WO2014010826A1 - Composite sheet, method for manufacturing same, and flexible substrate including same - Google Patents

Composite sheet, method for manufacturing same, and flexible substrate including same Download PDF

Info

Publication number
WO2014010826A1
WO2014010826A1 PCT/KR2013/004667 KR2013004667W WO2014010826A1 WO 2014010826 A1 WO2014010826 A1 WO 2014010826A1 KR 2013004667 W KR2013004667 W KR 2013004667W WO 2014010826 A1 WO2014010826 A1 WO 2014010826A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite sheet
matrix
group
tanδ
glass
Prior art date
Application number
PCT/KR2013/004667
Other languages
French (fr)
Korean (ko)
Inventor
정은환
김성국
이우진
김영권
Original Assignee
제일모직 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직 주식회사 filed Critical 제일모직 주식회사
Priority to CN201380011456.1A priority Critical patent/CN104136506A/en
Publication of WO2014010826A1 publication Critical patent/WO2014010826A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes

Definitions

  • the present invention relates to a composite sheet, a method for manufacturing the same, and a flexible substrate including the same.
  • the glass substrate is excellent in heat resistance and transparency, and has a low coefficient of linear expansion. Therefore, glass substrates have been widely used as liquid crystal display elements, substrates for organic EL display elements, color filter substrates, solar cell substrates, and the like.
  • the glass substrate is limited in thickness and weight reduction of the liquid crystal display due to the thick thickness and heavy weight, and has a problem in that it is vulnerable to impact resistance.
  • the brittleness of the glass material makes it unsuitable for use as a substrate for display.
  • a flexible substrate made of a plastic optical film material has been spotlighted as a material to replace a conventional glass substrate.
  • Flexible substrates have properties that are well suited for next-generation display devices such as liquid crystal displays, organic ELs, and e-paper.
  • plastic substrates such as polyethylene terephthalate (PET), polyether sulfone (PES), polyethylene naphthalate (PEN), polyarylate (PAR), polycarbonate (PC), and polyimide (PI) are used as plastic substrates.
  • PET polyethylene terephthalate
  • PES polyether sulfone
  • PEN polyethylene naphthalate
  • PAR polyarylate
  • PC polycarbonate
  • PI polyimide
  • Japanese Laid-Open Patent Publication No. 2004-51960 discloses an alicyclic epoxy resin containing an ester group, a bisphenol A type epoxy resin, an acid anhydride curing agent, and a transparent composite optical sheet made from a catalyst and a glass fiber cloth.
  • Japanese Unexamined Patent Application Publication No. 2005-146258 discloses a transparent composite optical sheet made from an alicyclic epoxy resin containing an ester group, an epoxy resin having a dicyclopentadiene skeleton, an acid anhydride curing agent, and a glass fiber cloth.
  • 2004-233851 discloses a transparent substrate made of a bisphenol A epoxy resin, a bisphenol A novolac epoxy resin, an acid anhydride curing agent, and a glass fiber cloth.
  • a transparent substrate made of a bisphenol A epoxy resin, a bisphenol A novolac epoxy resin, an acid anhydride curing agent, and a glass fiber cloth.
  • the above patents have a disadvantage in that stress is generated between the fiber and the resin matrix, thereby causing breakage and deteriorating display performance due to large optical anisotropy.
  • Acryl-based and epoxy-based resins used in the conventional glass fiber composites have excellent refractive index but have problems in flexibility and heat resistance.
  • Another object of the present invention is to provide a composite sheet having excellent flexibility, transparency and heat resistance, and a method for producing the same.
  • Another object of the present invention is to provide a composite sheet and a method for manufacturing the same, which can be used for a flexible substrate by improving the defects of materials that may occur in a high temperature process during substrate fabrication.
  • the composite sheet may have a storage modulus measured at 100 ° C. of about 0.1 to 5.0 MPa.
  • the composite sheet may have a haze of about 15% or less after heat treatment at 220 ° C. for 2 hours.
  • the matrix may be a crosslinked silicone rubber. .
  • the reinforcing material may include one or more selected from the group consisting of glass fiber cloth, glass fibric, glass nonwoven fabric, and glass mesh.
  • Another aspect of the invention relates to a method for producing a composite sheet.
  • the method includes impregnating and curing a reinforcing material in a composition for a matrix comprising siloxane to adjust the tan ⁇ value to greater than about 0 and up to about 0.05.
  • Another aspect of the present invention relates to a flexible substrate including the composite sheet.
  • the present invention does not generate cracks and defects at the interface between the reinforcing material and the matrix, and is excellent in flexibility, transparency, and heat resistance, and can improve defects of materials that may occur in the high temperature process in manufacturing the substrate.
  • the present invention has the effect of providing a composite sheet and a method for producing the composite sheet which can be suitably used.
  • FIG. 1 is a cross-sectional view of a composite sheet according to an embodiment of the present invention.
  • the composite sheet 10 of the present invention has a structure in which a reinforcing material 2 is included in a matrix 1.
  • the reinforcing material 2 may be included in a layer structure, but is not limited thereto.
  • the reinforcing material 2 may be impregnated in the matrix as a support and present therein.
  • the reinforcement 1 may be dispersed in the matrix 1 or impregnated in a woven form, or may be impregnated with the matrix 1 arranged in a uni-direction.
  • the reinforcement 2 may be formed of a single layer or a plurality of layers.
  • Composite sheet of the present invention is a matrix; And a reinforcing material impregnated in the matrix, wherein the tan ⁇ value can be greater than about 0 and up to about 0.05.
  • the loss modulus and storage modulus are Rheometer (Anton Paar, Physica). MCR501), measured at 100 ° C under strain 0.5 (%) and frequency 10 (1 / s), if tan ⁇ exceeds 0.05, high temperatures of about 220 ° C during substrate fabrication.
  • tan ⁇ is from about 0.001 to about 0.045, more preferably from about 0.005 to about 0.04, most preferably tan ⁇ is from about 0.01 to About 0.03.
  • the matrix may be a crosslinked silicone rubber.
  • the silicone-based rubber may include a polyorganosiloxane resin including a unit of Formula 1 below.
  • R and R ' are the same as or different from each other, a hydrogen atom, a substituted or unsubstituted C1-C20 alkyl group, a substituted or unsubstituted C2-C20 alkenyl group, a substituted or unsubstituted C2-C20 alkynyl group, Substituted or unsubstituted C1-C20 alkoxy group, substituted or unsubstituted C3-C30 cycloalkyl group, substituted or unsubstituted C3-C30 cycloalkenyl group, substituted or unsubstituted C3-C30 cycloalkynyl group, substituted or unsubstituted C6-C30 aryl group, a substituted or unsubstituted C6-C30 aryloxy group, n may be an integer of 2 to 1000)
  • substituted means hydrogen, halogen atom, hydroxy group, amino group, carbonyl group, thiol group, ester group, ether group, carboxyl group or salt thereof, sulfonic acid group or salt thereof, phosphate group or salt thereof, carbon number
  • R and R ' may be a C1-C10 alkyl group, a C2-C10 alkenyl group, or a C6-C10 aryl group.
  • the weight average molecular weight of the silicone rubber may be about 1,000 ⁇ 100,000 g / mol /. Within this range, the ease of synthesis and the mechanical properties after curing of the matrix resin in the composite sheet can be expected. Preferably about 1,000 to 50,000 g / mol.
  • the silicone-based rubber may have a viscosity of about 100cps to about 10,000cps at 25 °C. It may have excellent flatness, impregnation and processability in the above range.
  • the glass transition temperature of the silicone rubber may be about -150 °C to about 30 °C. Preferably it may be about -100 °C ⁇ 20 °C, more preferably about -80 °C ⁇ 0 °C. In the above range, it has the advantage of excellent flexibility and rigidity and a small coefficient of thermal expansion.
  • the matrix together with the silicone rubber is styrene-butadiene rubber (SBR), butadiene rubber, isoprene rubber, chloroprene rubber, neoprene rubber, ethylene-propylene-diene terpolymer, styrene-ethylene-butylene- Styrene (SEBS) block copolymer, Styrene-ethylene-propylene-styrene (SEPS) block copolymer, Acrylonitrile-butadiene rubber (NBR), hydrogenated nitrile rubber (NBR), Flori It may further comprise one or more selected from the group consisting of fluorinated rubber, and plasticized polyvinylchloride rubber.
  • SBR styrene-butadiene rubber
  • SEBS styrene-ethylene-butylene- Styrene
  • SEBS styrene-ethylene-butylene- Styrene
  • SEPS Styrene-ethylene-propylene-
  • the reinforcing material may include at least one member selected from the group consisting of glass fiber cloth, glass fiber, glass nonwoven fabric, and glass mesh, for example, glass fiber cloth) can be used.
  • the reinforcement may have a refractive index difference of about 0.01 or less from the matrix. Within this range, it may have excellent transparency and light transmittance. Preferably, the difference between the matrix and the refractive index may be about 0.0001 to 0.007.
