WO2014012944A1 - Method and apparatus for encoding multi-channel hoa audio signals for noise reduction, and method and apparatus for decoding multi-channel hoa audio signals for noise reduction - Google Patents

Method and apparatus for encoding multi-channel hoa audio signals for noise reduction, and method and apparatus for decoding multi-channel hoa audio signals for noise reduction Download PDF

Info

Publication number
WO2014012944A1
WO2014012944A1 PCT/EP2013/065032 EP2013065032W WO2014012944A1 WO 2014012944 A1 WO2014012944 A1 WO 2014012944A1 EP 2013065032 W EP2013065032 W EP 2013065032W WO 2014012944 A1 WO2014012944 A1 WO 2014012944A1
Authority
WO
WIPO (PCT)
Prior art keywords
dsht
rotation
channel
channels
decoding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/EP2013/065032
Other languages
English (en)
French (fr)
Inventor
Johannes Boehm
Sven Kordon
Alexander Krüger
Peter Jax
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thomson Licensing SAS
Original Assignee
Thomson Licensing SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2015522077A priority Critical patent/JP6205416B2/ja
Priority to EP20208589.0A priority patent/EP3813063B1/en
Priority to EP25197841.7A priority patent/EP4660999A1/en
Priority to EP13740235.0A priority patent/EP2873071B1/en
Priority to KR1020157000876A priority patent/KR102126449B1/ko
Priority to EP17205327.4A priority patent/EP3327721B1/en
Priority to KR1020247018653A priority patent/KR20240091351A/ko
Priority to CN201380036698.6A priority patent/CN104428833B/zh
Priority to US14/415,571 priority patent/US9460728B2/en
Application filed by Thomson Licensing SAS filed Critical Thomson Licensing SAS
Priority to KR1020207017672A priority patent/KR102187936B1/ko
Priority to KR1020207034592A priority patent/KR102340930B1/ko
Priority to KR1020217041058A priority patent/KR20210156311A/ko
Publication of WO2014012944A1 publication Critical patent/WO2014012944A1/en
Anticipated expiration legal-status Critical
Priority to US15/275,699 priority patent/US9837087B2/en
Priority to US15/685,252 priority patent/US10304469B2/en
Priority to US16/417,480 priority patent/US10614821B2/en
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/008Multichannel audio signal coding or decoding using interchannel correlation to reduce redundancy, e.g. joint-stereo, intensity-coding or matrixing
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/012Comfort noise or silence coding
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/0212Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders using orthogonal transformation
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/032Quantisation or dequantisation of spectral components
    • G10L19/038Vector quantisation, e.g. TwinVQ audio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S3/00Systems employing more than two channels, e.g. quadraphonic
    • H04S3/02Systems employing more than two channels, e.g. quadraphonic of the matrix type, i.e. in which input signals are combined algebraically, e.g. after having been phase shifted with respect to each other
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2420/00Techniques used stereophonic systems covered by H04S but not provided for in its groups
    • H04S2420/11Application of ambisonics in stereophonic audio systems

