WO2014010665A1 - Novel compound having negative dielectric anisotropy and having cyclic structure, method for producing same, liquid crystal composition and liquid crystal electrooptical element - Google Patents

Novel compound having negative dielectric anisotropy and having cyclic structure, method for producing same, liquid crystal composition and liquid crystal electrooptical element Download PDF

Info

Publication number
WO2014010665A1
WO2014010665A1 PCT/JP2013/068960 JP2013068960W WO2014010665A1 WO 2014010665 A1 WO2014010665 A1 WO 2014010665A1 JP 2013068960 W JP2013068960 W JP 2013068960W WO 2014010665 A1 WO2014010665 A1 WO 2014010665A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
substituted
liquid crystal
atom
Prior art date
Application number
PCT/JP2013/068960
Other languages
French (fr)
Japanese (ja)
Inventor
今野 勉
孝 石原
智之 淺井
渭原 聡
Original Assignee
Agcセイミケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agcセイミケミカル株式会社 filed Critical Agcセイミケミカル株式会社
Priority to JP2014524863A priority Critical patent/JPWO2014010665A1/en
Publication of WO2014010665A1 publication Critical patent/WO2014010665A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/18Ethers having an ether-oxygen atom bound to a carbon atom of a ring other than a six-membered aromatic ring
    • C07C43/192Ethers having an ether-oxygen atom bound to a carbon atom of a ring other than a six-membered aromatic ring containing halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/225Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring containing halogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3098Unsaturated non-aromatic rings, e.g. cyclohexene rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/16Systems containing only non-condensed rings with a six-membered ring the ring being unsaturated

Definitions

  • the present invention relates to a novel compound having a novel ring structure that exhibits negative dielectric anisotropy ( ⁇ ) and a method for producing the same, and more specifically, 5,5,6,6-tetrafluoro-1,3.
  • the present invention relates to a compound having a cyclohexadiene-1,4-diyl group, a method for producing the compound, a liquid crystal composition containing the compound, and a liquid crystal electro-optical element formed using the liquid crystal composition.
  • Liquid crystal electro-optical elements include mobile devices such as mobile phones and PDAs, display devices for OA devices such as copiers and personal computer monitors, display devices for home appliances such as liquid crystal televisions, clocks, calculators, measuring instruments, and automotive instruments. It is used for a wide range of applications such as cameras. There are TN (twisted nematic) method, STN (super twisted nematic) method, or TN-based active matrix (TFT: thin film transistor) method, etc., and these drive methods include ⁇ ( A liquid crystal composition having a positive dielectric anisotropy is used. However, one of the drawbacks of these display methods is a narrow viewing angle.
  • an IPS (in-plane switching) method or a VA (vertical alignment) method with improved viewing angle is often used as a driving method for large-sized liquid crystal electro-optic elements, among active matrix methods.
  • a liquid crystal composition having a positive or negative ⁇ is used for the IPS mode, and a liquid crystal composition having a negative ⁇ is used for the VA mode.
  • a liquid crystal composition in which several liquid crystalline compounds having one or two or more specific excellent properties are usually combined Is used as a material showing a liquid crystal phase used in a liquid crystal electro-optical element.
  • a liquid crystal compound having a negative ⁇ is indispensable, and a liquid crystal compound having a large absolute value of ⁇ is desired.
  • the function-expressing ring structure having a negative ⁇ used for general purposes is limited to a structure in which an electron-withdrawing group such as fluorine is introduced into a side orientation such as a phenyl ring or a naphthalene ring.
  • a compound represented by Formula (A) (see Patent Document 1) and a compound represented by Formula (B) (see Patent Document 2) having a 2,3-difluorophenylene group as a ⁇ negative function-expressing ring structure
  • a compound represented by the formula (C) in which a naphthalene ring has a ⁇ negative function-expressing ring structure (see Patent Document 3) is known.
  • JP-T-2-503441 Japanese Patent Laid-Open No. 10-176167 JP 2001-31597 A
  • the present invention is chemically stable, excellent in compatibility with other liquid crystal materials or non-liquid crystal materials, and has a high responsiveness, low viscosity, and a wide liquid crystal temperature range by designing a bonding group to the linking group.
  • Another object of the present invention is to provide a new ⁇ negative function-expressing ring structure-containing compound having a large ⁇ in order to develop a liquid crystalline compound that can also have characteristics such as a high clearing point.
  • the present invention also provides a novel ⁇ negative function-expressing ring structure, a method for producing a compound incorporating the same, a liquid crystal composition suitable for obtaining a highly reliable liquid crystal electro-optic element, and a liquid crystal composition thereof. It is an object of the present invention to provide a liquid crystal electro-optical element used.
  • R 1 and R 2 are each independently a hydrogen atom, a halogen atom, or an alkyl group having 1 to 18 carbon atoms, wherein one or more hydrogen atoms may be substituted with a halogen atom Well, an etheric oxygen atom (—O—) or a thioetheric sulfur atom (—S—) may be inserted between carbon-carbon atoms (C—C) or at the bond terminal of the group, and one or more —CH 2 CH 2 — may be substituted with —CH ⁇ CH— or —C ⁇ C—.
  • a 1 , A 2 , A 3 , A 4 , A 5 and A 6 independently of each other, trans-1,4-cyclohexylene group, 1,4-cyclohexenylene group, 1,3-cyclobutylene Group, 1,2-cyclopropylene group, naphthalene-2,6-diyl group, 1,2,3,4-tetrahydronaphthalene-2,6-diyl group, decahydronaphthalene-2,6-diyl group, or 1, 4-phenylene group, and in each of these groups, one or more hydrogen atoms may be substituted with a halogen atom, and one or two ⁇ CH— may be substituted with a nitrogen atom.
  • —CH 2 — may be substituted with —O— or —S—.
  • Z 1 , Z 2 , Z 3 , Z 4 , Z 5 and Z 6 are each independently a single bond or an alkylene group having 1 to 4 carbon atoms, in which one or more hydrogen atoms are
  • One or more —CH 2 — may be substituted with —O— or —S—, and one or more —CH 2 CH 2 — may be substituted with —CH ⁇ CH—.
  • —C ⁇ C— may be substituted, and one —CH 2 CH 2 — may be substituted with —COO— or —OCO—.
  • m, n, o, p, q and r 0 or 1 independently of each other. However, 0 ⁇ m + n + o + p + q + r ⁇ 4.
  • the compound is preferably represented by the following formula (1-1).
  • (1-1) The symbols in the formula have the following meanings.
  • R 11 and R 21 are each independently a hydrogen atom, a halogen atom, or an alkyl group having 1 to 18 carbon atoms, wherein one or more hydrogen atoms may be substituted with a halogen atom
  • —O— or —S— may be inserted between carbon-carbon atoms or at the bond terminal of the group, and one or more —CH 2 CH 2 — may be substituted with —CH ⁇ CH—. Also good.
  • a 11 , A 21 , A 31 , A 41 , A 51 , and A 61 each independently a trans-1,4-cyclohexylene group or a 1,4-phenylene group,
  • One or more hydrogen atoms may be substituted with a halogen atom, one or two ⁇ CH— may be substituted with a nitrogen atom, and one or two —CH 2 — may be —O—. Alternatively, it may be substituted with -S-.
  • Z 11 , Z 21 , Z 31 , Z 41 , Z 51 and Z 61 are each independently a single bond or an alkylene group having 1 to 4 carbon atoms, in which one or more hydrogen atoms are
  • One or more —CH 2 — may be substituted with —O— or —S—, and one or more —CH 2 CH 2 — may be substituted with —CH ⁇ CH—. Alternatively, it may be substituted with -C ⁇ C-.
  • m, n, o, p, q and r have the same meaning as described above.
  • R 12 and R 22 are each independently an alkyl group having 1 to 10 carbon atoms, and one or more hydrogen atoms in the group may be substituted with a fluorine atom, and a carbon-carbon atom or —O— may be inserted at the bond terminal of the group, and one or more —CH 2 CH 2 — may be substituted with —CH ⁇ CH—.
  • a 12 , A 22 , A 32 , A 42 , A 52 and A 62 independently of each other, a trans-1,4-cyclohexylene group, 1,4-phenylene group or one or two hydrogen atoms 1,4-phenylene group substituted by a fluorine atom.
  • Z 12 , Z 22 , Z 32 , Z 42 , Z 52 and Z 62 independently of each other, a single bond, —CH 2 CH 2 —, —CH ⁇ CH—, —C ⁇ C—, —CH 2 O —, —OCH 2 —, —CF 2 CF 2 —, —CF ⁇ CF—, —OCF 2 —, —CF 2 O—, —CH 2 CH 2 OCF 2 —, —CF 2 OCH 2 CH 2 —, — CF ⁇ CFCF 2 O— or —OCF 2 CF ⁇ CF—.
  • the present invention can provide the following method as an example of a method for producing the above compound.
  • the compound represented by the following formula (2) is cyclized to obtain a compound represented by the following formula (3), and then further hydrogenated to obtain a compound represented by the following formula (4).
  • R 3 in the formula (2) is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and other symbols in each formula have the same meaning as the symbols in the formula (1).
  • this invention provides the compound represented by said Formula (2), Formula (3), and Formula (4).
  • the present invention also provides a liquid crystal composition comprising the compound represented by the formula (1).
  • the present invention also provides a liquid crystal electro-optical element formed by sealing the liquid crystal composition between two substrates provided with electrodes.
  • the compound of the present invention has a novel ⁇ negative function-expressing ring structure, ⁇ is negatively large, and is useful for an operation mode utilizing vertical alignment.
  • the ring structure is a structure in which ⁇ is negatively large
  • the compound of the present invention has a feature that ⁇ is negatively large, but the ring group, substituent, and linking group constituting the compound are also included.
  • a compound having 5,5,6,6-tetrafluoro-1,3-cyclohexadiene-1,4-diyl group which is a new ⁇ negative function-expressing ring structure, has versatility. It is high and can be easily and efficiently produced easily and industrially.
  • a compound represented by the formula (1) is referred to as a compound (1), and compounds represented by other formulas are also described in the same manner.
  • the one closer to R 1 in the formula (1) is always the first place, and the one closer to R 2 is always the fourth place.
  • —O— and / or —S— are not linked.
  • “ ⁇ is negatively large” means that ⁇ is negative and the absolute value thereof is large. That is, if the value of ⁇ is ⁇ 1 and ⁇ 2, -2 is “ ⁇ is negatively larger”.
  • the bond described by the solid line in each formula includes all stereoisomers.
  • the liquid crystal electro-optical element is not limited to a display element, but various functional elements that use the electrical or optical characteristics of liquid crystal, such as a liquid crystal display element, a light control window, and an optical shutter. And elements used for applications such as a polarization conversion element and a variable focus lens.
  • the group in which one or more hydrogen atoms in the alkyl group are substituted with halogen atoms includes a fluoroalkyl group, chloro An alkyl group etc. are mentioned.
  • a fluorine atom is preferable.
  • Examples of the group in which —O— or —S— is inserted between C—C in the alkyl group include an alkoxyalkyl group or an alkylthioalkyl group, and —O— or —S— is inserted at the bond terminal of the group.
  • Examples of the group include an alkoxy group and an alkylthio group.
  • Examples of the group in which —CH 2 CH 2 — in the alkyl group is substituted with —CH ⁇ CH— or —C ⁇ C— include an alkenyl group and an alkynyl group.
  • substitution with — or —C ⁇ C— may be performed simultaneously on the same alkyl group.
  • Examples of the group in which substitution of a fluorine atom and insertion of —O— are simultaneously performed include a fluoroalkoxy group and a fluoroalkoxyalkyl group.
  • Examples of the group in which —CH ⁇ CH— or —C ⁇ C— substitution and fluorine atom substitution are simultaneously performed include a fluoroalkenyl group and a fluoroalkynyl group.
  • Examples of the group in which substitution of —CH ⁇ CH— or —C ⁇ C— and insertion of —O— or —S— between C—C are performed simultaneously include alkenyloxyalkyl group, alkynyloxyalkyl group, alkenyl A thioalkyl group and an alkynylthioalkyl group can be mentioned.
  • Examples of the group in which —CH ⁇ CH— or —C ⁇ C— is substituted and —O— or —S— is inserted at the bonding end of the group include an alkenyloxy group, an alkynyloxy group, an alkenylthio group, and an alkynylthio group.
  • Groups. Further, groups in which fluorine atom substitution, —CH ⁇ CH— or —C ⁇ C— substitution, and —O— or —S— insertion are performed simultaneously include fluoroalkenyloxy group, fluoroalkynyloxy group And a fluoroalkenylthio group. These groups may be either linear or branched, but are preferably linear.
  • R 1 and R 2 are preferably fluorine atoms and groups having 1 to 18 carbon atoms because reactivity and side reactions are less likely to occur.
  • R 1 and R 2 are alkyl groups, alkoxy groups, alkoxyalkyl groups, alkenyl groups, alkenyloxy groups, alkenyloxyalkyl groups, fluoroalkyl groups, fluoroalkoxy groups, fluoroalkoxyalkyls having 1 to 10 carbon atoms.
  • Group, a fluoroalkenyl group is more preferable, and an alkyl group, an alkoxy group, and an alkenyl group having 1 to 10 carbon atoms are particularly preferable.
  • substitution of a hydrogen atom with a halogen atom, ⁇ CH—to a nitrogen atom substituted, and, -CH 2 - substituted Roh -O- or -S- to may be carried out simultaneously for the same group.
  • a halogen atom a chlorine atom or a fluorine atom is preferable.
  • a 1 , A 2 , A 3 , A 4 , A 5 and A 6 are 1,4-phenylene groups and further have a halogen atom as a substituent
  • a halogen atom to be substituted with one 1,4-phenylene group The number of is from 1 to 4, with 1 or 2 being preferred.
  • the number of halogen atoms is preferably 1 to 4.
  • the halogen atom may be bonded to the 1st or 4th carbon atom of the cyclohexylene group.
  • Examples of the group in which one or two ⁇ CH— in the 1,4-phenylene group are substituted with a nitrogen atom include a 2,5-pyrimidinylene group and a 2,5-pyridinylene group.
  • Examples of the group in which one or two —CH 2 — in the trans-1,4-cyclohexylene group is substituted with —O— or —S— include a 1,3-dioxane-2,5-diyl group, A 1,3-dithian-2,5-diyl group may be mentioned.
  • a 1,4-phenylene group substituted with at least one of a halogen atom and a nitrogen atom is referred to as a “substituted 1,4-phenylene group” and substituted with at least one of a halogen atom, —O— and —S—.
  • the 1,4-cyclohexylene group thus prepared is referred to as “substituted trans-1,4-cyclohexylene group”.
  • a 1 , A 2 , A 3 , A 4 , A 5 and A 6 are trans-1,4-cyclohexylene group, 1,4-phenylene because of reactivity and availability of raw materials.
  • a group, a substituted trans-1,4-cyclohexylene group, or a substituted 1,4-phenylene group is preferred.
  • a trans-1,4-cyclohexylene group, a 1,4-phenylene group, or a 1,4-phenylene group in which one or two hydrogen atoms in the group are substituted with fluorine atoms is more preferable.
  • a 1,4-cyclohexylene group or a 1,4-phenylene group is particularly preferred.
  • a 1 , A 2 , A 3 , A 4 , A 5 and A 6 of the compound (1) is a 2,3-difluoro-1,4-phenylene group or the following ring group
  • ⁇ of the compound is considered to be larger due to being negative.
  • the one closer to R 1 in the formula (1) is the first place, and the one closer to R 2 is the fourth place.
  • Z 1 , Z 2 , Z 3 , Z 4 , Z 5 and Z 6 have the same meaning as described above.
  • substitution of a hydrogen atom with a fluorine atom substitution of —CH 2 — with —O— or —S—, —CH ⁇ CH— of —CH 2 CH 2 —, —C ⁇ C—, —COO— , —OCO— may be substituted simultaneously for the same group.
  • alkylene group in which one or more hydrogen atoms in the group are substituted with fluorine atoms examples include —CF 2 CF 2 —, —CF 2 CH 2 —, —CH 2 CF 2 —, —CHFCH 2 —, —CH 2 CHF—, —CF 2 CHF—, —CHFCF 2 — and the like can be mentioned.
  • alkylene group in which one or more —CH 2 — in the group is substituted by —O— or —S— include —CH 2 O—, —OCH 2 —, —CH 2 S—, —SCH 2 — and the like. Is mentioned.
  • groups in which the substitution of a hydrogen atom in a group with a fluorine atom and the substitution of —CH 2 — in the group with —O— are performed simultaneously include —CF 2 O—, —OCF 2 — Etc.
  • the alkylene group in which one or more —CH 2 CH 2 — in the group is substituted with —CH ⁇ CH— or —C ⁇ C— includes an alkenylene group or an alkynylene group.
  • the alkenylene group or alkynylene group includes —CH ⁇ CH—, —CH ⁇ CH—CH 2 —, —CH ⁇ CH—CH 2 —CH 2 —, —CH ⁇ CH—CH ⁇ CH—, —CH 2 —CH.
  • ⁇ CH—CH 2 —, —C ⁇ C—, —C ⁇ C—CH 2 —, —C ⁇ C—CH 2 —CH 2 —, —C ⁇ C—C ⁇ C—, —CH 2 —C ⁇ C—CH 2 — and the like can be mentioned. Further, double bonds and triple bonds may be mixed as in —CH ⁇ CH—C ⁇ C—. These groups may be reversed. Examples of groups in which —CH ⁇ CH— or —C ⁇ C— and fluorine atoms are simultaneously substituted include —CF ⁇ CF—, —CF ⁇ CF—C ⁇ C— and the like.
  • Examples of the group in which one —CH 2 CH 2 — is substituted with —COO— or —OCO— include —COO—, —OCO—, —CH 2 CH 2 —COO—, —CH 2 CH 2 -OCO- and the like.
  • Z 1 , Z 2 , Z 3 , Z 4 , Z 5 and Z 6 are preferably a single bond or an alkylene group having 1 to 4 carbon atoms from the viewpoint of ease of synthesis.
  • One or more hydrogen atoms in the group may be substituted with a fluorine atom, and one or more —CH 2 — in the group may be substituted with —O— or —S—.
  • Two or more —CH 2 CH 2 — may be substituted with —CH ⁇ CH— or —C ⁇ C—.
  • a single bond, —CH 2 CH 2 —, —C ⁇ C—, —CH 2 O—, —OCH 2 —, —OCF 2 —, and —CF 2 O— are preferable.
  • m, n, o, p, q and r have the same meaning as described above.
  • m, n, o, p, q, and r can be suitably selected according to the characteristics required for the compound. For example, when importance is attached to the low viscosity of the compound (1) or the excellent compatibility of the compound with other liquid crystal materials or non-liquid crystal materials, it is preferable that 0 ⁇ m + n + o + p + q + r ⁇ 1. On the other hand, when emphasizing the high liquid crystal temperature range of the compound, it is preferable that 1 ⁇ m + n + o + p + q + r ⁇ 3.
  • the compound (1-1) is preferable.
  • (1-1) The symbols in the formula are as described above.
  • the compound (1-2) is more preferred.
  • (1-2) The symbols in the formula are as described above.
  • Preferable examples of compound (1) include the following compounds.
  • R 1 , R 2 , Z 1 , Z 2 , Z 3 , Z 4 , Z 5 and Z 6 have the same meaning as described above, and other symbols have the following meanings.
  • -Cy- trans-1,4-cyclohexylene group.
  • -Phe- 1,4-phenylene group optionally substituted by one or two fluorine atoms.
  • a series of reactions for obtaining the compound (1) by the above production method can be expressed as follows. The symbols in each formula have the same meaning as described above.
  • the compound (2) can be synthesized, for example, as follows.
  • M in the formula is a metal atom or a group containing a metal atom.
  • Other symbols have the same meaning as described above.
  • the compound (5) is lithiated with methyllithium and reacted with the aldehyde of the compound (6) to obtain the compound (7).
  • the double bond of compound (7) is ozonolyzed and converted to hemiacetal (8).
  • the diketone (11) is obtained by reacting the compound (8) with the organometallic reagent (9) to convert it to the diol (10) and then oxidizing it.
  • Compound (2) is synthesized by reacting diketone (11) with alkenyl magnesium chloride (12).
  • MgI, MgBr, MgCl and Li are preferable, and MgBr is particularly preferable.
  • a commercially available tetrafluorosuccinic acid ester (compound (13)) is reacted with an organometallic reagent represented by compound (14) to convert it to compound (15), and further represented by compound (12).
  • the compound (2a) can be obtained by reacting with alkenyl magnesium chloride.
  • M of the compound (14) MgI, MgBr, MgCl and Li are preferable, and among these, MgBr is preferable.
  • Compound (3) is obtained by subjecting compound (2) to a ring-closing metathesis reaction.
  • Ring closure metathesis reactions are described in the literature (Schwab, P .; France, MB; Ziller, JW; Grubbs, RH Angew. Chem. Int. Ed. 1995, 34, 2039., Nguyen, ST; Johnson, LK; Grubbs, RH; Ziller , JWJ Am. Chem. Soc. 1992, 114, 3974.).
  • Solvents include aromatic hydrocarbon solvents such as benzene, toluene, xylene, and ethylbenzene, aliphatic hydrocarbon solvents such as pentane, hexane, heptane, and octane; tetrahydrofuran, diethyl ether, diisopropyl ether, dibutyl ether, and t-butylmethyl.
  • aromatic hydrocarbon solvents such as benzene, toluene, xylene, and ethylbenzene
  • aliphatic hydrocarbon solvents such as pentane, hexane, heptane, and octane
  • tetrahydrofuran diethyl ether
  • diisopropyl ether dibutyl ether
  • t-butylmethyl t-butylmethyl
  • Ether-based solvents such as ether and dimethoxyethane; petroleum ethers, halogen-based solvents such as methylene chloride, chloroform, carbon tetrachloride, 1,2-dichloroethane, and parkrene, or a suitable mixed solvent of the above solvents can be used.
  • halogen solvents such as methylene chloride and 1,2-dichloroethane
  • aromatic hydrocarbon solvents such as benzene and toluene are preferable.
  • the transition metal catalyst is preferably a Grubbs catalyst, and the amount used is preferably 0.00001 equivalent to 10 equivalents, more preferably 0.001 equivalent to 1 equivalent, relative to 1 mol of the compound (2). More preferably, 0.01 to 0.2 equivalent is used.
  • the reaction temperature is preferably 0 to 150 ° C, more preferably 10 to 100 ° C.
  • the reaction time is preferably 0.1 to 72 hours, more preferably 1 to 48 hours.
  • Compound (4) is obtained by hydrogenating compound (3).
  • the hydrogenation reaction is preferably carried out in a solvent using a heterogeneous catalyst.
  • Solvents that can be used include aromatic hydrocarbon solvents such as benzene, toluene, xylene, and ethylbenzene; aliphatic hydrocarbon solvents such as pentane, hexane, heptane, and octane; such as ethyl acetate, methyl acetate, and propyl acetate.
  • Ester solvents alcohol solvents such as methanol and ethanol; ketone solvents such as acetone and methyl ethyl ketone; ether solvents such as tetrahydrofuran, diethyl ether, dibutyl ether, t-butyl methyl ether, and dimethoxyethane; petroleum ethers or the aforementioned solvents
  • a suitable mixed solvent or the like can be used.
  • alcohol solvents such as methanol, ester solvents such as ethyl acetate, and mixed solvents of these solvents are preferable.
  • heterogeneous catalyst examples include transition metal catalysts such as palladium carbon, rhodium carbon, ruthenium carbon, Raney nickel, and platinum oxide.
  • the amount of the catalyst used is preferably 0.01 to 1.0 times, more preferably 0.1 to 0.5 times the mass of the compound (3).
  • the reaction temperature is preferably ⁇ 50 to 100 ° C., more preferably 0 to 40 ° C.
  • the reaction time is preferably 0.1 to 72 hours, more preferably 0.1 to 48 hours.
  • Compound (1) can be obtained by dehydrating compound (4).
  • the dehydrating agent used in the dehydration reaction phosphorus oxychloride, phosphorus pentachloride, sulfonyl chloride, sulfuryl chloride, or the like can be used.
  • the dehydration reaction can be carried out in a solvent if desired.
  • Organic solvents include aromatic hydrocarbon solvents such as benzene, toluene, xylene and ethylbenzene, aliphatic hydrocarbon solvents such as pentane, hexane, heptane and octane; tetrahydrofuran, diethyl ether, diisopropyl ether, dibutyl ether and t-butyl.
  • Ether solvents such as methyl ether and dimethoxyethane; petroleum ethers, halogen solvents such as methylene chloride, chloroform, carbon tetrachloride, 1,2-dichloroethane, and parkrene, etc., or a suitable mixed solvent of the above solvents can be used.
  • the dehydration reaction may be performed in the presence of a base.
  • An inorganic base or an organic base can be used as the base.
  • inorganic bases include alkali metals such as sodium metal and metal potassium and carbonates thereof, hydroxides, hydrides and metal cesium, alkaline earth metals such as metal aluminum and carbonates, hydroxides and hydrogen thereof.
  • the monster is raised.
  • the organic base include chain organic amines such as triethylamine and diisopropylamine, cyclic organic amines such as pyridine, morpholine, pyridine, quinoline and imidazole, and organic amines having a substituent in the ring.
  • the amount of dehydrating agent used is preferably 1.9 to 20 equivalents relative to the number of moles of compound (4), and the reaction temperature is preferably 0 to 200 ° C, more preferably 20 to 150 ° C.
  • the reaction time is preferably 0.5 to 72 hours, more preferably 1 to 24 hours.
  • Compound (2), Compound (3) and Compound (4) are useful as intermediates for synthesizing Compound (1).
  • the definition of each group is as described above, and the preferred embodiment is the same as the compound (1).
  • Compound (2b) to compound (4b) can be synthesized in the same manner as compound (2) to compound (4). From compound (4b) to compound (1b), the synthesis can proceed by appropriately protecting and deprotecting the OH group. Examples of detailed synthesis including protection and deprotection include the following methods. (4b) ⁇ ⁇ ⁇ (16) ⁇ (17) ⁇ ⁇ (1b) However, R 52 in the formula represents a protecting group for the OH group, and other symbols have the same meaning as described above.
  • R 51 and R 52 are OH protecting groups. It is not particularly limited as long as it is a protective group for OH group, but it cannot be attached to two OH groups at the same time, cannot be removed under the same conditions, and cannot be removed when compound (17) is synthesized from compound (16). It is preferable that it is a protecting group that satisfies the condition.
  • R 51 and R 52 include a benzyl group, p-methoxyphenylbenzyl group, methoxymethyl group, trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, acetyl group, benzoyl group, and trityl group.
  • R 51 is particularly preferably an acetyl group
  • R 52 is particularly preferably a t-butyldimethylsilyl group.
  • the compound (1) of the present invention is useful as a liquid crystal compound.
  • the liquid crystal compound means a compound that exhibits a liquid crystal phase and a compound that does not exhibit a liquid crystal phase but is useful as a constituent of a liquid crystal composition.
  • the present invention provides a liquid crystal composition comprising the compound (1) of the present invention.
  • This liquid crystal composition is constituted by mixing the compound (1) of the present invention with other liquid crystal compounds or non-liquid crystal compounds (collectively referred to as “other compounds”).
  • the content of the compound (1) in the liquid crystal composition of the present invention can be appropriately changed depending on the purpose of use, the purpose of use, the type of other compounds, and the like. 5 to 80% by mass is preferable, and 2 to 50% by mass is particularly preferable. Moreover, you may contain 2 or more types of compounds (1) in a liquid-crystal composition by a use, a use purpose, etc. In that case, the total amount of the compound (1) is preferably 0.5 to 80% by mass, particularly preferably 2 to 50% by mass, based on the total amount of the liquid crystal composition.
  • Other compounds used in combination with the compound (1) include components for adjusting the refractive index anisotropy value, components for reducing the viscosity, components exhibiting liquid crystallinity at low temperatures, components for improving the dielectric anisotropy, and cholesteric A component for imparting properties, a component exhibiting dichroism, a component for imparting conductivity, and various other additives. These are appropriately selected depending on the application, required performance and the like, but usually those composed of a liquid crystal compound, a main component having a similar structure to the liquid crystal compound, and an additive component added if necessary.
  • the other compound is preferably a compound represented by the following formula (D) in which ⁇ is negative.
  • D formula (D) in which ⁇ is negative.
  • the symbols in the formula have the following meanings.
  • R d1 and R d2 are each independently an alkyl group having 1 to 10 carbon atoms, and in the alkyl group, one or more hydrogen atoms may be substituted with a fluorine atom, —O— may be inserted at the bond terminal of the group, and one or more —CH 2 CH 2 — may be substituted with —CH ⁇ CH—.
  • a d1 , A d2 , A d3 and A d4 each independently a trans-1,4-cyclohexylene group or a 1,4-phenylene group, wherein one or more hydrogen atoms in the group are It may be substituted with a fluorine atom.
  • Z d1 , Z d2 and Z d3 independently of each other, a single bond, —COO—, —C ⁇ C—, —OCO—, —OCH 2 —, —CH 2 O— or —C 2 H 4 —.
  • m d and n d 0 or 1 independently of each other.
  • one or more of A d1 , A d2 , A d3 and A d4 is a 2,3-difluoro-1,4-phenylene group.
  • the compound (D) for compound m d and n d are both 0 are compounds of the 2 rings, low viscosity, it is useful when requiring fast response of the device. It can also be used to adjust the threshold voltage and refractive index anisotropy.
  • a compound in which one of m d and n d is 1 and the other is 0 is a tricyclic compound. Therefore, the clearing point is higher than that of the bicyclic compound, and the nematic phase This is useful for expanding the liquid crystal temperature range. It can also be used to adjust the refractive index anisotropy.
  • a compound in which both m d and n d are 1 is a tetracyclic compound, and therefore has a particularly high clearing point, and thus is particularly useful for expanding the liquid crystal temperature range.
  • Preferable compounds (D) include the following compounds.
  • -Ph- represents a 1,4-phenylene group
  • -Cy- has the same meaning as described above. Indicates.
  • the content of the compound (D) is 5 to 60 mass with respect to the total amount of the liquid crystal composition. % Is preferable, and 5 to 50% by mass is more preferable. When two or more types of compounds (D) are included, the total amount is preferably in the above range.
  • a compound represented by the following formula (E) having a small absolute value of ⁇ and close to neutrality is also preferable.
  • R e1 and R e2 each independently an alkyl group having 1 to 10 carbon atoms, in which one or more hydrogen atoms may be substituted with a fluorine atom, —O— may be inserted at the bond terminal of the group, and one or more —CH 2 CH 2 — may be substituted with —CH ⁇ CH—.
  • a e1 , A e2 , A e3 and A e4 independently of each other, a trans-1,4-cyclohexylene group, a pyrimidine-2,5-diyl group, or a 1,4-phenylene group, One or more hydrogen atoms therein may be substituted with fluorine atoms.
  • Z e1 , Z e2 , Z e3 and Z e4 independently of each other, a single bond, —COO—, —C ⁇ C—, —OCO—, —CH ⁇ CH— or —C 2 H 4 —.
  • m e and n e 0 or 1 independently of each other.
  • a compound in which m e and n e are both 0 is a bicyclic compound, which is useful when the viscosity is low and high-speed response of the device is required. It can also be used to adjust the refractive index anisotropy.
  • a one is 1 m e and n e, compounds other is 0, because it is a compound of three rings, a high clearing point compared to the compound of the 2 rings, a nematic phase This is useful for expanding the liquid crystal temperature range. It can also be used to adjust the refractive index anisotropy.
  • for compound m e and n e are both 1 is the compound of 4 ring, because the clearing point is particularly high, is particularly useful for the expansion of the liquid crystal temperature range.
  • Preferable compounds (E) include the following compounds.
  • -Pm- represents a pyrimidine-2,5-diyl group
  • -Cy- and -Ph- Indicates the same meaning.
  • the content of the compound (E) is 10 to 50% by mass with respect to the total amount of the liquid crystal composition. Is preferable, and 20 to 40% by mass is more preferable.
  • the total amount is preferably in the above range.
  • an optically active compound may be added in order to achieve uniform twist alignment.
  • an optically active compound for example, the compound marketed by names, such as CN, S-811, CB-15, is mentioned.
  • the pitch length is preferably in the range of 40 to 200 ⁇ m for TFT and TN, 6 to 20 ⁇ m for STN, and 1.5 to 4 ⁇ m for bistable TN.
  • liquid crystal composition of the present invention examples include the following.
  • the symbols in Table 1 have the same meaning as described above.
  • the hydrogen atom of each group may be substituted with a deuterium atom.
  • the present invention provides a liquid crystal electro-optical element that uses the liquid crystal composition as a constituent material of a liquid crystal layer.
  • a liquid crystal electro-optical element having an electro-optical element portion formed by sandwiching a liquid crystal layer formed by, for example, injecting the liquid crystal composition of the present invention into a liquid crystal cell between two substrates having electrodes.
  • the liquid crystal composition of the present invention can be suitably used in liquid crystal electro-optical elements such as VA mode, IPS mode, and OCB mode regardless of passive driving or active driving.
  • the liquid crystal composition of the present invention is particularly useful in a mode in which liquid crystal molecules such as OCB mode and VA mode are aligned perpendicular to the electrode.
  • a VA (vertical alignment) mode liquid crystal element As a typical liquid crystal element in which liquid crystal molecules are aligned perpendicularly to an electrode, a VA (vertical alignment) mode liquid crystal element can be given.
  • an undercoat layer such as SiO 2 or Al 2 O 3 or a color filter layer is first formed on a substrate such as plastic or glass as necessary, and In 2 O 3 —SnO. 2
  • a film made of (ITO), SnO 2 or the like is formed, and an electrode having a required pattern is formed by photolithography or the like.
  • an overcoat layer of polyimide, polyamide, SiO 2 , Al 2 O 3 or the like is formed and oriented.
  • a sealing material is printed on this, and it arrange
  • composition of the present invention is injected into an empty cell, and the injection port is sealed with a sealant to form a liquid crystal cell.
  • this liquid crystal cell is laminated with a polarizing plate, a color polarizing plate, a light source, a color filter, a transflective plate, a reflecting plate, a light guide plate, an ultraviolet cut filter, etc., printing characters, figures, etc., non-glare processing, etc.
  • a liquid crystal electro-optical element can be obtained.
  • ODF liquid crystal dropping method
  • a substrate using a two-layer electrode a substrate using a two-layer electrode
  • a two-layer liquid crystal cell formed with a two-layer liquid crystal layer a substrate using a reflective electrode
  • an active element such as a TFT, MIM, etc.
  • Various configurations such as an active matrix element using an active matrix substrate on which are formed can be employed.
  • the composition of the present invention is also suitable for active matrix devices such as TFT and MIM.
  • composition of the present invention uses an in-plane switching (IPS) type liquid crystal element that drives liquid crystal molecules in parallel to the substrate in a mode other than the VA type, that is, a horizontal electric field, and a polychromatic dye. It can be used in various ways such as a guest-host (GH) type liquid crystal element and a ferroelectric liquid crystal element. Furthermore, the composition of the present invention can be used not only for an electric writing method but also for a writing method using heat.
  • IPS in-plane switching
  • GH guest-host
  • phase transition point of the compound of the present invention was measured as follows. [Measurement of phase transition point] A sample was placed on a hot plate of a melting point measuring apparatus equipped with a polarizing microscope, heated at 1 ° C./min, and the phase change was observed. In addition, using a differential scanning calorimeter (DSC 6220, manufactured by SII Nanotechnology Co., Ltd.), the temperature was raised at 1 ° C./min to confirm the phase change. C represents a crystalline phase, N represents a nematic phase, and I represents an isotropic phase. The above physical property values were prepared by mixing 90% by mass of the liquid crystal composition “MLC-6608” manufactured by Merck & Co., Ltd.
  • a voltage of 100 mV was applied to this cell at 20 ° C., and the dielectric constant ( ⁇ ) in the minor axis direction of the liquid crystal molecules was measured using a horizontally aligned glass cell. Similarly, the dielectric constant ( ⁇ ) in the major axis direction of liquid crystal molecules was measured using a vertically aligned glass cell.
  • Example 1 Synthesis of compound (2-A) A 100 mL two-necked flask under an argon atmosphere was charged with the compound (11-A) (2.83 g, 7.30 mmol) obtained as described above and THF (14.6 mL). To this reaction solution, vinylmagnesium chloride (THF solution, 2.1 mol / L, 15.0 mL, 31.5 mmol) was added dropwise at room temperature, and then heated to reflux for 14 hours. The reaction solution was cooled to room temperature and the reaction was quenched with saturated aqueous ammonium chloride.
  • THF solution 2.1 mol / L, 15.0 mL, 31.5 mmol
  • Example 3 Synthesis of compound (4-A) In a 50 mL two-necked flask under an argon atmosphere, palladium carbon (10%, 0.090 g, 0.07 mmol), methanol (3.5 mL), and the compound (3-A) (0.295 g, 0.71 mmol) obtained in the same manner as above were added. Prepared. The inside of the reaction vessel was replaced with hydrogen and stirred at room temperature for 24 hours. Thereafter, the reaction solution was passed through silica gel, and the filtrate was concentrated under reduced pressure.
  • Example 4 Synthesis of Compound (1-A) A 50 mL two-necked flask under an argon atmosphere was charged with the compound (4-A) (0.12 g, 0.29 mmol) obtained as described above and pyridine (8.6 mL). Thereafter, phosphorus oxychloride (2.86 mmol, 0.27 mL) was added dropwise at room temperature, and the reaction solution was heated to 90 ° C. and stirred for 24 hours. Again, the reaction solution was cooled to room temperature, and saturated ammonium chloride aqueous solution was added to stop the reaction. The reaction solution was extracted with ethyl acetate three times.
  • Phase transition temperature C 105.9 ° C N 109.9 ° C I This compound had Tc of 79.4 ° C. and ⁇ of ⁇ 6.21. Since ⁇ was negative, it was confirmed that the 5,5,6,6-tetrafluoro-1,3-cyclohexadiene-1,4-diyl group of the present invention is a ring structure with a negative function of ⁇ . did it.
  • the ⁇ -negative function-expressing ring structure of the present invention which is a strong ⁇ -negative function-expressing ring structure, is a 5,5,6,6-tetrafluoro-1,3-cyclohexadiene-1,4-diyl group. It was confirmed that.
  • Example 9 Synthesis of Compound (2-C)
  • Example 15 Synthesis of compound (4a-A) In a 100 mL two-necked flask under an argon atmosphere, palladium / carbon (10%, 0.85 g, 0.8 mmol), methanol (40 mL), and the compound (3a-A) (3.30 g, 8 mmol) obtained in the same manner as described above were used. ). After replacing argon in the reaction system with hydrogen, the mixture was stirred at room temperature for 2 days. The reaction solution was passed through silica gel, and the obtained filtrate was concentrated under reduced pressure to give compound (4a-A) (3.33 g, 8 mmol) as a single diastereomer (yield 100%).
  • Compound (4a-A) is the same compound as compound (4-A) of Example 2, but the product is obtained as a single diastereomer by using the production method of this example. be able to.
  • Example 20 Synthesis of compound (2b-A) (2b-A)
  • vinylmagnesium chloride diethyl ether solution, 4.0 eq
  • the crude product was purified by silica gel column chromatography to obtain a monosilyl ether in which only the secondary hydroxyl group was selectively protected with tert-butyldimethylsilyl (TBS) in a yield of 77%.
  • TBS tert-butyldimethylsilyl
  • Compound (1b-A) C 3 H 7 -Cy-Ph-Cd-OC 2 H 5 C 3 H 7 -Cy-Ph-Cd-C 2 H 5 compound (1-A) C 3 H 7 -Cy-Ph-CF 2 O-Cd-C 3 H 7 C 4 H 9 -Cy-CH 2 CH 2
  • C 3 H 7 -Ph-Ph-Ph-Cd-OC 2 H 5 C 3 H 7 -Ph-Ph- Ph (2F, 3F) -Cd-OCH 3 CH CHC 2 H 4 -Ph-Ph-Ph-Cd-OCH 3 C 5 H 11 -Cy-Ph-Ph-Cd-OC 2 H 5 CH 3 -Cy-Ph-Ph (2F, 3F) -Cd-OC 2 H 5 CH 3 -Ph-Ph-Ph-Cd-OCH 3 C 2 H 5 -Py (2) -Ph-Ph-Cd-C 2 H 5 C 3 H 7 -Py (2) -Ph-Ph-Cd-OC 2 H 5 C 4 H 9 -Py (3) -Ph-Ph-Cd-OC 2 H 5 C 5 H 11 -
  • Examples of the pentacyclic compound include the following.
  • C 3 H 7 -Ph-Ph-Ph-Ph-Cd-OC 2 H 5 C 4 H 9 -Ph-Ph-Ph-Cy-Cd-OC 2 H 5 C 5 H 11 -Ph-Ph-Py (2) -Cd-OCH 3 CH 3 -Ph-Ph-Ph-Py (3) -Cd-OCH 3 C 2 H 5 -Ph-Ph-Cy-Ph (2F, 3F) -Cd-OCH 3 C 3 H 7 -Ph-Ph-Py (2) -Ph-Cd-OC 2 H 5 C 4 H 9 -Ph-Ph-Py (3) -Ph-Cd-OC 2 H 5 C 5 H 11 -Ph-Cy-Ph-Ph-Cd-OC 2 H 5 CH 3 -Ph-Ph (2) -
  • the compound of the present invention has a novel ⁇ negative function-expressing ring structure, and it has been found that ⁇ is negatively larger than that of a widely used compound having a 2,3-difluorophenyl group. Further, by appropriately selecting the ring group, substituent and linking group constituting the compound, the compound of the present invention can prepare a liquid crystal composition satisfying various performances required for a liquid crystal element such as a wide operating temperature range. it is conceivable that. Moreover, it turned out that the compound of this invention can be easily manufactured with the manufacturing method of this invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

The purpose of the present invention is to provide a novel negative Δε function-developing cyclic structure-containing compound in which Δε is a large negative value, which is chemically stable, which has excellent compatibility with other liquid crystal materials or non-liquid crystal materials, and which is used to develop a liquid crystal compound capable of exhibiting a variety of characteristics such as rapid response, low viscosity, wide liquid crystal temperature range and high transparency by specifying a bonding group to a linking group; a method for producing this compound; and a liquid crystal composition and liquid crystal electrooptical element containing this compound. The present invention provides a compound represented by formula (1).