  • the matrix: reinforcement material may be included in a weight ratio of about 70:30 to about 95: 5, preferably about 80:20 kPa to about 90:10. Within this range, the physical properties of the composite sheet that can be used as a flexible substrate can be possessed.
  • the thickness of the composite sheet of the present invention may be about 15 ⁇ m-200 ⁇ m. In the above range, it can be used as a composite sheet for flexible substrate applications.
  • Such a composite sheet of the present invention is to prepare a composition for a matrix comprising a vinyl group-containing siloxane, a crosslinking agent, a catalyst and an inhibitor; And it can be prepared by impregnating and curing the reinforcing material in the composition for the matrix.
  • the vinyl group-containing siloxane is a siloxane containing a vinyl group at the end, preferably about 0.1 to 10.0 mol%.
  • the curing efficiency is high, and may have rubbery physical properties after curing.
  • the vinyl group-containing siloxane may have a weight average molecular weight of about 10,000 to 50,000 g / mol. It is easy to mix in the above range, there is an advantage in the impregnation and processability.
  • the crosslinking agent can use the crosslinking agent normally used in manufacture of the composite sheet for flexible substrates.
  • polyorganosiloxanes having Si—CH 3 and Si—H can be used.
  • Si-H terminal siloxane or the like may be used.
  • the Si-H terminal siloxane may have a weight average molecular weight of about 500 ⁇ 10,000 g / mol. It is easy to mix in the above range and excellent in the curing efficiency, it has the advantage of excellent physical properties after curing.
  • the crosslinking agent may be included such that the molar equivalent ratio of the number of moles of Si—H of the crosslinking agent to the number of moles of the C 2 -C 20 alkenyl group of the silicone rubber is about 1.0 kPa or more, preferably about 1.0 kPa to about 1.3.
  • the catalyst may be a catalyst commonly used in the manufacture of a composite sheet for a flexible substrate.
  • a catalyst commonly used in the manufacture of a composite sheet for a flexible substrate.
  • the platinum-based or rhodium-based catalyst a complex of platinum and an organic compound, a platinum and vinylated organosiloxane complex, a rhodium and an olefin complex, and the like can be used.
  • a vinylalkylsilane platinum complex containing a Karstedt catalyst, platinum black, platinum chloride, chloroplatinic acid-olefin complex, chloroplatinic acid-alcohol coordination compound, or a mixture thereof can be used.
  • the catalyst may be included in the weight of metal in an amount of about 2 to about 2000 ppm, preferably about 5 to about 500 ppm, relative to the rubber-based compound.
  • the inhibitor can cure the matrix at high temperatures by inhibiting the action of the catalyst at about 25 ° C. and no inhibitory action during the high temperature curing process.
  • the inhibitor may be used an inhibitor commonly used in the manufacture of a composite sheet for a flexible substrate.
  • inhibitors include acetylenic alcohols including dimethyl-1-hexyn-3-ol, pyridine, phosphines, organic phosphites, unsaturatedamides, dialkylcarbonylates, dialkylacetylenedicarboxylates, alkylated Maleate, diallyl maleate, or mixtures thereof.
  • the inhibitor may be included at about 100 ppm to about 2500 ppm relative to the rubber compound.
  • a mixture of the catalyst and the inhibitor may be included in an amount of about 0.01 wt% to about 1 wt% based on the rubber compound. Within this range, the catalytic action can be sufficiently exhibited. Preferably, about 0.05 to about 0.2% by weight.
  • 'impregnation' may include that the reinforcing material is formed in a single layer or a multi-layer structure in the matrix.
  • the curing may be performed at about 40 ° C. to about 100 ° C., preferably at about 50 ° C. to about 90 ° C., for about 0.1 minutes to about 5 hours, preferably for about 30 minutes to about 2 hours and 30 minutes. Within this range, the surface flatness can be increased while ensuring sufficient curing of the matrix and the reinforcing material.
  • composition for a matrix may be impregnated with a reinforcing material, then sandwiched between the release-treated films, laminated, and cured.
  • Tan ⁇ value of the present invention can be adjusted according to the structure and ratio of the siloxane and the crosslinking agent used as a matrix, the content of the crosslinking agent, curing conditions and the like.
  • the composite sheet prepared as described above may have a storage modulus measured at 100 ° C of about 0.1 to 5.0 MPa, preferably about 0.5 to 2 MPa, for example, about 0.6 to 1.5 MPa.
  • the composite sheet has a haze of about 15% or less after heat treatment at 220 ° C. for 2 hours, for example, about 0.1 to 14%, preferably about 0.5 to 10%, more preferably about 0.7 to 7%, most preferably About 0.7-5%.
  • the composite sheet may further include a smooth layer, a gas barrier layer, or the like on at least one surface.
  • the flexible substrate and the display device including the same may include the composite sheet.
  • Flexible substrates are used for displays or optical devices such as substrates for liquid crystal display devices (LCDs), substrates for color filters, substrates for organic EL display devices, substrates for solar cells, substrates for touch screen panels, and the like. It is available.
  • (a) Vinyl group-containing siloxane Synthesis was performed using phenylmethyl dimethoxy siloxane (PMDMS), dimethyl dimethoxy siloxane (DMDMS) and vinyl trimethoxy siloxane (VTMS). The weight ratio of (PMDMS + DMDMS): VTMS was maintained at 95: 5. 900 g of PMDMS, 615 g of DMDMS, and 60 g of VTMS were weighed and then hydrolyzed under deionized water / KOH at 70 ° C. for 1 hour. The reaction was continued at 90 ° C., and toluene and water were added to lower the temperature to 25 ° C. and washed with water.
  • PMDMS phenylmethyl dimethoxy siloxane
  • DMDMS dimethyl dimethoxy siloxane
  • VTMS vinyl trimethoxy siloxane
  • Vi-MM (1,1,3,3, -tetramethyl-1,3-divinyl disiloxane) was added and end-capped at 50 ° C. for 5 hours, washed at 25 ° C., and then the solvent was removed to remove the silicone rubber PDMS.
  • Resin polyorganosiloxane resin which has a phenyl group, a methyl group, and a vinyl group
  • the viscosity at 25 ° C. of the prepared PDMS resin was 500 cps. Viscosity was measured by Viscometer (Brookfield) at 25 ° C.
  • Two kinds of resins having different contents of PMDMS and DMDMS were synthesized for refractive index matching, and the molecular weight (Mn) of vinyl PDMS after synthesis was 10,000 g / mol.
  • Si-H terminated PDMS Synthesis was performed using phenylmethyl dimethoxy siloxane (PMDMS) and dimethyl dimethoxy siloxane (DMDMS). Endcapping was performed using H-MM (1,1,3,3-tetramethyl-disiloxane) in the same manner as the above-described Vinyl PDMS. The molecular weight (Mn) of the Si-H terminated PDMS after the synthesis was 2,000 g / mol.
  • Catalyst # A Karstedt catalyst (PT-CS-1.8CS, Umicore) was used.
  • the vinyl group-containing siloxane (a), Si-H terminated PDMS (c1) and HMS-991 (c2) were blended in a molar ratio of 1: 1: 0.1, and the catalyst (d) and the inhibitor (e) were added thereto, followed by stirring.
  • 10 g of the glass fiber cloth (b) on the release-treated film was poured and then degassed under vacuum.
  • the degassed sample was placed between the release-treated film and the glass, followed by laminatation at a pressure of 0.1 Mpa, and cured at 50 ° C. for 2 hours to prepare a final composite film.
  • the vinyl group-containing siloxane (a), Si-H terminated PDMS (c1) and HMS-991 (c2) was carried out in the same manner as in Example 1 except for blending in a molar ratio of 1: 0.8: 0.3.
  • the vinyl group-containing siloxane (a), Si-H terminated PDMS (c1) and HMS-991 (c2) was carried out in the same manner as in Example 1 except for blending in a molar ratio of 1: 0.5: 0.6.
  • Example 2 The same procedure as in Example 1 was performed except that the vinyl group-containing siloxane (a), Si-H terminated PDMS (c1), and HMS-991 (c2) were mixed in a molar ratio of 1: 0.1: 1.
  • Example 2 The same procedure as in Example 1 was carried out except that the vinyl group-containing siloxane (a) and HMS-991 (c2) were mixed in a molar ratio of 1: 1.1.
  • HAZE Measured by a HAZE meter (Nippon Denshoku, NDH2000). It was measured for each of the samples prepared initially and the samples after the heat treatment 220 ° C_2hr.
  • Examples 1 to 3 having a tan ⁇ value greater than about 0 and less than or equal to about 0.05 maintained low haze after heat treatment, and it was confirmed that almost no cracks were found. On the contrary, in Comparative Example 1-2 having a tan ⁇ value exceeding 0.05, the haze increased sharply after heat treatment, and it can be seen that cracks occurred.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)

Abstract

The composite sheet of the present invention comprises a matrix and a stiffener impregnated in the matrix, and has a tanδ value (tanδ = G"/G'), which is the ratio of the loss modulus (G") and the storage modulus (G'), of about more than 0 and about less than 0.05. The composite sheet has a tanδ value in a certain range, and the rate of defects which can arise during high temperature processing during substrate manufacture can be reduced in order to impart flexibility, thermal resistance, and, especially, good optical qualities.