Definitions

  • This invention relates to a method and an apparatus for encoding multi-channel Higher Order Ambisonics audio signals for noise reduction, and to a method and an apparatus for decoding multi-channel Higher Order Ambisonics audio signals for noise reduction.
  • HOA Higher Order Ambisonics
  • HOA signals are multi-channel audio signals.
  • the playback of certain multichannel audio signal representations, particularly HOA representations, on a particular loudspeaker set-up requires a special rendering, which usually consists of a matrixing operation.
  • the Ambisonics signals are "matrixed", i.e. mapped to new audio signals corresponding to actual spatial positions, e.g. of loudspeakers.
  • a usual method for the compression of Higher Order Ambisonics audio signal representations is to apply independent perceptual coders to the individual Ambisonics coeffcient channels [7].
  • the perceptual coders only consider coding noise masking effects which occur within each individual single- channel signals. However, such effects are typically non-linear. If matrixing such single-channels into new signals, noise unmasking is likely to occur. This effect also occurs when the Higher Order Ambisonics signals are transformed to the spatial domain by the Discrete Spherical Harmonics Transform prior to
  • matrixing origins from the fact that y( is, mathematically, obtained from x( through a matrix operation
  • A denotes a mixing matrix composed of mixing weights.
  • the terms “mixing” and “matrixing” are used synonymously herein. Mixing/matrixing is used for the purpose of rendering audio signals for any particular loudspeaker setups.
  • the present invention provides an improvement to encoding and/or decoding multi-channel Higher Order Ambisonics audio signals so as to obtain noise reduction.
  • the invention provides a way to suppress coding noise de- masking for 3D audio rate compression.
  • the invention describes technologies for an adaptive Discrete Spherical
  • aDSHT Harmonics Transform
  • KLT Karhunen Loeve transform
  • a method for encoding multichannel HOA audio signals for noise reduction comprises steps of decorrelating the channels using an inverse adaptive DSHT, the inverse adaptive DSHT comprising a rotation operation and an inverse DSHT (iDSHT), with the rotation operation rotating the spatial sampling grid of the iDSHT, perceptually encoding each of the decorrelated channels, encoding rotation information, the rotation information comprising parameters defining said rotation operation, and transmitting or storing the perceptually encoded audio channels and the encoded rotation information.
  • the step of decorrelating the channels using an inverse adaptive DSHT is in principle a spatial encoding step.
  • a method for decoding coded multi-channel HOA audio signals with reduced noise comprises steps of receiving encoded multi-channel HOA audio signals and channel rotation information, decompressing the received data, wherein perceptual decoding is used, spatially decoding each channel using an adaptive DSHT (aDSHT), correlating the perceptually and spatially decoded channels, wherein a rotation of a spatial sampling grid of the aDSHT according to said rotation information is performed, and matrixing the correlated perceptually and spatially decoded channels, wherein reproducible audio signals mapped to loudspeaker positions are obtained.
  • aDSHT adaptive DSHT
  • An apparatus for encoding multi-channel HOA audio signals is disclosed in claim 1 1 .
  • An apparatus for decoding multi-channel HOA audio signals is disclosed in claim 12.
  • a computer readable medium has executable instructions to cause a computer to perform a method for encoding comprising steps as disclosed above, or to perform a method for decoding comprising steps as disclosed above.
  • Fig.1 a known encoder and decoder for rate compressing a block of M
  • Fig.2 a known encoder and decoder for transforming a HOA signal into the spatial domain using a conventional DSHT (Discrete Spherical Harmonics
  • Fig.3 an encoder and decoder for transforming a HOA signal into the spatial
  • Fig.6 signal adaptive DSHT building blocks (pE and pD)
  • Fig.7 a first embodiment of the present invention
  • FIG.8 flow-charts of an encoding process and a decoding process
  • Fig.9 a second embodiment of the present invention.
  • Fig.2 shows a known system where a HOA signal is transformed into the spatial domain using an inverse DSHT.
  • the signal is subject to transformation using iDSHT 21 , rate compression E1 / decompression D1 , and re-transformed to the coefficient domain S24 using the DSHT 24.
  • Fig.3 shows a system according to one embodiment of the present invention:
  • the DSHT processing blocks of the known solution are replaced by processing blocks 31 ,34 that control an inverse adaptive DSHT and an adaptive DSHT, respectively.
  • Side infornnation SI is transmitted within the bitstream bs.
  • the system comprises elements of an apparatus for encoding multi-channel HOA audio signals and elements of an apparatus for decoding multi-channel HOA audio signals.
  • an apparatus ENC for encoding multi-channel HOA audio signals for noise reduction includes a decorrelator 31 for decorrelating the channels B using an inverse adaptive DSHT (iaDSHT), the inverse adaptive DSHT including a rotation operation unit 31 1 and an inverse DSHT (iDSHT) 310.
  • the rotation operation unit rotates the spatial sampling grid of the iDSHT.
  • the decorrelator 31 provides decorrelated channels W sd and side information SI that includes rotation information.
  • the apparatus includes a perceptual encoder 32 for perceptually encoding each of the decorrelated channels W sd , and a side information encoder 321 for encoding rotation information.
  • the rotation information comprises parameters defining said rotation operation.
  • the perceptual encoder 32 provides perceptually encoded audio channels and the encoded rotation information, thus reducing the data rate.
  • the apparatus for encoding comprises interface means 320 for creating a bitstream bs from the perceptually encoded audio channels and the encoded rotation information and for transmitting or storing the bitstream bs.
  • An apparatus DEC for decoding multi-channel HOA audio signals with reduced noise includes interface means 330 for receiving encoded multi-channel HOA audio signals and channel rotation information, and a decompression module 33 for decompressing the received data, which includes a perceptual decoder for perceptually decoding each channel.
  • the decompression module 33 provides recovered perceptually decoded channels W' sd and recovered side information SI'.
  • the apparatus for decoding includes a correlator 34 for correlating the perceptually decoded channels W' sd using an adaptive DSHT (aDSHT), wherein a DSHT and a rotation of a spatial sampling grid of the DSHT according to said rotation information are performed, and a mixer MX for matrixing the correlated perceptually decoded channels, wherein reproducible audio signals mapped to loudspeaker positions are obtained.
  • aDSHT can be performed in a DSHT unit 340 within the correlator 34.
  • the rotation of the spatial sampling grid is done in a grid rotation unit 341 , which in principle recalculates the original DSHT sampling points.
  • the rotation is performed within the DSHT unit 340.
  • the matrix of the reconstructed frame samples which is denoted by X , is composed of the true sample matrix X and an coding noise component E according to
  • a further essential assumption is that the coding is performed such that a predefined signal-to-noise ratio (SNR) is satisfied for each channel.
  • SNR signal-to-noise ratio
  • N the matrix containing the samples of the matrixed noise signals. It can be expressed as
  • n(m): [n ⁇ m) ... n j (m)] T (17) is the vector of all matrixed noise signals at the time sample index m .
  • Equation (1 1 ) the empirical correlation matrix of the matrixed noise-free signals can be formulated as
  • this SNR is obtained from the predefined SNR, SNR X , by the multiplication with a term, which is dependent on the diagonal and non-diagonal component of the signal correlation matrix ⁇ x .
  • the empirical SNR of the matrixed signals is equal to the predefined SNR if the signals Xi(m) are uncorrelated to each other such that ⁇ X NG becomes a zero matrix, i.e.,
  • HOA Higher Order Ambisonics
  • SHs Spherical Harmonics
  • j n (-) indicate the spherical Bessel functions of the first kind and order n and ⁇ TM( ⁇ ) denote the Spherical Harmonics (SH) of order n and degree m.
  • SH Spherical Harmonics
  • SHs are complex valued functions in general.
  • a source field can be defined as:
  • a source field can consist of far- field/ near-field, discrete/ continuous sources [1 ].
  • the source field coefficients BTM are related to the sound field coefficients A% by, [1 ]:
  • Signals in the HOA domain can be represented in frequency domain or in time domain as the inverse Fourier transform of the source field or sound f/ ' eld coefficients.
  • the following description will assume the use of a time domain representation of source field coefficients:
  • K F t ⁇ 5 ⁇ (35) of a finite number:
  • the number of coefficients (or HOA channels) is given by:
  • the coefficients bTM comprise the Audio information of one time sample m for later reproduction by loudspeakers. They can be stored or transmitted and are thus subject of data rate compression.
  • Equation (33) can be rewritten using time domain HOA coefficients for / discrete spatial sample positions ⁇ .
  • [6 lt ⁇ 7 on the unit sphere:
  • Equation (38) transforms L sd spherical signals into the coefficient domain and can be rewritten as a forward transform:
  • rate compression of Higer Order Ambisonics coefficient data and noise unmasking is described.
  • a test signal is defined to highlight some properties, which is used below.
  • test signal B g can be seen as the simplest case of an HOA signal. More complex signals consist of a superposition of many of such signals. Concerning direct compression of HOA channels, the following shows why noise unmasking occurs when HOA coefficient channels are compressed. Direct compression and decompression of the 0 3D coefficient channels of an actual block of HOA data B will introduce coding noise E analogous to equation (4):
  • W sd ⁇ ⁇ B , (50) with inverse transform matrix ⁇ ; related to the L SD ⁇ 0 3D spatial sample positions, and spatial signal matrix W SH ⁇ C isdX .
  • Equation (53) should be seen analogous to equation (14). Again applying all considerations described above, the SNR of speaker channel / can be described by (analogous to equation (29)):
  • a basic idea of the present invention is to minimize noise unmasking effects by using an adaptive DSHT (aDSHT), which is composed of a rotation of the spatial sampling grid of the DSHT related to the spatial properties of the HOA input signal, and the DSHT itself.
  • aDSHT adaptive DSHT
  • a signal adaptive DSHT (aDSHT) with a number of spherical positions L sd matching the number of HOA coefficients 0 3D , (36), is described below.
  • aDSHT signal adaptive DSHT
  • a default spherical sample grid as in the conventional non-adaptive DSHT is selected.
  • the spherical sample grid is rotated such that the logarithm of the term
  • this process corresponds to a rotation of the spherical sampling grid of the DSHT in a way that a single spatial sample position matches the strongest source direction, as shown in Fig.4.
  • the term W sd of equation (55) becomes a vector ⁇ c isdX1 with all elements close to zero except one. Consequently ⁇ Wsd becomes near diagonal and the desired SNR SNR S can be kept.
  • Fig.4 shows a test signal B g transformed to the spatial domain. In Fig.4 a), the default sampling grid was used, and in Fig.4 b), the rotated grid of the aDSHT was used.
  • Each cell of the spatial structure represents a sampling point, and the lightness/darkness of the cell represents a signal strength.
  • a strongest source direction was found and the sampling grid was rotated such that one of the sides (i.e. a single spatial sample position) matches the strongest source direction. This side is depicted white (corresponding to strong source direction), while the other sides are dark (corresponding to low source direction).
  • Fig.4 a i.e. before rotation, no side matches the strongest source direction, and several sides are more or less grey, which means that an audio signal of considerable (but not maximum) strength is received at the respective sampling point.
  • the following describes the main building blocks of the aDSHT used within the compression encoder and decoder.
  • Fig.5 shows examples of basic grids.
  • Input to the rotation finding block (building block 'find best rotation') 320 is the coefficient matrix B.
  • the building block is responsible to rotate the basis sampling grid such that the value of eq.(57) is minimized.
