in an aqueous solution containing zinc ions and nitrate ions.
  • Conversion to 70 to 500 mg / m 2 , a coverage of 60% or more, and a process of bringing the steel sheet into contact with the phosphorous-containing aqueous solution after the electrolytic treatment can be performed even when the chemical conversion treatment liquid is cooled.
  • the inventors of the present invention have found that it is effective for improving processability and anti-scoring property.
  • the present invention has been made based on the above findings, and the gist thereof is as follows.
  • Electrolytic treatment with a steel plate as a cathode in an aqueous solution containing zinc ions and nitrate ions, and zinc oxide and / or zinc hydroxide on the surface of the steel plate is converted to a metal zinc content of 70 to 500 mg / m 2 and steel sheet surface coverage: formed to be 60% or more, and then contacting the steel sheet with an aqueous solution containing phosphorus, to produce a steel sheet excellent in chemical conversion property and mold galling resistance Method.
  • the steel sheet contains 0.1% by mass or more of Si, and the method for producing a steel sheet excellent in chemical conversion treatment property and mold galling resistance.
  • [3] A method for producing a steel sheet excellent in chemical conversion treatment property and mold galling resistance, characterized in that the phosphorus content of the aqueous solution containing phosphorus is 5 to 5000 mass ppm in the above [1] or [2] .
  • the aqueous solution containing phosphorus has a pH of 4 to 12, and a method for producing a steel sheet having excellent chemical conversion property and mold galling resistance .
  • a steel sheet excellent in chemical conversion treatment and mold galling resistance can be obtained.
  • the present invention has an effect on cold-rolled steel sheets, particularly high-strength cold-rolled steel sheets containing Si, and is an effective technique that achieves both chemical conversion processability and die-squeeze resistance of high-strength cold-rolled steel sheets. Industrially extremely valuable.
  • FIG. 1 is a schematic front view (Example) showing a dynamic friction coefficient measuring apparatus.
  • FIG. 2 is a schematic perspective view showing the bead shape and dimensions in FIG.
  • the steel plates targeted in the present invention are hot-rolled steel plates and cold-rolled steel plates.
  • the present invention is optimal for cold-rolled steel sheets that are frequently used in the automotive field and the like.
  • Steel plates with various elements added to steel to improve various properties such as mechanical properties (for example, high-strength steel plates) have non-uniform phosphate crystals during chemical conversion treatment due to the influence of additive elements present on the surface. May be.
  • a uniform chemical conversion coating is always required for steel sheets. From such a viewpoint, it is valuable to apply the present invention to a steel sheet to which the above various elements are added, and a stable chemical conversion coating can be obtained by the present invention.
  • the components of the steel sheet targeted by the present invention are not particularly limited.
  • a steel sheet having a Si content of 0.1% by mass or more is preferably used. This is because when the Si content in the steel is 0.1% by mass or more, Si oxide is usually formed on the surface of the steel sheet, which greatly impairs the chemical conversion processability. Therefore, the value of applying the treatment of the present invention is great. Because. Even when pressing, steel sheets with a Si content of 0.1% by mass or more tend to cause mold galling due to the increased strength of the steel sheet. By applying the treatment of the present invention, mold galling is greatly suppressed. Is done.
  • the chemical conversion processability is significantly deteriorated by the conventional method.
  • the present invention is applied to a steel sheet containing Si by 0.3 mass% or more and having Si content / Mn content ⁇ 0.4.
  • electrolytic treatment is performed using a steel plate as a cathode in an aqueous solution containing zinc ions and nitrate ions to form zinc oxide and / or zinc hydroxide (hereinafter sometimes referred to as zinc-based oxide) on the surface of the steel plate. It is characterized by making it.
  • the zinc-based oxide formed by the cathodic electrolysis method has a very fine network shape with one side of 1 ⁇ m or less. By forming these zinc-based oxides on the surface of the steel plate, this network The shape of the film contributes to improvement of mold galling resistance.
  • zinc oxide is a refractory metal and suppresses adhesion between the mold and the steel sheet, so that it is difficult for mold galling to occur, and at the same time, oil such as press oil applied during pressing can be secured. This is thought to be because it is possible to remarkably suppress the adhesion due to oil shortage due to movement. Furthermore, cathodic electrolysis is also effective from the viewpoint of controlling the amount of zinc-based oxide formed.
  • electrolytic treatment is performed using a steel plate as a cathode in an aqueous solution containing zinc ions and nitrate ions to form a zinc-based oxide on the surface of the steel plate.
  • a steel plate as a cathode in an aqueous solution containing only zinc ions zinc metal is deposited on the surface of the steel plate. Therefore, in the present invention, it is possible to form a zinc-based oxide on the surface of the steel sheet by further adding nitrate ions to the aqueous solution containing zinc ions.
  • the amount of zinc ion in the aqueous solution is 0.1-1 mol / L
  • the nitrate ion is 0.1-1 mol / L as nitric acid
  • the current density is 1-30 A / dm 2
  • the liquid temperature is 30-70 ° C.
  • the relative flow rate is in the optimum range of 0.5 to 2.0 m / s.
  • the compound to which zinc ions or nitrate ions are added is not particularly limited, and examples of the zinc ion supply compound include zinc sulfate, zinc chloride, and zinc nitrate, and examples of the nitrate ion supply compound include sodium nitrate and potassium nitrate.
  • examples of the zinc ion supply compound include zinc sulfate, zinc chloride, and zinc nitrate
  • examples of the nitrate ion supply compound include sodium nitrate and potassium nitrate.
  • a zinc-based oxide is formed on the surface of the steel sheet.
  • the zinc-based oxide of the present invention has no peak in the vicinity of 494 eV, and a peak is recognized only in the vicinity of 499 and 500 eV. From this peak, it becomes clear that the zinc-based oxide is a zinc-based oxide. Furthermore, when analysis in the depth direction (from the surface layer to the base steel plate interface) is performed by ion etching, in the present invention, the zinc-based oxide has no peak in the vicinity of 494 eV at any depth, 499, A peak is recognized only in the vicinity of 500 eV, and the entire coating becomes a zinc-based oxide.
  • the amount to 70mg / m 2 ⁇ 500mg / m 2 by metal zinc terms is one of the most important requirements in the present invention.
  • the effect of zinc-based oxide formation is sufficiently obtained. It is possible to obtain a steel sheet that is exhibited and excellent in chemical conversion treatment and mold galling resistance.
  • the mechanism of improving chemical conversion treatment by forming zinc-based oxides is not clear, but is thought to be due to the promotion of nucleation during chemical conversion treatment by forming zinc-based oxides on the steel sheet surface. .
  • the zinc-based oxide formed between the mold during pressing and the steel sheet has a high melting point, and therefore has the effect of suppressing adhesion. Have.
  • mold galling resistance is improved.
  • the amount of zinc-based oxide formed on the surface of the steel sheet is less than 70 mg / m 2 , the nucleation sites during the chemical conversion treatment cannot be sufficiently supplied, and the chemical conversion treatment improvement effect is small.
  • the amount of zinc-based oxide formed on the surface of the steel sheet is more than 500 mg / m 2 , the zinc-based oxide itself undergoes deformation, although the adhesion between the mold and the steel sheet during pressing is suppressed.
  • the desorption amount of the system oxide increases, and the desorbed zinc-based oxide becomes the sliding resistance.
  • the zinc-based oxide for stably improving the chemical conversion treatment property and the mold galling resistance is 70 mg / m 2 to 500 mg / m 2 , preferably 100 to 300 mg / m 2 .
  • the formation amount of the zinc-based oxide is calculated by measuring the intensity of Zn using fluorescent X-rays and comparing it with the intensity of the known Zn quantity.
  • the coverage of the steel sheet surface of zinc-based oxide is 60% or more. This is also one of the important requirements in the present invention. By setting the coverage to 60% or more, it becomes possible to improve the chemical conversion property and the mold galling resistance. When the coverage is less than 60%, when the steel sheet is processed, the press mold and the base steel sheet are in direct contact with each other, so that micro adhesion occurs, the friction coefficient increases, and the press formability decreases. .
  • the coverage of the zinc-based oxide means the area ratio of the zinc-based oxide covering the surface of the steel sheet. Specifically, the coverage is 100 ⁇ m square using an electron beam microanalyzer. Zinc element mapping is performed, and it can be calculated from the measurement area (10000 ⁇ m 2 ) by the ratio of the existing area of zinc.
  • the steel plate After the electrolytic treatment using the steel plate as a cathode to form a zinc-based oxide on the steel plate surface, the steel plate is brought into contact with an aqueous solution containing phosphorus. This is also an important requirement.
  • the normal chemical conversion treatment is performed in the order of alkali degreasing ⁇ surface adjustment ⁇ phosphate treatment. In the first alkaline degreasing step, it is necessary to remove rust preventive oil applied to the steel sheet, press washing oil frequently used during press molding of the automobile body outer plate, and the like.
  • a zinc-based oxide film is formed on the steel sheet, it is brought into contact with (for example, immersed in) a phosphorus-containing aqueous solution.
  • a phosphorus-containing aqueous solution By dipping in a phosphorus-containing aqueous solution, a small amount of phosphorus adheres to the surface, which makes it possible to sufficiently degrease even when considering the deterioration of the alkaline degreasing solution.
  • OH groups are present in some of the zinc-based oxides, and it is considered that degreasing is difficult because the OH groups enhance the affinity with oil.
  • the aqueous solution containing phosphorus is not particularly limited as long as it contains phosphorus. There is no particular limitation as long as it contains at least one phosphorus compound selected from phosphoric acid, condensed phosphoric acid, phosphorous acid, hypophosphorous acid, or salts thereof.
  • orthophosphoric acid pyrophosphoric acid, trimetaphosphoric acid, tetrametaphosphoric acid, hexametaphosphoric acid, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, triammonium phosphate, sodium dihydrogen phosphate, disodium hydrogen phosphate , Trisodium phosphate, sodium pyrophosphate, aluminum phosphate, ammonium hypophosphite, ammonium phosphite, triammonium phosphate, and the like.
  • the phosphorus content in the aqueous solution containing phosphorus is preferably 5 to 5000 mass ppm. If it is less than 5 mass ppm, the effect of adsorbing phosphorus on the steel sheet surface may not be sufficient. Moreover, when it exceeds 5000 massppm, an effect will be saturated and the increase in chemical
  • the pH of the aqueous solution containing phosphorus is preferably 4-12. If it is less than 4, the zinc-based oxide is easily dissolved, and the effect of improving mold galling resistance and chemical conversion treatment properties may be impaired. On the other hand, even when the pH exceeds 12, the amount of dissolution of the zinc-based oxide increases, so that the effect of improving mold galling resistance and chemical conversion treatment properties may be impaired.
  • the pH is not within the above range, it is possible to adjust the pH within the above range by slightly adding an acid such as phosphoric acid, hydrochloric acid or sulfuric acid, or an alkali such as sodium hydroxide, or diluting with water. it can.
  • the temperature of the aqueous solution containing phosphorus is preferably in the range of 20 to 70 ° C. If it is lower than 20 ° C., it may be difficult to complete phosphorus adsorption in a short time. On the other hand, when the temperature exceeds 70 ° C., not only the phosphorus adsorption effect is saturated, but also the aqueous solution containing phosphorus is likely to be dried and unevenness in appearance is likely to occur.
  • the washing time is preferably in the range of 1 to 10 seconds. If it is less than 1 second, the adsorption of phosphorus may not be sufficiently completed.
  • the treatment exceeding 10 seconds not only lengthens the production line, but also dissolution of zinc oxide by an aqueous solution containing phosphorus may occur, and a sufficient effect may not be ensured.
  • coating roll, etc. are mention
  • the method of spraying on the surface of the steel sheet is the most desirable method because it requires a small amount of processing liquid and at the same time completes processing in a relatively short time due to a synergistic effect with the fluid flow effect.
  • the amounts of zinc-based oxide and metallic zinc were measured using fluorescent X-rays as metallic zinc.
  • metal zinc plating was performed in advance to prepare a calibration plate for the Zn content by ICP and the Zn intensity by fluorescent X-rays, and the zinc content was measured.
  • the coverage of the zinc-based oxide was subjected to 100 ⁇ m square zinc element mapping using an electron beam microanalyzer, and the ratio of the existing area of zinc (coverage) was calculated from the measurement area.
  • mold galling resistance and chemical conversion property were evaluated by the following methods.
  • FIG. 2 is a schematic perspective view showing the bead shape and dimensions used in the evaluation of mold galling resistance.
  • the bead 6 slides with its lower surface pressed against the surface of the sample 1.
  • the mold galling resistance evaluation test condition is that the same part of the sample 1 coated with the cleaning oil Preton R352L for press manufactured by Sugimura Chemical Co., Ltd. on the surface before the test is repeatedly subjected to a sliding test of up to 40 times, and the number of sliding is possible. Therefore, it was used as an index of anti-mold galling resistance.
  • the number of slidable times is set so that the friction coefficient measuring device automatically stops when the steel sheet and the mold adhere to each other, that is, when die galling occurs. It was set to stop when F exceeded 500 kgf.
  • X The slidable number of times is less than 17 times (the friction coefficient measuring device is stopped due to the occurrence of mold galling).
  • The slidable number of times is 17 to 29 times (the friction coefficient measuring device is stopped due to the occurrence of mold galling).
  • A: 30 times of sliding is possible.
  • the number of sliding times is 17 times.
  • the above-mentioned mold galling resistance is applied to a 270 MPa class cold-rolled steel sheet that is used without generating galling with a pressing load of 400 kgf. This is the average number of times that mold galling occurs when evaluation is performed. If it is possible to slide 17 times or more, it is considered that mold galling will not occur in practice, so the number of sliding is based on 17 or more. .
  • Two or less micro skeins and / or three or more coarse crystals are observed.
  • Double-circle There is no scale in a chemical conversion treatment crystal, and there are two or less coarse crystals.
  • the size of the above-described micro scale is 200 ⁇ m 2 or less.
  • the coarse crystal is defined as a chemical conversion crystal having a long side of 15 ⁇ m or more.
  • No. 1 to 6 are the results of comparison by changing the amount of zinc oxide by changing the energization time. No. 1, no. In Comparative Examples 1 and 2 of 2, since the amount of the zinc-based oxide is small, it can be seen that the chemical conversion property is poor. No. It can be seen that Comparative Example 3 of No. 6 has a low resistance to mold galling due to the large amount of zinc-based oxide. On the other hand, no.
  • Examples 9 to 14 are examples in the case where the water-washing treatment is not performed with the aqueous solution containing phosphorus or the phosphorus content is changed. No washing with an aqueous solution containing phosphorus. It can be seen that Comparative Examples 5 and 6 of 9 and 10 have poor chemical conversion properties. On the other hand, no. 4 and no. Invention Examples 2 and 5 to 8 of Nos. 11 to 14 are washed with an aqueous solution containing phosphorus under suitable conditions, and it can be seen that the chemical conversion treatment property and the mold galling resistance are excellent. (4) Invention Examples 9 to 11 of Nos. 15 to 17 are examples in which the pH of the water washing treatment was changed with an aqueous solution containing phosphorus.
  • ADVANTAGE OF THE INVENTION it is possible to suppress die galling during press molding, to provide a steel sheet that exhibits good chemical conversion treatment during subsequent chemical conversion treatment, and can be applied in a wide range of fields centering on automobile body applications. Become.

