WO2014012348A1 - 云数控系统 - Google Patents

云数控系统 Download PDF

Info

Publication number
WO2014012348A1
WO2014012348A1 PCT/CN2013/000687 CN2013000687W WO2014012348A1 WO 2014012348 A1 WO2014012348 A1 WO 2014012348A1 CN 2013000687 W CN2013000687 W CN 2013000687W WO 2014012348 A1 WO2014012348 A1 WO 2014012348A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
processing
cloud
software module
subsystem
Prior art date
Application number
PCT/CN2013/000687
Other languages
English (en)
French (fr)
Inventor
石毅
Original Assignee
Shi Yi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shi Yi filed Critical Shi Yi
Priority to EP13819502.9A priority Critical patent/EP2899604A4/en
Priority to US14/414,903 priority patent/US9541918B2/en
Publication of WO2014012348A1 publication Critical patent/WO2014012348A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/4185Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by the network communication
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/414Structure of the control system, e.g. common controller or multiprocessor systems, interface to servo, programmable interface controller
    • G05B19/4148Structure of the control system, e.g. common controller or multiprocessor systems, interface to servo, programmable interface controller characterised by using several processors for different functions, distributed (real-time) systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/31From computer integrated manufacturing till monitoring
    • G05B2219/31001CIM, total factory control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/31From computer integrated manufacturing till monitoring
    • G05B2219/31208Server node to watch, store message, variable, data between lon, network
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/31From computer integrated manufacturing till monitoring
    • G05B2219/31241Remote control by a proxy or echo server, internet - intranet
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/31From computer integrated manufacturing till monitoring
    • G05B2219/31337Failure information database
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32345Of interconnection of cells, subsystems, distributed simulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the invention relates to a numerical control system realization method based on "cloud computing" mode and real-time parallel processing of distributed network, belonging to the fields of numerical control system, parallel information processing, network technology and industrial control technology, involving numerical control processing, collaborative manufacturing management, parallel control , remote measurement and control, fault diagnosis, network communication, automatic control, signal processing and other professional areas.
  • Line 10 Background a numerical control system realization method based on "cloud computing" mode and real-time parallel processing of distributed network, belonging to the fields of numerical control system, parallel information processing, network technology and industrial control technology, involving numerical control processing, collaborative manufacturing management, parallel control , remote measurement and control, fault diagnosis, network communication, automatic control, signal processing and other professional areas.
  • the CNC system began with the first generation of tube numerical control system born in 1952, and has experienced the second generation transistor numerical control system, the third generation integrated circuit numerical control system, the fourth generation small computer numerical control system, and the fifth generation microcomputer numerical control system. Entered the sixth generation personal computer (PC) CNC system.
  • PC numerical control is the most far-reaching leap since the birth of CNC technology.
  • the biggest difference from the fifth generation CNC system is that the hardware platform and software platform of the PC numerical control system are completely universal.
  • the 15th line control system of the fifth generation is also called computer numerical control system, the computer of this numerical control system is dedicated and needs to be developed and produced by the CNC system manufacturer, that is, not only the hardware system needs to be manufactured by the numerical control system manufacturer.
  • the sixth generation of PC-based general-purpose computer numerical control system completely avoids these shortcomings of the special computer 20th line numerical control system, which makes the development of computer numerical control technology embark on a more solid, broad and fast road.
  • the previous CNC system is mainly based on motion control.
  • the main control object is the electric drive system of multiple motion axes and the electric drive system of the spindle. By accepting the machining programming instructions, simple or complex motion track control is realized. CNC machining work.
  • the CNC system not only needs to complete the control and management of the processing equipment, but also needs to participate in the management and collaborative work within the enterprise and between the enterprises in real time and online. At the same time, it must also meet the integration requirements of the CAD ⁇ CAPP ⁇ CAM function. These require the CNC system to have more powerful data processing, real-time control, distributed measurement and control, communication processing, and parallel processing capabilities;
  • the CNC system not only needs to complete various motion control, combined control, and compound control requirements within a single device, but also needs to integrate with CAD ⁇ CAPP ⁇ CAM, and needs to have coordinated control with other devices. And matching and controlling functions such as line 40 can further meet the upgrading needs of advanced manufacturing. Summary of the invention
  • the invention provides a cloud numerical control system for controlling a single numerical control processing device, wherein: the cloud numerical control system comprises a cloud control core node, a cloud measurement and control sub-node, a fine adjustment driving unit, a real-time communication network and an online interconnection network.
  • the 45th cloud control core node mainly realizes man-machine operation and main control functions, and realizes various complex signal processing, combined control and composite control.
  • Algorithm operation and control instruction output, remote communication, coordination management operation function, cloud control core node includes first PC subsystem, second PC subsystem, third PC subsystem and fourth PC subsystem, first to first The four PC subsystems implement the main control function, the real-time control function, the remote communication management function, and the redundancy control function respectively;
  • the cloud measurement and control sub-node mainly completes the operation status signal detection and fine-tuning control signal generation of various components, and accepts the coordination, management and control commands of the core node of the cloud control line 50, and some of the sub-nodes cooperate with the cloud control core node according to specific needs.
  • the core real-time control function is implemented, and the independent cloud measurement and control sub-nodes realize reasonable connection according to their internal organic connections, and realize interactive cooperative measurement and control functions;
  • the fine-tuning control unit accepts the instructions of the cloud measurement and control sub-node to perform operations on the respective fine-tuning controls for the internal components of the numerical control processing device;
  • the real-time communication network constitutes an online data transfer function between the cloud control core node, the cloud control core node and the cloud measurement and control sub-node, and the cloud measurement and control sub-node;
  • the online internetwork completes the communication function between the cloud control core node and external related components.
  • the first PC subsystem includes a human-machine interface, a main control processing, a redundant processing software module, a coordinated processing and correction information processing software module, a processing trajectory correction control software module, an interpolation control software module, and a cloud measurement and control sub-node feedback.
  • the 60th line module of the information processing software the first PC subsystem processes the main program running machine for the cloud control core node in parallel, performs parallel processing with other PC subsystems, and processes the data link in parallel to realize data interaction;
  • the second PC subsystem includes a real-time processing trajectory correction control software module, a cloud measurement and control sub-node feedback information real-time processing software module, a fine-tuning control signal output software module, real-time interpolation, tool compensation, acceleration and deceleration processing, control output software modules, and redundancy. Processing the software module, the second PC subsystem obeying the monitoring and management of the first PC subsystem;
  • the 65th third PC subsystem includes remote production management software module, remote programming service software module, remote technical service software module, remote condition monitoring and fault processing software module, remote production scheduling management, remote condition monitoring and fault diagnosis, remote Programming, remote technical support and technology upgrades;
  • the fourth PC subsystem includes real-time processing trajectory correction control software module, cloud measurement and control sub-node feedback information real-time processing software module, fine-tuning control signal output software module, real-time interpolation, tool compensation, acceleration and deceleration processing, control output software module and redundancy
  • the 70th line is a software module, and the fourth PC subsystem is used as a redundant system of the second PC subsystem.
  • the first PC subsystem performs scheduling control to achieve fast switching, thereby avoiding Discontinuities in the machining process and the occurrence of accidents.
  • the cloud control core node further includes an expandable fifth PC subsystem, and the fifth PC subsystem includes a CAD software module, a CAPP software module, and a CAM software module, and implements an integrated CAD/CAPP ⁇ CAM ⁇ CNC process. The function.
  • the cloud measurement and control sub-node comprises a core controller and a plurality of I/O modules with independent measurement and control functions
  • the function of the core control 75th line device comprises controlling each I/O sub-module to realize collection of each required detection signal.
  • the compensation signal is extracted by signal processing and data fusion processing, and the feedback signals of other relevant cloud measurement and control sub-nodes are accepted for comprehensive processing, and the processing result is fed back to the cloud control core node through real-time bus communication, and the fine-tuning instruction sent by the cloud control core node is accepted.
  • each I/O module mainly completes the dynamic, on-line acquisition of the sensor signal, and transmits the signal to the core controller, and accepts the control command of the core controller to fine-tune the drive
  • the unit sends a control output signal.
  • the cloud measurement and control sub-node exchanges state information data according to the specific relationship of the 80th line, and implements independent correction control within the cloud measurement and control sub-node according to the positional relationship and motion control requirements of each other.
  • the self-correction control is also implemented by sending an instruction to the fine-tuning drive unit, and the fine-tuned state data is simultaneously fed back to the cloud control core node and other cloud measurement and control sub-nodes associated therewith as further modified feedback information.
  • the invention also provides another cloud numerical control system, which is used for coordinated processing control of multiple numerical control processing equipments, wherein: the cloud line numerical control system includes a coordinated processing control subsystem, a cloud control core node, and a cloud measurement and control system. Child node, fine-tuning drive unit, real-time communication network, online internet, wherein
  • the collaborative processing control subsystem mainly performs interactive collaborative processing functions between different devices.
  • the functions of the collaborative processing control subsystem mainly include obtaining the final machining error information of the workpiece in the previous processing step, and providing it to the cloud control core node, the cloud measurement and control sub-node, and the fine-tuning drive unit to make it according to the actual machining accuracy requirements.
  • Correction control In the processing process, the 90th line online acquisition by the cloud control core node, cloud measurement and control sub-node, fine-tuning drive unit, real-time communication network and online interconnection network
  • the various operating state parameters obtained at the time are further analyzed by data fusion to analyze the real-time machining error in the online machining of the workpiece, and predict the subsequent online machining error, and transmit the information to the CNC machining equipment that needs to be assembled in real time, and receive the matching.
  • the corresponding information transmitted by the workpiece CNC machining equipment is analyzed and processed and then provided to the Xiaoyun CNC system for correction control; and after the workpiece is processed, the final error of the workpiece to be processed is transmitted to the next processing step by the on-site measurement method. CNC plus the cloud CNC system of the 95th working equipment to optimize the next processing work.
  • the cloud control core node mainly realizes man-machine operation and main control functions, realizes various complex signal processing, combined control and composite control algorithm operation and control command output, remote communication, coordinated management operation function
  • cloud control core node includes first The PC subsystem, the second PC subsystem, the third PC subsystem and the fourth PC subsystem, the first to fourth PC subsystems respectively implement a main control function, a real-time control function, a remote communication management function, and a redundancy control function;
  • the 100th row cloud measurement and control sub-node mainly completes the operation status signal detection and fine-tuning control signal generation of various components, and accepts the coordination, management and control commands of the cloud control core node, and some of the sub-nodes cooperate with the cloud control core node according to specific needs.
  • the core real-time control function is implemented, and the independent cloud measurement and control sub-nodes realize reasonable connection according to their internal organic connections, and realize interactive cooperative measurement and control functions;
  • the fine-tuning control unit accepts the instruction of the cloud measurement and control sub-node to perform the 105th line operation on the fine-tuning control for each internal part of the numerical control processing device;
  • the real-time communication network constitutes an online data transfer function between the cloud control core node, the cloud control core node and the cloud measurement and control sub-node, and the cloud measurement and control sub-node;
  • the online internetwork completes the communication function between the cloud control core node and external related components
  • the software part of the collaborative processing control subsystem includes a remote communication software module, a data analysis and correction algorithm software module, a 10th line serial processing software module and a parallel processing software module. among them:
  • the remote communication software module is used for information interaction with the numerical control system of the serial processing and the matching assembly processing CNC processing data;
  • the data analysis and correction algorithm software module is used for the numerical control processing according to the remote communication software module and the serial processing and the matching assembly processing
  • the numerical control system of the equipment carries out various information obtained by information interaction, and various online processing parameters and state information obtained by the small cloud numerical control system in the numerical control processing equipment of the machine, and analyzes and corrects the processing trajectory;
  • the first PC subsystem includes a human machine interface ⁇ master control processing ⁇ redundancy processing software module, a coordinated processing correction information processing software module, a processing trajectory correction control software module, an interpolation control software module, and a cloud measurement and control
  • the child node feeds back the information processing software module, and the first PC subsystem processes the main program running machine in parallel for the cloud control core node, performs parallel processing with other PC subsystems, and processes the data link in parallel to implement data interaction;
  • the second PC subsystem includes a real-time processing trajectory correction control software module, a cloud measurement and control sub-node feedback information real-time processing software module, a 125th line block, a fine-tuning control signal output software module, real-time interpolation, tool compensation, acceleration and deceleration processing, and control output software. Module and redundant processing software module, the second PC subsystem is subject to monitoring and management of the first PC subsystem;
  • the third PC subsystem includes remote production management software module, remote programming service software module, remote technical service software module, remote condition monitoring and fault processing software module, realize remote production scheduling management, remote condition monitoring and fault diagnosis, remote programming, remote Technical support and technology upgrades;
  • the 130th fourth PC subsystem includes real-time processing trajectory correction control software module, cloud measurement and control sub-node feedback information real-time processing software module, fine-tuning control signal output software module, real-time interpolation, tool compensation, acceleration and deceleration processing, control output software module And the redundant processing software module, the fourth PC subsystem acts as a redundant system of the second PC subsystem, and when the second PC subsystem fails, the scheduling control of the first PC subsystem realizes fast switching, thereby avoiding processing Process discontinuities and the occurrence of accidents.
  • the cloud control core node further includes an expandable fifth PC subsystem
  • the fifth PC subsystem includes a CAD soft 135th line module, a CAPP software module, and a CAM software module, and implements CAD ⁇ CAPP ⁇ CAM ⁇ CNC Integrate the functionality of an integrated process.
  • the cloud measurement and control sub-node comprises a core controller and a plurality of I/O modules with independent measurement and control functions, and the functions performed by the core controller include controlling each I/O sub-module to realize collection of each required detection signal, and passing signals Processing and data fusion processing extracts the compensation signal, accepts the feedback signals of other relevant cloud measurement and control sub-nodes for comprehensive processing, feeds the processing result back to the cloud control core node through real-time bus communication, accepts the fine-tuning instruction sent by the cloud control core node, and further processes
  • the specific control command is sent to the fine-tuning driving unit of the component of the 40th line; each I/O module mainly performs dynamic, online acquisition of the sensor signal, and transmits the signal to the core controller, and receives the control command of the core controller to fine-tune
  • the drive unit sends a control output signal.
  • the cloud measurement and control sub-node exchanges state information data according to the specific association relationship, and implements independent correction control within the cloud measurement and control sub-node according to the positional relationship and motion control requirements between the two, and the internal self-correction of the cloud measurement and control sub-node Control is also implemented by sending an instruction to the fine-tuning drive unit, and the state information of the fine-tuning is simultaneously fed back to the cloud control core node and other cloud measurement control sub-nodes associated therewith as further feedback information for the 145th line correction.
  • Figure 1 is a structural diagram of the cloud numerical control system
  • Figure 2 is a data flow diagram of the cloud numerical control system
  • Line 150 Figure 3 shows the data flow diagram of the Dayun CNC system.