  • the rotation is represented by the 'axis-angle' representation and compressed axis tp rot and rotation angle (p rot related to this rotation are output to this building block as side information SI.
  • the rotation axis tp rot can be described by a unit vector from the origin to a position on the unit sphere.
  • the first embodiment makes use of a single aDSHT.
  • the second embodiment makes use of multiple aDSHTs in spectral bands.
  • the first ("basic") embodiment is shown in Fig.7.
  • the HOA time samples with index m of 0 3D coefficient channels b(m) are first stored in a buffer 71 to form blocks of M samples and time index ⁇ .
  • ⁇ ( ⁇ ) is transformed to the spatial domain using the adaptive iDSHT in building block pE 72 as described above.
  • the spatial signal block W sd (j ) is input to L sd Audio Compression mono encoders 73, like AAC or mp3 encoders, or a single AAC multichannel encoder (L sd channels).
  • the bitstream S73 consists of multiplexed frames of multiple encoder bitstream frames with integrated side information SI or a single multichannel bitstream where side information SI is integrated, preferable as auxiliary data.
  • a respective compression decoder building block comprises, in one embodiment, demultiplexer D1 for demultiplexing the bitstream S73 to L sd bitstreams and side information SI, and feeding the bitstreams to L sd mono decoders, decoding them to L sd spatial Audio channels with M samples to form block W sd (j ), and feeding W sd (j ) and SI to pD.
  • a compression decoder building block comprises a receiver 74 for receiving the bitstream and decoding it to a L sd multichannel signal W sd (j ), depacking SI and feeding W sd (ji) and SI to pD.
  • W sd (j ) is transformed using the adaptive DSHTwith SI in the decoder processing block pD 75 to the coefficient domain to form a block of HOA signals ⁇ ( ⁇ ), which are stored in a buffer 76 to be deframed to form a time signal of coefficients b(m).
  • the above-described first embodiment may have, under certain conditions, two drawbacks: First, due to changes of spatial signal distribution there can be blocking artifacts from a previous block (i.e. from block ⁇ to ⁇ + 1). Second, there can be more than one strong signals at the same time and the de-correlation effects of the aDSHT are quite small.
  • the aDSHT is applied to scale factor band data, which combine multiple frequency band data.
  • the blocking artifacts are avoided by the overlapping blocks of the Time to Frequency Transform (TFT) with Overlay Add (OLA) processing.
  • TFT Time to Frequency Transform
  • OVA Overlay Add
  • An improved signal de-correlation can be achieved by using the invention within / spectral bands at the cost of an increased overhead in data rate to transmit Slj.
  • Modified Cosine Transform (MDCT).
  • a TFT Framing unit 91 1 50% overlapping data blocks (block index ⁇ ) are constructed.
  • a TFT block transform unit 912 performs a block transform.
  • a Spectral Banding unit 913 the TFT frequency bands are combined to form J new spectral bands and related signals ⁇ ] ⁇ ) ⁇ c° 3D XK) , where K ⁇ denotes the number of frequency coefficients in band j.
  • These spectral bands are processed in a plurality of processing blocks 914. For each of these spectral bands, there is one processing block pE that creates signals Wj ( ⁇ ) £ c Lsd XK) and side information Sl j.
  • the spectral bands may match the spectral bands of the lossy audio compression method (like AAC/mp3 scale- factor bands), or have a more coarse granularity. In the latter case, the Channel- independent lossy audio compression without TFT block 915 needs to rearrange the banding.
  • the processing block 914 acts like a L sd multichannel audio encoder in frequency domain that allocates a constant bit-rate to each audio channel.
  • a bitstream is formatted in a bitstream packing block 916.
  • the decoder receives or stores the bitstream (at least portions thereof), depacks 921 it and feeds the audio data to the multichannel audio decoder 922 for
  • the audio decoder 922 for channel independent Audio decoding without TFT decodes the audio information and formats the / spectral band signals Wj ( ⁇ ) as an input to the decoding processing blocks pD j 923, where these signals are transformed to the HOA coefficient domain to form ⁇ ] ( ⁇ ).
  • the J spectral bands are regrouped to match the banding of the TFT. They are transformed to the time domain in the iTFT & OLA block 925, which uses block overlapping Overlay Add (OLA) processing.
  • the output of the iTFT & OLA block 925 is de-framed in a TFT Deframing block 926 to create the signal b(m) .
  • the present invention is based on the finding that the SNR increase results from cross-correlation between channels.
  • the perceptual coders only consider coding noise masking effects that occur within each individual single-channel signals. However, such effects are typically non-linear. Thus, when matrixing such single channels into new signals, noise unmasking is likely to occur. This is the reason why coding noise is normally increased after the matrixing operation.
  • the invention proposes a decorrelation of the channels by an adaptive Discrete Spherical Harmonics Transform (aDSHT) that minimizes the unwanted noise unmasking effects.
  • the aDSHT is integrated within the compressive coder and decoder architecture. It is adaptive since it includes a rotation operation that adjusts the spatial sampling grid of the DSHT to the spatial properties of the HOA input signal.
  • the aDSHT comprises the adaptive rotation and an actual, conventional DSHT.
  • the actual DSHT is a matrix that can be constructed as described in the prior art.
  • the adaptive rotation is applied to the matrix, which leads to a minimization of inter-channel correlation, and therefore minimization of SNR increase after the matrixing.
  • the rotation axis and angle are found by an automized search operation, not analytically.
  • the rotation axis and angle are encoded and transmitted, in order to enable re-correlation after decoding and before matrixing, wherein inverse adaptive DSHT (iaDSHT) is used.
  • Time-to-Frequency Transfrom (TFT) and spectral banding are performed, and the aDSHT/iaDSHT are applied to each spectral band independently.
  • Fig.8 a shows a flow-chart of a method for encoding multi-channel HOA audio signals for noise reduction in one embodiment of the invention.
  • Fig.8 b shows a flow-chart of a method for decoding multi-channel HOA audio signals for noise reduction in one embodiment of the invention.
  • a method for encoding multi-channel HOA audio signals for noise reduction comprises steps of decorrelating 81 the channels using an inverse adaptive DSHT, the inverse adaptive DSHT comprising a rotation operation and an inverse DSHT 812, with the rotation operation rotating 81 1 the spatial sampling grid of the iDSHT, perceptually encoding 82 each of the decorrelated channels, encoding 83 rotation information (as side information SI), the rotation information comprising parameters defining said rotation operation, and transmitting or storing 84 the perceptually encoded audio channels and the encoded rotation information.
  • the inverse adaptive DSHT comprises steps of selecting an initial default spherical sample grid, determining a strongest source direction, and rotating, for a block of M time samples, the spherical sample grid such that a single spatial sample position matches the strongest source direction.
  • the spherical sample grid is rotated such that the logarithm of the term
  • a method for decoding coded multi-channel HOA audio signals with reduced noise comprises steps of receiving 85 encoded multi-channel HOA audio signals and channel rotation information (within side information SI), decompressing 86 the received data, wherein perceptual decoding is used, spatially decoding 87 each channel using an adaptive DSHT, wherein a DSHT 872 and a rotation 871 of a spatial sampling grid of the DSHT according to said rotation information are performed and wherein the perceptually decoded channels are recorrelated, and matrixing 88 the recorrelated perceptually decoded channels, wherein reproducible audio signals mapped to loudspeaker positions are obtained.
  • the adaptive DSHT comprises steps of selecting an initial default spherical sample grid for the adaptive DSHT and rotating, for a block of M time samples, the spherical sample grid according to said rotation information.
  • the rotation information is a spatial vector i/j rot with three components. Note that the rotation axis tp rot can be described by a unit vector.
  • the rotation information is a vector composed out of 3 angles: ⁇ axis > ⁇ axis > rot > where e axis , 4> axis define the information for the rotation axis with an implicit radius of one in spherical coordinates, and ⁇ p rot defines the rotation angle around this axis.
  • angles are quantized and entropy coded with an escape pattern (i.e. dedicated bit pattern) that signals (i.e. indicates) the reuse of previous values for creating side information (SI).
  • escape pattern i.e. dedicated bit pattern
  • an apparatus for encoding multi-channel HOA audio signals for noise reduction comprises a decorrelator for decorrelating the channels using an inverse adaptive DSHT, the inverse adaptive DSHT comprising a rotation operation and an inverse DSHT (iDSHT), with the rotation operation rotating the spatial sampling grid of the iDSHT; a perceptual encoder for perceptually encoding each of the decorrelated channels, a side information encoder for encoding rotation information, with the rotation information comprising parameters defining said rotation operation, and an interface for transmitting or storing the perceptually encoded audio channels and the encoded rotation information.
  • iDSHT inverse DSHT
  • an apparatus for decoding multi-channel HOA audio signals with reduced noise comprises interface means 330 for receiving encoded multichannel HOA audio signals and channel rotation information, a decompression module 33 for decompressing the received data by using a perceptual decoder for perceptually decoding each channel, a correlator 34 for re-correlating the perceptually decoded channels, wherein a DSHT and a rotation of a spatial sampling grid of the DSHT according to said rotation information are performed, and a mixer for matrixing the correlated perceptually decoded channels, wherein reproducible audio signals mapped to loudspeaker positions are obtained.
  • the correlator 34 acts as a spatial decoder.
  • an apparatus for decoding multi-channel HOA audio signals with reduced noise comprises interface means 330 for receiving encoded multichannel HOA audio signals and channel rotation information; decompression module 33 for decompressing the received data with a perceptual decoder for perceptually decoding each channel; a correlator 34 for correlating the
  • the adaptive DSHT in the apparatus for decoding comprises means for selecting an initial default spherical sample grid for the adaptive DSHT; rotation processing means for rotating, for a block of M time samples, the default spherical sample grid according to said rotation information; and transform processing means for performing the DSHT on the rotated spherical sample grid.
  • the correlator 34 in the apparatus for decoding comprises a plurality of spatial decoding units 922 for simultaneously spatially decoding each channel using an adaptive DSHT, further comprising a spectral debanding unit 924 for performing spectral debanding, and an iTFT&OLA unit 925 for performing an inverse Time to Frequency Transform with Overlay Add processing, wherein the spectral debanding unit provides its output to the iTFT&OLA unit.
  • the term reduced noise relates at least to an avoidance of coding noise unmasking.
  • Perceptual coding of audio signals means a coding that is adapted to the human perception of audio. It should be noted that when perceptually coding the audio signals, a quantization is usually performed not on the broadband audio signal samples, but rather in individual frequency bands related to the human perception. Hence, the ratio between the signal power and the quantization noise may vary between the individual frequency bands. Thus, perceptual coding usually comprises reduction of redundancy and/or irrelevancy information, while spatial coding usually relates to a spatial relation among the channels.
  • KLT Karhunen-Loeve-Transformation
  • Definition B is a N order HOA signal matrix, (N + l) 2 rows (coefficients), T columns (time samples); W is a spatial matrix with (N + l) 2 rows (channels), T columns (time samples)
  • the transform matrix is the
  • the rotation is signal driven and
  • the spatial signals are lossy
  • the spatial signals are lossy decompressed coded, (coding noise E cod ) .
  • a spatial signal block of T samples is arranges as block of T samples is arranges as W k
  • the grid is rotated such that a sampling
  • signal tracking models can be used that also allow to adapt/modify the rotations smoothly from block to block, which avoids creation of blocking artifacts within the lossy (perceptual) coding blocks