Abstract

Provided is a method for producing a steel sheet having excellent chemical conversion properties and galling resistance. An electrolysis treatment is carried out in an aqueous solution containing a zinc ion and a nitrate ion using a steel sheet as a cathode to form a zinc oxide and/or a zinc hydroxide on the surface of the steel sheet in such a manner that the amount of the zinc oxide and/or the zinc hydroxide becomes 70 to 500 mg/m2 in terms of metal zinc content and the covering rate of the surface of the steel sheet becomes 60% or more. Subsequently, the steel sheet is washed with an aqueous solution containing phosphorus.

Description

化成処理性および耐型かじり性に優れた鋼板の製造方法Method for producing steel sheet with excellent chemical conversion and mold galling resistance
 本発明は、例えば自動車用材料として好適に用いられる化成処理性および耐型かじり性に優れた鋼板の製造方法に関するものである。 The present invention relates to a method for producing a steel sheet excellent in chemical conversion treatment and mold galling resistance, which is suitably used as, for example, an automobile material.
 冷延鋼板は自動車、家電、建材などの分野において広く用いられている。特に自動車分野においては、板厚精度や平担度に関する要求から冷延鋼板が用いられている。また、近年、自動車のCO排出量の低減及び安全性確保の観点から、自動車用鋼板として高強度冷延鋼板の使用が急増している。 Cold rolled steel sheets are widely used in fields such as automobiles, home appliances, and building materials. Particularly in the automotive field, cold-rolled steel sheets are used because of demands regarding sheet thickness accuracy and flatness. In recent years, the use of high-strength cold-rolled steel sheets as automobile steel sheets has increased rapidly from the viewpoint of reducing CO 2 emissions and ensuring safety in automobiles.
 高強度鋼板は鋼中元素としてSiやMn等を添加した鋼板であり、これらの元素が焼鈍過程において、鋼板表面に、例えば、SiOやMnSiO等に代表される酸化物を形成する。ここで、化成処理性に着目すると、このように表面にSiOが形成された鋼板を塗装前の化成処理に供すると、化成処理結晶が形成されない所謂スケと呼ばれる部分が存在することになる。化成処理結晶が形成されないスケと呼ばれる部位が発生すると、自動車用鋼板として適用した場合はその後の塗装密着性の低下や、耐食性低下を引き起こす可能性があるため好ましくない。そして、このようなスケは表層のSiOの量に大きく依存することがわかっている。これは、焼鈍過程において形成される酸化物の中でもMnSiO等のSi・Mn複合酸化物は易溶性であるが、SiOは弗酸系を除く酸の中では不溶性であるため、化成処理液を構成するリン酸中では溶解せず、化成処理液との反応を阻害するためである。 A high-strength steel plate is a steel plate to which Si, Mn, or the like is added as an element in the steel, and these elements form an oxide typified by, for example, SiO 2 or MnSiO 4 on the surface of the steel plate in the annealing process. Here, paying attention to the chemical conversion treatment property, when a steel sheet having SiO 2 formed on the surface in this way is subjected to a chemical conversion treatment before coating, there is a so-called skein portion where no chemical conversion crystal is formed. If a site called a scale in which a chemical conversion treatment crystal is not formed is generated, when applied as a steel sheet for automobiles, it is not preferable because it may cause a decrease in coating adhesion and a decrease in corrosion resistance. And it is known that such a scale greatly depends on the amount of SiO 2 in the surface layer. This is because, among oxides formed in the annealing process, Si · Mn composite oxides such as MnSiO 4 are easily soluble, but SiO 2 is insoluble in acids other than hydrofluoric acid, so that the chemical conversion treatment liquid This is because it does not dissolve in the phosphoric acid constituting, and inhibits the reaction with the chemical conversion solution.
 次に耐型かじり性に着目すると、高強度鋼板をプレス成形する際には、成形荷重が増大するのみならず、局部的な高面圧部が生じることにより型かじりと呼ばれる問題が発生する。型かじりは、プレス成型時の鋼板とプレス金型を構成する金属とが高面圧で接触・摺動されることにより局部的な凝着が発生し、凝着物の堆積により擦り傷が発生したり摺動抵抗が増加することで発生すると考えられる。 Next, paying attention to mold galling resistance, when press-molding a high-strength steel sheet, not only the molding load increases, but also a problem called mold galling occurs due to the occurrence of a local high surface pressure portion. Die squeezing causes local adhesion due to contact and sliding between the steel plate and the metal that constitutes the press die at high surface pressure, and scratches may occur due to the accumulation of adhesions. This is thought to occur due to an increase in sliding resistance.
 以上のような観点から、化成処理性および耐型かじり性に優れた高強度鋼板の開発が切望されている。 From the above viewpoint, development of a high-strength steel sheet excellent in chemical conversion property and mold galling resistance is eagerly desired.
 これに対し、冷延鋼板の化成処理性および耐型かじり性の両者を改善する技術として、特許文献1には、Ni、Mn、Co、Mo、Cuの1種または2種以上の金属を冷延鋼板表面に不連続に析出させる技術が開示されている。 On the other hand, as a technique for improving both the chemical conversion processability and the galling resistance of a cold-rolled steel sheet, Patent Document 1 discloses that one or more metals of Ni, Mn, Co, Mo, and Cu are cooled. A technique for discontinuously depositing on the surface of a rolled steel sheet is disclosed.
 また、特許文献2には、冷延鋼板表面に、下層に0価の亜鉛主体の極薄皮膜、上層に2価の亜鉛とP、B、Siの1種または2種以上からなる第二元素群の酸化物からなる非晶質皮膜を複層形成する技術が開示されている。 Patent Document 2 discloses that a cold rolled steel sheet has a zero-valent zinc-based ultrathin coating on the lower layer, and an upper layer is a second element composed of one or more of divalent zinc, P, B, and Si. A technique for forming a multi-layered amorphous film composed of a group of oxides is disclosed.
 さらに、特許文献3には、Zn、Ni、Mn、Ti、Co、Mo、Alのうちの1種または2種以上の金属酸化物の粉末を冷延鋼板表面に散布した後に調質圧延を行い、金属換算で1000mg/m以下の金属層を鋼板表面に形成させる技術が開示されている。 Further, in Patent Document 3, temper rolling is performed after powders of one or more metal oxides of Zn, Ni, Mn, Ti, Co, Mo, and Al are dispersed on the surface of a cold-rolled steel sheet. A technique for forming a metal layer of 1000 mg / m 2 or less on a steel sheet surface in terms of metal is disclosed.
 しかしながら、特許文献1に記載の方法をSiを含有する冷延鋼板に適用したとしても鋼板表面にはSi酸化物がそのまま残存した状態であるため、化成処理性が依然不良である。また、Mo、Cuなどの元素は化成処理性に悪影響を及ぼし、化成処理時に鋼板から化成処理液へ溶出し、化成処理性が劣化するという問題もある。 However, even if the method described in Patent Document 1 is applied to a cold-rolled steel sheet containing Si, the Si oxide remains as it is on the surface of the steel sheet, so that the chemical conversion property is still poor. In addition, elements such as Mo and Cu have an adverse effect on the chemical conversion treatment property, and there is a problem that the chemical conversion treatment property deteriorates due to elution from the steel sheet to the chemical conversion treatment solution during chemical conversion treatment.
 特許文献2では、高強度鋼板のプレス時には成形荷重および局部的な面圧が増加するため、上層に付与した2価の亜鉛とP、B、Siの1種または2種以上からなる第二元素群の酸化物層が破壊した場合は、下層の0価の亜鉛と金型の凝着によりプレス成形性を阻害し、耐型かじり性が劣化する。また、特許文献2では、前記皮膜の鋼板表面分布率が50%以下と記載されている。このように表面被覆率が低い場合、ダブルビード等の難成型部品の場合には被覆していない下地鋼板と金型が接触して凝着を引き起こし、型かじりを引き起こすことが考えられる。 In Patent Document 2, since a forming load and a local surface pressure increase when pressing a high-strength steel sheet, a second element composed of one or more of divalent zinc and P, B, Si applied to the upper layer is used. When the oxide layer of the group is destroyed, the press formability is hindered by the adhesion between the lower-valent zinc and the die, and the mold galling resistance deteriorates. Moreover, in patent document 2, the steel plate surface distribution rate of the said film | membrane is described as 50% or less. When the surface coverage is low in this way, in the case of difficult-to-mold parts such as double beads, it is considered that the uncoated base steel plate and the mold come into contact with each other to cause adhesion and cause mold galling.
 特許文献3において、粉末と鋼板とが密着するのは調質圧延による物理的な密着力であると考えられる。すなわち、粉末と鋼板との密着力は非常に低く、プレス時、特に高強度鋼板のように難加工材の場合には鋼板から粉末の脱離が激しく、脱離した粉末が蓄積することによるプレス傷が発生しやすい。また、特許文献3には、金属酸化物を鋼板表面に均一に点在させることで均一な化成皮膜が形成されると記載されている。しかし、点在の定義が記載されていないため不明確ではあるが、一般的に被覆率としては50%以下であると考えられ、被覆率が低い場合、ダブルビード等の難成型部品の場合には被覆していない下地鋼板と金型が接触して凝着を引き起こし、型かじりを引き起こすことが考えられる。 In Patent Document 3, it is considered that the powder and the steel sheet are in close contact with each other due to physical adhesion by temper rolling. In other words, the adhesion between the powder and the steel sheet is very low. During pressing, especially in the case of difficult-to-process materials such as high-strength steel sheets, the powder is severely detached from the steel sheet, and the pressed powder accumulates. Scratches are likely to occur. Patent Document 3 describes that a uniform chemical conversion film is formed by uniformly dispersing metal oxide on the surface of a steel sheet. However, although the definition of dot is not described, it is unclear, but it is generally considered that the coverage is 50% or less, and when the coverage is low, it is difficult to mold parts such as double beads. It is conceivable that the uncoated base steel sheet and the mold come into contact with each other to cause adhesion and cause mold galling.
 そこで、本発明者らは上記の問題点を改善すべく、研究し、特許文献4を出願した。すなわち、特許文献4は、鋼板表面に亜鉛酸化物及び/または亜鉛水酸化物を、亜鉛イオンを含有する水溶液中で鋼板を陰極として電解処理することにより形成し、皮膜量を金属亜鉛換算で70~500mg/m、被覆率を60%以上とすることが化成処理性および耐型かじり性の向上に対して有効であることを見出したものである。 Therefore, the present inventors have studied to improve the above problems, and have applied for Patent Document 4. That is, in Patent Document 4, zinc oxide and / or zinc hydroxide is formed on a steel sheet surface by electrolytic treatment using a steel sheet as a cathode in an aqueous solution containing zinc ions, and the coating amount is 70 in terms of metallic zinc. It has been found that it is effective to improve the chemical conversion treatment property and the mold galling resistance to have a coverage of 60% or more at ~ 500 mg / m 2 .