  • Xiaoyun CNC core node main control function subsystem 202 Xiaoyun CNC core node real-time control function subsystem Line 160 203 Xiaoyun CNC core node remote management function subsystem 204 Xiaoyun CNC core node redundancy control function subsystem
  • the invention discloses a method for realizing a "cloud numerical control system".
  • the cloud numerical control system is divided into two levels, one is inside a single device, and the other is between supporting processing equipment. Firstly, a single CNC machining equipment is used as a sub-unit. For the main components of the sub-unit processing equipment except the numerical control system, such as motors, mechanical moving parts, bases, work tables, etc.
  • the system's measurement and control unit and fine-tuning unit realize the "small cloud node", obtain the online motion state parameters of each individual component, and adjust the running state of each component online by step 175, and feedback the motion state parameters of each component back to the PC-based
  • the CNC system with powerful data processing capability, state analysis and dynamic feedback fine-tuning control realizes "small cloud numerical control” inside a single device, and the "small cloud numerical control” system inside a single device has CAD ⁇ CAPP ⁇ CAM at the same time.
  • Integrated functions, remote communication functions, production management coordination functions, etc. to fully improve the processing performance of a single CNC machining equipment;
  • the final size and error first send these parameters to the first through the collaborative communication network
  • the next 80-piece workpiece uses the "small cloud CNC" processing equipment to optimize further processing operations, while at the same time through a collaborative communication network
  • the processing equipment that is passed to the other workpieces that will be assembled with the workpiece is independent of the "small cloud numerical control” system, and the machining error of the matching workpiece machining is further adjusted online, thereby realizing the new "big cloud numerical control".
  • Xiaoyun CNC system is mainly composed of cloud control core node, cloud measurement and control sub-node and fine-tuning drive unit.
  • the small cloud numerical control system is formed through the interconnection of the 185th line of the real-time communication network, and the communication work with external related components is formed through the online interconnection network.
  • the cloud control core node mainly realizes man-machine operation and main control functions, various complex signal processing, combined control and composite control algorithm operation and control command output, remote communication, coordinated management operation, CAD ⁇ CAPP ⁇ CAM integrated operation
  • the cloud measurement and control sub-node mainly completes the operation status signal detection and the fine-tuning control signal generation of various components inside the numerical control processing equipment, and accepts the coordination, management and control instructions of the cloud control core node, wherein some of the sub-nodes are based on specific It is necessary to cooperate with the core node of cloud control 190th to complete the real-time control function of the core.
  • Each independent cloud measurement and control sub-node realizes reasonable connection according to its internal organic connection, and realizes the function of "interactive collaborative measurement and control".
  • the fine-tuning control unit accepts the cloud.
  • the instruction of the measurement and control sub-node completes the operation of the respective fine-tuning control for the component;
  • the real-time communication network constitutes an online data transmission function between the cloud control core node, the cloud control core node and the cloud measurement control node, and the cloud measurement and control sub-node; Online internet Cloud functions to control communication between the core node and the external related components.
  • the cloud control core node is based on an open, software-based PC+1/O structure CNC system, which fully utilizes the super-computing, communication, and expansion capabilities of the open, software-based PC numerical control system.
  • the basic structure of the cloud control core node includes four independent industrial PC subsystems, and has the ability to expand more independent PC systems according to requirements.
  • the four independent industrial PC subsystems implement main control functions, real-time control functions, and remote communication management functions.
  • Redundant control function using the real-time communication bus between the two lines to form a parallel processing mode, complete the core machining program compilation, multi-axis motion path interpolation, acceleration and deceleration control, tool compensation control, machine tool error comprehensive compensation Control, compound control, remote processing scheduling management and other functions, and complete the CAD ⁇ CAPP ⁇ CAM integration function by extending the fifth industrial PC subsystem, and further expand the multiple industrial PC subsystems to achieve other related functions according to in-depth requirements. , such as online size and accuracy detection, 3D reverse function, etc.
  • the first set of functions of the industrial PC subsystem (subsystem 1) that completes the main control function include human-computer interaction, CNC 205 line processing program compilation, CNC machining code check and simulation verification, system software/hardware self Define configuration and external expansion interface, real-time bus communication (with other systems in the cloud control core node, and with cloud measurement sub-nodes), complex signal processing ⁇ combination control ⁇ composite control algorithm operation, remote management ⁇ scheduling ⁇ coordination, etc. Function, you can choose PCI, PCIE, ISA.
  • the software part mainly includes man-machine interface ⁇ master control processing ⁇ redundant processing software module, collaborative supporting processing control subsystem correction letter 210 line processing software module, processing track correction control software module, interpolation control software module and cloud controller Node feedback information processing software module, etc.; the subsystem is a cloud control core node parallel processing main process The sequencer runs parallel with other subsystems and processes the data link in parallel to implement data interaction.
  • the second set of industrial PC subsystems (subsystem 2) that complete the real-time control function include multi-axis motion path interpolation, acceleration/deceleration control, tool compensation control, and machine tool error compensation control (with cloud measurement and control sub-nodes).
  • the composite control 215 line system (implemented with the cloud measurement and control sub-node), real-time bus communication (with other subsystems in the cloud control core node, and with the cloud measurement and control sub-node) and other functions, using PCI, PCIE, ISA, Compact-PCL PXI, VXI and other computer general-purpose bus architectures, with various bus communication function boards and multi-function I/O boards for functions to control the direct drive unit and real-time bus drive unit;
  • the subsystem software part mainly includes real-time processing trajectory correction control software module, cloud measurement and control sub-node feedback information real-time processing software module, fine-tuning control signal output software module, real-time interpolation, tool compensation, acceleration and deceleration processing, control output software line 220 Module and redundant processing software module; the subsystem obeys the supervision of subsystem 1 And management, and real-time subsystem 1 in parallel.
  • the third set of functions of the industrial PC subsystem (subsystem 3) that completes the remote management function include remote production scheduling management, remote condition monitoring and fault diagnosis, remote programming, remote technical support and technology upgrade.
  • the software part of the subsystem includes a remote production management software module, a remote programming service software module, a remote technical service software module, a remote condition monitoring and fault processing software module;
  • the subsystem can be processed in parallel with the subsystems 1, 2, 4 and the extension subsystem 5 of the 225th line, and the remote service function is implemented in other subsystems.
  • the fourth set of industrial PC subsystem (subsystem 4) that completes the redundant control function is mainly used as the redundant system of subsystem 2.
  • subsystem 2 has problems, it realizes fast switching through the scheduling control of subsystem 1. In order to avoid the discontinuity of the machining process and the occurrence of accidents.
  • the specific hardware configuration of this subsystem is the same as Subsystem 2.
  • the fifth set of industrial PC subsystem (extension subsystem 5) that completes the CAD ⁇ CAPP ⁇ CAM integration function mainly runs the 230th line CAD ⁇ CAPP ⁇ CAM software, including CAD software module, CAPP software module and CAM software module.
  • CAD ⁇ CAPP ⁇ CAM ⁇ CNC integrates the functions of the integrated process.
  • the cloud measurement and control sub-node is installed inside the components of the CNC machine tool and the CNC machining equipment.
  • the dynamic and on-line detection signals include speed, displacement, acceleration, vibration, shock, temperature, voltage, current, torque, deformation, stress, etc.
  • the main line 235 of the sensor is composed of electric, magnetic, optical, stress strain, flow, pressure, etc.
  • the compensation signal is fed back to the "cloud control core node" to form a large closed-loop compensation control, and the sub-nodes can also be realized through cross-coupling control. Fine-tuning drive control between.
  • a part of the child nodes cooperate with the cloud control core node to complete the core real-time control function according to specific needs.
  • the cloud control core node can be received to directly drive the motor. Output, and optimize the way the motor drives electrical parameters.
  • the 240th row of cloud measurement and control sub-nodes must be installed inside the CNC machine tools and CNC machining equipment components. It must be small in size, easy to install, high in reliability, flexible in real-time communication, etc. Therefore, it is mainly based on embedded systems. Realization, adopting modular structure design, which is composed of core controller plus I/O modules that complete independent measurement and control functions, and adjusts the type and quantity of I/O modules according to different needs.
  • the core controller of the cloud measurement and control sub-node needs to complete functions including controlling each I/O sub-module to realize the 245th line acquisition of each required detection signal, extracting the compensation signal through signal processing and data fusion processing, and accepting other related cloud controllers.
  • the feedback signal of the node is integrated, and the processing result is fed back to the cloud control core node through the real-time bus communication, and the fine-tuning instruction sent by the cloud control core node is accepted, and further processed into a fine-tuning driving unit sent to the component by the specific control instruction.
  • the cloud measurement and control sub-node exchanges state information data according to the specific association relationship, and implements independent correction control within the cloud measurement and control sub-node according to the positional relationship and motion control requirements between the two, and the internal self-correction of the cloud measurement and control sub-node Control is also performed by sending an instruction to the fine-tuning drive unit.
  • the state information of the fine-tuning is simultaneously fed back to the cloud control core node and other cloud measurement control nodes associated therewith as further modified feedback information.
  • the independent I/O modules of the cloud measurement and control sub-node mainly complete dynamic, on-line collection of speed, displacement, acceleration, vibration, shock, temperature, voltage, and detection by sensors such as electric, magnetic, optical, stress strain, flow, pressure, etc.
  • the current, torque, deformation, stress and other signals are transmitted to the core controller of the cloud measurement and control sub-node, and the control commands of the core controller of the cloud measurement and control sub-node are transmitted to the drive unit of the 255th line of the fine adjustment to send a control output signal.
  • the software part of the cloud measurement and control sub-node mainly includes a state test software module, a fine-tuning control software module and a cross-coupling control software module.
  • the main functions of the fine-tuning drive unit of the cloud measurement and control sub-node include accepting the control output signal of the cloud measurement and control sub-node, and realizing the fine-tuning drive of the mechanical part of the 260th line (such as automatic gap compensation drive, automatic weight adjustment, temperature adjustment drive, etc.) , optimization of operating parameters of electrical components, fine tuning of motion trajectory and other functions.
  • the main methods of fine-tuning the drive unit are motion drive mode, temperature adjustment mode, electrical parameter optimization, motion path micro-motion drive, etc.
  • Xiaoyun CNC system also needs the design and manufacturing basis of CNC machining equipment. Because of the appearance of cloud measurement and control sub-nodes, the 265th line has changed the composition of traditional CNC machining equipment, and the integral one is modular, which will be traditional.
  • the mechanical components are embedded with a measurement and control unit with electronic adjustment and feedback control, which adds more "vigor" to the CNC machining equipment, and further enhances the flexibility and processing performance of the CNC machining equipment.
  • Xiaoyun CNC system uses the PC system with parallel processing and multi-purpose industrial PC parallel processing as the core node, and cooperate with more embedded system sub-nodes to form a new type of "cloud computing" and “cloud control” structure.
  • the 270th line which becomes passive and active, will dynamically change and adjust the structure of the traditional CNC system by supporting the dynamic detection and fine adjustment unit of each component inside the processing equipment.
  • This assembly becomes a clearance fit; the other machined shaft size is ⁇ 100.01, and the matching hole size is ⁇ 100.
  • This assembly becomes an interference fit.
  • the effect of such two sets of shafts and holes in the actual application of the 280th line is still relatively large. In actual processing and production, the more complicated the assembly of parts, the more problems will occur. Therefore, there will often be one part that can't be used, and the other one can be used. However, the parts with poor assembly effect and other matching are easy to use. The phenomenon of this uncertainty actually has a certain adverse effect on the quality and efficiency of the assembly.
  • the present invention proposes an implementation method of "Dayun Numerical Control System", that is, using the “small cloud numerical control system” to perform dynamic and on-line monitoring functions in the part processing process, and dynamic processing parameters and errors of the parts are online. Real-time transfer to the CNC machining equipment for machining and matching parts or CNC machining equipment for the next machining step of the workpiece, to realize the new production mode of "interactive collaborative machining", or simply call this processing mode " Virtual assembly online processing mode".
  • the function of Dayun CNC system on line 295 mainly includes obtaining the final machining error information of the workpiece being processed in the previous machining step, and providing it to Xiaoyun CNC system to make correction control according to the actual machining accuracy requirement; Online access to various operating state parameters obtained by Xiaoyun CNC system in real time, further data fusion analysis of real-time machining errors in workpiece online processing, and prediction of subsequent online machining errors, and real-time transmission of such information to workpieces requiring assembly CNC machining equipment, at the same time accept the corresponding information transmitted by the NC machining equipment of the matching assembly workpiece, and then provide analysis and processing to the Xiaoyun CNC system for correction control; Line 300 and the workpiece will be processed by the on-site measurement method after the workpiece is processed. The final error is passed to the cloud CNC system of the CNC machining equipment that completes the next machining step to optimize the next machining operation.
  • Dayun CNC system is equipped with an independent industrial PC system (collaborative processing control subsystem 6) based on Xiaoyun CNC system. It realizes the communication foundation based on the real-time communication network and remote internet of Xiaoyun CNC system.
  • the software part of the collaborative processing control subsystem mainly includes the remote communication software module, the data analysis and correction algorithm software module, the 305th line serial processing software module and the parallel processing software module. among them:
  • the remote communication software module is used for information interaction with the numerical control system of the serial processing and the matching assembly processing CNC processing data;
  • the data analysis and correction algorithm software module is used for the numerical control processing according to the remote communication software module and the serial processing and the matching assembly processing
  • the numerical control system of the equipment carries out various information obtained by information interaction, and various online processing parameters and state information obtained by the small cloud numerical control system in the numerical control processing equipment of the machine, and analyzes and corrects the processing trajectory;
  • the 310th line serial processing software module and the parallel processing software module are used for separately processing the processing results of the data analysis and the correction algorithm software module, and obtaining the data format required for the serial processing and the parallel supporting assembly processing, first transmitted to the present.
  • the coordinated processing and correction information processing software module in the main control subsystem of the small CNC system in the CNC machining equipment further performs the subsequent work, and returns to the data analysis and correction algorithm software module, and then transmits the serial to the serial through the remote communication software module.
  • the information is exchanged with the numerical control system of the numerical control processing equipment of the matching assembly processing.
  • Line 320 "Dayun CNC" mode can effectively improve the part matching error caused by various factors in different CNC machining equipment, avoiding the assembly and assembly precision caused by "back-to-back processing", long repair cycle, repair or secondary Processing and other issues.
  • the cloud numerical control system is divided into two parts: Xiaoyun CNC system and Dayun CNC system. The following are introduced separately.
  • Xiaoyun CNC system consists of cloud control core node, cloud measurement and control sub-node and fine-tuning drive unit, which mainly completes the control function of the single-axis CNC machining line 335.
  • the cloud control core node mainly realizes man-machine operation and main control functions, various complex signal processing, combined control and composite control algorithm operation and control command output, remote communication, coordinated management operation, CAD ⁇ CAPP ⁇ CAM integrated operation and other functions.
  • the cloud measurement and control sub-node mainly completes the operation status signal detection and fine-tuning control signal generation of various components inside the CNC machining equipment, and accepts the coordination, management and control commands of the cloud control core node, and some of the sub-nodes cooperate according to specific needs.
  • the cloud control core node completes the real-time control function of the core, and each independent cloud measurement and control sub-node realizes a reasonable connection according to the internal organic connection line 340 to realize the "interactive cooperative measurement and control" function;
  • the fine-tuning control unit accepts the cloud measurement and control sub-node
  • the instruction completes the operation of the respective fine-tuning control for the component;
  • the real-time communication network constitutes an online data transfer function between the cloud control core node, the cloud control core node and the cloud measurement control node, and the cloud measurement and control sub-node; Complete cloud Communication system between the central node and related external components.