Description

誘電率異方性が負の環構造を有する新規な化合物およびその製造方法、液晶組成物および液晶電気光学素子Novel compound having a ring structure with negative dielectric anisotropy, method for producing the same, liquid crystal composition, and liquid crystal electro-optical element
 本発明は、負の誘電率異方性(Δε)を発現する新規な環構造を有する新規な化合物およびその製造方法に関し、さらに詳しくは、5,5,6,6-テトラフルオロ-1,3-シクロヘキサジエン-1,4-ジイル基を有する化合物およびその製造方法さらにこの化合物を含有する液晶組成物およびこの液晶組成物を用いて構成した液晶電気光学素子に関する。 The present invention relates to a novel compound having a novel ring structure that exhibits negative dielectric anisotropy (Δε) and a method for producing the same, and more specifically, 5,5,6,6-tetrafluoro-1,3. The present invention relates to a compound having a cyclohexadiene-1,4-diyl group, a method for producing the compound, a liquid crystal composition containing the compound, and a liquid crystal electro-optical element formed using the liquid crystal composition.
 液晶電気光学素子は、携帯電話、PDAなどの携帯機器、複写機、パソコンモニタなどのOA機器用表示装置、液晶テレビなどの家電製品用表示装置をはじめ、時計、電卓、測定器、自動車用計器、カメラなど、極めて広範な用途に用いられている。
 液晶電気光学素子の駆動方式にはTN(ねじれネマチック)方式、STN(超ねじれネマチック)方式、又はTNをベースにしたアクティブマトリックス(TFT:薄膜トランジスタ)方式等があり、これらの駆動方式にはΔε(誘電率異方性)が正の液晶組成物が利用されている。しかしながら、これらの表示方式の欠点の一つとして視野角の狭さがある。
 したがって、大型の液晶電気光学素子の駆動方式にはアクティブマトリックス方式の中でも視野角を改善したIPS(インプレインスイッチング)方式やVA(ヴァーティカルアラインメント)方式が多く採用されている。IPS方式にはΔεが正または負の液晶組成物が利用され、VA方式にはΔεが負の液晶組成物が利用される。
Liquid crystal electro-optical elements include mobile devices such as mobile phones and PDAs, display devices for OA devices such as copiers and personal computer monitors, display devices for home appliances such as liquid crystal televisions, clocks, calculators, measuring instruments, and automotive instruments. It is used for a wide range of applications such as cameras.
There are TN (twisted nematic) method, STN (super twisted nematic) method, or TN-based active matrix (TFT: thin film transistor) method, etc., and these drive methods include Δε ( A liquid crystal composition having a positive dielectric anisotropy is used. However, one of the drawbacks of these display methods is a narrow viewing angle.
Therefore, an IPS (in-plane switching) method or a VA (vertical alignment) method with improved viewing angle is often used as a driving method for large-sized liquid crystal electro-optic elements, among active matrix methods. A liquid crystal composition having a positive or negative Δε is used for the IPS mode, and a liquid crystal composition having a negative Δε is used for the VA mode.
 液晶電気光学素子に求められる全ての性能を単一の化合物によって満たすことは困難であることから、通常、1または2以上特異的に優れた特性を有する液晶性化合物をいくつか組み合わせた液晶組成物が液晶電気光学素子に使用される液晶相を示す材料として使用されている。
 Δεが負の液晶組成物を調整するためには、Δεが負の液晶性化合物が不可欠であり、Δεの絶対値が大きな液晶性化合物が望まれている。
 Δεは分子長軸方向の誘電率(ε∥)と分子短軸方向の誘電率(ε⊥)の差として定義される値(Δε=ε∥-ε⊥)であり、Δεが負の誘電率を発現させるためには、ε∥に比べε⊥の値が大きくなる特徴的な機能発現環構造が必要である。
Since it is difficult to satisfy all performances required for a liquid crystal electro-optical element with a single compound, a liquid crystal composition in which several liquid crystalline compounds having one or two or more specific excellent properties are usually combined Is used as a material showing a liquid crystal phase used in a liquid crystal electro-optical element.
In order to adjust a liquid crystal composition having a negative Δε, a liquid crystal compound having a negative Δε is indispensable, and a liquid crystal compound having a large absolute value of Δε is desired.
Δε is a value (Δε = ε∥−ε⊥) defined as the difference between the dielectric constant (ε∥) in the molecular major axis direction and the dielectric constant (ε⊥) in the minor molecular axis direction, and Δε is a negative dielectric constant. Is required to have a characteristic functional ring structure in which the value of ε⊥ is larger than that of ε∥.
 ε⊥の値を大きくするには液晶性分子の側方位にフッ素などの電子吸引性基を導入し、短軸方向のダイポールモーメントを大きくすることが有効である。
 汎用に用いられているΔεが負の機能発現環構造としてはフェニル環やナフタレン環等の側方位にフッ素などの電子吸引性基を導入した構造に限られている。
 例えば2,3-ジフルオロフェニレン基をΔε負の機能発現環構造とした式(A)で表される化合物(特許文献1参照)及び式(B)で表される化合物(特許文献2参照)、ナフタレン環をΔε負の機能発現環構造とした式(C)で表される化合物(特許文献3参照)などが知られている。
Figure JPOXMLDOC01-appb-C000008
In order to increase the value of ε⊥, it is effective to introduce an electron-withdrawing group such as fluorine in the side orientation of the liquid crystal molecule to increase the dipole moment in the minor axis direction.
The function-expressing ring structure having a negative Δε used for general purposes is limited to a structure in which an electron-withdrawing group such as fluorine is introduced into a side orientation such as a phenyl ring or a naphthalene ring.
For example, a compound represented by Formula (A) (see Patent Document 1) and a compound represented by Formula (B) (see Patent Document 2) having a 2,3-difluorophenylene group as a Δε negative function-expressing ring structure, A compound represented by the formula (C) in which a naphthalene ring has a Δε negative function-expressing ring structure (see Patent Document 3) is known.
Figure JPOXMLDOC01-appb-C000008
特表平2-503441号公報JP-T-2-503441 特開平10-176167号公報Japanese Patent Laid-Open No. 10-176167 特開2001-31597号公報JP 2001-31597 A
 液晶性化合物のΔε負の機能発現環構造は限られているため、Δε負の液晶性化合物のバリエーションを増やすには限界があった。新規のΔε負の液晶性化合物を開発するためのΔε負の新しい機能発現環構造の開発が待ち望まれている。
 このため、本発明は、化学的に安定であり、他の液晶材料または非液晶材料との相溶性に優れるとともに、連結基への結合基の設計により高速応答性、低粘性、広い液晶温度範囲、高い透明点などの特性も併せ持つことが可能な液晶性化合物を開発するための、Δεが負に大きい新しいΔε負の機能発現環構造含有化合物を提供することを目的とする。
 また、本発明は、新しいΔε負の機能発現環構造の提供およびそれを組み込んだ化合物の製造方法、さらに信頼性の高い液晶電気光学素子を得るのに好適な液晶組成物およびその液晶組成物を用いた液晶電気光学素子を提供することを目的とする。
Since the Δε negative function-expressing ring structure of the liquid crystal compound is limited, there is a limit to increase the variation of the Δε negative liquid crystal compound. The development of a new Δε-negative functional ring structure for the development of a novel Δε-negative liquid crystalline compound is awaited.
For this reason, the present invention is chemically stable, excellent in compatibility with other liquid crystal materials or non-liquid crystal materials, and has a high responsiveness, low viscosity, and a wide liquid crystal temperature range by designing a bonding group to the linking group. Another object of the present invention is to provide a new Δε negative function-expressing ring structure-containing compound having a large Δε in order to develop a liquid crystalline compound that can also have characteristics such as a high clearing point.
The present invention also provides a novel Δε negative function-expressing ring structure, a method for producing a compound incorporating the same, a liquid crystal composition suitable for obtaining a highly reliable liquid crystal electro-optic element, and a liquid crystal composition thereof. It is an object of the present invention to provide a liquid crystal electro-optical element used.
 本発明者らは、鋭意検討を重ねた結果、新しいΔε負の機能発現環構造として、5,5,6,6-テトラフルオロ-1,3-シクロヘキサジエン-1,4-ジイル基を考案し、この新しい機能発現環構造を組み込んだ化合物の合成に成功した。この新しいΔε負の機能発現環構造は負に大きいΔε示し、Δε負の機能発現環構造として有用であることが判明した。5,5,6,6-テトラフルオロ-1,3-シクロヘキサジエン-1,4-ジイル基は全く新しい構造であり、これまで合成例はない。したがって、この機能発現環構造を含んだ化合物は新規化合物であり、その製造方法も新規のものである。 As a result of intensive studies, the present inventors have devised a 5,5,6,6-tetrafluoro-1,3-cyclohexadiene-1,4-diyl group as a new Δε negative function-expressing ring structure. We have succeeded in synthesizing a compound incorporating this new functional ring structure. This new Δε negative function-expressing ring structure showed a negative Δε, which was found to be useful as a Δε-negative function-expressing ring structure. The 5,5,6,6-tetrafluoro-1,3-cyclohexadiene-1,4-diyl group has a completely new structure and has not been synthesized. Therefore, the compound containing this function-expressing ring structure is a novel compound, and its production method is also novel.
 本発明に係る化合物は、下記式(1)で表される。
Figure JPOXMLDOC01-appb-C000009
                         (1)
 式(1)中の記号は、以下の意味を示す。
1およびR2:相互に独立して、水素原子、ハロゲン原子、または炭素数1~18のアルキル基であり、該アルキル基中、1つ以上の水素原子はハロゲン原子で置換されていてもよく、炭素-炭素原子(C-C)間または該基の結合末端にエーテル性酸素原子(-O-)またはチオエーテル性硫黄原子(-S-)が挿入されていてもよく、1つ以上の-CH2CH-は-CH=CH-または-C≡C-で置換されていてもよい。
1、A2、A3、A4、A5およびA6:相互に独立して、トランス-1,4-シクロへキシレン基、1,4-シクロヘキセニレン基、1,3-シクロブチレン基、1,2-シクロプロピレン基、ナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、デカヒドロナフタレン-2,6-ジイル基または1,4-フェニレン基であり、これら各基中、1つ以上の水素原子はハロゲン原子で置換されていてもよく、1つまたは2つの=CH-は窒素原子で置換されていてもよく、1つまたは2つの-CH2-は-O-または-S-で置換されていてもよい。
1、Z2、Z3、Z4、Z5およびZ6:相互に独立して、単結合または炭素数1~4のアルキレン基であり、該アルキレン基中、1つ以上の水素原子はフッ素原子で置換されていてもよく、1つ以上の-CH-は-O-または-S-で置換されていてもよく、1つ以上の-CH2CH-は-CH=CH-または-C≡C-で置換されていてもよく、1つの-CH2CH-は-COO-または-OCO-で置換されていてもよい。
m、n、o、p、qおよびr:相互に独立して0または1である。ただし、0≦m+n+o+p+q+r≦4。
The compound according to the present invention is represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000009
(1)
The symbol in Formula (1) shows the following meanings.
R 1 and R 2 are each independently a hydrogen atom, a halogen atom, or an alkyl group having 1 to 18 carbon atoms, wherein one or more hydrogen atoms may be substituted with a halogen atom Well, an etheric oxygen atom (—O—) or a thioetheric sulfur atom (—S—) may be inserted between carbon-carbon atoms (C—C) or at the bond terminal of the group, and one or more —CH 2 CH 2 — may be substituted with —CH═CH— or —C≡C—.
A 1 , A 2 , A 3 , A 4 , A 5 and A 6 : independently of each other, trans-1,4-cyclohexylene group, 1,4-cyclohexenylene group, 1,3-cyclobutylene Group, 1,2-cyclopropylene group, naphthalene-2,6-diyl group, 1,2,3,4-tetrahydronaphthalene-2,6-diyl group, decahydronaphthalene-2,6-diyl group, or 1, 4-phenylene group, and in each of these groups, one or more hydrogen atoms may be substituted with a halogen atom, and one or two ═CH— may be substituted with a nitrogen atom. Alternatively, two —CH 2 — may be substituted with —O— or —S—.
Z 1 , Z 2 , Z 3 , Z 4 , Z 5 and Z 6 are each independently a single bond or an alkylene group having 1 to 4 carbon atoms, in which one or more hydrogen atoms are One or more —CH 2 — may be substituted with —O— or —S—, and one or more —CH 2 CH 2 — may be substituted with —CH═CH—. Alternatively, —C≡C— may be substituted, and one —CH 2 CH 2 — may be substituted with —COO— or —OCO—.
m, n, o, p, q and r: 0 or 1 independently of each other. However, 0 ≦ m + n + o + p + q + r ≦ 4.
 前記化合物は、下記式(1-1)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000010
(1-1)
 式中の記号は、以下の意味を示す。
11およびR21:相互に独立して、水素原子、ハロゲン原子、または炭素数1~18のアルキル基であり、該アルキル基中、1つ以上の水素原子はハロゲン原子で置換されていてもよく、炭素-炭素原子間または該基の結合末端に-O-または-S-が挿入されていてもよく、1つ以上の-CH2CH-は-CH=CH-で置換されていてもよい。
11、A21、A31、A41、A51、およびA61:相互に独立して、トランス-1,4-シクロへキシレン基、または1,4-フェニレン基であり、これら各基中、1つ以上の水素原子はハロゲン原子で置換されていてもよく、1つまたは2つの=CH-は窒素原子で置換されていてもよく、1つまたは2つの-CH2-は-O-または-S-で置換されていてもよい。
11、Z21、Z31、Z41、Z51およびZ61:相互に独立して、単結合または炭素数1~4のアルキレン基であり、該アルキレン基中、1つ以上の水素原子はフッ素原子で置換されていてもよく、1つ以上の-CH2-は-O-または-S-で置換されていてもよく、1つ以上の-CH2CH-は-CH=CH-または-C≡C-で置換されていてもよい。
m、n、o、p、qおよびrは前記と同じ意味である。
The compound is preferably represented by the following formula (1-1).
Figure JPOXMLDOC01-appb-C000010
(1-1)
The symbols in the formula have the following meanings.
R 11 and R 21 are each independently a hydrogen atom, a halogen atom, or an alkyl group having 1 to 18 carbon atoms, wherein one or more hydrogen atoms may be substituted with a halogen atom In addition, —O— or —S— may be inserted between carbon-carbon atoms or at the bond terminal of the group, and one or more —CH 2 CH 2 — may be substituted with —CH═CH—. Also good.
A 11 , A 21 , A 31 , A 41 , A 51 , and A 61 : each independently a trans-1,4-cyclohexylene group or a 1,4-phenylene group, One or more hydrogen atoms may be substituted with a halogen atom, one or two ═CH— may be substituted with a nitrogen atom, and one or two —CH 2 — may be —O—. Alternatively, it may be substituted with -S-.
Z 11 , Z 21 , Z 31 , Z 41 , Z 51 and Z 61 are each independently a single bond or an alkylene group having 1 to 4 carbon atoms, in which one or more hydrogen atoms are One or more —CH 2 — may be substituted with —O— or —S—, and one or more —CH 2 CH 2 — may be substituted with —CH═CH—. Alternatively, it may be substituted with -C≡C-.
m, n, o, p, q and r have the same meaning as described above.
 前記化合物は、下記式(1-2)で表されることがより好ましい。
Figure JPOXMLDOC01-appb-C000011
(1-2)
 式中の記号は、以下の意味を示す。
12およびR22:相互に独立して、炭素数1~10のアルキル基であり、該基中の1つ以上の水素原子はフッ素原子で置換されていてもよく、炭素-炭素原子間または該基の結合末端に-O-が挿入されていてもよく、1つ以上の-CH2CH-は-CH=CH-で置換されていてもよい。
12、A22、A32、A42、A52およびA62:相互に独立して、トランス-1,4-シクロへキシレン基、1,4-フェニレン基または1つもしくは2つの水素原子がフッ素原子で置換された1,4-フェニレン基。
12、Z22、Z32、Z42、Z52およびZ62:相互に独立して、単結合、-CHCH-、-CH=CH-、-C≡C-、-CH2O-、-OCH2-、-CF2CF2-、-CF=CF-、-OCF2-、-CF2O-、-CH2CH2OCF2-、-CF2OCH2CH2-、-CF=CFCF2O-、または-OCF2CF=CF-。
The compound is more preferably represented by the following formula (1-2).
Figure JPOXMLDOC01-appb-C000011
(1-2)
The symbols in the formula have the following meanings.
R 12 and R 22 are each independently an alkyl group having 1 to 10 carbon atoms, and one or more hydrogen atoms in the group may be substituted with a fluorine atom, and a carbon-carbon atom or —O— may be inserted at the bond terminal of the group, and one or more —CH 2 CH 2 — may be substituted with —CH═CH—.
A 12 , A 22 , A 32 , A 42 , A 52 and A 62 : independently of each other, a trans-1,4-cyclohexylene group, 1,4-phenylene group or one or two hydrogen atoms 1,4-phenylene group substituted by a fluorine atom.
Z 12 , Z 22 , Z 32 , Z 42 , Z 52 and Z 62 : independently of each other, a single bond, —CH 2 CH 2 —, —CH═CH—, —C≡C—, —CH 2 O —, —OCH 2 —, —CF 2 CF 2 —, —CF═CF—, —OCF 2 —, —CF 2 O—, —CH 2 CH 2 OCF 2 —, —CF 2 OCH 2 CH 2 —, — CF═CFCF 2 O— or —OCF 2 CF═CF—.
 本発明は、上記のような化合物の製造方法の一例として、以下の方法を提供することができる。
 下記式(2)で表される化合物を閉環して下記式(3)で表される化合物とした後、さらに水素添加により下記式(4)で表される化合物とし、さらに脱水反応により式(1)で表される化合物とすることを特徴とする式(1)で表される化合物の製造方法。
Figure JPOXMLDOC01-appb-C000012

 式(2)中のR3は水素原子または炭素数1~4のアルキル基であり、各式中の他の記号は、式(1)における記号と同じ意味を示す。
 また、本発明は、前記式(2)、式(3)および式(4)で表される化合物を提供する。
The present invention can provide the following method as an example of a method for producing the above compound.
The compound represented by the following formula (2) is cyclized to obtain a compound represented by the following formula (3), and then further hydrogenated to obtain a compound represented by the following formula (4). A method for producing a compound represented by formula (1), characterized in that the compound is represented by 1).
Figure JPOXMLDOC01-appb-C000012