 しかしながら、近年、自動車製造過程におけるCO削減や低コスト化の流れの中、化成処理液の低温化が進行しており、特許文献5にて形成される皮膜だけでは良好な化成処理性が得られない事が分かってきた。具体的には化成処理液の低温化により、鋼板のエッチング性が低下し表面の状態がより敏感になるため、上記皮膜を溶解する能力が低下したものと考えられる。 However, in recent years, the temperature of the chemical conversion liquid has been lowered in the trend of reducing CO 2 and reducing the cost in the automobile manufacturing process, and good chemical conversion performance can be obtained only by the film formed in Patent Document 5. I know I can't. Specifically, it is considered that the ability to dissolve the film is reduced because the etching property of the steel sheet is lowered and the surface state becomes more sensitive due to the low temperature of the chemical conversion treatment liquid.
特開平3−236491号公報JP-A-3-236491 特開平10−158858号公報JP-A-10-158858 特開平3−086302号公報JP-A-3-083062 特開2008−81808号公報JP 2008-81808 A
 本発明は上記問題を有利に解決するためになされたもので、化成処理性および耐型かじり性に優れた鋼板の製造方法を提供することを目的とする。 The present invention has been made in order to advantageously solve the above problems, and an object of the present invention is to provide a method for producing a steel sheet excellent in chemical conversion treatment property and mold galling resistance.
 本発明者らは、上記の課題を解決すべく、鋭意研究を重ねた。その結果、鋼板表面に亜鉛酸化物及び/または亜鉛水酸化物を、亜鉛イオンおよび硝酸イオンを含有する水溶液中で鋼板を陰極として電解処理することにより形成すること、形成するにあたっては、金属亜鉛に換算して70~500mg/m、被覆率を60%以上とすること、そして電解処理後にリン含有水溶液に鋼板を接触させる処理を行うことが、化成処理液が低温化した場合においても、化成処理性および耐型かじり性の向上に対して有効であることを、本発明者らは見出した。 The inventors of the present invention have made extensive studies to solve the above problems. As a result, zinc oxide and / or zinc hydroxide is formed on the surface of the steel sheet by electrolytic treatment using the steel sheet as a cathode in an aqueous solution containing zinc ions and nitrate ions. Conversion to 70 to 500 mg / m 2 , a coverage of 60% or more, and a process of bringing the steel sheet into contact with the phosphorous-containing aqueous solution after the electrolytic treatment can be performed even when the chemical conversion treatment liquid is cooled. The inventors of the present invention have found that it is effective for improving processability and anti-scoring property.
 本発明は、以上の知見に基づきなされたもので、その要旨は以下のとおりである。
[1]亜鉛イオンおよび硝酸イオンを含有する水溶液中で鋼板を陰極として電解処理し、前記鋼板表面に亜鉛酸化物および/または亜鉛水酸化物を、金属亜鉛量に換算して70~500mg/mかつ鋼板表面の被覆率:60%以上となるように形成し、次いで、リンを含有する水溶液で前記鋼板を接触することを特徴とする化成処理性および耐型かじり性に優れた鋼板の製造方法。
[2]前記[1]において、前記鋼板はSiを0.1質量%以上含有することを特徴とする化成処理性および耐型かじり性に優れた鋼板の製造方法。
[3]前記[1]または[2]において、前記リンを含有する水溶液のリン含有率が5~5000mass ppmであることを特徴とする化成処理性および耐型かじり性に優れた鋼板の製造方法。
[4]前記[1]~[3]のいずれかにおいて、前記リンを含有する水溶液のpHが4~12であることを特徴とする化成処理性および耐型かじり性に優れた鋼板の製造方法。
The present invention has been made based on the above findings, and the gist thereof is as follows.
[1] Electrolytic treatment with a steel plate as a cathode in an aqueous solution containing zinc ions and nitrate ions, and zinc oxide and / or zinc hydroxide on the surface of the steel plate is converted to a metal zinc content of 70 to 500 mg / m 2 and steel sheet surface coverage: formed to be 60% or more, and then contacting the steel sheet with an aqueous solution containing phosphorus, to produce a steel sheet excellent in chemical conversion property and mold galling resistance Method.
[2] In the above [1], the steel sheet contains 0.1% by mass or more of Si, and the method for producing a steel sheet excellent in chemical conversion treatment property and mold galling resistance.
[3] A method for producing a steel sheet excellent in chemical conversion treatment property and mold galling resistance, characterized in that the phosphorus content of the aqueous solution containing phosphorus is 5 to 5000 mass ppm in the above [1] or [2] .
[4] In any one of [1] to [3], the aqueous solution containing phosphorus has a pH of 4 to 12, and a method for producing a steel sheet having excellent chemical conversion property and mold galling resistance .
 本発明によれば、化成処理性および耐型かじり性に優れた鋼板が得られる。特に、化成処理液が低温化した場合においても、良好な化成処理性及び耐型かじり性が得られる。また、本発明は、冷延鋼板、中でもSiを含有する高強度冷延鋼板に対して効果を奏しており、高強度冷延鋼板の化成処理性および耐型かじり性を両立させる有効な技術として、工業的に極めて価値の高いものである。 According to the present invention, a steel sheet excellent in chemical conversion treatment and mold galling resistance can be obtained. In particular, even when the chemical conversion treatment liquid is lowered in temperature, good chemical conversion treatment and mold galling resistance can be obtained. In addition, the present invention has an effect on cold-rolled steel sheets, particularly high-strength cold-rolled steel sheets containing Si, and is an effective technique that achieves both chemical conversion processability and die-squeeze resistance of high-strength cold-rolled steel sheets. Industrially extremely valuable.
図1は、動摩擦係数測定装置を示す概略正面図(実施例)である。FIG. 1 is a schematic front view (Example) showing a dynamic friction coefficient measuring apparatus. 図2は、図1中のビード形状・寸法を示す概略斜視図である。FIG. 2 is a schematic perspective view showing the bead shape and dimensions in FIG.
 以下、本発明を詳細に説明する。
 本発明で対象とする鋼板は熱延鋼板および冷延鋼板である。中でも自動車分野等で多く用いられる冷延鋼板に対して、本発明は最適である。機械特性等の諸特性を向上させるために鋼中に各種元素を添加した鋼板(例えば、高強度鋼板)は、表面に存在する添加元素の影響により化成処理時のリン酸塩結晶が不均一になることがある。一方で、鋼板に対しては常に均一な化成処理皮膜が要求されている。このような観点から、前記各種元素を添加した鋼板に本発明を適用することは価値があり、本発明により安定した化成処理皮膜が得られることになる。
Hereinafter, the present invention will be described in detail.
The steel plates targeted in the present invention are hot-rolled steel plates and cold-rolled steel plates. In particular, the present invention is optimal for cold-rolled steel sheets that are frequently used in the automotive field and the like. Steel plates with various elements added to steel to improve various properties such as mechanical properties (for example, high-strength steel plates) have non-uniform phosphate crystals during chemical conversion treatment due to the influence of additive elements present on the surface. May be. On the other hand, a uniform chemical conversion coating is always required for steel sheets. From such a viewpoint, it is valuable to apply the present invention to a steel sheet to which the above various elements are added, and a stable chemical conversion coating can be obtained by the present invention.
 本発明で対象とする鋼板の成分は特に問わない。例えば、Si含有量が0.1質量%以上の鋼板が好適に用いられる。これは、鋼中のSi含有量が0.1質量%以上の場合、通常、鋼板表面にSi酸化物が形成され、化成処理性を大きく阻害するため、本発明の処理を適用する価値が大きいからである。また、プレス時においても、Si含有量が0.1質量%以上の鋼板の場合、鋼板の強度が高くなるため型かじりが起こりやすく、本発明の処理を適用することにより型かじりが大幅に抑制される。
 特に、Siを0.3質量%以上含有し、Si含有量/Mn含有量≧0.4の鋼板の場合には、従来の方法では化成処理性が著しく劣化してしまう。しかし、本発明を適用することにより化成処理性が著しく良好になるため、Siを0.3質量%以上含有し、Si含有量/Mn含有量≧0.4の鋼板に対しても、本発明が好適に使用される。
The components of the steel sheet targeted by the present invention are not particularly limited. For example, a steel sheet having a Si content of 0.1% by mass or more is preferably used. This is because when the Si content in the steel is 0.1% by mass or more, Si oxide is usually formed on the surface of the steel sheet, which greatly impairs the chemical conversion processability. Therefore, the value of applying the treatment of the present invention is great. Because. Even when pressing, steel sheets with a Si content of 0.1% by mass or more tend to cause mold galling due to the increased strength of the steel sheet. By applying the treatment of the present invention, mold galling is greatly suppressed. Is done.
In particular, in the case of a steel plate containing 0.3 mass% or more of Si and having a Si content / Mn content ≧ 0.4, the chemical conversion processability is significantly deteriorated by the conventional method. However, since the chemical conversion treatment property is remarkably improved by applying the present invention, the present invention is applied to a steel sheet containing Si by 0.3 mass% or more and having Si content / Mn content ≧ 0.4. Are preferably used.
 本発明では亜鉛イオンおよび硝酸イオンを含有する水溶液中で鋼板を陰極として電解処理し、鋼板表面に亜鉛酸化物および/または亜鉛水酸化物(以下、亜鉛系酸化物と称することもある)を形成させることを特徴とする。陰極電解処理法により形成された亜鉛系酸化物は、1辺が1μm以下の非常に微細な網目状の形態を有しており、鋼板表面にこれら亜鉛系酸化物を形成することで、この網目状の皮膜形態が耐型かじり性向上に寄与する。亜鉛系酸化物が網目状の皮膜形態を有することによる耐型かじり性向上メカニズムについては明確ではないが以下のように考えることが出来る。まず、亜鉛系酸化物は高融点金属であり金型と鋼板の凝着を抑制する為、型かじりが起こりにくくなると同時に、プレス時に付与されるプレス油等の油分を確保することが出来、摺動による油切れでの凝着を著しく抑制することが出来るためと考えられる。
 さらに、陰極電解処理は亜鉛系酸化物の形成量を制御する観点からも有効である。
In the present invention, electrolytic treatment is performed using a steel plate as a cathode in an aqueous solution containing zinc ions and nitrate ions to form zinc oxide and / or zinc hydroxide (hereinafter sometimes referred to as zinc-based oxide) on the surface of the steel plate. It is characterized by making it. The zinc-based oxide formed by the cathodic electrolysis method has a very fine network shape with one side of 1 μm or less. By forming these zinc-based oxides on the surface of the steel plate, this network The shape of the film contributes to improvement of mold galling resistance. Although the mechanism for improving the anti-galling property due to the zinc-based oxide having a network-like film form is not clear, it can be considered as follows. First, zinc oxide is a refractory metal and suppresses adhesion between the mold and the steel sheet, so that it is difficult for mold galling to occur, and at the same time, oil such as press oil applied during pressing can be secured. This is thought to be because it is possible to remarkably suppress the adhesion due to oil shortage due to movement.
Furthermore, cathodic electrolysis is also effective from the viewpoint of controlling the amount of zinc-based oxide formed.
 本発明では、亜鉛イオンおよび硝酸イオンを含有する水溶液中で鋼板を陰極として電解処理し、鋼板表面に亜鉛系酸化物を形成させる。通常、亜鉛イオンのみを含有する水溶液中で鋼板を陰極として電解処理すると、鋼板表面には金属亜鉛が析出する。そこで、本発明では、亜鉛イオンを含有する水溶液にさらに硝酸イオンを添加することで、鋼板表面に亜鉛系酸化物を形成させることを可能にしている。
 水溶液中の亜鉛イオン量は、0.1~1mol/L、硝酸イオンは硝酸として0.1~1mol/L、電流密度は1~30A/dm、液温は30~70℃、めっき液の相対流速は0.5~2.0m/sが最適範囲である。これらの範囲内で電解処理を行うことで、本発明の亜鉛系酸化物が形成されやすくなる。亜鉛イオンや硝酸イオンを添加する化合物に特に限定は無く、亜鉛イオン供給化合物として硫酸亜鉛や塩化亜鉛、硝酸亜鉛などが挙げられ、硝酸イオンの供給化合物として、硝酸ナトリウムや硝酸カリウムなどが挙げられる。