Description

복합시트, 그 제조방법 및 이를 포함하는 플렉시블 기판Composite sheet, manufacturing method thereof, and flexible substrate comprising same
본 발명은 복합시트, 그 제조방법 및 이를 포함하는 플렉시블 기판에 관한 것이다.The present invention relates to a composite sheet, a method for manufacturing the same, and a flexible substrate including the same.
유리 기판은 내열성 및 투명성이 우수하고, 선팽창 계수가 낮다. 따라서, 유리 기판은 액정 표시 소자나 유기 EL 표시 소자용 기판, 컬러 필터 기판, 태양 전지 기판 등으로 널리 사용되어 왔다. 그러나, 유리 기판은 두꺼운 두께와 무거운 중량으로 인해 액정표시장치의 박형화 및 경량화에 한계가 있고, 내충격에 취약하다는 문제점이 있다. 또한, 유리 소재의 취성으로 인해 디스플레이용 기판으로 사용하기에는 부적합하였다. The glass substrate is excellent in heat resistance and transparency, and has a low coefficient of linear expansion. Therefore, glass substrates have been widely used as liquid crystal display elements, substrates for organic EL display elements, color filter substrates, solar cell substrates, and the like. However, the glass substrate is limited in thickness and weight reduction of the liquid crystal display due to the thick thickness and heavy weight, and has a problem in that it is vulnerable to impact resistance. In addition, the brittleness of the glass material makes it unsuitable for use as a substrate for display.
이에 따라, 플라스틱 광학 필름 소재의 플렉시블 기판이 종래 유리 기판을 대체할 소재로 각광받고 있다.  플렉시블 기판은 액정디스플레이를 비롯하여 유기 EL, 전자페이퍼(e-paper) 등과 같은 차세대 디스플레이 장치에 매우 적합한 특성을 갖고 있다.Accordingly, a flexible substrate made of a plastic optical film material has been spotlighted as a material to replace a conventional glass substrate. Flexible substrates have properties that are well suited for next-generation display devices such as liquid crystal displays, organic ELs, and e-paper.
근래에는 플라스틱 기판으로 폴리에틸렌테레프탈레이트(PET), 폴리에테르설폰(PES), 폴리에틸렌나프탈레이트(PEN), 폴리아릴레이트(PAR), 폴리카보네이트(PC), 폴리이미드(PI) 등의 소재가 사용되고 있다. 그러나, 이들 소재들은 열팽창계수가 상당히 높아 제품의 휘어짐이나 배선의 단선 등을 일으키는 문제가 있다. 폴리이미드계 수지는 비교적 낮은 열팽창계수를 갖지만, 투명성이 매우 낮고 높은 복굴절성, 흡습성 등으로 인해 기판 소재로는 적합하지 않다는 문제가 지적되고 있다. Recently, materials such as polyethylene terephthalate (PET), polyether sulfone (PES), polyethylene naphthalate (PEN), polyarylate (PAR), polycarbonate (PC), and polyimide (PI) are used as plastic substrates. . However, these materials have a problem that the thermal expansion coefficient is considerably high, causing warpage or disconnection of the product. Polyimide-based resins have a relatively low coefficient of thermal expansion, but the problem is pointed out that they are not suitable as substrate materials due to their very low transparency and high birefringence and hygroscopicity.
이러한 문제를 해결하기 위해, 일본 공개공보 2004-51960호에서는 에스테르기를 포함하는 지환식 에폭시 수지, 비스페놀 A형 에폭시 수지, 산무수물계 경화제 및 촉매와 유리섬유포로부터 제조되는 투명 복합 광학 시트가 개시되어 있다. 또한 일본 공개공보 2005-146258호에서는 에스테르기를 포함하는 지환식 에폭시 수지와 디사이클로펜타디엔 골격을 가지는 에폭시 수지, 산무수물계 경화제와 유리섬유포로부터 제조되는 투명 복합 광학 시트가 개시되어 있다. 일본 공개공보 2004-233851호에서는 비스페놀 A형 에폭시 수지, 비스페놀 A 노볼락(novolac)형 에폭시 수지, 산무수물계 경화제 및 유리섬유포로 제조되는 투명 기판을 개시하고 있다. 그러나, 상기 특허들은 섬유와 수지 매트릭스간에 응력이 생기고, 그로 인해 파손이 발생하며, 광학이방성이 크기 때문에 표시성능이 저하되는 단점이 있다. 기존의 유리섬유 복합체에 사용되던 Acryl계 및 epoxy계 등의 수지들의 경우 굴절률이 우수하지만 유연성 및 내열성에 문제가 있다. In order to solve this problem, Japanese Laid-Open Patent Publication No. 2004-51960 discloses an alicyclic epoxy resin containing an ester group, a bisphenol A type epoxy resin, an acid anhydride curing agent, and a transparent composite optical sheet made from a catalyst and a glass fiber cloth. . Japanese Unexamined Patent Application Publication No. 2005-146258 discloses a transparent composite optical sheet made from an alicyclic epoxy resin containing an ester group, an epoxy resin having a dicyclopentadiene skeleton, an acid anhydride curing agent, and a glass fiber cloth. Japanese Laid-Open Patent Publication No. 2004-233851 discloses a transparent substrate made of a bisphenol A epoxy resin, a bisphenol A novolac epoxy resin, an acid anhydride curing agent, and a glass fiber cloth. However, the above patents have a disadvantage in that stress is generated between the fiber and the resin matrix, thereby causing breakage and deteriorating display performance due to large optical anisotropy. Acryl-based and epoxy-based resins used in the conventional glass fiber composites have excellent refractive index but have problems in flexibility and heat resistance.
본 발명의 목적은 Crack이 발생 하지 않고 보강재와 매트릭스간 계면에서의 결함이 발생하지 않는 복합시트 및 그 제조방법을 제공하는 것이다.It is an object of the present invention to provide a composite sheet and a method of manufacturing the same, in which cracks do not occur and defects at the interface between the reinforcement and the matrix do not occur.
본 발명의 다른 목적은 유연성, 투명성 및 내열성이 우수한 복합시트 및 그 제조방법을 제공하는 것이다.Another object of the present invention is to provide a composite sheet having excellent flexibility, transparency and heat resistance, and a method for producing the same.
본 발명의 또 다른 목적은 기판 제작 시의 고온 공정에서 발생할 수 있는 재료의 불량을 개선할 수 있어 플렉시블 기판에 적합하게 사용될 수 있는 복합시트 및 그 제조방법을 제공하는 것이다.Another object of the present invention is to provide a composite sheet and a method for manufacturing the same, which can be used for a flexible substrate by improving the defects of materials that may occur in a high temperature process during substrate fabrication.
본 발명의 하나의 관점은 복합시트에 관한 것이다. 상기 복합시트는 매트릭스; 및 상기 매트릭스 내에 함침된 보강재를 포함하고, 손실 모듈러스(G")와 저장모듈러스(G')의 비인 tanδ 값(tanδ = G"/G')이 약 0 초과 약 0.05 이하인 것을 특징으로 한다. One aspect of the invention relates to a composite sheet. The composite sheet is a matrix; And a reinforcing material impregnated in the matrix, wherein the tanδ value (tanδ = G ″ / G ′), which is the ratio of the loss modulus G ″ and the storage modulus G ′, is greater than about 0 and less than or equal to about 0.05.
상기 복합시트는 100℃에서 측정된 저장모듈러스가 약 0.1~5.0 MPa 일 수 있다. The composite sheet may have a storage modulus measured at 100 ° C. of about 0.1 to 5.0 MPa.
상기 복합시트는 220 ℃에서 2시간 열처리후 헤이즈가 약 15 % 이하일 수 있다. The composite sheet may have a haze of about 15% or less after heat treatment at 220 ° C. for 2 hours.
상기 매트릭스는 가교된 실리콘계 고무일 수 있다. .The matrix may be a crosslinked silicone rubber. .
상기 보강재는 유리 섬유포(glass fiber cloth), 유리 직물(glass fibric), 유리 부직포 및 유리 메쉬(glass mesh)로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있다. The reinforcing material may include one or more selected from the group consisting of glass fiber cloth, glass fibric, glass nonwoven fabric, and glass mesh.
본 발명의 다른 관점은 복합시트의 제조 방법에 관한 것이다. 상기 방법은 실록산을 포함하는 매트릭스용 조성물에 보강재를 함침하고 경화시켜 tanδ 값을 약 0 초과 약 0.05 이하로 조절하는 단계를 포함한다. Another aspect of the invention relates to a method for producing a composite sheet. The method includes impregnating and curing a reinforcing material in a composition for a matrix comprising siloxane to adjust the tan δ value to greater than about 0 and up to about 0.05.
본 발명의 또 다른 관점은 상기 복합시트를 포함하는 플렉시블 기판에 관한 것이다. Another aspect of the present invention relates to a flexible substrate including the composite sheet.
본 발명은 Crack이 발생 하지 않고 보강재와 매트릭스간 계면에서의 결함이 발생하지 않으며, 유연성, 투명성 및 내열성이 우수하고 기판 제작 시의 고온 공정에서 발생할 수 있는 재료의 불량을 개선할 수 있어 플렉시블 기판에 적합하게 사용될 수 있는 복합시트 및 그 제조방법을 제공하는 발명의 효과를 갖는다. The present invention does not generate cracks and defects at the interface between the reinforcing material and the matrix, and is excellent in flexibility, transparency, and heat resistance, and can improve defects of materials that may occur in the high temperature process in manufacturing the substrate. The present invention has the effect of providing a composite sheet and a method for producing the composite sheet which can be suitably used.
도 1은 본 발명의 일 구체예에 따른 복합시트의 단면도를 나타낸 것이다. 1 is a cross-sectional view of a composite sheet according to an embodiment of the present invention.