R 3 in the formula (2) is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and other symbols in each formula have the same meaning as the symbols in the formula (1).
Moreover, this invention provides the compound represented by said Formula (2), Formula (3), and Formula (4).
 また、本発明は、前記式(1)で表される化合物を含む液晶組成物を提供する。 The present invention also provides a liquid crystal composition comprising the compound represented by the formula (1).
 また、本発明は、該液晶組成物を、電極が配設された2枚の基板間に封入してなる液晶電気光学素子を提供する。 The present invention also provides a liquid crystal electro-optical element formed by sealing the liquid crystal composition between two substrates provided with electrodes.
 本発明の化合物は、新規なΔε負の機能発現環構造を有することから、Δεが負に大きく、垂直配向性を利用した動作モード等に有用である。また、前記環構造は、Δεが負に大きい構造であることから、本発明の化合物は、Δεが負に大きいという特長を有しながらも、該化合物を構成する環基、置換基および連結基を適宜選択することにより、液晶素子に要求される様々な性能、具体的には、例えば、広い動作温度範囲、低動作電圧、高速応答性、化学的安定性等を満たした液晶組成物を調製できる。かつ該液晶組成物を液晶素子に用いた場合に広い温度範囲で高速応答性に優れ低電圧駆動できる。
 本発明の製造方法に従えば、新しいΔε負の機能発現環構造である5,5,6,6-テトラフルオロ-1,3-シクロヘキサジエン-1,4-ジイル基を有する化合物を汎用性が高く工業的にも容易に簡便かつ効率的に製造することができる。
Since the compound of the present invention has a novel Δε negative function-expressing ring structure, Δε is negatively large, and is useful for an operation mode utilizing vertical alignment. In addition, since the ring structure is a structure in which Δε is negatively large, the compound of the present invention has a feature that Δε is negatively large, but the ring group, substituent, and linking group constituting the compound are also included. By appropriately selecting the liquid crystal composition, various performances required for the liquid crystal element, specifically, for example, a liquid crystal composition satisfying a wide operating temperature range, a low operating voltage, high-speed response, chemical stability, etc. it can. In addition, when the liquid crystal composition is used in a liquid crystal element, it has excellent high-speed response over a wide temperature range and can be driven at a low voltage.
According to the production method of the present invention, a compound having 5,5,6,6-tetrafluoro-1,3-cyclohexadiene-1,4-diyl group, which is a new Δε negative function-expressing ring structure, has versatility. It is high and can be easily and efficiently produced easily and industrially.
 以下に本発明について更に詳しく説明する。
 本明細書において、式(1)で表される化合物を化合物(1)と記し、他の式で表される化合物も同様に記す。
 本明細書において、特に断りのない限り、式(1)におけるR1に近いほうを常に1位とし、R2に近い方を常に4位とする。
 また、本明細書の化合物において、-O-および/または-S-が連鎖することはない。
 また、本明細書において、「Δεが負に大きい」とは、Δεが負であって、その絶対値が大きいことを意味する。つまり、Δεの値が-1と-2であれば、-2の方が「Δεが負に大きい」となる。
 なお、本発明において、各式の実線で記載された結合は、全ての立体異性体を含むものである。
 また、本明細書において、液晶電気光学素子とは、表示素子に限られず、液晶の電気的または光学的特性を利用する各種の機能素子、例えば、液晶表示素子、さらに、調光窓、光シャッター、偏光変換素子、可変焦点レンズ等の用途に用いられる素子を含むものである。
The present invention will be described in more detail below.
In the present specification, a compound represented by the formula (1) is referred to as a compound (1), and compounds represented by other formulas are also described in the same manner.
In this specification, unless otherwise specified, the one closer to R 1 in the formula (1) is always the first place, and the one closer to R 2 is always the fourth place.
In the compounds of the present specification, —O— and / or —S— are not linked.
In this specification, “Δε is negatively large” means that Δε is negative and the absolute value thereof is large. That is, if the value of Δε is −1 and −2, -2 is “Δε is negatively larger”.
In the present invention, the bond described by the solid line in each formula includes all stereoisomers.
In the present specification, the liquid crystal electro-optical element is not limited to a display element, but various functional elements that use the electrical or optical characteristics of liquid crystal, such as a liquid crystal display element, a light control window, and an optical shutter. And elements used for applications such as a polarization conversion element and a variable focus lens.
 本発明の化合物に係る式(1)中、前記に規定されるR1およびR2について、アルキル基中の1つ以上の水素原子がハロゲン原子で置換された基としては、フルオロアルキル基、クロロアルキル基等が挙げられる。アルキル基中の水素原子を置換するハロゲン原子としては、フッ素原子が好ましい。
 アルキル基中のC-C間に-O-または-S-が挿入された基としては、アルコキシアルキル基またはアルキルチオアルキル基が挙げられ、基の結合末端に-O-または-S-が挿入された基としては、アルコキシ基またはアルキルチオ基が挙げられる。
 アルキル基中の-CH2CH-が、-CH=CH-または-C≡C-で置換された基としては、アルケニル基またはアルキニル基が挙げられる。
In the formula (1) relating to the compound of the present invention, for R 1 and R 2 as defined above, the group in which one or more hydrogen atoms in the alkyl group are substituted with halogen atoms includes a fluoroalkyl group, chloro An alkyl group etc. are mentioned. As the halogen atom for substituting the hydrogen atom in the alkyl group, a fluorine atom is preferable.
Examples of the group in which —O— or —S— is inserted between C—C in the alkyl group include an alkoxyalkyl group or an alkylthioalkyl group, and —O— or —S— is inserted at the bond terminal of the group. Examples of the group include an alkoxy group and an alkylthio group.
Examples of the group in which —CH 2 CH 2 — in the alkyl group is substituted with —CH═CH— or —C≡C— include an alkenyl group and an alkynyl group.
 R1およびR2において、水素原子のフッ素原子への置換、C-C間または該基の結合末端への-O-または-S-の挿入、および-CH2CH-の-CH=CH-または-C≡C-への置換は、同一のアルキル基に対して同時に行われていてもよい。
 フッ素原子の置換と、-O-の挿入が同時に行われた基としては、フルオロアルコキシ基、フルオロアルコキシアルキル基が挙げられる。
 -CH=CH-または-C≡C-の置換と、フッ素原子の置換が同時に行われた基としては、フルオロアルケニル基、フルオロアルキニル基が挙げられる。
 -CH=CH-または-C≡C-の置換と、C-C間への-O-または-S-の挿入が同時に行われた基としては、アルケニルオキシアルキル基、アルキニルオキシアルキル基、アルケニルチオアルキル基、アルキニルチオアルキル基が挙げられる。
 -CH=CH-または-C≡C-の置換と、基の結合末端に-O-または-S-が挿入された基としては、アルケニルオキシ基、アルキニルオキシ基、アルケニルチオ基、またはアルキニルチオ基が挙げられる。
 さらに、フッ素原子の置換と、-CH=CH-または-C≡C-の置換と、-O-または-S-の挿入が同時に行われた基としては、フルオロアルケニルオキシ基、フルオロアルキニルオキシ基、フルオロアルケニルチオ基が挙げられる。
 これらの基は、直鎖状と分岐状のどちらでもかまわないが直鎖状が好ましい。
In R 1 and R 2 , substitution of a hydrogen atom with a fluorine atom, insertion of —O— or —S— between C—C or at the bonding terminal of the group, and —CH═CH of —CH 2 CH 2 — Substitution with — or —C≡C— may be performed simultaneously on the same alkyl group.
Examples of the group in which substitution of a fluorine atom and insertion of —O— are simultaneously performed include a fluoroalkoxy group and a fluoroalkoxyalkyl group.
Examples of the group in which —CH═CH— or —C≡C— substitution and fluorine atom substitution are simultaneously performed include a fluoroalkenyl group and a fluoroalkynyl group.
Examples of the group in which substitution of —CH═CH— or —C≡C— and insertion of —O— or —S— between C—C are performed simultaneously include alkenyloxyalkyl group, alkynyloxyalkyl group, alkenyl A thioalkyl group and an alkynylthioalkyl group can be mentioned.
Examples of the group in which —CH═CH— or —C≡C— is substituted and —O— or —S— is inserted at the bonding end of the group include an alkenyloxy group, an alkynyloxy group, an alkenylthio group, and an alkynylthio group. Groups.
Further, groups in which fluorine atom substitution, —CH═CH— or —C≡C— substitution, and —O— or —S— insertion are performed simultaneously include fluoroalkenyloxy group, fluoroalkynyloxy group And a fluoroalkenylthio group.
These groups may be either linear or branched, but are preferably linear.
 R1およびR2は、上記のうちでも、反応性や副反応が生じにくいことから、フッ素原子、および炭素数1~18の以下に挙げる基が好ましい。
アルキル基、アルコキシ基、アルコキシアルキル基、アルキルチオ基、アルキルチオアルキル基、アルケニル基、アルケニルオキシ基、アルケニルオキシアルキル基、アルケニルチオ基、フルオロアルキル基、フルオロアルコキシ基、フルオロアルコキシアルキル基、フルオロアルケニル基またはフルオロアルケニルチオ基。
Among the above, R 1 and R 2 are preferably fluorine atoms and groups having 1 to 18 carbon atoms because reactivity and side reactions are less likely to occur.
Alkyl group, alkoxy group, alkoxyalkyl group, alkylthio group, alkylthioalkyl group, alkenyl group, alkenyloxy group, alkenyloxyalkyl group, alkenylthio group, fluoroalkyl group, fluoroalkoxy group, fluoroalkoxyalkyl group, fluoroalkenyl group or A fluoroalkenylthio group;
 中でも、R1およびR2としては、炭素数1~10の、アルキル基、アルコキシ基、アルコキシアルキル基、アルケニル基、アルケニルオキシ基、アルケニルオキシアルキル基、フルオロアルキル基、フルオロアルコキシ基、フルオロアルコキシアルキル基、フルオロアルケニル基がより好ましく、炭素数1~10の、アルキル基、アルコキシ基、アルケニル基、が特に好ましい。 Among them, R 1 and R 2 are alkyl groups, alkoxy groups, alkoxyalkyl groups, alkenyl groups, alkenyloxy groups, alkenyloxyalkyl groups, fluoroalkyl groups, fluoroalkoxy groups, fluoroalkoxyalkyls having 1 to 10 carbon atoms. Group, a fluoroalkenyl group is more preferable, and an alkyl group, an alkoxy group, and an alkenyl group having 1 to 10 carbon atoms are particularly preferable.
 また、前記に規定される式(1)中のA1、A2、A3、A4、A5およびA6においても、水素原子のハロゲン原子への置換、=CH-の窒素原子への置換、および、-CH2-の-O-または-S-への置換は、同一の基に対して同時に行われていてもよい。ハロゲン原子としては、塩素原子またはフッ素原子が好ましい。 Further, in A 1 , A 2 , A 3 , A 4 , A 5, and A 6 in the formula (1) defined above, substitution of a hydrogen atom with a halogen atom, ═CH—to a nitrogen atom substituted, and, -CH 2 - substituted Roh -O- or -S- to may be carried out simultaneously for the same group. As a halogen atom, a chlorine atom or a fluorine atom is preferable.
 A1、A2、A3、A4、A5およびA6が1,4-フェニレン基であり、さらに置換基としてハロゲン原子を有する場合、1つの1,4-フェニレン基に置換するハロゲン原子の数は1つから4つであるが、中でも1つまたは2つが好ましい。トランス-1,4-シクロヘキシレン基であり、さらに置換基としてハロゲン原子を有する場合、ハロゲン原子の数は1つから4つであることが好ましい。また、ハロゲン原子はシクロヘキシレン基の1位または4位の炭素原子に結合していてもよい。
 1,4-フェニレン基中の1つまたは2つの=CH-が窒素原子で置換された基としては、2,5-ピリミジニレン基または2,5-ピリジニレン基が挙げられる。
 トランス-1,4-シクロへキシレン基中の1つまたは2つの-CH2-が-O-または-S-で置換された基としては、1,3-ジオキサン-2,5-ジイル基、1,3-ジチアン-2,5-ジイル基が挙げられる。
 以下、ハロゲン原子および窒素原子の少なくとも1つで置換された1,4-フェニレン基を「置換1,4-フェニレン基」と記し、ハロゲン原子、-O-および-S-の少なくとも1つで置換された1,4-シクロヘキシレン基を「置換トランス-1、4-シクロヘキシレン基」と記す。
When A 1 , A 2 , A 3 , A 4 , A 5 and A 6 are 1,4-phenylene groups and further have a halogen atom as a substituent, a halogen atom to be substituted with one 1,4-phenylene group The number of is from 1 to 4, with 1 or 2 being preferred. In the case of a trans-1,4-cyclohexylene group and further having a halogen atom as a substituent, the number of halogen atoms is preferably 1 to 4. The halogen atom may be bonded to the 1st or 4th carbon atom of the cyclohexylene group.
Examples of the group in which one or two ═CH— in the 1,4-phenylene group are substituted with a nitrogen atom include a 2,5-pyrimidinylene group and a 2,5-pyridinylene group.
Examples of the group in which one or two —CH 2 — in the trans-1,4-cyclohexylene group is substituted with —O— or —S— include a 1,3-dioxane-2,5-diyl group, A 1,3-dithian-2,5-diyl group may be mentioned.
Hereinafter, a 1,4-phenylene group substituted with at least one of a halogen atom and a nitrogen atom is referred to as a “substituted 1,4-phenylene group” and substituted with at least one of a halogen atom, —O— and —S—. The 1,4-cyclohexylene group thus prepared is referred to as “substituted trans-1,4-cyclohexylene group”.
 上記のうちでも、A1、A2、A3、A4、A5およびA6としては、反応性や原料入手の関係から、トランス-1,4-シクロへキシレン基、1,4-フェニレン基、置換トランス-1,4-シクロへキシレン基、または置換1,4-フェニレン基が好ましい。
 中でも、トランス-1,4-シクロへキシレン基、1,4-フェニレン基、または基中の水素原子の1つまたは2つがフッ素原子で置換された1,4-フェニレン基がより好ましく、トランス-1,4-シクロへキシレン基または1,4-フェニレン基が特に好ましい。
 また、化合物(1)のA1、A2、A3、A4、A5およびA6の1つ以上が2,3-ジフルオロ-1,4-フェニレン基や下記の環基であると、化合物のΔεが負により大きくなると考えられるため好ましい。
Figure JPOXMLDOC01-appb-C000013
 なお、A1、A2、A3、A4、A5およびA6のいずれにおいても、式(1)におけるR1に近い方を1位とし、R2に近いほうを4位とする。
Among them, A 1 , A 2 , A 3 , A 4 , A 5 and A 6 are trans-1,4-cyclohexylene group, 1,4-phenylene because of reactivity and availability of raw materials. A group, a substituted trans-1,4-cyclohexylene group, or a substituted 1,4-phenylene group is preferred.
Among these, a trans-1,4-cyclohexylene group, a 1,4-phenylene group, or a 1,4-phenylene group in which one or two hydrogen atoms in the group are substituted with fluorine atoms is more preferable. A 1,4-cyclohexylene group or a 1,4-phenylene group is particularly preferred.
When at least one of A 1 , A 2 , A 3 , A 4 , A 5 and A 6 of the compound (1) is a 2,3-difluoro-1,4-phenylene group or the following ring group, It is preferable because Δε of the compound is considered to be larger due to being negative.
Figure JPOXMLDOC01-appb-C000013
In any of A 1 , A 2 , A 3 , A 4 , A 5 and A 6 , the one closer to R 1 in the formula (1) is the first place, and the one closer to R 2 is the fourth place.
 化合物(1)において、Z1、Z2、Z3、Z4、Z5およびZ6は、前記と同じ意味を示す。
 なお、水素原子のフッ素原子への置換、および-CH2-の-O-または-S-への置換、-CH2CH2-の-CH=CH-、-C≡C-、-COO-、-OCO-への置換は同一の基に対して同時に行われていてもよい。
 基中の1つ以上の水素原子がフッ素原子で置換されたアルキレン基としては、-CF2CF2-、-CF2CH2-、-CH2CF2-、-CHFCH2-、-CH2CHF-、-CF2CHF-、-CHFCF2-等が挙げられる。
 基中の1つ以上の-CH2-が-O-または-S-で置換されたアルキレン基としては、-CH2O-、-OCH2-、-CH2S-、-SCH2-等が挙げられる。
 また、基中の水素原子のフッ素原子への置換と、基中の-CH2-の-O-への置換と、が同時に行われた基としては、-CF2O-、-OCF2-等が挙げられる。
 基中の1つ以上の-CH2CH2-が、-CH=CH-または-C≡C-で置換されたアルキレン基としては、アルケニレン基またはアルキニレン基が挙げられる。アルケニレン基またはアルキニレン基としては、-CH=CH-、-CH=CH-CH2-、-CH=CH-CH2-CH2-、-CH=CH-CH=CH-、-CH2-CH=CH-CH2-、-C≡C-、-C≡C-CH2-、-C≡C-CH2-CH2-、-C≡C-C≡C-、-CH2-C≡C-CH2-等が挙げられる。また、-CH=CH-C≡C-のように、二重結合と三重結合が混在しても構わない。また、これらの基は逆向きでも構わない。
 -CH=CH-または-C≡C-の置換と、フッ素原子の置換が同時に行われた基としては、-CF=CF-、-CF=CF-C≡C-等が挙げられる。
 基中に1つの-CH2CH2-が、-COO-または-OCO-で置換された基としては、-COO-、-OCO-、-CH2CH2-COO-、-CH2CH2-OCO-等が挙げられる。
 また、前記に規定される式(1)中のZ1、Z2、Z3、Z4、Z5またはZ6が単結合である場合には、それぞれの基の両側に存在する基は直接結合することを意味する。例えば、Z1が単結合でありmおよびnが1の場合はA1とA2とは直接結合する。また、Z1、Z2およびZ3が単結合でありm、nおよびoが0であり、pが1である場合は、R1とA4とは直接結合する。Z2、Z3、Z4、Z5およびZ6においても同様である。
In the compound (1), Z 1 , Z 2 , Z 3 , Z 4 , Z 5 and Z 6 have the same meaning as described above.
In addition, substitution of a hydrogen atom with a fluorine atom, substitution of —CH 2 — with —O— or —S—, —CH═CH— of —CH 2 CH 2 —, —C≡C—, —COO— , —OCO— may be substituted simultaneously for the same group.
Examples of the alkylene group in which one or more hydrogen atoms in the group are substituted with fluorine atoms include —CF 2 CF 2 —, —CF 2 CH 2 —, —CH 2 CF 2 —, —CHFCH 2 —, —CH 2 CHF—, —CF 2 CHF—, —CHFCF 2 — and the like can be mentioned.
Examples of the alkylene group in which one or more —CH 2 — in the group is substituted by —O— or —S— include —CH 2 O—, —OCH 2 —, —CH 2 S—, —SCH 2 — and the like. Is mentioned.
Further, groups in which the substitution of a hydrogen atom in a group with a fluorine atom and the substitution of —CH 2 — in the group with —O— are performed simultaneously include —CF 2 O—, —OCF 2 — Etc.
The alkylene group in which one or more —CH 2 CH 2 — in the group is substituted with —CH═CH— or —C≡C— includes an alkenylene group or an alkynylene group. The alkenylene group or alkynylene group includes —CH═CH—, —CH═CH—CH 2 —, —CH═CH—CH 2 —CH 2 —, —CH═CH—CH═CH—, —CH 2 —CH. ═CH—CH 2 —, —C≡C—, —C≡C—CH 2 —, —C≡C—CH 2 —CH 2 —, —C≡C—C≡C—, —CH 2 —C≡ C—CH 2 — and the like can be mentioned. Further, double bonds and triple bonds may be mixed as in —CH═CH—C≡C—. These groups may be reversed.
Examples of groups in which —CH═CH— or —C≡C— and fluorine atoms are simultaneously substituted include —CF═CF—, —CF═CF—C≡C— and the like.
Examples of the group in which one —CH 2 CH 2 — is substituted with —COO— or —OCO— include —COO—, —OCO—, —CH 2 CH 2 —COO—, —CH 2 CH 2 -OCO- and the like.
When Z 1 , Z 2 , Z 3 , Z 4 , Z 5 or Z 6 in the formula (1) defined above is a single bond, the groups present on both sides of each group are directly Means to join. For example, when Z 1 is a single bond and m and n are 1, A 1 and A 2 are directly bonded. When Z 1 , Z 2 and Z 3 are single bonds, m, n and o are 0 and p is 1, R 1 and A 4 are directly bonded. The same applies to Z 2 , Z 3 , Z 4 , Z 5 and Z 6 .
 Z1、Z2、Z3、Z4、Z5およびZ6としては、合成の容易さ等から、単結合、または炭素数1~4のアルキレン基が好ましい。該基中の1つ以上の水素原子がフッ素原子で置換されていてもよく、該基中の1つ以上の-CH2-が-O-または-S-で置換されていてもよく、1つ以上の-CH2CH-は-CH=CH-または-C≡C-で置換されていてもよい。
 中でも、単結合、-CH2CH2-、-CH=CH-、-C≡C-、-CH2O-、-OCH2-、-CF2CF2-、-CF=CF-、-OCF2-、-CF2O-、-CH2CH2OCF2-、または-CF2OCH2CH2-、-CF=CFCF2O-、-OCF2CF=CF-が好ましい。
 特に、単結合、-CH2CH2-、-C≡C-、-CH2O-、-OCH2-、-OCF2-、-CF2O-が好ましい。
Z 1 , Z 2 , Z 3 , Z 4 , Z 5 and Z 6 are preferably a single bond or an alkylene group having 1 to 4 carbon atoms from the viewpoint of ease of synthesis. One or more hydrogen atoms in the group may be substituted with a fluorine atom, and one or more —CH 2 — in the group may be substituted with —O— or —S—. Two or more —CH 2 CH 2 — may be substituted with —CH═CH— or —C≡C—.
Among them, a single bond, -CH 2 CH 2 -, - CH = CH -, - C≡C -, - CH 2 O -, - OCH 2 -, - CF 2 CF 2 -, - CF = CF -, - OCF 2 —, —CF 2 O—, —CH 2 CH 2 OCF 2 —, or —CF 2 OCH 2 CH 2 —, —CF═CFCF 2 O—, —OCF 2 CF═CF— are preferred.
In particular, a single bond, —CH 2 CH 2 —, —C≡C—, —CH 2 O—, —OCH 2 —, —OCF 2 —, and —CF 2 O— are preferable.
 本発明の化合物(1)において、m、n、o、p、qおよびrは前記と同じ意味を示す。
 なお、m、n、o、p、qおよびrは化合物に要求特性に応じて適宜選択することができる。
 たとえば化合物(1)が低粘性であること、あるいは該化合物が他の液晶材料または非液晶材料との相溶性に優れている点を重視する場合、0≦m+n+o+p+q+r≦1であることが好ましい。一方、化合物の高い液晶温度範囲を重視する場合、1≦m+n+o+p+q+r≦3であることが好ましい。
In the compound (1) of the present invention, m, n, o, p, q and r have the same meaning as described above.
In addition, m, n, o, p, q, and r can be suitably selected according to the characteristics required for the compound.
For example, when importance is attached to the low viscosity of the compound (1) or the excellent compatibility of the compound with other liquid crystal materials or non-liquid crystal materials, it is preferable that 0 ≦ m + n + o + p + q + r ≦ 1. On the other hand, when emphasizing the high liquid crystal temperature range of the compound, it is preferable that 1 ≦ m + n + o + p + q + r ≦ 3.
 本発明の化合物(1)としては、化合物(1-1)が好ましい。
Figure JPOXMLDOC01-appb-C000014
(1-1)
 式中の記号は、前記のとおりである。
As the compound (1) of the present invention, the compound (1-1) is preferable.
Figure JPOXMLDOC01-appb-C000014
(1-1)
The symbols in the formula are as described above.
 本発明の化合物(1)としては、化合物(1-2)がより好ましい。
Figure JPOXMLDOC01-appb-C000015
(1-2)
 式中の記号は、前記のとおりである。
As the compound (1) of the present invention, the compound (1-2) is more preferred.
Figure JPOXMLDOC01-appb-C000015
(1-2)
The symbols in the formula are as described above.
 化合物(1)の好ましいものとして、以下の化合物が挙げられる。以下の式中、R1、R2、Z1、Z2、Z3、Z4、Z5およびZ6は前記と同じ意味を示し、他の記号は以下の意味を示す。
-Cy-:トランス-1,4-シクロヘキシレン基。
-Phe-:1つまたは2つのフッ素原子で置換されていてもよい1,4-フェニレン基。
―Cd-:5,5,6,6-テトラフルオロ-1,3-シクロヘキサジエン-1,4-ジイル基
―Py(2)-: 
Figure JPOXMLDOC01-appb-C000016
―Py(3)-:
Figure JPOXMLDOC01-appb-C000017
Preferable examples of compound (1) include the following compounds. In the following formulas, R 1 , R 2 , Z 1 , Z 2 , Z 3 , Z 4 , Z 5 and Z 6 have the same meaning as described above, and other symbols have the following meanings.
-Cy-: trans-1,4-cyclohexylene group.
-Phe-: 1,4-phenylene group optionally substituted by one or two fluorine atoms.
—Cd—: 5,5,6,6-tetrafluoro-1,3-cyclohexadiene-1,4-diyl group—Py (2) —:
Figure JPOXMLDOC01-appb-C000016
-Py (3)-:
Figure JPOXMLDOC01-appb-C000017
 2環の化合物(m+n+o+p+q+r=1であるもの):
R1-Ph-Z2-Cd-R2
R1-Cy-Z2-Cd-R2
R1-Py(2)-Z2-Cd-R2
R1-Cd-Z5-Py(3)-R2
R1-Cd-Z5-Phe-R2
R1-Cd-Z5-Cy-R2
R1-Cd-Z5-Py(2)-R2
R1-Py(3)-Z2-Cd-R2
Bicyclic compounds (m + n + o + p + q + r = 1):
R 1 -Ph-Z 2 -Cd-R 2
R 1 -Cy-Z 2 -Cd-R 2
R 1 -Py (2) -Z 2 -Cd-R 2
R 1 -Cd-Z 5 -Py (3) -R 2
R 1 -Cd-Z 5 -Phe-R 2
R 1 -Cd-Z 5 -Cy-R 2
R 1 -Cd-Z 5 -Py (2) -R 2
R 1 -Py (3) -Z 2 -Cd-R 2
 3環の化合物(m+n+o+p+q+r=2であるもの):
R1-Ph-Z2-Ph-Z3-Cd-R2
R1-Cy-Z2-Ph-Z3-Cd-R2
R1-Py(2)-Z2-Ph-Z3-Cd-R2
R1-Py(3)-Z2-Ph-Z3-Cd-R2
R1-Ph-Z2-Cy-Z3-Cd-R2
R1-Cy-Z2-Cy-Z3-Cd-R2
R1-Py(2)-Z2-Cy-Z3-Cd-R2
R1-Py(3)-Z2-Cy-Z3-Cd-R2
R1-Ph-Z2-Py(2)-Z3-Cd-R2
R1-Ph-Z2-Py(3)-Z3-Cd-R2
R1-Cy-Z2-Py(2)-Z3-Cd-R2
R1-Cy-Z2-Py(3)-Z3-Cd-R2
R1-Ph-Z2-Cd-Z5-Ph-R2
R1-Ph-Z2-Cd-Z5-Cy-R2
R1-Ph-Z2-Cd-Z5-Py(2)-R2
R1-Ph-Z2-Cd-Z5-Py(3)-R2
R1-Cy-Z2-Cd-Z5-Cy-R2
R1-Cy-Z2-Cd-Z5-Py(2)-R2
R1-Cy-Z2-Cd-Z5-Py(3)-R2
Tricyclic compound (m + n + o + p + q + r = 2):
R 1 -Ph-Z 2 -Ph-Z 3 -Cd-R 2
R 1 -Cy-Z 2 -Ph-Z 3 -Cd-R 2
R 1 -Py (2) -Z 2 -Ph-Z 3 -Cd-R 2
R 1 -Py (3) -Z 2 -Ph-Z 3 -Cd-R 2
R 1 -Ph-Z 2 -Cy-Z 3 -Cd-R 2
R 1 -Cy-Z 2 -Cy-Z 3 -Cd-R 2
R 1 -Py (2) -Z 2 -Cy-Z 3 -Cd-R 2
R 1 -Py (3) -Z 2 -Cy-Z 3 -Cd-R 2
R 1 -Ph-Z 2 -Py (2) -Z 3 -Cd-R 2
R 1 -Ph-Z 2 -Py (3) -Z 3 -Cd-R 2
R 1 -Cy-Z 2 -Py (2) -Z 3 -Cd-R 2
R 1 -Cy-Z 2 -Py (3) -Z 3 -Cd-R 2
R 1 -Ph-Z 2 -Cd-Z 5 -Ph-R 2
R 1 -Ph-Z 2 -Cd-Z 5 -Cy-R 2
R 1 -Ph-Z 2 -Cd-Z 5 -Py (2) -R 2
R 1 -Ph-Z 2 -Cd-Z 5 -Py (3) -R 2
R 1 -Cy-Z 2 -Cd-Z 5 -Cy-R 2
R 1 -Cy-Z 2 -Cd-Z 5 -Py (2) -R 2
R 1 -Cy-Z 2 -Cd-Z 5 -Py (3) -R 2
 4環の化合物(m+n+o+p+q+r=3であるもの):
R1-Ph-Z2-Ph-Z3-Ph-Z4-Cd-R2
R1-Cy-Z2-Ph-Z3-Ph-Z4-Cd-R2
R1-Py(2)-Z2-Ph-Z3-Ph-Z4-Cd-R2
R1-Py(3)-Z2-Ph-Z3-Ph-Z4-Cd-R2
R1-Ph-Z2-Cy-Z3-Ph-Z4-Cd-R2
R1-Ph-Z2-Py(2)-Z3-Ph-Z4-Cd-R2
R1-Ph-Z2-Py(3)-Z3-Ph-Z4-Cd-R2
R1-Ph-Z2-Ph-Z3-Cy-Z4-Cd-R2
R1-Ph-Z2-Ph-Z3-Py(2)-Z4-Cd-R2
R1-Ph-Z2-Ph-Z3-Py(3)-Z4-Cd-R2
R1-Ph-Z2-Cy-Z3-Py(2)-Z4-Cd-R2
R1-Ph-Z2-Cy-Z3-Py(3)-Z4-Cd-R2
R1-Cy-Z2-Cy-Z3-Ph-Z4-Cd-R2
R1-Cy-Z2-Py(2)-Z3-Ph-Z4-Cd-R2
R1-Cy-Z2-Py(3)-Z3-Ph-Z4-Cd-R2
R1-Cy-Z2-Cy-Z3-Cy-Z4-Cd-R2
R1-Cy-Z2-Cy-Z3-Py(2)-Z4-Cd-R2
R1-Cy-Z2-Cy-Z3-Py(3)-Z4-Cd-R2
R1-Cy-Z2-Ph-Z3-Cy-Z4-Cd-R2
R1-Cy-Z2-Ph-Z3-Py(2)-Z4-Cd-R2
R1-Cy-Z2-Ph-Z3-Py(3)-Z4-Cd-R2
4-ring compound (m + n + o + p + q + r = 3):
R 1 -Ph-Z 2 -Ph-Z 3 -Ph-Z 4 -Cd-R 2
R 1 -Cy-Z 2 -Ph-Z 3 -Ph-Z 4 -Cd-R 2
R 1 -Py (2) -Z 2 -Ph-Z 3 -Ph-Z 4 -Cd-R 2
R 1 -Py (3) -Z 2 -Ph-Z 3 -Ph-Z 4 -Cd-R 2
R 1 -Ph-Z 2 -Cy-Z 3 -Ph-Z 4 -Cd-R 2
R 1 -Ph-Z 2 -Py (2) -Z 3 -Ph-Z 4 -Cd-R 2
R 1 -Ph-Z 2 -Py (3) -Z 3 -Ph-Z 4 -Cd-R 2
R 1 -Ph-Z 2 -Ph-Z 3 -Cy-Z 4 -Cd-R 2
R 1 -Ph-Z 2 -Ph-Z 3 -Py (2) -Z 4 -Cd-R 2
R 1 -Ph-Z 2 -Ph-Z 3 -Py (3) -Z 4 -Cd-R 2
R 1 -Ph-Z 2 -Cy-Z 3 -Py (2) -Z 4 -Cd-R 2
R 1 -Ph-Z 2 -Cy-Z 3 -Py (3) -Z 4 -Cd-R 2
R 1 -Cy-Z 2 -Cy-Z 3 -Ph-Z 4 -Cd-R 2
R 1 -Cy-Z 2 -Py (2) -Z 3 -Ph-Z 4 -Cd-R 2
R 1 -Cy-Z 2 -Py (3) -Z 3 -Ph-Z 4 -Cd-R 2
R 1 -Cy-Z 2 -Cy-Z 3 -Cy-Z 4 -Cd-R 2
R 1 -Cy-Z 2 -Cy-Z 3 -Py (2) -Z 4 -Cd-R 2
R 1 -Cy-Z 2 -Cy-Z 3 -Py (3) -Z 4 -Cd-R 2
R 1 -Cy-Z 2 -Ph-Z 3 -Cy-Z 4 -Cd-R 2
R 1 -Cy-Z 2 -Ph-Z 3 -Py (2) -Z 4 -Cd-R 2
R 1 -Cy-Z 2 -Ph-Z 3 -Py (3) -Z 4 -Cd-R 2
R1-Ph-Z2-Ph-Z3-Cd-Z5-Ph-R2
R1-Ph-Z2-Cy-Z3-Cd-Z5-Ph-R2
R1-Ph-Z2-Py(2)-Z3-Cd-Z5-Ph-R2
R1-Ph-Z2-Py(3)-Z3-Cd-Z5-Ph-R2
R1-Ph-Z2-Ph-Z3-Cd-Z5-Cy-R2
R1-Ph-Z2-Ph-Z3-Cd-Z5-Py(2)-R2
R1-Ph-Z2-Ph-Z3-Cd-Z5-Py(3)-R2
R1-Cy-Z2-Ph-Z3-Cd-Z5-Ph-R2
R1-Py(2)-Z2-Ph-Z3-Cd-Z5-Ph-R2
R1-Py(3)-Z2-Ph-Z3-Cd-Z5-Ph-R2
R1-Cy-Z2-Ph-Z3-Cd-Z5-Cy-R2
R1-Cy-Z2-Ph-Z3-Cd-Z5-Py(2)-R2
R1-Cy-Z2-Ph-Z3-Cd-Z5-Py(3)-R2
R1-Cy-Z2-Cy-Z3-Cd-Z5-Ph-R2
R1-Cy-Z2-Cy-Z3-Cd-Z5-Cy-R2
R1-Cy-Z2-Cy-Z3-Cd-Z5-Py(2)-R2
R1-Cy-Z2-Cy-Z3-Cd-Z5-Py(3)-R2
R1-Py(2)-Z2-Cy-Z3-Cd-Z5-Ph-R2
R1-Py(2)-Z2-Cy-Z3-Cd-Z5-Cy-R2
R1-Py(3)-Z2-Cy-Z3-Cd-Z5-Ph-R2
R1-Py(3)-Z2-Cy-Z3-Cd-Z5-Cy-R2
R 1 -Ph-Z 2 -Ph-Z 3 -Cd-Z 5 -Ph-R 2
R 1 -Ph-Z 2 -Cy-Z 3 -Cd-Z 5 -Ph-R 2
R 1 -Ph-Z 2 -Py (2) -Z 3 -Cd-Z 5 -Ph-R 2
R 1 -Ph-Z 2 -Py (3) -Z 3 -Cd-Z 5 -Ph-R 2
R 1 -Ph-Z 2 -Ph-Z 3 -Cd-Z 5 -Cy-R 2
R 1 -Ph-Z 2 -Ph-Z 3 -Cd-Z 5 -Py (2) -R 2
R 1 -Ph-Z 2 -Ph-Z 3 -Cd-Z 5 -Py (3) -R 2
R 1 -Cy-Z 2 -Ph-Z 3 -Cd-Z 5 -Ph-R 2
R 1 -Py (2) -Z 2 -Ph-Z 3 -Cd-Z 5 -Ph-R 2
R 1 -Py (3) -Z 2 -Ph-Z 3 -Cd-Z 5 -Ph-R 2
R 1 -Cy-Z 2 -Ph-Z 3 -Cd-Z 5 -Cy-R 2
R 1 -Cy-Z 2 -Ph-Z 3 -Cd-Z 5 -Py (2) -R 2
R 1 -Cy-Z 2 -Ph-Z 3 -Cd-Z 5 -Py (3) -R 2
R 1 -Cy-Z 2 -Cy-Z 3 -Cd-Z 5 -Ph-R 2
R 1 -Cy-Z 2 -Cy-Z 3 -Cd-Z 5 -Cy-R 2
R 1 -Cy-Z 2 -Cy-Z 3 -Cd-Z 5 -Py (2) -R 2
R 1 -Cy-Z 2 -Cy-Z 3 -Cd-Z 5 -Py (3) -R 2
R 1 -Py (2) -Z 2 -Cy-Z 3 -Cd-Z 5 -Ph-R 2
R 1 -Py (2) -Z 2 -Cy-Z 3 -Cd-Z 5 -Cy-R 2
R 1 -Py (3) -Z 2 -Cy-Z 3 -Cd-Z 5 -Ph-R 2
R 1 -Py (3) -Z 2 -Cy-Z 3 -Cd-Z 5 -Cy-R 2
R1-Phe-Z2-Py(2)-Z3-Phe-Z5-Cd-R2
R1-Phe-Z2-Py(3)-Z3-Phe-Z5-Cd-R2
R1-Phe-Z2-Cy-Z3-Cy-Z5-Cd-R2
R1-Phe-Z2-Py(2)-Z3-Cy-Z5-Cd-R2
R1-Phe-Z2-Py(3)-Z3-Cy-Z5-Cd-R2
R1-Py(2)-Z2-Phe-Z3-Cy-Z5-Cd-R2
R1-Py(3)-Z2-Phe-Z3-Cy-Z5-Cd-R2
R1-Cy-Z2-Py(2)-Z3-Cy-Z5-Cd-R2
R1-Cy-Z2-Py(3)-Z3-Cy-Z5-Cd-R2
R1-Py(2)-Z2-Cy-Z3-Cy-Z5-Cd-R2
R1-Py(3)-Z2-Cy-Z3-Cy-Z5-Cd-R2
R1-Phe-Z2-Cy-Z3-Cd-Z5-Cy-R2
R1-Phe-Z2-Py(2)-Z3-Cd-Z5-Cy-R2
R1-Phe-Z2-Py(3)-Z3-Cd-Z5-Cy-R2
R1-Py(2)-Z2-Phe-Z3-Cd-Z5-Cy-R2
R1-Py(3)-Z2-Phe-Z3-Cd-Z5-Cy-R2
R1-Phe-Z2-Cy-Z3-Cd-Z5-Py(2)-R2
R1-Phe-Z2-Cy-Z3-Cd-Z5-Py(3)-R2
R1-Cy-Z2-Py(2)-Z3-Cd-Z5-Cy-R2
R1-Cy-Z2-Py(3)-Z3-Cd-Z5-Cy-R2
R1-Cy-Z2-Py(2)-Z3-Cd-Z5-Phe-R2
R1-Cy-Z2-Py(3)-Z3-Cd-Z5-Phe-R2
R 1 -Phe-Z 2 -Py (2) -Z 3 -Phe-Z 5 -Cd-R 2
R 1 -Phe-Z 2 -Py (3) -Z 3 -Phe-Z 5 -Cd-R 2
R 1 -Phe-Z 2 -Cy-Z 3 -Cy-Z 5 -Cd-R 2
R 1 -Phe-Z 2 -Py (2) -Z 3 -Cy-Z 5 -Cd-R 2
R 1 -Phe-Z 2 -Py (3) -Z 3 -Cy-Z 5 -Cd-R 2
R 1 -Py (2) -Z 2 -Phe-Z 3 -Cy-Z 5 -Cd-R 2
R 1 -Py (3) -Z 2 -Phe-Z 3 -Cy-Z 5 -Cd-R 2
R 1 -Cy-Z 2 -Py (2) -Z 3 -Cy-Z 5 -Cd-R 2
R 1 -Cy-Z 2 -Py (3) -Z 3 -Cy-Z 5 -Cd-R 2
R 1 -Py (2) -Z 2 -Cy-Z 3 -Cy-Z 5 -Cd-R 2
R 1 -Py (3) -Z 2 -Cy-Z 3 -Cy-Z 5 -Cd-R 2
R 1 -Phe-Z 2 -Cy-Z 3 -Cd-Z 5 -Cy-R 2
R 1 -Phe-Z 2 -Py (2) -Z 3 -Cd-Z 5 -Cy-R 2
R 1 -Phe-Z 2 -Py (3) -Z 3 -Cd-Z 5 -Cy-R 2
R 1 -Py (2) -Z 2 -Phe-Z 3 -Cd-Z 5 -Cy-R 2
R 1 -Py (3) -Z 2 -Phe-Z 3 -Cd-Z 5 -Cy-R 2
R 1 -Phe-Z 2 -Cy-Z 3 -Cd-Z 5 -Py (2) -R 2
R 1 -Phe-Z 2 -Cy-Z 3 -Cd-Z 5 -Py (3) -R 2
R 1 -Cy-Z 2 -Py (2) -Z 3 -Cd-Z 5 -Cy-R 2
R 1 -Cy-Z 2 -Py (3) -Z 3 -Cd-Z 5 -Cy-R 2
R 1 -Cy-Z 2 -Py (2) -Z 3 -Cd-Z 5 -Phe-R 2
R 1 -Cy-Z 2 -Py (3) -Z 3 -Cd-Z 5 -Phe-R 2
 5環の化合物(m+n+o+p+q+r=4であるもの):
R1-Ph-Z1-Ph-Z2-Ph-Z3-Ph-Z4-Cd-R2
R1-Ph-Z1-Ph-Z2-Ph-Z3-Cy-Z4-Cd-R2
R1-Ph-Z1-Ph-Z2-Ph-Z3-Py(2)-Z4-Cd-R2
R1-Ph-Z1-Ph-Z2-Ph-Z3-Py(3)-Z4-Cd-R2
R1-Ph-Z1-Ph-Z2-Cy-Z3-Ph-Z4-Cd-R2
R1-Ph-Z1-Ph-Z2-Py(2)-Z3-Ph-Z4-Cd-R2
R1-Ph-Z1-Ph-Z2-Py(3)-Z3-Ph-Z4-Cd-R2
R1-Z1-Ph-Z2-Cy-Z3-Ph-Z4-Ph-Z5-Cd-R2
R1-Z1-Ph-Z2-Py(2)-Z3-Ph-Z4-Ph-Z5-Cd-R2
R1-Z1-Ph-Z2-Py(3)-Z3-Ph-Z4-Ph-Z5-Cd-R2
R1-Cy-Z1-Ph-Z2-Ph-Z3-Ph-Z4-Cd-R2
R1-Py(2)-Z1-Ph-Z2-Ph-Z3-Ph-Z4-Cd-R2
R1-Py(3)-Z1-Ph-Z2-Ph-Z3-Ph-Z4-Cd-R2
R1-Ph-Z1-Ph-Z2-Cy-Z3-Cy-Z4-Cd-R2
R1-Ph-Z1-Ph-Z2-Py(2)-Z3-Cy-Z4-Cd-R2
R1-Ph-Z1-Ph-Z2-Py(3)-Z3-Cy-Z4-Cd-R2
R1-Ph-Z1-Cy-Z2-Ph-Z3-Cy-Z4-Cd-R2
R1-Ph-Z1-Py(2)-Z2-Ph-Z3-Cy-Z4-Cd-R2
R1-Ph-Z1-Py(3)-Z2-Ph-Z3-Cy-Z4-Cd-R2
5-ring compound (m + n + o + p + q + r = 4):
R 1 -Ph-Z 1 -Ph-Z 2 -Ph-Z 3 -Ph-Z 4 -Cd-R 2
R 1 -Ph-Z 1 -Ph-Z 2 -Ph-Z 3 -Cy-Z 4 -Cd-R 2
R 1 -Ph-Z 1 -Ph-Z 2 -Ph-Z 3 -Py (2) -Z 4 -Cd-R 2
R 1 -Ph-Z 1 -Ph-Z 2 -Ph-Z 3 -Py (3) -Z 4 -Cd-R 2
R 1 -Ph-Z 1 -Ph-Z 2 -Cy-Z 3 -Ph-Z 4 -Cd-R 2
R 1 -Ph-Z 1 -Ph-Z 2 -Py (2) -Z 3 -Ph-Z 4 -Cd-R 2
R 1 -Ph-Z 1 -Ph-Z 2 -Py (3) -Z 3 -Ph-Z 4 -Cd-R 2
R 1 -Z 1 -Ph-Z 2 -Cy-Z 3 -Ph-Z 4 -Ph-Z 5 -Cd-R 2
R 1 -Z 1 -Ph-Z 2 -Py (2) -Z 3 -Ph-Z 4 -Ph-Z 5 -Cd-R 2
R 1 -Z 1 -Ph-Z 2 -Py (3) -Z 3 -Ph-Z 4 -Ph-Z 5 -Cd-R 2
R 1 -Cy-Z 1 -Ph-Z 2 -Ph-Z 3 -Ph-Z 4 -Cd-R 2
R 1 -Py (2) -Z 1 -Ph-Z 2 -Ph-Z 3 -Ph-Z 4 -Cd-R 2
R 1 -Py (3) -Z 1 -Ph-Z 2 -Ph-Z 3 -Ph-Z 4 -Cd-R 2
R 1 -Ph-Z 1 -Ph-Z 2 -Cy-Z 3 -Cy-Z 4 -Cd-R 2
R 1 -Ph-Z 1 -Ph-Z 2 -Py (2) -Z 3 -Cy-Z 4 -Cd-R 2
R 1 -Ph-Z 1 -Ph-Z 2 -Py (3) -Z 3 -Cy-Z 4 -Cd-R 2
R 1 -Ph-Z 1 -Cy-Z 2 -Ph-Z 3 -Cy-Z 4 -Cd-R 2
R 1 -Ph-Z 1 -Py (2) -Z 2 -Ph-Z 3 -Cy-Z 4 -Cd-R 2
R 1 -Ph-Z 1 -Py (3) -Z 2 -Ph-Z 3 -Cy-Z 4 -Cd-R 2
R1-Z1-Cy-Z2-Ph-Z3-Ph-Z4-Cy-Z5-Cd-R2
R1-Z1-Py(2)-Z2-Ph-Z3-Ph-Z4-Cy-Z5-Cd-R2
R1-Z1-Py(3)-Z2-Ph-Z3-Ph-Z4-Cy-Z5-Cd-R2
R1-Ph-Z1-Ph-Z2-Cy-Z3-Py(2)-Z4-Cd-R2
R1-Ph-Z1-Cy-Z2-Ph-Z3-Py(2)-Z4-Cd-R2
R1-Cy-Z1-Ph-Z2-Ph-Z3-Py(2)-Z4-Cd-R2
R1-Ph-Z1-Ph-Z2-Cy-Z3-Py(3)-Z4-Cd-R2
R1-Ph-Z1-Cy-Z2-Ph-Z3-Py(3)-Z4-Cd-R2
R1-Cy-Z1-Ph-Z2-Ph-Z3-Py(3)-Z4-Cd-R2
R1-Cy-Z1-Cy-Z2-Cy-Z3-Cy-Z4-Cd-R2
R1-Cy-Z1-Cy-Z2-Cy-Z3-Ph-Z4-Cd-R2
R1-Cy-Z1-Cy-Z2-Cy-Z3-Py(2)-Z4-Cd-R2
R1-Cy-Z1-Cy-Z2-Cy-Z3-Py(3)-Z4-Cd-R2
R1-Cy-Z1-Cy-Z2-Ph-Z3-Cy-Z4-Cd-R2
R1-Cy-Z1-Cy-Z2-Py(2)-Z3-Cy-Z4-Cd-R2
R1-Cy-Z1-Cy-Z2-Py(3)-Z3-Cy-Z4-Cd-R2
R1-Cy-Z1-Ph-Z2-Cy-Z3-Cy-Z4-Cd-R2
R1-Cy-Z1-Py(2)-Z2-Cy-Z3-Cy-Z4-Cd-R2
R1-Cy-Z1-Py(3)-Z2-Cy-Z3-Cy-Z4-Cd-R2
R 1 -Z 1 -Cy-Z 2 -Ph-Z 3 -Ph-Z 4 -Cy-Z 5 -Cd-R 2
R 1 -Z 1 -Py (2) -Z 2 -Ph-Z 3 -Ph-Z 4 -Cy-Z 5 -Cd-R 2
R 1 -Z 1 -Py (3) -Z 2 -Ph-Z 3 -Ph-Z 4 -Cy-Z 5 -Cd-R 2
R 1 -Ph-Z 1 -Ph-Z 2 -Cy-Z 3 -Py (2) -Z 4 -Cd-R 2
R 1 -Ph-Z 1 -Cy-Z 2 -Ph-Z 3 -Py (2) -Z 4 -Cd-R 2
R 1 -Cy-Z 1 -Ph-Z 2 -Ph-Z 3 -Py (2) -Z 4 -Cd-R 2
R 1 -Ph-Z 1 -Ph-Z 2 -Cy-Z 3 -Py (3) -Z 4 -Cd-R 2
R 1 -Ph-Z 1 -Cy-Z 2 -Ph-Z 3 -Py (3) -Z 4 -Cd-R 2
R 1 -Cy-Z 1 -Ph-Z 2 -Ph-Z 3 -Py (3) -Z 4 -Cd-R 2
R 1 -Cy-Z 1 -Cy-Z 2 -Cy-Z 3 -Cy-Z 4 -Cd-R 2
R 1 -Cy-Z 1 -Cy-Z 2 -Cy-Z 3 -Ph-Z 4 -Cd-R 2
R 1 -Cy-Z 1 -Cy-Z 2 -Cy-Z 3 -Py (2) -Z 4 -Cd-R 2
R 1 -Cy-Z 1 -Cy-Z 2 -Cy-Z 3 -Py (3) -Z 4 -Cd-R 2
R 1 -Cy-Z 1 -Cy-Z 2 -Ph-Z 3 -Cy-Z 4 -Cd-R 2
R 1 -Cy-Z 1 -Cy-Z 2 -Py (2) -Z 3 -Cy-Z 4 -Cd-R 2
R 1 -Cy-Z 1 -Cy-Z 2 -Py (3) -Z 3 -Cy-Z 4 -Cd-R 2
R 1 -Cy-Z 1 -Ph-Z 2 -Cy-Z 3 -Cy-Z 4 -Cd-R 2
R 1 -Cy-Z 1 -Py (2) -Z 2 -Cy-Z 3 -Cy-Z 4 -Cd-R 2
R 1 -Cy-Z 1 -Py (3) -Z 2 -Cy-Z 3 -Cy-Z 4 -Cd-R 2
R1-Ph-Z1-Cy-Z2-Cy-Z3-Cy-Z4-Cd-R2
R1-Py(2)-Z1-Cy-Z2-Cy-Z3-Cy-Z4-Cd-R2
R1-Py(3)-Z1-Cy-Z2-Cy-Z3-Cy-Z4-Cd-R2
R1-Cy-Z1-Cy-Z2-Ph-Z3-Ph-Z4-Cd-R2
R1-Cy-Z1-Cy-Z2-Py(2)-Z3-Ph-Z4-Cd-R2
R1-Cy-Z1-Cy-Z2-Py(3)-Z3-Ph-Z4-Cd-R2
R1-Cy-Z1-Ph-Z2-Cy-Z3-Ph-Z4-Cd-R2
R1-Cy-Z1-Py(2)-Z2-Cy-Z3-Ph-Z4-Cd-R2
R1-Cy-Z1-Py(3)-Z2-Cy-Z3-Ph-Z4-Cd-R2
R1-Ph-Z1-Cy-Z2-Cy-Z3-Ph-Z4-Cd-R2
R1-Py(2)-Z1-Cy-Z2-Cy-Z3-Ph-Z4-Cd-R2
R1-Py(3)-Z1-Cy-Z2-Cy-Z3-Ph-Z4-Cd-R2
R1-Cy-Z1-Cy-Z2-Ph-Z3-Py(2)-Z4-Cd-R2
R1-Cy-Z1-Ph-Z2-Cy-Z3-Py(2)-Z4-Cd-R2
R1-Ph-Z1-Cy-Z2-Cy-Z3-Py(2)-Z4-Cd-R2
R1-Cy-Z1-Cy-Z2-Ph-Z3-Py(3)-Z4-Cd-R2
R1-Cy-Z1-Ph-Z2-Cy-Z3-Py(3)-Z4-Cd-R2
R1-Ph-Z1-Cy-Z2-Cy-Z3-Py(3)-Z4-Cd-R2
R1-Ph-Z1-Ph-Z2-Ph-Z3-Cd-Z5-Ph-R2
R1-Ph-Z1-Ph-Z2-Ph-Z3-Cd-Z5-Cy-R2
R1-Ph-Z1-Ph-Z2-Ph-Z3-Cd-Z5-Py(2)-R2
R1-Ph-Z1-Ph-Z2-Ph-Z3-Cd-Z5-Py(3)-R2
R 1 -Ph-Z 1 -Cy-Z 2 -Cy-Z 3 -Cy-Z 4 -Cd-R 2
R 1 -Py (2) -Z 1 -Cy-Z 2 -Cy-Z 3 -Cy-Z 4 -Cd-R 2
R 1 -Py (3) -Z 1 -Cy-Z 2 -Cy-Z 3 -Cy-Z 4 -Cd-R 2
R 1 -Cy-Z 1 -Cy-Z 2 -Ph-Z 3 -Ph-Z 4 -Cd-R 2
R 1 -Cy-Z 1 -Cy-Z 2 -Py (2) -Z 3 -Ph-Z 4 -Cd-R 2
R 1 -Cy-Z 1 -Cy-Z 2 -Py (3) -Z 3 -Ph-Z 4 -Cd-R 2
R 1 -Cy-Z 1 -Ph-Z 2 -Cy-Z 3 -Ph-Z 4 -Cd-R 2
R 1 -Cy-Z 1 -Py (2) -Z 2 -Cy-Z 3 -Ph-Z 4 -Cd-R 2
R 1 -Cy-Z 1 -Py (3) -Z 2 -Cy-Z 3 -Ph-Z 4 -Cd-R 2
R 1 -Ph-Z 1 -Cy-Z 2 -Cy-Z 3 -Ph-Z 4 -Cd-R 2
R 1 -Py (2) -Z 1 -Cy-Z 2 -Cy-Z 3 -Ph-Z 4 -Cd-R 2
R 1 -Py (3) -Z 1 -Cy-Z 2 -Cy-Z 3 -Ph-Z 4 -Cd-R 2
R 1 -Cy-Z 1 -Cy-Z 2 -Ph-Z 3 -Py (2) -Z 4 -Cd-R 2
R 1 -Cy-Z 1 -Ph-Z 2 -Cy-Z 3 -Py (2) -Z 4 -Cd-R 2
R 1 -Ph-Z 1 -Cy-Z 2 -Cy-Z 3 -Py (2) -Z 4 -Cd-R 2
R 1 -Cy-Z 1 -Cy-Z 2 -Ph-Z 3 -Py (3) -Z 4 -Cd-R 2
R 1 -Cy-Z 1 -Ph-Z 2 -Cy-Z 3 -Py (3) -Z 4 -Cd-R 2
R 1 -Ph-Z 1 -Cy- Z 2 -Cy-Z 3 -Py (3) -Z 4 -Cd-R 2
R 1 -Ph-Z 1 -Ph-Z 2 -Ph-Z 3 -Cd-Z 5 -Ph-R 2
R 1 -Ph-Z 1 -Ph-Z 2 -Ph-Z 3 -Cd-Z 5 -Cy-R 2
R 1 -Ph-Z 1 -Ph-Z 2 -Ph-Z 3 -Cd-Z 5 -Py (2) -R 2
R 1 -Ph-Z 1 -Ph-Z 2 -Ph-Z 3 -Cd-Z 5 -Py (3) -R 2
R1-Ph-Z1-Ph-Z2-Cy-Z3-Cd-Z5-Ph-R2
R1-Ph-Z1-Ph-Z2-Py(2)-Z5-Cd-Z4-Ph-R2
R1-Ph-Z1-Ph-Z2-Py(3)-Z5-Cd-Z4-Ph-R2
R1-Ph-Z1-Cy-Z2-Ph-Z3-Cd-Z5-Ph-R2
R1-Ph-Z1-Py(2)-Z2-Ph-Z3-Cd-Z5-Ph-R2
R1-Ph-Z1-Py(3)-Z2-Ph-Z3-Cd-Z5-Ph-R2
R1-Cy-Z1-Ph-Z2-Ph-Z3-Cd-Z5-Ph-R2
R1-Py(2)-Z1-Ph-Z2-Ph-Z3-Cd-Z5-Ph-R2
R1-Py(3)-Z1-Ph-Z2-Ph-Z3-Cd-Z5-Ph-R2
R1-Ph-Z1-Ph-Z2-Cy-Z3-Cd-Z5-Cy-R2
R1-Ph-Z1-Ph-Z2-Py(2)-Z3-Cd-Z5-Cy-R2
R1-Ph-Z1-Ph-Z2-Py(3)-Z3-Cd-Z5-Cy-R2
R1-Ph-Z1-Cy-Z2-Ph-Z3-Cd-Z5-Cy-R2
R1-Ph-Z1-Py(2)-Z2-Ph-Z3-Cd-Z5-Cy-R2
R1-Ph-Z1-Py(3)-Z2-Ph-Z3-Cd-Z5-Cy-R2
R1-Cy-Z1-Ph-Z2-Ph-Z3-Cd-Z5-Cy-R2
R1-Py(2)-Z1-Ph-Z2-Ph-Z3-Cd-Z5-Cy-R2
R1-Py(3)-Z1-Ph-Z2-Ph-Z3-Cd-Z5-Cy-R2
R1-Ph-Z1-Ph-Z2-Cy-Z3-Cd-Z5-Py(2)-R2
R1-Ph-Z1-Cy-Z2-Ph-Z3-Cd-Z5-Py(2)-R2
R1-Cy-Z1-Ph-Z2-Ph-Z3-Cd-Z5-Py(2)-R2
R1-Ph-Z1-Ph-Z2-Cy-Z3-Cd-Z5-Py(3)-R2
R1-Ph-Z1-Cy-Z2-Ph-Z3-Cd-Z5-Py(3)-R2
R1-Cy-Z1-Ph-Z2-Ph-Z3-Cd-Z5-Py(3)-R2
R 1 -Ph-Z 1 -Ph-Z 2 -Cy-Z 3 -Cd-Z 5 -Ph-R 2
R 1 -Ph-Z 1 -Ph-Z 2 -Py (2) -Z 5 -Cd-Z 4 -Ph-R 2
R 1 -Ph-Z 1 -Ph-Z 2 -Py (3) -Z 5 -Cd-Z 4 -Ph-R 2
R 1 -Ph-Z 1 -Cy-Z 2 -Ph-Z 3 -Cd-Z 5 -Ph-R 2
R 1 -Ph-Z 1 -Py (2) -Z 2 -Ph-Z 3 -Cd-Z 5 -Ph-R 2
R 1 -Ph-Z 1 -Py (3) -Z 2 -Ph-Z 3 -Cd-Z 5 -Ph-R 2
R 1 -Cy-Z 1 -Ph-Z 2 -Ph-Z 3 -Cd-Z 5 -Ph-R 2
R 1 -Py (2) -Z 1 -Ph-Z 2 -Ph-Z 3 -Cd-Z 5 -Ph-R 2
R 1 -Py (3) -Z 1 -Ph-Z 2 -Ph-Z 3 -Cd-Z 5 -Ph-R 2
R 1 -Ph-Z 1 -Ph-Z 2 -Cy-Z 3 -Cd-Z 5 -Cy-R 2
R 1 -Ph-Z 1 -Ph-Z 2 -Py (2) -Z 3 -Cd-Z 5 -Cy-R 2
R 1 -Ph-Z 1 -Ph-Z 2 -Py (3) -Z 3 -Cd-Z 5 -Cy-R 2
R 1 -Ph-Z 1 -Cy-Z 2 -Ph-Z 3 -Cd-Z 5 -Cy-R 2
R 1 -Ph-Z 1 -Py (2) -Z 2 -Ph-Z 3 -Cd-Z 5 -Cy-R 2
R 1 -Ph-Z 1 -Py (3) -Z 2 -Ph-Z 3 -Cd-Z 5 -Cy-R 2
R 1 -Cy-Z 1 -Ph-Z 2 -Ph-Z 3 -Cd-Z 5 -Cy-R 2
R 1 -Py (2) -Z 1 -Ph-Z 2 -Ph-Z 3 -Cd-Z 5 -Cy-R 2
R 1 -Py (3) -Z 1 -Ph-Z 2 -Ph-Z 3 -Cd-Z 5 -Cy-R 2
R 1 -Ph-Z 1 -Ph-Z 2 -Cy-Z 3 -Cd-Z 5 -Py (2) -R 2
R 1 -Ph-Z 1 -Cy-Z 2 -Ph-Z 3 -Cd-Z 5 -Py (2) -R 2
R 1 -Cy-Z 1 -Ph-Z 2 -Ph-Z 3 -Cd-Z 5 -Py (2) -R 2
R 1 -Ph-Z 1 -Ph-Z 2 -Cy-Z 3 -Cd-Z 5 -Py (3) -R 2
R 1 -Ph-Z 1 -Cy-Z 2 -Ph-Z 3 -Cd-Z 5 -Py (3) -R 2
R 1 -Cy-Z 1 -Ph-Z 2 -Ph-Z 3 -Cd-Z 5 -Py (3) -R 2
R1-Cy-Z1-Cy-Z2-Cy-Z3-Cd-Z5-Cy-R2
R1-Cy-Z1-Cy-Z2-Cy-Z3-Cd-Z5-Ph-R2
R1-Cy-Z1-Cy-Z2-Cy-Z3-Cd-Z5-Py(2)-R2
R1-Cy-Z1-Cy-Z2-Cy-Z3-Cd-Z5-Py(3)-R2
R1-Cy-Z1-Cy-Z2-Ph-Z3-Cd-Z5-Cy-R2
R1-Cy-Z1-Cy-Z2-Py(2)-Z3-Cd-Z5-Cy-R2
R1-Cy-Z1-Cy-Z2-Py(3)-Z3-Cd-Z5-Cy-R2
R1-Cy-Z1-Ph-Z2-Cy-Z3-Cd-Z5-Cy-R2
R1-Cy-Z1-Py(2)-Z2-Cy-Z3-Cd-Z5-Cy-R2
R1-Cy-Z1-Py(3)-Z2-Cy-Z3-Cd-Z5-Cy-R2
R1-Ph-Z1-Cy-Z2-Cy-Z3-Cd-Z5-Cy-R2
R1-Py(2)-Z1-Cy-Z2-Cy-Z3-Cd-Z5-Cy-R2
R1-Py(3)-Z1-Cy-Z2-Cy-Z3-Cd-Z5-Cy-R2
R1-Cy-Z1-Cy-Z2-Ph-Z3-Cd-Z5-Ph-R2
R1-Cy-Z1-Cy-Z2-Py(2)-Z3-Cd-Z5-Ph-R2
R1-Cy-Z1-Cy-Z2-Py(3)-Z3-Cd-Z5-Ph-R2
R1-Cy-Z1-Ph-Z2-Cy-Z3-Cd-Z5-Ph-R2
R1-Cy-Z1-Py(2)-Z2-Cy-Z3-Cd-Z5-Ph-R2
R1-Cy-Z1-Py(3)-Z2-Cy-Z3-Cd-Z5-Ph-R2
R1-Ph-Z1-Cy-Z2-Cy-Z3-Cd-Z5-Ph-R2
R1-Py(2)-Z1-Cy-Z2-Cy-Z3-Cd-Z5-Ph-R2
R1-Py(3)-Z1-Cy-Z2-Cy-Z3-Cd-Z5-Ph-R2
R1-Cy-Z1-Cy-Z2-Ph-Z3-Cd-Z5-Py(2)-R2
R1-Cy-Z1-Ph-Z2-Cy-Z3-Cd-Z5-Py(2)-R2
R1-Ph-Z1-Cy-Z2-Cy-Z3-Cd-Z5-Py(2)-R2
R1-Cy-Z1-Cy-Z2-Ph-Z3-Cd-Z5-Py(3)-R2
R1-Cy-Z1-Ph-Z2-Cy-Z3-Cd-Z5-Py(3)-R2
R1-Ph-Z1-Cy-Z2-Cy-Z3-Cd-Z5-Py(3)-R2
R 1 -Cy-Z 1 -Cy-Z 2 -Cy-Z 3 -Cd-Z 5 -Cy-R 2
R 1 -Cy-Z 1 -Cy-Z 2 -Cy-Z 3 -Cd-Z 5 -Ph-R 2
R 1 -Cy-Z 1 -Cy-Z 2 -Cy-Z 3 -Cd-Z 5 -Py (2) -R 2
R 1 -Cy-Z 1 -Cy-Z 2 -Cy-Z 3 -Cd-Z 5 -Py (3) -R 2
R 1 -Cy-Z 1 -Cy-Z 2 -Ph-Z 3 -Cd-Z 5 -Cy-R 2
R 1 -Cy-Z 1 -Cy-Z 2 -Py (2) -Z 3 -Cd-Z 5 -Cy-R 2
R 1 -Cy-Z 1 -Cy-Z 2 -Py (3) -Z 3 -Cd-Z 5 -Cy-R 2
R 1 -Cy-Z 1 -Ph-Z 2 -Cy-Z 3 -Cd-Z 5 -Cy-R 2
R 1 -Cy-Z 1 -Py (2) -Z 2 -Cy-Z 3 -Cd-Z 5 -Cy-R 2
R 1 -Cy-Z 1 -Py (3) -Z 2 -Cy-Z 3 -Cd-Z 5 -Cy-R 2
R 1 -Ph-Z 1 -Cy-Z 2 -Cy-Z 3 -Cd-Z 5 -Cy-R 2
R 1 -Py (2) -Z 1 -Cy-Z 2 -Cy-Z 3 -Cd-Z 5 -Cy-R 2
R 1 -Py (3) -Z 1 -Cy-Z 2 -Cy-Z 3 -Cd-Z 5 -Cy-R 2
R 1 -Cy-Z 1 -Cy-Z 2 -Ph-Z 3 -Cd-Z 5 -Ph-R 2
R 1 -Cy-Z 1 -Cy-Z 2 -Py (2) -Z 3 -Cd-Z 5 -Ph-R 2
R 1 -Cy-Z 1 -Cy-Z 2 -Py (3) -Z 3 -Cd-Z 5 -Ph-R 2
R 1 -Cy-Z 1 -Ph-Z 2 -Cy-Z 3 -Cd-Z 5 -Ph-R 2
R 1 -Cy-Z 1 -Py (2) -Z 2 -Cy-Z 3 -Cd-Z 5 -Ph-R 2
R 1 -Cy-Z 1 -Py (3) -Z 2 -Cy-Z 3 -Cd-Z 5 -Ph-R 2
R 1 -Ph-Z 1 -Cy-Z 2 -Cy-Z 3 -Cd-Z 5 -Ph-R 2
R 1 -Py (2) -Z 1 -Cy-Z 2 -Cy-Z 3 -Cd-Z 5 -Ph-R 2
R 1 -Py (3) -Z 1 -Cy-Z 2 -Cy-Z 3 -Cd-Z 5 -Ph-R 2
R 1 -Cy-Z 1 -Cy-Z 2 -Ph-Z 3 -Cd-Z 5 -Py (2) -R 2
R 1 -Cy-Z 1 -Ph-Z 2 -Cy-Z 3 -Cd-Z 5 -Py (2) -R 2
R 1 -Ph-Z 1 -Cy-Z 2 -Cy-Z 3 -Cd-Z 5 -Py (2) -R 2
R 1 -Cy-Z 1 -Cy-Z 2 -Ph-Z 3 -Cd-Z 5 -Py (3) -R 2
R 1 -Cy-Z 1 -Ph-Z 2 -Cy-Z 3 -Cd-Z 5 -Py (3) -R 2
R 1 -Ph-Z 1 -Cy-Z 2 -Cy-Z 3 -Cd-Z 5 -Py (3) -R 2
R1-Z1-Ph-Z2-Ph-Z3-Cd-Z5-Ph-Ph-R2
R1-Z1-Ph-Z2-Ph-Z3-Cd-Z5-Ph-Cy-R2
R1-Z1-Ph-Z2-Ph-Z3-Cd-Z5-Ph-Py(2)-R2
R1-Z1-Ph-Z2-Ph-Z3-Cd-Z5-Ph-Py(3)-R2
R1-Z1-Ph-Z2-Ph-Z3-Cd-Z5-Cy-Ph-R2
R1-Z1-Ph-Z2-Ph-Z3-Cd-Z5-Py(2)-Ph-R2
R1-Z1-Ph-Z2-Ph-Z3-Cd-Z5-Py(3)-Ph-R2
R1-Z1-Ph-Z2-Cy-Z3-Cd-Z5-Ph-Ph-R2
R1-Z1-Ph-Z2-Py(2)-Z3-Cd-Z5-Ph-Ph-R2
R1-Z1-Ph-Z2-Py(3)-Z3-Cd-Z5-Ph-Ph-R2
R1-Z1-Cy-Z2-Ph-Z3-Cd-Z5-Ph-Ph-R2
R1-Z1-Py(2)-Z2-Ph-Z3-Cd-Z5-Ph-Ph-R2
R1-Z1-Py(3)-Z2-Ph-Z3-Cd-Z5-Ph-Ph-R2
R1-Z1-Ph-Z2-Ph-Z3-Cd-Z5-Cy-Cy-R2
R1-Z1-Ph-Z2-Ph-Z3-Cd-Z5-Py(2)-Cy-R2
R1-Z1-Ph-Z2-Ph-Z3-Cd-Z5-Py(3)-Cy-R2
R1-Z1-Ph-Z2-Cy-Z3-Cd-Z5-Ph-Cy-R2
R1-Z1-Ph-Z2-Py(2)-Z3-Cd-Z5-Ph-Cy-R2
R1-Z1-Ph-Z2-Py(3)-Z3-Cd-Z5-Ph-Cy-R2
R1-Z1-Cy-Z2-Ph-Z3-Cd-Z5-Ph-Cy-R2
R1-Z1-Py(2)-Z2-Ph-Z3-Cd-Z5-Ph-Cy-R2
R1-Z1-Py(3)-Z2-Ph-Z3-Cd-Z5-Ph-Cy-R2
R1-Z1-Ph-Z2-Ph-Z3-Cd-Z5-Cy-Py(2)-R2
R1-Z1-Ph-Z2-Cy-Z3-Cd-Z5-Ph-Py(2)-R2
R1-Z1-Cy-Z2-Ph-Z3-Cd-Z5-Ph-Py(2)-R2
R1-Z1-Ph-Z2-Ph-Z3-Cd-Z5-Cy-Py(3)-R2
R1-Z1-Ph-Z2-Cy-Z3-Cd-Z5-Ph-Py(3)-R2
R1-Z1-Cy-Z2-Ph-Z3-Cd-Z5-Ph-Py(3)-R2
R 1 -Z 1 -Ph-Z 2 -Ph-Z 3 -Cd-Z 5 -Ph-Ph-R 2
R 1 -Z 1 -Ph-Z 2 -Ph-Z 3 -Cd-Z 5 -Ph-Cy-R 2
R 1 -Z 1 -Ph-Z 2 -Ph-Z 3 -Cd-Z 5 -Ph-Py (2) -R 2
R 1 -Z 1 -Ph-Z 2 -Ph-Z 3 -Cd-Z 5 -Ph-Py (3) -R 2
R 1 -Z 1 -Ph-Z 2 -Ph-Z 3 -Cd-Z 5 -Cy-Ph-R 2
R 1 -Z 1 -Ph-Z 2 -Ph-Z 3 -Cd-Z 5 -Py (2) -Ph-R 2
R 1 -Z 1 -Ph-Z 2 -Ph-Z 3 -Cd-Z 5 -Py (3) -Ph-R 2
R 1 -Z 1 -Ph-Z 2 -Cy-Z 3 -Cd-Z 5 -Ph-Ph-R 2
R 1 -Z 1 -Ph-Z 2 -Py (2) -Z 3 -Cd-Z 5 -Ph-Ph-R 2
R 1 -Z 1 -Ph-Z 2 -Py (3) -Z 3 -Cd-Z 5 -Ph-Ph-R 2
R 1 -Z 1 -Cy-Z 2 -Ph-Z 3 -Cd-Z 5 -Ph-Ph-R 2
R 1 -Z 1 -Py (2) -Z 2 -Ph-Z 3 -Cd-Z 5 -Ph-Ph-R 2
R 1 -Z 1 -Py (3) -Z 2 -Ph-Z 3 -Cd-Z 5 -Ph-Ph-R 2
R 1 -Z 1 -Ph-Z 2 -Ph-Z 3 -Cd-Z 5 -Cy-Cy-R 2
R 1 -Z 1 -Ph-Z 2 -Ph-Z 3 -Cd-Z 5 -Py (2) -Cy-R 2
R 1 -Z 1 -Ph-Z 2 -Ph-Z 3 -Cd-Z 5 -Py (3) -Cy-R 2
R 1 -Z 1 -Ph-Z 2 -Cy-Z 3 -Cd-Z 5 -Ph-Cy-R 2
R 1 -Z 1 -Ph-Z 2 -Py (2) -Z 3 -Cd-Z 5 -Ph-Cy-R 2
R 1 -Z 1 -Ph-Z 2 -Py (3) -Z 3 -Cd-Z 5 -Ph-Cy-R 2
R 1 -Z 1 -Cy-Z 2 -Ph-Z 3 -Cd-Z 5 -Ph-Cy-R 2
R 1 -Z 1 -Py (2) -Z 2 -Ph-Z 3 -Cd-Z 5 -Ph-Cy-R 2
R 1 -Z 1 -Py (3) -Z 2 -Ph-Z 3 -Cd-Z 5 -Ph-Cy-R 2
R 1 -Z 1 -Ph-Z 2 -Ph-Z 3 -Cd-Z 5 -Cy-Py (2) -R 2
R 1 -Z 1 -Ph-Z 2 -Cy-Z 3 -Cd-Z 5 -Ph-Py (2) -R 2
R 1 -Z 1 -Cy-Z 2 -Ph-Z 3 -Cd-Z 5 -Ph-Py (2) -R 2
R 1 -Z 1 -Ph-Z 2 -Ph-Z 3 -Cd-Z 5 -Cy-Py (3) -R 2
R 1 -Z 1 -Ph-Z 2 -Cy-Z 3 -Cd-Z 5 -Ph-Py (3) -R 2
R 1 -Z 1 -Cy-Z 2 -Ph-Z 3 -Cd-Z 5 -Ph-Py (3) -R 2
R1-Z1-Cy-Z2-Cy-Z3-Cd-Z5-Cy-Cy-R2
R1-Z1-Cy-Z2-Cy-Z3-Cd-Z5-Cy-Ph-R2
R1-Z1-Cy-Z2-Cy-Z3-Cd-Z5-Cy-Py(2)-R2
R1-Z1-Cy-Z2-Cy-Z3-Cd-Z5-Cy-Py(3)-R2
R1-Z1-Cy-Z2-Cy-Z3-Cd-Z5-Ph-Cy-R2
R1-Z1-Cy-Z2-Cy-Z3-Cd-Z5-Py(2)-Cy-R2
R1-Z1-Cy-Z2-Cy-Z3-Cd-Z5-Py(3)-Cy-R2
R1-Z1-Cy-Z2-Cy-Z3-Cd-Z5-Ph-Ph-R2
R1-Z1-Cy-Z2-Cy-Z3-Cd-Z5-Py(2)-Ph-R2
R1-Z1-Cy-Z2-Cy-Z3-Cd-Z5-Py(3)-Ph-R2
R1-Z1-Cy-Z2-Ph-Z3-Cd-Z5-Cy-Ph-R2
R1-Z1-Cy-Z2-Py(2)-Z3-Cd-Z5-Cy-Ph-R2
R1-Z1-Cy-Z2-Py(3)-Z3-Cd-Z5-Cy-Ph-R2
R1-Z1-Ph-Z2-Cy-Z3-Cd-Z5-Cy-Ph-R2
R1-Z1-Py(2)-Z2-Cy-Z3-Cd-Z5-Cy-Ph-R2
R1-Z1-Py(3)-Z2-Cy-Z3-Cd-Z5-Cy-Ph-R2
R1-Z1-Cy-Z2-Cy-Z3-Cd-Z5-Ph-Py(2)-R2
R1-Z1-Cy-Z2-Ph-Z3-Cd-Z5-Cy-Py(2)-R2
R1-Z1-Ph-Z2-Cy-Z3-Cd-Z5-Cy-Py(2)-R2
R1-Z1-Cy-Z2-Cy-Z3-Cd-Z5-Ph-Py(3)-R2
R1-Z1-Cy-Z2-Ph-Z3-Cd-Z5-Cy-Py(3)-R2
R1-Z1-Ph-Z2-Cy-Z3-Cd-Z5-Cy-Py(3)-R2
R 1 -Z 1 -Cy-Z 2 -Cy-Z 3 -Cd-Z 5 -Cy-Cy-R 2
R 1 -Z 1 -Cy-Z 2 -Cy-Z 3 -Cd-Z 5 -Cy-Ph-R 2
R 1 -Z 1 -Cy-Z 2 -Cy-Z 3 -Cd-Z 5 -Cy-Py (2) -R 2
R 1 -Z 1 -Cy-Z 2 -Cy-Z 3 -Cd-Z 5 -Cy-Py (3) -R 2
R 1 -Z 1 -Cy-Z 2 -Cy-Z 3 -Cd-Z 5 -Ph-Cy-R 2
R 1 -Z 1 -Cy-Z 2 -Cy-Z 3 -Cd-Z 5 -Py (2) -Cy-R 2
R 1 -Z 1 -Cy-Z 2 -Cy-Z 3 -Cd-Z 5 -Py (3) -Cy-R 2
R 1 -Z 1 -Cy-Z 2 -Cy-Z 3 -Cd-Z 5 -Ph-Ph-R 2
R 1 -Z 1 -Cy-Z 2 -Cy-Z 3 -Cd-Z 5 -Py (2) -Ph-R 2
R 1 -Z 1 -Cy-Z 2 -Cy-Z 3 -Cd-Z 5 -Py (3) -Ph-R 2
R 1 -Z 1 -Cy-Z 2 -Ph-Z 3 -Cd-Z 5 -Cy-Ph-R 2
R 1 -Z 1 -Cy-Z 2 -Py (2) -Z 3 -Cd-Z 5 -Cy-Ph-R 2
R 1 -Z 1 -Cy-Z 2 -Py (3) -Z 3 -Cd-Z 5 -Cy-Ph-R 2
R 1 -Z 1 -Ph-Z 2 -Cy-Z 3 -Cd-Z 5 -Cy-Ph-R 2
R 1 -Z 1 -Py (2) -Z 2 -Cy-Z 3 -Cd-Z 5 -Cy-Ph-R 2
R 1 -Z 1 -Py (3) -Z 2 -Cy-Z 3 -Cd-Z 5 -Cy-Ph-R 2
R 1 -Z 1 -Cy-Z 2 -Cy-Z 3 -Cd-Z 5 -Ph-Py (2) -R 2
R 1 -Z 1 -Cy-Z 2 -Ph-Z 3 -Cd-Z 5 -Cy-Py (2) -R 2
R 1 -Z 1 -Ph-Z 2 -Cy-Z 3 -Cd-Z 5 -Cy-Py (2) -R 2
R 1 -Z 1 -Cy-Z 2 -Cy-Z 3 -Cd-Z 5 -Ph-Py (3) -R 2
R 1 -Z 1 -Cy-Z 2 -Ph-Z 3 -Cd-Z 5 -Cy-Py (3) -R 2
R 1 -Z 1 -Ph-Z 2 -Cy-Z 3 -Cd-Z 5 -Cy-Py (3) -R 2
 上記のような本発明の化合物(1)の好ましい製造方法として、
 化合物(2)を閉環して化合物(3)とした後、さらに水素添加により化合物(4)とした後、さらに脱水反応により化合物(1)とする製造方法が挙げられる。上記製法で化合物(1)を得る一連の反応は、以下のように表すことができる。
Figure JPOXMLDOC01-appb-C000018