 また、鋼板表面に亜鉛系酸化物が形成されたことは、X線光電子分光装置により確認することができる。亜鉛の結合エネルギーの調査により金属亜鉛と酸化亜鉛・水酸化亜鉛は区別することが可能である。具体的には、金属亜鉛の結合エネルギーは494eV付近にピークをもち、酸化亜鉛及び水酸化亜鉛の結合エネルギーはそれぞれ499、500eV付近にピークを持つ。そのため、本発明の亜鉛系酸化物は494eV付近にピークが無く、499、500eV付近にのみピークが認められることになり、このピークから、亜鉛系酸化物であることが明らかとなる。さらに、イオンエッチングにより深さ方向(表層から皮膜を経て下地鋼板界面まで)の分析を実施した場合、本発明では、いずれの深さにおいても亜鉛系酸化物は494eV付近にピークが無く、499、500eV付近にのみピークが認められ、皮膜全体が亜鉛系酸化物となる。
In the present invention, electrolytic treatment is performed using a steel plate as a cathode in an aqueous solution containing zinc ions and nitrate ions to form a zinc-based oxide on the surface of the steel plate. Usually, when electrolytic treatment is performed using a steel plate as a cathode in an aqueous solution containing only zinc ions, zinc metal is deposited on the surface of the steel plate. Therefore, in the present invention, it is possible to form a zinc-based oxide on the surface of the steel sheet by further adding nitrate ions to the aqueous solution containing zinc ions.
The amount of zinc ion in the aqueous solution is 0.1-1 mol / L, the nitrate ion is 0.1-1 mol / L as nitric acid, the current density is 1-30 A / dm 2 , the liquid temperature is 30-70 ° C., The relative flow rate is in the optimum range of 0.5 to 2.0 m / s. By performing the electrolytic treatment within these ranges, the zinc-based oxide of the present invention is easily formed. The compound to which zinc ions or nitrate ions are added is not particularly limited, and examples of the zinc ion supply compound include zinc sulfate, zinc chloride, and zinc nitrate, and examples of the nitrate ion supply compound include sodium nitrate and potassium nitrate.
Moreover, it can be confirmed with an X-ray photoelectron spectrometer that a zinc-based oxide is formed on the surface of the steel sheet. By investigating the binding energy of zinc, it is possible to distinguish between metallic zinc and zinc oxide / zinc hydroxide. Specifically, the binding energy of metallic zinc has a peak near 494 eV, and the binding energies of zinc oxide and zinc hydroxide have peaks near 499 and 500 eV, respectively. Therefore, the zinc-based oxide of the present invention has no peak in the vicinity of 494 eV, and a peak is recognized only in the vicinity of 499 and 500 eV. From this peak, it becomes clear that the zinc-based oxide is a zinc-based oxide. Furthermore, when analysis in the depth direction (from the surface layer to the base steel plate interface) is performed by ion etching, in the present invention, the zinc-based oxide has no peak in the vicinity of 494 eV at any depth, 499, A peak is recognized only in the vicinity of 500 eV, and the entire coating becomes a zinc-based oxide.
 さらに、本発明では、鋼板表面に亜鉛系酸化物を形成するにあたって、その量は金属亜鉛換算で70mg/m~500mg/mとする。これは本発明において、最も重要な要件の一つであり、このように、鋼板表面の亜鉛系酸化物の形成量を最適な量に規定することで、亜鉛系酸化物形成による効果が充分に発揮され、化成処理性および耐型かじり性に優れた鋼板を得ることが可能となる。亜鉛系酸化物を形成することによる化成処理性の向上メカニズムについては、明確ではないが、亜鉛系酸化物を鋼板表面に形成することにより化成処理時の核発生を促進するためであると考えられる。また、亜鉛系酸化物を鋼板表面に形成することによって、上述したように、プレス時の金型と鋼板との間に形成した亜鉛系酸化物は高融点であるため凝着を抑制する効果を有する。その結果、耐型かじり性が向上する。
 鋼板表面の亜鉛系酸化物の形成量が70mg/mより少ない場合、化成処理時の核発生サイトを十分に供給できないために化成処理性向上効果が小さい。一方、鋼板表面の亜鉛系酸化物の形成量が500mg/mより多い場合、プレス時の金型と鋼板との凝着は抑制するものの、亜鉛系酸化物自体が変形を受けるために、亜鉛系酸化物の脱離量が多くなり、脱離した亜鉛系酸化物が摺動抵抗となる。
 以上より、化成処理性および耐型かじり性を安定して向上させるための亜鉛系酸化物は70mg/m~500mg/m、好ましくは100~300mg/mとする。
 なお、上記亜鉛系酸化物の形成量は蛍光X線を用いてZnの強度を測定し、既知のZn量の強度と比較することにより算出する。
Furthermore, in the present invention, in forming a zinc oxide on the surface of the steel sheet, the amount to 70mg / m 2 ~ 500mg / m 2 by metal zinc terms. This is one of the most important requirements in the present invention. Thus, by defining the formation amount of zinc-based oxide on the surface of the steel sheet to an optimum amount, the effect of zinc-based oxide formation is sufficiently obtained. It is possible to obtain a steel sheet that is exhibited and excellent in chemical conversion treatment and mold galling resistance. The mechanism of improving chemical conversion treatment by forming zinc-based oxides is not clear, but is thought to be due to the promotion of nucleation during chemical conversion treatment by forming zinc-based oxides on the steel sheet surface. . In addition, by forming zinc-based oxide on the surface of the steel sheet, as described above, the zinc-based oxide formed between the mold during pressing and the steel sheet has a high melting point, and therefore has the effect of suppressing adhesion. Have. As a result, mold galling resistance is improved.
When the amount of zinc-based oxide formed on the surface of the steel sheet is less than 70 mg / m 2 , the nucleation sites during the chemical conversion treatment cannot be sufficiently supplied, and the chemical conversion treatment improvement effect is small. On the other hand, when the amount of zinc-based oxide formed on the surface of the steel sheet is more than 500 mg / m 2 , the zinc-based oxide itself undergoes deformation, although the adhesion between the mold and the steel sheet during pressing is suppressed. The desorption amount of the system oxide increases, and the desorbed zinc-based oxide becomes the sliding resistance.
From the above, the zinc-based oxide for stably improving the chemical conversion treatment property and the mold galling resistance is 70 mg / m 2 to 500 mg / m 2 , preferably 100 to 300 mg / m 2 .
The formation amount of the zinc-based oxide is calculated by measuring the intensity of Zn using fluorescent X-rays and comparing it with the intensity of the known Zn quantity.
 また、亜鉛系酸化物の鋼板表面の被覆率は60%以上とする。これも、本発明において重要な要件の一つである。被覆率を60%以上とすることで、化成処理性及び耐型かじり性を向上させることが可能となる。被覆率が60%より小さい場合、鋼板が加工を受けた場合にプレス金型と下地鋼板とが直接接触するため、ミクロな凝着が発生して摩擦係数が増加し、プレス成形性が低下する。
 なお、本発明において、亜鉛系酸化物の被覆率とは亜鉛系酸化物が鋼板表面を被覆している面積率を示しており、具体的には被覆率は電子線マイクロアナライザーを用いて100μm四方の亜鉛元素マッピングを行い、測定面積(10000μm)から亜鉛の存在面積の比率により算出することが出来る。
Moreover, the coverage of the steel sheet surface of zinc-based oxide is 60% or more. This is also one of the important requirements in the present invention. By setting the coverage to 60% or more, it becomes possible to improve the chemical conversion property and the mold galling resistance. When the coverage is less than 60%, when the steel sheet is processed, the press mold and the base steel sheet are in direct contact with each other, so that micro adhesion occurs, the friction coefficient increases, and the press formability decreases. .
In the present invention, the coverage of the zinc-based oxide means the area ratio of the zinc-based oxide covering the surface of the steel sheet. Specifically, the coverage is 100 μm square using an electron beam microanalyzer. Zinc element mapping is performed, and it can be calculated from the measurement area (10000 μm 2 ) by the ratio of the existing area of zinc.
 鋼板を陰極として電解処理し鋼板表面に亜鉛系酸化物を形成した後に、リンを含有する水溶液に前記鋼板を接触させる。これもまた重要な要件である。通常の化成処理は、アルカリ脱脂→表面調整→リン酸塩処理の順番で行われる。最初のアルカリ脱脂工程では、鋼板に塗布された防錆油や、自動車ボディ外板のプレス成形時に頻繁に使用されるプレス洗浄油などを除去する必要がある。しかしながら、特に、自動車メーカーの塗装ラインなどで次々と流れてくる何台もの車体に対してアルカリ脱脂をする場合、油が混入したりアルカリ脱脂液の劣化などが考えられるため、鋼板をそのままアルカリ脱脂液に浸漬させても、必ずしも油を除去できるとは限らない。場合によっては十分に脱脂が施されず水はじきが生じた状態で次の表面調整工程に鋼板がまわされる場合がある。このような水はじき部分では、表面調整液が正しく付与されず、さらに次のリン酸塩処理工程では、リン酸塩結晶が粗大化したり結晶が形成されない部分が存在するなどリン酸塩処理へ悪影響がある。 After the electrolytic treatment using the steel plate as a cathode to form a zinc-based oxide on the steel plate surface, the steel plate is brought into contact with an aqueous solution containing phosphorus. This is also an important requirement. The normal chemical conversion treatment is performed in the order of alkali degreasing → surface adjustment → phosphate treatment. In the first alkaline degreasing step, it is necessary to remove rust preventive oil applied to the steel sheet, press washing oil frequently used during press molding of the automobile body outer plate, and the like. However, in particular, when alkaline degreasing is performed on a number of vehicles that flow one after another on a car manufacturer's painting line, etc., oil may be mixed in or the alkaline degreasing solution may deteriorate. Even if immersed in the liquid, the oil cannot always be removed. In some cases, the steel sheet may be turned to the next surface adjustment step in a state where the degreasing is not sufficiently performed and water repelling occurs. In such water repelling part, the surface conditioning liquid is not properly applied, and in the next phosphating process, there is a part that the phosphate crystal is coarsened or there is a part where no crystal is formed, which has an adverse effect on the phosphating process. There is.