  • the cloud control core node is based on an open, software-based PC+I/0 structural CNC system, giving full play to open and software
  • the basic structure of the cloud control core node includes four independent industrial PC subsystems, and has the ability to expand more independent PC systems according to requirements.
  • the four independent industrial PC subsystems implement main control functions, real-time control functions, and remote communication management functions. Redundant control function, real-time communication bus interconnection with each other, forming parallel processing mode, complete core machining program compilation, multi-axis motion path interpolation, acceleration/deceleration control, tool compensation control, 350th line system, machine tool error comprehensive compensation Control, compound control, remote processing scheduling management and other functions, and complete the CAD ⁇ CAPP ⁇ CAM integration function by extending the fifth industrial PC subsystem, and further expand the multiple industrial PC subsystems to achieve other related functions according to in-depth requirements. , such as online size and accuracy detection, 3D reverse function, etc.
  • the cloud control core node of Xiaoyun CNC system mainly includes 101, 102, 103, 104, 105, 113, 114 parts, among which:
  • Line 355 101 is the main control function subsystem.
  • the main functions include human-computer interaction, NC machining program compilation, CNC machining code checking and simulation verification, system software/hardware custom configuration and external expansion interface, real-time bus communication (with The cloud controls other subsystems in the core node, and is implemented with the cloud measurement and control sub-node), complex signal processing, combined control, composite control algorithm operation, remote management, scheduling, coordination, etc., and can choose PCI, PCIE, ISA, Compact.
  • the subsystem software part mainly includes Line 360 man-machine interface ⁇ main control processing ⁇ redundant processing software module, collaborative supporting processing correction information processing software module, processing track correction control software module, interpolation control software module and cloud measurement and control sub-node feedback information processing software module;
  • the subsystem processes the main program running machine in parallel for the cloud control core node, performs parallel processing with other subsystems, and processes the data link in parallel to realize data interaction.
  • the main completed functions include multi-axis motion path interpolation, acceleration and deceleration control, tool compensation control, machine tool error comprehensive compensation control (implemented with cloud measurement and control sub-node), compound control (with cloud controller) Node coordination implementation), 365th line real-time bus communication (with other subsystems in the cloud control core node, and with cloud measurement and control sub-nodes) and other functions, using PCi, PCIE,
  • the subsystem software part mainly includes real-time processing trajectory correction control software module, cloud measurement and control sub-node feedback information real-time processing software module, fine-tuning control signal output software module, real-time plug Complement, tool compensation, acceleration and deceleration processing, control output software module line 370 block and redundant processing software module; the subsystem obeys the monitoring and management of subsystem 1, and works in parallel with subsystem 101 in real time.
  • the remote management function subsystem the main functions include remote production scheduling management, remote condition monitoring and fault diagnosis, remote programming, remote technical support and technology upgrade, so as to realize the services provided by various service centers in different places and at remote distances.
  • the subsystem software part includes a remote production management software module, a remote programming service software module, a remote technical service software module, a remote condition monitoring and fault processing software module; the subsystem can be associated with the subsystems 101, 102, 104 Parallel processing with the extension 375th line system 105 implements the remote service function in other subsystems.
  • 104 is a redundant control function subsystem, mainly as a redundant system of the subsystem 102.
  • the scheduling control of the subsystem 101 realizes fast switching, thereby avoiding the discontinuity and accident of the processing process. Appearance.
  • the specific hardware configuration of this subsystem is the same as subsystem 102.
  • 105 is the industrial PC subsystem of CAD ⁇ CAPP ⁇ CAM integrated function, mainly runs CAD ⁇ CAPP ⁇ CAM software, including the 380th line CAD software module, CAPP software module and CAM software module, realizes CAD ⁇ CAPP ⁇ CAM ⁇ CNC integration. The function of the process.
  • U3 is a real-time communication data link, real-time communication bus is used to realize the real-time communication function between the cloud control core nodes 101, 102, 103, 104, 105, and the cloud measurement and control sub-node and the coordinated processing control subsystem.
  • 114 is a remote communication data link, using a wired or wireless internetwork to implement the cloud control core node 103 and each remote service line 385 center 124 (remote production dispatch management center), 125 (remote processing programming service center), 126 (remote Technical Support Service Center),
  • the remote communication function between 127 Remote Status Monitoring and Troubleshooting Center
  • 124 is a remote production dispatch management center, which provides scheduling instructions according to the specific requirements of the dispatch management center, and sends them to the subsystem 103 for remote processing scheduling management.
  • Line 390 125 is a remote machining programming service center that can send customized machining programs to the subsystem 103 according to the specific needs of the user, and is forwarded by the subsystem 103 to the subsystem 101 to help the user realize the machining programming service of the specific workpiece.
  • 126 is a remote technical support service center, which can provide various technical support services according to the specific needs of users, and can provide technical upgrade services.
  • 127 is a remote condition monitoring and fault diagnosis center. It combines the cloud monitoring and control sub-nodes with the cloud monitoring and control sub-nodes to perform condition monitoring and fault pre-processing on the whole line 395 of the processing equipment to realize remote condition monitoring and fault diagnosis, analysis and processing.
  • the cloud measurement and control sub-node is installed inside the components of the CNC machine tool and the CNC machining equipment.
  • the dynamic and on-line detection signals include speed, displacement, acceleration, vibration, shock, temperature, voltage, current, torque, deformation, stress, etc.
  • the sensor is mainly composed of electric, magnetic, optical, stress strain, flow, pressure, etc.
  • the compensation signal is fed back to the "cloud control core node" to form a large 400th line closed-loop compensation control, and the sub-nodes can also be realized through cross-coupling control. Fine-tuning drive control between.
  • a part of the child nodes cooperate with the cloud control core node to complete the core real-time control function according to specific needs.
  • the cloud control core node can be received to directly drive the motor. Output, and optimize the way the motor drives electrical parameters.
  • 107, 108, 109 respectively represent cloud measurement and control sub-nodes installed on different parts of different numerical control processing equipment, 115, Line 405, 116, and 117 are sensor groups associated with the cloud measurement sub-node.
  • the cloud measurement and control sub-node consists of a core controller plus I/O modules that complete independent measurement and control functions.
  • the type and number of I/O modules are adjusted according to different requirements to implement the online state detection function and the control function of the fine-tuning drive unit.
  • Each independent cloud measurement and control sub-node realizes reasonable connection according to its intrinsic organic connection, realizes interactive collaborative measurement and control function, and the cloud measurement and control sub-nodes exchange state information data according to specific association relationships, and according to the positional relationship between each other and The motion control requires independent correction control of the 410th line in the cloud measurement and control sub-node.
  • the self-correction control inside the cloud measurement and control sub-node is also realized by sending an instruction to the fine-tuning drive unit, and the state information of the fine adjustment is simultaneously fed back to the cloud control.
  • the core node and other cloud monitoring subnodes associated therewith serve as feedback for further correction.
  • the main functions of the fine-tuning drive unit of the cloud measurement and control sub-node include accepting the control output signal of the cloud measurement and control sub-node, and realizing the fine-tuning drive of the mechanical part of the 415th line (such as automatic gap compensation drive, automatic weight adjustment, temperature adjustment drive, etc.) , optimization of operating parameters of electrical components, fine tuning of motion trajectory and other functions.
  • Fig. 1, 1 10, 1 11, and 112 respectively represent the fine-tuning drive units installed on the various components of different CNC machining equipments and the cloud measurement and control sub-nodes.
  • the Dayun CNC system mainly performs the "interactive collaborative processing" function between different devices.
  • the main function of Dayun CNC system is to obtain the final machining error information of the workpiece being processed in the previous processing step, and provide it to Xiaoyun CNC system to make correction control according to the actual machining accuracy requirements.
  • Dayun CNC system is equipped with an independent industrial PC system (collaborative processing control subsystem) based on Xiaoyun CNC system.
  • the real-time communication network and remote internet of Xiaoyun CNC system are used as the communication basis.
  • 106 represents the big cloud numerical control system.
  • the software part of the collaborative processing control subsystem mainly includes the remote communication software module, the data analysis and correction algorithm software module, the serial processing software module and the parallel processing software module. among them:
  • the remote communication software module is used for information interaction with the numerical control system of the serial processing and the matching assembly processing CNC processing data;
  • the data analysis and correction algorithm software module is used for the numerical control processing according to the remote communication software module and the serial processing and the matching assembly processing
  • the numerical control system of the equipment performs various information obtained by information interaction, and various online processing parameters and status information of the 435th line obtained by the small cloud numerical control system in the numerical control processing equipment of the CNC processing equipment, and analyzes and corrects the processing trajectory;
  • the serial processing software module and the parallel processing software module are used to separately process the processing results of the data analysis and the correction algorithm software module, and obtain the data format required for the serial processing and the parallel assembly processing, and firstly transmit the data format to the CNC processing.
  • the coordinated processing correction information processing software module in the main control subsystem (101) of the small cloud numerical control system in the equipment further performs the subsequent work, and returns to the data analysis and correction algorithm software module, and then transmits and serializes through the remote communication software module.
  • the information is exchanged with the CNC system of the CNC machining equipment processed in the 440th line.
  • FIG. 1 shows the data flow diagram of the cloud numerical control system.
  • the main operation flow is as follows:
  • each subsystem After the system is started, each subsystem performs a self-test, and if there is a problem, the fault is handled;
  • the remote management function subsystem 203 respectively runs the remote processing scheduling service processing, the remote system upgrade service processing, and the remote numerical control programming service processing, if the three processing steps are from the remote centers (the remote production scheduling management center 222, the remote plus The command and processing requirements of the 445 line programming service center 223 and the remote technical support service center 224 are respectively processed correspondingly, and then the remote condition monitoring and fault processing service is run, and communication with the remote condition monitoring and fault diagnosis service center is established;
  • the remote production management software module in the remote management function subsystem 203 processes according to the instruction of the remote production scheduling management center 222, and transmits the processing result to the main control subsystem 201 for specific operations;
  • the remote programming service software module in the remote management function subsystem 203 is based on the remote processing programming service center 223
  • the 4th 50th row is processed, and the machining program is transferred to the CAD ⁇ CAPP ⁇ CAM integrated function expansion subsystem 205, and the initial processing result is sent through the processing of the 205 CAD software module, the CAPP software module and the CAM software module.
  • a machining path correction control software module to the main control subsystem 201;
  • the collaborative supporting processing control subsystem 206 receives the external supporting processing information through its internal remote communication software module, and decomposes the information into serial processing information and parallel supporting processing information through the data analysis and correction algorithm software module of 206, respectively. 455 lines are processed to the serial processing software module and the parallel processing software module of 206, and the processing result is sent to the coordinated supporting processing correction information processing software module in the main control subsystem 201 for processing;
  • the human-machine interface ⁇ master control ⁇ redundancy processing software module in the main control subsystem 201 starts management, and the cooperative information processing software module is combined to send various instruction information to the processing track correction control software module, and processing
  • the trajectory correction control software module performs the comprehensive calculation of the 460th line according to the processing program sent by the CAD ⁇ CAPP ⁇ CAM integrated function expansion subsystem and other received information, and the calculated processing trajectory information is sent to the interpolation control software module to start real-time. Processing control
  • the interpolation control software module in the main control subsystem 201 sends the processing trajectory information to the real-time processing trajectory correction control software module in the real-time control subsystem 202 for processing, and the real-time processing trajectory correction control software module divides the control information into two.
  • the road, one way is motion control information, which is sequentially sent to the real-time interpolation, tool compensation, acceleration/deceleration processing, and control output portion, and directly drives the real-time bus driving units 216, 217, 218 and the direct driving units 219, 220, 221 to perform motion trajectory and Auxiliary function control; another 465th line is compensation control information, sent to the fine adjustment control signal output software module, and further sent to the cloud measurement control sub-nodes 207, 208,
  • the cloud measurement and control sub-nodes 207, 208, and 209 start to run.
  • the status test software modules in the cloud measurement and control sub-nodes 207, 208, and 209 receive the status information fed back by the sensor groups 213, 214, and 215, and respectively feed back to the main control.
  • the cloud measurement and control sub-node feedback information processing software module in the subsystem 201, the cloud measurement and control sub-node feedback information in the real-time control control subsystem 202, the cloud measurement and control sub-node in the real-time 470-line software module and the redundancy control subsystem 204 The feedback information real-time processing software module; at the same time, the fine-tuning control software module inside the cloud monitoring and controlling sub-nodes 207, 208, 209 receives the feedback information of the state testing software module, and receives the fine-tuning control in the real-time control subsystem 202 or the redundant control subsystem 204.
  • the fine-tuning control signal sent by the signal output software module further receives the cross-coupling fine-tuning information sent by the cross-coupling control software module, and comprehensively forms fine-tuning control for the fine-tuning driving units 210, 211, and 212;
  • the main control subsystem 201 first performs the processing trajectory correction processing by the processing trajectory correction control software module according to the state information fed back by the cloud measurment control sub-nodes 207, 208, 209, and further sends it to the interpolation control software module to send to
  • the real-time control subsystem 202 and the redundancy control subsystem 204 perform real-time processing; secondly, the feedback information is sent to the collaborative supporting processing correction information processing software module for processing, and sent to the serial processing software module in the collaborative supporting processing control subsystem 206.
  • the parallel processing software module performs processing, and further passes the data analysis and correction algorithm software module to send the processing result to the numerical control system of the 480th line equipment through the remote communication network to realize "interactive collaborative processing"; and at the same time, according to the feedback information by the human machine
  • the interface ⁇ master processing ⁇ redundancy processing software module performs state determination, confirms whether the real-time control subsystem 202 is used for real-time control, or the redundancy control subsystem 204 performs switching to complete real-time control, and sends a signal to the real-time control subsystem 202. with I redundant process control subsystem software module handover process;
  • the cloud measurement and control sub-nodes 207, 208, 209 simultaneously transmit the feedback signals of the sensor groups 213, 214 and 485 lines 215 collected by the state test software module, after being processed by the fine-tuning control software module, and then sent to the cross-coupling control software module through the cross-coupling control software module.
  • the cross-coupling control software module of other cloud measurement and control sub-nodes completes the cross-coupling compensation control process
  • the remote state monitoring and fault processing module in the remote management function subsystem 203 receives the state information comprehensively processed by the main control subsystem 201 for condition monitoring and fault pre-processing, and sends it to the remote state monitoring and fault diagnosis center for corresponding processing. ;
  • Figure 3 is a schematic diagram of the data flow realized by Dayun NC, in which 301, 302, 303 are the numerical control processing system for the numerical control processing equipment that executes the sequential processing flow of one workpiece; 304, 305, 306 are the numerical control of the sequential machining process of another workpiece.
  • the processing equipment is equipped with a cloud numerical control system; the workpieces processed by the CNC machining equipment controlled by 302 and 305 need to be assembled.
  • the specific process is as follows As stated on line 49 :
  • the cloud numerical control systems 301 and 304 respectively process the process state parameters and the integrated machining errors of the workpiece through the data analysis and correction algorithm software module to the cloud numerical control systems 302 and 305 through their remote communication software modules, respectively, 302 And the serial processing software module in 305 processes and transmits to the data analysis and correction algorithm software module for serial processing correction processing;