 各式中の記号は、前記と同じ意味を示す。
As a preferable production method of the compound (1) of the present invention as described above,
A production method in which the compound (2) is cyclized to give the compound (3), then further hydrogenated to give the compound (4), and then further dehydrated to give the compound (1). A series of reactions for obtaining the compound (1) by the above production method can be expressed as follows.
Figure JPOXMLDOC01-appb-C000018

The symbols in each formula have the same meaning as described above.
 上記化合物(2)は、例えば以下のように合成する事ができる。
Figure JPOXMLDOC01-appb-C000019
The compound (2) can be synthesized, for example, as follows.
Figure JPOXMLDOC01-appb-C000019
 ただし、式中のMは金属原子または金属原子を含む基である。その他の記号は前記と同じ意味を示す。 However, M in the formula is a metal atom or a group containing a metal atom. Other symbols have the same meaning as described above.
 すなわち、化合物(5)をメチルリチウムでリチオ化し、化合物(6)のアルデヒドと反応させる事で化合物(7)を得る。化合物(7)の二重結合をオゾン分解し、ヘミアセタール(8)へと変換する。化合物(8)に有機金属試薬(9)を反応し、ジオール(10)へと変換した後、酸化することでジケトン(11)を得る。ジケトン(11)をアルケニルマグネシウムクロリド(12)と反応させる事で化合物(2)を合成する。
 化合物(9)のMとしては、MgI、MgBr、MgClおよびLiが好ましく、中でもMgBrが好ましい。
That is, the compound (5) is lithiated with methyllithium and reacted with the aldehyde of the compound (6) to obtain the compound (7). The double bond of compound (7) is ozonolyzed and converted to hemiacetal (8). The diketone (11) is obtained by reacting the compound (8) with the organometallic reagent (9) to convert it to the diol (10) and then oxidizing it. Compound (2) is synthesized by reacting diketone (11) with alkenyl magnesium chloride (12).
As M of the compound (9), MgI, MgBr, MgCl and Li are preferable, and MgBr is particularly preferable.
 化合物(2)において、Z4、Z5およびZ6が単結合、qおよびrが0、R2がアルケニル基である化合物(2a)の場合、短工程で合成できるさらに有利な方法として、下記の方法が挙げられる。
Figure JPOXMLDOC01-appb-C000020

 ただし、式中のR4は炭素数1~4のアルキル基を示し、その他の記号は前記と同じ意味を示す。
In the compound (2), in the case of the compound (2a) in which Z 4 , Z 5 and Z 6 are single bonds, q and r are 0, and R 2 is an alkenyl group, a more advantageous method that can be synthesized in a short process is as follows: The method is mentioned.
Figure JPOXMLDOC01-appb-C000020

However, R 4 in the formula represents an alkyl group having 1 to 4 carbon atoms, and other symbols have the same meaning as described above.
 すなわち、市販されているテトラフルオロコハク酸エステル類(化合物(13))を化合物(14)で表される有機金属試薬と反応させ化合物(15)へと変換した後、さらに化合物(12)で表されるアルケニルマグネシウムクロリドと反応させる事で、化合物(2a)を得る事ができる。
 化合物(14)のMとしては、MgI、MgBr、MgClおよびLiが好ましく、中でもMgBrが好ましい。
That is, a commercially available tetrafluorosuccinic acid ester (compound (13)) is reacted with an organometallic reagent represented by compound (14) to convert it to compound (15), and further represented by compound (12). The compound (2a) can be obtained by reacting with alkenyl magnesium chloride.
As M of the compound (14), MgI, MgBr, MgCl and Li are preferable, and among these, MgBr is preferable.
 なお、この化合物(2a)から、前記化合物(2)から化合物(1)を合成する方法と同様にして、化合物(1)の中でもZ4、Z5およびZ6が単結合、qおよびrが0、R2が炭素数2~6のアルキル基である化合物(1a)を合成することもできる。
Figure JPOXMLDOC01-appb-C000021
In the same manner as in the method of synthesizing compound (1) from compound (2a) from compound (2a), among compounds (1), Z 4 , Z 5 and Z 6 are single bonds, and q and r are A compound (1a) in which 0 and R 2 are an alkyl group having 2 to 6 carbon atoms can also be synthesized.
Figure JPOXMLDOC01-appb-C000021
 化合物(2)を閉環メタセシス反応に供する事により化合物(3)を得る。閉環メタセシス反応は文献(Schwab, P.; France, M. B.; Ziller, J. W.; Grubbs, R. H. Angew. Chem. Int. Ed. 1995, 34, 2039., Nguyen, S. T.; Johnson, L. K.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1992, 114, 3974.)記載の触媒を用いて溶媒中で実施するのが好ましい。溶媒としてはベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素系溶媒、ペンタン、ヘキサン、ヘプタン、オクタン等の脂肪族炭化水素系溶媒;テトラヒドロフラン、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、t-ブチルメチルエーテル、ジメトキシエタン等のエーテル系溶媒;石油エーテル類、塩化メチレン、クロロホルム、四塩化炭素、1,2-ジクロロエタン、パークレン等のハロゲン系溶媒等または前記溶媒の適当な混合溶媒を用いることができる。これらの中でも、塩化メチレン、1,2-ジクロロエタン等のハロゲン系溶媒、ベンゼン、トルエン等の芳香族炭化水素系溶媒が好ましい。
 前記遷移金属触媒としてはGrubbs触媒が好ましく、その使用量は、化合物(2)1モルに対し、0.00001当量~10当量用いるのが好ましく、0.001当量~1当量用いるのがより好ましく、0.01~0.2当量使用するのがさらに好ましい。
 反応温度は0~150℃が好ましく、10~100℃がより好ましい。
 反応時間は0.1~72時間が好ましく、1~48時間がより好ましい。
Compound (3) is obtained by subjecting compound (2) to a ring-closing metathesis reaction. Ring closure metathesis reactions are described in the literature (Schwab, P .; France, MB; Ziller, JW; Grubbs, RH Angew. Chem. Int. Ed. 1995, 34, 2039., Nguyen, ST; Johnson, LK; Grubbs, RH; Ziller , JWJ Am. Chem. Soc. 1992, 114, 3974.). Solvents include aromatic hydrocarbon solvents such as benzene, toluene, xylene, and ethylbenzene, aliphatic hydrocarbon solvents such as pentane, hexane, heptane, and octane; tetrahydrofuran, diethyl ether, diisopropyl ether, dibutyl ether, and t-butylmethyl. Ether-based solvents such as ether and dimethoxyethane; petroleum ethers, halogen-based solvents such as methylene chloride, chloroform, carbon tetrachloride, 1,2-dichloroethane, and parkrene, or a suitable mixed solvent of the above solvents can be used. Among these, halogen solvents such as methylene chloride and 1,2-dichloroethane, and aromatic hydrocarbon solvents such as benzene and toluene are preferable.
The transition metal catalyst is preferably a Grubbs catalyst, and the amount used is preferably 0.00001 equivalent to 10 equivalents, more preferably 0.001 equivalent to 1 equivalent, relative to 1 mol of the compound (2). More preferably, 0.01 to 0.2 equivalent is used.
The reaction temperature is preferably 0 to 150 ° C, more preferably 10 to 100 ° C.
The reaction time is preferably 0.1 to 72 hours, more preferably 1 to 48 hours.
 化合物(3)に水素添加することにより化合物(4)を得る。水素添加反応は溶媒中、不均一系触媒を用いて実施するのが好ましい。使用することができる溶媒としてはベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素系溶媒、ペンタン、ヘキサン、ヘプタン、オクタン等の脂肪族炭化水素系溶媒;酢酸エチル、酢酸メチル、酢酸プロピル等のエステル系溶媒;メタノール、エタノール等のアルコール系溶媒;アセトン、メチルエチルケトン等のケトン系溶媒;テトラヒドロフラン、ジエチルエーテル、ジブチルエーテル、t-ブチルメチルエーテル、ジメトキシエタン等のエーテル系溶媒;石油エーテル類または前記溶媒の適当な混合溶媒等を用いることができる。これらの中でも、メタノール等のアルコール系溶媒、酢酸エチル等のエステル系溶媒、これらの溶媒の混合溶媒が好ましい。 Compound (4) is obtained by hydrogenating compound (3). The hydrogenation reaction is preferably carried out in a solvent using a heterogeneous catalyst. Solvents that can be used include aromatic hydrocarbon solvents such as benzene, toluene, xylene, and ethylbenzene; aliphatic hydrocarbon solvents such as pentane, hexane, heptane, and octane; such as ethyl acetate, methyl acetate, and propyl acetate. Ester solvents; alcohol solvents such as methanol and ethanol; ketone solvents such as acetone and methyl ethyl ketone; ether solvents such as tetrahydrofuran, diethyl ether, dibutyl ether, t-butyl methyl ether, and dimethoxyethane; petroleum ethers or the aforementioned solvents A suitable mixed solvent or the like can be used. Among these, alcohol solvents such as methanol, ester solvents such as ethyl acetate, and mixed solvents of these solvents are preferable.
 化合物(4)の製造の際に使用できる不均一系触媒としてはパラジウムカーボン、ロジウムカーボン、ルテニウムカーボン、ラネーニッケル、酸化白金などの遷移金属触媒類が挙げられる。
 前記触媒の使用量は、化合物(3)の質量に対し、0.01~1.0倍量使用するのが好ましく、0.1~0.5倍使用するのがより好ましい。
 反応温度は-50~100℃が好ましく、0~40℃がより好ましい。
 反応時間は0.1~72時間が好ましく、0.1~48時間がより好ましい。
Examples of the heterogeneous catalyst that can be used in the production of the compound (4) include transition metal catalysts such as palladium carbon, rhodium carbon, ruthenium carbon, Raney nickel, and platinum oxide.
The amount of the catalyst used is preferably 0.01 to 1.0 times, more preferably 0.1 to 0.5 times the mass of the compound (3).
The reaction temperature is preferably −50 to 100 ° C., more preferably 0 to 40 ° C.
The reaction time is preferably 0.1 to 72 hours, more preferably 0.1 to 48 hours.
 化合物(1)は化合物(4)を脱水することにより得ることができる。
 脱水反応に用いる脱水剤としてはオキシ塩化リン、五塩化リン、塩化スルホニル、塩化スルフリル等を用いる事ができる。
 脱水反応は所望により溶媒中で実施する事ができる。有機溶媒としてはベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素系溶媒、ペンタン、ヘキサン、ヘプタン、オクタン等の脂肪族炭化水素系溶媒;テトラヒドロフラン、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、t-ブチルメチルエーテル、ジメトキシエタン等のエーテル系溶媒;石油エーテル類、塩化メチレン、クロロホルム、四塩化炭素、1,2-ジクロロエタン、パークレン等のハロゲン系溶媒等または前記溶媒の適当な混合溶媒を用いることができる。
 脱水反応は塩基存在下、実施してもよい。塩基としては無機塩基、有機塩基を使用する事ができる。無機塩基としては、金属ナトリウム、金属カリウム、などのアルカリ金属類およびその炭酸塩、水酸化物、水素化物および金属セシウム、金属アルミニウムなどのアルカリ土類金属類およびその炭酸塩、水酸化物、水素化物が上げられる。有機塩基としてはトリエチルアミン、ジイソプロピルアミンなどの鎖状の有機アミン類、ピリジン、モルホリン、ピリジン、キノリン、イミダゾール等環状の有機アミン類およびその環状に置換基を有する有機アミン類を上げる事ができる。
 脱水剤の使用量は、化合物(4)のモル数に対し1.9当量~20当量が好ましく、反応温度は0~200℃が好ましく、20~150℃がより好ましい。
 反応時間は0.5~72時間が好ましく、1~24時間がより好ましい。
Compound (1) can be obtained by dehydrating compound (4).
As the dehydrating agent used in the dehydration reaction, phosphorus oxychloride, phosphorus pentachloride, sulfonyl chloride, sulfuryl chloride, or the like can be used.
The dehydration reaction can be carried out in a solvent if desired. Organic solvents include aromatic hydrocarbon solvents such as benzene, toluene, xylene and ethylbenzene, aliphatic hydrocarbon solvents such as pentane, hexane, heptane and octane; tetrahydrofuran, diethyl ether, diisopropyl ether, dibutyl ether and t-butyl. Ether solvents such as methyl ether and dimethoxyethane; petroleum ethers, halogen solvents such as methylene chloride, chloroform, carbon tetrachloride, 1,2-dichloroethane, and parkrene, etc., or a suitable mixed solvent of the above solvents can be used. .
The dehydration reaction may be performed in the presence of a base. An inorganic base or an organic base can be used as the base. Examples of inorganic bases include alkali metals such as sodium metal and metal potassium and carbonates thereof, hydroxides, hydrides and metal cesium, alkaline earth metals such as metal aluminum and carbonates, hydroxides and hydrogen thereof. The monster is raised. Examples of the organic base include chain organic amines such as triethylamine and diisopropylamine, cyclic organic amines such as pyridine, morpholine, pyridine, quinoline and imidazole, and organic amines having a substituent in the ring.
The amount of dehydrating agent used is preferably 1.9 to 20 equivalents relative to the number of moles of compound (4), and the reaction temperature is preferably 0 to 200 ° C, more preferably 20 to 150 ° C.
The reaction time is preferably 0.5 to 72 hours, more preferably 1 to 24 hours.
 化合物(2)、化合物(3)および化合物(4)は、化合物(1)を合成するための中間体として有用である。化合物(2)、化合物(3)および化合物(4)において、各基の定義は前記のとおりであり、また、好ましい態様は化合物(1)と同じである。 Compound (2), Compound (3) and Compound (4) are useful as intermediates for synthesizing Compound (1). In the compound (2), the compound (3) and the compound (4), the definition of each group is as described above, and the preferred embodiment is the same as the compound (1).
 なお、化合物(1)において、Z5およびZ6が単結合、qおよびrが0、R2がアルコキシ基である化合物(1b)を合成する場合は、化合物(2)として、Z5およびZ6が単結合、qおよびrが0、R2が水素原子である化合物(2b)を用いると目的物がより得られやすいため好ましい。
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
 ただし、式中のR51はOH基の保護基を示し、R6は炭素数1~10のアルキル基を示し、その他の記号は前記と同じ意味を示す。
In the compound (1), when synthesizing the compound (1b) in which Z 5 and Z 6 are single bonds, q and r are 0, and R 2 is an alkoxy group, Z 5 and Z It is preferable to use the compound (2b) in which 6 is a single bond, q and r are 0, and R 2 is a hydrogen atom because the target product is more easily obtained.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
In the formula, R 51 represents a protecting group for OH group, R 6 represents an alkyl group having 1 to 10 carbon atoms, and other symbols have the same meaning as described above.
 化合物(2b)から化合物(4b)までは、前記化合物(2)から化合物(4)までと同様に合成することができる。
 化合物(4b)から化合物(1b)までは、OH基を適宜、保護および脱保護することにより合成を進めることができる。
 保護、脱保護まで含めた、詳細な合成の例として以下の方法が挙げられる。
Figure JPOXMLDOC01-appb-C000028
                                    (4b)
               ↓
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030

               ↓
Figure JPOXMLDOC01-appb-C000031

               ↓
Figure JPOXMLDOC01-appb-C000032
                                   (16)
               ↓
Figure JPOXMLDOC01-appb-C000033
                                   (17)
               ↓
Figure JPOXMLDOC01-appb-C000034

               ↓
Figure JPOXMLDOC01-appb-C000035
                                    (1b)
 ただし、式中のR52はOH基の保護基を示し、その他の記号は前記と同じ意味を示す。
Compound (2b) to compound (4b) can be synthesized in the same manner as compound (2) to compound (4).
From compound (4b) to compound (1b), the synthesis can proceed by appropriately protecting and deprotecting the OH group.
Examples of detailed synthesis including protection and deprotection include the following methods.
Figure JPOXMLDOC01-appb-C000028
(4b)

Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030


Figure JPOXMLDOC01-appb-C000031


Figure JPOXMLDOC01-appb-C000032
(16)

Figure JPOXMLDOC01-appb-C000033
(17)