 도 1은 본 발명의 한 구체예에 따른 복합시트의 단면을 개략적으로 나타낸 것이다. 도 1에 따르면, 본 발명의 복합시트(10)는 매트릭스(1) 내에 보강재(2)가 포함된 구조로 되어 있다. 한 구체예에 따르면 상기 보강재(2)는 층 구조로 포함될 수 있으나 이에 한정되는 것은 아니며, 상기 보강재는 지지체로서 매트릭스에 함침되어 내부에 존재할 수 있다. 도면에는 도시되어 있지 않으나, 보강재(1)는 매트릭스(1)에 분산되어 있거나, 직조된 형태로 함침될 수 있으며, 매트릭스(1)에 일방향(Uni-direction)으로 배열되어 함침될 수도 있다. 보강재(2)는 단일층 혹은 복수층으로도 형성될 수 있다.1 schematically shows a cross section of a composite sheet according to one embodiment of the invention. According to FIG. 1, the composite sheet 10 of the present invention has a structure in which a reinforcing material 2 is included in a matrix 1. According to one embodiment, the reinforcing material 2 may be included in a layer structure, but is not limited thereto. The reinforcing material 2 may be impregnated in the matrix as a support and present therein. Although not shown in the drawings, the reinforcement 1 may be dispersed in the matrix 1 or impregnated in a woven form, or may be impregnated with the matrix 1 arranged in a uni-direction. The reinforcement 2 may be formed of a single layer or a plurality of layers.
본 발명의 복합시트는 매트릭스; 및 상기 매트릭스 내에 함침된 보강재를 포함하고, tanδ 값이 약 0 초과 약 0.05 이하일 수 있다. 본 발명에서 tanδ 값은 손실 모듈러스와 저장모듈러스의 비로서 tanδ = G"(손실 모듈러스)/G'(저장모듈러스)의 식을 통해 얻을 수 있다. 상기 손실 모듈러스 및 저장 모듈러스는 Rheometer(Anton Paar, Physica MCR501) 장비를 사용하여, strain 0.5(%), frequency 10(1/s)의 조건으로 100℃에서 측정한 값이다. 만일 tanδ 값이 0.05를 초과할 경우, 기판 제작 시의 약 220 ℃의 고온 공정에서 헤이즈가 현저히 증가할 뿐만 아니라, 기판에 크랙이 발생할 수 있다. 바람직하게는 tanδ는 약 0.001 내지 약 0.045 이며, 더욱 바람직하게는 약 0.005 내지 약 0.04 이다. 가장 바람직하게는 tanδ는 약 0.01 내지 약 0.03 이다. Composite sheet of the present invention is a matrix; And a reinforcing material impregnated in the matrix, wherein the tan δ value can be greater than about 0 and up to about 0.05. In the present invention, the tanδ value is a ratio of the loss modulus and the storage modulus, and can be obtained through a formula of tanδ = G ″ (loss modulus) / G ′ (storage modulus). The loss modulus and storage modulus are Rheometer (Anton Paar, Physica). MCR501), measured at 100 ° C under strain 0.5 (%) and frequency 10 (1 / s), if tanδ exceeds 0.05, high temperatures of about 220 ° C during substrate fabrication. In addition to a significant increase in haze in the process, cracks may occur in the substrate, preferably tanδ is from about 0.001 to about 0.045, more preferably from about 0.005 to about 0.04, most preferably tanδ is from about 0.01 to About 0.03.
상기 매트릭스는 가교된 실리콘계 고무일 수 있다. The matrix may be a crosslinked silicone rubber.
한 구체예에서 상기 실리콘계 고무로는 하기 화학식 1의 단위를 포함하는 폴리오르가노실록산 수지를 포함할 수 있다.In one embodiment, the silicone-based rubber may include a polyorganosiloxane resin including a unit of Formula 1 below.
[화학식 1][Formula 1]
Figure PCTKR2013004667-appb-I000001
Figure PCTKR2013004667-appb-I000001
(상기 식에서, R과 R'은 서로 동일하거나 상이하며, 수소 원자, 치환 또는 비치환된 C1-C20 알킬기, 치환 또는 비치환된 C2-C20 알케닐기, 치환 또는 비치환된 C2-C20 알키닐기, 치환 또는 비치환된 C1-C20 알콕시기, 치환 또는 비치환된 C3-C30 사이클로알킬기, 치환 또는 비치환된 C3-C30 사이클로알케닐기, 치환 또는 비치환된 C3-C30 사이클로알키닐기, 치환 또는 비치환된 C6-C30 아릴기, 치환 또는 비치환된 C6-C30 아릴옥시기가 될 수 있고, n 은 2 내지 1000의 정수가 될 수 있다) (Wherein R and R 'are the same as or different from each other, a hydrogen atom, a substituted or unsubstituted C1-C20 alkyl group, a substituted or unsubstituted C2-C20 alkenyl group, a substituted or unsubstituted C2-C20 alkynyl group, Substituted or unsubstituted C1-C20 alkoxy group, substituted or unsubstituted C3-C30 cycloalkyl group, substituted or unsubstituted C3-C30 cycloalkenyl group, substituted or unsubstituted C3-C30 cycloalkynyl group, substituted or unsubstituted C6-C30 aryl group, a substituted or unsubstituted C6-C30 aryloxy group, n may be an integer of 2 to 1000)
본 발명에서 "치환된"의 의미는 수소, 할로겐원자, 하이드록시기, 아미노기, 카르보닐기, 티올기, 에스테르기, 에테르기, 카르복실기 또는 그의 염, 술폰산기 또는 그의 염, 포스페이트기 또는 그의 염, 탄소수 1-20의 알킬기, 탄소수 2-20의 알케닐기, 탄소수 2-20의 알키닐기, 탄소수 1-20의 알콕시기, 탄소수 6-30의 아릴기, 탄소수 6-30의 아릴옥시기, 탄소수 3-30의 사이클로알킬기, 탄소수 3-30의 사이클로알케닐기, 탄소수 3-30의 사이클로알키닐기 또는 이들의 조합을 의미한다. As used herein, "substituted" means hydrogen, halogen atom, hydroxy group, amino group, carbonyl group, thiol group, ester group, ether group, carboxyl group or salt thereof, sulfonic acid group or salt thereof, phosphate group or salt thereof, carbon number An alkyl group of 1-20, an alkenyl group of 2-20 carbon atoms, an alkynyl group of 2-20 carbon atoms, an alkoxy group of 1-20 carbon atoms, an aryl group of 6-30 carbon atoms, an aryloxy group of 6-30 carbon atoms, 3-carbon atoms It means a cycloalkyl group of 30, a cycloalkenyl group of 3-30 carbon atoms, a cycloalkynyl group of 3-30 carbon atoms, or a combination thereof.
바람직하게는, R과 R'은 C1-C10 알킬기, C2-C10 알케닐기, 또는 C6-C10 아릴기가 될 수 있다.Preferably, R and R 'may be a C1-C10 alkyl group, a C2-C10 alkenyl group, or a C6-C10 aryl group.
상기 실리콘계 고무의 중량평균분자량은 약 1,000~100,000 g/mol 이 될 수 있다. 상기 범위 내에서, 합성의 용이성과 복합시트에서 매트릭스 수지의 경화 후 기계적 물성을 기대할 수 있다. 바람직하게는 약 1,000~50,000 g/mol 이다. 또한 상기 실리콘계 고무는 25℃에서 약 100cps 내지 약 10,000cps의 점도를 가질 수 있다. 상기 범위에서 우수한 평탄도와 함침성 및 공정성을 가질 수 있다. The weight average molecular weight of the silicone rubber may be about 1,000 ~ 100,000 g / mol /. Within this range, the ease of synthesis and the mechanical properties after curing of the matrix resin in the composite sheet can be expected. Preferably about 1,000 to 50,000 g / mol. In addition, the silicone-based rubber may have a viscosity of about 100cps to about 10,000cps at 25 ℃. It may have excellent flatness, impregnation and processability in the above range.
실리콘 고무의 유리전이온도는 약 -150℃~약 30℃일 수 있다.  바람직하게는 약 -100℃~20℃, 보다 바람직하게는 약 -80℃~0℃일 수 있다. 상기 범위에서, 유연성과 강성이 우수하며 열팽창계수가 작은 장점이 있다.The glass transition temperature of the silicone rubber may be about -150 ℃ to about 30 ℃. Preferably it may be about -100 ℃ ~ 20 ℃, more preferably about -80 ℃ ~ 0 ℃. In the above range, it has the advantage of excellent flexibility and rigidity and a small coefficient of thermal expansion.
다른 구체예에서 상기 매트릭스는 상기 실리콘계 고무와 함께 스티렌-부타디엔 고무(SBR), 부타디엔계 고무, 이소프렌계 고무, 클로로프렌 고무, 네오프렌 고무, 에틸렌-프로필렌-디엔 삼원 공중합체, 스티렌-에틸렌-부틸렌-스티렌(SEBS) 블록 공중합체, 스티렌-에틸렌-프로필렌-스티렌(SEPS) 블록 공중합체, 아크릴로니트릴-부타디엔 고무(Acrylonitrile-butadiene rubber, NBR), 수소화된 니트릴 고무(hydrogenated nitrile rubber, NBR), 플로리네이티드 고무(fluorinated rubber), 및 가소화된 폴리비닐클로라이드 고무로 이루어진 군으로부터 선택되는 1종 이상을 더 포함할 수 있다.In another embodiment, the matrix together with the silicone rubber is styrene-butadiene rubber (SBR), butadiene rubber, isoprene rubber, chloroprene rubber, neoprene rubber, ethylene-propylene-diene terpolymer, styrene-ethylene-butylene- Styrene (SEBS) block copolymer, Styrene-ethylene-propylene-styrene (SEPS) block copolymer, Acrylonitrile-butadiene rubber (NBR), hydrogenated nitrile rubber (NBR), Flori It may further comprise one or more selected from the group consisting of fluorinated rubber, and plasticized polyvinylchloride rubber.
상기 보강재는 유리 섬유포(glass fiber cloth), 유리 직물(glass fibric), 유리 부직포 및 유리 메쉬(glass mesh)로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있으며, 예를 들어 유리 섬유포(glass fiber cloth)를 사용할 수 있다.The reinforcing material may include at least one member selected from the group consisting of glass fiber cloth, glass fiber, glass nonwoven fabric, and glass mesh, for example, glass fiber cloth) can be used.
상기 보강재는 매트릭스와의 굴절률 차이가 약 0.01 이하가 될 수 있다. 상기 범위 내에서, 우수한 투명성과 투광성을 가질 수 있다. 바람직하게는 상기 매트릭스와 굴절률 차이가 약 0.0001~0.007이 될 수 있다. The reinforcement may have a refractive index difference of about 0.01 or less from the matrix. Within this range, it may have excellent transparency and light transmittance. Preferably, the difference between the matrix and the refractive index may be about 0.0001 to 0.007.
본 발명의 복합시트에서 매트릭스:보강재는 약 70:30 내지 약 95:5의 중량비, 바람직하게는 약 80:20 내지 약 90:10의 중량비로 포함될 수 있다. 상기 범위에서, 플렉시블 기판으로 사용될 수 있는 복합시트의 물성을 가질 수 있다. In the composite sheet of the present invention, the matrix: reinforcement material may be included in a weight ratio of about 70:30 to about 95: 5, preferably about 80:20 kPa to about 90:10. Within this range, the physical properties of the composite sheet that can be used as a flexible substrate can be possessed.
본 발명의 복합시트의 두께는 약 15㎛-200㎛가 될 수 있다. 상기 범위에서, 플렉시블 기판 용도의 복합시트로 사용될 수 있다.The thickness of the composite sheet of the present invention may be about 15㎛-200㎛. In the above range, it can be used as a composite sheet for flexible substrate applications.
이러한 본 발명의 복합시트는 비닐기 함유 실록산, 가교제, 촉매 및 억제제를 포함하는 매트릭스용 조성물을 제조하고; 그리고 상기 매트릭스용 조성물에 보강재를 함침하고 경화시켜 제조될 수 있다. Such a composite sheet of the present invention is to prepare a composition for a matrix comprising a vinyl group-containing siloxane, a crosslinking agent, a catalyst and an inhibitor; And it can be prepared by impregnating and curing the reinforcing material in the composition for the matrix.
상기 비닐기 함유 실록산은 말단에 비닐기를 함유하는 실록산으로, 바람직하게는 약 0.1~10.0 몰 % 함유할 수 있다. 상기 범위에서 경화효율이 높고, 경화 후 rubbery한 물성을 가질 수 있다. 구체예에서 상기 비닐기 함유 실록산은 중량평균분자량이 약 10,000~50,000 g/mol 일 수 있다.  상기 범위에서 배합이 용이하고, 함침성 및 공정성에 유리한 장점이 있다. The vinyl group-containing siloxane is a siloxane containing a vinyl group at the end, preferably about 0.1 to 10.0 mol%. In the above range, the curing efficiency is high, and may have rubbery physical properties after curing. In embodiments, the vinyl group-containing siloxane may have a weight average molecular weight of about 10,000 to 50,000 g / mol. It is easy to mix in the above range, there is an advantage in the impregnation and processability.
가교제는 플렉시블 기판용 복합시트 제조에서 통상적으로 사용되는 가교제를 사용할 수 있다. 예를 들면, Si-CH3와 Si-H를 갖는 폴리오르가노실록산을 사용할 수 있다. 바람직하게는 Si-H 말단 실록산 등이 사용될 수 있다. 상기 Si-H 말단 실록산은 중량평균분자량이 약 500~10,000 g/mol 일 수 있다. 상기 범위에서 배합이 용이하고 경화효율이 우수하며, 경화 후 물성이 우수한 장점이 있다. 상기 가교제는 실리콘 고무의 C2-C20 알케닐기의 몰 수에 대해 가교제의 Si-H의 몰 수의 몰 당량비가 약 1.0 이상, 바람직하게는 약 1.0 내지 약 1.3이 되도록 포함될 수 있다.The crosslinking agent can use the crosslinking agent normally used in manufacture of the composite sheet for flexible substrates. For example, polyorganosiloxanes having Si—CH 3 and Si—H can be used. Preferably Si-H terminal siloxane or the like may be used. The Si-H terminal siloxane may have a weight average molecular weight of about 500 ~ 10,000 g / mol. It is easy to mix in the above range and excellent in the curing efficiency, it has the advantage of excellent physical properties after curing. The crosslinking agent may be included such that the molar equivalent ratio of the number of moles of Si—H of the crosslinking agent to the number of moles of the C 2 -C 20 alkenyl group of the silicone rubber is about 1.0 kPa or more, preferably about 1.0 kPa to about 1.3.
상기 촉매는 플렉시블 기판용 복합시트 제조에서 통상적으로 사용되는 촉매를 사용할 수 있다. 예를 들면, 백금계 또는 로듐계 촉매로서 백금과 유기 화합물의 복합체, 백금과 비닐화된 오르가노실록산 복합체, 로듐과 올레핀 착체 등을 사용할 수 있다. 구체적으로는, Karstedt 촉매를 포함하는 비닐알킬실란 백금 착물, 백금흑(platinum black), 염화백금산, 염화백금산-올레핀 착체, 염화백금산-알코올 배위 화합물, 또는 이들의 혼합물을 사용할 수 있다. 촉매는 금속의 중량으로, 러버계 화합물에 대해 약 2 내지 약 2000ppm, 바람직하게는 약 5 내지 약 500ppm으로 포함될 수 있다.The catalyst may be a catalyst commonly used in the manufacture of a composite sheet for a flexible substrate. For example, as the platinum-based or rhodium-based catalyst, a complex of platinum and an organic compound, a platinum and vinylated organosiloxane complex, a rhodium and an olefin complex, and the like can be used. Specifically, a vinylalkylsilane platinum complex containing a Karstedt catalyst, platinum black, platinum chloride, chloroplatinic acid-olefin complex, chloroplatinic acid-alcohol coordination compound, or a mixture thereof can be used. The catalyst may be included in the weight of metal in an amount of about 2 to about 2000 ppm, preferably about 5 to about 500 ppm, relative to the rubber-based compound.
상기 억제제는 약 25℃에서는 촉매의 작용을 억제하고 고온의 경화 과정에서는 억제 작용을 하지 않음으로써, 고온에서 매트릭스를 경화시킬 수 있다.The inhibitor can cure the matrix at high temperatures by inhibiting the action of the catalyst at about 25 ° C. and no inhibitory action during the high temperature curing process.
상기 억제제는 플렉시블 기판용 복합시트 제조에서 통상적으로 사용되는 억제제를 사용할 수 있다. 예를 들면, 억제제는 디메틸-1-헥신-3-올을 포함하는 아세틸렌성 알코올, 피리딘, 포스핀, 유기 포스파이트, 불포화아미드, 디알킬카르올실레이트, 디알킬아세틸렌디카르복실레이트, 알킬화된 말리에이트, 디알릴말리에이트, 또는 이들의 혼합물로 이루어진 군으로부터 선택될 수 있다.  억제제는 러버계 화합물에 대해 약 100 내지 약 2500ppm으로 포함될 수 있다. The inhibitor may be used an inhibitor commonly used in the manufacture of a composite sheet for a flexible substrate. For example, inhibitors include acetylenic alcohols including dimethyl-1-hexyn-3-ol, pyridine, phosphines, organic phosphites, unsaturatedamides, dialkylcarbonylates, dialkylacetylenedicarboxylates, alkylated Maleate, diallyl maleate, or mixtures thereof. The inhibitor may be included at about 100 ppm to about 2500 ppm relative to the rubber compound.
상기 촉매와 억제제의 혼합물은 상기 러버계 화합물에 대해 약 0.01 내지 약 1중량%로 포함될 수 있다. 상기 범위 내에서, 촉매 작용을 충분히 발휘할 수 있다. 바람직하게는, 약 0.05 내지 약 0.2중량%로 포함될 수 있다.A mixture of the catalyst and the inhibitor may be included in an amount of about 0.01 wt% to about 1 wt% based on the rubber compound. Within this range, the catalytic action can be sufficiently exhibited. Preferably, about 0.05 to about 0.2% by weight.
본 명세서에서 '함침'은 보강재가 매트릭스 내에 단층 또는 복층 구조로 형성된 것을 포함할 수 있다.In the present specification, 'impregnation' may include that the reinforcing material is formed in a single layer or a multi-layer structure in the matrix.
상기 경화는 약 40℃ 내지 약 100℃ 바람직하게는 약 50℃ 내지 약 90℃에서, 약 0.1분 내지 약 5시간, 바람직하게는 약 30분 내지 약 2시간 30분 동안 수행될 수 있다. 상기 범위에서, 매트릭스와 보강재의 충분한 경화를 확보하면서, 표면 평탄성을 높일 수 있다. The curing may be performed at about 40 ° C. to about 100 ° C., preferably at about 50 ° C. to about 90 ° C., for about 0.1 minutes to about 5 hours, preferably for about 30 minutes to about 2 hours and 30 minutes. Within this range, the surface flatness can be increased while ensuring sufficient curing of the matrix and the reinforcing material.
구체적으로는, 매트릭스용 조성물에 보강재를 놓고 함침시킨 후, 이형처리된 필름 사이에 넣고 라미네이션(lamination) 한 후, 경화시켜 제조할 수 있다.Specifically, the composition for a matrix may be impregnated with a reinforcing material, then sandwiched between the release-treated films, laminated, and cured.
상기 경화는 tanδ 값이 약 0 초과 약 0.05 이하의 범위가 되도록 조절한다. 상기 tanδ 값 범위에서 Crack이 발생 하지 않고 보강재와 매트릭스간 계면에서의 결함이 발생하지 않는다. 본 발명의 tanδ 값은 매트릭스로 사용되는 실록산과 가교제의 구조 및 비율, 가교제의 함량, 경화조건 등에 따라 조절될 수 있다.  The curing is adjusted so that the tan δ value is in the range of greater than about 0 and less than or equal to about 0.05. Crack does not occur in the tan δ range and defects at the interface between the reinforcement and the matrix do not occur. Tanδ value of the present invention can be adjusted according to the structure and ratio of the siloxane and the crosslinking agent used as a matrix, the content of the crosslinking agent, curing conditions and the like.
상기와 같이 제조된 복합시트는 100℃에서 측정된 저장모듈러스가 약 0.1~5.0 MPa , 바람직하게는 약 0.5~2 MPa, 예를 들면 약 0.6 ~ 1.5 MPa 일 수 있다. The composite sheet prepared as described above may have a storage modulus measured at 100 ° C of about 0.1 to 5.0 MPa, preferably about 0.5 to 2 MPa, for example, about 0.6 to 1.5 MPa.
상기 복합시트는 220 ℃에서 2시간 열처리후 헤이즈가 약 15 % 이하, 예를 들면 약 0.1~14 %, 바람직하게는 약 0.5~10 %, 보다 바람직하게는 약 0.7~7 %, 가장 바람직하게는 약 0.7~5 % 일 수 있다.The composite sheet has a haze of about 15% or less after heat treatment at 220 ° C. for 2 hours, for example, about 0.1 to 14%, preferably about 0.5 to 10%, more preferably about 0.7 to 7%, most preferably About 0.7-5%.
다른 구체예에서는 상기 복합시트는 최소한 일면에 평활층, 가스배리어층 등이 더 형성될 수 있다. 이들의 형성방법은 본 발명이 속하는 분야의 통상의 지식을 가진 자에 의해 용이하게 형성될 수 있다. In another embodiment, the composite sheet may further include a smooth layer, a gas barrier layer, or the like on at least one surface. These forming methods can be easily formed by those skilled in the art to which the present invention pertains.
본 발명의 또 다른 관점인 플렉시블 기판 및 이를 포함하는 디스플레이 장치는 상기 복합시트를 포함할 수 있다. 플렉시블 기판은 액정 표시 소자(LCD)용 기판, 컬러 필터(color filter)용 기판, 유기 EL 표시소자용 기판, 태양 전지용 기판, 터치 스크린 패널(touch screen panel)용 기판 등의 디스플레이 또는 광소자의 용도로서 이용할 수 있다.  In another aspect of the present invention, the flexible substrate and the display device including the same may include the composite sheet. Flexible substrates are used for displays or optical devices such as substrates for liquid crystal display devices (LCDs), substrates for color filters, substrates for organic EL display devices, substrates for solar cells, substrates for touch screen panels, and the like. It is available.
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.Hereinafter, the configuration and operation of the present invention through the preferred embodiment of the present invention will be described in more detail. However, this is presented as a preferred example of the present invention and in no sense can be construed as limiting the present invention.
여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.Details that are not described herein will be omitted since those skilled in the art can sufficiently infer technically.
실시예Example
하기 실시예와 비교예에서 사용된 구체적인 성분의 사양은 다음과 같다.Specifications of the specific components used in the following Examples and Comparative Examples are as follows.
(a)비닐기 함유 실록산 : 페닐메틸 디메톡시 실록산(PMDMS), 디메틸 디메톡시 실록산(DMDMS), 비닐 트리메톡시 실록산(VTMS)를 사용하여 합성을 진행하였다. (PMDMS+DMDMS):VTMS의 중량비를 95:5로 유지하였다. PMDMS 900g, DMDMS 615g, VTMS 60g을 계량한 후 70℃에서 1시간 동안 탈이온수/KOH 하에서 가수분해하였다. 90℃에서 계속 반응을 진행하고, 톨루엔과 물을 첨가하여 25℃로 온도를 낮추고 물로 세정하였다. Vi-MM(1,1,3,3,-tetramethyl-1,3-divinyl disiloxane) 300g을 첨가하여 50℃에서 5시간 동안 말단캡핑하고, 25℃로 세정한 후, 용매를 제거하여 실리콘 고무인 PDMS 수지(페닐기, 메틸기, 비닐기를 갖는 폴리오르가노실록산 수지)를 제조하였다. 제조한 PDMS 수지의 25℃에서의 점도는 500cps이었다. 점도는 25℃에서 Viscometer(Brookfield)로 측정하였다. 굴절률 Matching을 위해 PMDMS와 DMDMS의 함량을 다르게 한 2종의 수지를 합성하였으며, 합성 후의 Vinyl PDMS의 분자량(Mn)은 두종 모두 10,000 g/mol 이었다.(a) Vinyl group-containing siloxane: Synthesis was performed using phenylmethyl dimethoxy siloxane (PMDMS), dimethyl dimethoxy siloxane (DMDMS) and vinyl trimethoxy siloxane (VTMS). The weight ratio of (PMDMS + DMDMS): VTMS was maintained at 95: 5. 900 g of PMDMS, 615 g of DMDMS, and 60 g of VTMS were weighed and then hydrolyzed under deionized water / KOH at 70 ° C. for 1 hour. The reaction was continued at 90 ° C., and toluene and water were added to lower the temperature to 25 ° C. and washed with water. 300 g of Vi-MM (1,1,3,3, -tetramethyl-1,3-divinyl disiloxane) was added and end-capped at 50 ° C. for 5 hours, washed at 25 ° C., and then the solvent was removed to remove the silicone rubber PDMS. Resin (polyorganosiloxane resin which has a phenyl group, a methyl group, and a vinyl group) was manufactured. The viscosity at 25 ° C. of the prepared PDMS resin was 500 cps. Viscosity was measured by Viscometer (Brookfield) at 25 ° C. Two kinds of resins having different contents of PMDMS and DMDMS were synthesized for refractive index matching, and the molecular weight (Mn) of vinyl PDMS after synthesis was 10,000 g / mol.
(b) 보강재 : 유리 섬유포(D-glass cloth, Owen corning사)를 사용하였다.(b) Reinforcement material: Glass fiber cloth (D-glass cloth, Owen corning) was used.
(c) 가교제 : (c) crosslinking agent
(c1) Si-H terminated PDMS : 페닐메틸 디메톡시 실록산(PMDMS), 디메틸 디메톡시 실록산(DMDMS)을 사용하여 합성을 진행하였다. 상술한Vinyl PDMS와 동일한 방법으로 H-MM(1,1,3,3-tetramethyl-disiloxane) 을 사용하여endcapping을 진행하였다. 합성후의 Si-H terminated PDMS의 분자량(Mn)은 2,000 g/mol 이었다.(c1) Si-H terminated PDMS: Synthesis was performed using phenylmethyl dimethoxy siloxane (PMDMS) and dimethyl dimethoxy siloxane (DMDMS). Endcapping was performed using H-MM (1,1,3,3-tetramethyl-disiloxane) in the same manner as the above-described Vinyl PDMS. The molecular weight (Mn) of the Si-H terminated PDMS after the synthesis was 2,000 g / mol.
(c2) HMS-991(Gelest)를 사용하였다.(c2) HMS-991 (Gelest) was used.
(d) 촉매 :  Karstedt 촉매(PT-CS-1.8CS, Umicore)를 사용하였다.(d) Catalyst #: A Karstedt catalyst (PT-CS-1.8CS, Umicore) was used.
(e) 억제제 : surfynol을 사용하였다.(e) Inhibitor: surfynol was used.
실시예 1Example 1
상기 비닐기 함유 실록산(a), Si-H terminated PDMS(c1) 및 HMS-991(c2) 을 1:1:0.1의 몰비로 배합하고, 촉매(d)와 억제제(e)를 첨가하여 교반 후 이형처리된 필름 위에 있는 유리섬유포(b)에 10g 정도 부어 적신 후 진공 하에서 탈포를 진행하였다. 탈포된 샘플을 이형처리된 film과 Glass 사이에 놓고 0.1Mpa의 압력으로 Laminatation하고 50℃에서 2시간 동안 경화를 진행하여 최종 복합 필름을 제조하였다.The vinyl group-containing siloxane (a), Si-H terminated PDMS (c1) and HMS-991 (c2) were blended in a molar ratio of 1: 1: 0.1, and the catalyst (d) and the inhibitor (e) were added thereto, followed by stirring. 10 g of the glass fiber cloth (b) on the release-treated film was poured and then degassed under vacuum. The degassed sample was placed between the release-treated film and the glass, followed by laminatation at a pressure of 0.1 Mpa, and cured at 50 ° C. for 2 hours to prepare a final composite film.
실시예 2 Example # 2
비닐기 함유 실록산(a), Si-H terminated PDMS(c1) 및 HMS-991(c2) 을 1:0.8:0.3의 몰비로 배합한 것을 제외하고는 상기 실시예 1과 동일하게 수행하였다. The vinyl group-containing siloxane (a), Si-H terminated PDMS (c1) and HMS-991 (c2) was carried out in the same manner as in Example 1 except for blending in a molar ratio of 1: 0.8: 0.3.
실시예 3Example # 3
비닐기 함유 실록산(a), Si-H terminated PDMS(c1) 및 HMS-991(c2) 을 1:0.5:0.6의 몰비로 배합한 것을 제외하고는 상기 실시예 1과 동일하게 수행하였다. The vinyl group-containing siloxane (a), Si-H terminated PDMS (c1) and HMS-991 (c2) was carried out in the same manner as in Example 1 except for blending in a molar ratio of 1: 0.5: 0.6.
비교예 1Comparative Example 1
비닐기 함유 실록산(a), Si-H terminated PDMS(c1) 및 HMS-991(c2) 을 1:0.1:1의 몰비로 배합한 것을 제외하고는 상기 실시예 1과 동일하게 수행하였다. The same procedure as in Example 1 was performed except that the vinyl group-containing siloxane (a), Si-H terminated PDMS (c1), and HMS-991 (c2) were mixed in a molar ratio of 1: 0.1: 1.
비교예 2Comparative Example 2
비닐기 함유 실록산(a) 및 HMS-991(c2) 을 1:1.1의 몰비로 배합한 것을 제외하고는 상기 실시예 1과 동일하게 수행하였다. The same procedure as in Example 1 was carried out except that the vinyl group-containing siloxane (a) and HMS-991 (c2) were mixed in a molar ratio of 1: 1.1.
상기 실시예와 비교예에서 제조한 복합시트에 대하여, 하기의 물성을 평가하고 그 결과를 표 1에 나타내었다.With respect to the composite sheet prepared in Examples and Comparative Examples, the following physical properties were evaluated and the results are shown in Table 1.
물성평가방법Property evaluation method
(1)저장 모듈러스 및 손실 모듈러스 : Rheometer(Anton Paar, Physica MCR501) 장비를 사용하여, strain 0.5(%), frequency 10(1/s)의 조건으로 100℃에서 측정하였다. 지그는 angle 1°의 diameter 50mm인 것을 사용하였으며, 측정 gap은 102μm를 적용하였다.(1) storage modulus and   Loss modulus: Rheometer (Anton Paar, Physica MCR501) using a device, strain was measured at 100 ℃ under conditions of 0.5 (%), frequency 10 (1 / s). Jig used a diameter of 50mm diameter of 1 °, the measurement gap was applied to 102μm.
(2) tanδ : 상기 저장 모듈러스(G')와 손실 모듈러스(G")을 각각 측정한 후, G"/G' 에 의해 계산하였다. (2) tan δ: The storage modulus (G ′) and loss modulus (G ″) were measured, respectively, and then calculated by G ″ / G '.
(3) HAZE : HAZE meter(Nippon Denshoku, NDH2000)로 측정하였다. 초기 제조된 샘플과 220℃_2hr 열처리 후 샘플 각각에 대해 측정하였다. (3) HAZE: Measured by a HAZE meter (Nippon Denshoku, NDH2000). It was measured for each of the samples prepared initially and the samples after the heat treatment 220 ° C_2hr.
(4) Crack : 광학현미경으로 반사 mode로 측정하였다. 초기 제조된 샘플과 220℃_2hr 열처리 후 샘플 각각에 대해 측정하였다. (4) Crack: It was measured in the reflection mode by an optical microscope. It was measured for each of the samples prepared initially and the samples after the heat treatment 220 ° C_2hr.
× : 없음, △ : 부분적으로 존재, ○ : 있음 ×: none, △: partially present, ○: present
표 1
Mechanical property 초기 함침 샘플 220℃_2hr 열처리 후
G'(Mpa) tanδ HAZE(%) Crack HAZE(%) Crack
실시예 1 0.8 0.02 2.8 × 3.0 ×
실시예 2 0.7 0.03 2.7 × 4.6 ×
실시예 3 0.8 0.05 2.9 × 13.3
비교예 1 1.1 0.11 3.0 × 58.0
비교예 2 1.0 0.15 2.6 × 65.4
Table 1
Mechanical property Initial impregnation sample After 220 ℃ _2hr heat treatment
G '(Mpa) tanδ HAZE (%) Crack HAZE (%) Crack
Example 1 0.8 0.02 2.8 × 3.0 ×
Example 2 0.7 0.03 2.7 × 4.6 ×
Example 3 0.8 0.05 2.9 × 13.3
Comparative Example 1 1.1 0.11 3.0 × 58.0
Comparative Example 2 1.0 0.15 2.6 × 65.4
상기 표 1에서 나타난 바와 같이, tanδ 값이 약 0 초과 약 0.05 이하인 실시예 1~3은 열처리 후 낮은 헤이즈를 유지하였으며, 크랙이 거의 발견되지 않은 것을 확인하였다. 이에 비해 tanδ 값이 0.05를 초과하는 비교예 1-2는 열처리 후 헤이즈가 급격히 증가하였으며, 크랙이 발생한 것을 알 수 있다. As shown in Table 1, Examples 1 to 3 having a tan δ value greater than about 0 and less than or equal to about 0.05 maintained low haze after heat treatment, and it was confirmed that almost no cracks were found. On the contrary, in Comparative Example 1-2 having a tanδ value exceeding 0.05, the haze increased sharply after heat treatment, and it can be seen that cracks occurred.
이상 본 발명의 실시예들을 설명하였으나, 본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야 한다.Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments and can be manufactured in various forms, and a person of ordinary skill in the art to which the present invention pertains has the technical idea of the present invention. However, it will be understood that other specific forms may be practiced without changing the essential features. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.

Claims (7)

  1. 매트릭스; 및 matrix; And
    상기 매트릭스 내에 함침된 보강재;A reinforcing material impregnated in the matrix;
    를 포함하고, 손실 모듈러스(G")와 저장모듈러스(G')의 비인 tanδ 값(tanδ = G"/G')이 약 0 초과 약 0.05 이하인 복합시트.And a tanδ value (tanδ = G ″ / G ′), which is a ratio of the loss modulus (G ″) and the storage modulus (G ′), greater than about 0 and less than or equal to about 0.05.
  2. 제1항에 있어서, 상기 복합시트는 100℃에서 측정된 저장모듈러스가 약 0.1~5.0 MPa 인 복합시트.The composite sheet of claim 1, wherein the composite sheet has a storage modulus measured at 100 ° C. of about 0.1 to 5.0 MPa.
  3. 제1항에 있어서, 상기 복합시트는 220 ℃에서 2시간 열처리후 헤이즈가 약 15 % 이하인 복합시트.The composite sheet of claim 1, wherein the composite sheet has a haze of about 15% or less after heat treatment at 220 ° C. for 2 hours.
  4. 제1항에 있어서, 상기 매트릭스는 가교된 실리콘계 고무인 것을 특징으로 하는 복합시트.The composite sheet of claim 1, wherein the matrix is a crosslinked silicone rubber.
  5. 제1항에 있어서, 상기 보강재는 유리 섬유포(glass fiber cloth), 유리 직물(glass fibric), 유리 부직포 및 유리 메쉬(glass mesh)로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 것을 특징으로 하는 복합시트.The composite of claim 1, wherein the reinforcing material comprises at least one member selected from the group consisting of glass fiber cloth, glass fibric, glass nonwoven fabric, and glass mesh. Sheet.
  6. 실록산을 포함하는 매트릭스용 조성물에 보강재를 함침하고 경화시켜 tanδ 값을 약 0 초과 약 0.05 이하로 조절하는 것을 포함하는 복합시트의 제조 방법.A method for producing a composite sheet comprising impregnating and curing a composition for a matrix comprising a siloxane to harden the tan δ value by more than about 0 to about 0.05 or less.
  7. 제1항 내지 제5항중 어느 한 항의 복합시트를 포함하는 플렉시블 기판.A flexible substrate comprising the composite sheet of any one of claims 1 to 5.
PCT/KR2013/004667 2012-07-12 2013-05-28 Composite sheet, method for manufacturing same, and flexible substrate including same WO2014010826A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380011456.1A CN104136506A (en) 2012-07-12 2013-05-28 Composite sheet, method for manufacturing same, and flexible substrate including same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120075888A KR101526002B1 (en) 2012-07-12 2012-07-12 Composite sheet, method for preparing thereof and flexible substrate comprising the same
KR10-2012-0075888 2012-07-12

Publications (1)

Publication Number Publication Date
WO2014010826A1 true WO2014010826A1 (en) 2014-01-16

Family

ID=49916237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/004667 WO2014010826A1 (en) 2012-07-12 2013-05-28 Composite sheet, method for manufacturing same, and flexible substrate including same

Country Status (3)

Country Link
KR (1) KR101526002B1 (en)
CN (1) CN104136506A (en)
WO (1) WO2014010826A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106405822A (en) * 2016-10-08 2017-02-15 华南师范大学 Flexible electrowetting display substrate, preparation method thereof and electrowetting display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6514291B1 (en) * 1997-10-06 2003-02-04 Gunze Limited Artificial dura mater and process for producing dura mater
US20070054971A1 (en) * 2003-09-25 2007-03-08 Yuji Hiroshige Foam sheet-forming composition, heat conductive foam sheet and process for the production thereof
US20100103529A1 (en) * 2007-03-27 2010-04-29 Runa Nakamura Sheet-like optical member, resin composition for optical sheet, optical sheet and method for producing the same
US20100291835A1 (en) * 2007-08-03 2010-11-18 Inoac Corporation Foamed resin product having shape-formable properties, method of using the same and cushion material to be worn by human body
KR20130031703A (en) * 2011-09-21 2013-03-29 제일모직주식회사 Composite sheet and substrate for display device comprising the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0216768D0 (en) * 2002-07-19 2002-08-28 Ugb S A Polymeric film
US6822066B2 (en) * 2002-11-18 2004-11-23 Dow Corning Corporation Organosiloxane resin-polyene materials
JP4393077B2 (en) * 2003-01-31 2010-01-06 旭化成イーマテリアルズ株式会社 Transparent substrate
CN101120053B (en) * 2005-02-16 2011-05-25 陶氏康宁公司 Reinforced silicone resin film and method of preparing same
JP2006316089A (en) * 2005-05-10 2006-11-24 Jsr Corp Resin composition
GB2476586B (en) * 2008-03-27 2011-11-16 Gurit Composite materials

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6514291B1 (en) * 1997-10-06 2003-02-04 Gunze Limited Artificial dura mater and process for producing dura mater
US20070054971A1 (en) * 2003-09-25 2007-03-08 Yuji Hiroshige Foam sheet-forming composition, heat conductive foam sheet and process for the production thereof
US20100103529A1 (en) * 2007-03-27 2010-04-29 Runa Nakamura Sheet-like optical member, resin composition for optical sheet, optical sheet and method for producing the same
US20100291835A1 (en) * 2007-08-03 2010-11-18 Inoac Corporation Foamed resin product having shape-formable properties, method of using the same and cushion material to be worn by human body
KR20130031703A (en) * 2011-09-21 2013-03-29 제일모직주식회사 Composite sheet and substrate for display device comprising the same

Also Published As

Publication number Publication date
KR20140009639A (en) 2014-01-23
KR101526002B1 (en) 2015-06-04
CN104136506A (en) 2014-11-05

Similar Documents

Publication Publication Date Title
EP3281984B1 (en) Fluoroalkyl-containing curable organopolysiloxane composition, cured object obtained therefrom, and electronic component or display device including said cured object
US10370565B2 (en) Fluoroalkyl group-containing curable organopolysiloxane composition, cured product of same, and electronic component and display device each of which is provided with said cured product
WO2013042938A2 (en) Composite sheet, substrate for a display element including same, and display device including same
WO2014163352A1 (en) Polyimide cover substrate
US8945668B2 (en) Phenoxy resin composition for transparent plastic substrate and transparent plastic substrate using the same
KR102539232B1 (en) Pressure-sensitive adhesive layer-forming organopolysiloxane composition and use thereof
KR102379808B1 (en) High dielectric film, its use and manufacturing method
WO2014017795A1 (en) Complex sheet, method for manufacturing same, flexible substrate including same, and display device including same
KR20210042140A (en) Pressure sensitive adhesive layer forming organopolysiloxane composition and use thereof
KR20210102357A (en) Silicone pressure-sensitive adhesive composition and its use
US11858250B2 (en) Multilayer structure and uses thereof
US20140030945A1 (en) Composite sheet and substrate for display device including the same
WO2017057903A1 (en) Glass fiber-reinforced polycarbonate resin composition and molded article using same
WO2014010826A1 (en) Composite sheet, method for manufacturing same, and flexible substrate including same
KR20130053063A (en) Composite sheet, flexible substrate comprising the same and display apparatus comprising the same
JP2013256661A (en) Composite sheet, method of manufacturing the same, and display substrate including the same
WO2014104655A1 (en) Composite sheet, and display device including same
WO2015080397A1 (en) Gas barrier film and manufacturing method therefor
JP2016115014A (en) Transparent conductive film and touch panel
KR20130076612A (en) Composite sheet, flexible substrate comprising the same and display apparatus comprising the same
KR20130077701A (en) Flexible substrate and display apparatus comprising the same
WO2013187601A1 (en) Novel cyclic siloxane compound, method for preparing same, composite sheet including same, and display board using same
KR20150057274A (en) Composite sheet, method for preparing the same and display apparatus comprising the same
WO2019039881A1 (en) Coating resin composition and coating film comprising cured article thereof as coating layer
KR20140064122A (en) Composite sheet, method for preparing the same, flexible substrate comprising the same and display apparatus comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13817221

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13817221

Country of ref document: EP

Kind code of ref document: A1