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)

Abstract

一种云数控系统的实现方法,属于数控系统、并行信息处理、网络技术、工业控制技术领域,涉及数控加工、协同制造管理、并行控制、远程测控、故障诊断、网络通讯、自动控制、信号处理等专业领域。该方法用于实现具有在线误差综合补偿控制功能、CAD\CAPP\CAM\CNC集成功能、交互式协同配套装配加工控制功能的数控系统。云数控系统分为小云数控系统和大云数控系统两部分,其中小云数控系统主要针对单台数控加工设备内部控制,包括云控制核心节点(101,102,103,104,105,113,114)、云测控子节点(107,108,109)、微调驱动单元(110,111,112);大云数控系统以小云数控系统为基础,通过协同配套加工控制子系统(206)针对需要串行加工的单个工件和配套装配的不同工件进行多台数控加工设备之间的交互式协同加工。

Description

说 明 书 云数控系统 第 5行 所属技术领域
本发明涉及一种基于 "云计算"模式、 分布式网络实时并行处理的数控系统实现方法, 属于数 控系统、 并行信息处理、 网络技术、 工业控制技术领域, 涉及数控加工、 协同制造管理、 并行控制、 远程测控、 故障诊断、 网络通讯、 自动控制、 信号处理等专业领域。 第 10行 背景技术
数控系统从 1952年诞生的第一代电子管数控系统开始, 经历了第二代晶体管数控系统、第三代 集成电路数控系统、 第四代小型计算机数控系统、 第五代微型计算机数控系统, 目前已经进入了第 六代个人电脑 (PC) 数控系统。 PC数控是自数控技术诞生以来最具深远意义的一次飞跃。 与第五 代数控系统的最大不同之处在于, PC数控系统的硬件平台和软件平台是完全通用的。虽然第五代数 第 15行 控系统也称为计算机数控系统, 但这种数控系统的计算机是专用的, 需由数控系统生产厂家自行开 发和生产, 即不仅其硬件系统需由数控系统生产厂家在购买来微处理器芯片和其他元器件的基础上 自行设计制造, 而且连操作系统等基础性软件系统也需要根据专用硬件的特点自行开发。 由于开发 和制造计算机并不是数控生产厂家的强项, 因此造成开发周期长、 更新换代慢、性能难以达到最佳、 开发和生产成本高等问题。 而第六代以 PC 为平台的通用计算机数控系统则完全避免了专用计算机 第 20行 数控系统的这些不足, 使计算机数控技术的发展走上了更加坚实、 宽广、 快速的道路。 以前的数控 系统主要是以运动控制为核心目标, 主要的控制对象是多个运动轴的电气驱动系统和主轴的电气驱 动系统, 通过接受加工编程指令, 实现简单或复杂的运动轨迹控制, 从而实现数控加工工作。
近年来, 随着先进制造的需求不断提高, 仅仅以运动控制为核心目标已经无法满足越来越复杂 的高速、 高精度要求, 以及新的生产模式的提升需求, 主要有以下几个方面的表现:
第 25行 a)数控系统不仅要完成加工设备的控制与管理, 还需要实时、 在线参与到企业内部、 企业之间 的管理、 协同工作中, 同时还必须满足 CAD\CAPP\CAM功能的集成需求, 这些都要求数控系统具 有更强大的数据处理、 实时控制、 分布式测控、 通讯处理、 并行处理能力;
b)随着数控机床及其它数控加工设备的复杂性越来越高, 仅仅只以运动控制为目标是远远不够 的, 更多的功能需求被提出来, 如复杂加工过程中的各种高级组合控制功能 (各种不同被加工材料 第 30行 的温度、 振动、 张力、 应力、 形变等控制和补偿功能), 刀具切削过程中磨损的在线自动补偿功能, 机床加工过程中的在线温度补偿, 被加工工件的各种性能参数在线检测功能, 复合加工组合控制功 能(车、 铣、 钻、 镗、 磨、 卷绕、 挤压等加工功能), 复杂加工在线仿真及验证功能, 数控机床在线 监测和故障处理功能, 数控系统在线升级和技术支持功能等;
c )先进制造领域的不断发展, 从企业内部的计算机集成制造系统, 到企业之间的协同制造系统 第 35行 ——敏捷制造系统, 再到近两年刚提出来的 "云制造"模式, 都对数控系统提出了更高的要求, 即 对柔性协同制造能力的要求。 柔性协同制造能力的要求, 不仅是以前提出的工件通过柔性生产线来 进行分步实现的要求, 更包括了对于需要进行配套装酡的工件之间的匹配加工的更高需求。
针对以上需求, 数控系统不仅要完成单台设备内部的各种运动控制、 组合控制、 复合控制需要, 还需要具有与 CAD\CAPP\CAM的集成能力, 并且需要具备与其它设备之间的协同控制、 匹配控制 第 40行 等功能, 才能进一步满足先进制造的提升需求。 发明内容
本发明提供一种云数控系统, 用于单台数控加工设备的控制, 其特征在于: 该云数控系统包括 云控制核心节点、 云测控子节点、 微调驱动单元、 实时通信网络和在线互联网络, 其中, 第 45行 云控制核心节点主要实现人机操作和主控功能, 实现各种复杂的信号处理、 组合控制和复合控 制算法的运算与控制指令输出, 远程通讯、 协调管理操作功能, 云控制核心节点包括第一 PC子系 统、 第二 PC子系统、 第三 PC子系统和第四 PC子系统, 第一至第四 PC子系统分别实现主控功能、 实时控制功能、 远程通讯管理功能、 冗余控制功能;
云测控子节点主要完成各种部件的运行状态信号检测和微调控制信号的产生, 同时接受云控制 第 50行 核心节点的协调、 管理、 控制指令, 其中一部分子节点根据具体需要配合云控制核心节点完成核心 的实时控制功能实现, 各独立的云测控子节点之间根据其内在有机联系实现合理连接, 实现交互式 协作测控功能;
微调控制单元接受云测控子节点的指令完成对各自针对数控加工设备内部部件的微调控制执行 操作;
第 55行 实时通讯网络构成云控制核心节点内部、 云控制核心节点与云测控子节点之间、 云测控子节点 之间的在线数据传递功能;
在线互联网络完成云控制核心节点与外部相关组件之间的通讯功能。
进一步地, 第一 PC子系统包括人机接口 \主控处理\冗余处理软件模块、 协同配套加工修正信息 处理软件模块、 加工轨迹修正控制软件模块、 插补控制软件模块和云测控子节点反馈信息处理软件 第 60行 模块, 第一 PC子系统为云控制核心节点并行处理主程序运行机, 与其他 PC子系统进行并行处理, 并行处理数据链路实现数据交互;
第二 PC 子系统包括实时加工轨迹修正控制软件模块、 云测控子节点反馈信息实时处理软件模 块、 微调控制信号输出软件模块、 实时插补、 刀具补偿、 加减速处理、 控制输出软件模块和冗余处 理软件模块, 第二 PC子系统服从第一 PC子系统的监控与管理;
第 65行 第三 PC子系统包括远程生产管理软件模块、 远程编程服务软件模块、 远程技术服务软件模块、 远程状态监测和故障处理软件模块, 实现远程生产调度管理、远程状态监测和故障诊断、 远程编程、 远程技术支持和技术升级功能;
第四 PC子系统包括实时加工轨迹修正控制软件模块、 云测控子节点反馈信息实时处理软件模 块、 微调控制信号输出软件模块、 实时插补、 刀具补偿、 加减速处理、 控制输出软件模块和冗余处 第 70行 理软件模块, 第四 PC子系统作为第二 PC子系统的冗余系统, 在第二 PC子系统出现故障时, 通过 第一 PC子系统的调度控制, 实现快速切换, 从而避免加工过程的不连续情况和事故的出现。
进一步地, 云控制核心节点还包括可扩展的第五 PC子系统, 所述第五 PC子系统包括 CAD软 件模块、 CAPP软件模块和 CAM软件模块, 实现 CAD\CAPP\CAM\CNC集成一体化流程的功能。
进一步地, 云测控子节点包括核心控制器和具备独立测控功能的多个 I/O模块, 所述核心控制 第 75行 器完成的功能包括控制各 I/O分模块实现各需检测信号的采集, 通过信号处理和数据融合处理提取 补偿信号, 接受其它相关云测控子节点的反馈信号进行综合处理, 将处理结果通过实时总线通讯反 馈到云控制核心节点, 接受云控制核心节点发送的微调指令, 并进一步处理成具体控制指令发送给 所在部件的微调驱动单元; 各个 I/O模块主要完成动态、 在线采集传感器信号, 并将信号传送给核 心控制器, 并接受核心控制器的控制命令对微调驱动单元发送控制输出信号。 云测控子节点间根据 第 80行 具体关联关系, 互相交换状态信息数据, 并根据彼此之间的位置关系和运动控制要求实现在云测控 子节点内部独立的修正控制, 这种云测控子节点内部的自行修正控制也通过发送指令到微调驱动单 元来实现, 微调的状态数据同时反馈给云控制核心节点和与其关联的其它云测控子节点作为进一步 修正的反馈信息。
本发明还提供另一种云数控系统, 用于多台数控加工设备的协同配套加工控制, 其特征在于: 第 85行 该云数控系统包括协同配套加工控制子系统、 云控制核心节点、 云测控子节点、 微调驱动单元、 实 时通信网络、 在线互联网络, 其中,
协同配套加工控制子系统主要完成不同的设备之间的交互式协同加工功能。 协同配套加工控制 子系统的功能主要包括获取被加工工件在上一个加工步骤中最终的加工误差信息, 提供给云控制核 心节点、 云测控子节点、 微调驱动单元, 使其根据实际加工精度要求进行修正控制; 在加工过程中, 第 90行 在线获取由云控制核心节点、 云测控子节点、 微调驱动单元、 实时通信网络和在线互联网络共同实 时获得的各种运行状态参数, 进一步采取数据融合分析出工件在线加工中的实时加工误差, 并预测 随后的在线加工误差, 将这些信息实时传递给需要配套装配工件的数控加工设备, 同时接受配套装 配工件数控加工设备传递过来的对应信息, 进行分析处理后提供给小云数控系统进行修正控制; 并 在工件加工完成后通过现场测量方式将被加工工件的最终误差传递给完成下一个加工步骤的数控加 第 95行 工设备的云数控系统, 以优化下一步的加工工作。
云控制核心节点主要实现人机操作和主控功能, 实现各种复杂的信号处理、 组合控制和复合控 制算法的运算与控制指令输出, 远程通讯、 协调管理操作功能, 云控制核心节点包括第一 PC 子系 统、 第二 PC子系统、 第三 PC子系统和第四 PC子系统, 第一至第四 PC子系统分别实现主控功能、 实时控制功能、 远程通讯管理功能、 冗余控制功能;
第 100行 云测控子节点主要完成各种部件的运行状态信号检测和微调控制信号的产生, 同时接受云控制 核心节点的协调、 管理、 控制指令, 其中一部分子节点根据具体需要配合云控制核心节点完成核心 的实时控制功能实现, 各独立的云测控子节点之间根据其内在有机联系实现合理连接, 实现交互式 协作测控功能;
微调控制单元接受云测控子节点的指令完成对各自针对数控加工设备内部部件的微调控制执行 第 105行 操作;
实时通讯网络构成云控制核心节点内部、 云控制核心节点与云测控子节点之间、 云测控子节点 之间的在线数据传递功能;
在线互联网络完成云控制核心节点与外部相关组件之间的通讯功能;
协同配套加工控制子系统的软件部分包括远程通讯软件模块、 数据分析及修正算法软件模块、 第 1 10行 串行处理软件模块和并行处理软件模块。 其中:
远程通讯软件模块用于与串行加工与配套装配加工的数控加工设备的数控系统进行信息交互; 数据分析及修正算法软件模块用于根据远程通讯软件模块与串行加工与配套装配加工的数控加 工设备的数控系统进行信息交互的获得的各种信息, 以及本台数控加工设备中小云数控系统获得的 各种在线加工参数和状态信息, 进行加工轨迹的分析和修正处理;
第 1 15行 串行处理软件模块和并行处理软件模块用于将数据分析和修正算法软件模块的处理结果分别进
'行独立处理, 获得串行加工和并行配套装配加工所需的数据格式, 首先传送给本台数控加工设备中 小云数控系统的主控子系统中的协同配套加工修正信息处理软件模块进一步执行后续工作, 同时返 回给数据分析及修正算法软件模块, 再通过远程通讯软件模块传送给与串行加工与配套装配加工的 数控加工设备的数控系统进行信息交互。
第 120行 进一步地, 第一 PC子系统包括人机接口 \主控处理\冗余处理软件模块、 协同配套加工修正信息 处理软件模块、 加工轨迹修正控制软件模块、 插补控制软件模块和云测控子节点反馈信息处理软件 模块, 第一 PC子系统为云控制核心节点并行处理主程序运行机, 与其他 PC子系统进行并行处理, 并行处理数据链路实现数据交互;
第二 PC子系统包括实时加工轨迹修正控制软件模块、 云测控子节点反馈信息实时处理软件模 第 125行 块、 微调控制信号输出软件模块、 实时插补、 刀具补偿、 加减速处理、 控制输出软件模块和冗余处 理软件模块, 第二 PC子系统服从第一 PC子系统的监控与管理;
第三 PC子系统包括远程生产管理软件模块、 远程编程服务软件模块、 远程技术服务软件模块、 远程状态监测和故障处理软件模块, 实现远程生产调度管理、 远程状态监测和故障诊断、 远程编程、 远程技术支持和技术升级功能;
第 130行 第四 PC 子系统包括实时加工轨迹修正控制软件模块、 云测控子节点反馈信息实时处理软件模 块、 微调控制信号输出软件模块、 实时插补、 刀具补偿、 加减速处理、 控制输出软件模块和冗余处 理软件模块, 第四 PC子系统作为第二 PC子系统的冗余系统, 在第二 PC子系统出现故障时, 通过 第一 PC子系统的调度控制, 实现快速切换, 从而避免加工过程的不连续情况和事故的出现。
进一步地, 云控制核心节点还包括可扩展的第五 PC子系统, 所述第五 PC子系统包括 CAD软 第 135行 件模块、 CAPP软件模块和 CAM软件模块, 实现 CAD\CAPP\CAM\CNC集成一体化流程的功能。 进一步地, 云测控子节点包括核心控制器和具备独立测控功能的多个 I/O模块, 所述核心控制 器完成的功能包括控制各 I/O分模块实现各需检测信号的采集, 通过信号处理和数据融合处理提取 补偿信号, 接受其它相关云测控子节点的反馈信号进行综合处理, 将处理结果通过实时总线通讯反 馈到云控制核心节点, 接受云控制核心节点发送的微调指令, 并进一步处理成具体控制指令发送给 第】 40行 所在部件的微调驱动单元; 各个 I/O模块主要完成动态、 在线采集传感器信号, 并将信号传送给核 心控制器, 并接受核心控制器的控制命令对微调驱动单元发送控制输出信号。 云测控子节点间根据 具体关联关系, 互相交换状态信息数据, 并根据彼此之间的位置关系和运动控制要求实现在云测控 子节点内部独立的修正控制, 这种云测控子节点内部的自行修正控制也通过发送指令到微调驱动单 元来实现, 微调的状态信息同时反馈给云控制核心节点和与其关联的其它云测控子节点作为进一步 第 145行 修正的反馈信息。 附图说明
图 1为云数控系统结构图;
图 2为云数控系统数据流图;
第 150行 图 3为大云数控系统实现数据流图。
其中:
101 主控功能子系统 102 实时控制功能子系统 103 远程管理功能子系统
104冗余控制功能子系统 105 CAD\CAPP\CAM 集成功能扩展子系统 106 协同配套加工 控制子系统
第 155行 107, 108, 109 云测控子节点 110, 111, 1 12 微调驱动单元 113 实时通讯数据链路
1 14远程通讯数据链路 115, 1 16, 1 17传感器组 118, 1 19, 120 直接驱动单元
121, 122, 123 实时总线驱动单元 124 远程生产调度管理中心 125 远程加工编程服务中心 126 远程技术支持服务中心 127 远程状态监测和故障诊断中心
201 小云数控核心节点主控功能子系统 202 小云数控核心节点实时控制功能子系统 第 160行 203小云数控核心节点远程管理功能子系统 204 小云数控核心节点冗余控制功能子系统
205 小云数控核心节点 CAD\CAPP\CAM集成功能扩展子系统 206协同配套加工控制子系统
207, 208, 209 云测控子节点 210, 211 , 212 微调驱动单元
213, 214, 215 传感器组 216, 217, 218 实时总线驱动单元
219, 220, 221 直接驱动单元 222 远程生产调度管理中心
第 165行 223 远程加工编程服务中心 224 远程技术支持服务中心 225 远程状态监测和故障诊断 中心
301 , 302, 303 执行一个工件的顺序加工流程的数控加工设备所配云数控系统 304, 305 , 306 另一个工件的顺序加工流程的数控加工设备所配云数控系统 第 170行 具体实施方式