Figure JPOXMLDOC01-appb-C000034


Figure JPOXMLDOC01-appb-C000035
(1b)
However, R 52 in the formula represents a protecting group for the OH group, and other symbols have the same meaning as described above.
 すなわち、化合物(4b)の2箇所のOH基をそれぞれ保護した後、末端のOH基を保護したR52基を脱保護する。このOH基を酸化してケトン(16)を得る。ケトン(16)をR6基含有化合物と反応させて末端アルコキシ基を有する化合物(17)を得る。化合物(17)のR51基も脱保護し、脱水して、化合物(1b)を合成する。 That is, after protecting each of the two OH groups of the compound (4b), the R 52 group protecting the terminal OH group is deprotected. This OH group is oxidized to give ketone (16). A ketone (16) is reacted with an R 6 group-containing compound to obtain a compound (17) having a terminal alkoxy group. The R 51 group of compound (17) is also deprotected and dehydrated to synthesize compound (1b).
 前記R51およびR52は、OH基の保護基である。OH基の保護基であれば特に制限されないが、2箇所のOH基に同時に付かないこと、同一条件で外れないこと、また、化合物(16)から化合物(17)を合成する際に外れないこと、という条件を満たす保護基であることが好ましい。R51およびR52としては、ベンジル基、p-メトキシフェニルベンジル基、メトキシメチル基、トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基、アセチル基、ベンゾイル基、トリチル基、等が挙げられる。中でも、取り扱いが容易であることから、t-ブチルジメチルシリル基およびアセチル基が好ましい。さらに、反応を制御し易いことから、R51としてはアセチル基が特に好ましく、R52としては、t-ブチルジメチルシリル基が特に好ましい。 R 51 and R 52 are OH protecting groups. It is not particularly limited as long as it is a protective group for OH group, but it cannot be attached to two OH groups at the same time, cannot be removed under the same conditions, and cannot be removed when compound (17) is synthesized from compound (16). It is preferable that it is a protecting group that satisfies the condition. Examples of R 51 and R 52 include a benzyl group, p-methoxyphenylbenzyl group, methoxymethyl group, trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, acetyl group, benzoyl group, and trityl group. Of these, a t-butyldimethylsilyl group and an acetyl group are preferable because they are easy to handle. Furthermore, since it is easy to control the reaction, R 51 is particularly preferably an acetyl group, and R 52 is particularly preferably a t-butyldimethylsilyl group.
 化合物(2b)の合成方法としては、前記化合物(2)と同様の方法も可能であるが、化合物(7)以降を一部変更した下記の方法も挙げられる。
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
                     (2b)
ただし、式中の記号は前記と同じ意味を示す。
As a method for synthesizing compound (2b), the same method as compound (2) can be used, but the following method in which compound (7) and subsequent compounds are partially modified is also included.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
(2b)
However, the symbols in the formula have the same meaning as described above.
 化合物(7)を得るところまでは、前記と同様である。その後、化合物(7)を酸化して化合物(18)を得る。化合物(18)の二重結合をオゾン分解し、化合物(19)へと変換する。化合物(19)をアルケニルマグネシウムクロリド(12)と反応させる事で化合物(2b)を合成する。 The process until the compound (7) is obtained is the same as described above. Thereafter, the compound (7) is oxidized to obtain the compound (18). The double bond of compound (18) is ozonolyzed and converted to compound (19). Compound (2b) is synthesized by reacting compound (19) with alkenylmagnesium chloride (12).
 本発明の化合物(1)は、液晶化合物として有用である。なお、本発明において、液晶化合物とは、液晶相を示す化合物および液晶相を示さないが液晶組成物の構成成分として有用である化合物を意味するものである。 The compound (1) of the present invention is useful as a liquid crystal compound. In the present invention, the liquid crystal compound means a compound that exhibits a liquid crystal phase and a compound that does not exhibit a liquid crystal phase but is useful as a constituent of a liquid crystal composition.
 本発明は、本発明の化合物(1)を含む液晶組成物を提供する。この液晶組成物は、本発明の化合物(1)と、他の液晶化合物または非液晶化合物(これらを総称して「他の化合物」という)とを混合して構成される。 The present invention provides a liquid crystal composition comprising the compound (1) of the present invention. This liquid crystal composition is constituted by mixing the compound (1) of the present invention with other liquid crystal compounds or non-liquid crystal compounds (collectively referred to as “other compounds”).
 本発明の液晶組成物における化合物(1)の含有量は、用途、使用目的、他の化合物の種類等により適宜変更することができるが、液晶組成物全量に対して化合物(1)は0.5~80質量%が好ましく、特に2~50質量%が好ましい。また、用途、使用目的等により、液晶組成物中に化合物(1)を2種類以上含有してもよい。その場合、液晶組成物の全量に対して化合物(1)の合計量で0.5~80質量%が好ましく、特に2~50質量%が好ましい。 The content of the compound (1) in the liquid crystal composition of the present invention can be appropriately changed depending on the purpose of use, the purpose of use, the type of other compounds, and the like. 5 to 80% by mass is preferable, and 2 to 50% by mass is particularly preferable. Moreover, you may contain 2 or more types of compounds (1) in a liquid-crystal composition by a use, a use purpose, etc. In that case, the total amount of the compound (1) is preferably 0.5 to 80% by mass, particularly preferably 2 to 50% by mass, based on the total amount of the liquid crystal composition.
 化合物(1)と混合して用いる他の化合物としては、屈折率異方性値を調整する成分、粘性を下げる成分、低温で液晶性を示す成分、誘電率異方性を向上させる成分、コレステリック性を付与する成分、二色性を示す成分、導電性を付与する成分、その他各種添加剤等が挙げられる。これらは、用途、要求性能等により、適宜選択されるが、通常は、液晶化合物および該液晶化合物と類似構造を有する主成分と、必要に応じて添加される添加成分とからなるものが好ましい。 Other compounds used in combination with the compound (1) include components for adjusting the refractive index anisotropy value, components for reducing the viscosity, components exhibiting liquid crystallinity at low temperatures, components for improving the dielectric anisotropy, and cholesteric A component for imparting properties, a component exhibiting dichroism, a component for imparting conductivity, and various other additives. These are appropriately selected depending on the application, required performance and the like, but usually those composed of a liquid crystal compound, a main component having a similar structure to the liquid crystal compound, and an additive component added if necessary.
 本発明の液晶組成物において、前記他の化合物としては、Δεが負である下記式(D)で表される化合物が好ましい。
 Rd1-Ad1-Zd1-Ad2-Zd2-(Ad3)md-Zd3-(Ad4)nd-Rd2 (D)
(式中の記号は以下の意味を示す。
 Rd1およびRd2:相互に独立して、炭素数1~10のアルキル基であり、該アルキル基中、1つ以上の水素原子はフッ素原子で置換されていてもよく、C-C間または該基の結合末端に-O-が挿入されていてもよく、1つ以上の-CH2CH-は-CH=CH-で置換されていてもよい。
 Ad1、Ad2、Ad3およびAd4:相互に独立して、トランス-1,4-シクロへキシレン基、または1,4-フェニレン基であり、該基中の1つ以上の水素原子はフッ素原子で置換されていてもよい。
 Zd1、Zd2およびZd3:相互に独立して、単結合、-COO-、-C≡C-、-OCO-、-OCH2-、-CH2O-または-C24-。
 mdおよびnd:相互に独立して0または1。
 ただし、Ad1、Ad2、Ad3およびAd4の1つ以上は、2,3-ジフルオロ-1,4-フェニレン基である。)
In the liquid crystal composition of the present invention, the other compound is preferably a compound represented by the following formula (D) in which Δε is negative.
R d1 -A d1 -Z d1 -A d2 -Z d2- (A d3 ) m d -Z d3- (A d4 ) n d -R d2 (D)
(The symbols in the formula have the following meanings.
R d1 and R d2 are each independently an alkyl group having 1 to 10 carbon atoms, and in the alkyl group, one or more hydrogen atoms may be substituted with a fluorine atom, —O— may be inserted at the bond terminal of the group, and one or more —CH 2 CH 2 — may be substituted with —CH═CH—.
A d1 , A d2 , A d3 and A d4 : each independently a trans-1,4-cyclohexylene group or a 1,4-phenylene group, wherein one or more hydrogen atoms in the group are It may be substituted with a fluorine atom.
Z d1 , Z d2 and Z d3 : independently of each other, a single bond, —COO—, —C≡C—, —OCO—, —OCH 2 —, —CH 2 O— or —C 2 H 4 —.
m d and n d : 0 or 1 independently of each other.
However, one or more of A d1 , A d2 , A d3 and A d4 is a 2,3-difluoro-1,4-phenylene group. )
 化合物(D)において、mdおよびndがいずれも0である化合物は2環の化合物であるため、粘性が低く、素子の高速応答性を必要とする場合は有用である。また、しきい値電圧や屈折率異方性の調整にも使用可能である。
 化合物(D)において、mdおよびndの一方が1であり、もう一方が0である化合物は、3環の化合物であるため、前記2環の化合物に比べて透明点が高く、ネマチック相など液晶温度範囲の拡大に有用である。また、屈折率異方性の調整にも使用可能である。
 化合物(D)において、mdおよびndがいずれも1である化合物は4環の化合物であるため、透明点が特に高いため、液晶温度範囲の拡大に特に有用である。
In the compound (D), for compound m d and n d are both 0 are compounds of the 2 rings, low viscosity, it is useful when requiring fast response of the device. It can also be used to adjust the threshold voltage and refractive index anisotropy.
In the compound (D), a compound in which one of m d and n d is 1 and the other is 0 is a tricyclic compound. Therefore, the clearing point is higher than that of the bicyclic compound, and the nematic phase This is useful for expanding the liquid crystal temperature range. It can also be used to adjust the refractive index anisotropy.
In the compound (D), a compound in which both m d and n d are 1 is a tetracyclic compound, and therefore has a particularly high clearing point, and thus is particularly useful for expanding the liquid crystal temperature range.
 化合物(D)の好ましいものとして、以下の化合物が挙げられる。以下の式中、-Ph-は1,4-フェニレン基を示し、-Ph(2F,3F)-は2,3-ジフルオロ-1,4-フェニレン基を示し、-Cy-は前記と同じ意味を示す。
 Rd1-Cy-Ph(2F,3F)-Rd2
 Rd1-Ph-Ph(2F,3F)-Rd2
 Rd1-Ph-C≡C-Ph(2F,3F)-Rd2
 Rd1-Cy-COO-Ph(2F,3F)-Rd2
 Rd1-Cy-Cy-Ph(2F,3F)-Rd2
 Rd1-Cy-Cy-C2H4-Ph(2F,3F)-Rd2
 Rd1-Cy-Cy-COO-Ph(2F,3F)-Rd2
 Rd1-Cy-Ph-Ph(2F,3F)-Rd2
 Rd1-Cy-Ph-C2H4-Ph(2F,3F)-Rd2
 Rd1-Cy-Ph-C≡C-Ph(2F,3F)-Rd2
 Rd1-Cy-Ph(2F,3F)-C≡C-Ph-Rd2
 Rd1-Cy-COO-Ph-C≡C-Ph(2F,3F)-Rd2
 Rd1-Ph-Ph-Ph(2F,3F)-Rd2
 Rd1-Ph-Ph(2F,3F)-Ph-Rd2
 Rd1-Ph-Ph-COO-Ph(2F,3F)-Rd2
Preferable compounds (D) include the following compounds. In the following formulae, -Ph- represents a 1,4-phenylene group, -Ph (2F, 3F)-represents a 2,3-difluoro-1,4-phenylene group, and -Cy- has the same meaning as described above. Indicates.
R d1 -Cy-Ph (2F, 3F) -R d2
R d1 -Ph-Ph (2F, 3F) -R d2
R d1 -Ph-C≡C-Ph (2F, 3F) -R d2
R d1 -Cy-COO-Ph (2F, 3F) -R d2
R d1 -Cy-Cy-Ph (2F, 3F) -R d2
R d1 -Cy-Cy-C 2 H 4 -Ph (2F, 3F) -R d2
R d1 -Cy-Cy-COO-Ph (2F, 3F) -R d2
R d1 -Cy-Ph-Ph (2F, 3F) -R d2
R d1 -Cy-Ph-C 2 H 4 -Ph (2F, 3F) -R d2
R d1 -Cy-Ph-C≡C-Ph (2F, 3F) -R d2
R d1 -Cy-Ph (2F, 3F) -C≡C-Ph-R d2
R d1 -Cy-COO-Ph-C≡C-Ph (2F, 3F) -R d2
R d1 -Ph-Ph-Ph (2F, 3F) -R d2
R d1 -Ph-Ph (2F, 3F) -Ph-R d2
R d1 -Ph-Ph-COO-Ph (2F, 3F) -R d2
 本発明の液晶組成物は、液晶組成物のΔεを負に大きくする観点から化合物(D)を含む場合は、化合物(D)の含有量は液晶組成物全体の量に対して5~60質量%が好ましく、5~50質量%がより好ましい。化合物(D)を2種類以上含む場合は、その合計量が上記範囲であると好ましい。 When the liquid crystal composition of the present invention contains the compound (D) from the viewpoint of negatively increasing Δε of the liquid crystal composition, the content of the compound (D) is 5 to 60 mass with respect to the total amount of the liquid crystal composition. % Is preferable, and 5 to 50% by mass is more preferable. When two or more types of compounds (D) are included, the total amount is preferably in the above range.
 本発明の液晶組成物において、前記他の化合物としては、前記化合物(D)に加えて、Δεの絶対値が小さく中性に近い、下記式(E)で表される化合物も好ましい。
 Re1-Ae1-Ze1-Ae2-Ze2-(Ae3)me-Ze3-(Ae4)ne-Ze4-Re2 (E)
(式中の記号は以下の意味を示す。
 Re1およびRe2:相互に独立して、炭素数1~10のアルキル基であり、該アルキル基中、1つ以上の水素原子はフッ素原子で置換されていてもよく、C-C間または該基の結合末端に-O-が挿入されていてもよく、1つ以上の-CH2CH-は-CH=CH-で置換されていてもよい。
 Ae1、Ae2、Ae3およびAe4:相互に独立して、トランス-1,4-シクロへキシレン基、ピリミジン-2,5-ジイル基、または1,4-フェニレン基であり、該基中の1つ以上の水素原子はフッ素原子で置換されていてもよい。
 Ze1、Ze2、Ze3およびZe4:相互に独立して、単結合、-COO-、-C≡C-、-OCO-、-CH=CH-または-C-。
 meおよびne:相互に独立して0または1。)
In the liquid crystal composition of the present invention, as the other compound, in addition to the compound (D), a compound represented by the following formula (E) having a small absolute value of Δε and close to neutrality is also preferable.
R e1 -A e1 -Z e1 -A e2 -Z e2- (A e3 ) m e -Z e3- (A e4 ) n e -Z e4 -R e2 (E)
(The symbols in the formula have the following meanings.
R e1 and R e2 : each independently an alkyl group having 1 to 10 carbon atoms, in which one or more hydrogen atoms may be substituted with a fluorine atom, —O— may be inserted at the bond terminal of the group, and one or more —CH 2 CH 2 — may be substituted with —CH═CH—.
A e1 , A e2 , A e3 and A e4 : independently of each other, a trans-1,4-cyclohexylene group, a pyrimidine-2,5-diyl group, or a 1,4-phenylene group, One or more hydrogen atoms therein may be substituted with fluorine atoms.
Z e1 , Z e2 , Z e3 and Z e4 : independently of each other, a single bond, —COO—, —C≡C—, —OCO—, —CH═CH— or —C 2 H 4 —.
m e and n e : 0 or 1 independently of each other. )
 化合物(E)において、meおよびneがいずれも0である化合物は2環の化合物であるため、粘性が低く、素子の高速応答性を必要とする場合は有用である。また、屈折率異方性の調整にも使用可能である。
 化合物(E)において、meおよびneの一方が1であり、もう一方が0である化合物は、3環の化合物であるため、前記2環の化合物に比べて透明点が高く、ネマチック相など液晶温度範囲の拡大に有用である。また、屈折率異方性の調整にも使用可能である。
 化合物(E)において、meおよびneがいずれも1である化合物は4環の化合物であるため、透明点が特に高いため、液晶温度範囲の拡大に特に有用である。
In the compound (E), a compound in which m e and n e are both 0 is a bicyclic compound, which is useful when the viscosity is low and high-speed response of the device is required. It can also be used to adjust the refractive index anisotropy.
In the compound (E), a one is 1 m e and n e, compounds other is 0, because it is a compound of three rings, a high clearing point compared to the compound of the 2 rings, a nematic phase This is useful for expanding the liquid crystal temperature range. It can also be used to adjust the refractive index anisotropy.
In the compound (E), for compound m e and n e are both 1 is the compound of 4 ring, because the clearing point is particularly high, is particularly useful for the expansion of the liquid crystal temperature range.
 化合物(E)の好ましいものとして、以下の化合物が挙げられる。以下の式中、-Pm-はピリミジン-2,5-ジイル基を示し、-Ph(3F)-は3-フルオロ-1,4-フェニレン基を示し、-Cy-および-Ph-は前記と同じ意味を示す。
 Re1-Cy-Cy-Re2
 Re1-Cy-Cy-COO-Re2
 Re1-Cy-C2H4-Cy-Re2
 Re1-Cy-CH=CH-Cy-Re2
 Re1-Cy-Ph-Re2
 Re1-Cy-C2H4-Ph-Re2
 Re1-Cy-COO-Ph-Re2
 Re1-Ph-Ph-Re2
 Re1-Ph-C2H4-Ph-Re2
 Re1-Ph-COO-Ph-Re2
 Re1-Ph-C≡C-Ph-Re2
 Re1-Pm-Ph-Re2
 Re1-Cy-Cy-Ph-Re2
 Re1-Cy-CH=CH-Cy-Ph-Re2
 Re1-Cy-C2H4-Cy-Ph-Re2
 Re1-Cy-Cy-C2H4-Ph-Re2
 Re1-Cy-Ph-Ph-Re2
 Re1-Cy-Ph-C2H4-Ph-Re2
 Re1-Ph-Ph-Ph-Re2
 Re1-Ph-Ph(3F)-Ph-Re2
 Re1-Pm-Cy-Cy-Re2
 Re1-Pm-Ph-Cy-Re2
 Re1-Pm-Ph-Ph-Re2
 Re1-Ph-Pm-Ph-Re2
 Re1-Cy-Cy-COO-Ph-Re2
 Re1-Cy-Ph-COO-Ph-Re2
 Re1-Cy-COO-Ph-COO-Ph-Re2
 Re1-Cy-Ph-C≡C-Ph-Re2
 Re1-Cy-Ph(3F)-C≡C-Ph-Re2
 Re1-Cy-C2H4-Ph-C≡C-Ph-Re2
 Re1-Cy-C2H4-Ph(3F)-C≡C-Ph-Re2
 Re1-Cy-COO-Ph-C≡C-Ph-Re2
 Re1-Ph-COO-Ph-C≡C-Ph-Re2
 Re1-Ph-C≡C-Ph-C≡C-Ph-Re2
 Re1-Ph-C≡C-Ph(3F)-C≡C-Ph-Re2
 Re1-Ph-C≡C-Ph-COO-Ph-Re2
 Re1-Cy-Ph-Ph-Cy-Re2
 Re1-Cy-Ph(3F)-Ph-Cy-Re2
 Re1-Cy-Cy-Ph-Ph-Re2
 Re1-Cy-Ph-Ph-Ph-Re2
 Re1-Cy-Ph-Ph(3F)-Ph-Re2
 Re1-Cy-Cy-COO-Ph-Cy-Re2
Preferable compounds (E) include the following compounds. In the following formulae, -Pm- represents a pyrimidine-2,5-diyl group, -Ph (3F)-represents a 3-fluoro-1,4-phenylene group, -Cy- and -Ph- Indicates the same meaning.
R e1 -Cy-Cy-R e2
R e1 -Cy-Cy-COO-R e2
R e1 -Cy-C 2 H 4 -Cy-R e2
R e1 -Cy-CH = CH-Cy-R e2
R e1 -Cy-Ph-R e2
R e1 -Cy-C 2 H 4 -Ph-R e2
R e1 -Cy-COO-Ph-R e2
R e1 -Ph-Ph-R e2
R e1 -Ph-C 2 H 4 -Ph-R e2
R e1 -Ph-COO-Ph-R e2
R e1 -Ph-C≡C-Ph-R e2
R e1 -Pm-Ph-R e2
R e1 -Cy-Cy-Ph-R e2
R e1 -Cy-CH = CH-Cy-Ph-R e2
R e1 -Cy-C 2 H 4 -Cy-Ph-R e2
R e1 -Cy-Cy-C 2 H 4 -Ph-R e2
R e1 -Cy-Ph-Ph-R e2
R e1 -Cy-Ph-C 2 H 4 -Ph-R e2
R e1 -Ph-Ph-Ph-R e2
R e1 -Ph-Ph (3F) -Ph-R e2
R e1 -Pm-Cy-Cy-R e2
R e1 -Pm-Ph-Cy-R e2
R e1 -Pm-Ph-Ph-R e2
R e1 -Ph-Pm-Ph-R e2
R e1 -Cy-Cy-COO-Ph-R e2
R e1 -Cy-Ph-COO-Ph-R e2
R e1 -Cy-COO-Ph-COO-Ph-R e2
R e1 -Cy-Ph-C≡C- Ph-R e2
R e1 -Cy-Ph (3F) -C≡C-Ph-R e2
R e1 -Cy-C 2 H 4 -Ph-C≡C-Ph-R e2
R e1 -Cy-C 2 H 4 -Ph (3F) -C≡C-Ph-R e2
R e1 -Cy-COO-Ph-C≡C-Ph-R e2
R e1 -Ph-COO-Ph-C≡C-Ph-R e2
R e1 -Ph-C≡C-Ph-C≡C-Ph-R e2
R e1 -Ph-C≡C-Ph (3F) -C≡C-Ph-R e2
R e1 -Ph-C≡C-Ph-COO-Ph-R e2
R e1 -Cy-Ph-Ph-Cy-R e2
R e1 -Cy-Ph (3F) -Ph-Cy-R e2
R e1 -Cy-Cy-Ph-Ph-R e2
R e1 -Cy-Ph-Ph-Ph-R e2
R e1 -Cy-Ph-Ph (3F) -Ph-R e2
R e1 -Cy-Cy-COO-Ph-Cy-R e2
 本発明の液晶組成物は、組成物の粘性を低くする等の観点から化合物(E)を含む場合は、化合物(E)の含有量は液晶組成物全体の量に対して10~50質量%が好ましく、20~40質量%がより好ましい。化合物(E)を2種類以上含む場合は、その合計量が上記範囲であると好ましい。 When the liquid crystal composition of the present invention contains the compound (E) from the viewpoint of reducing the viscosity of the composition, the content of the compound (E) is 10 to 50% by mass with respect to the total amount of the liquid crystal composition. Is preferable, and 20 to 40% by mass is more preferable. When two or more types of compounds (E) are included, the total amount is preferably in the above range.
 本発明の液晶組成物は、均一なツイスト配向を達成するために、光学活性化合物を添加してもよい。光学活性化合物としては特に制限は無いが、例えば、CN、S-811、CB-15などの名称で市販されている化合物が挙げられる。 In the liquid crystal composition of the present invention, an optically active compound may be added in order to achieve uniform twist alignment. Although there is no restriction | limiting in particular as an optically active compound, For example, the compound marketed by names, such as CN, S-811, CB-15, is mentioned.
 光学活性化合物を添加する場合は、所望のらせんピッチ長が得られるように、添加量を調整する。ピッチ長としては、TFT用やTN用であれば40~200μm、STN用であれば6~20μm、双安定性TN用であれば1.5~4μmの範囲が好ましい。 When adding an optically active compound, the addition amount is adjusted so that a desired helical pitch length can be obtained. The pitch length is preferably in the range of 40 to 200 μm for TFT and TN, 6 to 20 μm for STN, and 1.5 to 4 μm for bistable TN.
 本発明の液晶組成物としては、以下のものを示すことができる。表1の式中の記号は前記と同じ意味を示す。なお、各基の水素原子は、重水素原子で置換されていても構わない。
Figure JPOXMLDOC01-appb-T000042
Examples of the liquid crystal composition of the present invention include the following. The symbols in Table 1 have the same meaning as described above. In addition, the hydrogen atom of each group may be substituted with a deuterium atom.
Figure JPOXMLDOC01-appb-T000042
 さらに、本発明は、前記液晶組成物を液晶層の構成材として用いる液晶電気光学素子を提供する。例えば、本発明の液晶組成物を液晶セル内に注入する等して形成される液晶層を、電極を備える2枚の基板間に挟持して構成される電気光学素子部を有する液晶電気光学素子を提供する。本発明の液晶組成物はパッシブ駆動、アクティブ駆動にかかわらずVAモード、IPSモード、OCBモード等の液晶電気光学素子で好適に用いることができる。中でもOCBモード、VAモードなどの液晶分子を電極に対して垂直に配向させたモードにおいて本発明の液晶組成物は特に有用である。 Furthermore, the present invention provides a liquid crystal electro-optical element that uses the liquid crystal composition as a constituent material of a liquid crystal layer. For example, a liquid crystal electro-optical element having an electro-optical element portion formed by sandwiching a liquid crystal layer formed by, for example, injecting the liquid crystal composition of the present invention into a liquid crystal cell between two substrates having electrodes. I will provide a. The liquid crystal composition of the present invention can be suitably used in liquid crystal electro-optical elements such as VA mode, IPS mode, and OCB mode regardless of passive driving or active driving. Among them, the liquid crystal composition of the present invention is particularly useful in a mode in which liquid crystal molecules such as OCB mode and VA mode are aligned perpendicular to the electrode.
 液晶分子を電極に対して垂直に配向させた代表的な液晶素子としては、VA(vertical alignment)モード液晶素子が挙げられる。このVAモード液晶電気光学素子は、まず、プラスチック、ガラス等の基板上に、必要に応じてSiO2、Al23等のアンダーコート層やカラーフィルター層を形成し、In23-SnO2(ITO)、SnO2等からなる被膜を成膜し、ホトリソグラフィ等により所要のパターンの電極を形成する。次に、必要に応じて、ポリイミド、ポリアミド、SiO2、Al23等のオーバーコート層を形成し、配向処理する。これにシール材を印刷し、電極面が垂直方向あるいは水平方向に相対向するように配して周辺をシールし、シール材を硬化して空セルを形成する。 As a typical liquid crystal element in which liquid crystal molecules are aligned perpendicularly to an electrode, a VA (vertical alignment) mode liquid crystal element can be given. In this VA mode liquid crystal electro-optical element, an undercoat layer such as SiO 2 or Al 2 O 3 or a color filter layer is first formed on a substrate such as plastic or glass as necessary, and In 2 O 3 —SnO. 2 A film made of (ITO), SnO 2 or the like is formed, and an electrode having a required pattern is formed by photolithography or the like. Next, if necessary, an overcoat layer of polyimide, polyamide, SiO 2 , Al 2 O 3 or the like is formed and oriented. A sealing material is printed on this, and it arrange | positions so that an electrode surface may oppose a vertical direction or a horizontal direction, a periphery is sealed, a sealing material is hardened, and an empty cell is formed.
 さらに、空セルに、本発明の組成物を注入し、注入口を封止剤で封止して液晶セルを構成する。この液晶セルに、必要に応じて、偏光板、カラー偏光板、光源、カラーフィルター、半透過反射板、反射板、導光板、紫外線カットフィルター等を積層、文字、図形等を印刷、ノングレア加工等をして液晶電気光学素子を得ることができる。 Further, the composition of the present invention is injected into an empty cell, and the injection port is sealed with a sealant to form a liquid crystal cell. If necessary, this liquid crystal cell is laminated with a polarizing plate, a color polarizing plate, a light source, a color filter, a transflective plate, a reflecting plate, a light guide plate, an ultraviolet cut filter, etc., printing characters, figures, etc., non-glare processing, etc. Thus, a liquid crystal electro-optical element can be obtained.
 なお、上述の説明は、液晶電気光学素子の基本的な構成および製法を説明したものであり、他の構成も採用できる。例えば、液晶滴下法(ODF)により作製された表示素子、2層電極を用いた基板、2層の液晶層を形成した2層液晶セル、反射電極を用いた基板、TFT、MIM等の能動素子を形成したアクティブマトリクス基板を用いたアクティブマトリクス素子等、種々の構成のものが採用できる。特に本発明の組成物は、TFT、MIM等のアクティブマトリクス素子にも好適である。 The above description describes the basic configuration and manufacturing method of the liquid crystal electro-optic element, and other configurations can be adopted. For example, a display element manufactured by a liquid crystal dropping method (ODF), a substrate using a two-layer electrode, a two-layer liquid crystal cell formed with a two-layer liquid crystal layer, a substrate using a reflective electrode, an active element such as a TFT, MIM, etc. Various configurations such as an active matrix element using an active matrix substrate on which are formed can be employed. In particular, the composition of the present invention is also suitable for active matrix devices such as TFT and MIM.
 さらに、本発明の組成物は、前記VA型以外のモード、即ち、横方向の電界で液晶分子を基板に対して平行に駆動させるインプレーンスイッチング(IPS)型液晶素子、多色性色素を用いたゲスト-ホスト(GH)型液晶素子、強誘電性液晶素子等、種々の方式で使用することができる。さらに、本発明の組成物は、電気的に書き込みをする方式だけではなく、熱により書き込みをする方式などにも用いることもできる。 Further, the composition of the present invention uses an in-plane switching (IPS) type liquid crystal element that drives liquid crystal molecules in parallel to the substrate in a mode other than the VA type, that is, a horizontal electric field, and a polychromatic dye. It can be used in various ways such as a guest-host (GH) type liquid crystal element and a ferroelectric liquid crystal element. Furthermore, the composition of the present invention can be used not only for an electric writing method but also for a writing method using heat.
 以下に、実施例を挙げて本発明を更に具体的に説明する。なお以下の例は、本発明を制限することなく、本発明を例示しようとするものである。 Hereinafter, the present invention will be described more specifically with reference to examples. The following examples are intended to illustrate the present invention without limiting the present invention.
 本発明の化合物の相転移点は以下の通り測定した。
[相転移点の測定]
 偏光顕微鏡を備えた融点測定装置のホットプレート上に試料を置き、1℃/minで昇温し、相変化を観察した。また、示差走査熱量計(DSC6220、SIIナノテクノロジー社製)を用い、1℃/minで昇温し、相変化を確認した。Cは結晶相、Nはネマチック相、Iはアイソトロピック相を表す。
 なお、前記の各物性値は、メルク社製液晶組成物「MLC-6608」90質量%と、本発明の化合物10質量%の割合で混合し液晶組成物を調合し、この液晶組成物を用いて、以下の方法で測定した。
[液晶透明点(Tc)の測定]
 偏光顕微鏡を備えた融点測定装置のホットプレート上に液晶組成物を置き、1℃/minで昇温し、相変化を観察し、液晶組成物のTcを測定し、測定値を外挿することで化合物のTcの外挿値を算出した。
[誘電率異方性(Δε)の測定]
 液晶組成物を水平配向及び垂直配向処理がなされた2枚のガラスセル(間隔8μm)の間に封入した。20℃にてこのセルに100mVの電圧を印加して、水平配向されたガラスセルを用いて液晶分子の短軸方向の誘電率(ε⊥)を測定した。同様に垂直配向されたガラスセルを用いて液晶分子の長軸方向の誘電率(ε∥)を測定した。化合物の誘電率異方性(Δε)は式Δε=ε∥-ε⊥から組成物のΔεを求めて、外挿することで求めた。
The phase transition point of the compound of the present invention was measured as follows.
[Measurement of phase transition point]
A sample was placed on a hot plate of a melting point measuring apparatus equipped with a polarizing microscope, heated at 1 ° C./min, and the phase change was observed. In addition, using a differential scanning calorimeter (DSC 6220, manufactured by SII Nanotechnology Co., Ltd.), the temperature was raised at 1 ° C./min to confirm the phase change. C represents a crystalline phase, N represents a nematic phase, and I represents an isotropic phase.
The above physical property values were prepared by mixing 90% by mass of the liquid crystal composition “MLC-6608” manufactured by Merck & Co., Ltd. at a ratio of 10% by mass of the compound of the present invention, and using this liquid crystal composition. The measurement was performed by the following method.
[Measurement of liquid crystal clearing point (Tc)]
Place the liquid crystal composition on a hot plate of a melting point measuring apparatus equipped with a polarizing microscope, raise the temperature at 1 ° C./min, observe the phase change, measure the Tc of the liquid crystal composition, and extrapolate the measured value Was used to calculate the extrapolated value of Tc of the compound.
[Measurement of dielectric anisotropy (Δε)]
The liquid crystal composition was sealed between two glass cells (interval of 8 μm) subjected to horizontal alignment and vertical alignment treatment. A voltage of 100 mV was applied to this cell at 20 ° C., and the dielectric constant (∈⊥) in the minor axis direction of the liquid crystal molecules was measured using a horizontally aligned glass cell. Similarly, the dielectric constant (ε∥) in the major axis direction of liquid crystal molecules was measured using a vertically aligned glass cell. The dielectric anisotropy (Δε) of the compound was determined by obtaining Δε of the composition from the formula Δε = ε∥−ε⊥ and extrapolating.
[参考例1]化合物(7-A)の合成
Figure JPOXMLDOC01-appb-C000043
 アルゴン雰囲気下、50mL二口フラスコに、4-ブロモ-3,3,4,4-テトラフルオロ-1-ブテン(0.24g,1.20mmol)、trans-4-(4-プロピルシクロへキシル)ベンズアルデヒド(0.66g,2.88mmol)、THF(2.5mL)を順次仕込んだ。この反応溶液を-78℃に冷却した後、リチウムブロミドを含まないメチルリチウム(1.0Mエーテル溶液,2.6mL)をゆっくりと滴下し、そのまま-78℃で2時間撹拌した。その後、反応溶液を室温まで昇温した後に、飽和塩化アンモニウム水溶液を加えて反応を停止させた。反応溶液は酢酸エチルで3回抽出し、集めた有機層を飽和塩化ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥した。濾過後、減圧下で溶媒を留去した後、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=5:1)により精製を行い、目的生成物である化合物(7-A)(0.35g,1.06mmol)を得た。収率は88%。
19F NMR (CDCl3,CFCl3)δ=-128.06(dd,J=290.55,20.78Hz,1F),-120.00(dt,J=290.55,5.99Hz,1F),-114.09 (dd,J=278.96,11.19 Hz,1F), -113.06 (dd,J=279.36,11.19Hz,1F)
[Reference Example 1] Synthesis of Compound (7-A)
Figure JPOXMLDOC01-appb-C000043
In a 50 mL two-necked flask under an argon atmosphere, 4-bromo-3,3,4,4-tetrafluoro-1-butene (0.24 g, 1.20 mmol), trans-4- (4-propylcyclohexyl) benzaldehyde ( 0.66 g, 2.88 mmol) and THF (2.5 mL) were sequentially charged. After the reaction solution was cooled to -78 ° C, methyllithium (1.0 M ether solution, 2.6 mL) containing no lithium bromide was slowly added dropwise and stirred at -78 ° C for 2 hours. Then, after heating up a reaction solution to room temperature, saturated ammonium chloride aqueous solution was added and reaction was stopped. The reaction solution was extracted three times with ethyl acetate, and the collected organic layer was washed with a saturated aqueous sodium chloride solution and dried over anhydrous sodium sulfate. After filtration, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 5: 1) to obtain the desired product, compound (7-A) (0.35 g, 1.06 mmol). Got. Yield 88%.
19 F NMR (CDCl 3 , CFCl 3 ) δ = −128.06 (dd, J = 290.55, 20.78 Hz, 1F), -120.00 (dt, J = 290.55, 5.99 Hz, 1F), −114.09 (dd, J = 278.96 , 11.19 Hz, 1F), -113.06 (dd, J = 279.36,11.19Hz, 1F)
[参考例2]化合物(8-A)の合成
Figure JPOXMLDOC01-appb-C000044
 50mLナス型フラスコに、前記と同様にして得た化合物(7-A)(0.24g,0.66mmol)とメタノール(6.6mL)を加え、-78℃に冷却した。その後、反応容器内にオゾンを流しながら、3時間、激しく撹拌した。その後、反応溶液にジメチルスルフィド(2.2mL)を加え、そのまま反応溶液を室温まで昇温させた。減圧下で溶媒を留去した後、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=5:1)により精製を行い、目的生成物である化合物(8-A)(0.22g,0.61mmol)をジアステレオマー混合物として得た。収率は92%。
ジアステレオマー比 =72:28.
Major isomer
19F NMR(CDCl3,CFCl3)δ=-129.27(d,J=246.31Hz,1F),-128.60(dd,J=239.17,12.03Hz,1F),-128.34(d,J=248.95Hz,1F),-120.90~-120.30(m,1F).
Minor isomer
19F NMR(CDCl3,CFCl3)δ=-136.87 (ddd,J=244.06,9.78,4.89Hz,1F),-129.60(d,J=251.58Hz,1F),-126.43(ddd,J=232.02,17.30,12.03Hz,1F),-125.12(dt,J=248.95,9.78 Hz,1F).
[Reference Example 2] Synthesis of Compound (8-A)
Figure JPOXMLDOC01-appb-C000044
To a 50 mL eggplant-shaped flask, the compound (7-A) (0.24 g, 0.66 mmol) obtained in the same manner as above and methanol (6.6 mL) were added and cooled to -78 ° C. Thereafter, the mixture was vigorously stirred for 3 hours while flowing ozone into the reaction vessel. Thereafter, dimethyl sulfide (2.2 mL) was added to the reaction solution, and the reaction solution was allowed to warm to room temperature. After distilling off the solvent under reduced pressure, the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 5: 1), and the target product compound (8-A) (0.22 g, 0.61 mmol) was diastereomerized. Obtained as a mer mixture. Yield 92%.
Diastereomeric ratio = 72: 28.
Major isomer
19 F NMR (CDCl 3 , CFCl 3 ) δ = −129.27 (d, J = 246.31 Hz, 1F), −128.60 (dd, J = 239.17, 12.03 Hz, 1F), −128.34 (d, J = 248.95 Hz, 1F), -120.90 to -120.30 (m, 1F).
Minor isomer
19 F NMR (CDCl 3 , CFCl 3 ) δ = −136.87 (ddd, J = 244.06, 9.78, 4.89 Hz, 1F), −129.60 (d, J = 251.58 Hz, 1F), −126.43 (ddd, J = 232.02 , 17.30, 12.03 Hz, 1F), -125.12 (dt, J = 248.95, 9.78 Hz, 1F).
[参考例3]化合物(10-A)の合成
Figure JPOXMLDOC01-appb-C000045
 アルゴン雰囲気下の50mL二口フラスコに、前記と同様にして得た化合物(8-A)(0.21g,0.58mmol)、THF(1.3mL)を仕込んだ。この反応溶液に、室温で、エチルマグネシウムブロミド(THF溶液)(1.2mol/L,3.1mL,3.72mmol)を滴下し、その後14時間撹拌した。反応を飽和塩化アンモニウム水溶液で停止させ、有機層を分液した。水層はジエチルエーテルで3回洗浄し、集めた有機層を飽和塩化ナトリウム水溶液で洗浄した後、無水硫酸ナトリウムで乾燥させた。濾過後、減圧下にて溶媒を留去し、得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=3:1)により精製を行い、目的生成物である化合物(10-A) (0.19g, 0.49mmol) をジアステレオマー混合物として得た。収率は80%。
ジアステレオマー比 = 73 : 27.
Major isomer
19F NMR(CDCl3,CFCl3)δ=-128.10(dd,J=276.02, 19.55Hz, 1F), -128.45~-127.64(m, 1F), -119.49 (dd, J=275.64, 7.52Hz, 1F), -117.36 (d, J=267.18Hz, 1F).
Minor isomer
19F NMR (CDCl3, CFCl3)δ=-130.20 ~ -129.38 (m, 1F), -130.00 ~ -129.28 (m, 1F), -122.01 (d, J=273.39Hz, 1F), -118.07 (d, J=268.50Hz, 1F).
[Reference Example 3] Synthesis of Compound (10-A)
Figure JPOXMLDOC01-appb-C000045
A 50 mL two-necked flask under an argon atmosphere was charged with the compound (8-A) (0.21 g, 0.58 mmol) obtained in the same manner as above and THF (1.3 mL). To this reaction solution, ethylmagnesium bromide (THF solution) (1.2 mol / L, 3.1 mL, 3.72 mmol) was added dropwise at room temperature, followed by stirring for 14 hours. The reaction was stopped with a saturated aqueous ammonium chloride solution, and the organic layer was separated. The aqueous layer was washed three times with diethyl ether, and the collected organic layer was washed with a saturated aqueous sodium chloride solution and then dried over anhydrous sodium sulfate. After filtration, the solvent was distilled off under reduced pressure, and the resulting crude product was purified by silica gel column chromatography (hexane: ethyl acetate = 3: 1) to obtain the desired product, compound (10-A) (0.19 g, 0.49 mmol) was obtained as a mixture of diastereomers. Yield 80%.
Diastereomeric ratio = 73: 27.
Major isomer
19 F NMR (CDCl 3 , CFCl 3 ) δ = −128.10 (dd, J = 276.02, 19.55 Hz, 1F), −128.45 to −127.64 (m, 1F), −119.49 (dd, J = 275.64, 7.52 Hz, 1F), -117.36 (d, J = 267.18Hz, 1F).
Minor isomer
19 F NMR (CDCl 3 , CFCl 3 ) δ = -130.20 to -129.38 (m, 1F), -130.00 to -129.28 (m, 1F), -122.01 (d, J = 273.39Hz, 1F), -118.07 ( d, J = 268.50Hz, 1F).
[参考例4]化合物(11-A)の合成
Figure JPOXMLDOC01-appb-C000046
 前記と同様にして得た化合物(10-A)(0.890g, 2.3mmol)をニトロメタン(11.5mL)に溶解させた。この反応溶液に2-ヨードベンゼンスルホン酸ナトリウム(0.15g, 0.46mmol)とOxone(R)(2KHSO5・KHSO4・K2SO4, 2.55g, 4.14mmol)を加え、反応溶液を110 ℃に加熱し、24時間攪拌させた。反応溶液を室温まで冷却後、濾過し、その後、減圧下で溶媒を留去した。粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=10:1)により精製を行い、目的生成物である化合物(11-A)(0.64g, 1.68mmol)を得た。収率は73%。
19F NMR (CDCl3, CFCl3)δ=-122.45 (s, 2F), -112.56 (s, 2F).
[Reference Example 4] Synthesis of Compound (11-A)
Figure JPOXMLDOC01-appb-C000046
Compound (10-A) (0.890 g, 2.3 mmol) obtained in the same manner as above was dissolved in nitromethane (11.5 mL). To this reaction solution was added sodium 2-iodobenzenesulfonate (0.15 g, 0.46 mmol) and Oxone (R) (2KHSO 5 · KHSO 4 · K 2 SO 4 , 2.55 g, 4.14 mmol), and the reaction solution was brought to 110 ° C. Heated and allowed to stir for 24 hours. The reaction solution was cooled to room temperature and filtered, and then the solvent was distilled off under reduced pressure. The crude product was purified by silica gel column chromatography (hexane: ethyl acetate = 10: 1) to obtain the desired product compound (11-A) (0.64 g, 1.68 mmol). Yield 73%.
19 F NMR (CDCl 3, CFCl 3 ) δ = -122.45 (s, 2F), -112.56 (s, 2F).
[実施例1]化合物(2-A)の合成
Figure JPOXMLDOC01-appb-C000047
 アルゴン雰囲気下の100mL二口フラスコに、前記と同様にして得た化合物(11-A)(2.83g, 7.30mmol)とTHF (14.6mL)を仕込んだ。この反応溶液に、室温で、ビニルマグネシウムクロリド(THF溶液、2.1mol/L, 15.0mL, 31.5mmol)を滴下し、その後、14時間、加熱還流した。反応溶液を室温まで冷却し、反応を飽和塩化アンモニウム水溶液で停止させた。この反応溶液をジエチルエーテルで3回抽出した後、集めた有機層を飽和塩化ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥させた。濾過後、減圧下で溶媒を留去した後、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=3:2)により精製を行い、化合物(2-A) (3.18g, 7.19mmol)をジアステレオマー混合物として得た。収率は98%。
ジアステレオマー比 = 63 : 37.
Major isomer
19F NMR (CDCl3, CFCl3)δ=-118.56 (d, J=276.02Hz, 1F), -117.50 (d, J=275.64Hz, 1F), -115.03 (d, J=278.28 Hz, 1F), -114.06 (dt, J=278.28, 87.81 Hz, 1F).
Minor isomer
19F NMR (CDCl3, CFCl3)δ=-118.16 ~ -117.42 (m, 1F), -115.95 ~ -115.20 (m, 1F),-115.28 ~ -114.51 (m, 1F),-113.83 ~ -113.06 (m, 1F),
[Example 1] Synthesis of compound (2-A)
Figure JPOXMLDOC01-appb-C000047
A 100 mL two-necked flask under an argon atmosphere was charged with the compound (11-A) (2.83 g, 7.30 mmol) obtained as described above and THF (14.6 mL). To this reaction solution, vinylmagnesium chloride (THF solution, 2.1 mol / L, 15.0 mL, 31.5 mmol) was added dropwise at room temperature, and then heated to reflux for 14 hours. The reaction solution was cooled to room temperature and the reaction was quenched with saturated aqueous ammonium chloride. The reaction solution was extracted three times with diethyl ether, and the collected organic layer was washed with a saturated aqueous sodium chloride solution and dried over anhydrous sodium sulfate. After filtration, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 3: 2) to give compound (2-A) (3.18 g, 7.19 mmol) as a diastereomeric mixture. Got as. The yield is 98%.
Diastereomeric ratio = 63:37.
Major isomer
19 F NMR (CDCl 3 , CFCl 3 ) δ = -118.56 (d, J = 276.02Hz, 1F), -117.50 (d, J = 275.64Hz, 1F), -115.03 (d, J = 278.28 Hz, 1F) , -114.06 (dt, J = 278.28, 87.81 Hz, 1F).
Minor isomer
19 F NMR (CDCl 3 , CFCl 3 ) δ = -118.16 to -117.42 (m, 1F), -115.95 to -115.20 (m, 1F), -115.28 to -114.51 (m, 1F),-113.83 to -113.06 (m, 1F),
[実施例2]化合物(3-A)の合成
Figure JPOXMLDOC01-appb-C000048
 アルゴン雰囲気下の50mL二口フラスコに、前記と同様にして得た化合物(2-A) (0.438g, 0.99mmol)と塩化メチレンを仕込んだ。続いて、第2世代グラブス触媒(0.084g, 0.10mmol)を加え、還流温度で2日間撹拌した。反応溶液を室温まで冷却した後、反応溶液をシリカゲルに通した。得られた濾液を減圧下で濃縮し、再度、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=2:1)により精製を行い、化合物(3-A)(0.347g, 0.84mmol)をジアステレオマー混合物として得た。収率は85%。
ジアステレオマー比 = 63 : 37.
Major isomer
19F NMR (CDCl3, CFCl3)δ=-118.49 (dd, J=263.61, 17.30Hz, 1F), -122.55 (dd, J=265.87, 19.55HZ, 1F), -129.40 (dd, J=266.24, 14.67Hz, 1F), -130.73 (dd, J=265.87, 16.92Hz, 1F).
Minor isomer
19F NMR (CDCl3, CFCl3)δ=-132.43 ~ -131.70 (m, 1F), -130.27 ~ -129.56 (m, 1F), -124.09 ~ -123.39 (m, 1F), -117.49 ~ -116.77 (m, 1F).
[Example 2] Synthesis of compound (3-A)
Figure JPOXMLDOC01-appb-C000048
A 50 mL two-necked flask under an argon atmosphere was charged with the compound (2-A) (0.438 g, 0.99 mmol) obtained in the same manner as above and methylene chloride. Subsequently, second generation Grubbs catalyst (0.084 g, 0.10 mmol) was added and stirred at reflux temperature for 2 days. After the reaction solution was cooled to room temperature, the reaction solution was passed through silica gel. The obtained filtrate was concentrated under reduced pressure, and purified again by silica gel column chromatography (hexane: ethyl acetate = 2: 1) to give compound (3-A) (0.347 g, 0.84 mmol) as a diastereomeric mixture. Got as. Yield 85%.
Diastereomeric ratio = 63:37.
Major isomer
19 F NMR (CDCl 3 , CFCl 3 ) δ = -118.49 (dd, J = 263.61, 17.30Hz, 1F), -122.55 (dd, J = 265.87, 19.55HZ, 1F), -129.40 (dd, J = 266.24 , 14.67Hz, 1F), -130.73 (dd, J = 265.87, 16.92Hz, 1F).
Minor isomer
19 F NMR (CDCl 3 , CFCl 3 ) δ = -132.43 to -131.70 (m, 1F), -130.27 to -129.56 (m, 1F), -124.09 to -123.39 (m, 1F), -117.49 to -116.77 (m, 1F).
[実施例3]化合物(4-A)の合成
Figure JPOXMLDOC01-appb-C000049
 アルゴン雰囲気下の50mL二口フラスコに、パラジウムカーボン(10%, 0.090g, 0.07mmol)、メタノール(3.5mL)、前記と同様にして得た化合物(3-A) (0.295g, 0.71mmol)を仕込んだ。反応容器内を水素で置換し、室温で24時間撹拌させた。その後、反応溶液をシリカゲルに通し、濾液を、減圧下、濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=2:1)により精製を行い、化合物(4-A)(0.292g, 0.70mmol)をジアステレオマー混合物として得た。収率は99%。
ジアステレオマー比 = 63 : 37.
Major isomer
19F NMR (CDCl3, CFCl3)δ=-130.65 (dd, J=266.24, 16.92Hz, 1F), -129.22 (dd, J=265.87, 19.55Hz, 1F), -123.45 (dd, J=265.87, 19.55Hz, 1F), -119.37 (dd, J=268.50, 16.92Hz, 1F).
Minor isomer
19F NMR (CDCl3, CFCl3)δ=-135.12 ~ -133.40 (m, 1F), -132.40 ~ -131.28 (m, 1F), -116.80 ~ -115.47 (m, 1F), -112.83 ~ -111.58 (m, 1F).