 そこで、本発明では、鋼板に亜鉛系酸化物被膜を形成させた後にリン含有水溶液に接触させる(例えば、浸漬する)こととする。リン含有水溶液に浸漬することで、表面に微量なリンが付着し、これによりアルカリ脱脂液の劣化などを考えた場合でも十分に脱脂が可能となる。このメカニズムについては推定ではあるが、亜鉛系酸化物の一部にはOH基が存在し、OH基が油との親和性を高める為に脱脂が困難になると考えられる。また硫酸を含む電気めっき法により亜鉛系酸化物を付与した場合には硫酸根がZnめっき皮膜中に取り込まれ、この硫酸根が油との親和性を高めるために、脱脂が困難になると考えられる。リンを含有する水溶液を鋼板に接触させると、油とOH基との結合より前にOH基がPと結合する為に油との親和性が低くなり、また亜鉛系酸化物形成時に硫酸根が存在する場合には、表面に存在する硫酸根が洗い流され、さらにPが微量に付着することで油との親和性を低くするため、脱脂性が向上すると考えられる。 Therefore, in the present invention, after a zinc-based oxide film is formed on the steel sheet, it is brought into contact with (for example, immersed in) a phosphorus-containing aqueous solution. By dipping in a phosphorus-containing aqueous solution, a small amount of phosphorus adheres to the surface, which makes it possible to sufficiently degrease even when considering the deterioration of the alkaline degreasing solution. Although this mechanism is presumed, OH groups are present in some of the zinc-based oxides, and it is considered that degreasing is difficult because the OH groups enhance the affinity with oil. In addition, when zinc-based oxide is applied by an electroplating method containing sulfuric acid, sulfate radicals are taken into the Zn plating film, and this sulfate radical increases the affinity with oil, so degreasing is considered difficult. . When an aqueous solution containing phosphorus is brought into contact with the steel sheet, the OH group is bonded to P before the bond between the oil and the OH group, so that the affinity with the oil is lowered, and the sulfate group is formed during the formation of the zinc-based oxide. If present, the sulfate radicals present on the surface are washed away, and a small amount of P adheres to lower the affinity with the oil, so that the degreasing property is considered to be improved.
 リンを含有する水溶液としてはリンが含有されていれば特に限定されない。リン酸、縮合リン酸、亜リン酸、次亜リン酸、もしくはこれらの塩から選ばれる少なくとも一種のリン化合物を含むものであれば特に限定されるものではない。具体例を挙げると、オルソリン酸、ピロリン酸、トリメタリン酸、テトラメタリン酸、ヘキサメタリン酸、リン酸二水素アンモニウム、リン酸水素二アンモニウム、リン酸三アンモニウム、リン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸三ナトリウム、ピロリン酸ナトリウム、リン酸アルミニウム、次亜リン酸アンモニウム、亜リン酸アンモニウム、リン酸三アンモニウム、等が挙げられる。 The aqueous solution containing phosphorus is not particularly limited as long as it contains phosphorus. There is no particular limitation as long as it contains at least one phosphorus compound selected from phosphoric acid, condensed phosphoric acid, phosphorous acid, hypophosphorous acid, or salts thereof. Specific examples include orthophosphoric acid, pyrophosphoric acid, trimetaphosphoric acid, tetrametaphosphoric acid, hexametaphosphoric acid, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, triammonium phosphate, sodium dihydrogen phosphate, disodium hydrogen phosphate , Trisodium phosphate, sodium pyrophosphate, aluminum phosphate, ammonium hypophosphite, ammonium phosphite, triammonium phosphate, and the like.
 リンを含有する水溶液中のリン含有率は5~5000mass ppmが好ましい。5mass ppm未満では、鋼板表面にリンを吸着させる効果が十分でない場合がある。また、5000massppmを超えると効果が飽和し、薬液コストや廃液処理コストの増大を招く場合がある。より好ましくは1000ppm以下である。また、処理後、塗油までの時間が長い場合などでは、洗浄ムラが目立つことがあるため、リン含有水溶液での洗浄後に、通常の水洗を改めて行うことが望ましい。なお、リン含有率は、リン金属量換算で求めるものとする。 The phosphorus content in the aqueous solution containing phosphorus is preferably 5 to 5000 mass ppm. If it is less than 5 mass ppm, the effect of adsorbing phosphorus on the steel sheet surface may not be sufficient. Moreover, when it exceeds 5000 massppm, an effect will be saturated and the increase in chemical | medical solution cost and waste liquid processing cost may be caused. More preferably, it is 1000 ppm or less. Further, when the time until oiling after treatment is long, cleaning unevenness may be conspicuous. Therefore, it is desirable to perform normal water washing again after washing with a phosphorus-containing aqueous solution. In addition, phosphorus content rate shall be calculated | required in phosphorus metal amount conversion.
 リンを含有する水溶液のpHは4~12が好ましい。4未満であると、亜鉛系酸化物が溶解しやすく、耐型かじり性や化成処理性改善効果が損なわれる場合がある。一方、pHが12を超えた場合も、亜鉛系酸化物の溶解量が増加する為、耐型かじり性や化成処理性改善効果が損なわれる場合がある。なお、pHが上記範囲にない場合は、リン酸、塩酸、硫酸等の酸や、水酸化ナトリウムなどのアルカリをわずかに添加するか、水で希釈することで上記範囲にpHを調製することができる。 The pH of the aqueous solution containing phosphorus is preferably 4-12. If it is less than 4, the zinc-based oxide is easily dissolved, and the effect of improving mold galling resistance and chemical conversion treatment properties may be impaired. On the other hand, even when the pH exceeds 12, the amount of dissolution of the zinc-based oxide increases, so that the effect of improving mold galling resistance and chemical conversion treatment properties may be impaired. When the pH is not within the above range, it is possible to adjust the pH within the above range by slightly adding an acid such as phosphoric acid, hydrochloric acid or sulfuric acid, or an alkali such as sodium hydroxide, or diluting with water. it can.
 リンを含有する水溶液の温度は20~70℃の範囲が好ましい。20℃未満であると短時間でのリン吸着を完了することが困難になる場合がある。一方、70℃を超えるとリン吸着効果が飽和するだけでなく、リンを含有する水溶液が乾燥しやすく外観ムラなどが発生しやすくなる場合がある。また、水洗時間は、1~10秒の範囲で行うのが好ましい。1秒未満であると、リンの吸着が十分に完了しない場合がある。一方、10秒を超える処理は製造ラインの長大化を招くだけでなく、リンを含有する水溶液による亜鉛酸化物の溶解が発生し、十分な効果を確保できなくなる場合がある。
 このようなリンを含有する水溶液による水洗処理の方法には特に制限はない。めっき鋼板を浸漬する方法、スプレーする方法、塗布ロールを介して塗布する方法などがあげられる。中でも鋼板表面にスプレーする方法は、必要な処理液が少量で済むと同時に、液の流動効果との相乗効果で比較的短時間で処理が完了するため、最も望ましい方法である。
The temperature of the aqueous solution containing phosphorus is preferably in the range of 20 to 70 ° C. If it is lower than 20 ° C., it may be difficult to complete phosphorus adsorption in a short time. On the other hand, when the temperature exceeds 70 ° C., not only the phosphorus adsorption effect is saturated, but also the aqueous solution containing phosphorus is likely to be dried and unevenness in appearance is likely to occur. The washing time is preferably in the range of 1 to 10 seconds. If it is less than 1 second, the adsorption of phosphorus may not be sufficiently completed. On the other hand, the treatment exceeding 10 seconds not only lengthens the production line, but also dissolution of zinc oxide by an aqueous solution containing phosphorus may occur, and a sufficient effect may not be ensured.
There is no restriction | limiting in particular in the method of the water washing process by the aqueous solution containing such phosphorus. The method of immersing a plated steel plate, the method of spraying, the method of apply | coating through an application | coating roll, etc. are mention | raise | lifted. Among them, the method of spraying on the surface of the steel sheet is the most desirable method because it requires a small amount of processing liquid and at the same time completes processing in a relatively short time due to a synergistic effect with the fluid flow effect.
 表1に示す成分を有する鋼板A~F(板厚はいずれも1.2mm)を用いて、まず、これらの鋼板にトルエンによる溶剤超音波脱脂を行い、鋼板表面の油分を除去した。次いで、表2に示す電解浴組成と電解条件で鋼板を陰極として電解処理を行い、亜鉛系酸化物を鋼板表面に形成させた。なお、比較例の一部として、硝酸イオンを含まない電解浴を用いて電気めっき処理を行い、金属亜鉛を析出させた。 Using steel plates A to F having the components shown in Table 1 (the plate thicknesses are both 1.2 mm), these steel plates were first subjected to solvent ultrasonic degreasing with toluene to remove oil on the steel plate surface. Next, electrolytic treatment was performed using the steel plate as a cathode under the electrolytic bath composition and electrolysis conditions shown in Table 2 to form a zinc-based oxide on the steel plate surface. In addition, as part of the comparative example, electroplating was performed using an electrolytic bath not containing nitrate ions to deposit metallic zinc.
 以上により得られた鋼板について、X線光電子分光装置を用いて、スパッタエッチングにより深さ分析を行い、電解処理により形成された物が亜鉛系酸化物であるか、金属亜鉛であるかを調査した。硝酸イオンを含まない電解浴を用いて処理を行った比較例では深さ方向全領域において金属亜鉛であることを、また、上記比較例以外では深さ方向全領域において亜鉛系酸化物であることを、各々確認した。 About the steel plate obtained by the above, depth analysis was carried out by sputter etching using an X-ray photoelectron spectrometer, and it was investigated whether the product formed by electrolytic treatment was zinc-based oxide or metallic zinc. . In the comparative example treated using an electrolytic bath not containing nitrate ions, it is metal zinc in the entire region in the depth direction, and in other than the comparative example, it is a zinc-based oxide in the entire region in the depth direction. Each was confirmed.
 また、亜鉛系酸化物及び金属亜鉛の量を金属亜鉛として蛍光X線を用いて測定した。ここで、事前に金属亜鉛めっきを行い、ICPによるZn量と蛍光X線によるZn強度の検量板を作成して上記亜鉛量を測定した。さらに、亜鉛系酸化物の被覆率を、電子線マイクロアナライザーを用いて100μm四方の亜鉛元素マッピングを行い、測定面積から亜鉛の存在面積の比率(被覆率)を算出した。 Further, the amounts of zinc-based oxide and metallic zinc were measured using fluorescent X-rays as metallic zinc. Here, metal zinc plating was performed in advance to prepare a calibration plate for the Zn content by ICP and the Zn intensity by fluorescent X-rays, and the zinc content was measured. Further, the coverage of the zinc-based oxide was subjected to 100 μm square zinc element mapping using an electron beam microanalyzer, and the ratio of the existing area of zinc (coverage) was calculated from the measurement area.
 さらに、以下に示す方法により、耐型かじり性および化成処理性を評価した。 Furthermore, mold galling resistance and chemical conversion property were evaluated by the following methods.
 (1)耐型かじり性評価
 実プレス時のビード通過部を想定した面圧の高い条件下での耐かじり性を評価するため、図1の摩擦係数測定装置を用いて平板の同一部位繰返し摺動試験を行った。図1に示すように供試材から採取した摩擦係数測定用試料1が試料台2に固定され、試料台2は、水平移動可能なスライドテーブル3の上面に固定されている。スライドテーブル3の下面には、これに接したローラ4を有する上下動可能なスライドテーブル支持台5が設けられ、これを押上げることにより、ビード6による摩擦係数測定用試料1への押付荷重Nを測定するための第1ロードセル7が、スライドテーブル支持台5に取付けられている。上記押付力を作用させた状態でスライドテーブル3を水平方向へ移動させるための摺動抵抗力Fを測定するための第2ロードセル8が、スライドテーブル3の一方の端部に取付けられている。なお、潤滑油としてスギムラ化学社製のプレス用洗浄油プレトンR352Lを試料1の表面に塗布して試験を行った。耐型かじり性試験の押し付け荷重はN:1200kgf、試料の引き抜き速度(スライドテーブル3の水平移動速度):100cm/minとした。
 図2は、耐型かじり性評価に使用したビード形状・寸法を示す概略斜視図である。ビード6の下面が試料1の表面に押し付けられた状態で摺動する。図2に示すビード6の形状は幅10mm、試料の摺動方向長さ12mm、摺動方向両端の下部は曲率4.5mmRの曲面で構成され、試料が押し付けられるビード下面は幅10mm、摺動方向長さ3mmの平面を有する。このビードを用いると、プレス成形時のビード通過部での摩擦係数を評価できる。
 耐型かじり性評価試験条件は、試験前にスギムラ化学社製のプレス用洗浄油プレトンR352Lを表面に塗布した試料1の同一部位を最大40回の繰り返し摺動試験を実施し、摺動可能回数により耐型かじり性の指標とした。ここで摺動可能回数とは、鋼板と金型との凝着、すなわち型かじりが発生した場合に摩擦係数測定装置が自動的に停止するように設定しており、設定値として摺動抵抗力Fが500kgfを超えた場合に停止するように設定した。
×:摺動可能回数が17回未満(型かじり発生による摩擦係数測定装置の停止)。
○:摺動可能回数が17回~29回(型かじり発生による摩擦係数測定装置の停止)。
◎:30回の摺動が可能
ここで、摺動回数17回は、現在型かじりが発生せずに使用されている270MPa級の冷延鋼板を400kgfの押し付け荷重にて上記の耐型かじり性評価を行った場合に型かじりが発生する平均回数であり、17回以上摺動が可能な場合には実用上型かじりは発生しないと考えられる為、摺動回数が17回以上を基準とした。