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Computational Linguistics (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Algebra (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Stereophonic System (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
PCT/EP2013/065032 2012-07-16 2013-07-16 Method and apparatus for encoding multi-channel hoa audio signals for noise reduction, and method and apparatus for decoding multi-channel hoa audio signals for noise reduction Ceased WO2014012944A1 (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
US14/415,571 US9460728B2 (en) 2012-07-16 2013-07-16 Method and apparatus for encoding multi-channel HOA audio signals for noise reduction, and method and apparatus for decoding multi-channel HOA audio signals for noise reduction
EP25197841.7A EP4660999A1 (en) 2012-07-16 2013-07-16 Data rate compression of higher order ambisonics audio based on decorrelation by adaptive discrete spherical transform
KR1020207017672A KR102187936B1 (ko) 2012-07-16 2013-07-16 잡음 감소를 위한 다채널 hoa 오디오 신호를 인코딩하는 방법 및 장치와, 잡음 감소를 위한 다채널 hoa 오디오 신호를 디코딩하는 방법 및 장치
KR1020157000876A KR102126449B1 (ko) 2012-07-16 2013-07-16 잡음 감소를 위한 다채널 hoa 오디오 신호를 인코딩하는 방법 및 장치와, 잡음 감소를 위한 다채널 hoa 오디오 신호를 디코딩하는 방법 및 장치
EP17205327.4A EP3327721B1 (en) 2012-07-16 2013-07-16 Data rate compression of higher order ambisonics audio based on decorrelation by adaptive discrete spherical transform
KR1020247018653A KR20240091351A (ko) 2012-07-16 2013-07-16 잡음 감소를 위한 다채널 hoa 오디오 신호를 인코딩하는 방법 및 장치와, 잡음 감소를 위한 다채널 hoa 오디오 신호를 디코딩하는 방법 및 장치
CN201380036698.6A CN104428833B (zh) 2012-07-16 2013-07-16 用于对多信道hoa音频信号进行编码以便降噪的方法和设备以及用于对多信道hoa音频信号进行解码以便降噪的方法和设备
JP2015522077A JP6205416B2 (ja) 2012-07-16 2013-07-16 ノイズ削減のための多チャネルhoaオーディオ信号をエンコードする方法および装置ならびにノイズ削減のための多チャネルhoaオーディオ信号をデコードする方法および装置
EP13740235.0A EP2873071B1 (en) 2012-07-16 2013-07-16 Method and apparatus for encoding multi-channel hoa audio signals for noise reduction, and method and apparatus for decoding multi-channel hoa audio signals for noise reduction
EP20208589.0A EP3813063B1 (en) 2012-07-16 2013-07-16 Data rate compression of higher order ambisonics audio based on decorrelation by adaptive discrete spherical transform
KR1020207034592A KR102340930B1 (ko) 2012-07-16 2013-07-16 잡음 감소를 위한 다채널 hoa 오디오 신호를 인코딩하는 방법 및 장치와, 잡음 감소를 위한 다채널 hoa 오디오 신호를 디코딩하는 방법 및 장치
KR1020217041058A KR20210156311A (ko) 2012-07-16 2013-07-16 잡음 감소를 위한 다채널 hoa 오디오 신호를 인코딩하는 방법 및 장치와, 잡음 감소를 위한 다채널 hoa 오디오 신호를 디코딩하는 방법 및 장치
US15/275,699 US9837087B2 (en) 2012-07-16 2016-09-26 Method and apparatus for encoding multi-channel HOA audio signals for noise reduction, and method and apparatus for decoding multi-channel HOA audio signals for noise reduction
US15/685,252 US10304469B2 (en) 2012-07-16 2017-08-24 Methods and apparatus for encoding and decoding multi-channel HOA audio signals
US16/417,480 US10614821B2 (en) 2012-07-16 2019-05-20 Methods and apparatus for encoding and decoding multi-channel HOA audio signals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP12305861.2 2012-07-16
EP12305861.2A EP2688066A1 (en) 2012-07-16 2012-07-16 Method and apparatus for encoding multi-channel HOA audio signals for noise reduction, and method and apparatus for decoding multi-channel HOA audio signals for noise reduction

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/415,571 A-371-Of-International US9460728B2 (en) 2012-07-16 2013-07-16 Method and apparatus for encoding multi-channel HOA audio signals for noise reduction, and method and apparatus for decoding multi-channel HOA audio signals for noise reduction
US15/275,699 Continuation US9837087B2 (en) 2012-07-16 2016-09-26 Method and apparatus for encoding multi-channel HOA audio signals for noise reduction, and method and apparatus for decoding multi-channel HOA audio signals for noise reduction

Publications (1)

Publication Number Publication Date
WO2014012944A1 true WO2014012944A1 (en) 2014-01-23

Family

ID=48874263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/065032 Ceased WO2014012944A1 (en) 2012-07-16 2013-07-16 Method and apparatus for encoding multi-channel hoa audio signals for noise reduction, and method and apparatus for decoding multi-channel hoa audio signals for noise reduction

Country Status (7)

Country Link
US (4) US9460728B2 (enExample)
EP (5) EP2688066A1 (enExample)
JP (4) JP6205416B2 (enExample)
KR (5) KR20240091351A (enExample)
CN (6) CN107591160B (enExample)
TW (4) TWI723805B (enExample)
WO (1) WO2014012944A1 (enExample)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106415714A (zh) * 2014-01-30 2017-02-15 高通股份有限公司 译码环境高阶立体混响系数的独立帧
CN106463129A (zh) * 2014-05-16 2017-02-22 高通股份有限公司 选择码簿以用于译码从高阶立体混响音频信号分解的向量
US9646618B2 (en) 2012-12-12 2017-05-09 Dolby Laboratories Licensing Corporation Method and apparatus for compressing and decompressing a Higher Order Ambisonics representation for a sound field
CN106796795A (zh) * 2014-10-10 2017-05-31 高通股份有限公司 以信号表示用于高阶立体混响音频数据的可缩放译码的层
JP2017523458A (ja) * 2014-06-27 2017-08-17 ドルビー・インターナショナル・アーベー 非差分的な利得値を表現するのに必要とされる最低整数ビット数をhoaデータ・フレーム表現の圧縮のために決定する装置
JP2017523459A (ja) * 2014-06-27 2017-08-17 ドルビー・インターナショナル・アーベー Hoaデータ・フレーム表現のデータ・フレームの個々のもののチャネル信号に関連付けられた非差分的な利得値を含む符号化されたhoaデータ・フレーム表現
JP2017523457A (ja) * 2014-06-27 2017-08-17 ドルビー・インターナショナル・アーベー 非差分的な利得値を表現するのに必要とされる最低整数ビット数をhoaデータ・フレーム表現の圧縮のために決定する装置
JP2017523456A (ja) * 2014-06-27 2017-08-17 ドルビー・インターナショナル・アーベー 非差分的な利得値を表現するのに必要とされる最低整数ビット数をhoaデータ・フレーム表現の圧縮のために決定する方法および装置
JP2018078570A (ja) * 2014-03-24 2018-05-17 ドルビー・インターナショナル・アーベー 高次アンビソニックス信号にダイナミックレンジ圧縮を適用するための方法および装置
US10089992B2 (en) 2014-03-21 2018-10-02 Dolby Laboratories Licensing Corporation Methods and apparatus for decompressing a compressed HOA signal
US10127914B2 (en) 2014-03-21 2018-11-13 Dolby Laboratories Licensing Corporation Method for compressing a higher order ambisonics (HOA) signal, method for decompressing a compressed HOA signal, apparatus for compressing a HOA signal, and apparatus for decompressing a compressed HOA signal
TWI648729B (zh) * 2014-03-21 2019-01-21 瑞典商杜比國際公司 將高階保真立體音響信號壓縮之方法,將已壓縮高階保真立體音響信號解壓縮之方法,將高階保真立體音響信號壓縮之裝置,以及將已壓縮高階保真立體音響信號解壓縮之裝置
US10499176B2 (en) 2013-05-29 2019-12-03 Qualcomm Incorporated Identifying codebooks to use when coding spatial components of a sound field
CN110832884A (zh) * 2017-07-05 2020-02-21 索尼公司 信号处理装置和方法以及程序
US12198709B2 (en) 2019-01-21 2025-01-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for encoding a spatial audio representation or apparatus and method for decoding an encoded audio signal using transport metadata and related computer programs

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2688066A1 (en) * 2012-07-16 2014-01-22 Thomson Licensing Method and apparatus for encoding multi-channel HOA audio signals for noise reduction, and method and apparatus for decoding multi-channel HOA audio signals for noise reduction
KR102201713B1 (ko) 2012-07-19 2021-01-12 돌비 인터네셔널 에이비 다채널 오디오 신호들의 렌더링을 향상시키기 위한 방법 및 디바이스
US9466305B2 (en) 2013-05-29 2016-10-11 Qualcomm Incorporated Performing positional analysis to code spherical harmonic coefficients
US20150127354A1 (en) * 2013-10-03 2015-05-07 Qualcomm Incorporated Near field compensation for decomposed representations of a sound field
EP2879408A1 (en) 2013-11-28 2015-06-03 Thomson Licensing Method and apparatus for higher order ambisonics encoding and decoding using singular value decomposition
US9922656B2 (en) 2014-01-30 2018-03-20 Qualcomm Incorporated Transitioning of ambient higher-order ambisonic coefficients
EP2934025A1 (en) * 2014-04-15 2015-10-21 Thomson Licensing Method and device for applying dynamic range compression to a higher order ambisonics signal
CN103888889B (zh) * 2014-04-07 2016-01-13 北京工业大学 一种基于球谐展开的多声道转换方法
US9620137B2 (en) 2014-05-16 2017-04-11 Qualcomm Incorporated Determining between scalar and vector quantization in higher order ambisonic coefficients
US9852737B2 (en) * 2014-05-16 2017-12-26 Qualcomm Incorporated Coding vectors decomposed from higher-order ambisonics audio signals
US9838819B2 (en) * 2014-07-02 2017-12-05 Qualcomm Incorporated Reducing correlation between higher order ambisonic (HOA) background channels
EP2980789A1 (en) * 2014-07-30 2016-02-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for enhancing an audio signal, sound enhancing system
US9736606B2 (en) * 2014-08-01 2017-08-15 Qualcomm Incorporated Editing of higher-order ambisonic audio data
US9747910B2 (en) 2014-09-26 2017-08-29 Qualcomm Incorporated Switching between predictive and non-predictive quantization techniques in a higher order ambisonics (HOA) framework
EP3007167A1 (en) * 2014-10-10 2016-04-13 Thomson Licensing Method and apparatus for low bit rate compression of a Higher Order Ambisonics HOA signal representation of a sound field
US9984693B2 (en) 2014-10-10 2018-05-29 Qualcomm Incorporated Signaling channels for scalable coding of higher order ambisonic audio data
MX2017012957A (es) * 2015-04-10 2018-02-01 Thomson Licensing Metodo y dispositivo para codificar multiples señales de audio, y metodo y dispositivo para decodificar una mezcla de multiples señales de audio con separacion mejorada.
EP3378065B1 (en) * 2015-11-17 2019-10-16 Dolby International AB Method and apparatus for converting a channel-based 3d audio signal to an hoa audio signal
HK1221372A2 (zh) * 2016-03-29 2017-05-26 万维数码有限公司 一种获得空间音频定向向量的方法、装置及设备
CN109416912B (zh) * 2016-06-30 2023-04-11 杜塞尔多夫华为技术有限公司 一种对多声道音频信号进行编码和解码的装置和方法
GB2554446A (en) 2016-09-28 2018-04-04 Nokia Technologies Oy Spatial audio signal format generation from a microphone array using adaptive capture
EP3616196A4 (en) 2017-04-28 2021-01-20 DTS, Inc. Audio coder window and transform implementations
US10944568B2 (en) * 2017-10-06 2021-03-09 The Boeing Company Methods for constructing secure hash functions from bit-mixers
US10714098B2 (en) * 2017-12-21 2020-07-14 Dolby Laboratories Licensing Corporation Selective forward error correction for spatial audio codecs
CN111210831B (zh) * 2018-11-22 2024-06-04 广州广晟数码技术有限公司 基于频谱拉伸的带宽扩展音频编解码方法及装置
US11388416B2 (en) * 2019-03-21 2022-07-12 Qualcomm Incorporated Video compression using deep generative models
US11729406B2 (en) 2019-03-21 2023-08-15 Qualcomm Incorporated Video compression using deep generative models
AU2020299973B2 (en) 2019-07-02 2025-06-05 Dolby International Ab Methods, apparatus and systems for representation, encoding, and decoding of discrete directivity data
CN110544484B (zh) * 2019-09-23 2021-12-21 中科超影(北京)传媒科技有限公司 高阶Ambisonic音频编解码方法及装置
US11317236B2 (en) * 2019-11-22 2022-04-26 Qualcomm Incorporated Soundfield adaptation for virtual reality audio
CN110970048B (zh) * 2019-12-03 2023-01-17 腾讯科技(深圳)有限公司 音频数据的处理方法及装置
CN115497485B (zh) * 2021-06-18 2024-10-18 华为技术有限公司 三维音频信号编码方法、装置、编码器和系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2469741A1 (en) 2010-12-21 2012-06-27 Thomson Licensing Method and apparatus for encoding and decoding successive frames of an ambisonics representation of a 2- or 3-dimensional sound field

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001275197A (ja) * 2000-03-23 2001-10-05 Seiko Epson Corp 音源選択方法および音源選択装置並びに音源選択制御プログラムを記録した記録媒体
GB2379147B (en) * 2001-04-18 2003-10-22 Univ York Sound processing
FR2847376B1 (fr) * 2002-11-19 2005-02-04 France Telecom Procede de traitement de donnees sonores et dispositif d'acquisition sonore mettant en oeuvre ce procede
DE10328777A1 (de) * 2003-06-25 2005-01-27 Coding Technologies Ab Vorrichtung und Verfahren zum Codieren eines Audiosignals und Vorrichtung und Verfahren zum Decodieren eines codierten Audiosignals
CN101297353B (zh) * 2005-10-26 2013-03-13 Lg电子株式会社 编码和解码多声道音频信号的方法及其装置
ATE531036T1 (de) * 2006-03-15 2011-11-15 France Telecom Einrichtung und verfahren zur codierung durch hauptkomponentenanalyse eines mehrkanaligen audiosignals
JP4949477B2 (ja) * 2006-09-25 2012-06-06 ドルビー ラボラトリーズ ライセンシング コーポレイション 高次角度項による信号を抽出することでマルチチャンネルオーディオ再生システムの空間分解能を改善したサウンドフィールド
US20080232601A1 (en) * 2007-03-21 2008-09-25 Ville Pulkki Method and apparatus for enhancement of audio reconstruction
FR2916079A1 (fr) * 2007-05-10 2008-11-14 France Telecom Procede de codage et decodage audio, codeur audio, decodeur audio et programmes d'ordinateur associes
FR2916078A1 (fr) * 2007-05-10 2008-11-14 France Telecom Procede de codage et decodage audio, codeur audio, decodeur audio et programmes d'ordinateur associes
US20110188043A1 (en) * 2007-12-26 2011-08-04 Yissum, Research Development Company of The Hebrew University of Jerusalem, Ltd. Method and apparatus for monitoring processes in living cells
EP2094032A1 (en) * 2008-02-19 2009-08-26 Deutsche Thomson OHG Audio signal, method and apparatus for encoding or transmitting the same and method and apparatus for processing the same
EP2304723B1 (en) * 2008-07-11 2012-10-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. An apparatus and a method for decoding an encoded audio signal
EP2205007B1 (en) * 2008-12-30 2019-01-09 Dolby International AB Method and apparatus for three-dimensional acoustic field encoding and optimal reconstruction
GB2467534B (en) * 2009-02-04 2014-12-24 Richard Furse Sound system
FR2943867A1 (fr) * 2009-03-31 2010-10-01 France Telecom Traitement d'egalisation de composantes spatiales d'un signal audio 3d
US9020152B2 (en) * 2010-03-05 2015-04-28 Stmicroelectronics Asia Pacific Pte. Ltd. Enabling 3D sound reproduction using a 2D speaker arrangement
AU2011231565B2 (en) * 2010-03-26 2014-08-28 Dolby International Ab Method and device for decoding an audio soundfield representation for audio playback
NZ587483A (en) * 2010-08-20 2012-12-21 Ind Res Ltd Holophonic speaker system with filters that are pre-configured based on acoustic transfer functions
WO2012025580A1 (en) * 2010-08-27 2012-03-01 Sonicemotion Ag Method and device for enhanced sound field reproduction of spatially encoded audio input signals
EP2450880A1 (en) * 2010-11-05 2012-05-09 Thomson Licensing Data structure for Higher Order Ambisonics audio data
EP2560161A1 (en) * 2011-08-17 2013-02-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Optimal mixing matrices and usage of decorrelators in spatial audio processing
CN103165136A (zh) * 2011-12-15 2013-06-19 杜比实验室特许公司 音频处理方法及音频处理设备
EP2688066A1 (en) * 2012-07-16 2014-01-22 Thomson Licensing Method and apparatus for encoding multi-channel HOA audio signals for noise reduction, and method and apparatus for decoding multi-channel HOA audio signals for noise reduction

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2469741A1 (en) 2010-12-21 2012-06-27 Thomson Licensing Method and apparatus for encoding and decoding successive frames of an ambisonics representation of a 2- or 3-dimensional sound field

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
BOAZ RAFAELY: "Plane-wave decomposition of the sound field on a sphere by spherical convolution", J. ACOUST. SOC. AM., vol. 4, no. 116, October 2004 (2004-10-01), pages 2149 - 2157
EARL G. WILLIAMS: "Applied Mathematical Sciences", vol. 93, 1999, ACADEMIC PRESS, article "Fourier Acoustics"
ERIK HELLERUD; TAN BURNETT; AUDUN SOLVANG; U. PETER SVENSSON: "Encoding higher order Ambisonics with AAC", 124TH AES CONVENTION, AMSTERDAM, May 2008 (2008-05-01)
JAMES R. DRISCOLL; DENNIS M. HEALY JR.: "Computing fourier transforms and convolutions on the 2-sphere", ADVANCES IN APPLIED MATHEMATICS, vol. 15, 1994, pages 202 - 250
JORG FLIEGE, INTEGRATION NODES FOR THE SPHERE, Retrieved from the Internet <URL:http://www.personaLsoton.ac.uk/jf1w07/nodes/nodes.html>
JORG FLIEGE; ULRIKE MAIER: "A two-stage approach for computing cubature formulae for the sphere", TECHNICAL REPORT, FACHBEREICH MATHEMATIK, UNIVERSITAT DORTMUND, 1999
R. H. HARDIN; N. J. A. SLOANE, SPHERICAL DESIGNS, SPHERICAL T- DESIGNS, Retrieved from the Internet <URL:http://www2.research.att.com/-njas/sphdesigns>
R. H. HARDIN; N. J. A. SLOANE: "Mclaren's improved snub cube and other new spherical designs in three dimensions", DISCRETE AND COMPUTATIONAL GEOMETRY, vol. 15, 1996, pages 429 - 441
T.D. ABHAYAPALA: "Generalized framework for spherical microphone arrays: Spatial and frequency decomposition", PROC. IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP, vol. X, April 2008 (2008-04-01)
VÃ Â Ã Â NÃ Â NEN ET AL: "Robustness Issues in Multi-View Audio Coding", AES CONVENTION 125; OCTOBER 2008, AES, 60 EAST 42ND STREET, ROOM 2520 NEW YORK 10165-2520, USA, 1 October 2008 (2008-10-01), XP040508860 *
YANG DAI ET AL: "An Inter-Channel Redundancy Removal Approach for High-Quality Multichannel Audio Compression", 22 September 2000 (2000-09-22), pages 1 - 14, XP002517098, Retrieved from the Internet <URL:http://www.aes.org/tmpFiles/elib/20090227/9100.pdf> [retrieved on 20000901] *

Cited By (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10257635B2 (en) 2012-12-12 2019-04-09 Dolby Laboratories Licensing Corporation Method and apparatus for compressing and decompressing a higher order ambisonics representation for a sound field
US12425791B2 (en) 2012-12-12 2025-09-23 Dolby Laboratories Licensing Corporation Method and apparatus for compressing and decompressing a higher order ambisonics representation for a sound field
US9646618B2 (en) 2012-12-12 2017-05-09 Dolby Laboratories Licensing Corporation Method and apparatus for compressing and decompressing a Higher Order Ambisonics representation for a sound field
US11546712B2 (en) 2012-12-12 2023-01-03 Dolby Laboratories Licensing Corporation Method and apparatus for compressing and decompressing a higher order ambisonics representation for a sound field
US11184730B2 (en) 2012-12-12 2021-11-23 Dolby Laboratories Licensing Corporation Method and apparatus for compressing and decompressing a higher order ambisonics representation for a sound field
US10609501B2 (en) 2012-12-12 2020-03-31 Dolby Laboratories Licensing Corporation Method and apparatus for compressing and decompressing a higher order ambisonics representation for a sound field
US10038965B2 (en) 2012-12-12 2018-07-31 Dolby Laboratories Licensing Corporation Method and apparatus for compressing and decompressing a higher order ambisonics representation for a sound field
US11962990B2 (en) 2013-05-29 2024-04-16 Qualcomm Incorporated Reordering of foreground audio objects in the ambisonics domain
US11146903B2 (en) 2013-05-29 2021-10-12 Qualcomm Incorporated Compression of decomposed representations of a sound field
US10499176B2 (en) 2013-05-29 2019-12-03 Qualcomm Incorporated Identifying codebooks to use when coding spatial components of a sound field
CN106415714A (zh) * 2014-01-30 2017-02-15 高通股份有限公司 译码环境高阶立体混响系数的独立帧
US10779104B2 (en) 2014-03-21 2020-09-15 Dolby Laboratories Licensing Corporation Methods, apparatus and systems for decompressing a higher order ambisonics (HOA) signal
US12069465B2 (en) 2014-03-21 2024-08-20 Dolby Laboratories Licensing Corporation Methods, apparatus and systems for decompressing a Higher Order Ambisonics (HOA) signal
US11395084B2 (en) 2014-03-21 2022-07-19 Dolby Laboratories Licensing Corporation Methods, apparatus and systems for decompressing a higher order ambisonics (HOA) signal
US10192559B2 (en) 2014-03-21 2019-01-29 Dolby Laboratories Licensing Corporation Methods and apparatus for decompressing a compressed HOA signal
US10127914B2 (en) 2014-03-21 2018-11-13 Dolby Laboratories Licensing Corporation Method for compressing a higher order ambisonics (HOA) signal, method for decompressing a compressed HOA signal, apparatus for compressing a HOA signal, and apparatus for decompressing a compressed HOA signal
TWI648729B (zh) * 2014-03-21 2019-01-21 瑞典商杜比國際公司 將高階保真立體音響信號壓縮之方法,將已壓縮高階保真立體音響信號解壓縮之方法,將高階保真立體音響信號壓縮之裝置,以及將已壓縮高階保真立體音響信號解壓縮之裝置
US10334382B2 (en) 2014-03-21 2019-06-25 Dolby Laboratories Licensing Corporation Methods, apparatus and systems for decompressing a higher order ambisonics (HOA) signal
US11462222B2 (en) 2014-03-21 2022-10-04 Dolby Laboratories Licensing Corporation Methods and apparatus for decoding a compressed HOA signal
US10388292B2 (en) 2014-03-21 2019-08-20 Dolby Laboratories Licensing Corporation Methods and apparatus for decompressing a compressed HOA signal
US11722830B2 (en) 2014-03-21 2023-08-08 Dolby Laboratories Licensing Corporation Methods, apparatus and systems for decompressing a Higher Order Ambisonics (HOA) signal
US10679634B2 (en) 2014-03-21 2020-06-09 Dolby Laboratories Licensing Corporation Methods and apparatus for decoding a compressed HOA signal
US10089992B2 (en) 2014-03-21 2018-10-02 Dolby Laboratories Licensing Corporation Methods and apparatus for decompressing a compressed HOA signal
US10629212B2 (en) 2014-03-21 2020-04-21 Dolby Laboratories Licensing Corporation Methods and apparatus for decompressing a compressed HOA signal
US10542364B2 (en) 2014-03-21 2020-01-21 Dolby Laboratories Licensing Corporation Methods, apparatus and systems for decompressing a higher order ambisonics (HOA) signal
US11830504B2 (en) 2014-03-21 2023-11-28 Dolby Laboratories Licensing Corporation Methods and apparatus for decoding a compressed HOA signal
US12236962B2 (en) 2014-03-21 2025-02-25 Dolby Laboratories Licensing Corporation Methods and apparatus for decoding a compressed HOA signal
JP2019176508A (ja) * 2014-03-24 2019-10-10 ドルビー・インターナショナル・アーベー 高次アンビソニックス信号にダイナミックレンジ圧縮を適用するための方法および装置
US10893372B2 (en) 2014-03-24 2021-01-12 Dolby Laboratories Licensing Corporation Method and device for applying dynamic range compression to a higher order ambisonics signal
JP2018078570A (ja) * 2014-03-24 2018-05-17 ドルビー・インターナショナル・アーベー 高次アンビソニックス信号にダイナミックレンジ圧縮を適用するための方法および装置
US11838738B2 (en) 2014-03-24 2023-12-05 Dolby Laboratories Licensing Corporation Method and device for applying Dynamic Range Compression to a Higher Order Ambisonics signal
US10567899B2 (en) 2014-03-24 2020-02-18 Dolby Laboratories Licensing Corporation Method and device for applying dynamic range compression to a higher order ambisonics signal
CN109285553B (zh) * 2014-03-24 2023-09-08 杜比国际公司 对高阶高保真立体声信号应用动态范围压缩的方法和设备
US12273696B2 (en) 2014-03-24 2025-04-08 Dolby Laboratories Licensing Corporation Method and device for applying dynamic range compression to a higher order ambisonics signal
US10638244B2 (en) 2014-03-24 2020-04-28 Dolby Laboratories Licensing Corporation Method and device for applying dynamic range compression to a higher order ambisonics signal
CN109285553A (zh) * 2014-03-24 2019-01-29 杜比国际公司 对高阶高保真立体声信号应用动态范围压缩的方法和设备
JP2022126881A (ja) * 2014-03-24 2022-08-30 ドルビー・インターナショナル・アーベー 高次アンビソニックス信号にダイナミックレンジ圧縮を適用するための方法および装置
JP7333855B2 (ja) 2014-03-24 2023-08-25 ドルビー・インターナショナル・アーベー 高次アンビソニックス信号にダイナミックレンジ圧縮を適用するための方法および装置
JP7101219B2 (ja) 2014-03-24 2022-07-14 ドルビー・インターナショナル・アーベー 高次アンビソニックス信号にダイナミックレンジ圧縮を適用するための方法および装置
JP2021002841A (ja) * 2014-03-24 2021-01-07 ドルビー・インターナショナル・アーベー 高次アンビソニックス信号にダイナミックレンジ圧縮を適用するための方法および装置
US10362424B2 (en) 2014-03-24 2019-07-23 Dolby Laboratories Licensing Corporation Method and device for applying dynamic range compression to a higher order ambisonics signal
CN106463129B (zh) * 2014-05-16 2020-02-21 高通股份有限公司 选择码簿以用于译码从高阶立体混响音频信号分解的向量
RU2688275C2 (ru) * 2014-05-16 2019-05-21 Квэлкомм Инкорпорейтед Выбор кодовых книг для кодирования векторов, разложенных из аудиосигналов на основе амфибиофонии высшего порядка
US10770087B2 (en) 2014-05-16 2020-09-08 Qualcomm Incorporated Selecting codebooks for coding vectors decomposed from higher-order ambisonic audio signals
CN106463129A (zh) * 2014-05-16 2017-02-22 高通股份有限公司 选择码簿以用于译码从高阶立体混响音频信号分解的向量
JP2021105741A (ja) * 2014-06-27 2021-07-26 ドルビー・インターナショナル・アーベー 非差分的な利得値を表現するのに必要とされる最低整数ビット数をhoaデータ・フレーム表現の圧縮のために決定する装置
JP2020060790A (ja) * 2014-06-27 2020-04-16 ドルビー・インターナショナル・アーベー 非差分的な利得値を表現するのに必要とされる最低整数ビット数をhoaデータ・フレーム表現の圧縮のために決定する装置
JP7757471B2 (ja) 2014-06-27 2025-10-21 ドルビー・インターナショナル・アーベー 非差分的な利得値を表現するのに必要とされる最低整数ビット数をhoaデータ・フレーム表現の圧縮のために決定する装置
US11322165B2 (en) 2014-06-27 2022-05-03 Dolby Laboratories Licensing Corporation Methods and apparatus for determining for decoding a compressed hoa sound representation
JP2017523457A (ja) * 2014-06-27 2017-08-17 ドルビー・インターナショナル・アーベー 非差分的な利得値を表現するのに必要とされる最低整数ビット数をhoaデータ・フレーム表現の圧縮のために決定する装置
JP2019185065A (ja) * 2014-06-27 2019-10-24 ドルビー・インターナショナル・アーベー 非差分的な利得値を表現するのに必要とされる最低整数ビット数をhoaデータ・フレーム表現の圧縮のために決定する方法および装置
JP2021105743A (ja) * 2014-06-27 2021-07-26 ドルビー・インターナショナル・アーベー 非差分的な利得値を表現するのに必要とされる最低整数ビット数をhoaデータ・フレーム表現の圧縮のために決定する装置
JP2021103337A (ja) * 2014-06-27 2021-07-15 ドルビー・インターナショナル・アーベー 非差分的な利得値を表現するのに必要とされる最低整数ビット数をhoaデータ・フレーム表現の圧縮のために決定する方法および装置
JP2017523458A (ja) * 2014-06-27 2017-08-17 ドルビー・インターナショナル・アーベー 非差分的な利得値を表現するのに必要とされる最低整数ビット数をhoaデータ・フレーム表現の圧縮のために決定する装置
JP7267340B2 (ja) 2014-06-27 2023-05-01 ドルビー・インターナショナル・アーベー 非差分的な利得値を表現するのに必要とされる最低整数ビット数をhoaデータ・フレーム表現の圧縮のために決定する装置
JP7275191B2 (ja) 2014-06-27 2023-05-17 ドルビー・インターナショナル・アーベー 非差分的な利得値を表現するのに必要とされる最低整数ビット数をhoaデータ・フレーム表現の圧縮のために決定する装置
US12424229B2 (en) 2014-06-27 2025-09-23 Dolby Laboratories Licensing Corporation Methods and apparatus for determining for decoding a compressed HOA sound representation
JP2023099587A (ja) * 2014-06-27 2023-07-13 ドルビー・インターナショナル・アーベー 非差分的な利得値を表現するのに必要とされる最低整数ビット数をhoaデータ・フレーム表現の圧縮のために決定する装置
US10872612B2 (en) 2014-06-27 2020-12-22 Dolby Laboratories Licensing Corporation Method and apparatus for determining for the compression of an HOA data frame representation a lowest integer number of bits required for representing non-differential gain values
JP2017523456A (ja) * 2014-06-27 2017-08-17 ドルビー・インターナショナル・アーベー 非差分的な利得値を表現するのに必要とされる最低整数ビット数をhoaデータ・フレーム表現の圧縮のために決定する方法および装置
JP2017523459A (ja) * 2014-06-27 2017-08-17 ドルビー・インターナショナル・アーベー Hoaデータ・フレーム表現のデータ・フレームの個々のもののチャネル信号に関連付けられた非差分的な利得値を含む符号化されたhoaデータ・フレーム表現
JP2020060789A (ja) * 2014-06-27 2020-04-16 ドルビー・インターナショナル・アーベー 非差分的な利得値を表現するのに必要とされる最低整数ビット数をhoaデータ・フレーム表現の圧縮のために決定する装置
US10621995B2 (en) 2014-06-27 2020-04-14 Dolby Laboratories Licensing Corporation Methods, apparatus and systems for decoding a higher order ambisonics (HOA) representation of a sound or soundfield
US11875803B2 (en) 2014-06-27 2024-01-16 Dolby Laboratories Licensing Corporation Methods and apparatus for determining for decoding a compressed HOA sound representation
US10516958B2 (en) 2014-06-27 2019-12-24 Dolby Laboratories Licensing Corporation Method for decoding a higher order ambisonics (HOA) representation of a sound or soundfield
JP7516610B2 (ja) 2014-06-27 2024-07-16 ドルビー・インターナショナル・アーベー 非差分的な利得値を表現するのに必要とされる最低整数ビット数をhoaデータ・フレーム表現の圧縮のために決定する装置
US10580426B2 (en) 2014-06-27 2020-03-03 Dolby Laboratories Licensing Corporation Method for decoding a higher order ambisonics (HOA) representation of a sound or soundfield
JP2024147600A (ja) * 2014-06-27 2024-10-16 ドルビー・インターナショナル・アーベー 非差分的な利得値を表現するのに必要とされる最低整数ビット数をhoaデータ・フレーム表現の圧縮のために決定する装置
CN106796795A (zh) * 2014-10-10 2017-05-31 高通股份有限公司 以信号表示用于高阶立体混响音频数据的可缩放译码的层
US11664035B2 (en) 2014-10-10 2023-05-30 Qualcomm Incorporated Spatial transformation of ambisonic audio data
US11138983B2 (en) 2014-10-10 2021-10-05 Qualcomm Incorporated Signaling layers for scalable coding of higher order ambisonic audio data
CN110832884A (zh) * 2017-07-05 2020-02-21 索尼公司 信号处理装置和方法以及程序
CN110832884B (zh) * 2017-07-05 2022-04-08 索尼公司 信号处理装置和方法以及计算机可读存储介质
US12198709B2 (en) 2019-01-21 2025-01-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for encoding a spatial audio representation or apparatus and method for decoding an encoded audio signal using transport metadata and related computer programs

Also Published As

Publication number Publication date
JP2020091500A (ja) 2020-06-11
KR102187936B1 (ko) 2020-12-07
US10304469B2 (en) 2019-05-28
CN107403626B (zh) 2021-01-08
TW201412145A (zh) 2014-03-16
EP3327721A1 (en) 2018-05-30
EP3813063A1 (en) 2021-04-28
JP2019040218A (ja) 2019-03-14
CN107403625A (zh) 2017-11-28
CN104428833A (zh) 2015-03-18
CN107591159B (zh) 2020-12-01
TWI723805B (zh) 2021-04-01
US9460728B2 (en) 2016-10-04
JP2017207789A (ja) 2017-11-24
CN107403625B (zh) 2021-06-04
TWI674009B (zh) 2019-10-01
US20170352355A1 (en) 2017-12-07
US20190318751A1 (en) 2019-10-17
US9837087B2 (en) 2017-12-05
EP3327721B1 (en) 2020-11-25
US10614821B2 (en) 2020-04-07
TWI602444B (zh) 2017-10-11
TWI691214B (zh) 2020-04-11
EP2688066A1 (en) 2014-01-22
JP2015526759A (ja) 2015-09-10
CN107591160B (zh) 2021-03-19
KR20200077601A (ko) 2020-06-30
US20150154971A1 (en) 2015-06-04
JP6453961B2 (ja) 2019-01-16
CN107424618A (zh) 2017-12-01
CN104428833B (zh) 2017-09-15
EP4660999A1 (en) 2025-12-10
JP6205416B2 (ja) 2017-09-27
KR102126449B1 (ko) 2020-06-24
JP6866519B2 (ja) 2021-04-28
EP3813063B1 (en) 2025-08-27
TW202103503A (zh) 2021-01-16
CN107424618B (zh) 2021-01-08
CN107591159A (zh) 2018-01-16
EP2873071A1 (en) 2015-05-20
KR20200138440A (ko) 2020-12-09
KR20210156311A (ko) 2021-12-24
TW201739272A (zh) 2017-11-01
CN107403626A (zh) 2017-11-28
CN107591160A (zh) 2018-01-16
EP2873071B1 (en) 2017-12-13
KR20150032704A (ko) 2015-03-27
JP6676138B2 (ja) 2020-04-08
KR20240091351A (ko) 2024-06-21
US20170061974A1 (en) 2017-03-02
KR102340930B1 (ko) 2021-12-20
TW202013993A (zh) 2020-04-01

Similar Documents

Publication Publication Date Title
US10614821B2 (en) Methods and apparatus for encoding and decoding multi-channel HOA audio signals
HK1242833B (zh) 用於对hoa音频信号进行解码的方法、设备和计算机可读介质
HK1241130B (zh) 用於对hoa音频信号进行解码的方法、设备和计算机可读介质
HK1242834B (zh) 用於对hoa音频信号进行解码的方法、设备和计算机可读介质
HK1242835B (zh) 用於对hoa音频信号进行解码的方法、设备和计算机可读介质
HK1241131B (zh) 用於对hoa音频信号进行解码的方法、设备和计算机可读介质
HK1241130A1 (en) Method, apparatus and computer readable medium for decoding hoa audio signals
HK1242833A1 (en) Method, apparatus and computer readable medium for decoding hoa audio signals
HK1241131A1 (en) Method, apparatus and computer readable medium for decoding hoa audio signals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13740235

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013740235

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157000876

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015522077

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14415571

Country of ref document: US