[Example 3] Synthesis of compound (4-A)
Figure JPOXMLDOC01-appb-C000049
In a 50 mL two-necked flask under an argon atmosphere, palladium carbon (10%, 0.090 g, 0.07 mmol), methanol (3.5 mL), and the compound (3-A) (0.295 g, 0.71 mmol) obtained in the same manner as above were added. Prepared. The inside of the reaction vessel was replaced with hydrogen and stirred at room temperature for 24 hours. Thereafter, the reaction solution was passed through silica gel, and the filtrate was concentrated under reduced pressure. The obtained crude product was purified by silica gel column chromatography (hexane: ethyl acetate = 2: 1) to obtain compound (4-A) (0.292 g, 0.70 mmol) as a mixture of diastereomers. Yield 99%.
Diastereomeric ratio = 63:37.
Major isomer
19 F NMR (CDCl 3, CFCl 3 ) δ = -130.65 (dd, J = 266.24, 16.92Hz, 1F), -129.22 (dd, J = 265.87, 19.55Hz, 1F), -123.45 (dd, J = 265.87 , 19.55Hz, 1F), -119.37 (dd, J = 268.50, 16.92Hz, 1F).
Minor isomer
19 F NMR (CDCl 3, CFCl 3 ) δ = -135.12 to -133.40 (m, 1F), -132.40 to -131.28 (m, 1F), -116.80 to -115.47 (m, 1F), -112.83 to -111.58 (m, 1F).
[実施例4]化合物(1-A)の合成
Figure JPOXMLDOC01-appb-C000050
 アルゴン雰囲気下の50mL二口フラスコに、前記と同様にして得た化合物(4-A) (0.12g, 0.29mmol)とピリジン(8.6mL)を仕込んだ。その後室温で、オキシ塩化リン(2.86mmol, 0.27mL)を滴下し、反応溶液を90℃まで昇温させ、24時間撹拌させた。再び、反応溶液を室温まで冷却し、飽和塩化アンモニウム水溶液を加えて反応を停止させた。反応溶液は酢酸エチルで3回抽出した。集めた有機層を飽和塩化ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥した。濾過後、減圧下で溶媒を留去した後、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=10:1)により精製を行い、目的生成物である化合物(1-A) (0.080g, 0.21mmol)を得た(収率73%)。
19F NMR (CDCl3, CFCl3)δ=-122.30 ~ -122.28 (m, 2F), -126.67 ~ -126.651 (m, 2F).
相転移温度 C 105.9℃ N 109.9℃ I
本化合物のTcは79.4℃、Δεは -6.21であった。Δεが負であったことから、本発明の5,5,6,6-テトラフルオロ-1,3-シクロヘキサジエン-1,4-ジイル基はΔεが負の機能発現環構造であることが確認できた。
Example 4 Synthesis of Compound (1-A)
Figure JPOXMLDOC01-appb-C000050
A 50 mL two-necked flask under an argon atmosphere was charged with the compound (4-A) (0.12 g, 0.29 mmol) obtained as described above and pyridine (8.6 mL). Thereafter, phosphorus oxychloride (2.86 mmol, 0.27 mL) was added dropwise at room temperature, and the reaction solution was heated to 90 ° C. and stirred for 24 hours. Again, the reaction solution was cooled to room temperature, and saturated ammonium chloride aqueous solution was added to stop the reaction. The reaction solution was extracted with ethyl acetate three times. The collected organic layer was washed with a saturated aqueous sodium chloride solution and dried over anhydrous sodium sulfate. After filtration, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 10: 1) to obtain the target product compound (1-A) (0.080 g, 0.21 mmol) Was obtained (yield 73%).
19 F NMR (CDCl 3, CFCl 3 ) δ = -122.30 to -122.28 (m, 2F), -126.67 to -126.651 (m, 2F).
Phase transition temperature C 105.9 ° C N 109.9 ° C I
This compound had Tc of 79.4 ° C. and Δε of −6.21. Since Δε was negative, it was confirmed that the 5,5,6,6-tetrafluoro-1,3-cyclohexadiene-1,4-diyl group of the present invention is a ring structure with a negative function of Δε. did it.
[参考例5]化合物(7-B)の合成
Figure JPOXMLDOC01-appb-C000051
 参考例1においてtrans-4-(4-プロピルシクロへキシル)ベンズアルデヒドの代わりに4-エチルベンズアルデヒドを用いた以外は参考例1と同様の方法で化合物(7-B)を合成した(収率91%)。
19F NMR (CDCl3, CFCl3)δ=-127.89 (dd, J=273.39, 17.30Hz, 1F), -120.13(dt, J=273.39, 7.14Hz, 1F), -114.01 (dd, J=263.61, 12.03Hz, 1F), -113.04 (dd, J=263.61, 12.41Hz, 1F).
[Reference Example 5] Synthesis of Compound (7-B)
Figure JPOXMLDOC01-appb-C000051
Compound (7-B) was synthesized in the same manner as in Reference Example 1 except that 4-ethylbenzaldehyde was used instead of trans-4- (4-propylcyclohexyl) benzaldehyde in Reference Example 1 (yield 91 %).
19 F NMR (CDCl 3 , CFCl 3 ) δ = -127.89 (dd, J = 273.39, 17.30Hz, 1F), -120.13 (dt, J = 273.39, 7.14Hz, 1F), -114.01 (dd, J = 263.61 , 12.03Hz, 1F), -113.04 (dd, J = 263.61, 12.41Hz, 1F).
[参考例6]化合物(8-B)の合成
Figure JPOXMLDOC01-appb-C000052
 原料に前記と同様にして得た化合物(7-B)を用い、参考例2と同様な方法で化合物(8-B)を合成した(収率71%)。
ジアステレオマー比 = 96 : 4.
Major isomer
19F NMR (CDCl3, CFCl3)δ=-129.34 (dd, J=246.31, 7.52Hz, 1F), -128.98 ~ -128.32 (m, 1F), -128.741 ~ -128.053 (m, 1F), -120.57 (dt, J=239.17, 9.78Hz, 1F).
Minor isomer
19F NMR (CDCl3, CFCl3)δ=-137.25 ~ -136.00 (m, 1F), -128.98 ~ -128.32 (m, 1F),-127.00 ~-124.82 (m, 2F).
[Reference Example 6] Synthesis of Compound (8-B)
Figure JPOXMLDOC01-appb-C000052
Compound (8-B) was synthesized in the same manner as in Reference Example 2 using Compound (7-B) obtained in the same manner as described above (yield 71%).
Diastereomeric ratio = 96: 4.
Major isomer
19 F NMR (CDCl 3 , CFCl 3 ) δ = -129.34 (dd, J = 246.31, 7.52Hz, 1F), -128.98 to -128.32 (m, 1F), -128.741 to -128.053 (m, 1F),- 120.57 (dt, J = 239.17, 9.78Hz, 1F).
Minor isomer
19 F NMR (CDCl 3 , CFCl 3 ) δ = -137.25 to -136.00 (m, 1F), -128.98 to -128.32 (m, 1F), -127.00 to -124.82 (m, 2F).
[参考例7]化合物(10-B)の合成
Figure JPOXMLDOC01-appb-C000053
 原料に前記と同様にして得た化合物(8-B)を用い、エチルマグネシウムブロミドの代わりに4-プロピルフェニルマグネシウムブロミドを用いた以外は参考例3と同様な方法で化合物(10-B)を合成した(収率95%)。
ジアステレオマー比=95 : 5.
Major isomer
19F NMR (CDCl3, CFCl3)δ=-128.176 ~ -128.092 (m, 1F), -127.443 ~ -127.365 (m, 1F), -117.294 (s, 1F), -116.567 (s, 1F).
Minor isomer
19F NMR (CDCl3, CFCl3)δ=-129.93 ~ -116.95 (m, 4F).
[Reference Example 7] Synthesis of Compound (10-B)
Figure JPOXMLDOC01-appb-C000053
Compound (10-B) was prepared in the same manner as in Reference Example 3 except that compound (8-B) obtained in the same manner as described above was used as the starting material, and 4-propylphenylmagnesium bromide was used instead of ethylmagnesium bromide. Synthesized (yield 95%).
Diastereomeric ratio = 95: 5.
Major isomer
19 F NMR (CDCl 3 , CFCl 3 ) δ = -128.176 to -128.092 (m, 1F), -127.443 to -127.365 (m, 1F), -117.294 (s, 1F), -116.567 (s, 1F).
Minor isomer
19 F NMR (CDCl 3 , CFCl 3 ) δ = -129.93 to -116.95 (m, 4F).
[参考例8]化合物(11-B)の合成
Figure JPOXMLDOC01-appb-C000054
 原料に前記と同様にして得た化合物(10-B)を用い、参考例4と同様な方法で化合物(11-B)を合成した(収率67%)。
19F NMR (CDCl3, CFCl3)δ=-113.36 (d, J=12.41, 4F).
[Reference Example 8] Synthesis of Compound (11-B)
Figure JPOXMLDOC01-appb-C000054
Compound (11-B) was synthesized in the same manner as in Reference Example 4 using compound (10-B) obtained in the same manner as described above (yield 67%).
19 F NMR (CDCl 3 , CFCl 3 ) δ = -113.36 (d, J = 12.41, 4F).
[実施例5]化合物(2-B)の合成
Figure JPOXMLDOC01-appb-C000055
 原料に前記と同様にして得た化合物(11-B)を用い、実施例1と同様な方法で化合物(2-B)を合成した(収率97%)。
ジアステレオマー比 = 74 : 26.
Major isomer
19F NMR (CDCl3, CFCl3)δ=-112.33 (d, J=277.90, 2F), -113.75 (d, J=280.53, 2F)
Minor isomer
19F NMR (CDCl3, CFCl3)δ=-112.38 (d, J=273.39, 2F), -113.98 (d, J=273.39, 2F)
[Example 5] Synthesis of compound (2-B)
Figure JPOXMLDOC01-appb-C000055
The compound (2-B) was synthesized in the same manner as in Example 1 using the compound (11-B) obtained in the same manner as described above as the raw material (yield 97%).
Diastereomeric ratio = 74: 26.
Major isomer
19 F NMR (CDCl 3 , CFCl 3 ) δ = -112.33 (d, J = 277.90, 2F), -113.75 (d, J = 280.53, 2F)
Minor isomer
19 F NMR (CDCl 3 , CFCl 3 ) δ = -112.38 (d, J = 273.39, 2F), -113.98 (d, J = 273.39, 2F)
[実施例6]化合物(3-B)の合成
Figure JPOXMLDOC01-appb-C000056
 原料に前記と同様にして得た化合物(2-B)を用い、実施例2と同様な方法で化合物(3-B)を合成した(収率57%)。
ジアステレオマー比=100 : 00.
19F NMR (CDCl3, CFCl3)δ=-120.95 ~ -120.84 (m, 2F), -126.41 ~ -125.55 (m, 2F)
[Example 6] Synthesis of compound (3-B)
Figure JPOXMLDOC01-appb-C000056
The compound (3-B) was synthesized in the same manner as in Example 2 using the compound (2-B) obtained in the same manner as described above as the raw material (yield 57%).
Diastereomeric ratio = 100: 00.
19 F NMR (CDCl 3 , CFCl 3 ) δ = -120.95 to -120.84 (m, 2F), -126.41 to -125.55 (m, 2F)
[実施例7]化合物(4-B)の合成
Figure JPOXMLDOC01-appb-C000057
 原料に前記と同様にして得た化合物(3-B)を用い、実施例3と同様な方法で化合物(4-B)を合成した(収率74%)。
1H NMR (CFCl3)δ1.00 (t, J=7.59Hz, 3H), 1.29 (t, J=7.19Hz, 3H), 1.70 (sext.,J=7.59Hz, 2H), 2.32-2.38 (m, 2H), 2.57-2.71 (m, 2H), 2.57-2.63 (m, 2H), 2.63 (q, J=7.59Hz, 2H), 2.71 (q, J=7.59Hz, 2H), 7.24-7.30 (m, 4H), 7.55-7.558 (m, 4H).
[Example 7] Synthesis of compound (4-B)
Figure JPOXMLDOC01-appb-C000057
The compound (4-B) was synthesized in the same manner as in Example 3 using the compound (3-B) obtained in the same manner as described above as the raw material (yield 74%).
1 H NMR (CFCl 3 ) δ1.00 (t, J = 7.59 Hz, 3H), 1.29 (t, J = 7.19 Hz, 3H), 1.70 (sext., J = 7.59 Hz, 2H), 2.32-2.38 ( m, 2H), 2.57-2.71 (m, 2H), 2.57-2.63 (m, 2H), 2.63 (q, J = 7.59Hz, 2H), 2.71 (q, J = 7.59Hz, 2H), 7.24-7.30 (m, 4H), 7.55-7.558 (m, 4H).
[実施例8]化合物(1-B)の合成
Figure JPOXMLDOC01-appb-C000058
 原料に前記と同様にして得た化合物(4-B)を用い、実施例4と同様な方法で化合物(1-B)を合成した(収率100%)。
19F NMR (CDCl3, CFCl3)δ=-121.62 (s, 4F).
相転移温度 C 80.4℃ I
本化合物のTcは52.3℃、Δεは -5.8 であった。
[Example 8] Synthesis of compound (1-B)
Figure JPOXMLDOC01-appb-C000058
Compound (1-B) was synthesized in the same manner as in Example 4 using compound (4-B) obtained in the same manner as described above as the raw material (yield 100%).
19 F NMR (CDCl 3 , CFCl 3 ) δ = -121.62 (s, 4F).
Phase transition temperature C 80.4 ° C I
Tc of this compound was 52.3 ° C. and Δε was −5.8.
 本発明のΔε負の機能発現環構造である5,5,6,6-テトラフルオロ-1,3-シクロヘキサジエン-1,4-ジイル基を有する化合物(1-B)のΔεと、現在、最もよく用いられているΔε負の機能発現環構造である2,3-ジフルオロフェニル-1,4-ジイル基を有する化合物(C1)のΔεを比較した(表2)。
Figure JPOXMLDOC01-appb-T000059
 化合物(C1)に比べ、化合物(1-B)の方が負に大きなΔεを示した。この結果より、本発明のΔε負の機能発現環構造である5,5,6,6-テトラフルオロ-1,3-シクロヘキサジエン-1,4-ジイル基が強力なΔε負の機能発現環構造であることが確認できた。
Δε of the compound (1-B) having a 5,5,6,6-tetrafluoro-1,3-cyclohexadiene-1,4-diyl group which is a Δε negative function-expressing ring structure of the present invention, The Δε of the compound (C1) having a 2,3-difluorophenyl-1,4-diyl group, which is the most commonly used Δε negative function expression ring structure, was compared (Table 2).
Figure JPOXMLDOC01-appb-T000059
Compared with the compound (C1), the compound (1-B) showed a larger negative Δε. From this result, the Δε-negative function-expressing ring structure of the present invention, which is a strong Δε-negative function-expressing ring structure, is a 5,5,6,6-tetrafluoro-1,3-cyclohexadiene-1,4-diyl group. It was confirmed that.
[参考例9]化合物(7-C)の合成
Figure JPOXMLDOC01-appb-C000060
 参考例1においてtrans-4-(4-プロピルシクロへキシル)ベンズアルデヒドの代わりに4-(4-プロピルフェニル)ベンズアルデヒドを用いた以外は参考例1と同様の方法で化合物(7-C)を合成した(収率87%)。
19F NMR (CDCl3, CFCl3)δ=-128.42 (dd, J=275.64, 17.30Hz, 1F), -119.53(d, J=275.64Hz, 1F), -114.40 (dd, J=265.87, 12.41Hz, 1F), -112.71 (dd, J=263.61, 12.41Hz, 1F).
[Reference Example 9] Synthesis of Compound (7-C)
Figure JPOXMLDOC01-appb-C000060
Compound (7-C) was synthesized in the same manner as in Reference Example 1 except that 4- (4-propylphenyl) benzaldehyde was used instead of trans-4- (4-propylcyclohexyl) benzaldehyde in Reference Example 1. (Yield 87%).
19 F NMR (CDCl 3 , CFCl 3 ) δ = -128.42 (dd, J = 275.64, 17.30Hz, 1F), -119.53 (d, J = 275.64Hz, 1F), -114.40 (dd, J = 265.87, 12.41 Hz, 1F), -112.71 (dd, J = 263.61, 12.41Hz, 1F).
[参考例10]化合物(8-C)の合成
Figure JPOXMLDOC01-appb-C000061
 原料に前記と同様にして得た化合物(7-C)を用い、参考例2と同様な方法で化合物(8-C)を合成した(収率92%)。
ジアステレオマー比 = 71 : 29.
Major isomer
19F NMR (CDCl3, CFCl3)δ=-118.10 (d, J=236.53, 1F), -129.00 ~ -124.00 (m, 3H).
Minor isomer
19F NMR (CDCl3, CFCl3)δ=-136.41 ~ -114.32 (m, 4F).
[Reference Example 10] Synthesis of Compound (8-C)
Figure JPOXMLDOC01-appb-C000061
The compound (8-C) was synthesized in the same manner as in Reference Example 2 using the compound (7-C) obtained in the same manner as above as the raw material (yield 92%).
Diastereomeric ratio = 71: 29.
Major isomer
19 F NMR (CDCl 3 , CFCl 3 ) δ = -118.10 (d, J = 236.53, 1F), -129.00 to -124.00 (m, 3H).
Minor isomer
19 F NMR (CDCl 3 , CFCl 3 ) δ = -136.41 to -114.32 (m, 4F).
[参考例11]化合物(10-C)の合成
Figure JPOXMLDOC01-appb-C000062
 原料に前記と同様にして得た化合物(8-C)を用い、参考例3と同様な方法で化合物(10-C)を合成した(収率86%)。
ジアステレオマー比 = 92 : 8.
Major isomer
19F NMR (CDCl3, CFCl3)δ=-117.10 (d, J=275.64, 1F), -119.59 ~ -118.85 (m, 1F), -127.73 ~ -127.14 (m, 1F), -127.94 ~ -127.88 (m, 1F).
Minor isomer
19F NMR (CDCl3, CFCl3)δ=-118.124 ~ -117.391 (m, 1F), -121.69 (d, J=273.39, 1F), -130.110 ~ -129.31 (m, 2F).
[Reference Example 11] Synthesis of Compound (10-C)
Figure JPOXMLDOC01-appb-C000062
Compound (10-C) was synthesized in the same manner as in Reference Example 3 using compound (8-C) obtained in the same manner as described above (yield 86%).
Diastereomeric ratio = 92: 8.
Major isomer
19 F NMR (CDCl 3 , CFCl 3 ) δ = -117.10 (d, J = 275.64, 1F), -119.59 to -118.85 (m, 1F), -127.73 to -127.14 (m, 1F), -127.94 to- 127.88 (m, 1F).
Minor isomer
19 F NMR (CDCl 3 , CFCl 3 ) δ = -118.124 to -117.391 (m, 1F), -121.69 (d, J = 273.39, 1F), -130.110 to -129.31 (m, 2F).
[参考例12]化合物(11-C)の合成
Figure JPOXMLDOC01-appb-C000063
 原料に前記と同様にして得た化合物(10-C)を用い、参考例4と同様な方法で化合物(11-C)を合成した(収率81%)。
19F NMR (CDCl3, CFCl3)δ=-122.74 (s, 2F), -112.28 (s, 2F).
[Reference Example 12] Synthesis of Compound (11-C)
Figure JPOXMLDOC01-appb-C000063
The compound (11-C) was synthesized in the same manner as in Reference Example 4 using the compound (10-C) obtained in the same manner as described above (yield 81%).
19 F NMR (CDCl 3 , CFCl 3 ) δ = -122.74 (s, 2F), -112.28 (s, 2F).
[実施例9]化合物(2-C)の合成
 原料に前記と同様にして得た化合物(11-C)を用い、実施例1と同様な方法で化合物(2-C)を合成した(収率57%)。
Figure JPOXMLDOC01-appb-C000064
ジアステレオマー比 = 55 : 45.
Major isomer
19F NMR (CDCl3, CFCl3)δ=-118.44 (d, J=278.28Hz, 1F), -117.41 (d, J=275.64Hz, 1F), -114.80 (d, J=278.28Hz, 1F), -114.172 ~-113.420 (m, 1F).
Minor isomer
19F NMR (CDCl3, CFCl3)δ=-117.69 (dd, J=287.68, 9.78Hz, 1F), -115.65 (dd, J=280.05, 7.14Hz, 1F), -114.64 (dd, J=280.53, 9.78Hz, 1F), -113.35 (dd, J=278.28, 7.14, 1F)
Example 9 Synthesis of Compound (2-C) Compound (2-C) was synthesized in the same manner as in Example 1 except that compound (11-C) obtained in the same manner as described above was used as a raw material. Rate 57%).
Figure JPOXMLDOC01-appb-C000064
Diastereomeric ratio = 55:45.
Major isomer
19 F NMR (CDCl 3 , CFCl 3 ) δ = -118.44 (d, J = 278.28Hz, 1F), -117.41 (d, J = 275.64Hz, 1F), -114.80 (d, J = 278.28Hz, 1F) , -114.172 to -113.420 (m, 1F).
Minor isomer
19 F NMR (CDCl 3 , CFCl 3 ) δ = -117.69 (dd, J = 287.68, 9.78Hz, 1F), -115.65 (dd, J = 280.05, 7.14Hz, 1F), -114.64 (dd, J = 280.53 , 9.78Hz, 1F), -113.35 (dd, J = 278.28, 7.14, 1F)
[実施例10]化合物(3-C)の合成
Figure JPOXMLDOC01-appb-C000065
 原料に前記と同様にして得た化合物(2-C)を用い、実施例2と同様な方法で化合物(3-C)(収率70%)。
19F NMR (CDCl3, CFCl3)δ=-130.44 (dd, J=268.50, 19.55Hz, 1F), -128.97 (dd, J=266.24, 19.55Hz, 1F), -123.56 (dd, J=268.50, 19.55Hz, 1F), -119.53 (dd, J=265.87, 16.92Hz, 1F).
[Example 10] Synthesis of compound (3-C)
Figure JPOXMLDOC01-appb-C000065
Compound (3-C) (yield 70%) was obtained in the same manner as in Example 2, using compound (2-C) obtained in the same manner as described above as the starting material.
19 F NMR (CDCl 3 , CFCl 3 ) δ = -130.44 (dd, J = 268.50, 19.55Hz, 1F), -128.97 (dd, J = 266.24, 19.55Hz, 1F), -123.56 (dd, J = 268.50 , 19.55Hz, 1F), -119.53 (dd, J = 265.87, 16.92Hz, 1F).
[実施例11]化合物(4-C)の合成
Figure JPOXMLDOC01-appb-C000066
 原料に前記と同様にして得た化合物(3-C)を用い、実施例3と同様な方法で化合物(4-C)を合成した(収率89%)。
19F NMR (CDCl3, CFCl3)δ=-135.17 ~ -112.86 (m, 4F).
[Example 11] Synthesis of compound (4-C)
Figure JPOXMLDOC01-appb-C000066
The compound (4-C) was synthesized in the same manner as in Example 3 using the compound (3-C) obtained in the same manner as described above (yield 89%).
19 F NMR (CDCl 3 , CFCl 3 ) δ = -135.17 to -112.86 (m, 4F).
[実施例12]化合物(1-C)の合成
Figure JPOXMLDOC01-appb-C000067
 原料に前記と同様にして得た化合物(4-C)を用い、実施例4と同様な方法で化合物(1-C)を合成した(収率46%)。
19F NMR (CDCl3, CFCl3)δ=-122.24 ~ -122.23 (m, 2F), -126.58 ~ -126.57 (m, 2F).
相転移温度 C 105.9℃ N 109.9℃ I
本化合物のTcは89.4℃、Δεは-6.2であった。
[Example 12] Synthesis of compound (1-C)
Figure JPOXMLDOC01-appb-C000067
Compound (1-C) was synthesized in the same manner as in Example 4 using Compound (4-C) obtained in the same manner as described above as the starting material (yield 46%).
19 F NMR (CDCl 3 , CFCl 3 ) δ = -122.24 to -122.23 (m, 2F), -126.58 to -126.57 (m, 2F).
Phase transition temperature C 105.9 ° C N 109.9 ° C I
Tc of this compound was 89.4 ° C., and Δε was −6.2.
[参考例13]化合物(15-A)の合成
Figure JPOXMLDOC01-appb-C000068
 アルゴン雰囲気下、300mL二口フラスコに、THF (60mL)とテトラフルオロコハク酸ジメチル(6.68g, 30mmol)を仕込んだ。この反応溶液を-78℃に冷却した後、4-(trans-4-プロピルシクロへキシル)フェニルマグネシウムブロミド(1.0M  THF溶液, 60mL, 60mmol)をゆっくり滴下した。この温度で終夜撹拌した後、塩化アンモニウム水溶液を加え、反応を停止した。反応溶液を酢酸エチルで3回抽出した後、有機層を無水硫酸ナトリウムで乾燥した。濾過を行い、濾液を減圧条件下で濃縮した。その後、シリカゲルカラムクロマトグラフィーを行い、目的生成物である化合物(15-A) (10.0g, 25.8mmol)を得た(収率86%)。
19F NMR (CDCl3 CFCl3)δ=-121.09 (t, J=4.89Hz, 2F), -113.37 (t, J=4.89Hz, 2F).
[Reference Example 13] Synthesis of Compound (15-A)
Figure JPOXMLDOC01-appb-C000068
Under an argon atmosphere, THF (60 mL) and dimethyl tetrafluorosuccinate (6.68 g, 30 mmol) were charged into a 300 mL two-necked flask. After the reaction solution was cooled to −78 ° C., 4- (trans-4-propylcyclohexyl) phenylmagnesium bromide (1.0 M THF solution, 60 mL, 60 mmol) was slowly added dropwise. After stirring overnight at this temperature, an aqueous ammonium chloride solution was added to stop the reaction. The reaction solution was extracted 3 times with ethyl acetate, and then the organic layer was dried over anhydrous sodium sulfate. Filtration was performed and the filtrate was concentrated under reduced pressure. Thereafter, silica gel column chromatography was performed to obtain the target product compound (15-A) (10.0 g, 25.8 mmol) (yield 86%).
19 F NMR (CDCl 3 CFCl 3 ) δ = -121.09 (t, J = 4.89 Hz, 2F), -113.37 (t, J = 4.89 Hz, 2F).
[実施例13]化合物(2a-A)の合成
Figure JPOXMLDOC01-appb-C000069
 アルゴン雰囲気下、300mL二口フラスコに、ジエチルエーテル(150mL)、前記と同様にして得た化合物(15-A) (5.83g, 15mmol)を仕込んだ。続いて、室温で、塩化ビニルマグネシウム (2.1M  THF溶液, 26mL, 54mmol)を滴下した。反応溶液を50℃まで昇温し、そのまま終夜撹拌した。反応溶液を塩化アンモニウム水溶液に加え、反応を停止させた後、ジエチルエーテルを用いて3回、抽出を行った。集めた有機層に無水硫酸ナトリウムを加え、乾燥させた後、濾過を行った。濾液を減圧条件下で濃縮した後に、シリカゲルカラムクロマトグラフィーによって、目的生成物である化合物(2a-A) (2.51g, 5.70mmol)(収率38%)を得た。
19F NMR (CDCl3 CFCl3)δ=-116.39 (m, 2F), -114.16 (q, J=265.41Hz, 2F);
[Example 13] Synthesis of compound (2a-A)
Figure JPOXMLDOC01-appb-C000069
Under an argon atmosphere, a 300 mL two-necked flask was charged with diethyl ether (150 mL) and the compound (15-A) (5.83 g, 15 mmol) obtained in the same manner as described above. Subsequently, vinylmagnesium chloride (2.1 M THF solution, 26 mL, 54 mmol) was added dropwise at room temperature. The reaction solution was heated to 50 ° C. and stirred as it was overnight. The reaction solution was added to an aqueous ammonium chloride solution to stop the reaction, and then extracted three times with diethyl ether. To the collected organic layer, anhydrous sodium sulfate was added and dried, followed by filtration. After the filtrate was concentrated under reduced pressure, the target product compound (2a-A) (2.51 g, 5.70 mmol) (yield 38%) was obtained by silica gel column chromatography.
19 F NMR (CDCl 3 CFCl 3 ) δ = -116.39 (m, 2F), -114.16 (q, J = 265.41Hz, 2F);
[実施例14]化合物(3a-A)の合成
Figure JPOXMLDOC01-appb-C000070
 アルゴン雰囲気下、100 mL二口フラスコに、第一世代グラブス触媒(0.66g, 0.8mmol)、塩化メチレン (55mL)、前記と同様にして得た化合物(2a-A) (3.52g, 8mmol)を仕込んだ。40時間撹拌した後、反応溶液をシリカゲルに通した。得られた濾液を、減圧下で濃縮し、その後、シリカゲルカラムクロマトグラフィーによる精製を行い、目的生成物である化合物(3a-A) (2.34g, 5.68mmol)を単一のジアステレオマーとして得た(収率71%)。
19F NMR (CDCl3 CFCl3)δ=-132.10 (dd, J=264.18, 19.55Hz, 1F), -130.73 (dd, J=264.18, 19.55Hz, 1F), -122.24 (dd, J=264.18, 17.30Hz, 1F), -166.02 (ddd,J=264.18, 19.55, 7.14Hz, 1F).
[Example 14] Synthesis of compound (3a-A)
Figure JPOXMLDOC01-appb-C000070
In a 100 mL two-necked flask under an argon atmosphere, the first generation Grubbs catalyst (0.66 g, 0.8 mmol), methylene chloride (55 mL), and the compound (2a-A) (3.52 g, 8 mmol) obtained in the same manner as above were added. Prepared. After stirring for 40 hours, the reaction solution was passed through silica gel. The obtained filtrate is concentrated under reduced pressure and then purified by silica gel column chromatography to obtain the desired product compound (3a-A) (2.34 g, 5.68 mmol) as a single diastereomer. (Yield 71%).
19 F NMR (CDCl 3 CFCl 3 ) δ = -132.10 (dd, J = 264.18, 19.55Hz, 1F), -130.73 (dd, J = 264.18, 19.55Hz, 1F), -122.24 (dd, J = 264.18, 17.30Hz, 1F), -166.02 (ddd, J = 264.18, 19.55, 7.14Hz, 1F).
[実施例15]化合物(4a-A)の合成
Figure JPOXMLDOC01-appb-C000071
 アルゴン雰囲気下、100 mL二口フラスコに、パラジウム/カーボン(10%, 0.85 g, 0.8 mmol)、メタノール (40 mL)、前記と同様にして得た化合物(3a-A) (3.30 g, 8 mmol)を仕込んだ。反応系内のアルゴンを水素で置換した後、室温で2日間撹拌した。反応溶液をシリカゲルに通し、得られた濾液を減圧条件下、濃縮し、化合物(4a-A) (3.33 g, 8 mmol)を単一のジアステレオマーとして得た(収率100%)。
なお、化合物(4a-A)は、前記実施例2の化合物(4-A)と同じ化合物であるが、本実施例の製造方法を用いることにより、単一のジアステレオマーとして生成物を得ることができる。
19F NMR (CDCl3 CFCl3)δ=-134.95 (d, J = 246.31Hz, 1F), -132.48 (d, J=251.20Hz, 1F), -117.68 (d, J=258.72Hz, 1F), -113.65 (d, J=270.76Hz, 1F).
[Example 15] Synthesis of compound (4a-A)
Figure JPOXMLDOC01-appb-C000071
In a 100 mL two-necked flask under an argon atmosphere, palladium / carbon (10%, 0.85 g, 0.8 mmol), methanol (40 mL), and the compound (3a-A) (3.30 g, 8 mmol) obtained in the same manner as described above were used. ). After replacing argon in the reaction system with hydrogen, the mixture was stirred at room temperature for 2 days. The reaction solution was passed through silica gel, and the obtained filtrate was concentrated under reduced pressure to give compound (4a-A) (3.33 g, 8 mmol) as a single diastereomer (yield 100%).
Compound (4a-A) is the same compound as compound (4-A) of Example 2, but the product is obtained as a single diastereomer by using the production method of this example. be able to.
19 F NMR (CDCl 3 CFCl 3 ) δ = -134.95 (d, J = 246.31Hz, 1F), -132.48 (d, J = 251.20Hz, 1F), -117.68 (d, J = 258.72Hz, 1F), -113.65 (d, J = 270.76Hz, 1F).
[参考例14]化合物(15-B)の合成
Figure JPOXMLDOC01-appb-C000072
 参考例13において4-(trans-4-プロピルシクロへキシル)フェニルマグネシウムブロミドの代わりに4-プロピルフェニルマグネシウムブロミドを用いた以外は参考例13と同様の方法で化合物(15-B)を合成した(収率87%)。
19F NMR (CDCl3 CFCl3)δ= -121.08 (s, 2F), -113.35 (s, 2F).
[Reference Example 14] Synthesis of Compound (15-B)
Figure JPOXMLDOC01-appb-C000072
Compound (15-B) was synthesized in the same manner as in Reference Example 13 except that 4-propylphenylmagnesium bromide was used instead of 4- (trans-4-propylcyclohexyl) phenylmagnesium bromide in Reference Example 13. (Yield 87%).
19 F NMR (CDCl 3 CFCl 3 ) δ = -121.08 (s, 2F), -113.35 (s, 2F).
[実施例16]化合物(2a-B)の合成
Figure JPOXMLDOC01-appb-C000073
 原料に前記と同様にして得た化合物(15-B)を用い、実施例13と同様な方法で化合物(2a-B)を合成した(収率40%)。
19F NMR (CDCl3 CFCl3)δ=-116.38 (d, J=14.67Hz, 2F), -114.14 (q, J=265.14Hz, 2F).
[Example 16] Synthesis of compound (2a-B)
Figure JPOXMLDOC01-appb-C000073
The compound (2a-B) was synthesized in the same manner as in Example 13 using the compound (15-B) obtained in the same manner as described above as the raw material (yield 40%).
19 F NMR (CDCl 3 CFCl 3 ) δ = -116.38 (d, J = 14.67 Hz, 2F), -114.14 (q, J = 265.14 Hz, 2F).
[実施例17]化合物(3a-B)の合成
Figure JPOXMLDOC01-appb-C000074
 原料に前記と同様にして得た化合物(2a-B)を用い、実施例14と同様な方法で化合物(3a-B)を合成した(収率75%)。
19F NMR (CDCl3 CFCl3)δ=-132.08 (dd, J = 265.39, 19.55Hz, 1F), -130.64 (dd, J=265.39, 17.11Hz, 1F), -122.25 (dd, J=265.39, 17.11Hz, 1F), -116.11 (ddd, J=265.39, 19.55, 4.89Hz, 1F).
[Example 17] Synthesis of compound (3a-B)
Figure JPOXMLDOC01-appb-C000074
Compound (3a-B) was synthesized in the same manner as in Example 14 using compound (2a-B) obtained in the same manner as described above as the starting material (yield 75%).
19 F NMR (CDCl 3 CFCl 3 ) δ = -132.08 (dd, J = 265.39, 19.55Hz, 1F), -130.64 (dd, J = 265.39, 17.11Hz, 1F), -122.25 (dd, J = 265.39, 17.11Hz, 1F), -116.11 (ddd, J = 265.39, 19.55, 4.89Hz, 1F).
[実施例18]化合物(4a-B)の合成
Figure JPOXMLDOC01-appb-C000075
 原料に前記と同様にして得た化合物(3a-B)を用い、実施例15と同様な方法で化合物(4a-B)を合成した(収率99%)。
19F NMR (CDCl3 CFCl3)δ=-135.05 (d, J=276.02 Hz, 1F), -132.63 (d, J=258.72Hz, 1F), -117.79 (d, J=258.72Hz, 1F), -113.74 (d, J=273.02 Hz, 1F).
[Example 18] Synthesis of compound (4a-B)
Figure JPOXMLDOC01-appb-C000075
Compound (4a-B) was synthesized in the same manner as in Example 15 using compound (3a-B) obtained in the same manner as described above as the starting material (yield 99%).
19 F NMR (CDCl 3 CFCl 3 ) δ = -135.05 (d, J = 276.02 Hz, 1F), -132.63 (d, J = 258.72Hz, 1F), -117.79 (d, J = 258.72Hz, 1F), -113.74 (d, J = 273.02 Hz, 1F).
[実施例19]化合物(1a-B)の合成
Figure JPOXMLDOC01-appb-C000076
                       (1a-B)
 原料に前記と同様にして得た化合物(4a-B)を用い、実施例4と同様な方法で化合物(1a-B)を合成した(収率83%)。
19F NMR (CDCl3 CFCl3)δ=-126.63 (d, J=4.89Hz, 2F), -123.30 (d, J=7.52 Hz, 2F).
本化合物のTcは-93.6℃、Δεは-5.8であった。
[Example 19] Synthesis of compound (1a-B)
Figure JPOXMLDOC01-appb-C000076
(1a-B)
Compound (1a-B) was synthesized in the same manner as in Example 4 using compound (4a-B) obtained in the same manner as described above as the starting material (yield 83%).
19 F NMR (CDCl 3 CFCl 3 ) δ = -126.63 (d, J = 4.89 Hz, 2F), -123.30 (d, J = 7.52 Hz, 2F).
Tc of this compound was −93.6 ° C., and Δε was −5.8.
[参考例15]化合物(18-A)の合成
Figure JPOXMLDOC01-appb-C000077
                              (18-A)
 参考例1と同様にして得た化合物(7-A)(2.22g, 6.19mmol)をアセトニトリルに溶解させ、この反応溶液に、参考例4と同様に、2-ヨードベンゼンスルホン酸ナトリウム(5mol%)とOxone(R)(2KHSO5・KHSO4・K2SO4, 0.9eq)を加え、反応溶液を85℃に加熱し、18時間反応させた。その後、冷却、濾過、精製を行い、目的物である化合物(18-A)(1.83g, 5.13mmol)を得た。収率は83%。
1H NMR (CDCl3) δ= 0.91 (t, J = 7.19 Hz, 3H), 1.02~1.12 (m, 2H), 1.20~1.53 (m, 7H), 1.88~1.91 (m, 4H), 2.56 (tt, J = 11.79, 3.20 Hz, 1H), 5.74 (d, J =11.40 Hz 1H), 5.92 (dt, J = 17.19, 2.20 Hz, 1H), 6.13 (ddt, 17.19, 11.40, 10.49 Hz, 1H), 7.35 (d, J= 8.79 Hz, 2H), 8.03 (d, J = 7.99 Hz 2H);
19F NMR (CDCl3, CFCl3) δ =-114.69 (s, 2F),-113.97 (d, J= 10.49 Hz, 2F);
HRMS (FAB+) calcd for C20H25F4O (M+H): 357.1842, Found 357.1833.
[Reference Example 15] Synthesis of Compound (18-A)
Figure JPOXMLDOC01-appb-C000077
(18-A)
Compound (7-A) (2.22 g, 6.19 mmol) obtained in the same manner as in Reference Example 1 was dissolved in acetonitrile, and sodium 2-iodobenzenesulfonate (5 mol%) was added to this reaction solution as in Reference Example 4. ) And Oxone (R) (2KHSO 5 · KHSO 4 · K 2 SO 4 , 0.9 eq) were added, and the reaction solution was heated to 85 ° C. and reacted for 18 hours. Thereafter, cooling, filtration and purification were performed to obtain the target compound (18-A) (1.83 g, 5.13 mmol). Yield 83%.
1 H NMR (CDCl 3 ) δ = 0.91 (t, J = 7.19 Hz, 3H), 1.02 to 1.12 (m, 2H), 1.20 to 1.53 (m, 7H), 1.88 to 1.91 (m, 4H), 2.56 ( tt, J = 11.79, 3.20 Hz, 1H), 5.74 (d, J = 11.40 Hz 1H), 5.92 (dt, J = 17.19, 2.20 Hz, 1H), 6.13 (ddt, 17.19, 11.40, 10.49 Hz, 1H) , 7.35 (d, J = 8.79 Hz, 2H), 8.03 (d, J = 7.99 Hz 2H);
19 F NMR (CDCl 3 , CFCl 3 ) δ = -114.69 (s, 2F), -113.97 (d, J = 10.49 Hz, 2F);
HRMS (FAB + ) calcd for C 20 H 25 F 4 O (M + H): 357.1842, Found 357.1833.
[参考例16]化合物(19-A)の合成
Figure JPOXMLDOC01-appb-C000078
                              (19-A)
 前記と同様にして得た化合物(18-A)(1.83g, 5.13mmol)を用い、参考例2と同様な方法で化合物(19-A)(1.77g, 4.70mmol)を合成した(収率92%)。
[Reference Example 16] Synthesis of Compound (19-A)
Figure JPOXMLDOC01-appb-C000078
(19-A)
Compound (19-A) (1.77 g, 4.70 mmol) was synthesized in the same manner as in Reference Example 2 using compound (18-A) (1.83 g, 5.13 mmol) obtained in the same manner as described above (yield) 92%).
[実施例20]化合物(2b-A)の合成
Figure JPOXMLDOC01-appb-C000079
                              (2b-A)
 前記と同様にして得た化合物(19-A)(1.77g, 4.70mmol)とジエチルエーテルを仕込んだ反応溶液に、実施例1と同様に、ビニルマグネシウムクロリド(ジエチルエーテル溶液、4.0eq)を滴下し、その後、2時間、加熱還流した。その後、冷却、濾過、精製を行い、目的物である化合物(2b-A)(0.68g, 1.64mmol)を合成した(収率35%)。
Diastereomer Mixture (d.r. = 62 : 38);
1H NMR (CDCl3) δ = 0.90 (t, J = 7.19 Hz, 3H), 1.00~1.15 (m, 2H), 1.18~1.52 (m, 8 H), 1.75~1.95 (m, 5H), 2.50 (tt, J = 11.79, 3.20 Hz, 1H), 3.62~3.73 (m, 1H for mixture), 4.22~4.24 (m, 1H for minor isomer), 4.42~4.45 (m, 1H for major isomer), 4.55~4.65 (m, 1H for mixture), 5.35~5.55 (m, 4H for mixture), 5.88~6.02 (m, 1H for mixture), 6.55~6.68 (m, 1H for mixture), 7.24 (d, J = 7.99 Hz, 2H), 7.50 (d, J = 7.99 Hz, 2H);
19F NMR (CDCl3, CFCl3) δ =-124.32 (ddd, J = 268.12, 19.55, 7.52 Hz, 1F for major isomer),-119.70 (dd, J = 278.28, 8.65 Hz, 1F for major isomer),-117.59 (dd, J = 278.28, 7.14 Hz, 1F for major isomer),-114.69 (dd, J = 275.64, 7.14 Hz, 1F for major isomer),-123.36 (ddd, J = 268.50, 16.92, 7.14 Hz, 1F for minor isomer),-118.18 (d, J = 278.28 Hz, 1F for minor isomer),-117.20 (dd, J = 278.28, 7.14 Hz, 1F for minor isomer),-113.16 (d, J = 275.64 Hz, 1F for minor isomer);
HRMS (EI+) calcd for C23H30F4O2 (M+): 414.2182, Found 414.2192.
[Example 20] Synthesis of compound (2b-A)
Figure JPOXMLDOC01-appb-C000079
(2b-A)
In the same manner as in Example 1, vinylmagnesium chloride (diethyl ether solution, 4.0 eq) was added dropwise to the reaction solution charged with the compound (19-A) (1.77 g, 4.70 mmol) obtained in the same manner as above and diethyl ether. And then heated to reflux for 2 hours. Thereafter, cooling, filtration, and purification were performed to synthesize the target compound (2b-A) (0.68 g, 1.64 mmol) (yield 35%).
Diastereomer Mixture (dr = 62: 38);
1 H NMR (CDCl 3 ) δ = 0.90 (t, J = 7.19 Hz, 3H), 1.00 to 1.15 (m, 2H), 1.18 to 1.52 (m, 8 H), 1.75 to 1.95 (m, 5H), 2.50 (tt, J = 11.79, 3.20 Hz, 1H), 3.62 to 3.73 (m, 1H for mixture), 4.22 to 4.24 (m, 1H for minor isomer), 4.42 to 4.45 (m, 1H for major isomer), 4.55 to 4.65 (m, 1H for mixture), 5.35 to 5.55 (m, 4H for mixture), 5.88 to 6.02 (m, 1H for mixture), 6.55 to 6.68 (m, 1H for mixture), 7.24 (d, J = 7.99 Hz , 2H), 7.50 (d, J = 7.99 Hz, 2H);
19 F NMR (CDCl 3 , CFCl 3 ) δ = -124.32 (ddd, J = 268.12, 19.55, 7.52 Hz, 1F for major isomer), -119.70 (dd, J = 278.28, 8.65 Hz, 1F for major isomer), -117.59 (dd, J = 278.28, 7.14 Hz, 1F for major isomer), -114.69 (dd, J = 275.64, 7.14 Hz, 1F for major isomer), -123.36 (ddd, J = 268.50, 16.92, 7.14 Hz, 1F for minor isomer),-118.18 (d, J = 278.28 Hz, 1F for minor isomer),-117.20 (dd, J = 278.28, 7.14 Hz, 1F for minor isomer),-113.16 (d, J = 275.64 Hz, 1F for minor isomer);
HRMS (EI + ) calcd for C 23 H 30 F 4 O 2 (M + ): 414.2182, Found 414.2192.
[実施例21]化合物(3b-A)の合成
Figure JPOXMLDOC01-appb-C000080
                             (3b-A)
 Grubbs第二世代触媒 (0.067g, 0.079mmol) の塩化メチレン溶液 (17mL) に、室温で、前記と同様にして得た化合物(2b-A)(0.68g, 1.64 mmol) を加え、還流条件下、24時間撹拌した。反応溶液を、酢酸エチルを用いてシリカゲルに通し、得られた溶液を減圧条件下で濃縮した。最後に、粗生成物のシリカゲルカラムクロマトグラフィーを行うことで化合物(3b-A)を、87%の収率 (0.55g, 1.42mmol) で得た。
Diastereomer Mixture : ca. 1:1
1H NMR (CDCl3) δ = 0.90 (t, J = 7.39 Hz, 3H), 0.96~1.05 (m, 2H), 1.18~1.49 (m, 7H), 1.84~1.91 (m, 4H), 2.44~2.52 (m, 1H), [2.23 (d, J= 8.79 Hz) and 2.33 (d, J = 8.79 Hz), 1H], 2.45~2.51 (m, 1H), [2.60 (d, J = 4.40 Hz) and 2.70 (s), 1H], 4.61~4,69 (m, 1H), 5.87~5.96 (m, 2H), 7.17 (d, J = 7.79 Hz, 2H), 7.35 (d, J = 7.79 Hz, 2H);
19F NMR (CDCl3, CFCl3) δ =-137.32 (dt, J = 270.76, 14.67 Hz, 1F) and -129.54 (d, J = 260.98 Hz, 1F)],[-130.87 (d, J = 256.47 Hz, 1F) and -127.27 (d, J = 9.78 Hz, 1F)],[-129.71 (dd, J = 260.98, 9.78 Hz, 1F) and -127.14 (d, J= 7.52 Hz, 1F)],[-118.24 (dd, J = 273.39, 12.03 Hz, 1F) and -124.57 (d, J= 263.61 Hz, 1F)];
HRMS (FAB+) calcd for C21H26F4O2Na (M+Na): 409.1767, Found 409.1776.
[Example 21] Synthesis of compound (3b-A)
Figure JPOXMLDOC01-appb-C000080
(3b-A)
To a methylene chloride solution (17 mL) of Grubbs second generation catalyst (0.067 g, 0.079 mmol) at room temperature was added compound (2b-A) (0.68 g, 1.64 mmol) obtained in the same manner as described above, and the mixture was refluxed. And stirred for 24 hours. The reaction solution was passed through silica gel with ethyl acetate, and the resulting solution was concentrated under reduced pressure. Finally, the crude product was subjected to silica gel column chromatography to obtain compound (3b-A) in a yield of 87% (0.55 g, 1.42 mmol).
Diastereomer Mixture: ca. 1: 1
1 H NMR (CDCl 3 ) δ = 0.90 (t, J = 7.39 Hz, 3H), 0.96 to 1.05 (m, 2H), 1.18 to 1.49 (m, 7H), 1.84 to 1.91 (m, 4H), 2.44 to 2.52 (m, 1H), [2.23 (d, J = 8.79 Hz) and 2.33 (d, J = 8.79 Hz), 1H], 2.45 to 2.51 (m, 1H), [2.60 (d, J = 4.40 Hz) and 2.70 (s), 1H], 4.61-4,69 (m, 1H), 5.87-5.96 (m, 2H), 7.17 (d, J = 7.79 Hz, 2H), 7.35 (d, J = 7.79 Hz, 2H);
19 F NMR (CDCl 3 , CFCl 3 ) δ = -137.32 (dt, J = 270.76, 14.67 Hz, 1F) and -129.54 (d, J = 260.98 Hz, 1F)], [-130.87 (d, J = 256.47 Hz, 1F) and -127.27 (d, J = 9.78 Hz, 1F)], [-129.71 (dd, J = 260.98, 9.78 Hz, 1F) and -127.14 (d, J = 7.52 Hz, 1F)], [ -118.24 (dd, J = 273.39, 12.03 Hz, 1F) and -124.57 (d, J = 263.61 Hz, 1F)];
HRMS (FAB + ) calcd for C 21 H 26 F 4 O 2 Na (M + Na): 409.1767, Found 409.1776.
[実施例22]化合物(4b-A)の合成
Figure JPOXMLDOC01-appb-C000081
                              (4b-A)
 メタノール (16mL) 溶媒中、パラジウム/カーボン (10%, 0.15g, 0.14mmol) 存在下、前記と同様にして得た化合物(3b-A) (0.55g, 1.42mmol) を室温で加えた。反応系内を水素で満たした後、室温で、2日間撹拌した。反応混合物を、酢酸エチルを用いてシリカゲルに通し、得られた溶液を減圧条件下で濃縮したところ、目的生成物である化合物(4b-A)が収率96%で得られた。(0.53g, 1.36mmol)
Less Polar
1H NMR (CDCl3) δ = 0.90 (t, J = 7.39 Hz, 3H), 1.00~1.10 (m, 2H), 1.18~1.49 (m, 7H), 1.81~1.98 (m, 6H), 2.34~2.39 (m, 2H), 2.44~2.51(m, 2H), 2.74~2.81 (m, 1H) 4.27 (brs, 1H), 7.22 (d, J = 8.39 Hz, 2H), 7.50 (d, J= 8.39 Hz, 2H);
19F NMR (CDCl3, CFCl3) δ = -135.22 ~ -134.51 (m, 1F), -127.50 (d, J= 268.50 Hz, 1F), -114.98 ~ -114.31 (m, 2F);
HRMS (FAB+) calcd for C21H28F4O2(M+): 388.2025, Found 388.2031.
More Polar
1H NMR δ = 0.81 (t, J = 7.19 Hz, 3H), 1.00~1.10 (m, 2H), 1.18~1.49 (m, 7H), 1.80~1.92 (m, 4H), 1.97~2.17 (m, 4H), 2.27~2.34 (m, 1H), 2.45~2.52 (m, 2H), 3.90~4.00 (m, 1H), 7.15 (d, J = 8.39 Hz, 2H), 7.43 (d, J = 7.59 Hz, 2H);
19F NMR (CDCl3, CFCl3) δ =-136.18 (dm, J = 269.62 Hz, 1F),-128.85 (dtd, J = 257.60, 18.43, 9.40 Hz, 1F), -127.27 (dm, J = 257.60 Hz, 1F),-116.30 (d, J = 269.62 Hz, 1F);
HRMS (FAB+) calcd for C21H28F4O(M+): 388.2025, Found 388.2030.
[Example 22] Synthesis of compound (4b-A)
Figure JPOXMLDOC01-appb-C000081
(4b-A)
Compound (3b-A) (0.55 g, 1.42 mmol) obtained in the same manner as described above was added at room temperature in the presence of palladium / carbon (10%, 0.15 g, 0.14 mmol) in a solvent of methanol (16 mL). After the reaction system was filled with hydrogen, the mixture was stirred at room temperature for 2 days. The reaction mixture was passed through silica gel with ethyl acetate, and the resulting solution was concentrated under reduced pressure to obtain the target product compound (4b-A) in a yield of 96%. (0.53g, 1.36mmol)
Less Polar
1 H NMR (CDCl 3 ) δ = 0.90 (t, J = 7.39 Hz, 3H), 1.00 to 1.10 (m, 2H), 1.18 to 1.49 (m, 7H), 1.81 to 1.98 (m, 6H), 2.34 to 2.39 (m, 2H), 2.44 to 2.51 (m, 2H), 2.74 to 2.81 (m, 1H) 4.27 (brs, 1H), 7.22 (d, J = 8.39 Hz, 2H), 7.50 (d, J = 8.39 Hz, 2H);
19 F NMR (CDCl 3 , CFCl 3 ) δ = -135.22 to -134.51 (m, 1F), -127.50 (d, J = 268.50 Hz, 1F), -114.98 to -114.31 (m, 2F);
HRMS (FAB + ) calcd for C 21 H 28 F 4 O 2 (M + ): 388.2025, Found 388.2031.
More Polar
1 H NMR δ = 0.81 (t, J = 7.19 Hz, 3H), 1.00 to 1.10 (m, 2H), 1.18 to 1.49 (m, 7H), 1.80 to 1.92 (m, 4H), 1.97 to 2.17 (m, 4H), 2.27 to 2.34 (m, 1H), 2.45 to 2.52 (m, 2H), 3.90 to 4.00 (m, 1H), 7.15 (d, J = 8.39 Hz, 2H), 7.43 (d, J = 7.59 Hz , 2H);
19 F NMR (CDCl 3 , CFCl 3 ) δ = -136.18 (dm, J = 269.62 Hz, 1F), -128.85 (dtd, J = 257.60, 18.43, 9.40 Hz, 1F), -127.27 (dm, J = 257.60 Hz, 1F),-116.30 (d, J = 269.62 Hz, 1F);
HRMS (FAB + ) calcd for C 21 H 28 F 4 O 2 (M + ): 388.2025, Found 388.2030.
[参考例17]化合物(16-A)の合成
Figure JPOXMLDOC01-appb-C000082
                              (16-A)
[Reference Example 17] Synthesis of Compound (16-A)
Figure JPOXMLDOC01-appb-C000082
(16-A)
 [2級アルコールの選択的保護]
Figure JPOXMLDOC01-appb-C000083
 塩化メチレン(14mL)とDMF(1.4mL)の混合溶媒中、前記と同様にして得た化合物(4b-A)(0.53g, 1.36mmol)とイミダゾール(0.19g, 2.79 mmol)、トリフルオロメタンスルホン酸 tert-ブチルジメチルシリル(TBSOTf)(1.0mL, 4.34mmol)を加え、還流条件で1.5時間撹拌した。その後、水を加えた後に、塩化メチレンを用いて3回抽出を行った。有機層を、無水硫酸ナトリウムを用いて乾燥させた後に濾過を行い、得られた濾液を減圧条件で濃縮した。粗生成物は、シリカゲルカラムクロマトグラフィーにより精製し、2級のヒドロキシル基のみが選択的にtert-ブチルジメチルシリル(TBS)保護されたモノシリルエーテルが収率77%で得られた。(0.53g, 1.05mmol)
1H NMR (CDCl3) δ= 0.17 (s, 3H), 0.18 (s, 3H), 0.93 (t, J = 7.19 Hz, 3H), 0.97 (s, 9H), 1.06~1.13 (m, 2H), 1.21~1.53 (m, 7H), 1.88~1.94 (m, 6H), 2.21~2.31 (m, 2H), 2.51 (tt, J = 12.20, 3.20 Hz, 1H), 2.57 (brs, 1H), 4.00~4.12 (m, 1H), 7.26 (d, J = 8.79 Hz, 2H), 7.48 (d, J= 7.59 Hz, 2H);
19F NMR (CDCl3, CFCl3) δ=-136.58 (d, J = 272.26 Hz, 1F),-129.21 (dm, J = 253.83 Hz, 1F),-126.62 (d, J = 253.83 Hz, 1F),-116.56 (d, J = 272.26 Hz, 1F);
HRMS (FAB+) calcd for C27H43F4O2Si (M+H): 503.2968 Found 503.2972.
[Selective protection of secondary alcohol]
Figure JPOXMLDOC01-appb-C000083
Compound (4b-A) (0.53 g, 1.36 mmol), imidazole (0.19 g, 2.79 mmol), trifluoromethanesulfonic acid obtained as described above in a mixed solvent of methylene chloride (14 mL) and DMF (1.4 mL) tert-Butyldimethylsilyl (TBSOTf) (1.0 mL, 4.34 mmol) was added, and the mixture was stirred for 1.5 hours under reflux conditions. Then, after adding water, extraction was performed 3 times using methylene chloride. The organic layer was dried using anhydrous sodium sulfate and filtered, and the resulting filtrate was concentrated under reduced pressure. The crude product was purified by silica gel column chromatography to obtain a monosilyl ether in which only the secondary hydroxyl group was selectively protected with tert-butyldimethylsilyl (TBS) in a yield of 77%. (0.53g, 1.05mmol)
1 H NMR (CDCl 3 ) δ = 0.17 (s, 3H), 0.18 (s, 3H), 0.93 (t, J = 7.19 Hz, 3H), 0.97 (s, 9H), 1.06 to 1.13 (m, 2H) , 1.21 to 1.53 (m, 7H), 1.88 to 1.94 (m, 6H), 2.21 to 2.31 (m, 2H), 2.51 (tt, J = 12.20, 3.20 Hz, 1H), 2.57 (brs, 1H), 4.00 ~ 4.12 (m, 1H), 7.26 (d, J = 8.79 Hz, 2H), 7.48 (d, J = 7.59 Hz, 2H);
19 F NMR (CDCl 3 , CFCl 3 ) δ = -136.58 (d, J = 272.26 Hz, 1F),-129.21 (dm, J = 253.83 Hz, 1F),-126.62 (d, J = 253.83 Hz, 1F) , -116.56 (d, J = 272.26 Hz, 1F);
HRMS (FAB + ) calcd for C 27 H 43 F 4 O 2 Si (M + H): 503.2968 Found 503.2972.
 [3級アルコールのアセチル保護]
Figure JPOXMLDOC01-appb-C000084
 塩化メチレン(10mL)溶媒中、前記と同様にして得たTBS保護されたモノシリルエーテル(0.53g, 1.05mmol)とDMAP(0.43g, 3.52mmol)、無水酢酸(0.44mL, 4.65mmol)を加え、還流条件で1日撹拌した。その後、水を加え、塩化メチレンを用いて3回抽出を行った。得られた有機層を、無水硫酸ナトリウムを用いて乾燥させた後に濾過を行った。濾液を減圧条件で濃縮した後に、粗生成物をシリカゲルカラムクロマトグラフィーにて単離精製を行い、シクロヘキサン誘導体を得た(収率82%、0.47g, 0.86mmol)。
1H NMR (CDCl3) δ= 0.14 (s, 3H), 0.15 (s, 3H), 0.90 (t, J = 7.39 Hz, 3H), 0.94 (s, 9H), 0.98~1.09 (m, 2H), 1.20~1.48 (m, 7H), 1.84~1.91 (m, 6H), 2.16 (s, 3H), 2.30~2.37 (m, 1H), 2.43~2.49 (m, 1H), 3.09~3.13 (m, 1H), 3.95~4.04 (m, 1H), 7.21 (d, J = 7.59 Hz, 2H), 7.30 (d, J = 7.59 Hz, 2H);
19F NMR (CDCl3, CFCl3) δ= -135.10 (dm, J = 269.63 Hz, 1F), -130.86 (dm, J = 253.83 Hz, 1F), -125.79 (dm, J = 253.83 Hz, 1F), -119.21 (dm, J = 269.63 Hz, 1F);
HRMS (FAB+) calcd for C29H44F4O3Si(M+): 544.2996, Found 544.2991.
[Acetyl protection of tertiary alcohol]
Figure JPOXMLDOC01-appb-C000084
In a methylene chloride (10 mL) solvent, TBS-protected monosilyl ether (0.53 g, 1.05 mmol) obtained in the same manner as above, DMAP (0.43 g, 3.52 mmol), acetic anhydride (0.44 mL, 4.65 mmol) were added, Stir for 1 day under reflux conditions. Then, water was added and extraction was performed 3 times using methylene chloride. The obtained organic layer was dried using anhydrous sodium sulfate and then filtered. After the filtrate was concentrated under reduced pressure conditions, the crude product was isolated and purified by silica gel column chromatography to obtain a cyclohexane derivative (yield 82%, 0.47 g, 0.86 mmol).
1 H NMR (CDCl 3 ) δ = 0.14 (s, 3H), 0.15 (s, 3H), 0.90 (t, J = 7.39 Hz, 3H), 0.94 (s, 9H), 0.98 to 1.09 (m, 2H) , 1.20 to 1.48 (m, 7H), 1.84 to 1.91 (m, 6H), 2.16 (s, 3H), 2.30 to 2.37 (m, 1H), 2.43 to 2.49 (m, 1H), 3.09 to 3.13 (m, 1H), 3.95 to 4.04 (m, 1H), 7.21 (d, J = 7.59 Hz, 2H), 7.30 (d, J = 7.59 Hz, 2H);
19 F NMR (CDCl 3 , CFCl 3 ) δ = -135.10 (dm, J = 269.63 Hz, 1F), -130.86 (dm, J = 253.83 Hz, 1F), -125.79 (dm, J = 253.83 Hz, 1F) , -119.21 (dm, J = 269.63 Hz, 1F);
HRMS (FAB + ) calcd for C 29 H 44 F 4 O 3 Si (M + ): 544.2996, Found 544.2991.
 [TBS基の脱保護]
Figure JPOXMLDOC01-appb-C000085
 THF(9mL)溶媒中、前記と同様にして得たシクロヘキサン誘導体(0.47g, 0.86mmol)に対し、TBAF(1.0 M in THF, 1.7mL, 1.7mmol)を滴下し、室温で22時間撹拌した。その後、水を加え、ジエチルエーテルを用いて3回抽出を行った。得られた有機層を、無水硫酸ナトリウムを用いて乾燥させた後に濾過を行った。濾液を減圧条件で濃縮した後、粗生成物をシリカゲルカラムクロマトグラフィーにて単離精製を行い、シクロヘキサノール誘導体を得た。(収率86%、0.32g, 0.74mmol)
HRMS (FAB+) calcd for C23H30F4O3(M+): 430.2131, Found 430.2138.
More Polar
1H NMR (CDCl3) δ= 0.86 (t, J = 7.19 Hz, 3H), 0.98~1.08 (m, 2H), 1.17~1.47 (m, 7H), 1.73~1.80 (m, 1H), 1.84~1.90 (m, 4H), 2.10~2.14 (m, 2H), 2.16 (s, 3H), 2.32~2.40 (m, 1H), 2.43~2.49 (m, 1H), 3.12~3.19 (m, 1H), 4.01~4.12 (m, 1H), 7.21 (d, J = 8.39 Hz, 2H), 7.30 (d, J = 8.39 Hz, 2H);
19F NMR (CDCl3, CFCl3) δ= -135.37 (dtd, J = 275.65, 16.92, 4.89 Hz, 1F), -131.05 (dtd, J = 251.20, 16.92, 4.89 Hz, 1F), -127.41 (dt, J= 251.20, 16.92 Hz, 1F), -119.49 (dt, J= 275.65, 16.92 Hz, 1F);
Less Polar
1H NMR (CDCl3) δ= 0.90 (t, J = 6.99 Hz, 3H), 0.99~1.09 (m, 2H), 1.18~1.92 (m, 7H), 1.85~1.92 (m, 4H), 1.96~2.00 (m, 1H), 2.14 (s, 3H), 2.44~2.50 (m, 3H), 2.83~3.01 (m, 2H), 4.24 (brs, 1H), 7.22 (d, J = 8.59 Hz, 2H), 7.34 (d, J = 8.59 Hz, 2H);
19F NMR (CDCl3, CFCl3) δ= -134.00 (d, J = 268.88 Hz, 1F), -127.51 (dt, J = 268.88, 14.67 Hz, 1F), -117.38 (d, J = 268.88 Hz, 1F), -116.24 (d, J = 268.88 Hz, 1F);
[Deprotection of TBS group]
Figure JPOXMLDOC01-appb-C000085
TBAF (1.0 M in THF, 1.7 mL, 1.7 mmol) was added dropwise to a cyclohexane derivative (0.47 g, 0.86 mmol) obtained in the same manner as above in a THF (9 mL) solvent, and the mixture was stirred at room temperature for 22 hours. Then, water was added and extraction was performed 3 times using diethyl ether. The obtained organic layer was dried using anhydrous sodium sulfate and then filtered. After the filtrate was concentrated under reduced pressure conditions, the crude product was isolated and purified by silica gel column chromatography to obtain a cyclohexanol derivative. (Yield 86%, 0.32 g, 0.74 mmol)
HRMS (FAB + ) calcd for C 23 H 30 F 4 O 3 (M + ): 430.2131, Found 430.2138.
More Polar
1 H NMR (CDCl 3 ) δ = 0.86 (t, J = 7.19 Hz, 3H), 0.98 to 1.08 (m, 2H), 1.17 to 1.47 (m, 7H), 1.73 to 1.80 (m, 1H), 1.84 1.90 (m, 4H), 2.10 to 2.14 (m, 2H), 2.16 (s, 3H), 2.32 to 2.40 (m, 1H), 2.43 to 2.49 (m, 1H), 3.12 to 3.19 (m, 1H), 4.01 ~ 4.12 (m, 1H), 7.21 (d, J = 8.39 Hz, 2H), 7.30 (d, J = 8.39 Hz, 2H);
19 F NMR (CDCl 3 , CFCl 3 ) δ = -135.37 (dtd, J = 275.65, 16.92, 4.89 Hz, 1F), -131.05 (dtd, J = 251.20, 16.92, 4.89 Hz, 1F), -127.41 (dt , J = 251.20, 16.92 Hz, 1F), -119.49 (dt, J = 275.65, 16.92 Hz, 1F);
Less Polar
1 H NMR (CDCl 3 ) δ = 0.90 (t, J = 6.99 Hz, 3H), 0.99 to 1.09 (m, 2H), 1.18 to 1.92 (m, 7H), 1.85 to 1.92 (m, 4H), 1.96 to 2.00 (m, 1H), 2.14 (s, 3H), 2.44 to 2.50 (m, 3H), 2.83 to 3.01 (m, 2H), 4.24 (brs, 1H), 7.22 (d, J = 8.59 Hz, 2H) , 7.34 (d, J = 8.59 Hz, 2H);
19 F NMR (CDCl 3 , CFCl 3 ) δ = -134.00 (d, J = 268.88 Hz, 1F), -127.51 (dt, J = 268.88, 14.67 Hz, 1F), -117.38 (d, J = 268.88 Hz, 1F), -116.24 (d, J = 268.88 Hz, 1F);
 [IBS酸化]
Figure JPOXMLDOC01-appb-C000086
 ニトロメタン(4mL)溶媒中、前記と同様にして得たシクロヘキサノール誘導体(0.32g, 0.74mmol)に対し、参考例4と同様に、2-ヨードベンゼンスルホン酸(IBS)前駆体である2-ヨードベンゼンスルホン酸ナトリウム(0.026g, 0.085 mol)とOxone(R)(2KHSO5・KHSO4・K2SO4, 0.9eq)(0.68g, 1.11mol)を加え、110 °Cで11時間撹拌した。反応溶液を、酢酸エチルを用いてシリカゲルに通した。得られた溶液を減圧条件で濃縮した後、粗生成物をシリカゲルカラムクロマトグラフィーによって精製し化合物(16-A)を得た(72%の収率、0.23g, 0.53mmol)。
1H NMR (CDCl3) δ= 0.91 (t, J = 6.99 Hz, 3H), 1.00~1.10 (m, 2H), 1.20~1.50 (m, 7H), 1.86~1.92 (m, 4H), 2.17 (s, 3H), 2.46~2.52 (m, 1H), 2.59~2.74 (m, 2H), 2.81~2.90 (m, 1H), 3.38~3.41 (m, 1H), 7.25 (d, J = 7.99 Hz, 2H), 7.32 (d, J = 7.99 Hz, 2H);
19F NMR (CDCl3, CFCl3) δ= -136.00 (dm, J = 274.52 Hz, 1F), -131.29 (dm, J = 270.95 Hz, 1F), -121.30 (dd, J = 270.95, 14.29 Hz, 1F), -113.51 (dd, J = 274.52, 14.66 Hz, 1F);
HRMS (FAB+) calcd for C23H28F4O3Na (M+Na): 451.1872, Found 451.1875.
[IBS oxidation]
Figure JPOXMLDOC01-appb-C000086
2-Iodobenzenesulfonic acid (IBS) precursor 2-iodo, as in Reference Example 4, with respect to the cyclohexanol derivative (0.32 g, 0.74 mmol) obtained as described above in a nitromethane (4 mL) solvent. Sodium benzenesulfonate (0.026 g, 0.085 mol) and Oxone (R) (2KHSO 5 · KHSO 4 · K 2 SO 4 , 0.9 eq) (0.68 g, 1.11 mol) were added, and the mixture was stirred at 110 ° C. for 11 hours. The reaction solution was passed through silica gel with ethyl acetate. After concentrating the obtained solution under reduced pressure conditions, the crude product was purified by silica gel column chromatography to obtain compound (16-A) (72% yield, 0.23 g, 0.53 mmol).
1 H NMR (CDCl 3 ) δ = 0.91 (t, J = 6.99 Hz, 3H), 1.00 to 1.10 (m, 2H), 1.20 to 1.50 (m, 7H), 1.86 to 1.92 (m, 4H), 2.17 ( s, 3H), 2.46 to 2.52 (m, 1H), 2.59 to 2.74 (m, 2H), 2.81 to 2.90 (m, 1H), 3.38 to 3.41 (m, 1H), 7.25 (d, J = 7.99 Hz, 2H), 7.32 (d, J = 7.99 Hz, 2H);
19 F NMR (CDCl 3 , CFCl 3 ) δ = -136.00 (dm, J = 274.52 Hz, 1F), -131.29 (dm, J = 270.95 Hz, 1F), -121.30 (dd, J = 270.95, 14.29 Hz, 1F), -113.51 (dd, J = 274.52, 14.66 Hz, 1F);
HRMS (FAB + ) calcd for C 23 H 28 F 4 O 3 Na (M + Na): 451.1872, Found 451.1875.
[参考例18]化合物(17-A)の合成
Figure JPOXMLDOC01-appb-C000087
                 (17-A)
 DMF溶媒中、前記と同様にして得た化合物(16-A)(0.23g, 0.53 mmol)に対し、硫酸ジメチル(0.2mL, 2.11mmol)と炭酸カリウム(1.14g, 2.19mmol)とを加え、室温で17時間撹拌した。その後、水を加え、ジエチルエーテルを用いて3回抽出を行った。有機層を、無水硫酸ナトリウムを用いて乾燥させた後、濾過を行い、得られた濾液を減圧条件で濃縮した。粗生成物をシリカゲルカラムクロマトグラフィーを用いて、精製を行い、化合物(17-A)を得た。
HRMS (FAB+) calcd for C24H31F4O(M+H): 443.2209, Found 443.2211.
[Reference Example 18] Synthesis of Compound (17-A)
Figure JPOXMLDOC01-appb-C000087
(17-A)
In a DMF solvent, dimethyl sulfate (0.2 mL, 2.11 mmol) and potassium carbonate (1.14 g, 2.19 mmol) are added to the compound (16-A) (0.23 g, 0.53 mmol) obtained in the same manner as described above. Stir at room temperature for 17 hours. Then, water was added and extraction was performed 3 times using diethyl ether. The organic layer was dried using anhydrous sodium sulfate, filtered, and the obtained filtrate was concentrated under reduced pressure. The crude product was purified using silica gel column chromatography to obtain compound (17-A).
HRMS (FAB + ) calcd for C 24 H 31 F 4 O 3 (M + H): 443.2209, Found 443.2211.
[実施例23]化合物(1b-A)の合成
Figure JPOXMLDOC01-appb-C000088
                 (1b-A)
[Example 23] Synthesis of compound (1b-A)
Figure JPOXMLDOC01-appb-C000088
(1b-A)
Figure JPOXMLDOC01-appb-C000089
 メタノール(10 mL)溶媒中、前記と同様にして得た化合物(17-A)の粗精製物(反応混合物)に対し、炭酸カリウム(1.14 g, 8.24 mmol)を加え、室温で15時間撹拌した。その後、水を加え、減圧条件でメタノールを留去した。得られた溶液を、ジエチルエーテルを用いて3回抽出を行った。有機層を、無水硫酸ナトリウムを用いて乾燥した後に、濾過を行い、濾液を減圧条件で濃縮した。シリカゲルカラムクロマトグラフィーを用いて、単離精製を行った後、ピリジン(3mL)溶媒中、脱アセチル化の粗精製物(反応混合物)に対し、オキシ塩化リン(0.12mL, 1.29mmol)を滴下し、90 °Cで10時間撹拌した。水と10%塩酸を加え、ジエチルエーテルを用いて3回抽出を行った。有機層に対し、無水硫酸ナトリウムを用いて乾燥させた後に、濾過を行い、濾液を減圧条件で濃縮し、43mgの粗生成物を得た。19F NMRにより、粗生成物中に目的物である化合物(1b-A)0.073 mmolの生成を確認した。
1H NMR (CDCl3) δ = 0.91 (t, J = 6.99 Hz, 3 H), 1.00~1.09 (m, 2H), 1.22~1.50 (m, 7H), 1.86~1.91 (m, 4H), 2.45~2.52 (m, 1H), 3.78 (s, 3H), 5.33 (d, J = 6.99 Hz, 1H), 6.31 (d, J= 6.99 Hz, 1H), 7.21~7.43 (m, 4H);
19F NMR (CDCl3, CFCl3) δ =-121.02 (s, 2F),-130.75 (s, 2F);
HRMS (FAB+) calcd for C22H26F4O(M+): 382.1920, Found 382.1913.
Figure JPOXMLDOC01-appb-C000089
To the crude product (reaction mixture) of the compound (17-A) obtained in the same manner as described above in methanol (10 mL), potassium carbonate (1.14 g, 8.24 mmol) was added and stirred at room temperature for 15 hours. . Then, water was added and methanol was distilled off under reduced pressure conditions. The resulting solution was extracted three times with diethyl ether. The organic layer was dried using anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure. After isolation and purification using silica gel column chromatography, phosphorus oxychloride (0.12 mL, 1.29 mmol) was added dropwise to the crude deacetylated product (reaction mixture) in pyridine (3 mL) solvent. And stirred at 90 ° C. for 10 hours. Water and 10% hydrochloric acid were added, and extraction was performed 3 times using diethyl ether. The organic layer was dried using anhydrous sodium sulfate and then filtered, and the filtrate was concentrated under reduced pressure to obtain 43 mg of a crude product. 19 F NMR confirmed the formation of 0.073 mmol of the desired compound (1b-A) in the crude product.
1 H NMR (CDCl 3 ) δ = 0.91 (t, J = 6.99 Hz, 3 H), 1.00 to 1.09 (m, 2H), 1.22 to 1.50 (m, 7H), 1.86 to 1.91 (m, 4H), 2.45 To 2.52 (m, 1H), 3.78 (s, 3H), 5.33 (d, J = 6.99 Hz, 1H), 6.31 (d, J = 6.99 Hz, 1H), 7.21 to 7.43 (m, 4H);
19 F NMR (CDCl 3 , CFCl 3 ) δ = -121.02 (s, 2F), -130.75 (s, 2F);
HRMS (FAB + ) calcd for C 22 H 26 F 4 O (M +): 382.1920, Found 382.1913.
 実施例および発明の詳細な説明における記述を基に、下記化合物を製造することができる。以下の化合物には、実施例に記載した化合物も含まれる。
 なお、以下の式中、-Ph(2F,3F)-は2,3-ジフルオロ-1,4-フェニレン基を表す。-Cy-、-Ph-、-Py(2)-および-Py(3)-は前記と同じ意味を示す。
Based on the description in the examples and detailed description of the invention, the following compounds can be prepared. The compounds described in the examples are also included in the following compounds.
In the following formulae, -Ph (2F, 3F)-represents a 2,3-difluoro-1,4-phenylene group. -Cy-, -Ph-, -Py (2)-and -Py (3)-have the same meaning as described above.
 2環の化合物(m+n+o+p+q+r=1であるもの)としては以下のものが挙げられる。
C3H7-Ph-Cd-C2H5       化合物(1a-B)
C4H9-Ph-CF2O-Cd-OC2H5
C5H11-Ph-Cd-OC2H5
C3H7-Cy-Cd-C2H5
CH2=CH-Cy-Cd-C2H5
C2H5-Py(2)-Cd-C2H5
C3H7-Py(2)-Cd-OC2H5
C3H7-Cd-Py(3)-C2H5
C3H7-Cd-Py(3)-C2H4CH=CH2
CH3-Cd-Ph-C5H11
CH3O-Cd-Ph-C4H9
C3H7-Cd-Ph(2F,3F)-OC2H5
CH3O-Cd-Cy-C5H11
C3H7-Cd-Cy-C2H5
C3H7-Cd-Py(2)-C2H5
C4H9-Cd-Py(2)-C2H4CH=CH2
C3H7-Py(3)-Cd-C2H5
CH2=CHC2H4-Py(3)-Cd-OC2H5
Examples of the bicyclic compound (m + n + o + p + q + r = 1) include the following.
C 3 H 7 -Ph-Cd-C 2 H 5 compound (1a-B)
C 4 H 9 -Ph-CF 2 O-Cd-OC 2 H 5
C 5 H 11 -Ph-Cd-OC 2 H 5
C 3 H 7 -Cy-Cd-C 2 H 5
CH 2 = CH-Cy-Cd-C 2 H 5
C 2 H 5 -Py (2) -Cd-C 2 H 5
C 3 H 7 -Py (2) -Cd-OC 2 H 5
C 3 H 7 -Cd-Py (3) -C 2 H 5
C 3 H 7 -Cd-Py (3) -C 2 H 4 CH = CH 2
CH 3 -Cd-Ph-C 5 H 11
CH 3 O-Cd-Ph-C 4 H 9
C 3 H 7 -Cd-Ph (2F, 3F) -OC 2 H 5
CH 3 O-Cd-Cy-C 5 H 11
C 3 H 7 -Cd-Cy-C 2 H 5
C 3 H 7 -Cd-Py (2) -C 2 H 5
C 4 H 9 -Cd-Py (2) -C 2 H 4 CH = CH 2
C 3 H 7 -Py (3) -Cd-C 2 H 5
CH 2 = CHC 2 H 4 -Py (3) -Cd-OC 2 H 5
 3環の化合物(m+n+o+p+q+r=2であるもの)としては以下のものが挙げられる。
C2H5-Ph-Ph-Cd-OC2H5
C3H7-Ph-Ph-Cd-C2H5   化合物(1-C)
C4H9-Ph-Ph-CH2O-Cd-OC2H5
C5H11-Ph-C≡C-Ph-Cd-OC2H5
C5H11-Ph-Ph(2F,3F)-Cd-OC2H5
C3H7-Cy-Ph-Cd-OCH3       化合物(1b-A)
C3H7-Cy-Ph-Cd-OC2H5
C3H7-Cy-Ph-Cd-C2H5      化合物(1-A)
C3H7-Cy-Ph-CF2O-Cd-C3H7
C4H9-Cy-CH2CH2-Ph-Cd-C2H5
CH=CHC2H4-Cy-Ph-Cd-C2H5
C5H11-Cy-Ph(2F,3F)-Cd-OC2H5
C2H5-Py(2)-Ph-Cd-OCH3
C3H7-Py(2)-Ph-Cd-C2H5
C4H9-Py(3)-Ph-Cd-OC2H5
C5H11-Py(3)-Ph-Cd-CH=CH2
Examples of the tricyclic compound (m + n + o + p + q + r = 2) include the following.
C 2 H 5 -Ph-Ph-Cd-OC 2 H 5
C 3 H 7 -Ph-Ph-Cd-C 2 H 5 compound (1-C)
C 4 H 9 -Ph-Ph-CH 2 O-Cd-OC 2 H 5
C 5 H 11 -Ph-C≡C-Ph-Cd-OC 2 H 5
C 5 H 11 -Ph-Ph (2F, 3F) -Cd-OC 2 H 5
C 3 H 7 -Cy-Ph-Cd-OCH 3    Compound (1b-A)
C 3 H 7 -Cy-Ph-Cd-OC 2 H 5
C 3 H 7 -Cy-Ph-Cd-C 2 H 5 compound (1-A)
C 3 H 7 -Cy-Ph-CF 2 O-Cd-C 3 H 7
C 4 H 9 -Cy-CH 2 CH 2 -Ph-Cd-C 2 H 5
CH = CHC 2 H 4 -Cy-Ph-Cd-C 2 H 5
C 5 H 11 -Cy-Ph (2F, 3F) -Cd-OC 2 H 5
C 2 H 5 -Py (2) -Ph-Cd-OCH 3
C 3 H 7 -Py (2) -Ph-Cd-C 2 H 5
C 4 H 9 -Py (3) -Ph-Cd-OC 2 H 5
C 5 H 11 -Py (3) -Ph-Cd-CH = CH 2
CH3-Ph-Cy-Cd-C3H7
C2H5-Ph-Cy-Cd-OCH3
C3H7-Cy-Cy-Cd-OC2H5
CH=CHC2H4-Cy-Cy-Cd-OC2H5
C5H11-Py(2)-Cy-Cd-C3H7
CH3-Py(2)-Cy-Cd-OCH3
CH2=CH-Py(3)-Cy-Cd-OC2H5
C3H7-Py(3)-Cy-Cd-C3H7
C4H9-Ph-Py(2)-Cd-OC2H5
C5H11-Ph-Py(2)-Cd-OCH3
CH3-Ph-Py(3)-Cd-OC2H5
C2H5-Ph-Py(3)-Cd-OC2H5
C3H7-Cy-Py(2)-Cd-OCH3
CH=CHC2H4-Cy-Py(2)-Cd-OC2H5
C5H11-Cy-Py(3)-Cd-OCH3
CH3-Cy-Py(3)-Cd-C2H5
CH 3 -Ph-Cy-Cd-C 3 H 7
C 2 H 5 -Ph-Cy-Cd-OCH 3
C 3 H 7 -Cy-Cy-Cd-OC 2 H 5
CH = CHC 2 H 4 -Cy-Cy-Cd-OC 2 H 5
C 5 H 11 -Py (2) -Cy-Cd-C 3 H 7
CH 3 -Py (2) -Cy-Cd-OCH 3
CH 2 = CH-Py (3) -Cy-Cd-OC 2 H 5
C 3 H 7 -Py (3) -Cy-Cd-C 3 H 7
C 4 H 9 -Ph-Py (2) -Cd-OC 2 H 5
C 5 H 11 -Ph-Py (2) -Cd-OCH 3
CH 3 -Ph-Py (3) -Cd-OC 2 H 5
C 2 H 5 -Ph-Py (3) -Cd-OC 2 H 5
C 3 H 7 -Cy-Py (2) -Cd-OCH 3
CH = CHC 2 H 4 -Cy-Py (2) -Cd-OC 2 H 5
C 5 H 11 -Cy-Py (3) -Cd-OCH 3
CH 3 -Cy-Py (3) -Cd-C 2 H 5
C2H5-Ph-Cd-Ph-C3H7        化合物(1-B)
C2H5-Ph-CH2O-Cd-Ph-C4H9
C2H5-Ph-Cd-OCH2-Ph-C4H9
C2H5-Ph-Cd-OCF2-Ph-C5H11
C2H5-Ph-Cd-Ph(2F,3F)-C5H11
C3H7-Ph-Cd-Ph-C2H4CH=CH2
C4H9-Ph-Cd-Cy-C5H11
C5H11-Ph-Cd-Cy-OCH3
C5H11-Ph-CH2O-Cd-Cy-CH3
CH3-Ph(2F,3F)-Cd-Py(2)-C2H5
C2H5-Ph-Cd-Py(2)-C3H7
C3H7-Ph-Cd-Py(3)-C4H9
C4H9-Ph-Cd-Py(3)-OCH3
C5H11-Cy-Cd-Cy-C2H5
CH3-Cy-Cd-Cy-C2H4CH=CH2
C2H5-Cy-Cd-Py(2)-C5H11
C3H7-Cy-Cd-Py(2)-CH3
C4H9-Cy-Cd-Py(3)-OC2H5
C5H11-Cy-Cd-Py(3)-C3H7
C 2 H 5 -Ph-Cd-Ph-C 3 H 7 compound (1-B)
C 2 H 5 -Ph-CH 2 O-Cd-Ph-C 4 H 9
C 2 H 5 -Ph-Cd-OCH 2 -Ph-C 4 H 9
C 2 H 5 -Ph-Cd-OCF 2 -Ph-C 5 H 11
C 2 H 5 -Ph-Cd-Ph (2F, 3F) -C 5 H 11
C 3 H 7 -Ph-Cd-Ph-C 2 H 4 CH = CH 2
C 4 H 9 -Ph-Cd-Cy-C 5 H 11
C 5 H 11 -Ph-Cd-Cy-OCH 3
C 5 H 11 -Ph-CH 2 O-Cd-Cy-CH 3
CH 3 -Ph (2F, 3F) -Cd-Py (2) -C 2 H 5
C 2 H 5 -Ph-Cd-Py (2) -C 3 H 7
C 3 H 7 -Ph-Cd-Py (3) -C 4 H 9
C 4 H 9 -Ph-Cd-Py (3) -OCH 3
C 5 H 11 -Cy-Cd-Cy-C 2 H 5
CH 3 -Cy-Cd-Cy-C 2 H 4 CH = CH 2
C 2 H 5 -Cy-Cd-Py (2) -C 5 H 11
C 3 H 7 -Cy-Cd-Py (2) -CH 3
C 4 H 9 -Cy-Cd- Py (3) -OC 2 H 5
C 5 H 11 -Cy-Cd-Py (3) -C 3 H 7
 4環の化合物(m+n+o+p+q+r=3であるもの)としては以下のものが挙げられる。
C3H7-Ph-Ph-Ph-Cd-OC2H5
C3H7-Ph-Ph-Ph(2F,3F)-Cd-OCH3
CH=CHC2H4-Ph-Ph-Ph-Cd-OCH3
C5H11-Cy-Ph-Ph-Cd-OC2H5
CH3-Cy-Ph-Ph(2F,3F)-Cd-OC2H5
CH3-Ph-Ph-Ph-Cd-OCH3
C2H5-Py(2)-Ph-Ph-Cd-C2H5
C3H7-Py(2)-Ph-Ph-Cd-OC2H5
C4H9-Py(3)-Ph-Ph-Cd-OC2H5
C5H11-Py(2)-Ph-Ph-Cd-C3H7
CH3-Ph-Cy-Ph-Cd-OCH3
C2H5-Ph-Cy-Ph-Cd-C2H5
C3H7-Ph-Py(2)-Ph-Cd-OC2H5
CH=CHC2H4-Ph-Py(2)-Ph-Cd-OC2H5
C5H11-Ph-Py(3)-Ph-Cd-OCH3
CH3O-Ph-Py(3)-Ph-Cd-C2H5
C3H7-Ph-Ph-Cy-Cd-OC2H5
C4H9-Ph-Ph-Cy-Cd-C3H7
C5H11-Ph-Ph-Py(2)-Cd-OCH3
CH2=CH-Ph-Ph-Py(2)-Cd-OC2H5
C3H7-Ph-Ph-Py(3)-Cd-OC2H5
C4H9-Ph-Ph-Py(3)-Cd-C3H7
C5H11-Ph-Cy-Py(2)-Cd-OCH3
CH3-Ph-Cy-Py(2)-Cd-C2H5
C2H5-Ph-Cy-Py(3)-Cd-C3H7
C3H7-Ph-Cy-Py(3)-Cd-OC2H5
Examples of the tetracyclic compound (m + n + o + p + q + r = 3) include the following.
C 3 H 7 -Ph-Ph-Ph-Cd-OC 2 H 5
C 3 H 7 -Ph-Ph- Ph (2F, 3F) -Cd-OCH 3
CH = CHC 2 H 4 -Ph-Ph-Ph-Cd-OCH 3
C 5 H 11 -Cy-Ph-Ph-Cd-OC 2 H 5
CH 3 -Cy-Ph-Ph (2F, 3F) -Cd-OC 2 H 5
CH 3 -Ph-Ph-Ph-Cd-OCH 3
C 2 H 5 -Py (2) -Ph-Ph-Cd-C 2 H 5
C 3 H 7 -Py (2) -Ph-Ph-Cd-OC 2 H 5
C 4 H 9 -Py (3) -Ph-Ph-Cd-OC 2 H 5
C 5 H 11 -Py (2) -Ph-Ph-Cd-C 3 H 7
CH 3 -Ph-Cy-Ph-Cd-OCH 3
C 2 H 5 -Ph-Cy- Ph-Cd-C 2 H 5
C 3 H 7 -Ph-Py (2) -Ph-Cd-OC 2 H 5
CH = CHC 2 H 4 -Ph-Py (2) -Ph-Cd-OC 2 H 5
C 5 H 11 -Ph-Py (3) -Ph-Cd-OCH 3
CH 3 O-Ph-Py (3) -Ph-Cd-C 2 H 5
C 3 H 7 -Ph-Ph-Cy-Cd-OC 2 H 5
C 4 H 9 -Ph-Ph-Cy-Cd-C 3 H 7
C 5 H 11 -Ph-Ph-Py (2) -Cd-OCH 3
CH 2 = CH-Ph-Ph-Py (2) -Cd-OC 2 H 5
C 3 H 7 -Ph-Ph-Py (3) -Cd-OC 2 H 5
C 4 H 9 -Ph-Ph- Py (3) -Cd-C 3 H 7
C 5 H 11 -Ph-Cy-Py (2) -Cd-OCH 3
CH 3 -Ph-Cy-Py (2) -Cd-C 2 H 5
C 2 H 5 -Ph-Cy-Py (3) -Cd-C 3 H 7
C 3 H 7 -Ph-Cy-Py (3) -Cd-OC 2 H 5
C4H9-Cy-Cy-Ph-Cd-C2H5
C4H9-Cy-Cy-Ph(2F,3F)-Cd-OC2H5
C5H11-Cy-Cy-Ph-Cd-OC2H5
CH3-Cy-Py(2)-Ph-Cd-OCH3
C2H4-Cy-Py(2)-Ph-Cd-C2H5
C3H7-Cy-Py(2)-Ph-Cd-OC2H5
C4H9-Cy-Py(2)-Ph-Cd-C3H7
C5H11-Cy-Cy-Cy-Cd-OCH3
CH2=CH-Cy-Cy-Cy-Cd-OC2H5
C3H7-Cy-Cy-Py(2)-Cd-OCH3
C4H9-Cy-Cy-Py(2)-Cd-C2H5
C5H11-Cy-Cy-Py(3)-Cd-OC2H5
CH2=CH-Cy-Cy-Py(3)-Cd-OC2H5
C3H7-Cy-Ph-Cy-Cd-OCH3
CH=CHC2H4-Cy-Ph-Cy-Cd-OC2H5
C5H11-Cy-Ph-Py(2)-Cd-OC2H5
CH3-Cy-Ph-Py(2)-Cd-C3H7
C2H5-Cy-Ph-Py(3)-Cd-OCH3
C3H7-Cy-Ph-Py(3)-Cd-C2H5
C 4 H 9 -Cy-Cy-Ph-Cd-C 2 H 5
C 4 H 9 -Cy-Cy-Ph (2F, 3F) -Cd-OC 2 H 5
C 5 H 11 -Cy-Cy-Ph-Cd-OC 2 H 5
CH 3 -Cy-Py (2) -Ph-Cd-OCH 3
C 2 H 4 -Cy-Py (2) -Ph-Cd-C 2 H 5
C 3 H 7 -Cy-Py (2) -Ph-Cd-OC 2 H 5
C 4 H 9 -Cy-Py (2) -Ph-Cd-C 3 H 7
C 5 H 11 -Cy-Cy-Cy-Cd-OCH 3
CH 2 = CH-Cy-Cy-Cy-Cd-OC 2 H 5
C 3 H 7 -Cy-Cy-Py (2) -Cd-OCH 3
C 4 H 9 -Cy-Cy-Py (2) -Cd-C 2 H 5
C 5 H 11 -Cy-Cy-Py (3) -Cd-OC 2 H 5
CH 2 = CH-Cy-Cy-Py (3) -Cd-OC 2 H 5
C 3 H 7 -Cy-Ph-Cy-Cd-OCH 3
CH = CHC 2 H 4 -Cy-Ph-Cy-Cd-OC 2 H 5
C 5 H 11 -Cy-Ph-Py (2) -Cd-OC 2 H 5
CH 3 -Cy-Ph-Py (2) -Cd-C 3 H 7
C 2 H 5 -Cy-Ph-Py (3) -Cd-OCH 3
C 3 H 7 -Cy-Ph-Py (3) -Cd-C 2 H 5
C4H9-Ph-Ph-Cd-Ph-C3H7
C5H11-Ph-Ph-Cd-Ph-C2H4CH=CH2
CH3-Ph-Cy-Cd-Ph-C5H11
C2H5O-Ph-Cy-Cd-Ph-CH3
C3H7-Ph-Py(2)-Cd-Ph-C2H5
C4H9-Ph-Py(2)-Cd-Ph-CH=CH2
C5H11-Ph-Py(3)-Cd-Ph-OC2H5
CH3-Ph-Py(3)-Cd-Ph-C3H7
C2H5-Ph-Ph-Cd-Cy-C4H9
C2H5O-Ph-Ph-Cd-Cy-C5H11
C3H7-Ph-Ph-Cd-Py(2)-CH3
CH2=CHC2H4-Ph-Ph-Cd-Py(2)-C2H5
C5H11-Ph-Ph-Cd-Py(3)-C3H7
CH3-Ph-Ph-Cd-Py(3)-OC2H5
C2H5-Cy-Ph-Cd-Ph-C3H7
C3H7-Cy-Ph-Cd-Ph-OC2H5
C4H9-Py(2)-Ph-Cd-Ph-C3H7
C5H11-Py(2)-Ph-Cd-Ph-C2H4CH=CH2
CH3-Py(3)-Ph-Cd-Ph-C5H11
C2H5O-Py(3)-Ph-Cd-Ph-C5H11
C3H7-Cy-Ph(2F,3F)-Cd-Cy-CH3
C4H9-Cy-Ph-Cd-Cy-OCH3
C5H11-Cy-Ph-Cd-Py(2)-OCH3
C5H11-Cy-Ph-Cd-Py(2)-C2H5
CH3-Cy-Ph-Cd-Py(3)-C3H7
C2H5-Cy-Ph-Cd-Py(3)-C2H4CH=CH2
C2H5-Cy-Cy-Cd-Ph-C5H11
C3H7-Cy-Cy-Cd-Ph-OCH3
C4H9-Cy-Cy-Cd-Cy-C2H5
C5H11-Cy-Cy-Cd-Cy-CH=CH2
CH3-Cy-Cy-Cd-Py(2)-C3H7
C2H5-Cy-Cy-Cd-Py(2)-OC2H5
C3H7-Cy-Cy-Cd-Py(3)-C4H9
CH2=CHC2H4-Cy-Cy-Cd-Py(3)-C5H11
C5H11-Py(2)-Cy-Cd-Ph-CH3
CH3-Py(2)-Cy-Cd-Ph(2F,3F)-OCH3
C2H5-Py(2)-Cy-Cd-Cy-OCH3
C2H5O-Py(2)-Cy-Cd-Cy-C2H5
C3H7-Py(3)-Cy-Cd-Ph-C3H7
C4H9-Py(3)-Cy-Cd-Ph-C2H4CH=CH2
C5H11-Py(3)-Cy-Cd-Cy-C3H7
CH3O-Py(3)-Cy-Cd-Cy-C4H9
C 4 H 9 -Ph-Ph-Cd-Ph-C 3 H 7
C 5 H 11 -Ph-Ph-Cd-Ph-C 2 H 4 CH = CH 2
CH 3 -Ph-Cy-Cd-Ph-C 5 H 11
C 2 H 5 O-Ph-Cy-Cd-Ph-CH 3
C 3 H 7 -Ph-Py (2) -Cd-Ph-C 2 H 5
C 4 H 9 -Ph-Py (2) -Cd-Ph-CH = CH 2
C 5 H 11 -Ph-Py (3) -Cd-Ph-OC 2 H 5
CH 3 -Ph-Py (3) -Cd-Ph-C 3 H 7
C 2 H 5 -Ph-Ph-Cd-Cy-C 4 H 9
C 2 H 5 O-Ph-Ph-Cd-Cy-C 5 H 11
C 3 H 7 -Ph-Ph-Cd-Py (2) -CH 3
CH 2 = CHC 2 H 4 -Ph-Ph-Cd-Py (2) -C 2 H 5
C 5 H 11 -Ph-Ph-Cd-Py (3) -C 3 H 7
CH 3 -Ph-Ph-Cd-Py (3) -OC 2 H 5
C 2 H 5 -Cy-Ph-Cd-Ph-C 3 H 7
C 3 H 7 -Cy-Ph-Cd-Ph-OC 2 H 5
C 4 H 9 -Py (2) -Ph-Cd-Ph-C 3 H 7
C 5 H 11 -Py (2) -Ph-Cd-Ph-C 2 H 4 CH = CH 2
CH 3 -Py (3) -Ph-Cd-Ph-C 5 H 11
C 2 H 5 O-Py (3) -Ph-Cd-Ph-C 5 H 11
C 3 H 7 -Cy-Ph (2F, 3F) -Cd-Cy-CH 3
C 4 H 9 -Cy-Ph-Cd-Cy-OCH 3
C 5 H 11 -Cy-Ph-Cd-Py (2) -OCH 3
C 5 H 11 -Cy-Ph-Cd-Py (2) -C 2 H 5
CH 3 -Cy-Ph-Cd-Py (3) -C 3 H 7
C 2 H 5 -Cy-Ph-Cd-Py (3) -C 2 H 4 CH = CH 2
C 2 H 5 -Cy-Cy- Cd-Ph-C 5 H 11
C 3 H 7 -Cy-Cy-Cd-Ph-OCH 3
C 4 H 9 -Cy-Cy-Cd-Cy-C 2 H 5
C 5 H 11 -Cy-Cy-Cd-Cy-CH = CH 2
CH 3 -Cy-Cy-Cd-Py (2) -C 3 H 7
C 2 H 5 -Cy-Cy-Cd-Py (2) -OC 2 H 5
C 3 H 7 -Cy-Cy-Cd-Py (3) -C 4 H 9
CH 2 = CHC 2 H 4 -Cy-Cy-Cd-Py (3) -C 5 H 11
C 5 H 11 -Py (2) -Cy-Cd-Ph-CH 3
CH 3 -Py (2) -Cy-Cd-Ph (2F, 3F) -OCH 3
C 2 H 5 -Py (2) -Cy-Cd-Cy-OCH 3
C 2 H 5 O-Py (2) -Cy-Cd-Cy-C 2 H 5
C 3 H 7 -Py (3) -Cy-Cd-Ph-C 3 H 7
C 4 H 9 -Py (3) -Cy-Cd-Ph-C 2 H 4 CH = CH 2
C 5 H 11 -Py (3) -Cy-Cd-Cy-C 3 H 7
CH 3 O-Py (3) -Cy-Cd-Cy-C 4 H 9
C2H5-Ph-Py(2)-Ph-Cd-OCH3
C3H7-Ph-Py(2)-Ph-Cd-C2H5
C4H9-Ph-Py(2)-Ph-Cd-OC2H5
C5H11-Ph-Py(2)-Ph-Cd-C3H7
CH3-Ph-Cy-Cy-Cd-OC2H5
C2H5-Ph-Cy-Cy-Cd-C3H7
C3H7-Ph-Py(2)-Cy-Cd-OCH3
C4H9-Ph-Py(2)-Cy-Cd-C2H5
C5H11-Ph-Py(3)-Cy-Cd-OC2H5
CH3-Ph-Py(3)-Cy-Cd-C3H7
C2H5-Py(2)-Ph-Cy-Cd-OCH3
C3H7-Py(2)-Ph-Cy-Cd-C2H5
C4H9-Py(3)-Ph-Cy-Cd-OC2H5
CH2=CHC2H4-Py(2)-Ph-Cy-Cd-OC2H5
C5H11-Cy-Py(2)-Cy-Cd-OCH3
CH3-Cy-Py(2)-Cy-Cd-C2H5
C2H5-Cy-Py(3)-Cy-Cd-OC2H5
C3H7-Cy-Py(3)-Cy-Cd-C3H7
C4H9-Py(2)-Cy-Cy-Cd-OCH3
CH2=CHC2H4-Py(2)-Cy-Cy-Cd-OCH3
C5H11-Py(3)-Cy-Cy-Cd-OC2H5
CH3-Py(3)-Cy-Cy-Cd-C2H5
C2H5-Ph-Cy-Cd-Cy-C3H7
C2H5O-Ph-Cy-Cd-Cy-C3H7
C3H7-Ph-Py(2)-Cd-Cy-C4H9
C4H9-Ph-Py(2)-Cd-Cy-C2H4CH=CH2
C5H11-Ph-Py(2)-Cd-Cy-C5H11
CH3O-Ph-Py(2)-Cd-Cy-C5H11
C2H5-Py(2)-Ph-Cd-Cy-CH3
C2H5O-Py(2)-Ph-Cd-Cy-C2H5
C3H7-Py(3)-Ph-Cd-Cy-C3H7
CH2=CHC2H4-Py(3)-Ph-Cd-Cy-C4H9
C5H11-Ph-Cy-Cd-Py(2)-C5H11
CH2=CH-Ph-Cy-Cd-Py(2)-CH3
C3H7-Ph-Cy-Cd-Py(3)-C2H5
C2H5O-Ph-Cy-Cd-Py(3)-C3H7
C3H7-Cy-Py(2)-Cd-Cy-C4H9
C4H9-Cy-Py(2)-Cd-Cy-OCH3
C5H11-Cy-Py(3)-Cd-Cy-C2H5
C5H11-Cy-Py(3)-Cd-Cy-OC2H5
CH3-Cy-Py(2)-Cd-Ph-C3H7
CH2=CH-Cy-Py(2)-Cd-Ph-C4H9
C3H7-Cy-Py(2)-Cd-Ph-C5H11
CH2=CHC2H4-Cy-Py(2)-Cd-Ph-CH3
C 2 H 5 -Ph-Py (2) -Ph-Cd-OCH 3
C 3 H 7 -Ph-Py (2) -Ph-Cd-C 2 H 5
C 4 H 9 -Ph-Py (2) -Ph-Cd-OC 2 H 5
C 5 H 11 -Ph-Py (2) -Ph-Cd-C 3 H 7
CH 3 -Ph-Cy-Cy-Cd-OC 2 H 5
C 2 H 5 -Ph-Cy-Cy-Cd-C 3 H 7
C 3 H 7 -Ph-Py (2) -Cy-Cd-OCH 3
C 4 H 9 -Ph-Py (2) -Cy-Cd-C 2 H 5
C 5 H 11 -Ph-Py (3) -Cy-Cd-OC 2 H 5
CH 3 -Ph-Py (3) -Cy-Cd-C 3 H 7
C 2 H 5 -Py (2) -Ph-Cy-Cd-OCH 3
C 3 H 7 -Py (2) -Ph-Cy-Cd-C 2 H 5
C 4 H 9 -Py (3) -Ph-Cy-Cd-OC 2 H 5
CH 2 = CHC 2 H 4 -Py (2) -Ph-Cy-Cd-OC 2 H 5
C 5 H 11 -Cy-Py (2) -Cy-Cd-OCH 3
CH 3 -Cy-Py (2) -Cy-Cd-C 2 H 5
C 2 H 5 -Cy-Py (3) -Cy-Cd-OC 2 H 5
C 3 H 7 -Cy-Py (3) -Cy-Cd-C 3 H 7
C 4 H 9 -Py (2) -Cy-Cy-Cd-OCH 3
CH 2 = CHC 2 H 4 -Py (2) -Cy-Cy-Cd-OCH 3
C 5 H 11 -Py (3) -Cy-Cy-Cd-OC 2 H 5
CH 3 -Py (3) -Cy-Cy-Cd-C 2 H 5
C 2 H 5 -Ph-Cy-Cd-Cy-C 3 H 7
C 2 H 5 O-Ph-Cy-Cd-Cy-C 3 H 7
C 3 H 7 -Ph-Py (2) -Cd-Cy-C 4 H 9
C 4 H 9 -Ph-Py (2) -Cd-Cy-C 2 H 4 CH = CH 2
C 5 H 11 -Ph-Py (2) -Cd-Cy-C 5 H 11
CH 3 O-Ph-Py (2) -Cd-Cy-C 5 H 11
C 2 H 5 -Py (2) -Ph-Cd-Cy-CH 3
C 2 H 5 O-Py (2) -Ph-Cd-Cy-C 2 H 5
C 3 H 7 -Py (3) -Ph-Cd-Cy-C 3 H 7
CH 2 = CHC 2 H 4 -Py (3) -Ph-Cd-Cy-C 4 H 9
C 5 H 11 -Ph-Cy-Cd-Py (2) -C 5 H 11
CH 2 = CH-Ph-Cy-Cd-Py (2) -CH 3
C 3 H 7 -Ph-Cy-Cd-Py (3) -C 2 H 5
C 2 H 5 O-Ph-Cy-Cd-Py (3) -C 3 H 7
C 3 H 7 -Cy-Py (2) -Cd-Cy-C 4 H 9
C 4 H 9 -Cy-Py (2) -Cd-Cy-OCH 3
C 5 H 11 -Cy-Py (3) -Cd-Cy-C 2 H 5
C 5 H 11 -Cy-Py (3) -Cd-Cy-OC 2 H 5
CH 3 -Cy-Py (2) -Cd-Ph-C 3 H 7
CH 2 = CH-Cy-Py (2) -Cd-Ph-C 4 H 9
C 3 H 7 -Cy-Py (2) -Cd-Ph-C 5 H 11
CH 2 = CHC 2 H 4 -Cy-Py (2) -Cd-Ph-CH 3
 5環の化合物(m+n+o+p+q+r=4であるもの)としては以下のものが挙げられる。
C3H7-Ph-Ph-Ph-Ph-Cd-OC2H5
C4H9-Ph-Ph-Ph-Cy-Cd-OC2H5
C5H11-Ph-Ph-Ph-Py(2)-Cd-OCH3
CH3-Ph-Ph-Ph-Py(3)-Cd-OCH3
C2H5-Ph-Ph-Cy-Ph(2F,3F)-Cd-OCH3
C3H7-Ph-Ph-Py(2)-Ph-Cd-OC2H5
C4H9-Ph-Ph-Py(3)-Ph-Cd-OC2H5
C5H11-Ph-Cy-Ph-Ph-Cd-OC2H5
CH3-Ph-Ph(2)-Ph-Ph-Cd-OCH3
C2H5-Ph-Py(3)-Ph-Ph-Cd-OC2H5
C3H7-Cy-Ph-Ph-Ph-Cd-OC2H5
C4H9-Py(2)-Ph-Ph-Ph-Cd-OC2H5
C5H11-Py(3)-Ph-Ph-Ph-Cd-OC2H5
CH3-Ph-Ph-Cy-Cy-Cd-OCH3
C2H5-Ph-Ph-Py(2)-Cy-Cd-OCH3
C3H7-Ph-Ph-Py(3)-Cy-Cd-OC2H5
C4H9-Ph-Cy-Ph-Cy-Cd-OC2H5
C5H11-Ph-Py(2)-Ph-Cy-Cd-OCH3
CH3-Ph-Py(3)-Ph-Cy-Cd-OCH3
Examples of the pentacyclic compound (m + n + o + p + q + r = 4) include the following.
C 3 H 7 -Ph-Ph-Ph-Ph-Cd-OC 2 H 5
C 4 H 9 -Ph-Ph-Ph-Cy-Cd-OC 2 H 5
C 5 H 11 -Ph-Ph-Ph-Py (2) -Cd-OCH 3
CH 3 -Ph-Ph-Ph-Py (3) -Cd-OCH 3
C 2 H 5 -Ph-Ph-Cy-Ph (2F, 3F) -Cd-OCH 3
C 3 H 7 -Ph-Ph-Py (2) -Ph-Cd-OC 2 H 5
C 4 H 9 -Ph-Ph-Py (3) -Ph-Cd-OC 2 H 5
C 5 H 11 -Ph-Cy-Ph-Ph-Cd-OC 2 H 5
CH 3 -Ph-Ph (2) -Ph-Ph-Cd-OCH 3
C 2 H 5 -Ph-Py (3) -Ph-Ph-Cd-OC 2 H 5
C 3 H 7 -Cy-Ph-Ph-Ph-Cd-OC 2 H 5
C 4 H 9 -Py (2) -Ph-Ph-Ph-Cd-OC 2 H 5
C 5 H 11 -Py (3) -Ph-Ph-Ph-Cd-OC 2 H 5
CH 3 -Ph-Ph-Cy-Cy-Cd-OCH 3
C 2 H 5 -Ph-Ph-Py (2) -Cy-Cd-OCH 3
C 3 H 7 -Ph-Ph-Py (3) -Cy-Cd-OC 2 H 5
C 4 H 9 -Ph-Cy-Ph-Cy-Cd-OC 2 H 5
C 5 H 11 -Ph-Py (2) -Ph-Cy-Cd-OCH 3
CH 3 -Ph-Py (3) -Ph-Cy-Cd-OCH 3
C2H5-Cy-Ph-Ph-Cy-Cd-OCH3
C3H7-Cy-Py(2)-Ph-Cy-Cd-OCH3
C4H9-Cy-Py(3)-Ph-Cy-Cd-OC2H5
C5H11-Ph-Ph-Cy-Py(2)-Cd-OC2H5
CH3-Ph-Cy-Ph-Py(2)-Cd-OC2H5
C2H5-Cy-Ph-Ph-Py(2)-Cd-OCH3
C3H7-Ph-Ph-Cy-Py(3)-Cd-OC2H5
C4H9-Ph-Cy-Ph-Py(3)-Cd-OC2H5
C5H11-Cy-Ph-Ph-Py(3)-Cd-OC2H5
CH3-Cy-Cy-Cy-Cy-Cd-OC2H5
C2H5-Cy-Cy-Cy-Ph-Cd-OC2H5
C3H7-Cy-Cy-Cy-Py(2)-Cd-OC2H5
C4H9-Cy-Cy-Cy-Py(3)-Cd-OC2H5
C5H11-Cy-Cy-Ph-Cy-Cd-OCH3
CH3-Cy-Cy-Py(2)-Cy-Cd-OC2H5
C2H5-Cy-Cy-Py(3)-Cy-Cd-OC3H7
C3H7-Cy-Ph-Cy-Cy-Cd-OC2H5
C4H9-Cy-Py(2)-Cy-Cy-Cd-OC2H5
C5H11-Cy-Py(3)-Cy-Cy-Cd-OCH3
C 2 H 5 -Cy-Ph-Ph-Cy-Cd-OCH 3
C 3 H 7 -Cy-Py (2) -Ph-Cy-Cd-OCH 3
C 4 H 9 -Cy-Py (3) -Ph-Cy-Cd-OC 2 H 5
C 5 H 11 -Ph-Ph-Cy-Py (2) -Cd-OC 2 H 5
CH 3 -Ph-Cy-Ph-Py (2) -Cd-OC 2 H 5
C 2 H 5 -Cy-Ph-Ph-Py (2) -Cd-OCH 3
C 3 H 7 -Ph-Ph-Cy-Py (3) -Cd-OC 2 H 5
C 4 H 9 -Ph-Cy-Ph-Py (3) -Cd-OC 2 H 5
C 5 H 11 -Cy-Ph-Ph-Py (3) -Cd-OC 2 H 5
CH 3 -Cy-Cy-Cy-Cy-Cd-OC 2 H 5
C 2 H 5 -Cy-Cy-Cy-Ph-Cd-OC 2 H 5
C 3 H 7 -Cy-Cy-Cy-Py (2) -Cd-OC 2 H 5
C 4 H 9 -Cy-Cy-Cy-Py (3) -Cd-OC 2 H 5
C 5 H 11 -Cy-Cy-Ph-Cy-Cd-OCH 3
CH 3 -Cy-Cy-Py (2) -Cy-Cd-OC 2 H 5
C 2 H 5 -Cy-Cy-Py (3) -Cy-Cd-OC 3 H 7
C 3 H 7 -Cy-Ph-Cy-Cy-Cd-OC 2 H 5
C 4 H 9 -Cy-Py (2) -Cy-Cy-Cd-OC 2 H 5
C 5 H 11 -Cy-Py (3) -Cy-Cy-Cd-OCH 3
CH3-Ph-Cy-Cy-Cy-Cd-OCH3
C2H5-Py(2)-Cy-Cy-Cy-Cd-OCH3
C3H7-Py(2)-Cy-Cy-Cy-Cd-OC2H5
C4H9-Cy-Cy-Ph-Ph-Cd-OC2H5
C5H11-Cy-Cy-Py(2)-Ph(2F,3F)-Cd-OC2H5
CH3-Cy-Cy-Py(3)-Ph-Cd-OC2H5
C2H5-Cy-Ph-Cy-Ph-Cd-OCH3
C3H7-Cy-Py(2)-Cy-Ph-Cd-OCH3
C4H9-Cy-Py(3)-Cy-Ph-Cd-C2H5
C5H11-Ph-Cy-Cy-Ph-Cd-OC2H5
CH3-Py(2)-Cy-Cy-Ph-Cd-OC2H5
C2H5-Py(2)-Cy-Cy-Ph-Cd-OC2H5
C3H7-Cy-Cy-Ph-Py(2)-Cd-OCH3
C4H9-Cy-Ph-Cy-Py(2)-Cd-OCH3
C5H11-Ph-Cy-Cy-Py(2)-Cd-OCH3
CH3-Cy-Cy-Ph-Py(3)-Cd-OC2H5
C2H5-Cy-Ph-Cy-Py(3)-Cd-OC2H5
C3H7-Ph-Cy-Cy-Py(3)-Cd-OC2H5
C4H9-Ph-Ph-Ph-Cd-Ph-C3H7
C5H11-Ph-Ph-Ph(2F,3F)-Cd-Cy-C4H9
CH3-Ph-Ph-Ph-Cd-Py(2)-C5H11
C2H5-Ph-Ph-Ph-Cd-Py(3)-CH3
CH 3 -Ph-Cy-Cy-Cy-Cd-OCH 3
C 2 H 5 -Py (2) -Cy-Cy-Cy-Cd-OCH 3
C 3 H 7 -Py (2) -Cy-Cy-Cy-Cd-OC 2 H 5
C 4 H 9 -Cy-Cy-Ph-Ph-Cd-OC 2 H 5
C 5 H 11 -Cy-Cy-Py (2) -Ph (2F, 3F) -Cd-OC 2 H 5
CH 3 -Cy-Cy-Py (3) -Ph-Cd-OC 2 H 5
C 2 H 5 -Cy-Ph-Cy-Ph-Cd-OCH 3
C 3 H 7 -Cy-Py (2) -Cy-Ph-Cd-OCH 3
C 4 H 9 -Cy-Py (3) -Cy-Ph-Cd-C 2 H 5
C 5 H 11 -Ph-Cy-Cy-Ph-Cd-OC 2 H 5
CH 3 -Py (2) -Cy-Cy-Ph-Cd-OC 2 H 5
C 2 H 5 -Py (2) -Cy-Cy-Ph-Cd-OC 2 H 5
C 3 H 7 -Cy-Cy-Ph-Py (2) -Cd-OCH 3
C 4 H 9 -Cy-Ph-Cy-Py (2) -Cd-OCH 3
C 5 H 11 -Ph-Cy-Cy-Py (2) -Cd-OCH 3
CH 3 -Cy-Cy-Ph-Py (3) -Cd-OC 2 H 5
C 2 H 5 -Cy-Ph-Cy-Py (3) -Cd-OC 2 H 5
C 3 H 7 -Ph-Cy-Cy-Py (3) -Cd-OC 2 H 5
C 4 H 9 -Ph-Ph-Ph-Cd-Ph-C 3 H 7
C 5 H 11 -Ph-Ph-Ph (2F, 3F) -Cd-Cy-C 4 H 9
CH 3 -Ph-Ph-Ph-Cd-Py (2) -C 5 H 11
C 2 H 5 -Ph-Ph-Ph-Cd-Py (3) -CH 3
C3H7-Ph-Ph-Cy-Cd-Ph-C2H5
C4H9-Ph-Ph-Py(2)-Cd-Ph-C2H5
C5H11-Ph-Ph-Py(3)-Cd-Ph-C3H7
CH3-Ph-Cy-Ph-Cd-Ph-C4H9
C2H5-Ph-Py(2)-Ph-Cd-Ph-C5H11
C3H7-Ph-Py(3)-Ph-Cd-Ph-CH3
C4H9-Cy-Ph-Ph-Cd-Ph-C2H5
C5H11-Py(2)-Ph-Ph-Cd-Ph-C3H7
CH3-Py(3)-Ph-Ph-Cd-Ph-C4H9
C2H5-Ph-Ph-Cy-Cd-Cy-C5H11
C3H7-Ph-Ph-Py(2)-Cd-Cy-C5H11
C4H9-Ph-Ph-Py(3)-Cd-Cy-CH3
C5H11-Ph-Cy-Ph-Cd-Cy-C2H5
CH3-Ph-Py(2)-Ph-Cd-Cy-C3H7
C2H5-Ph-Py(3)-Ph(2F,3F)-Cd-Cy-C4H9
C3H7-Cy-Ph-Ph-Cd-Cy-C5H11
C4H9-Py(2)-Ph-Ph-Cd-Cy-CH3
C5H11-Py(3)-Ph-Ph-Cd-Cy-C2H5
CH3-Ph-Ph-Cy-Cd-Py(2)-C3H7
C2H5-Ph-Cy-Ph-Cd-Py(2)-C4H9
C3H7-Cy-Ph-Ph-Cd-Py(2)-C5H11
C4H9-Ph-Ph-Cy-Cd-Py(3)-CH3
C5H11-Ph-Cy-Ph-Cd-Py(3)-C2H5
CH3-Cy-Ph-Ph-Cd-Py(3)-C3H7
C 3 H 7 -Ph-Ph-Cy-Cd-Ph-C 2 H 5
C 4 H 9 -Ph-Ph-Py (2) -Cd-Ph-C 2 H 5
C 5 H 11 -Ph-Ph-Py (3) -Cd-Ph-C 3 H 7
CH 3 -Ph-Cy-Ph-Cd-Ph-C 4 H 9
C 2 H 5 -Ph-Py (2) -Ph-Cd-Ph-C 5 H 11
C 3 H 7 -Ph-Py (3) -Ph-Cd-Ph-CH 3
C 4 H 9 -Cy-Ph-Ph-Cd-Ph-C 2 H 5
C 5 H 11 -Py (2) -Ph-Ph-Cd-Ph-C 3 H 7
CH 3 -Py (3) -Ph-Ph-Cd-Ph-C 4 H 9
C 2 H 5 -Ph-Ph-Cy-Cd-Cy-C 5 H 11
C 3 H 7 -Ph-Ph-Py (2) -Cd-Cy-C 5 H 11
C 4 H 9 -Ph-Ph-Py (3) -Cd-Cy-CH 3
C 5 H 11 -Ph-Cy-Ph-Cd-Cy-C 2 H 5
CH 3 -Ph-Py (2) -Ph-Cd-Cy-C 3 H 7
C 2 H 5 -Ph-Py (3) -Ph (2F, 3F) -Cd-Cy-C 4 H 9
C 3 H 7 -Cy-Ph-Ph-Cd-Cy-C 5 H 11
C 4 H 9 -Py (2) -Ph-Ph-Cd-Cy-CH 3
C 5 H 11 -Py (3) -Ph-Ph-Cd-Cy-C 2 H 5
CH 3 -Ph-Ph-Cy-Cd-Py (2) -C 3 H 7
C 2 H 5 -Ph-Cy-Ph-Cd-Py (2) -C 4 H 9
C 3 H 7 -Cy-Ph-Ph-Cd-Py (2) -C 5 H 11
C 4 H 9 -Ph-Ph-Cy-Cd-Py (3) -CH 3
C 5 H 11 -Ph-Cy-Ph-Cd-Py (3) -C 2 H 5
CH 3 -Cy-Ph-Ph-Cd-Py (3) -C 3 H 7
C2H5-Cy-Cy-Cy-Cd-Cy-C4H9
C3H7-Cy-Cy-Cy-Cd-Ph-C5H11
C4H9-Cy-Cy-Cy-Cd-Py(2)-CH3
C5H11-Cy-Cy-Cy-Cd-Py(3)-C2H5
CH3-Cy-Cy-Ph-Cd-Cy-C2H5
C2H5-Cy-Cy-Py(2)-Cd-Cy-C3H7
C3H7-Cy-Cy-Py(3)-Cd-Cy-C4H9
C4H9-Cy-Ph-Cy-Cd-Cy-C5H11
C5H11-Cy-Py(2)-Cy-Cd-Cy-CH3
CH3-Cy-Py(2)-Cy-Cd-Cy-C2H5
C2H5-Ph-Cy-Cy-Cd-Cy-C3H7
C3H7-Py(2)-Cy-Cy-Cd-Cy-C4H9
C4H9-Py(3)-Cy-Cy-Cd-Cy-C5H11
C5H11-Cy-Cy-Ph-Cd-Ph-CH3
CH3-Cy-Cy-Py(2)-Cd-Ph-C2H5
C2H5-Cy-Cy-Py(3)-Cd-Ph-C3H7
C3H7-Cy-Ph-Cy-Cd-Ph-C2H5
C4H9-Cy-Py(2)-Cy-Cd-Ph-CH3
C5H11-Cy-Py(3)-Cy-Cd-Ph-C2H5
CH3-Ph-Cy-Cy-Cd-Ph-C3H7
C2H5-Py(2)-Cy-Cy-Cd-Ph-C4H9
C3H7-Py(3)-Cy-Cy-Cd-Ph-C5H11
C4H9-Cy-Cy-Ph-Cd-Py(2)-CH3
C5H11-Cy-Ph-Cy-Cd-Py(2)-C2H5
CH3-Ph-Cy-Cy-Cd-Py(2)-C3H7
C2H5-Cy-Cy-Ph-Cd-Py(3)-C4H9
C3H7-Cy-Ph-Cy-Cd-Py(3)-C5H11
C4H9-Ph-Cy-Cy-Cd-Py(3)-CH3
C 2 H 5 -Cy-Cy-Cy-Cd-Cy-C 4 H 9
C 3 H 7 -Cy-Cy-Cy-Cd-Ph-C 5 H 11
C 4 H 9 -Cy-Cy-Cy-Cd-Py (2) -CH 3
C 5 H 11 -Cy-Cy-Cy-Cd-Py (3) -C 2 H 5
CH 3 -Cy-Cy-Ph-Cd-Cy-C 2 H 5
C 2 H 5 -Cy-Cy-Py (2) -Cd-Cy-C 3 H 7
C 3 H 7 -Cy-Cy-Py (3) -Cd-Cy-C 4 H 9
C 4 H 9 -Cy-Ph-Cy-Cd-Cy-C 5 H 11
C 5 H 11 -Cy-Py (2) -Cy-Cd-Cy-CH 3
CH 3 -Cy-Py (2) -Cy-Cd-Cy-C 2 H 5
C 2 H 5 -Ph-Cy-Cy-Cd-Cy-C 3 H 7
C 3 H 7 -Py (2) -Cy-Cy-Cd-Cy-C 4 H 9
C 4 H 9 -Py (3) -Cy-Cy-Cd-Cy-C 5 H 11
C 5 H 11 -Cy-Cy-Ph-Cd-Ph-CH 3
CH 3 -Cy-Cy-Py (2) -Cd-Ph-C 2 H 5
C 2 H 5 -Cy-Cy-Py (3) -Cd-Ph-C 3 H 7
C 3 H 7 -Cy-Ph-Cy-Cd-Ph-C 2 H 5
C 4 H 9 -Cy-Py (2) -Cy-Cd-Ph-CH 3
C 5 H 11 -Cy-Py (3) -Cy-Cd-Ph-C 2 H 5
CH 3 -Ph-Cy-Cy-Cd-Ph-C 3 H 7
C 2 H 5 -Py (2) -Cy-Cy-Cd-Ph-C 4 H 9
C 3 H 7 -Py (3) -Cy-Cy-Cd-Ph-C 5 H 11
C 4 H 9 -Cy-Cy-Ph-Cd-Py (2) -CH 3
C 5 H 11 -Cy-Ph-Cy-Cd-Py (2) -C 2 H 5
CH 3 -Ph-Cy-Cy-Cd-Py (2) -C 3 H 7
C 2 H 5 -Cy-Cy-Ph-Cd-Py (3) -C 4 H 9
C 3 H 7 -Cy-Ph-Cy-Cd-Py (3) -C 5 H 11
C 4 H 9 -Ph-Cy-Cy-Cd-Py (3) -CH 3
C5H11-Ph-Ph-Cd-Ph-Ph-C2H5
CH3-Ph-Ph-Cd-Ph-Cy-C3H7
C2H5-Ph-Ph-Cd-Ph(2F,3F)-Py(2)-C4H9
C3H7-Ph-Ph-Cd-Ph-Py(3)-C5H11
C4H9-Ph-Ph-Cd-Cy-Ph-CH3
C5H11-Ph-Ph-Cd-Py(2)-Ph-C2H5
CH3-Ph-Ph-Cd-Py(3)-Ph-C3H7
C2H5-Ph-Cy-Cd-Ph-Ph-C4H9
C3H7-Ph-Py(2)-Cd-Ph-Ph-C5H11
C4H9-Ph-Py(3)-Cd-Ph-Ph-CH3
C5H11-Cy-Ph-Cd-Ph-Ph-C2H5
CH3-Py(2)-Ph-Cd-Ph-Ph-C3H7
C2H5-Py(3)-Ph-Cd-Ph-Ph-C4H9
C3H7-Ph-Ph-Cd-Cy-Cy-C2H5
C4H9-Ph-Ph-Cd-Py(2)-Cy-C3H7
C5H11-Ph-Ph-Cd-Py(3)-Cy-C4H9
CH3-Ph-Cy-Cd-Ph-Cy-C5H11
C2H5-Ph-Py(2)-Cd-Ph-Cy-CH3
C3H7-Ph-Py(3)-Cd-Ph-Cy-C2H5
C4H9-Cy-Ph-Cd-Ph-Cy-C3H7
C5H11-Py(2)-Ph-Cd-Ph-Cy-C4H9
CH3-Py(3)-Ph-Cd-Ph-Cy-C5H11
C2H5-Ph-Ph-Cd-Cy-Py(2)-C3H7
C3H7-Ph-Cy-Cd-Ph-Py(2)-C4H9
C4H9-Cy-Ph-Cd-Ph-Py(2)-C5H11
C5H11-Ph-Ph-Cd-Cy-Py(3)-CH3
CH3-Ph-Cy-Cd-Ph-Py(3)-C2H5
C2H5-Cy-Ph-Cd-Ph-Py(3)-C3H7
C 5 H 11 -Ph-Ph-Cd-Ph-Ph-C 2 H 5
CH 3 -Ph-Ph-Cd-Ph-Cy-C 3 H 7
C 2 H 5 -Ph-Ph-Cd-Ph (2F, 3F) -Py (2) -C 4 H 9
C 3 H 7 -Ph-Ph-Cd-Ph-Py (3) -C 5 H 11
C 4 H 9 -Ph-Ph-Cd-Cy-Ph-CH 3
C 5 H 11 -Ph-Ph-Cd-Py (2) -Ph-C 2 H 5
CH 3 -Ph-Ph-Cd-Py (3) -Ph-C 3 H 7
C 2 H 5 -Ph-Cy-Cd-Ph-Ph-C 4 H 9
C 3 H 7 -Ph-Py (2) -Cd-Ph-Ph-C 5 H 11
C 4 H 9 -Ph-Py (3) -Cd-Ph-Ph-CH 3
C 5 H 11 -Cy-Ph-Cd-Ph-Ph-C 2 H 5
CH 3 -Py (2) -Ph-Cd-Ph-Ph-C 3 H 7
C 2 H 5 -Py (3) -Ph-Cd-Ph-Ph-C 4 H 9
C 3 H 7 -Ph-Ph-Cd-Cy-Cy-C 2 H 5
C 4 H 9 -Ph-Ph-Cd-Py (2) -Cy-C 3 H 7
C 5 H 11 -Ph-Ph-Cd-Py (3) -Cy-C 4 H 9
CH 3 -Ph-Cy-Cd-Ph-Cy-C 5 H 11
C 2 H 5 -Ph-Py (2) -Cd-Ph-Cy-CH 3
C 3 H 7 -Ph-Py (3) -Cd-Ph-Cy-C 2 H 5
C 4 H 9 -Cy-Ph-Cd-Ph-Cy-C 3 H 7
C 5 H 11 -Py (2) -Ph-Cd-Ph-Cy-C 4 H 9
CH 3 -Py (3) -Ph-Cd-Ph-Cy-C 5 H 11
C 2 H 5 -Ph-Ph-Cd-Cy-Py (2) -C 3 H 7
C 3 H 7 -Ph-Cy-Cd-Ph-Py (2) -C 4 H 9
C 4 H 9 -Cy-Ph-Cd-Ph-Py (2) -C 5 H 11
C 5 H 11 -Ph-Ph-Cd-Cy-Py (3) -CH 3
CH 3 -Ph-Cy-Cd-Ph-Py (3) -C 2 H 5
C 2 H 5 -Cy-Ph-Cd-Ph-Py (3) -C 3 H 7
C3H7-Cy-Cy-Cd-Cy-Cy-C2H5
C4H9-Cy-Cy-Cd-Cy-Ph-C3H7
C5H11-Cy-Cy-Cd-Cy-Py(2)-C4H9
CH3-Cy-Cy-Cd-Cy-Py(3)-C5H11
C2H5-Cy-Cy-Cd-Ph-Cy-CH3
C3H7-Cy-Cy-Cd-Py(2)-Cy-C2H5
C4H9-Cy-Cy-Cd-Py(3)-Cy-C3H7
C5H11-Cy-Cy-Cd-Ph-Ph-C4H9
CH3-Cy-Cy-Cd-Py(2)-Ph-C5H11
C2H5-Cy-Cy-Cd-Py(3)-Ph-CH3
C3H7-Cy-Ph-Cd-Cy-Ph-C2H5
C4H9-Cy-Py(2)-Cd-Cy-Ph-C3H7
C5H11-Cy-Py(3)-Cd-Cy-Ph-C4H9
CH3-Ph-Cy-Cd-Cy-Ph-C5H11
C2H5-Py(2)-Cy-Cd-Cy-Ph-CH3
C3H7-Py(3)-Cy-Cd-Cy-Ph-C2H5
C3H7-Cy-Cy-Cd-Ph-Py(2)-C5H11
C4H9-Cy-Ph-Cd-Cy-Py(2)-CH3
C5H11-Ph-Cy-Cd-Cy-Py(2)-C2H5
CH3-Cy-Cy-Cd-Ph-Py(3)-C3H7
C2H5-Cy-Ph-Cd-Cy-Py(3)-C4H9
C3H7-Ph-Cy-Cd-Cy-Py(3)-C5H11
C 3 H 7 -Cy-Cy-Cd-Cy-Cy-C 2 H 5
C 4 H 9 -Cy-Cy-Cd-Cy-Ph-C 3 H 7
C 5 H 11 -Cy-Cy-Cd-Cy-Py (2) -C 4 H 9
CH 3 -Cy-Cy-Cd-Cy-Py (3) -C 5 H 11
C 2 H 5 -Cy-Cy-Cd-Ph-Cy-CH 3
C 3 H 7 -Cy-Cy-Cd-Py (2) -Cy-C 2 H 5
C 4 H 9 -Cy-Cy-Cd-Py (3) -Cy-C 3 H 7
C 5 H 11 -Cy-Cy-Cd-Ph-Ph-C 4 H 9
CH 3 -Cy-Cy-Cd-Py (2) -Ph-C 5 H 11
C 2 H 5 -Cy-Cy-Cd-Py (3) -Ph-CH 3
C 3 H 7 -Cy-Ph-Cd-Cy-Ph-C 2 H 5
C 4 H 9 -Cy-Py (2) -Cd-Cy-Ph-C 3 H 7
C 5 H 11 -Cy-Py (3) -Cd-Cy-Ph-C 4 H 9
CH 3 -Ph-Cy-Cd-Cy-Ph-C 5 H 11
C 2 H 5 -Py (2) -Cy-Cd-Cy-Ph-CH 3
C 3 H 7 -Py (3) -Cy-Cd-Cy-Ph-C 2 H 5
C 3 H 7 -Cy-Cy-Cd-Ph-Py (2) -C 5 H 11
C 4 H 9 -Cy-Ph-Cd-Cy-Py (2) -CH 3
C 5 H 11 -Ph-Cy-Cd-Cy-Py (2) -C 2 H 5
CH 3 -Cy-Cy-Cd-Ph-Py (3) -C 3 H 7
C 2 H 5 -Cy-Ph-Cd-Cy-Py (3) -C 4 H 9
C 3 H 7 -Ph-Cy-Cd-Cy-Py (3) -C 5 H 11
 本発明の化合物は、新規なΔε負の機能発現環構造を有し、汎用されている2,3-ジフルオロフェニル基を有する化合物と比べても、Δεが負に大きいことが分かった。また、化合物を構成する環基、置換基および連結基を適宜選択することにより、本発明の化合物は、広い動作温度範囲等、液晶素子に要求される様々な性能を満たす液晶組成物を調製できると考えられる。また、本発明の製造方法により、本発明の化合物を容易に製造できることも分かった。 The compound of the present invention has a novel Δε negative function-expressing ring structure, and it has been found that Δε is negatively larger than that of a widely used compound having a 2,3-difluorophenyl group. Further, by appropriately selecting the ring group, substituent and linking group constituting the compound, the compound of the present invention can prepare a liquid crystal composition satisfying various performances required for a liquid crystal element such as a wide operating temperature range. it is conceivable that. Moreover, it turned out that the compound of this invention can be easily manufactured with the manufacturing method of this invention.