(1) Evaluation of mold galling resistance In order to evaluate galling resistance under conditions of high surface pressure assuming a bead passage part during actual pressing, the friction coefficient measuring device shown in FIG. A dynamic test was performed. As shown in FIG. 1, a friction coefficient measurement sample 1 collected from a test material is fixed to a sample table 2, and the sample table 2 is fixed to the upper surface of a horizontally movable slide table 3. A slide table support 5 having a roller 4 in contact with the slide table 3 is provided on the lower surface of the slide table 3, and when this is pushed up, a pressing load N applied to the friction coefficient measurement sample 1 by the bead 6. A first load cell 7 is attached to the slide table support 5. A second load cell 8 for measuring a sliding resistance force F for moving the slide table 3 in the horizontal direction in a state where the pressing force is applied is attached to one end of the slide table 3. In addition, the cleaning oil Preton R352L for press made by Sugimura Chemical Co., Ltd. was applied as a lubricating oil to the surface of the sample 1 and tested. The pressing load in the mold galling resistance test was N: 1200 kgf, and the sample drawing speed (horizontal moving speed of the slide table 3): 100 cm / min.
FIG. 2 is a schematic perspective view showing the bead shape and dimensions used in the evaluation of mold galling resistance. The bead 6 slides with its lower surface pressed against the surface of the sample 1. The bead 6 shown in FIG. 2 has a width of 10 mm, a length of 12 mm in the sliding direction of the sample, and a lower portion at both ends in the sliding direction is formed by a curved surface with a curvature of 4.5 mmR. It has a plane with a direction length of 3 mm. If this bead is used, the friction coefficient in the bead passage part at the time of press molding can be evaluated.
The mold galling resistance evaluation test condition is that the same part of the sample 1 coated with the cleaning oil Preton R352L for press manufactured by Sugimura Chemical Co., Ltd. on the surface before the test is repeatedly subjected to a sliding test of up to 40 times, and the number of sliding is possible. Therefore, it was used as an index of anti-mold galling resistance. Here, the number of slidable times is set so that the friction coefficient measuring device automatically stops when the steel sheet and the mold adhere to each other, that is, when die galling occurs. It was set to stop when F exceeded 500 kgf.
X: The slidable number of times is less than 17 times (the friction coefficient measuring device is stopped due to the occurrence of mold galling).
○: The slidable number of times is 17 to 29 times (the friction coefficient measuring device is stopped due to the occurrence of mold galling).
A: 30 times of sliding is possible. Here, the number of sliding times is 17 times. The above-mentioned mold galling resistance is applied to a 270 MPa class cold-rolled steel sheet that is used without generating galling with a pressing load of 400 kgf. This is the average number of times that mold galling occurs when evaluation is performed. If it is possible to slide 17 times or more, it is considered that mold galling will not occur in practice, so the number of sliding is based on 17 or more. .
 (2)化成処理性評価
市販の化成処理薬剤(日本パーカライジング株式会社製 パルボンドPB−L3065システム)を用いて、浴温35℃、時間120秒の条件で化成処理を行い、化成処理後の表面SEM観察を行うことにより化成処理結晶の均一性を評価した。ここで表面SEM観察は300倍の視野にて評価し、その評価面積はおよそ0.1mmである。化成処理結晶の均一性評価は以下の基準により判定した。
××:ほぼ全面に化成処理結晶が認められない。
×:およそ半面に化成処理結晶が認められない。
△:ミクロなスケが3箇所以上認められる。
○:ミクロなスケが2箇所以下及び/又は粗大化結晶が3箇所以上認められる。
◎:化成処理結晶にスケが無く、粗大化結晶が2箇所以下である。
 尚、上記記載のミクロなスケの大きさは200μm以下とする。さらに粗大化結晶とは、化成処理結晶の長辺が15μm以上のものと規定する。
(2) Chemical conversion treatment evaluation Using a commercially available chemical conversion treatment agent (Palbond PB-L3065 system manufactured by Nihon Parkerizing Co., Ltd.), chemical conversion treatment was performed under conditions of a bath temperature of 35 ° C. and a time of 120 seconds, and the surface SEM after chemical conversion treatment. The uniformity of the chemical conversion crystal was evaluated by observing. Here, the surface SEM observation is evaluated with a 300 × field of view, and the evaluation area is approximately 0.1 mm 2 . The uniformity evaluation of the chemical conversion treatment crystal was judged according to the following criteria.
XX: No chemical conversion crystal is observed on almost the entire surface.
X: A chemical conversion treatment crystal is not recognized on about one side.
(Triangle | delta): Three or more micro scales are recognized.
◯: Two or less micro skeins and / or three or more coarse crystals are observed.
(Double-circle): There is no scale in a chemical conversion treatment crystal, and there are two or less coarse crystals.
In addition, the size of the above-described micro scale is 200 μm 2 or less. Further, the coarse crystal is defined as a chemical conversion crystal having a long side of 15 μm or more.
 以上より得られた試験結果を条件と併せて表2に示す。 The test results obtained above are shown in Table 2 together with the conditions.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2より、試験No.1~20、24~28はいずれも鋼板表面に亜鉛系酸化物が形成されており、金属亜鉛の生成は観察されなかった。また、下記事項が明らかとなった。
(1)No.1~6は通電時間を変更することで亜鉛系酸化物の量を変化させて比較した結果である。No.1、No.2の比較例1、2は亜鉛系酸化物の量が少ないために、化成処理性が不良であることが分かる。また、No.6の比較例3は亜鉛系酸化物の量が多いために耐型かじり性が低下していることが分かる。一方、亜鉛系酸化物の量が好適であるNo.3~5の本発明例1~3の場合、耐型かじり性、化成処理性が共に優れていることが分かる。
(2)No.7は、No.4とほぼ同程度の亜鉛系酸化物の量を有しているが、被覆率が低い比較例4である。耐型かじり性及び化成処理性が不良であることが分かる。No.8はNo.7と同じ通電条件下ではあるが通電時間を長くすることで亜鉛系酸化物の量及び被覆率を本発明範囲内とした本発明例4である。耐型かじり性及び化成処理性が良好となっていることが分かる。
(3)No.4およびNo.9~14はリンを含有する水溶液で水洗処理を行わない場合もしくはリン含有率を変化させた場合の例である。リンを含有する水溶液で水洗処理を行わないNo.9及び10の比較例5、6は化成処理性が不良であることが分かる。一方、No.4及びNo.11~14の本発明例2、5~8は好適な条件でリンを含有する水溶液で水洗処理を行っており、化成処理性および耐型かじり性が優れていることが分かる。
(4)No15~17の本発明例9~11は、リンを含有する水溶液で水洗処理のpHを変化させた例である。いずれも良好な化成処理性と耐型かじり性が得られていることが分かる。
(5)No.4及びNo.18~20の本発明例2、12~14は電解浴へのイオン供給化合物を変化させた例である。いずれの化合物を用いた場合でも良好な耐型かじり性と化成処理性が得られていることが分かる。
(6)No.4及びNo.24~28の本発明例2、15~19は鋼板の種類を変化させた例である。いずれも良好な化成処理性と耐型かじり性が得られていることが分かる。
From Table 2, test no. In all of Nos. 1 to 20 and 24 to 28, zinc-based oxides were formed on the surface of the steel sheet, and formation of metallic zinc was not observed. In addition, the following matters became clear.
(1) No. 1 to 6 are the results of comparison by changing the amount of zinc oxide by changing the energization time. No. 1, no. In Comparative Examples 1 and 2 of 2, since the amount of the zinc-based oxide is small, it can be seen that the chemical conversion property is poor. No. It can be seen that Comparative Example 3 of No. 6 has a low resistance to mold galling due to the large amount of zinc-based oxide. On the other hand, no. In the case of Examples 3 to 5 of the present invention of 3 to 5, it can be seen that both mold galling resistance and chemical conversion treatment are excellent.
(2) No. No. 7 4 is a comparative example 4 having an amount of zinc-based oxide substantially equal to 4, but having a low coverage. It can be seen that the mold galling resistance and the chemical conversion treatment are poor. No. No. 8 is No.8. This is Example 4 of the present invention in which the amount of zinc-based oxide and the coverage were within the scope of the present invention by extending the energization time under the same energization conditions as in No. 7. It can be seen that the mold galling resistance and the chemical conversion treatment property are good.
(3) No. 4 and no. Examples 9 to 14 are examples in the case where the water-washing treatment is not performed with the aqueous solution containing phosphorus or the phosphorus content is changed. No washing with an aqueous solution containing phosphorus. It can be seen that Comparative Examples 5 and 6 of 9 and 10 have poor chemical conversion properties. On the other hand, no. 4 and no. Invention Examples 2 and 5 to 8 of Nos. 11 to 14 are washed with an aqueous solution containing phosphorus under suitable conditions, and it can be seen that the chemical conversion treatment property and the mold galling resistance are excellent.
(4) Invention Examples 9 to 11 of Nos. 15 to 17 are examples in which the pH of the water washing treatment was changed with an aqueous solution containing phosphorus. It can be seen that both have good chemical conversion treatment properties and mold galling resistance.
(5) No. 4 and no. Invention Examples 2 to 18 to 20 and 12 to 14 are examples in which the ion supply compound to the electrolytic bath was changed. It can be seen that good mold galling resistance and chemical conversion properties are obtained when any compound is used.
(6) No. 4 and no. Invention Examples 2 and 15 to 19 of 24-28 are examples in which the type of steel sheet was changed. It can be seen that both have good chemical conversion treatment properties and mold galling resistance.
 本発明によれば、プレス成形時に型かじりを抑制することができ、引き続き行われる化成処理時に良好な化成処理性を示す鋼板を提供でき、自動車車体用途を中心に広範な分野で適用が可能となる。 ADVANTAGE OF THE INVENTION According to the present invention, it is possible to suppress die galling during press molding, to provide a steel sheet that exhibits good chemical conversion treatment during subsequent chemical conversion treatment, and can be applied in a wide range of fields centering on automobile body applications. Become.
1 摩擦係数測定用試料
2 試料台
3 スライドテーブル
4 ローラ
5 スライドテーブル支持台
6 ビード
7 第1ロードセル
8 第2ロードセル
9 レール
N 押付荷重
F 摺動抵抗力
DESCRIPTION OF SYMBOLS 1 Friction coefficient measurement sample 2 Sample stand 3 Slide table 4 Roller 5 Slide table support stand 6 Bead 7 1st load cell 8 2nd load cell 9 Rail N Pushing load F Sliding resistance force