本发明专利公开了一种 "云数控系统" 的实现方法。 云数控体系分两个层面, 一是单台设备内 部, 二是配套加工设备之间。 首先将单台数控加工设备作为子单元, 对于子单元加工设备中除数控 系统外的各主要部件, 如数控机床内的电机、 机械运动部件、 底座、 工作台等全部加装各类基于嵌 入式系统的测控单元和微调单元, 实现"小云节点", 获得各独立部件的在线运动状态参数, 并进一 第 175行 步在线调整各部件的运行状态, 同时将各部件运动状态参数反馈回基于 PC架构且具有强大数据处 理能力的数控系统, 进行状态分析和动态反馈微调控制, 实现单台设备内部的 "小云数控", 单台设 备内部的 "小云数控"系统同时具备 CAD\CAPP\CAM集成功能、 远程通讯功能、 生产管理协调功 能等, 以充分提高单台数控加工设备的加工性能; 其次, 在加工过程中, 在线获取单台设备 "小云 数控" 的各种状态参数和加工工件的最终尺寸及误差, 首先通过协同通讯网络将这些参数发送给该 第 180行 工件的下一个采用 "小云数控" 的加工设备以优化进一步的后续加工工作, 同时通过协同通讯网络 传递给与该工件将进行配套装配的其它工件的加工设备独立 "小云数控"系统, 进一步在线调整配 套工件加工的加工误差, 从而实现新的 "大云数控"。
1 ) 小云数控系统
小云数控系统主要由云控制核心节点、 云测控子节点和微调驱动单元组成, 通过实时通讯网络 第 185行 互联形成小云数控系统, 同时通过在线互联网络形成与外部相关组件的通讯工作。
其中, 云控制核心节点主要实现人机操作和主控功能, 各种复杂的信号处理、 组合控制和复合 控制算法的运算与控制指令输出, 远程通讯、 协调管理操作, CAD\CAPP\CAM集成操作等功能的 实现; 云测控子节点主要完成数控加工设备内部各种部件的运行状态信号检测和微调控制信号的产 生, 同时接受云控制核心节点的协调、 管理、 控制指令, 其中一部分子节点根据具体需要配合云控 第 190行 制核心节点完成核心的实时控制功能实现, 各独立的云测控子节点之间根据其内在有机联系实现合 理连接, 实现 "交互式协作测控"功能; 微调控制单元接受云测控子节点的指令完成对各自针对部 件的微调控制执行操作; 实时通讯网络构成云控制核心节点内部、 云控制核心节点与云测控子节点 之间、 云测控子节点之间的在线数据传递功能; 在线互联网络完成云控制核心节点与外部相关组件 之间的通讯功能。
第 195行 a) 云控制核心节点
云控制核心节点采用开放式、 软件化 PC+1/O 结构数控系统为基础, 充分发挥开放式、 软件化 PC数控系统所具备的超强计算能力、 通讯能力、 扩展能力。 云控制核心节点基本结构包括四套独立 工业 PC子系统, 同时具备根据需求扩展更多独立 PC系统的能力, 这四套独立工业 PC子系统分别 实现主控功能、 实时控制功能、 远程通讯管理功能、 冗余控制功能, 彼此之间采用实时通讯总线互 第 200行 联, 形成并行处理模式, 完成核心的加工程序编译、 多轴运动轨迹插补、 加减速控制、 刀具补偿控 制、 机床误差综合补偿控制、 复合控制、 远程加工调度管理等功能, 并通过扩展第五套工业 PC子 系统完成 CAD\CAPP\CAM的集成功能,且可根据深入的需求进一步扩展多套工业 PC子系统实现其 它相关功能, 如在线尺寸和精度检测、 三维逆向功能等。
其中, 第一套完成主控功能的工业 PC子系统(子系统 1 )主要完成的功能包括人机交互、 数控 第 205行 加工程序编译、 数控加工代码检査和仿真验证、 系统软 /硬件自定义配置和外接扩展接口、 实时总线 通讯 (与云控制核心节点内其它乎系统, 且与云测控子节点实现)、 复杂信号处理 \组合控制\复合控 制算法运算、 远程管理\调度 \协调等相关功能, 可以选择采用 PCI、 PCIE、 ISA. Compact-PCK PXK VXI等多种计算机通用总线体系结构, 配以各种总线通讯功能板卡和多功能 I/O板卡用于功能实现; 该子系统软件部分主要包括人机接口\主控处理\冗余处理软件模块、协同配套加工控制子系统修正信 第 210行 息处理软件模块、 加工轨迹修正控制软件模块、 插补控制软件模块和云测控子节点反馈信息处理软 件模块等; 该子系统为云控制核心节点并行处理主程序运行机, 与其他子系统进行并行处理, 并行 处理数据链路实现数据交互。
其中, 第二套完成实时控制功能的工业 PC子系统(子系统 2 )主要完成的功能包括多轴运动轨 迹插补、 加减速控制、 刀具补偿控制、 机床误差综合补偿控制(与云测控子节点配合实现)、 复合控 第 215行 制(与云测控子节点配合实现)、 实时总线通讯(与云控制核心节点内其它子系统, 且与云测控子节 点实现) 等功能, 采用 PCI、 PCIE、 ISA、 Compact-PCL PXI、 VXI 等多种计算机通用总线体系结 构, 配以各种总线通讯功能板卡和多功能 I/O板卡用于功能实现对直接驱动单元和实时总线驱动单 元的控制; 该子系统软件部分主要包括实时加工轨迹修正控制软件模块、 云测控子节点反馈信息实 时处理软件模块、 微调控制信号输出软件模块、 实时插补、 刀具补偿、 加减速处理、 控制输出软件 第 220行 模块和冗余处理软件模块; 该子系统服从子系统 1的监控与管理, 与子系统 1实时并行工作。
其中, 第三套完成远程管理功能的工业 PC子系统(子系统 3 )主要完成的功能包括远程生产调 度管理、 远程状态监测和故障诊断、 远程编程、 远程技术支持和技术升级等功能, 从而实现异地、 远距离的各种服务中心提供的各种服务功能; 该子系统软件部分包括远程生产管理软件模块、 远程 编程服务软件模块、 远程技术服务软件模块、 远程状态监测和故障处理软件模块; 该子系统可以跟 第 225行 子系统 1、 2、 4和扩展子系统 5进行并行处理, 将远程服务功能在其它子系统中具体实现。 其中, 第四套完成冗余控制功能的工业 PC子系统 (子系统 4 ) 主要作为子系统 2的冗余系统, 在子系统 2出现问题的时候, 通过子系统 1的调度控制, 实现快速切换, 从而避免加工过程的不连 续情况和事故的出现。 该子系统的具体硬件配置同子系统 2。
其中, 第五套完成 CAD\CAPP\CAM 集成功能的工业 PC 子系统 (扩展子系统 5 ) 主要运行 第 230行 CAD\CAPP\CAM 软件, 包括 CAD 软件模块、 CAPP 软件模块和 CAM 软件模块, 实现 CAD\CAPP\CAM\CNC集成一体化流程的功能。
b ) 云测控子节点
云测控子节点安装在数控机床和数控加工设备各组成部件内部, 进行动态、 在线检测的信号包 括速度、 位移、 加速度、 振动、 冲击、 温度、 电压、 电流、 力矩、 变形、 应力等, 采用的传感器主 第 235行 要由电、 磁、 光学、 应力应变、 流量、 压力等组成, 将补偿信号反馈到 "云控制核心节点"形成大 闭环补偿控制, 也可以经过交叉耦合控制方式实现各子节点之间的微调驱动控制。 一部分子节点根 据具体需要配合云控制核心节点完成核心的实时控制功能实现, 如对于几个主运动轴的电机驱动部 分的云测控子节点, 可以采取接收云控制核心节点的指令, 直接进行电机驱动输出, 并优化电机驱 动电气参数的方式。
第 240行 云测控子节点由于需要安装在数控机床和数控加工设备各组成部件内部,必须保证具有体积小、 安装方便、 可靠性高、 实时通讯灵活等特点, 因此主要采用嵌入式系统为基础进行实现, 采用模块 化结构设计, 即由核心控制器加各完成独立测控功能的 I/O模块来组成,根据不同的需求调整 I/O模 块的类型和数量来实现。
其中, 云测控子节点的核心控制器需要完成的功能包括控制各 I/O分模块实现各需检测信号的 第 245行 采集, 通过信号处理和数据融合处理提取补偿信号, 接受其它相关云测控子节点的反馈信号进行综 合处理, 将处理结果通过实时总线通讯反馈到云控制核心节点, 接受云控制核心节点发送的微调指 令, 并进一步处理成具体控制指令发送给所在部件的微调驱动单元等。 云测控子节点间根据具体关 联关系, 互相交换状态信息数据, 并根据彼此之间的位置关系和运动控制要求实现在云测控子节点 内部独立的修正控制, 这种云测控子节点内部的自行修正控制也通过发送指令到微调驱动单元来实 第 250行 现, 微调的状态信息同时反馈给云控制核心节点和与其关联的其它云测控子节点作为进一步修正的 反馈信息。 '
其中, 云测控子节点的各独立 I/O模块主要完成动态、 在线采集由电、 磁、 光学、 应力应变、 流量、 压力等传感器检测的速度、 位移、 加速度、 振动、 冲击、 温度、 电压、 电流、 力矩、 变形、 应力等信号, 传送给云测控子节点核心控制器, 并接受云测控子节点核心控制器的控制命令对微调 第 255行 驱动单元发送控制输出信号等。
其中, 云测控子节点的软件部分主要包括状态测试软件模块、 微调控制软件模块和交叉耦合控 制软件模块。
c ) 微调驱动单元
云测控子节点的微调驱动单元主要完成的功能包括接受云测控子节点的控制输出信号, 实现各 第 260行 机械部分的微调驱动(如自动间隙补偿驱动、 自动配重调整、 温度调整驱动等)、 电气元件的运行参 数优化、 运动轨迹微调优化等功能。
微调驱动单元主要采取的方式有运动驱动方式、 温度调整方式、 电气参数优化、 运动轨迹微动 驱动等, 涉及的结构种类很多, 包含电气部件、 机械部件、 冷却 \升温部件、 微动部件等。
小云数控系统的实现, 也需要有数控加工设备的设计和制造基础, 因为云测控子节点的出现, 第 265行 改变了传统数控加工设备的组成结构, 变整体式为模块式, 将传统的机械部件植入了具有电子调节 和反馈控制的测控单元, 为数控加工设备增加了更多的 "活力", 也就会进一步提升数控加工设备的 灵活性与加工性能。
小云数控系统的关键是以开放式、软件化结构多通用工业 PC并行处理的 PC数控系统为核心节 点, 配合更多嵌入式系统子节点, 形成新型的 "云计算"和 "云控制"结构, 加上变被动为主动的 第 270行 将加工设备内部各组成部件配套动态检测和微调单元, 彻底改变了传统数控系统的结构。 2 ) 大云数控系统
相对于 "小云数控系统"直接针对单台数控加工设备的整体控制, "大云数控系统"则将注意力 放到了 "云制造"模式中虚拟动态联盟企业内部各独立数控加工设备之间的协同配套加工控制上。
传统的生产流程中, 一个完整的部件需要很多零件单独加工, 然后最终组装到一起, 每个零件 第 275行 都按照图纸设计的尺寸及公差来进行加工, 零件通过检验符合尺寸和公差要求, 就成为合格品, 可 以与其它零件进行组装。 但公差本身就是一个范围, 因此就具有一定的不确定性, 以最简单的孔与 轴的配合为例, 假设轴的尺寸公差为 ^I OO ^ 2, 孔的尺寸公差为 而一根加工好的轴尺寸 为 Φ100, 与之配套的孔的尺寸为 Φ100.01 , 这样的组装成为了间隙配合; 而另一根加工好的轴尺寸 为 Φ 100.01 , 而与之配套的孔的尺寸为 Φ100, 这样的组装则成为了过盈配合。 这样的两套轴与孔在 第 280行 实际应用中的效果差别还是比较大的。 实际加工生产中, 越是复杂的零件组装, 越会出现这样的问 题, 因此经常会有一个零件不行, 换另一个上就可以, 但这次组装效果不好的零件与其它配套反而 又好用了的现象, 这种不确定性实际上对装配的质量和效率是有一定不利影响的。 因此近年来对于 高精度加工的需求越来越猛烈, 但高精度加工需要的成本很高, 如何既满足装配要求, 又不需要太 高成本, 这就成为了不好解决的问题。 这一切都跟实际加工中的许多因素有关, 但关键问题在于组 第 285行 装在一起的不同零件实际上是 "背对背"独立加工的, 因此造成了这种不确定性的存在。
针对这样的问题, 本发明提出了 "大云数控系统"的实现方法, 即利用 "小云数控系统"具备 的在零件加工过程中动态、 在线监测的功能, 将零件的动态加工参数及误差在线、 实时传递给加工 与之配套零件的数控加工设备或对该工件进行下一个加工步骤的数控加工设备, 实现 "交互式协同 加工"的新型生产模式, 也可以将这种加工模式简单称为 "虚拟装配在线加工模式"。
第 290行 "大云数控系统"必须以 "小云数控系统"为基础, 由于 "小云数控系统"是采用开放式、 软 件化结构多通用工业 PC并行处理的 PC数控系统为核心节点, 因此很容易扩展一套独立的工业 PC 用作远程交互协作加工, 实现协同配套加工控制子系统, 这套协同配套加工控制子系统也与 "小云 数控系统" 内部的其它工业 PC 并行工作且数据共享, 进一步保证了 "交互式协同加工"实现的可 行性。
第 295行 大云数控系统的功能主要包括获取被加工工件在上一个加工步骧中最终的加工误差信息, 提供 给小云数控系统, 使其根据实际加工精度要求进行修正控制; 在加工过程中, 在线获取小云数控系 统实时获得的各种运行状态参数, 进一步采取数据融合分析出工件在线加工中的实时加工误差, 并 预测随后的在线加工误差, 将这些信息实时传递给需要配套装配工件的数控加工设备, 同时接受配 套装配工件数控加工设备传递过来的对应信息,进行分析处理后提供给小云数控系统进行修正控制; 第 300行 并在工件加工完成后通过现场测量方式将被加工工件的最终误差传递给完成下一个加工步骤的数控 加工设备的云数控系统, 以优化下一步的加工工作。
大云数控系统是在小云数控系统的基础上再配加一台独立的工业 PC 系统 (协同配套加工控制 子系统 6), 以小云数控系统的实时通讯网络和远程互联网络为通讯基础实现以上功能。 协同配套加工控制子系统的软件部分主要包括远程通讯软件模块、 数据分析及修正算法软件模块、 第 305行 串行处理软件模块和并行处理软件模块。 其中:
远程通讯软件模块用于与串行加工与配套装配加工的数控加工设备的数控系统进行信息交互; 数据分析及修正算法软件模块用于根据远程通讯软件模块与串行加工与配套装配加工的数控加工设 备的数控系统进行信息交互的获得的各种信息, 以及本台数控加工设备中小云数控系统获得的各种 在线加工参数和状态信息, 进行加工轨迹的分析和修正处理;
第 310行 串行处理软件模块和并行处理软件模块用于将数据分析和修正算法软件模块的处理结果分别进 行独立处理, 获得串行加工和并行配套装配加工所需的数据格式, 首先传送给本台数控加工设备中 小云数控系统的主控子系统中的协同配套加工修正信息处理软件模块进一步执行后续工作, 同时返 回给数据分析及修正算法软件模块, 再通过远程通讯软件模块传送给与串行加工与配套装配加工的 数控加工设备的数控系统进行信息交互。 第 315行 "大云数控" 的关键技术之一实际上是如何充分利用 "小云数控系统"获得的对方设备动态加 工信息通过数据融合方式获得真实零件的加工误差, 并预测对方零件加工的下一步可能误差, 从而 及时调整自身的 "小云数控系统", 并反馈给对方信息, 驱使对方也进一步调整加工过程。
"大云数控" 同时需要采用交叉耦合、 自学习和同步控制算法来实现 "交互式"控制功能, 以 保证多方动态优化和完善加工过程, 最终达到 "全局最优" 的结果。
第 320行 "大云数控"模式, 可以有效提高不同数控加工设备由于各种因素造成的零件匹配误差问题, 避免 "背对背加工"最终造成的组装和装配精度差、 修配周期长、 返修或二次加工等问题。
"大云数控" 的提出, 已经超越了传统意义上的数控系统定义, 进入了 "云制造"模式中质量 保证体系的范畴, 它的实现, 将为 "云制造"模式的真正有效使用提供一个生产设备层面的坚实基 础。
第 325行 这种新的 "云数控体系"实现技术, 不仅对某一企业内部生产设备之间质量管理, 而且对敏捷 制造和 "云制造" 中各虚拟动态联盟企业内部的生产设备层质量管理有机整合在一起, 通过和分布 式 "云计算"控制和在线误差传递方式, 有效提高各被加工部件的加工精度和与其它工件的整体装 配精度, 对于环境因素、 加工工艺、 单台设备精度、 安装精度、 刀具精度等各方面产生的综合误差 影响提供了一个崭新的有效控制手段, 避免了 "背对背加工"造成的组装和装配精度差、 修配周期 第 330行 长、返修或二次加工等问题的出现, 实现了众多配套的独立加工设备之间的交互式协同加工的模式, 同时对生产管理层进行调整和完善配套加工的质量提供了良好的反馈手段。
云数控系统分为小云数控系统和大云数控系统两部分, 下面分别进行介绍。
1、 小云数控系统
小云数控系统由云控制核心节点、 云测控子节点和微调驱动单元组成, 主要完成单台数控加工 第 335行 设备的控制功能。 云控制核心节点主要实现人机操作和主控功能, 各种复杂的信号处理、 组合控制 和复合控制算法的运算与控制指令输出, 远程通讯、 协调管理操作, CAD\CAPP\CAM集成操作等 功能的实现; 云测控子节点主要完成数控加工设备内部各种部件的运行状态信号检测和微调控制信 号的产生, 同时接受云控制核心节点的协调、 管理、 控制指令, 其中一部分子节点根据具体需要配 合云控制核心节点完成核心的实时控制功能实现, 各独立的云测控子节点之间根据其内在有机联系 第 340行 实现合理连接, 实现 "交互式协作测控"功能; 微调控制单元接受云测控子节点的指令完成对各自 针对部件的微调控制执行操作; 实时通讯网络构成云控制核心节点内部、 云控制核心节点与云测控 子节点之间、 云测控子节点之间的在线数据传递功能; 在线互联网络完成云控制核心节点与外部相 关组件之间的通讯功能。
1 ) 云控制核心节点
第 345行 云控制核心节点采用开放式、 软件化 PC+I/0 结构数控系统为基础, 充分发挥开放式、 软件化
PC数控系统所具备的超强计算能力、 通讯能力、扩展能力。 云控制核心节点基本结构包括四套独立 工业 PC子系统, 同时具备根据需求扩展更多独立 PC系统的能力, 这四套独立工业 PC子系统分别 实现主控功能、 实时控制功能、 远程通讯管理功能、 冗余控制功能, 彼此之间采用实时通讯总线互 联, 形成并行处理模式, 完成核心的加工程序编译、 多轴运动轨迹插补、 加减速控制、 刀具补偿控 第 350行 制、 机床误差综合补偿控制、 复合控制、 远程加工调度管理等功能, 并通过扩展第五套工业 PC子 系统完成 CAD\CAPP\CAM的集成功能,且可根据深入的需求进一步扩展多套工业 PC子系统实现其 它相关功能, 如在线尺寸和精度检测、 三维逆向功能等。
在图 1 中, 小云数控系统的云控制核心节点主要包括 101、 102、 103、 104、 105、 113、 114几 个部分, 其中:
第 355行 101 为主控功能子系统, 主要完成的功能包括人机交互、 数控加工程序编译、 数控加工代码检 查和仿真验证、 系统软 /硬件自定义配置和外接扩展接口、 实时总线通讯(与云控制核心节点内其它 子系统, 且与云测控子节点实现)、复杂信号处理 \组合控制\复合控制算法运算、远程管理\调度 \协调 等相关功能, 可以选择采用 PCI、 PCIE、 ISA, Compact-PCK PXI、 VXI 等多种计算机通用总线体 系结构, 配以各种总线通讯功能板卡和多功能 I/O板卡用于功能实现; 该子系统软件部分主要包括 第 360行 人机接口\主控处理\冗余处理软件模块、协同配套加工修正信息处理软件模块、加工轨迹修正控制软 件模块、 插补控制软件模块和云测控子节点反馈信息处理软件模块等; 该子系统为云控制核心节点 并行处理主程序运行机, 与其他子系统进行并行处理, 并行处理数据链路实现数据交互。
102 为实时控制功能子系统, 主要完成的功能包括多轴运动轨迹插补、 加减速控制、 刀具补偿 控制、 机床误差综合补偿控制(与云测控子节点配合实现)、 复合控制(与云测控子节点配合实现)、 第 365行 实时总线通讯(与云控制核心节点内其它子系统,且与云测控子节点实现)等功能,采用 PCi、 PCIE、
ISA, Compact-PCK PXI、 VXI等多种计算机通用总线体系结构, 配以各种总线通讯功能板卡和多 功能 I/O板卡用于功能实现对直接驱动单元(1 18、 119、 120)和实时总线驱动单元(121、 122、 123 ) 的控制; 该子系统软件部分主要包括实时加工轨迹修正控制软件模块、 云测控子节点反馈信息实时 处理软件模块、 微调控制信号输出软件模块、 实时插补、 刀具补偿、 加减速处理、 控制输出软件模 第 370行 块和冗余处理软件模块; 该子系统服从子系统 1的监控与管理, 与子系统 101实时并行工作。
103 为远程管理功能子系统, 主要完成的功能包括远程生产调度管理、 远程状态监测和故障诊 断、 远程编程、 远程技术支持和技术升级等功能, 从而实现异地、 远距离的各种服务中心提供的各 种服务功能; 该子系统软件部分包括远程生产管理软件模块、 远程编程服务软件模块、 远程技术服 务软件模块、 远程状态监测和故障处理软件模块; 该子系统可以跟子系统 101、 102、 104和扩展子 第 375行 系统 105进行并行处理, 将远程服务功能在其它子系统中具体实现。
104为冗余控制功能子系统, 主要作为子系统 102的冗余系统, 在子系统 102出现问题的时候, 通过子系统 101 的调度控制, 实现快速切换, 从而避免加工过程的不连续情况和事故的出现。 该子 系统的具体硬件配置同子系统 102。
105为 CAD\CAPP\CAM集成功能的工业 PC子系统, 主要运行 CAD\CAPP\CAM软件, 包括 第 380行 CAD软件模块、 CAPP软件模块和 CAM软件模块, 实现 CAD\CAPP\CAM\CNC集成一体化流程的 功能。
U3为实时通讯数据链路,采用实时通讯总线实现云控制核心节点内部 101、 102、 103、 104、 105 之间, 及与云测控子节点和协同配套加工控制子系统之间的实时通讯功能。
114为远程通讯数据链路, 采用有线或无线互联网络实现云控制核心节点中 103与各远程服务 第 385行 中心 124 (远程生产调度管理中心)、 125 (远程加工编程服务中心)、 126 (远程技术支持服务中心)、
127 (远程状态监测和故障诊断中心)之间的远程通讯功能, 以及协同配套加工控制子系统 106和与 之配套加工的其它云数控系统之间的远程通讯功能。
124 为远程生产调度管理中心, 它根据调度管理中心具体需求提供调度指令, 发给子系统 103 实现远程加工调度管理。
第 390行 125为远程加工编程服务中心,它可以根据用户具体需求,将定制的加工程序发送到子系统 103, 由子系统 103转发给子系统 101, 帮助用户实现特定工件的加工编程服务。
126 为远程技术支持服务中心, 它可以根据用户具体需求, 进行各种技术支持服务, 并可以提 供技术升级服务。
127为远程状态监测和故障诊断中心, 它根据子系统 101和 102结合云测控子节点对加工设备 第 395行 整体进行的状态监测和故障预处理, 实现远程状态监测和故障诊断、 分析、 处理的功能。
2 ) 云测控子节点
云测控子节点安装在数控机床和数控加工设备各组成部件内部, 进行动态、 在线检测的信号包 括速度、 位移、 加速度、 振动、 冲击、 温度、 电压、 电流、 力矩、 变形、 应力等, 采用的传感器主 要由电、 磁、 光学、 应力应变、 流量、 压力等组成, 将补偿信号反馈到 "云控制核心节点"形成大 第 400行 闭环补偿控制, 也可以经过交叉耦合控制方式实现各子节点之间的微调驱动控制。一部分子节点根 据具体需要配合云控制核心节点完成核心的实时控制功能实现, 如对于几个主运动轴的电机驱动部 分的云测控子节点, 可以采取接收云控制核心节点的指令, 直接进行电机驱动输出, 并优化电机驱 动电气参数的方式。
在图 1中, 107、 108、 109分别代表安装在不同数控加工设备各部件上的云测控子节点, 115、 第 405行 116、 117为与云测控子节点配套的传感器组。
云测控子节点由核心控制器加各完成独立测控功能的 I/O模块来组成,根据不同的需求调整 I/O 模块的类型和数量来实现在线状态检测功能和对微调驱动单元的控制功能。 各独立的云测控子节点 之间根据其内在有机联系实现合理连接, 实现交互式协作测控功能, 云测控子节点间根据具体关联 关系, 互相交换状态信息数据, 并根据彼此之间的位置关系和运动控制要求实现在云测控子节点内 第 410行 部独立的修正控制,这种云测控子节点内部的自行修正控制也通过发送指令到微调驱动单元来实现, 微调的状态信息同时反馈给云控制核心节点和与其关联的其它云测控子节点作为进一步修正的反馈 信息。
3 ) 微调驱动单元
云测控子节点的微调驱动单元主要完成的功能包括接受云测控子节点的控制输出信号, 实现各 第 415行 机械部分的微调驱动(如自动间隙补偿驱动、 自动配重调整、 温度调整驱动等)、 电气元件的运行参 数优化、 运动轨迹微调优化等功能。 在图 1 中 1 10、 1 11、 112分别代表安装在不同数控加工设备各 部件上与云测控子节点配套的微调驱动单元。
2、 大云数控系统
大云数控系统主要完成不同的设备之间的 "交互式协同加工"功能。 大云数控系统的功能主要 第 420行 包括获取被加工工件在上一个加工步骤中最终的加工误差信息, 提供给小云数控系统, 使其根据实 际加工精度要求进行修正控制; 在加工过程中, 在线获取小云数控系统实时获得的各种运行状态参 数, 进一步采取数据融合分析出工件在线加工中的实时加工误差, 并预测随后的在线加工误差, 将 这些信息实时传递给需耍配套装配工件的数控加工设备, 同时接受配套装配工件数控加工设备传递 过来的对应信息, 进行分析处理后提供给小云数控系统进行修正控制; 并在工件加工完成后通过现 第 425行 场测量方式将被加工工件的最终误差传递给完成下一个加工步骤的数控加工设备的云数控系统, 以 优化下一步的加工工作。
大云数控系统是在小云数控系统的基础上再配加一台独立的工业 PC系统 (协同配套加工控制 子系统), 以小云数控系统的实时通讯网络和远程互联网络为通讯基础实现以上功能。 在图 1中 106 表示大云数控系统。
第 430行 协同配套加工控制子系统的软件部分主要包括远程通讯软件模块、 数据分析及修正算法软件模 块、 串行处理软件模块和并行处理软件模块。 其中:
远程通讯软件模块用于与串行加工与配套装配加工的数控加工设备的数控系统进行信息交互; 数据分析及修正算法软件模块用于根据远程通讯软件模块与串行加工与配套装配加工的数控加工设 备的数控系统进行信息交互的获得的各种信息, 以及本台数控加工设备中小云数控系统获得的各种 第 435行 在线加工参数和状态信息, 进行加工轨迹的分析和修正处理;
串行处理软件模块和并行处理软件模块用于将数据分析和修正算法软件模块的处理结果分别进 行独立处理, 获得串行加工和并行配套装配加工所需的数据格式, 首先传送给本台数控加工设备中 小云数控系统的主控子系统 ( 101 ) 中的协同配套加工修正信息处理软件模块进一步执行后续工作, 同时返回给数据分析及修正算法软件模块, 再通过远程通讯软件模块传送给与串行加工与配套装配 第 440行 加工的数控加工设备的数控系统进行信息交互。
图 2为云数控系统数据流图, 主要运行流程如下所述:
1 ) 系统启动后, 各子系统分别进行自检, 出问题则进行故障处理;
2 ) 远程管理功能子系统 203分别运行远程加工调度服务处理、 远程系统升级服务处理、 远程 数控编程服务处理, 如果这三个处理步骤有来自各远程中心 (远程生产调度管理中心 222、 远程加 第 445行 工编程服务中心 223和远程技术支持服务中心 224 ) 的指令和处理要求, 分别进行对应处理, 之后 运行远程状态监测和故障处理服务, 并与远程状态监测和故障诊断服务中心建立通讯;
3 ) 远程管理功能子系统 203中的远程生产管理软件模块根据远程生产调度管理中心 222的指 令进行处理, 并将处理结果传送到主控子系统 201中进行具体操作;
4) 远程管理功能子系统 203中的远程编程服务软件模块根据远程加工编程服务中心 223的指 第 450行 令进行处理, 并将加工程序传送到 CAD\CAPP\CAM集成功能扩展子系统 205中, 顺序通过 205的 CAD软件模块、 CAPP软件模块和 CAM软件模块的处理, 将最初处理结果发送到主控子系统 201 中的加工轨迹修正控制软件模块;
5 ) 协同配套加工控制子系统 206通过其内部的远程通讯软件模块接受外来配套加工信息, 经 过 206的数据分析及修正算法软件模块将信息分解为串行加工信息和并行配套加工信息, 分别发送 第 455行 给 206的串行处理软件模块和并行处理软件模块进行处理, 并将处理结果发送给主控子系统 201中 的协同配套加工修正信息处理软件模块进行处理;
6 ) 主控子系统 201中的人机接口 \主控处理\冗余处理软件模块启动管理,结合协同配套加工修 正信息处理软件模块共同将各种指令信息发送到加工轨迹修正控制软件模块, 加工轨迹修正控制软 件模块根据 CAD\CAPP\CAM集成功能扩展子系统发送来的加工程序和接受到的其它信息进行综合 第 460行 计算, 计算出的加工轨迹信息发送给插补控制软件模块, 启动实时加工控制;
7) 主控子系统 201 中的插补控制软件模块将加工轨迹信息发送给实时控制子系统 202中的实 时加工轨迹修正控制软件模块进行处理, 实时加工轨迹修正控制软件模块将控制信息分为两路, 一 路是运动控制信息, 顺序发送给实时插补、 刀具补偿、 加减速处理和控制输出部分, 直接驱动实时 总线驱动单元 216、 217、 218和直接驱动单元 219、 220、 221进行运动轨迹和辅助功能控制; 另一 第 465行 路是补偿控制信息, 发送给微调控制信号输出软件模块, 并进一步发送给云测控子节点 207、 208、
209;
8 ) 云测控子节点 207、 208、 209启动运行, 首先通过云测控子节点 207、 208、 209内部的状 态测试软件模块接收传感器组 213、 214、 215反馈的状态信息, 并分别反馈给主控子系统 201中的 云测控子节点反馈信息处理软件模块、 实时控制控制子系统 202中的云测控子节点反馈信息实时处 第 470行 理软件模块和冗余控制子系统 204中的云测控子节点反馈信息实时处理软件模块; 同时云测控子节 点 207、 208、 209内部的微调控制软件模块既接受状态测试软件模块的反馈信息, 又接收实时控制 子系统 202或冗余控制子系统 204中微调控制信号输出软件模块发出的微调控制信号, 还接受交叉 耦合控制软件模块处理发出的交叉耦合微调信息, 综合形成对微调驱动单元 210、 211、 212的微调 控制;
第 475行 9 ) 主控子系统 201根据云测控子节点 207、 208、 209反馈的状态信息, 首先通过加工轨迹修 正控制软件模块进行加工轨迹修正处理, 并进一步发送给插补控制软件模块发送给实时控制子系统 202和冗余控制子系统 204进行实时处理; 其次将反馈信息发送给协同配套加工修正信息处理软件 模块进行处理, 并发送给协同配套加工控制子系统 206中的串行处理软件模块和并行处理软件模块 进行处理, 进一步经过数据分析及修正算法软件模块将处理结果通过远程通讯网络发送给配套加工 第 480行 设备的数控系统实现 "交互式协同加工"; 同时根据反馈信息由人机接口\主控处理\冗余处理软件模 块进行状态判断, 确认继续采用实时控制子系统 202进行实时控制, 还是采用冗余控制子系统 204 进行切换完成实时控制, 通过发送信号给实时控制子系统 202和冗余控制子系统中的冗余处理软件 模块进行切换处理;
10 ) 云测控子节点 207、 208、 209同时将通过状态测试软件模块采集的传感器组 213、 214、 第 485行 215 反馈信号, 经过微调控制软件模块处理后, 再通过交叉耦合控制软件模块发送到其它云测控子 节点的交叉耦合控制软件模块, 完成交叉耦合补偿控制处理;
11 ) 远程管理功能子系统 203中的远程状态监测和故障处理模块接收主控子系统 201综合处理 后的状态信息进行状态监测和故障预处理, 并发送给远程状态监测和故障诊断中心进行相应处理;
12 ) 主控子系统 201、 实时控制子系统 202、 冗余控制子系统 204、 远程管理功能子系统 203、 第 490行 协同配套加工控制子系统 206、 云测控子节点 207\208\209和微调驱动单元 210\211\212—直并行运 行, 完成整个云数控功能的实现, 直至加工结束。
图 3为大云数控实现数据流示意图, 其中 301, 302, 303为执行一个工件的顺序加工流程的数 控加工设备所配云数控系统; 304, 305 , 306 为另一个工件的顺序加工流程的数控加工设备所配云 数控系统; 302和 305所控制的数控加工设备完成的工件被加工部分需要进行装配。 具体流程如下 第 495行 所述:
1 ) 云数控系统 301和 304分别通过数据分析及修正算法软件模块处理出来的其对于工件的加 工过程状态参数和综合加工误差通过其远程通讯软件模块分别传送给云数控系统 302和 305,由 302 和 305中的串行处理软件模块进行处理, 并传送给数据分析和修正算法软件模块进行串行加工修正 处理;
第 500行 2) 由于云数控系统 302和 305所控制数控加工设备进行加工的工件被加工部分需要进行配套 装配, 因此 302和 305需要进行同步加工, 即二者在加工的过程中, 将其分别通过小云数控系统获 得的状态参数信息互传给对方, 通过各自的数据分析和修正算法软件模块进行并行配套加工修正处 理, 并再传送给各自的小云数控系统实现同步加工;
3 ) 云数控系统 302和 305加工结束后, 再将其分别获得的加工过程状态参数和综合加工误差 第 505行 通过其远程通讯软件模块分别传送给云数控系统 303和 306, 进一步完成串行加工处理, 直至最终 完整工件加工完毕。
尽管己根据较佳实施方式对本发明进行了描述, 但是应该理解, 在不背离权利要求书所阐明的 真实精神和范围的情况下可以做出各种改变和修改。

Claims

权利要求书
1、 一种云数控系统, 用于单台数控加工设备的控制, 其特征在于: 该云数控系统包括云控制核 心节点、 云测控子节点、 微调驱动单元、 实时通信网络和在线互联网络, 其中,
第 5行 云控制核心节点主要实现人机操作和主控功能, 还实现各种复杂的信号处理、 组合控制和复合 控制算法的运算与控制指令输出, 远程通讯、 协调管理操作功能, 云控制核心节点包括第一 PC子 系统、 第二 PC子系统、 第三 PC子系统和第四 PC子系统, 第一至第四 PC子系统分别实现主控功 能、 实时控制功能、 远程通讯管理功能、 冗余控制功能;
云测控子节点主要完成各种部件的运行状态信号检测和微调控制信号的产生, 同时接受云控制 第 10行 核心节点的协调、 管理、 控制指令, 其中一部分子节点根据具体需要配合云控制核心节点完成核心 的实时控制功能实现, 各独立的云测控子节点之间根据其内在有机联系实现合理连接, 实现交互式 协作测控功能;
微调驱动单元接受云测控子节点的指令完成对各自针对数控加工设备内部部件的微调控制执行 操作;
第 15行 实时通讯网络构成云控制核心节点内部、 云控制核心节点与云测控子节点之间、 云测控子节点 之间的在线数据传递功能;
在线互联网络完成云控制核心节点与外部相关组件之间的通讯功能。
2、 如权利要求 1所述的云数控系统, 其中,
第一 PC子系统包括人机接口 \主控处理\冗余处理软件模块、 协同配套加工修正信息处理软件模 第 20行 块、 加工轨迹修正控制软件模块、 插补控制软件模块和云测控子节点反馈信息处理软件模块, 第一 PC子系统为云控制核心节点并行处理主程序运行机, 与其他 PC子系统进行并行处理, 并行处理数 据链路实现数据交互;
第二 PC 子系统包括实时加工轨迹修正控制软件模块、 云测控子节点反馈信息实时处理软件模 块、 微调控制信号输出软件模块、 实时插补、 刀具补偿、 加减速处理、 控制输出软件模块和冗余处 第 25行 理软件模块, 第二 PC子系统服从第一 PC子系统的监控与管理;
第三 PC子系统包括远程生产管理软件模块、 远程编程服务软件模块、 远程技术服务软件模块、 远程状态监测和故障处理软件模块, 实现远程生产调度管理、远程状态监测和故障诊断、 远程编程、 远程技术支持和技术升级功能;
第四 PC子系统包括实时加工轨迹修正控制软件模块、 云测控子节点反馈信息实时处理软件模 第 30行 块、 微调控制信号输出软件模块、 实时插补、 刀具补偿、 加减速处理、 控制输出软件模块和冗余处 理软件模块, 第四 PC子系统作为第二 PC子系统的冗余系统, 在第二 PC子系统出现故障时, 通过 第一 PC子系统的调度控制, 实现快速切换, 从而避免加工过程的不连续情况和事故的出现。
3、 如权利要求 2所述的云数控系统, 所述云控制核心节点还包括可扩展的第五 PC子系统, 所 述第五 PC子系统包括 CAD软件模块、 CAPP软件模块和 CAM软件模块,实现 CAD\CAPP\CAM\CNC 第 35行 集成一体化流程的功能。
4、如权利要求 1所述的云数控系统, 所述云测控子节点包括核心控制器和具备独立测控功能的 多个 I/O模块,所述核心控制器完成的功能包括控制各 I/O分模块实现各需检测信号的采集,通过信 号处理和数据融合处理提取补偿信号, 接受其它相关云测控子节点的反馈信号进行综合处理, 将处 理结果通过实时总线通讯反馈到云控制核心节点, 接受云控制核心节点发送的微调指令, 并进一步 第 40行 处理成具体控制指令发送给所在数控加工设备内部部件的微调驱动单元; 各个 I/O模块主要完成动 态、 在线采集传感器信号, 并将信号传送给核心控制器, 并接受核心控制器的控制命令对微调驱动 单元发送控制输出信号, 云测控子节点间根据具体关联关系, 互相交换状态信息数据, 并根据彼此 之间的位置关系和运动控制要求实现在云测控子节点内部独立的修正控制, 这种云测控子节点内部 的自行修正控制也通过发送指令到微调驱动单元来实现, 微调的状态信息同时反馈给云控制核心节 第 45行 点和与其关联的其它云测控子节点作为进一步修正的反馈信息。
5、 一种云数控系统, 用于多台数控加工设备的协同配套加工控制, 其特征在于: 该云数控系统 包括协同配套加工控制子系统、 云控制核心节点、 云测控子节点、 微调驱动单元、 实时通信网络和 在线互联网络, 其中,
协同配套加工控制子系统主要完成不同的设备之间的交互式协同加工功能,协同配套加工控制 第 50行 子系统的功能主要包括获取被加工工件在上一个加工步骤中最终的加工误差信息, 提供给云控制核 心节点、 云测控子节点、 微调驱动单元, 使其根据实际加工精度要求进行修正控制; 在加工过程中, 在线获取由云控制核心节点、 云测控子节点、 微调驱动单元、 实时通信网络和在线互联网络共同实 时获得的各种运行状态参数, 进一步采取数据融合分析出工件在线加工中的实时加工误差, 并预测 随后的在线加工误差, 将这些信息实时传递给需要配套装配工件的数控加工设备, 同时接受配套装 第 55行 配工件数控加工设备传递过来的对应信息, 进行分析处理后提供给小云数控系统进行修正控制; 并 在工件加工完成后通过现场测量方式将被加工工件的最终误差传递给完成下一个加工步骤的数控加 工设备的云数控系统, 以优化下一步的加工工作;
云控制核心节点主要实现人机操作和主控功能, 实现各种复杂的信号处理、 组合控制和复合控 制算法的运算与控制指令输出, 远程通讯、 协调管理操作功能, 云控制核心节点包括第一 PC子系 第 60行 统、 第二 PC子系统、 第三 PC子系统和第四 PC子系统, 第一至第四 PC子系统分别实现主控功能、 实时控制功能、 远程通讯管理功能、 冗余控制功能;
云测控子节点主要完成各种部件的运行状态信号检测和微调控制信号的产生, 同时接受云控制 核心节点的协调、 管理、 控制指令, 其中一部分子节点根据具体需要配合云控制核心节点完成核心 的实时控制功能实现, 各独立的云测控子节点之间根据其内在有机联系实现合理连接, 实现交互式 第 65行 协作测控功能;
微调驱动单元接受云测控子节点的指令完成对各自针对数控加工设备内部部件的微调控制执行 操作;
实时通讯网络构成云控制核心节点内部、 云控制核心节点与云测控子节点之间、 云测控子节点 之间的在线数据传递功能;
第 70行 在线互联网络完成云控制核心节点与外部相关组件之间的通讯功能。
6、 如权利要求 5所述的云数控系统, 其中,
协同配套加工控制子系统采用一台独立的工业 PC 系统, 其中的软件模块包括远程通讯软件模 块、 数据分析及修正算法软件模块、 串行处理软件模块和并行处理软件模块;
远程通讯软件模块用于与串行加工与配套装配加工的数控加工设备的数控系统进行信息交互; 第 75行 数据分析及修正算法软件模块用于根据远程通讯软件模块与串行加工与配套装配加工的数控加 工设备的数控系统进行信息交互的获得的各种信息, 以及本台数控加工设备中由云控制核心节点、 云测控子节点、 微调驱动单元、 实时通信网络和在线互联网络共同获得的各种在线加工参数和状态 信息, 进行加工轨迹的分析和修正处理;
串行处理软件模块和并行处理软件模块用于将数据分析和修正算法软件模块的处理结果分别进 第 80行 行独立处理, 获得串行加工和并行配套装配加工所需的数据格式, 首先传送给本台数控加工设备中 云控制核心节点中的主控子系统中的协同配套加工修正信息处理软件模块进一步执行后续工作, 同 时返回给数据分析及修正算法软件模块, 再通过远程通讯软件模块传送给与串行加工与配套装配加 工的数控加工设备的数控系统进行信息交互。
7、 如权利要求 5所述的云数控系统, 其中,
第 85行 第一 PC子系统包括人机接口 \主控处理\冗余处理软件模块、 协同配套加工修正信息处理软件模 块、 加工轨迹修正控制软件模块、 插补控制软件模块和云测控子节点反馈信息处理软件模块, 第一 PC子系统为云控制核心节点并行处理主程序运行机, 与其他 PC子系统进行并行处理, 并行处理数 据链路实现数据交互;
第二 PC子系统包括实时加工轨迹修正控制软件模块、 云测控子节点反馈信息实时处理软件模 第 90行 块、 微调控制信号输出软件模块、 实时插补、 刀具补偿、 加减速处理、 控制输出软件模块和冗余处 理软件模块, 第二 PC子系统服从第一 PC子系统的监控与管理;
第三 PC子系统包括远程生产管理软件模块、 远程编程服务软件模块、 远程技术服务软件模块、 远程状态监测和故障处理软件模块, 实现远程生产调度管理、远程状态监测和故障诊断、 远程编程、 远程技术支持和技术升级功能;
第 95行 第四 PC子系统包括实时加工轨迹修正控制软件模块、 云测控子节点反馈信息实时处理软件模 块、 微调控制信号输出软件模块、 实时插补、 刀具补偿、 加减速处理、 控制输出软件模块和冗余处 理软件模块, 第四 PC子系统作为第二 PC子系统的冗余系统, 在第二 PC子系统出现故障时, 通过 第一 PC子系统的调度控制, 实现快速切换, 从而避免加工过程的不连续情况和事故的出现。
8、 如权利要求 6所述的云数控系统, 所述云控制核心节点还包括可扩展的第五 PC子系统, 所 第 100行 述第五 PC子系统包括 CAD软件模块、 CAPP软件模块和 CAM软件模块,实现 CAD\CAPP\CAM\CNC
集成一体化流程的功能。
9、如权利要求 7所述的云数控系统, 所述云测控子节点包括核心控制器和具备独立测控功能的 多个 I/O模块,所述核心控制器完成的功能包括控制各 I/O分模块实现各需检测信号的采集,通过信 号处理和数据融合处理提取补偿信号, 接受其它相关云测控子节点的反馈信号进行综合处理, 将处 第 105行 理结果通过实时总线通讯反馈到云控制核心节点, 接受云控制核心节点发送的微调指令, 并进一步 处理成具体控制指令发送给所在数控加工设备内部部件的微调驱动单元; 各个 I/O模块主要完成动 态、 在线采集传感器信号, 并将信号传送给核心控制器, 并接受核心控制器的控制命令对微调驱动 单元发送控制输出信号, 云测控子节点间根据具体关联关系, 互相交换状态信息数据, 并根据彼此 之间的位置关系和运动控制要求实现在云测控子节点内部独立的修正控制, 这种云测控子节点内部 第 1 10行 的自行修正控制也通过发送指令到微调驱动单元来实现, 微调的状态信息同时反馈给云控制核心节 点和与其关联的其它云测控子节点作为进一步修正的反馈信息。
PCT/CN2013/000687 2012-07-18 2013-06-08 云数控系统 WO2014012348A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13819502.9A EP2899604A4 (en) 2012-07-18 2013-06-08 NUMERIC CLOUD CONTROL SYSTEM
US14/414,903 US9541918B2 (en) 2012-07-18 2013-06-08 Cloud numerical control system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210249423.8 2012-07-18
CN201210249423.8A CN102749885B (zh) 2012-07-18 2012-07-18 云数控系统

Publications (1)

Publication Number Publication Date
WO2014012348A1 true WO2014012348A1 (zh) 2014-01-23

Family

ID=47030169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/000687 WO2014012348A1 (zh) 2012-07-18 2013-06-08 云数控系统

Country Status (4)

Country Link
US (1) US9541918B2 (zh)
EP (1) EP2899604A4 (zh)
CN (1) CN102749885B (zh)
WO (1) WO2014012348A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104881817A (zh) * 2015-06-11 2015-09-02 沈阳富创精密设备有限公司 一种制造业工艺数据云平台的实现方法
CN104898573A (zh) * 2015-04-06 2015-09-09 华中科技大学 一种基于云计算的数控系统数据采集及处理方法
CN111914472A (zh) * 2020-06-22 2020-11-10 中煤北京煤矿机械有限责任公司 基于视觉识别及ai深度学习算法下的设备制造工艺智能化方法
CN112731867A (zh) * 2020-12-15 2021-04-30 四川大学 一种薄壁零件残余应力检测在线补偿及振动时效方法
CN114598564A (zh) * 2022-02-23 2022-06-07 杭州博联智能科技股份有限公司 一种设备控制方法、系统、电子设备和存储介质
CN115373350A (zh) * 2022-07-29 2022-11-22 西安热工研究院有限公司 一种工业设备安全联动控制方法及系统

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102749885B (zh) * 2012-07-18 2014-08-06 石毅 云数控系统
CN104298175B (zh) * 2014-09-26 2015-09-23 华中科技大学 一种基于虚拟化技术的数控系统及方法
CN104333593B (zh) * 2014-11-04 2018-04-17 成都乐创自动化技术股份有限公司 运动控制器远程控制方法、故障诊断方法及远程控制系统
CN104808592B (zh) * 2015-03-13 2016-06-01 华中科技大学 一种基于虚拟上位机的数控系统
DE102015106116A1 (de) * 2015-04-21 2016-10-27 Phoenix Contact Gmbh & Co. Kg Verfahren und Steuereinrichtung zur flexiblen Prozesssteuerung
EP3101500B1 (de) * 2015-06-02 2024-02-14 Siemens Aktiengesellschaft Steuersystem für eine verteilte prozesssteuerung einer technischen anlage und ein verfahren zur steuerung einer technischen anlage
EP3926475A1 (en) * 2015-10-13 2021-12-22 Schneider Electric Industries SAS Centralized management of a software defined automation system
CN107086613B (zh) * 2016-02-15 2024-04-09 周锡卫 一种分布式多子系统组成的n+m冗余ups系统
DE102017103830A1 (de) * 2016-02-29 2017-08-31 Fanuc Corporation Maschinensystem, maschinensteuercomputer, basissoftwareanwendung, computerlesbares speichermedium, und maschinensteuerungsverfahren für die interkommunikation mit maschinen
US10642251B2 (en) 2016-04-14 2020-05-05 David E Platts Subtractive machining work center
CN106814701B (zh) * 2016-12-26 2019-04-23 武汉华中数控股份有限公司 管控数控平台系统及其构建方法
CN108459557B (zh) * 2017-07-26 2021-11-19 华中科技大学 零件加工尺寸评测方法
EP3460598A1 (de) * 2017-09-22 2019-03-27 Siemens Aktiengesellschaft Speicherprogrammierbare steuerung
CN107703895A (zh) * 2017-10-17 2018-02-16 佛山伊贝尔科技有限公司 智能精密数控加工中心生产线集成系统
CN108259592A (zh) * 2018-01-11 2018-07-06 郑州云海信息技术有限公司 一种云端工业控制的实现方法和装置
EP3729216B1 (en) * 2018-01-22 2024-04-24 Siemens Aktiengesellschaft Skill matching for control of an industrial production machine
US20200241500A1 (en) * 2019-01-25 2020-07-30 Taiwan Development Institute Numerical control machine tool processing program sharing method
EP3715978A1 (de) * 2019-03-26 2020-09-30 Siemens Aktiengesellschaft Verfahren zum betreiben einer werkzeugmaschine sowie werkzeugmaschine
CN109933006A (zh) * 2019-04-08 2019-06-25 沈机(上海)智能系统研发设计有限公司 数控系统及其控制方法、控制装置及存储介质、终端
CN110285687B (zh) * 2019-06-26 2020-11-06 双良节能系统股份有限公司 一种基于人工智能技术的空冷控制系统及其控制方法
CN110262403B (zh) * 2019-07-31 2022-02-11 北京国联视讯信息技术股份有限公司 一种基于动态精度技术的数控系统插补指令生成方法
CN111625978B (zh) * 2020-05-21 2023-04-07 河南科技大学 一种基于模块化的数控卧式车床设计方法
CN112114568B (zh) * 2020-08-06 2022-03-08 上海吉翔汽车车顶饰件有限责任公司 以数据为中心的多工位个性化产品加工程序的设计方法
CN113552844A (zh) * 2021-07-28 2021-10-26 哈尔滨工业大学(深圳) 一种隐性数控系统及其实现方法
CN114139318A (zh) * 2021-12-09 2022-03-04 北京工业大学 一种齿轮智能制造方法
CN114055182A (zh) * 2021-12-17 2022-02-18 江西洪都航空工业集团有限责任公司 一种基于托板螺母自动化生产线的电气系统
CN114609969B (zh) * 2022-03-23 2023-08-22 哈尔滨工业大学(深圳) 一种基于云计算的数控机床轨迹误差补偿方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008196989A (ja) * 2007-02-14 2008-08-28 General Electric Co <Ge> 切削工具のパラメータを抽出するためのシステム及び方法
CN101719842A (zh) * 2009-11-20 2010-06-02 中国科学院软件研究所 一种基于云计算环境的分布式网络安全预警方法
CN101833328A (zh) * 2010-06-01 2010-09-15 无锡科尔华电子有限公司 无线传感网smt生产制造执行控制系统
CN102375901A (zh) * 2010-08-20 2012-03-14 深圳富泰宏精密工业有限公司 模具设计工序云处理系统
US20120061359A1 (en) * 2010-09-10 2012-03-15 Silvo Heinritz Method for producing coarse surface structures
CN102749885A (zh) * 2012-07-18 2012-10-24 石毅 云数控系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6834214B2 (en) * 2001-05-24 2004-12-21 The Boeing Company System, method and computer-program product for transferring a numerical control program to thereby control a machine tool controller
CN1137420C (zh) * 2001-12-29 2004-02-04 天津大学 一种层次化监控和远程网络诊断功能的开放式数控系统
JP2005018266A (ja) * 2003-06-24 2005-01-20 Toyota Keeramu:Kk 並列分散処理システム、ncデータ作成方法及びncデータ作成プログラム
US20080105094A1 (en) * 2004-12-20 2008-05-08 Renishaw Plc Machine and Control System
US7698001B2 (en) * 2005-10-27 2010-04-13 Hewlett-Packard Development Company, L.P. Method and apparatus for improving performance of networking applications
CN100465838C (zh) * 2007-09-03 2009-03-04 石毅 一种基于多cpu并行处理技术的开放式数控系统
US9141105B2 (en) * 2008-07-23 2015-09-22 Hurco Companies, Inc. Method and apparatus for monitoring or controlling a machine tool system
CN101592938A (zh) * 2009-06-30 2009-12-02 刘文祥 数控网络及其各种系统
EP2293164A1 (en) * 2009-08-31 2011-03-09 ABB Research Ltd. Cloud computing for a process control and monitoring system
CN102455676A (zh) * 2010-10-18 2012-05-16 西安扩力机电科技有限公司 工业用数控机床综合控制系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008196989A (ja) * 2007-02-14 2008-08-28 General Electric Co <Ge> 切削工具のパラメータを抽出するためのシステム及び方法
CN101719842A (zh) * 2009-11-20 2010-06-02 中国科学院软件研究所 一种基于云计算环境的分布式网络安全预警方法
CN101833328A (zh) * 2010-06-01 2010-09-15 无锡科尔华电子有限公司 无线传感网smt生产制造执行控制系统
CN102375901A (zh) * 2010-08-20 2012-03-14 深圳富泰宏精密工业有限公司 模具设计工序云处理系统
US20120061359A1 (en) * 2010-09-10 2012-03-15 Silvo Heinritz Method for producing coarse surface structures
CN102749885A (zh) * 2012-07-18 2012-10-24 石毅 云数控系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2899604A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104898573A (zh) * 2015-04-06 2015-09-09 华中科技大学 一种基于云计算的数控系统数据采集及处理方法
CN104881817A (zh) * 2015-06-11 2015-09-02 沈阳富创精密设备有限公司 一种制造业工艺数据云平台的实现方法
CN111914472A (zh) * 2020-06-22 2020-11-10 中煤北京煤矿机械有限责任公司 基于视觉识别及ai深度学习算法下的设备制造工艺智能化方法
CN112731867A (zh) * 2020-12-15 2021-04-30 四川大学 一种薄壁零件残余应力检测在线补偿及振动时效方法
CN114598564A (zh) * 2022-02-23 2022-06-07 杭州博联智能科技股份有限公司 一种设备控制方法、系统、电子设备和存储介质
CN114598564B (zh) * 2022-02-23 2023-07-04 杭州博联智能科技股份有限公司 一种设备控制方法、系统、电子设备和存储介质
CN115373350A (zh) * 2022-07-29 2022-11-22 西安热工研究院有限公司 一种工业设备安全联动控制方法及系统

Also Published As

Publication number Publication date
US9541918B2 (en) 2017-01-10
EP2899604A4 (en) 2016-10-19
CN102749885A (zh) 2012-10-24
EP2899604A1 (en) 2015-07-29
CN102749885B (zh) 2014-08-06
US20150185727A1 (en) 2015-07-02

Similar Documents

Publication Publication Date Title
WO2014012348A1 (zh) 云数控系统
CN107127751A (zh) 关节型机械臂驱控一体化控制系统及控制方法
Wang Wise-ShopFloor: an integrated approach for web-based collaborative manufacturing
CN101984376B (zh) 一种数控机床故障模拟装置
CN101699360B (zh) 用于数控机床的远程诊断方法及系统
CN102495606B (zh) 高性能机械基础件精密成形智能制造系统
Fan et al. Function block-based closed-loop adaptive machining for assembly interfaces of large-scale aircraft components
CN106426228A (zh) 模块化机器人教学系统
CN201383106Y (zh) 一种新型的控制系统
He et al. Synchronization control strategy of multi-motor system based on profibus network
CN102520689A (zh) 基于龙芯处理器和fpga技术的嵌入式控制器
CN103197606A (zh) 一种基于step-nc的智能数控系统
CN101634855A (zh) 大型运动会开闭幕式地面设备控制系统的冗余备份控制系统
CN109361330A (zh) 一种基于总线的伺服电机同步控制方法
CN104698983A (zh) 一种飞机壁板组件预定位柔性工装控制系统及控制方法
CN103246253A (zh) 无线网络下的多电机分布式控制系统及多电机分布式控制方法
CN206123682U (zh) 模块化机器人教学系统
CN203117724U (zh) 一种基于step-nc的智能数控系统
CN108044624A (zh) 一种基于powerlink总线的机器人控制系统
CN202351691U (zh) 基于龙芯处理器和fpga技术的嵌入式控制器
CN116300726A (zh) 基于数字化工厂的齿轮箱传动轴生产线仿真及调试方法
CN201408354Y (zh) 一种整合精密加工机械与机械手臂的控制装置
CN104678900A (zh) 一种机翼前襟装配柔性工装控制系统
CN102650852B (zh) 一种硬件在环数控系统控制结构的设计方法
CN114609969A (zh) 一种基于云计算的数控机床轨迹误差补偿方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13819502

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14414903

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013819502

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013819502

Country of ref document: EP