Claims (9)

  1.  下記式(1)で表される含フッ素化合物。
    Figure JPOXMLDOC01-appb-C000001
                              (1)
     式(1)中の記号は、以下の意味を示す。
    1およびR2:相互に独立して、水素原子、ハロゲン原子、または炭素数1~18のアルキル基であり、該アルキル基中、1つ以上の水素原子はハロゲン原子で置換されていてもよく、炭素-炭素原子間または該基の結合末端にエーテル性酸素原子またはチオエーテル性硫黄原子が挿入されていてもよく、1つ以上の-CH2CH-は-CH=CH-または-C≡C-で置換されていてもよい。
    1、A2、A3、A4、A5およびA6:相互に独立して、トランス-1,4-シクロへキシレン基、1,4-シクロヘキセニレン基、1,3-シクロブチレン基、1,2-シクロプロピレン基、ナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、デカヒドロナフタレン-2,6-ジイル基または1,4-フェニレン基であり、これら各基中、1つ以上の水素原子はハロゲン原子で置換されていてもよく、1つまたは2つの=CH-は窒素原子で置換されていてもよく、1つまたは2つの-CH2-はエーテル性酸素原子またはチオエーテル性硫黄原子で置換されていてもよい。
    1、Z2、Z3、Z4、Z5およびZ6:相互に独立して、単結合または炭素数1~4のアルキレン基であり、該アルキレン基中、1つ以上の水素原子はフッ素原子で置換されていてもよく、1つ以上の-CH-はエーテル性酸素原子またはチオエーテル性硫黄原子で置換されていてもよい。また、1つ以上の-CH2CH-は-CH=CH-または-C≡C-で置換されていてもよく、1つの-CH2CH-は-COO-または-OCO-で置換されていてもよい。
    m、n、o、p、qおよびr:相互に独立して0または1である。ただし、0≦m+n+o+p+q+r≦4。
    A fluorine-containing compound represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (1)
    The symbol in Formula (1) shows the following meanings.
    R 1 and R 2 are each independently a hydrogen atom, a halogen atom, or an alkyl group having 1 to 18 carbon atoms, wherein one or more hydrogen atoms may be substituted with a halogen atom In general, an etheric oxygen atom or a thioetheric sulfur atom may be inserted between carbon-carbon atoms or at the bond terminal of the group, and one or more —CH 2 CH 2 — may be —CH═CH— or —C It may be substituted with ≡C-.
    A 1 , A 2 , A 3 , A 4 , A 5 and A 6 : independently of each other, trans-1,4-cyclohexylene group, 1,4-cyclohexenylene group, 1,3-cyclobutylene Group, 1,2-cyclopropylene group, naphthalene-2,6-diyl group, 1,2,3,4-tetrahydronaphthalene-2,6-diyl group, decahydronaphthalene-2,6-diyl group, or 1, 4-phenylene group, and in each of these groups, one or more hydrogen atoms may be substituted with a halogen atom, and one or two ═CH— may be substituted with a nitrogen atom. Alternatively, two —CH 2 — may be substituted with an etheric oxygen atom or a thioetheric sulfur atom.
    Z 1 , Z 2 , Z 3 , Z 4 , Z 5 and Z 6 are each independently a single bond or an alkylene group having 1 to 4 carbon atoms, in which one or more hydrogen atoms are It may be substituted with a fluorine atom, and one or more —CH 2 — may be substituted with an etheric oxygen atom or a thioetheric sulfur atom. One or more —CH 2 CH 2 — may be substituted with —CH═CH— or —C≡C—, and one —CH 2 CH 2 — may be substituted with —COO— or —OCO—. May be.
    m, n, o, p, q and r: 0 or 1 independently of each other. However, 0 ≦ m + n + o + p + q + r ≦ 4.
  2.  下記式(1-1)で表される化合物である、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000002
    (1-1)
     式中の記号は、以下の意味を示す。
    11およびR21:相互に独立して、水素原子、ハロゲン原子、または炭素数1~18のアルキル基であり、該アルキル基中、1つ以上の水素原子はハロゲン原子で置換されていてもよく、炭素-炭素原子間または該基の結合末端にエーテル性酸素原子またはチオエーテル性硫黄原子が挿入されていてもよく、1つ以上の-CH2CH-は-CH=CH-で置換されていてもよい。
    11、A21、A31、A41、A51、およびA61:相互に独立して、トランス-1,4-シクロへキシレン基、または1,4-フェニレン基であり、これら各基中、1つ以上の水素原子はハロゲン原子で置換されていてもよく、1つまたは2つの=CH-は窒素原子で置換されていてもよく、1つまたは2つの-CH2-はエーテル性酸素原子またはチオエーテル性硫黄原子で置換されていてもよい。
    11、Z21、Z31、Z41、Z51およびZ61:相互に独立して、単結合、または炭素数1~4のアルキレン基であり、該アルキレン基中、1つ以上の水素原子はフッ素原子で置換されていてもよく、1つ以上の-CH2-はエーテル性酸素原子またはチオエーテル性硫黄原子で置換されていてもよく、1つ以上の-CH2CH-は-CH=CH-または-C≡C-で置換されていてもよい。
    m、n、o、p、qおよびrは前記と同じ意味である。
    The compound according to claim 1, which is a compound represented by the following formula (1-1).
    Figure JPOXMLDOC01-appb-C000002
    (1-1)
    The symbols in the formula have the following meanings.
    R 11 and R 21 are each independently a hydrogen atom, a halogen atom, or an alkyl group having 1 to 18 carbon atoms, wherein one or more hydrogen atoms may be substituted with a halogen atom In addition, an etheric oxygen atom or a thioetheric sulfur atom may be inserted between carbon-carbon atoms or at the bond terminal of the group, and one or more —CH 2 CH 2 — is substituted with —CH═CH—. It may be.
    A 11 , A 21 , A 31 , A 41 , A 51 , and A 61 : each independently a trans-1,4-cyclohexylene group or a 1,4-phenylene group, One or more hydrogen atoms may be substituted with a halogen atom, one or two ═CH— may be substituted with a nitrogen atom, and one or two —CH 2 — is an etheric oxygen It may be substituted with an atom or a thioetheric sulfur atom.
    Z 11 , Z 21 , Z 31 , Z 41 , Z 51 and Z 61 are each independently a single bond or an alkylene group having 1 to 4 carbon atoms, and one or more hydrogen atoms in the alkylene group May be substituted with a fluorine atom, and one or more —CH 2 — may be substituted with an etheric oxygen atom or a thioetheric sulfur atom, and one or more —CH 2 CH 2 — may be —CH It may be substituted with ═CH— or —C≡C—.
    m, n, o, p, q and r have the same meaning as described above.
  3.  下記式(1-2)で表される化合物である、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000003
    (1-2)
     式中の記号は、以下の意味を示す。
    12およびR22:相互に独立して、炭素数1~10のアルキル基であり、該基中の1つ以上の水素原子はフッ素原子で置換されていてもよく、炭素-炭素原子間または該基の結合末端にエーテル性酸素原子が挿入されていてもよく、1つ以上の-CH2CH-は-CH=CH-で置換されていてもよい。
    12、A22、A32、A42、A52およびA62:相互に独立して、トランス-1,4-シクロへキシレン基、1,4-フェニレン基または1つもしくは2つの水素原子がフッ素原子で置換された1,4-フェニレン基。
    12、Z22、Z32、Z42、Z52およびZ62:相互に独立して、単結合、-CHCH-、-CH=CH-、-C≡C-、-CH2O-、-OCH2-、-CF2CF2-、-CF=CF-、-OCF2-、-CF2O-、-CH2CH2OCF2-、-CF2OCH2CH2-、-CF=CFCF2O-、または-OCF2CF=CF-。
    The compound according to claim 1, which is a compound represented by the following formula (1-2).
    Figure JPOXMLDOC01-appb-C000003
    (1-2)
    The symbols in the formula have the following meanings.
    R 12 and R 22 are each independently an alkyl group having 1 to 10 carbon atoms, and one or more hydrogen atoms in the group may be substituted with a fluorine atom, and a carbon-carbon atom or An etheric oxygen atom may be inserted at the bond terminal of the group, and one or more —CH 2 CH 2 — may be substituted with —CH═CH—.
    A 12 , A 22 , A 32 , A 42 , A 52 and A 62 : independently of each other, a trans-1,4-cyclohexylene group, 1,4-phenylene group or one or two hydrogen atoms 1,4-phenylene group substituted by a fluorine atom.
    Z 12 , Z 22 , Z 32 , Z 42 , Z 52 and Z 62 : independently of each other, a single bond, —CH 2 CH 2 —, —CH═CH—, —C≡C—, —CH 2 O —, —OCH 2 —, —CF 2 CF 2 —, —CF═CF—, —OCF 2 —, —CF 2 O—, —CH 2 CH 2 OCF 2 —, —CF 2 OCH 2 CH 2 —, — CF═CFCF 2 O— or —OCF 2 CF═CF—.
  4.  下記式(2)で表される化合物を閉環して下記式(3)で表される化合物とした後、さらに水素添加により下記式(4)で表される化合物とし、さらに脱水反応により式(1)で表される化合物とすることを特徴とする式(1)で表される化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000004
     式(2)中のR3は水素原子または炭素数1~4のアルキル基であり、各式中の他の記号は、請求項1に記載の式(1)における記号と同じ意味を示す。
    The compound represented by the following formula (2) is cyclized to obtain a compound represented by the following formula (3), and then further hydrogenated to obtain a compound represented by the following formula (4). A method for producing a compound represented by formula (1), characterized in that the compound is represented by 1).
    Figure JPOXMLDOC01-appb-C000004
    R 3 in the formula (2) is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and other symbols in each formula have the same meaning as the symbols in the formula (1) according to claim 1.
  5. 下記式(2)で表される化合物。ただし、式(2)中のR3は水素原子または炭素数1~4のアルキル基であり、他の記号は、請求項1に記載の式(1)における記号と同じ意味を示す。
    Figure JPOXMLDOC01-appb-C000005
                              (2)
    A compound represented by the following formula (2). However, R 3 in the formula (2) is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and other symbols have the same meaning as the symbols in the formula (1) according to claim 1.
    Figure JPOXMLDOC01-appb-C000005
    (2)
  6.  下記式(3)で表される化合物。ただし、式(3)中の記号は、請求項1に記載の式(1)における記号と同じ意味を示す。
    Figure JPOXMLDOC01-appb-C000006
                              (3)
    A compound represented by the following formula (3). However, the symbol in Formula (3) shows the same meaning as the symbol in Formula (1) of Claim 1.
    Figure JPOXMLDOC01-appb-C000006
    (3)
  7.  下記式(4)で表される化合物。ただし、式(4)中の記号は、請求項1に記載の式(1)における記号と同じ意味を示す。
    Figure JPOXMLDOC01-appb-C000007
                              (4)
    A compound represented by the following formula (4). However, the symbol in Formula (4) shows the same meaning as the symbol in Formula (1) of Claim 1.
    Figure JPOXMLDOC01-appb-C000007
    (4)
  8.  請求項1~3のいずれかに記載の化合物を含む液晶組成物。 A liquid crystal composition comprising the compound according to any one of claims 1 to 3.
  9.  請求項8に記載の液晶組成物を、電極が配設された2枚の基板間に封入してなる液晶電気光学素子。 A liquid crystal electro-optical element formed by sealing the liquid crystal composition according to claim 8 between two substrates on which electrodes are disposed.
PCT/JP2013/068960 2012-07-13 2013-07-11 Novel compound having negative dielectric anisotropy and having cyclic structure, method for producing same, liquid crystal composition and liquid crystal electrooptical element WO2014010665A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014524863A JPWO2014010665A1 (en) 2012-07-13 2013-07-11 Novel compound having a ring structure with negative dielectric anisotropy, method for producing the same, liquid crystal composition, and liquid crystal electro-optical element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-157989 2012-07-13
JP2012157989 2012-07-13

Publications (1)

Publication Number Publication Date
WO2014010665A1 true WO2014010665A1 (en) 2014-01-16

Family

ID=49916106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068960 WO2014010665A1 (en) 2012-07-13 2013-07-11 Novel compound having negative dielectric anisotropy and having cyclic structure, method for producing same, liquid crystal composition and liquid crystal electrooptical element

Country Status (2)

Country Link
JP (1) JPWO2014010665A1 (en)
WO (1) WO2014010665A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014125924A1 (en) * 2013-02-12 2014-08-21 Agcセイミケミカル株式会社 Novel compound having cyclic structure with negative dielectric anisotropy, method for producing said compound, liquid crystal composition, and liquid crystal electrooptical element
WO2015041006A1 (en) * 2013-09-19 2015-03-26 Jnc株式会社 Liquid crystal compound having tetrafluorocyclohexadiene skeleton and exhibiting negative dielectric anisotropy, liquid crystal composition, and liquid crystal display element
US9376620B2 (en) 2014-06-05 2016-06-28 Jnc Corporation Liquid crystal composition and liquid crystal display device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004043461A (en) * 2002-06-07 2004-02-12 Merck Patent Gmbh Fluorinated naphthalene, liquid crystal mixture containing the same and liquid crystal display
JP2012116780A (en) * 2010-11-30 2012-06-21 Dic Corp Compound having fluorinated bicyclooctane structure and liquid crystal composition thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10228183A1 (en) * 2002-06-24 2004-01-22 Merck Patent Gmbh 3,3,4,4-tetrafluoro cyclopentane compounds

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004043461A (en) * 2002-06-07 2004-02-12 Merck Patent Gmbh Fluorinated naphthalene, liquid crystal mixture containing the same and liquid crystal display
JP2012116780A (en) * 2010-11-30 2012-06-21 Dic Corp Compound having fluorinated bicyclooctane structure and liquid crystal composition thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 74, 1971, Columbus, Ohio, US; abstract no. 111649R *
MOMOTA,K. ET AL.: "Electrochemical fluorination of aromatic compounds in liquid R4NF.mHF-part II. Fluorination of di- and tri-fluorobenzenes", ELECTROCHIMICA ACTA, vol. 39, no. 1, 1994, pages 41 - 49 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014125924A1 (en) * 2013-02-12 2014-08-21 Agcセイミケミカル株式会社 Novel compound having cyclic structure with negative dielectric anisotropy, method for producing said compound, liquid crystal composition, and liquid crystal electrooptical element
JPWO2014125924A1 (en) * 2013-02-12 2017-02-02 Agcセイミケミカル株式会社 Novel compound having a ring structure with negative dielectric anisotropy, method for producing the same, liquid crystal composition, and liquid crystal electro-optical element
WO2015041006A1 (en) * 2013-09-19 2015-03-26 Jnc株式会社 Liquid crystal compound having tetrafluorocyclohexadiene skeleton and exhibiting negative dielectric anisotropy, liquid crystal composition, and liquid crystal display element
JPWO2015041006A1 (en) * 2013-09-19 2017-03-02 Jnc株式会社 Liquid crystalline compound having negative dielectric anisotropy having tetrafluorocyclohexadiene skeleton, liquid crystal composition, and liquid crystal display device
US10221114B2 (en) 2013-09-19 2019-03-05 Jnc Corporation Liquid crystal compound having tetrafluoro cyclohexadiene structure showing negative anisotropy, liquid crystal composition, and liquid crystal display device
US9376620B2 (en) 2014-06-05 2016-06-28 Jnc Corporation Liquid crystal composition and liquid crystal display device

Also Published As

Publication number Publication date
JPWO2014010665A1 (en) 2016-06-23

Similar Documents

Publication Publication Date Title
KR101431935B1 (en) Cyclohexane compound and liquid crystal composition containing said compound
WO2014094346A1 (en) Negative dielectric anisotropic liquid crystal mixture
KR20150086177A (en) Negative liquid crystal compound containing 2,3-difluorophenyl group, and preparation method and use thereof
WO2005000995A1 (en) Chroman derivative and liquid-crystal composition containing the compound
DE112009004852B4 (en) Liquid crystal compounds of butylenes and liquid crystal mixtures containing them
KR100971340B1 (en) Perfluoroallyloxy compound and liquid-crystal composition containing the compound
WO2014010665A1 (en) Novel compound having negative dielectric anisotropy and having cyclic structure, method for producing same, liquid crystal composition and liquid crystal electrooptical element
CN102197013B (en) Liquid crystal compound and process for production thereof, liquid crystal composition, and liquid crystal electrooptical element
WO2014125924A1 (en) Novel compound having cyclic structure with negative dielectric anisotropy, method for producing said compound, liquid crystal composition, and liquid crystal electrooptical element
JP6006217B2 (en) Liquid crystal compound and method for producing the same, liquid crystal composition, and liquid crystal electro-optical element
WO2005095311A9 (en) Benzene derivative, liquid crystal composition and liquid crystal display
JP4941801B2 (en) Liquid crystal composition, display element and liquid crystal compound containing trifluoronaphthalene derivative, production method and production intermediate thereof
JP2005048007A (en) Liquid crystal composition containing trifluoro naphthalene derivative, display element and liquid crystalline compound
JP2015131785A (en) New compound having negative dielectric anisotropy and ring structure, production method of the same, liquid crystal composition, and liquid crystal electro-optic element
JP4385202B2 (en) Phenyldecahydronaphthalene derivative
JP3608061B2 (en) Tercyclohexane compound, liquid crystal compound, and liquid crystal composition containing the same
JP4547904B2 (en) Liquid crystal composition, display element and liquid crystalline compound containing trifluoronaphthalene derivative.
JP5362266B2 (en) Fluorine-containing liquid crystal compound, production method and synthetic intermediate thereof, liquid crystal composition containing the fluorine-containing liquid crystal compound, and liquid crystal electro-optical element
JP5763937B2 (en) Liquid crystal compound, method for producing the same, liquid crystal composition, and liquid crystal electro-optical element
JP5680381B2 (en) Liquid crystal compound, method for producing the same, liquid crystal composition, and liquid crystal electro-optical element
JP2012126709A (en) Liquid crystal compound, liquid crystal composition, and liquid crystal element
JP4501388B2 (en) Liquid crystal composition and liquid crystalline compound containing difluorotetrahydronaphthalene derivative
JP2005075850A (en) Liquid crystal composition comprising trifluoronaphthalene derivative and display element and liquid crystalline compound
JP4573399B2 (en) Difluorobenzonitrile compound and intermediate thereof, production method, liquid crystal composition, and liquid crystal electro-optical element
KR100709903B1 (en) Azine based compounds, a process for the preparation thereof, a nematic liquid crystal composition containing the same and a liquid crystal display device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13817284

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014524863

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13817284

Country of ref document: EP

Kind code of ref document: A1