Claims (4)

  1.  亜鉛イオンおよび硝酸イオンを含有する水溶液中で鋼板を陰極として電解処理し、前記鋼板表面に亜鉛酸化物および/または亜鉛水酸化物を、金属亜鉛量に換算して70~500mg/mかつ鋼板表面の被覆率:60%以上となるように形成し、
     次いで、リンを含有する水溶液に前記鋼板を接触させることを特徴とする化成処理性および耐型かじり性に優れた鋼板の製造方法。
    The steel plate is subjected to electrolytic treatment in an aqueous solution containing zinc ions and nitrate ions as a cathode, and zinc oxide and / or zinc hydroxide is converted to a metal zinc amount of 70 to 500 mg / m 2 on the steel plate surface. Surface coverage: formed to be 60% or more,
    Then, the manufacturing method of the steel plate excellent in the chemical conversion treatment property and the mold galling resistance characterized by making the said steel plate contact the aqueous solution containing phosphorus.
  2.  前記鋼板はSiを0.1質量%以上含有することを特徴とする請求項1に記載の化成処理性および耐型かじり性に優れた鋼板の製造方法。 2. The method for producing a steel sheet having excellent chemical conversion property and anti-galling resistance according to claim 1, wherein the steel sheet contains 0.1% by mass or more of Si.
  3.  前記リンを含有する水溶液のリン含有率が5~5000mass ppmであることを特徴とする請求項1または2に記載の化成処理性および耐型かじり性に優れた鋼板の製造方法。 3. The method for producing a steel sheet excellent in chemical conversion treatment and mold galling resistance according to claim 1 or 2, wherein the phosphorus content of the aqueous solution containing phosphorus is 5 to 5000 mass ppm.
  4.  前記リンを含有する水溶液のpHが4~12であることを特徴とする請求項1~3のいずれか一項に記載の化成処理性および耐型かじり性に優れた鋼板の製造方法。 4. The method for producing a steel sheet excellent in chemical conversion treatment property and anti-galling property according to any one of claims 1 to 3, wherein the pH of the aqueous solution containing phosphorus is 4 to 12.
PCT/JP2012/068744 2012-07-18 2012-07-18 Method for producing steel sheet having excellent chemical conversion properties and galling resistance WO2014013623A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280074788.XA CN104471115A (en) 2012-07-18 2012-07-18 Method for producing steel sheet having excellent chemical conversion properties and galling resistance
KR1020147036256A KR20150014517A (en) 2012-07-18 2012-07-18 Method for producing steel sheet having excellent chemical conversion properties and galling resistance
PCT/JP2012/068744 WO2014013623A1 (en) 2012-07-18 2012-07-18 Method for producing steel sheet having excellent chemical conversion properties and galling resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/068744 WO2014013623A1 (en) 2012-07-18 2012-07-18 Method for producing steel sheet having excellent chemical conversion properties and galling resistance

Publications (1)

Publication Number Publication Date
WO2014013623A1 true WO2014013623A1 (en) 2014-01-23

Family

ID=49948474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068744 WO2014013623A1 (en) 2012-07-18 2012-07-18 Method for producing steel sheet having excellent chemical conversion properties and galling resistance

Country Status (3)

Country Link
KR (1) KR20150014517A (en)
CN (1) CN104471115A (en)
WO (1) WO2014013623A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6699633B2 (en) * 2017-07-25 2020-05-27 Jfeスチール株式会社 High-strength cold-rolled steel sheet excellent in corrosion resistance after painting and delayed fracture resistance and method for producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6425988A (en) * 1987-07-21 1989-01-27 Kawasaki Steel Co Production of zn alloy electroplated steel sheet having superior chemical treatability
JPH0488196A (en) * 1990-08-01 1992-03-23 Nippon Steel Corp Galvanized steel sheet excellent in press workability and chemical conversion treating property
JP2008081808A (en) * 2006-09-28 2008-04-10 Jfe Steel Kk Steel sheet having excellent chemical conversion treatment property and galling resistance
JP2012167362A (en) * 2011-01-25 2012-09-06 Jfe Steel Corp Method for producing cold rolled steel sheet excellent in chemical conversion treatability and corrosion resistance after coating

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5525431A (en) * 1989-12-12 1996-06-11 Nippon Steel Corporation Zinc-base galvanized sheet steel excellent in press-formability, phosphatability, etc. and process for producing the same
MX2009002482A (en) * 2006-10-31 2009-05-11 Jfe Steel Corp Phosphate-treated galvanized steel sheet and method for producing the same.
CA2742354C (en) * 2008-12-16 2014-02-25 Jfe Steel Corporation Galvanized steel sheet and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6425988A (en) * 1987-07-21 1989-01-27 Kawasaki Steel Co Production of zn alloy electroplated steel sheet having superior chemical treatability
JPH0488196A (en) * 1990-08-01 1992-03-23 Nippon Steel Corp Galvanized steel sheet excellent in press workability and chemical conversion treating property
JP2008081808A (en) * 2006-09-28 2008-04-10 Jfe Steel Kk Steel sheet having excellent chemical conversion treatment property and galling resistance
JP2012167362A (en) * 2011-01-25 2012-09-06 Jfe Steel Corp Method for producing cold rolled steel sheet excellent in chemical conversion treatability and corrosion resistance after coating

Also Published As

Publication number Publication date
KR20150014517A (en) 2015-02-06
CN104471115A (en) 2015-03-25

Similar Documents

Publication Publication Date Title
JP5251078B2 (en) Steel plate for containers and manufacturing method thereof
MX2014009731A (en) Plated steel plate for hot pressing and hot pressing method of plated steel plate.
JP5157487B2 (en) Steel plate for containers and manufacturing method thereof
WO2015129282A1 (en) Galvanized steel sheet and method for manufacturing the same
KR100419322B1 (en) Surface treated steel sheet and method for production thereof
JP4923920B2 (en) Steel sheet with excellent chemical conversion and mold galling resistance
JP4349149B2 (en) Method for producing surface-treated steel sheet having excellent conductivity
JP6551270B2 (en) Method of manufacturing galvanized steel sheet
WO2014013623A1 (en) Method for producing steel sheet having excellent chemical conversion properties and galling resistance
JP2007119872A (en) Method for producing galvannealed steel sheet and galvannealed steel sheet
JP4393349B2 (en) Cold-rolled steel sheet with excellent phosphatability and post-coating salt hot water resistance
JP2006299351A (en) Steel sheet having excellent galling resistance and chemical conversion treatability
JP4747700B2 (en) Steel plate manufacturing method and steel plate excellent in degreasing properties
JP2013007093A (en) Method for producing steel sheet excellent in chemical treatment property and galling resistance
TWI464307B (en) Method of manufacturing steel sheets having excellent anti-galling and chemical conversion properties
JP3587197B2 (en) Galvanized steel sheet and manufacturing method thereof
JP4100358B2 (en) Pre-phosphate steel plate and method for manufacturing the same
JP4935099B2 (en) Metal plating material
JP6992831B2 (en) Manufacturing method of hot-dip galvanized steel sheet
JP2004323890A (en) Galvanized steel sheet and method for manufacturing the same
JP3449283B2 (en) Galvanized steel sheet excellent in press formability and its manufacturing method
JP2007138213A (en) Cold-rolled steel sheet superior in chemical conversion treatment property and galling resistance, and manufacturing method therefor
JP3111888B2 (en) Manufacturing method of galvanized steel sheet
WO2015124322A1 (en) Activation treatment of coated steel substrates
TW202122628A (en) Surface-treated galvanized steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12881495

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147036256

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201500269

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12881495

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP