WO2014010432A1 - Solid state imaging element and method for manufacturing solid state imaging element - Google Patents

Solid state imaging element and method for manufacturing solid state imaging element Download PDF

Info

Publication number
WO2014010432A1
WO2014010432A1 PCT/JP2013/067689 JP2013067689W WO2014010432A1 WO 2014010432 A1 WO2014010432 A1 WO 2014010432A1 JP 2013067689 W JP2013067689 W JP 2013067689W WO 2014010432 A1 WO2014010432 A1 WO 2014010432A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
layer
solid
conversion layer
state imaging
Prior art date
Application number
PCT/JP2013/067689
Other languages
French (fr)
Japanese (ja)
Inventor
俊博 中谷
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020147037127A priority Critical patent/KR101671609B1/en
Publication of WO2014010432A1 publication Critical patent/WO2014010432A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14605Structural or functional details relating to the position of the pixel elements, e.g. smaller pixel elements in the center of the imager compared to pixel elements at the periphery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements

Definitions

  • the present invention relates to a solid-state imaging device including a photoelectric conversion layer containing an organic substance.
  • the present invention relates to a solid-state imaging device capable of preventing film peeling of layers constituting the device, which occurs in the manufacturing process, and a manufacturing method thereof.
  • pixels including photodiodes are arranged on a semiconductor substrate such as a silicon (Si) chip.
  • Solid-state imaging devices that acquire signal charges corresponding to photoelectrons generated in the photodiodes of each pixel with a CCD type or CMOS type readout circuit are widely known.
  • CCD sensors and CMOS sensors Solid-state imaging devices that acquire signal charges corresponding to photoelectrons generated in the photodiodes of each pixel with a CCD type or CMOS type readout circuit are widely known.
  • Patent Document 1 Patent Document 2
  • Patent Document 2 an image sensor having an organic photoelectric conversion layer using an organic material that generates an electric charge in response to received light has been studied.
  • an imaging device having an organic photoelectric conversion layer includes a pixel electrode formed on a semiconductor substrate on which a signal readout circuit is formed, and an organic film formed on the pixel electrode.
  • the back surface of the wafer (the surface opposite to the device formation surface) is polished and thinned for the purpose of reducing the size and weight of the semiconductor device.
  • a so-called back grinding process is performed. This back grinding process is performed after the formation of an element such as an integrated circuit is completed. Therefore, the back grinding process is performed by protecting a device by attaching a protective tape called a BG tape (back grind tape) to the surface on which the device is formed. When the back grinding is finished, the protective tape is peeled off, and the wafer on which the element is formed is subjected to the next step.
  • a BG tape back grind tape
  • An object of the present invention is to solve such problems of the prior art, in a solid-state imaging device having an organic photoelectric conversion layer made of an organic material that generates electric charge in response to received light, in a back grinding process.
  • An object of the present invention is to provide a solid-state imaging device capable of preventing film peeling and improving yield, and a method for manufacturing the solid-state imaging device.
  • a solid-state imaging device includes a plurality of pixel electrodes and a photoelectric conversion layer that is provided on the pixel electrodes and includes a photoelectric conversion layer made of an organic material that generates charges according to received light.
  • a color filter provided so as to cover the entire surface of the photoelectric conversion unit, and a readout circuit that reads out a signal corresponding to the charge collected in the pixel electrode, and the color filter exceeds a range in which the photoelectric conversion layer is formed
  • a solid-state imaging device is provided.
  • the color filter formation range that exceeds the photoelectric conversion layer formation range is 0.05 ⁇ m or more.
  • the color filter preferably has a thickness of 0.1 ⁇ m or more.
  • the red filter and the green filter are formed beyond the formation range of the photoelectric conversion layer.
  • it is at least one of the filters.
  • a photoelectric conversion part has an electron blocking layer for suppressing injecting an electron from a pixel electrode to a photoelectric converting layer in the lower layer of a photoelectric converting layer.
  • the photoelectric conversion layer preferably has a bulk heterostructure formed by mixing a p-type organic semiconductor material and an n-type organic semiconductor material.
  • the n-type organic semiconductor material is preferably at least one of fullerene and fullerene derivatives.
  • the p-type semiconductor organic material is preferably a compound represented by the following general formula (1).
  • Z 1 represents a ring containing at least two carbon atoms and represents a 5-membered ring, a 6-membered ring, or a condensed ring containing at least one of a 5-membered ring and a 6-membered ring.
  • L 1 , L 2 and L 3 each independently represents an unsubstituted methine group or a substituted methine group, D 1 represents an atomic group, and n represents an integer of 0 or more.
  • the counter electrode is preferably indium tin oxide.
  • the solid-state imaging device manufacturing method of the present invention includes a plurality of pixel electrodes, a photoelectric conversion unit having a photoelectric conversion layer made of an organic material, a counter electrode, and a sealing layer covering the counter electrode on a substrate. Then, after laminating in this order, a color filter is formed on the sealing layer, including the entire surface of the photoelectric conversion portion, in a formation range exceeding the formation range of the photoelectric conversion layer, and a protective tape on the color filter formation surface side
  • a solid-state imaging device manufacturing method is provided, in which a substrate is back-grinded, a back-grinding is performed, and then a protective tape is peeled off.
  • the formation range of the color filter that exceeds the formation range of the photoelectric conversion layer is preferably 0.05 ⁇ m or more.
  • the color filter preferably has a thickness of 0.1 ⁇ m or more.
  • the color filter is a red filter, a green filter, and a blue filter arranged in correspondence with the pixel electrode, at least one of the red filter and the green filter exceeds the formation range of the photoelectric conversion layer.
  • an electron blocking layer for suppressing injection of electrons from the pixel electrode to the photoelectric conversion layer is preferably laminated as a lower layer of the photoelectric conversion layer.
  • the photoelectric conversion layer preferably has a bulk heterostructure formed by mixing a p-type organic semiconductor material and an n-type organic semiconductor material.
  • the n-type organic semiconductor material is preferably at least one of fullerene and fullerene derivatives.
  • the p-type semiconductor organic material is preferably a compound represented by the following general formula (1).
  • Z 1 represents a ring containing at least two carbon atoms and represents a 5-membered ring, a 6-membered ring, or a condensed ring containing at least one of a 5-membered ring and a 6-membered ring.
  • L 1 , L 2 and L 3 each independently represents an unsubstituted methine group or a substituted methine group, D 1 represents an atomic group, and n represents an integer of 0 or more.
  • the counter electrode is preferably indium tin oxide.
  • the solid-state imaging device using the organic photoelectric conversion layer made of an organic material that generates an electric charge according to the received light the solid-state imaging device is used when the protective tape is peeled off in the back grinding process. Can be prevented from peeling off. Therefore, according to the present invention, in a solid-state imaging device using an organic photoelectric conversion layer, defective products due to film peeling can be greatly reduced and a high yield can be obtained.
  • FIG. 1 It is a figure which shows notionally an example of the solid-state image sensor of this invention manufactured by the manufacturing method of the solid-state image sensor of this invention.
  • (A)-(c) is a conceptual diagram for demonstrating the manufacturing method of the solid-state image sensor of this invention.
  • (A)-(c) is a conceptual diagram for demonstrating the manufacturing method of the solid-state image sensor of this invention.
  • FIG. 1 conceptually shows an example of the solid-state image sensor of the present invention manufactured by the method for manufacturing a solid-state image sensor of the present invention.
  • this solid-state imaging device is used by being mounted on an imaging device such as a digital camera or a digital video camera, an imaging module of a mobile phone, an imaging module of an electronic endoscope, or the like.
  • a solid-state imaging device 10 (hereinafter, referred to as imaging device 10) illustrated in FIG. 1 includes a substrate 12, an insulating layer 14, a pixel electrode 16, a photoelectric conversion unit 18, a counter electrode 20, a sealing layer 22, And a color filter 26.
  • a read circuit 40 and a counter electrode voltage supply unit 42 are formed on the substrate 12.
  • a semiconductor substrate such as an Si substrate is basically used.
  • a glass substrate can also be used.
  • An insulating layer 14 made of a known insulating material is formed on the substrate 12.
  • a plurality of pixel electrodes 16 are formed on the surface of the insulating layer 14.
  • the pixel electrodes 16 are arranged in a one-dimensional or two-dimensional manner, for example.
  • Examples of the material of the pixel electrode 16 include metals, metal oxides, metal nitrides, metal borides, organic conductive compounds, and mixtures thereof.
  • conductive metal oxides such as tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO), indium tungsten oxide (IWO), and titanium oxide, titanium nitride (TiN)
  • Metal nitrides such as gold (Au), platinum (Pt), silver (Ag), chromium (Cr), nickel (Ni), aluminum (Al), etc., and these metals and conductive metal oxides
  • an organic conductive compound such as polyaniline, polythiophene, and polypyrrole, a laminate of these with ITO, and the like.
  • a particularly preferable material for the pixel electrode 16 is any one of titanium nitride, molybdenum nitride, tantalum nitride, and tungsten nitride.
  • first connection portion 44 that connects the pixel electrode 16 and the readout circuit 40 is formed in the insulating layer 14.
  • a second connection portion 46 that connects the counter electrode 20 and the counter electrode voltage supply unit 42 is formed in the insulating layer 14. The second connection portion 46 is formed at a position not connected to the pixel electrode 16 and the photoelectric conversion portion 18. Both the first connection portion 44 and the second connection portion 46 are made of a conductive material.
  • a wiring layer 48 for connecting the readout circuit 40 and the counter electrode voltage supply unit 42 to, for example, the outside of the imaging device 10 is formed inside the insulating layer 14.
  • the wiring layer 48 is made of a conductive material.
  • the circuit board 11 is formed by forming the pixel electrodes 16 connected to the first connection portions 44 on the surface of the insulating layer 14 formed on the substrate 12 as described above.
  • the circuit board 11 is also called a CMOS substrate.
  • the photoelectric conversion unit 18 is formed so as to cover the plurality of pixel electrodes 16 and to avoid the second connection unit 46.
  • the photoelectric conversion unit 18 includes an organic photoelectric conversion layer 50 containing an organic photoelectric conversion material and an electron blocking layer 52.
  • the electron blocking layer 52 is formed on the pixel electrode 16 side (lower layer side), and the photoelectric conversion layer 50 is formed on the electron blocking layer 52.
  • the electron blocking layer 52 is a layer for preventing electrons from being injected from the pixel electrode 16 into the photoelectric conversion layer 50, and is composed of a single layer or a plurality of layers.
  • the electron blocking layer 52 includes an organic material, an inorganic material, or both.
  • the electron blocking layer 52 may be composed of a single organic material film, or may be composed of a mixed film of a plurality of different organic materials.
  • the electron blocking layer 52 is preferably formed of a material having a high electron injection barrier from the adjacent pixel electrode 16 and high hole transportability.
  • the electron affinity of the electron blocking layer 52 is preferably 1 eV or less, more preferably 1.3 eV or less, and particularly preferably 1.5 eV or more than the work function of the adjacent electrode.
  • the material for forming the electron blocking layer 52 will be described in detail later.
  • the electron blocking layer 52 preferably has a thickness of 20 nm or more in order to sufficiently suppress the contact between the pixel electrode 16 and the photoelectric conversion layer 50 and to avoid the influence of defects and dust existing on the surface of the pixel electrode 16. .
  • the thickness of the electron blocking layer 52 is more preferably 40 nm or more, and particularly preferably 60 nm or more. If the electron blocking layer 52 is too thick, the problem of increasing the supply voltage necessary for applying an appropriate electric field strength to the photoelectric conversion layer 50 and the carrier transporting process in the electron blocking layer 52 are due to photoelectric conversion. There may be a problem that the performance of the element is adversely affected. Therefore, the total film thickness of the electron blocking layer 52 is preferably 300 nm or less. The total film thickness of the electron blocking layer 52 is more preferably 200 nm or less, and still more preferably 100 nm or less.
  • the photoelectric conversion layer 50 generates electric charge according to the amount of light L received such as incident light, and is made of an organic photoelectric conversion material (mainly composed of an organic photoelectric conversion material).
  • the photoelectric conversion layer 50 made of an organic photoelectric conversion material is a layer containing a p-type organic semiconductor material or an n-type organic semiconductor material.
  • the photoelectric conversion layer 50 is more preferably a bulk hetero layer in which a p-type organic semiconductor material and an n-type organic semiconductor material are mixed. More preferably, the photoelectric conversion layer 50 is a bulk hetero layer in which a p-type organic semiconductor material and a fullerene (fullerene derivative) as an n-type organic semiconductor material are mixed.
  • the disadvantage that the carrier diffusion length of the organic layer is short can be compensated and the photoelectric conversion efficiency can be improved.
  • a bulk hetero layer with an optimal mixing ratio By producing a bulk hetero layer with an optimal mixing ratio, the electron mobility and hole mobility of the photoelectric conversion layer 50 can be increased, and the photoresponse speed of the photoelectric conversion element can be sufficiently increased.
  • the proportion of fullerene in the bulk hetero layer is preferably 40% to 85% (volume ratio).
  • the bulk hetero layer (bulk hetero junction structure) is described in detail in Japanese Patent Application Laid-Open No. 2005-303266. The material for forming the photoelectric conversion layer 50 will be described in detail later.
  • the thickness of the photoelectric conversion layer 50 is preferably 10 to 1000 nm or less, more preferably 50 to 800 nm or less, and particularly preferably 100 to 500 nm or less. By setting the thickness of the photoelectric conversion layer 50 to 10 nm or more, a suitable dark current suppressing effect can be obtained. Moreover, suitable photoelectric conversion efficiency is obtained by making the thickness of the photoelectric conversion layer 50 1000 nm or less. Note that the photoelectric conversion layer 50 and the electron blocking layer 52 may have other film thicknesses as long as the film thickness is constant on the pixel electrode 16.
  • the photoelectric conversion layer 50 is preferably formed by a vacuum evaporation method.
  • a vacuum evaporation method When vapor-depositing the photoelectric conversion layer 50, it is preferable that all steps be performed in a vacuum. Basically, the compound is not directly in contact with oxygen and moisture in the outside air. Further, when vapor-depositing the photoelectric conversion layer 50, it is preferable to perform PI control or PID control of the vapor deposition rate using a film thickness monitor such as a crystal resonator or an interferometer. When two or more kinds of compounds are vapor-deposited simultaneously, a co-evaporation method, a flash vapor deposition method, or the like can be preferably used.
  • the coating material containing the organic photoelectric converting material (especially p-type organic-semiconductor material and n-type organic-semiconductor material) which comprises the photoelectric converting layer 50 is prepared, this coating material is apply
  • the photoelectric conversion layer 50 may be formed by a coating method that performs heat treatment.
  • the counter electrode (upper electrode) 20 is an electrode that faces the pixel electrode 16 and is provided so as to cover the entire surface of the photoelectric conversion layer 50 (further, the electron blocking layer 52) including side surfaces (end portions in the surface direction described later). It has been. Therefore, the photoelectric conversion layer 50 is provided between the pixel electrode 16 and the counter electrode 20. In the illustrated example, the counter electrode 20 is common to all the pixel electrodes 16. Further, the counter electrode 20 is electrically connected to the second connection portion 46 disposed outside the photoelectric conversion layer 50, and is connected to the counter electrode voltage supply portion 42 through the second connection portion 46. Has been.
  • the counter electrode 20 is preferably made of a transparent conductive oxide in order to increase the absolute amount of light incident on the photoelectric conversion layer and increase the external quantum efficiency.
  • ITO, IZO, SnO 2, ATO ( antimony-doped tin oxide), ZnO, AZO (Al-doped zinc oxide), GZO (gallium-doped zinc oxide), TiO 2, FTO (fluorine-doped tin oxide) or the like Preferably exemplified.
  • Various methods can be used to form the counter electrode 20 depending on the material, but a sputtering method is preferably exemplified.
  • the light transmittance of the counter electrode 20 is preferably 60% or more, more preferably 80% or more, more preferably 90% or more, and more preferably 95% or more in the visible light wavelength.
  • the counter electrode 20 preferably has a thickness of 5 to 20 nm. By making the counter electrode 20 have a thickness of 5 nm or more, the lower layer can be sufficiently covered, and uniform performance can be obtained. On the other hand, if the thickness of the counter electrode 20 exceeds 20 nm, the counter electrode 20 and the pixel electrode 16 may be locally short-circuited, resulting in an increase in dark current. Moreover, generation
  • the counter electrode voltage supply unit 42 applies a predetermined voltage to the counter electrode 20 via the second connection unit 46.
  • the power supply voltage is boosted by a booster circuit such as a charge pump to supply the predetermined voltage.
  • the pixel electrode 16 is a charge collecting electrode for collecting charges generated in the photoelectric conversion layer 50 between the pixel electrode 16 and the counter electrode 20 facing the pixel electrode 16.
  • the pixel electrode 16 is connected to the readout circuit 40 via the first connection portion 44.
  • the readout circuit 40 is provided on the substrate 12 corresponding to each of the plurality of pixel electrodes 16, and reads out a signal corresponding to the charge collected by the corresponding pixel electrode 16.
  • the pixel electrode 16 can be made of the same material as the pixel electrode 16 described above. Therefore, a detailed description of the material of the pixel electrode 16 is omitted.
  • the pixel electrode 16 has a steep step corresponding to the film thickness of the pixel electrode 16 at the end, significant unevenness on the surface of the pixel electrode 16, and minute dust (particles) adheres to the pixel electrode 16. As a result, the layer on the pixel electrode 16 becomes thinner than a desired film thickness or a crack occurs.
  • a pixel defect such as an increase in dark current or a short circuit occurs due to contact or electric field concentration between the pixel electrode 16 and the counter electrode 20 in the defective portion.
  • the above-described defects may reduce the adhesion between the pixel electrode 16 and the layer thereon and the heat resistance of the organic photoelectric conversion material.
  • the surface roughness Ra of the pixel electrode 16 is preferably 0.6 nm or less.
  • the readout circuit 40 is constituted by, for example, a CCD, a MOS circuit, or a TFT circuit.
  • the read circuit 40 is shielded from light by a light shielding layer (not shown) provided in the insulating layer 14.
  • the readout circuit 40 is preferably a CCD or CMOS circuit for general image sensor applications, and is preferably a CMOS circuit from the viewpoint of noise and high speed.
  • a high-concentration n region surrounded by a p region is formed on the substrate 12, and the first connection portion 44 is connected to the n region.
  • a read circuit 40 is provided in the p region.
  • the n region functions as a charge storage unit that stores the charge of the photoelectric conversion layer 50.
  • the signal charge accumulated in the n region is converted into a signal corresponding to the amount of charge by the readout circuit 40 and output to the outside of the image sensor 10 via the wiring layer 48, for example.
  • the sealing layer (protective layer) 22 is for protecting the photoelectric conversion layer 50 containing an organic photoelectric conversion material from deterioration factors, such as a water molecule.
  • the sealing layer 22 is formed to cover the entire surface of the counter electrode 20 including the side surfaces. The following conditions are required for the sealing layer 22. First, it is possible to protect the photoelectric conversion layer by preventing intrusion of factors that degrade the organic photoelectric conversion material contained in the solution, plasma, and the like in each manufacturing process of the device. Secondly, after the device is manufactured, the intrusion of factors such as water molecules that degrade the organic photoelectric conversion material is prevented, and deterioration of the photoelectric conversion layer 50 is prevented over a long period of storage / use.
  • the sealing layer 22 when the sealing layer 22 is formed, the already formed photoelectric conversion layer is not deteriorated. Fourth, since incident light reaches the photoelectric conversion layer 50 through the sealing layer 22, the sealing layer 22 must be transparent to light having a wavelength detected by the photoelectric conversion layer 50.
  • the sealing layer 22 can also be composed of a thin film made of a single material. However, by forming the sealing layer 22 in a multi-layer configuration and providing each layer with a different function, stress relaxation of the entire sealing layer 22, cracking due to dust generation during the manufacturing process, suppression of defects such as pinholes, etc. In addition, the effects such as easy optimization of material development can be expected.
  • the sealing layer 22 is formed by laminating a “sealing auxiliary layer” having a function that is difficult to achieve on the layer that serves the original purpose of preventing the penetration of deterioration factors such as water molecules.
  • a two-layer structure can be formed. Three or more layers are possible, but considering the manufacturing cost, it is preferable that the number of layers is as small as possible.
  • the sealing layer 22 As follows, for example.
  • the performance of organic photoelectric conversion materials is significantly deteriorated due to the presence of deterioration factors such as water molecules. Therefore, it is necessary to cover and seal the entire photoelectric conversion layer with a dense metal oxide film, metal nitride film, metal oxynitride film, or the like that does not allow water molecules to permeate.
  • a dense metal oxide film, metal nitride film, metal oxynitride film, or the like that does not allow water molecules to permeate.
  • aluminum oxide, silicon oxide, silicon nitride, silicon nitride oxide, a laminated structure thereof, a laminated structure of them and an organic polymer, or the like is used as a sealing layer by various vacuum film forming techniques.
  • the conventional sealing layer is a film compared to the flat part because the growth of the thin film is difficult (because the step becomes a shadow) at the step due to structures on the substrate surface, minute defects on the substrate surface, particles adhering to the substrate surface, etc.
  • the thickness is significantly reduced. For this reason, the step portion becomes a path through which the deterioration factor penetrates.
  • the imaging element 10 having a pixel size of less than 2 ⁇ m, particularly about 1 ⁇ m if the distance between the color filter 26 and the photoelectric conversion layer 50, that is, the film thickness of the sealing layer 22 is large, incident light is diffracted in the sealing layer 22. Or it diverges and color mixing occurs. For this reason, the imaging element 10 having a pixel size of about 1 ⁇ m requires a sealing layer material and a manufacturing method thereof that do not deteriorate the element performance even when the film thickness of the entire sealing layer 22 is reduced.
  • the ALD (atomic layer deposition) method is a kind of CVD method, and adsorption / reaction of organometallic compound molecules, metal halide molecules, and metal hydride molecules, which are thin film materials, onto the substrate surface and unreacted groups contained in them. Is a technique for forming a thin film by alternately repeating decomposition. Since the ALD method is in a low molecular state when the thin film material reaches the substrate surface (deposition surface), the thin film can be grown in a very small space in which the low molecule can enter.
  • the step portion which was difficult with the conventional thin film formation method, is completely covered (the thickness of the thin film grown on the step portion is the same as the thickness of the thin film grown on the flat portion), that is, the step coverage is very high. Excellent. For this reason, steps due to structures on the substrate surface, minute defects on the substrate surface, particles adhering to the substrate surface, and the like can be completely covered, and such a step portion does not become an intrusion path for a deterioration factor of the photoelectric conversion material. That is, when the sealing layer 22 is formed by the ALD method, the required sealing layer thickness can be reduced more effectively than in the prior art.
  • a material that exhibits the function required for the above-described sealing layer can be appropriately selected. However, it is limited to a material capable of growing a thin film at a relatively low temperature so that the organic photoelectric conversion material does not deteriorate.
  • a dense aluminum oxide thin film can be formed at less than 200 ° C. at which the organic photoelectric conversion material does not deteriorate.
  • an aluminum oxide thin film can be formed even at about 100 ° C., which is preferable.
  • Silicon oxide and titanium oxide are also preferable because a dense thin film can be formed as the sealing layer 22 at a temperature lower than 200 ° C. similarly to aluminum oxide by appropriately selecting materials.
  • the thin film formed by the ALD method can achieve a high-quality thin film formation at a low temperature that is unmatched from the viewpoint of step coverage and denseness.
  • the thin film may be deteriorated by chemicals used in the photolithography process.
  • an aluminum oxide thin film formed by the ALD method is amorphous, the surface is eroded by an alkaline solution such as a developer or a stripping solution.
  • an alkaline solution such as a developer or a stripping solution.
  • a sealing auxiliary layer that becomes a functional layer for protecting the sealing layer 22 is necessary.
  • the sealing layer 22 has a two-layer structure, and includes any one of aluminum oxide, silicon oxide, silicon nitride, and silicon nitride oxide formed on the first sealing layer by plasma CVD or sputtering.
  • a configuration having a second sealing layer is preferable.
  • the first sealing layer preferably contains any of aluminum oxide, silicon oxide, and titanium oxide. What is necessary is just to set suitably the thickness of a 1st sealing layer and a 2nd sealing layer according to the formation material, formation method, etc. of each layer.
  • the first sealing layer has a high barrier property with a high stress of 200 MPa or more, for example, an aluminum oxide film by ALD method, and the second sealing layer has a low stress of 100 MPa or less, for example, nitriding by plasma CVD method
  • the thickness of the first sealing layer is preferably 1 to 40 nm and the thickness of the second sealing layer is preferably 75 nm or more.
  • a color filter 26 is formed on the sealing layer 22.
  • the color filter 26 divides incident light into, for example, R (red), G (green), and B (blue), and makes the incident light enter the region corresponding to each pixel electrode 16 of the photoelectric conversion layer 50. It is.
  • the color filter 26 corresponds to the color filters of the R filter 26R, the G filter 26G, and the B filter 26B corresponding to the position and arrangement of the pixel electrodes 16 in the same manner as the color filter of a normal solid-state imaging device. It has sequentially and repeatedly.
  • the pixel electrode 16 and one pixel electrode 16 on which the photoelectric conversion unit 18, the counter electrode 20, and the color filter are provided are pixels (unit pixels).
  • the color filter is not limited to the three primary color filters of R, G, and B, and various color filters (combination of color filters) used in the solid-state imaging device can be used.
  • various color filters combination of color filters
  • C cyan
  • M magenta
  • Y yellow
  • G complementary color filters may be used.
  • the color filter 26 may basically be formed by a method used in the manufacture of a known color solid-state image pickup device such as photolithography.
  • a known color resist material having negative photosensitivity for example, a photocurable composition described in paragraph Nos. [0017] to [0064] of Japanese Patent No. 4717370
  • a mask having a pattern for exposing the color filter forming portion exposure is made with ultraviolet light or the like to make it developable.
  • the light-shielding part is removed with a developing solution, washed with water and dried, and further post-baked on the part not removed by development.
  • a method of forming the color filter 26 in which the R, G, and B color filters are arranged by performing this operation three times according to the R filter 26R, the G filter 26G, and the B filter 26B is exemplified. .
  • the color filter 26 exceeds the formation range of the photoelectric conversion layer 50 in the arrangement direction of the pixel electrodes 16 (hereinafter also referred to as a plane direction), as shown in FIG. Formed to the extent. That is, the color filter 26 is formed in the surface direction up to a range exceeding the end portion of the photoelectric conversion layer 50 in the surface direction. In other words, the color filter 26 covers the entire surface of the formation region of the photoelectric conversion layer 50 in the surface direction on the sealing layer 22 and extends to a range wider than the formation range of the photoelectric conversion layer 50 in the surface direction. It is formed (out of the formation range of the photoelectric conversion layer 50).
  • the imaging element 10 of the present invention can prevent the film separation between the photoelectric conversion layer 50 and the counter electrode 20 in the back grinding process, and can improve the yield.
  • the back surface of the wafer (element forming surface and A back grinding process for polishing the reverse surface) is performed.
  • This back grinding process is performed using a polishing apparatus called a BG wheel, for example, by attaching a protective tape (so-called BG tape) for protecting the element to the element forming surface.
  • BG tape a protective tape
  • the present inventor peels off a layer (film) of a layer (film) constituting the element at the time of peeling of the protective tape in the background process. It was found that this film peeling contributed to a decrease in product yield. As a result of further investigation, the present inventor has a low adhesion between the photoelectric conversion layer 50 made of an organic photoelectric conversion material and the counter electrode 20, and peeling of the film is a photoelectric conversion layer 50 made of an organic photoelectric conversion material and the counter electrode. It was found that it is likely to occur between 20 and 20.
  • film peeling indicates film peeling between the photoelectric conversion layer 50 and the counter electrode 20.
  • the formation range of the color filter 26 is made wider than the formation range of the photoelectric conversion layer 50, that is, the color filter 26 is extended to the range exceeding the end of the photoelectric conversion layer 50 in the plane direction. It was found that film peeling can be prevented by forming.
  • the effects of the present invention are prominent because it is likely to occur when it is included.
  • the n-type organic semiconductor material is fullerene (fullerene derivative)
  • the effect of the present invention becomes more remarkable.
  • the p-type organic semiconductor material is a compound represented by the general formula (1) described later. The case was found to be particularly noticeable.
  • the film peeling between the photoelectric conversion layer 50 and the counter electrode 20 is more likely to occur when the counter electrode 20 formed of ITO is combined with the photoelectric conversion layer 50 having the bulk heterostructure. It was found that the effect becomes even more remarkable.
  • the color filter 26 By forming the color filter 26 up to a region exceeding the end of the photoelectric conversion layer 50 in the surface direction, the color filter 26 becomes a buffer material that suppresses the force to peel the counter electrode 52 from the photoelectric conversion layer 50. And can prevent film peeling.
  • the thickness of the color filter 26 is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more, and particularly preferably 0.3 ⁇ m or more. By setting the thickness of the color filter 26 to this thickness, the effect of preventing film peeling can be obtained more suitably.
  • the thickness of the color filter 26 is preferably 2.0 ⁇ m or less, more preferably 1.5 ⁇ m or less, and particularly preferably 1.0 ⁇ m or less.
  • the thickness of the color filter 26 may be the same for all color filters. Alternatively, the thickness of the color filter 26 may vary depending on the color and the formation region.
  • the imaging device 10 with a high yield by suppressing a decrease in yield due to film peeling between the photoelectric conversion layer 50 and the counter electrode 20.
  • the color filter 26 is formed in a range of 0.05 ⁇ m or more in the plane direction and beyond the end portion of the photoelectric conversion layer 50, thereby obtaining the effect of preventing film peeling more suitably. be able to. That is, the distance a between the end of the photoelectric conversion layer 50 and the end of the color filter 26 shown in FIG. 1 (the extra distance of the color filter 26 from the end of the photoelectric conversion layer 50) is 0.05 ⁇ m or more. Is preferred. More preferably, the distance a between the end of the photoelectric conversion layer 50 shown in FIG. 1 and the end of the color filter 26 is 0.1 ⁇ m or more, and particularly preferably 0.3 ⁇ m or more.
  • the distance a between the end of the photoelectric conversion layer 50 and the end of the color filter 26 is preferably 1.5 mm or less, and more preferably 1.0 mm or less. By setting the distance a to 1.5 mm or less, such damage to the color filter 26 can be suitably prevented.
  • the distance a between the end portion of the photoelectric conversion layer 50 and the end portion of the color filter 26 does not need to be uniform over the entire circumference in the surface direction of the photoelectric conversion layer 50. That is, when the shape of the photoelectric conversion layer 50 in the surface direction is a square according to the configuration of the imaging element 10 or the like, one or more of the four sides may have a different distance a from the other sides.
  • the color filter 26 formed in the region beyond the photoelectric conversion layer 50, that is, the color filter corresponding to the outermost unit pixel in the surface direction is preferably an R filter 26R or a G filter 26G. At this time, the color filters of the outermost unit pixels in the surface direction may or may not be unified.
  • the color filter 26 is formed, for example, by forming each color filter of the R filter 26R, the G filter 26G, and the B filter 26B by exposing and developing using a photosensitive material.
  • exposure is performed by irradiating ultraviolet rays (UV light). Therefore, the B filter 26B that absorbs the largest amount of ultraviolet rays is hard to be cured.
  • the B filter 26 ⁇ / b> B is insufficiently cured in the vicinity of the lower portion, and easily becomes brittle. For this reason, the B filter 26B is more likely to be damaged or peeled off from the sealing layer 22 than other colors.
  • the lower part of the R filter 26R and the G filter 26G is sufficiently cured even when irradiated with ultraviolet light. The effect can be expressed more suitably.
  • the color filter 26 may have a light-shielding partition wall between the color filters in order to prevent crosstalk (color mixing) of the colors.
  • the partition walls can also be formed in the same manner as the color filters described above.
  • the imaging device 10 prevents light from entering the photoelectric conversion layer 50 formed outside the effective pixel region other than the region (effective pixel region) where the color filter 26 is provided on the sealing layer 22. You may have a light shielding layer.
  • the image sensor 10 may have a protective layer (overcoat layer) for protecting the color filter 26 and the like on the color filter 26 (covering the entire upper surface).
  • a protective layer a polymer material such as an acrylic resin, a polysiloxane resin, a polystyrene resin, or a fluorine resin, or an inorganic material such as silicon oxide or silicon nitride can be used as appropriate.
  • the protective layer can be patterned by a photolithography method. Therefore, it becomes easy to use the protective layer as a photoresist when opening the peripheral light shielding layer, sealing layer, insulating layer, etc.
  • the protective layer can be used as an antireflection layer, and it is also preferable to form various low refractive index materials used as the partition walls of the color filter 26.
  • the protective layer may have a structure of two or more layers combining the above materials.
  • the pixel electrode 16 is formed on the surface of the insulating layer 14.
  • the configuration is not limited thereto, and the pixel electrode 16 may be embedded in the surface portion of the insulating layer 14.
  • the structure which provides the 2nd connection part 46 and the counter electrode voltage supply part 42 was made, it may be plural.
  • a voltage drop at the counter electrode 20 can be suppressed by supplying a voltage from both ends of the counter electrode 20 to the counter electrode 20.
  • the number of sets of the second connection unit 46 and the counter electrode voltage supply unit 42 may be appropriately increased or decreased in consideration of the chip area of the element.
  • the manufacturing method of the solid-state imaging device of the present invention will be described in detail by explaining the manufacturing method of the imaging device 10.
  • the film forming conditions of each layer (film) may be set as appropriate according to the layer forming material and the like.
  • the first connection is formed on the substrate 12 on which the readout circuit 40 and the counter electrode voltage supply unit 42 are formed.
  • the insulating layer 14 provided with the portion 44, the second connecting portion 46, and the wiring layer 48 is formed.
  • the pixel electrode 16 connected to each first connecting portion 44 is formed on the surface 14a of the insulating layer 14.
  • a formed circuit board 11 CMOS substrate
  • the pixel electrode 16 is made of, for example, TiN.
  • the electron blocking material is formed so as to cover all the pixel electrodes 16 except on the second connection portion 46. Is deposited by, for example, vacuum deposition to form the electron blocking layer 52.
  • the electron blocking material include carbazole derivatives, and more preferably bifluorene derivatives.
  • the photoelectric conversion layer 50 is formed on the surface 52a of the electron blocking layer 52 as conceptually shown in FIG.
  • the photoelectric conversion part 18 is formed by forming the photoelectric conversion layer 50.
  • a pattern that covers the photoelectric conversion layer 18 and is formed on the second connection portion 46 for example, a sputtering method.
  • the counter electrode 20 is formed by depositing ITO.
  • an aluminum oxide film for example, is formed as a sealing layer 22 on the surface 14 a of the insulating layer 14 so as to cover the counter electrode 20.
  • a laminated film made of a silicon nitride oxide film is formed.
  • aluminum oxide is formed on the surface 14a of the insulating layer 14 by using the ALD method, and silicon nitride oxide is formed on the aluminum oxide film by plasma CVD or sputtering. It is preferable to form a silicon nitride oxide film by using the film.
  • the sealing layer 22 may be a single layer film as described above.
  • the color filter 26 is formed.
  • the color filter 26 is formed as follows as an example. That is, first, a color resist material to be a filter is applied to the surface 22a of the sealing layer 22 and prebaked. Next, exposure is performed with ultraviolet light or the like using a mask corresponding to the formation pattern of the color filter, and thereafter development is performed to remove the light shielding portion. Further, after washing and drying, post baking is performed to form a color filter. This operation is performed three times corresponding to the color filters of the R filter 26R, the G filter 26G, and the B filter 26B, thereby forming the color filter 26 in which the color filters are arranged.
  • the color filter 26 is applied up to the region exceeding the end of the photoelectric conversion layer 50 by applying a coating material for forming a color filter to the region exceeding the end of the photoelectric conversion layer 50 in the surface direction.
  • a color filter 26 is formed using a mask for forming (corresponding color filter). That is, in this example, the mask that forms the unit pixel at the end in the surface direction has a pattern that exposes the area exceeding the end of the photoelectric conversion layer 50 in the corresponding unit pixel.
  • the color filter 26 having a formation range that exceeds the formation range of the photoelectric conversion layer 50 in the plane direction, that is, the region in the plane direction that extends beyond the end of the photoelectric conversion layer 50 in the plane direction.
  • the color filter 26 to be formed is formed.
  • the coating method for coating is not particularly limited, and various known methods such as spin coating and bar coating can be used.
  • the color filter existing up to the region beyond the edge in the surface direction of the photoelectric conversion layer 50 is preferably the R filter 26R or the G filter 26G, and the edge of the photoelectric conversion layer 50 and the color filter 26
  • the distance a to the end is preferably 0.05 ⁇ m or more, more preferably 1.5 mm or less, and the film thickness of the color filter is preferably 0.1 ⁇ m or more as described above. It is.
  • the color filter 26 may have a partition between the color filters. Further, if necessary, a light shielding layer as described above may be formed on the sealing layer 22 other than the region where the color filter 26 is provided, and a protective layer (overcoat layer) is formed on the uppermost layer. It may be formed.
  • a back grinding process is performed.
  • a protective tape T is attached to the surface on which the color filter 26 is formed so as to cover the color filter 26 (a protective layer when a protective layer is formed).
  • the back surface of the substrate 12 (circuit substrate 11 (wafer)) is polished.
  • the back surface of the substrate 12 may be polished by a known method used in the manufacture of semiconductor devices, such as polishing using a BG wheel.
  • the protective tape T is peeled off.
  • the color filter 26 is formed in the plane direction up to a range exceeding the formation range of the photoelectric conversion layer 50, even if the protective tape T is peeled off in such a back grinding process, The film peeling between the conversion layer 50 and the counter electrode 20 can be suitably prevented.
  • the imaging element 10 of the present invention has the photoelectric conversion layer 50 made of an organic material.
  • the photoelectric conversion layer 50 is a layer having a bulk heterostructure formed by mixing an n-type organic semiconductor material and a p-type organic semiconductor material.
  • Exciton dissociation efficiency can be increased by joining a p-type organic semiconductor material and an n-type organic semiconductor material to form a donor-acceptor interface. For this reason, the photoelectric conversion layer of the structure which joined the p-type organic-semiconductor material and the n-type organic-semiconductor material expresses high photoelectric conversion efficiency.
  • a photoelectric conversion layer in which a p-type organic semiconductor material and an n-type organic semiconductor material are mixed is preferable because the junction interface is increased and the photoelectric conversion efficiency is improved.
  • the p-type organic semiconductor material is a donor-type organic semiconductor material (compound), which is mainly represented by a hole-transporting organic compound and refers to an organic compound having a property of easily donating electrons. More specifically, an organic compound having a smaller ionization potential when two organic materials are used in contact with each other. Therefore, any organic compound can be used as the donor organic compound as long as it is an electron-donating organic compound.
  • the metal complex etc. which it has as can be used.
  • any organic compound having an ionization potential smaller than that of the organic compound used as the n-type (acceptor property) compound may be used as the donor organic semiconductor.
  • the n-type organic semiconductor material is an acceptor organic semiconductor material, and is mainly represented by an electron-transporting organic compound and means an organic compound having a property of easily accepting electrons. More specifically, an n-type organic semiconductor refers to an organic compound having a larger electron affinity when two organic compounds are used in contact with each other. Therefore, as the acceptor organic compound, any organic compound can be used as long as it is an electron-accepting organic compound.
  • condensed aromatic carbocyclic compounds naphthalene derivatives, anthracene derivatives, phenanthrene derivatives, tetracene derivatives, pyrene derivatives, perylene derivatives, fluoranthene derivatives
  • 5- to 7-membered heterocyclic compounds containing nitrogen atoms, oxygen atoms, and sulfur atoms E.g., pyridine, pyrazine, pyrimidine, pyridazine, triazine, quinoline, quinoxaline, quinazoline, phthalazine, cinnoline, isoquinoline, pteridine, acridine, phenazine, phenanthroline, tetrazole, pyrazole, imidazole, thiazole, oxazole, indazole, benzimidazole, benzotriazole , Benzoxazole, benzothiazole, carbazole, purine, triazolopy
  • Any organic dye may be used as the p-type organic semiconductor material or the n-type organic semiconductor material, but preferably a cyanine dye, a styryl dye, a hemicyanine dye, and a merocyanine dye (including zero methine merocyanine (simple merocyanine)).
  • fullerene and / or fullerene derivatives having excellent electron transport properties.
  • a fullerene derivative represents the compound which added the substituent to these.
  • only fullerene may be used, only a fullerene derivative may be used, and fullerene and a fullerene derivative may be used together.
  • the substituent for the fullerene derivative is preferably an alkyl group, an aryl group, or a heterocyclic group.
  • the alkyl group is more preferably an alkyl group having 1 to 12 carbon atoms, and the aryl group and the heterocyclic group are preferably a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, fluorene ring, triphenylene ring, naphthacene ring.
  • substituents may further have a substituent, and the substituents may be bonded as much as possible to form a ring.
  • substituents may be bonded as much as possible to form a ring.
  • you may have a some substituent and they may be the same or different.
  • a plurality of substituents may be combined as much as possible to form a ring.
  • the photoelectric conversion layer 50 contains fullerene and / or fullerene derivative
  • electrons generated by photoelectric conversion can be quickly transported to the pixel electrode 16 or the counter electrode 20 via the fullerene molecule or fullerene derivative molecule.
  • fullerene molecules or fullerene derivative molecules are connected to form an electron path, the electron transport property is improved, and high-speed response of the photoelectric conversion element can be realized.
  • it is preferable that fullerene and / or fullerene derivatives are contained in the photoelectric conversion layer 50 by 40% (volume ratio) or more.
  • the p-type organic semiconductor is reduced, the junction interface is reduced, and the exciton dissociation efficiency is lowered.
  • the triarylamine compound described in Japanese Patent No. 4213832 is used as a p-type organic semiconductor material mixed with fullerene and / or fullerene derivatives in the photoelectric conversion layer 50, a high SN ratio of the photoelectric conversion element can be expressed. It is particularly preferable. If the ratio of fullerene or fullerene derivative in the photoelectric conversion layer is too large, the amount of triarylamine compounds decreases and the amount of incident light absorbed decreases. As a result, the photoelectric conversion efficiency is reduced. Therefore, the fullerene and / or fullerene derivative contained in the photoelectric conversion layer preferably has a composition of 85% (volume ratio) or less.
  • the p-type semiconductor organic material used for the photoelectric conversion layer 50 is particularly preferably a compound represented by the following general formula (1).
  • Z 1 represents a ring containing at least two carbon atoms and represents a 5-membered ring, a 6-membered ring, or a condensed ring containing at least one of a 5-membered ring and a 6-membered ring.
  • L 1 , L 2 , and L 3 each independently represent an unsubstituted methine group or a substituted methine group.
  • D 1 represents an atomic group.
  • n represents an integer of 0 or more.
  • Z 1 is a ring containing at least two carbon atoms, and represents a 5-membered ring, a 6-membered ring, or a condensed ring containing at least one of a 5-membered ring and a 6-membered ring.
  • the condensed ring containing at least one of a 5-membered ring, a 6-membered ring, and a 5-membered ring and a 6-membered ring those usually used as an acidic nucleus in a merocyanine dye are preferable. Specific examples thereof include the following.
  • (A) 1,3-dicarbonyl nucleus for example, 1,3-indandione nucleus, 1,3-cyclohexanedione, 5,5-dimethyl-1,3-cyclohexanedione, 1,3-dioxane-4,6- Zeon etc.
  • (B) pyrazolinone nucleus for example 1-phenyl-2-pyrazolin-5-one, 3-methyl-1-phenyl-2-pyrazolin-5-one, 1- (2-benzothiazoyl) -3-methyl-2 -Pyrazolin-5-one and the like.
  • (C) isoxazolinone nucleus for example, 3-phenyl-2-isoxazolin-5-one, 3-methyl-2-isoxazolin-5-one, etc.
  • (D) Oxindole nucleus For example, 1-alkyl-2,3-dihydro-2-oxindole and the like.
  • Examples of the derivatives include 1-alkyl compounds such as 1-methyl and 1-ethyl, 1,3-dialkyl compounds such as 1,3-dimethyl, 1,3-diethyl and 1,3-dibutyl, 1,3-diphenyl, 1,3-diaryl compounds such as 1,3-di (p-chlorophenyl) and 1,3-di (p-ethoxycarbonylphenyl), 1-alkyl-1-aryl compounds such as 1-ethyl-3-phenyl, Examples include 1,3-di (2-pyridyl) 1,3-diheterocyclic substituents and the like.
  • (F) 2-thio-2,4-thiazolidinedione nucleus for example, rhodanine and its derivatives.
  • the derivatives include 3-alkylrhodanine such as 3-methylrhodanine, 3-ethylrhodanine and 3-allylrhodanine, 3-arylrhodanine such as 3-phenylrhodanine, and 3- (2-pyridyl) rhodanine. And the like.
  • (J) 2,4-thiazolidinedione nucleus: for example, 2,4-thiazolidinedione, 3-ethyl-2,4-thiazolidinedione, 3-phenyl-2,4-thiazolidinedione and the like.
  • (K) Thiazolin-4-one nucleus for example, 4-thiazolinone, 2-ethyl-4-thiazolinone and the like.
  • (M) 2-thio-2,4-imidazolidinedione (2-thiohydantoin) nucleus for example, 2-thio-2,4-imidazolidinedione, 3-ethyl-2-thio-2,4-imidazolidinedione etc.
  • (N) Imidazolin-5-one nucleus for example, 2-propylmercapto-2-imidazolin-5-one and the like.
  • (O) 3,5-pyrazolidinedione nucleus for example, 1,2-diphenyl-3,5-pyrazolidinedione, 1,2-dimethyl-3,5-pyrazolidinedione and the like.
  • Benzothiophen-3-one nucleus for example, benzothiophen-3-one, oxobenzothiophen-3-one, dioxobenzothiophen-3-one and the like.
  • Indanone nucleus for example, 1-indanone, 3-phenyl-1-indanone, 3-methyl-1-indanone, 3,3-diphenyl-1-indanone, 3,3-dimethyl-1-indanone, etc.
  • the ring formed by Z 1 is preferably a 1,3-dicarbonyl nucleus, a pyrazolinone nucleus, a 2,4,6-triketohexahydropyrimidine nucleus (including a thioketone body, for example, a barbituric acid nucleus, 2-thiobarbitur tool) Acid nucleus), 2-thio-2,4-thiazolidinedione nucleus, 2-thio-2,4-oxazolidinedione nucleus, 2-thio-2,5-thiazolidinedione nucleus, 2,4-thiazolidinedione nucleus, 2, In 4-imidazolidinedione nucleus, 2-thio-2,4-imidazolidinedione nucleus, 2-imidazolin-5-one nucleus, 3,5-pyrazolidinedione nucleus, benzothiophen-3-one nucleus, indanone nucleus More preferably 1,3-dicarbonyl nucle
  • L 1 , L 2 , and L 3 each independently represent an unsubstituted methine group or a substituted methine group.
  • the substituted methine groups may be bonded to each other to form a ring (eg, a 6-membered ring such as a benzene ring).
  • the substituent W of the substituted methine group includes the substituent W, it is preferable that all of L 1 , L 2 and L 3 are unsubstituted methine groups.
  • L 1 to L 3 may be connected to each other to form a ring, and preferred examples of the ring formed include a cyclohexene ring, a cyclopentene ring, a benzene ring, and a thiophene ring.
  • N represents an integer of 0 or more, preferably 0 or more and 3 or less, more preferably 0.
  • N 0 is preferable in that it has appropriate absorption in the visible region and suppresses thermal decomposition during vapor deposition.
  • D 1 represents an atomic group.
  • D 1 is preferably a group containing —NR a (R b ), more preferably —NR a (R b ) represents a substituted arylene group.
  • R a and R b each independently represent a hydrogen atom or a substituent.
  • the arylene group represented by D 1 is preferably an arylene group having 6 to 30 carbon atoms, and more preferably an arylene group having 6 to 18 carbon atoms.
  • the arylene group may have a substituent W described later, and is preferably an arylene group having 6 to 18 carbon atoms which may have an alkyl group having 1 to 4 carbon atoms. Examples thereof include a phenylene group, a naphthylene group, an anthracenylene group, a pyrenylene group, a phenanthrenylene group, a methylphenylene group, and a dimethylphenylene group, and a phenylene group or a naphthylene group is preferable.
  • R a and R b examples include the substituent W described later, and preferably an aliphatic hydrocarbon group (preferably an alkyl group or alkenyl group which may be substituted) or an aryl group (preferably substituted). A phenyl group which may be substituted), or a heterocyclic group.
  • the aryl groups represented by R a and R b are each independently preferably an aryl group having 6 to 30 carbon atoms, and more preferably an aryl group having 6 to 18 carbon atoms.
  • the aryl group may have a substituent, and is preferably an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 18 carbon atoms which may have an aryl group having 6 to 18 carbon atoms. .
  • Examples thereof include a phenyl group, a naphthyl group, an anthracenyl group, a pyrenyl group, a phenanthrenyl group, a methylphenyl group, a dimethylphenyl group, and a biphenyl group, and a phenyl group or a naphthyl group is preferable.
  • the heterocyclic groups represented by R a and R b are each independently preferably a heterocyclic group having 3 to 30 carbon atoms, more preferably a heterocyclic group having 3 to 18 carbon atoms.
  • the heterocyclic group may have a substituent, and preferably a C 3-18 heterocyclic group which may have an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 18 carbon atoms. It is.
  • the heterocyclic group represented by R a and R b is preferably a condensed ring structure, and is a furan ring, thiophene ring, selenophene ring, silole ring, pyridine ring, pyrazine ring, pyrimidine ring, oxazole ring, thiazole ring, triazole.
  • a condensed ring structure of a ring combination selected from a ring, an oxadiazole ring, and a thiadiazole ring (which may be the same) is preferable.
  • a quinoline ring, an isoquinoline ring, a benzothiophene ring, a dibenzothiophene ring, a thienothiophene ring, and a bithienobenzene ring A bithienothiophene ring is preferred.
  • the arylene group and aryl group represented by D 1 , R a , and R b are preferably a benzene ring or a condensed ring structure, more preferably a condensed ring structure containing a benzene ring, a naphthalene ring, an anthracene ring, pyrene A benzene ring, a naphthalene ring or an anthracene ring, more preferably a benzene ring or a naphthalene ring.
  • a halogen atom an alkyl group (including a cycloalkyl group, a bicycloalkyl group, and a tricycloalkyl group), an alkenyl group (including a cycloalkenyl group and a bicycloalkenyl group), an alkynyl group, an aryl group, and a heterocyclic group (May be referred to as a heterocyclic group), cyano group, hydroxy group, nitro group, carboxy group, alkoxy group, aryloxy group, silyloxy group, heterocyclic oxy group, acyloxy group, carbamoyloxy group, alkoxycarbonyl group, aryl Oxycarbonyl group, amino group (including anilino group), ammonio group, acylamino group, aminocarbonylamino group, alkoxycarbonylamino group, aryloxycarbonylamino group, sulfamoylamino group, alky
  • R a and R b represent a substituent (preferably an alkyl group or an alkenyl group), the substituent is an aromatic ring (preferably benzene ring) skeleton of an aryl group substituted by —NR a (R b ). It may combine with a hydrogen atom or a substituent to form a ring (preferably a 6-membered ring).
  • R a and R b may be bonded to each other to form a ring (preferably a 5- or 6-membered ring, more preferably a 6-membered ring), and R a and R b are each L A ring (preferably a 5-membered or 6-membered ring, more preferably a 6-membered ring) may be formed by combining with a substituent in (represents any one of L 1 , L 2 , and L 3 ).
  • the compound represented by the general formula (1) is a compound described in Japanese Patent Application Laid-Open No. 2000-297068, and a compound not described in the above publication can be produced according to the synthesis method described in the above publication. it can. Moreover, it is preferable that the compound represented by General formula (1) is a compound represented by General formula (2).
  • Z 2 , L 21 , L 22 , L 23 , and n are synonymous with Z 1 , L 1 , L 2 , L 3 , and n in the general formula (1), and preferred The example is similar.
  • D 21 represents a substituted or unsubstituted arylene group.
  • D 22 and D 23 each independently represents a substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group.
  • the arylene group represented by D 21 has the same meaning as the arylene ring group represented by D 1 , and preferred examples thereof are also the same.
  • the aryl group represented by D 22 and D 23 is independently the same as the heterocyclic group represented by R a and R b , and preferred examples thereof are also the same.
  • Z 3 represents any one of A-1 to A-12 in Chemical Formula 4 shown below.
  • L 31 represents methylene and n represents 0.
  • D 31 represents any one of B-1 to B-9, and D 32 and D 33 represent any one of C-1 to C-16.
  • Z 3 is preferably A-2, D 32 and D 33 are preferably selected from C-1, C-2, C-15, and C-16, and D 31 is B-1 or B- 9 is preferred.
  • Particularly preferred p-type organic materials include dyes or materials having no 5 or more condensed ring structures (materials having 0 to 4, preferably 1 to 3 condensed ring structures).
  • a pigment-based p-type material generally used in organic thin-film solar cells the dark current tends to increase at the pn interface, and the light response is slow due to trapping at the crystalline grain boundary. Since it tends to be, it is difficult to use for an image sensor. For this reason, a dye-based p-type material that is difficult to crystallize, or a material that does not have five or more condensed ring structures can be preferably used for the imaging element.
  • A-1 to A-12, B-1 to B-9, and C-1 to C-16 have the same meanings as shown in the chemical formula 4. Although the especially preferable specific example of a compound represented by General formula (1) below is shown, this invention is not limited to these.
  • the compound represented by the general formula (1) preferably has a molecular weight of 300 to 1500, more preferably 350 to 1200, and still more preferably 400 to 900, from the viewpoint of film forming suitability.
  • the molecular weight is too small, the film thickness of the formed photoelectric conversion film decreases due to volatilization. Conversely, when the molecular weight is too large, vapor deposition cannot be performed, and a photoelectric conversion element cannot be manufactured.
  • the compound represented by the general formula (1) has a melting point of preferably 200 ° C. or higher, more preferably 220 ° C. or higher, and further preferably 240 ° C. or higher from the viewpoint of vapor deposition stability. If the melting point is low, it melts before vapor deposition, and in addition to being unable to form a stable film, the decomposition product of the compound increases, so the photoelectric conversion performance deteriorates.
  • the peak wavelength of the absorption spectrum of the compound represented by the general formula (1) is preferably 400 nm to 700 nm from the viewpoint of absorbing a wide range of light in the visible region.
  • the molar extinction coefficient of peak wavelength The higher the molar extinction coefficient is, the better the compound represented by the general formula (1) is from the viewpoint of efficiently using light.
  • Absorption spectrum chloroform solution
  • the molar absorption coefficient preferably 20000 -1 cm -1 or more, more preferably 30000 m -1 cm -1 or more, 40000M -1 cm -1 or more Is more preferable.
  • An electron donating organic material can be used for the electron blocking layer 52 which comprises the photoelectric conversion part 18 with the photoelectric converting layer 50 which consists of such an organic photoelectric converting material.
  • Porphyrin compounds triazole derivatives, oxazizazo Derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, annealed amine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, silazane derivatives, carbazole derivatives, bifluorenes Derivatives and the like can be used.
  • polymers such as phenylene vinylene, fluorene, carbazole, indole, pyrene, pyrrole, picoline, thiophene, acetylene, diacetylene, and derivatives thereof can be used. Even if it is not an electron-donating compound, it can be used as long as it has a sufficient hole transporting property.
  • An inorganic material can also be used for the electron blocking layer 52.
  • an inorganic material has a dielectric constant larger than that of an organic material, when it is used for the electron blocking layer 52, a large voltage is applied to the photoelectric conversion layer, and the photoelectric conversion efficiency can be increased.
  • Materials that can be the electron blocking layer 52 include calcium oxide, chromium oxide, chromium oxide copper, manganese oxide, cobalt oxide, nickel oxide, copper oxide, gallium copper oxide, strontium copper oxide, niobium oxide, molybdenum oxide, indium copper oxide, Examples include indium silver oxide and iridium oxide.
  • the solid-state imaging device and the method for manufacturing the solid-state imaging device of the present invention have been described in detail.
  • the present invention is not limited to the above-described examples, and various improvements and modifications can be made without departing from the gist of the present invention. Of course, you may do this.
  • Examples (Examples 1 to 4, Comparative Examples 1 to 4)
  • a CMOS calling circuit, a wiring layer, an insulating layer, and a pixel electrode formed on a Si substrate by a standard CMOS image sensor process was used as the substrate.
  • This substrate was transported to the organic vapor deposition chamber, the organic vapor deposition chamber was closed, and the interior was depressurized to 1 ⁇ 10 ⁇ 4 Pa.
  • the following compound 1 was vacuum deposited on the pixel electrode at a deposition rate of 0.1 to 0.12 nm / sec to form an electron blocking layer having a thickness of 100 nm.
  • the following compound 2 and fullerene C60 were vacuum deposited (co-evaporated) at a deposition rate of 0.16 to 0.18 nm / sec and 0.25 to 0.25 nm / sec, respectively, A 400 nm photoelectric conversion layer was formed.
  • the substrate on which the photoelectric conversion layer was formed was taken out from the organic vapor deposition chamber and transferred to the sputtering chamber.
  • an ITO film was formed on the photoelectric conversion layer by RF magnetron sputtering to form a counter electrode having a thickness of 10 nm.
  • the substrate on which the counter electrode was formed was taken out of the sputtering chamber and transferred to the ALD chamber.
  • an aluminum oxide film was formed by ALD on the counter electrode to form a first sealing layer having a thickness of 30 nm.
  • the substrate on which the first sealing layer was formed was taken out of the ALD chamber and transferred to the plasma CVD chamber.
  • a SiON film was formed on the first sealing layer, a second sealing layer having a thickness of 300 nm was formed, and the sealing layer was completed.
  • COLOR MOSAIC-EXIS SR-4000L manufactured by FUJIFILM Electromaterials Co., Ltd. was uniformly applied as an R filter color resist, and prebaked.
  • the portion corresponding to the R filter is subjected to pattern exposure using an i-line stepper (NSR-2205i12D manufactured by Nikon Corporation), and further developed with a developer (CD-2060 manufactured by Fuji Film Electromaterials Co., Ltd.). Then, the light shielding part was removed, then washed with water and dried, and then post-baked to form an R filter.
  • the same processing is performed for the G filter and the B filter, and a color filter formed by arranging an R filter, a G filter, and a B filter corresponding to the pixel electrode on the sealing layer is formed.
  • a plurality of types of solid-state imaging devices as shown in FIG. 1 were produced.
  • the color filter was controlled to have a thickness of 0.1 ⁇ m or 0.3 ⁇ m.
  • the color filter was formed by changing the distance from the end (formation range) of the photoelectric conversion layer in the plane direction within a range of ⁇ 200 to 1500 ⁇ m.
  • the sign of the color filter formation range is positive when the color filter formation range exceeds the photoelectric conversion layer formation state (the state shown in FIG. 1), and does not exceed (from the end of the photoelectric conversion layer) Was also negative.
  • a total of eight types of solid-state imaging devices (Examples 1 to 4 and Comparative Examples 1 to 4) were produced by combining the thickness of the color filter and the distance from the end of the photoelectric conversion layer of the color filter.
  • Adhesive tape (BGE-194U, manufactured by Denki Kagaku Kogyo Co., Ltd.) was attached to the color filters of the eight types of solid-state imaging devices that were produced.
  • the adhesive tape was attached using a wafer mounter (UT-114 manufactured by Technovision). Next, the adhesive tape was peeled off by pulling in the 180 ° direction.
  • the color filter forming surface of the image sensor was confirmed with an optical microscope (Nikon Corporation ECRIPSE LV100D). “Excellent” when the film peeling was not confirmed, “Good” when the probability of film peeling (number of film peeling elements / number of test elements) was less than 1%, and the probability of film peeling of 1% or more Rated as “impossible”.
  • the film thickness of the color filter, the distance from the end of the photoelectric conversion layer, the probability of film peeling, and the evaluation are summarized in the following table.

Abstract

Provided are a solid state imaging element and a method for manufacturing the same, which solid state imaging element uses an organic photoelectric conversion material, and with which, by forming a colour filter so as to exceed the formation range of an organic layer having a photoelectric conversion layer, the tearing of the film forming the element is prevented and the yield can be improved.

Description

固体撮像素子および固体撮像素子の製造方法Solid-state imaging device and method for manufacturing solid-state imaging device
 本発明は、有機物を含む光電変換層を備える固体撮像素子に関する。特に、製造工程で生じる、素子を構成する層の膜剥がれを防止できる固体撮像素子、および、その製造方法に関する。 The present invention relates to a solid-state imaging device including a photoelectric conversion layer containing an organic substance. In particular, the present invention relates to a solid-state imaging device capable of preventing film peeling of layers constituting the device, which occurs in the manufacturing process, and a manufacturing method thereof.
 テジタルスチルカメラ、デジタルビデオカメラ、内視鏡用の撮像モジュール、携帯電話用の撮像モジュール等に利用されているイメージセンサとして、シリコン(Si)チップなどの半導体基板にフォトダイオードを含む画素を配列し、各画素のフォトダイオードで発生した光電子に対応する信号電荷をCCD型やCMOS型読出し回路で取得する、固体撮像素子(いわゆるCCDセンサやCMOSセンサ)が広く知られている。
 また、特許文献1や特許文献2等に示されるように、近年では、受光した光に応じて電荷を生成する有機材料を用いた、有機光電変換層を有する撮像素子が検討されている。
As an image sensor used in digital still cameras, digital video cameras, imaging modules for endoscopes, imaging modules for mobile phones, etc., pixels including photodiodes are arranged on a semiconductor substrate such as a silicon (Si) chip. Solid-state imaging devices (so-called CCD sensors and CMOS sensors) that acquire signal charges corresponding to photoelectrons generated in the photodiodes of each pixel with a CCD type or CMOS type readout circuit are widely known.
In addition, as shown in Patent Document 1, Patent Document 2, and the like, in recent years, an image sensor having an organic photoelectric conversion layer using an organic material that generates an electric charge in response to received light has been studied.
 特許文献1や特許文献2等に示されるように、有機光電変換層を有する撮像素子は、信号読出し回路が形成された半導体基板上に形成された画素電極と、画素電極上に形成された有機光電変換層と、有機光電変換層上に形成された透明な対向電極(上部電極)と、この対向電極上に形成され、この対向電極を保護する封止層と、封止層の上に形成されるカラーフィルタ等とを有して構成される。 As shown in Patent Document 1, Patent Document 2, and the like, an imaging device having an organic photoelectric conversion layer includes a pixel electrode formed on a semiconductor substrate on which a signal readout circuit is formed, and an organic film formed on the pixel electrode. A photoelectric conversion layer, a transparent counter electrode (upper electrode) formed on the organic photoelectric conversion layer, a sealing layer formed on the counter electrode and protecting the counter electrode, and formed on the sealing layer And a color filter or the like.
特開2008-252004号公報JP 2008-252004 A 特開2008-227091号公報JP 2008-227091 A
 ところで、固体撮像素子に限らず、シリコンウエハ等を用いる半導体装置の製造においては、半導体装置の小型化や軽量化を目的として、ウエハの裏面(素子の形成面と逆面)を研磨して薄くする、いわゆるバックグラインドと呼ばれる工程が行われる。
 このバックグラインド工程は、集積回路などの素子の形成を終了した後に行う。そのため、バックグラインド工程は、BGテープ(バックグラインドテープ)と呼ばれる保護テープを素子の形成面に貼着して、素子を保護して行われる。
 バックグラインドを終了すると、保護テープは剥離され、素子を形成されたウエハは、次の工程に供される。
By the way, in the manufacture of semiconductor devices using not only solid-state imaging devices but also silicon wafers or the like, the back surface of the wafer (the surface opposite to the device formation surface) is polished and thinned for the purpose of reducing the size and weight of the semiconductor device. A so-called back grinding process is performed.
This back grinding process is performed after the formation of an element such as an integrated circuit is completed. Therefore, the back grinding process is performed by protecting a device by attaching a protective tape called a BG tape (back grind tape) to the surface on which the device is formed.
When the back grinding is finished, the protective tape is peeled off, and the wafer on which the element is formed is subjected to the next step.
 ところが、本発明者の検討によれば、有機光電変換層を有する固体撮像素子では、このバックグラインド工程を行うと、保護テープを剥離する際に、素子を構成する層の間で剥離(膜剥がれ)が生じてしまうことが、多々、生じ、歩留りが低下してしまうという問題が有る。 However, according to the study of the present inventor, in the solid-state imaging device having the organic photoelectric conversion layer, when this back grinding process is performed, the protective tape is peeled between the layers constituting the device (film peeling). ) Often occurs, resulting in a decrease in yield.
 本発明の目的は、このような従来技術の問題点を解決することにあり、受光した光に応じて電荷を生成する有機材料からなる有機光電変換層を有する固体撮像素子において、バックグラインド工程における膜剥がれを防止して、歩留りを向上することができる固体撮像素子、および、この固体撮像素子の製造方法を提供することにある。 An object of the present invention is to solve such problems of the prior art, in a solid-state imaging device having an organic photoelectric conversion layer made of an organic material that generates electric charge in response to received light, in a back grinding process. An object of the present invention is to provide a solid-state imaging device capable of preventing film peeling and improving yield, and a method for manufacturing the solid-state imaging device.
 この目的を達成するために、本発明の固体撮像素子は、複数の画素電極と、画素電極の上に設けられる、受光した光に応じた電荷を生成する有機材料からなる光電変換層を含む光電変換部と、光電変換部の上に設けられる、複数の画素電極に共通な対向電極と、対向電極の上に、この対向電極を覆って設けられる封止層と、封止層の上に、光電変換部の全面を覆って設けられるカラーフィルタと、画素電極に捕集された電荷に応じた信号を読み出す読出し回路とを有し、かつ、カラーフィルタが、光電変換層の形成範囲を超える範囲まで形成されていることを特徴とする固体撮像素子を提供する。 In order to achieve this object, a solid-state imaging device according to the present invention includes a plurality of pixel electrodes and a photoelectric conversion layer that is provided on the pixel electrodes and includes a photoelectric conversion layer made of an organic material that generates charges according to received light. A conversion unit, a counter electrode provided on the photoelectric conversion unit, common to the plurality of pixel electrodes, a sealing layer provided on the counter electrode so as to cover the counter electrode, and a sealing layer, A color filter provided so as to cover the entire surface of the photoelectric conversion unit, and a readout circuit that reads out a signal corresponding to the charge collected in the pixel electrode, and the color filter exceeds a range in which the photoelectric conversion layer is formed A solid-state imaging device is provided.
 このような本発明の固体撮像素子において、光電変換層の形成範囲を超えるカラーフィルタの形成範囲が、0.05μm以上であるのが好ましい。
 また、カラーフィルタの厚さが0.1μm以上であるのが好ましい。
 また、カラーフィルタが、赤フィルタ、緑フィルタおよび青フィルタを、画素電極に対応して配列してなるものである場合、光電変換層の形成範囲を超えて形成されるのが、赤フィルタおよび緑フィルタの少なくとも一方であるのが好ましい。
 また、光電変換部が、光電変換層の下層に、画素電極から光電変換層に電子が注入されるのを抑制するための電子ブロッキング層を有するのが好ましい。
 また、光電変換層が、p型有機半導体材料とn型有機半導体材料とを混合してなるバルクヘテロ構造を有するのが好ましい。
 また、n型有機半導体材料が、フラーレンおよびフラーレン誘導体の少なくとも一方であるのが好ましい。
 また、p型半導体有機材料が、下記一般式(1)で示される化合物であるのが好ましい。
Figure JPOXMLDOC01-appb-C000003

(一般式(1)中、Zは少なくとも2つの炭素原子を含む環であって、5員環、6員環、または、5員環および6員環の少なくともいずれかを含む縮合環を表す。L、L、およびLはそれぞれ独立に無置換メチン基、または置換メチン基を表す。Dは原子群を表す。nは0以上の整数を表す。)
 さらに、対向電極が、酸化インジウム錫であるのが好ましい。
In such a solid-state imaging device of the present invention, it is preferable that the color filter formation range that exceeds the photoelectric conversion layer formation range is 0.05 μm or more.
The color filter preferably has a thickness of 0.1 μm or more.
Further, when the color filter is formed by arranging a red filter, a green filter, and a blue filter corresponding to the pixel electrode, the red filter and the green filter are formed beyond the formation range of the photoelectric conversion layer. Preferably it is at least one of the filters.
Moreover, it is preferable that a photoelectric conversion part has an electron blocking layer for suppressing injecting an electron from a pixel electrode to a photoelectric converting layer in the lower layer of a photoelectric converting layer.
The photoelectric conversion layer preferably has a bulk heterostructure formed by mixing a p-type organic semiconductor material and an n-type organic semiconductor material.
The n-type organic semiconductor material is preferably at least one of fullerene and fullerene derivatives.
In addition, the p-type semiconductor organic material is preferably a compound represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000003

(In the general formula (1), Z 1 represents a ring containing at least two carbon atoms and represents a 5-membered ring, a 6-membered ring, or a condensed ring containing at least one of a 5-membered ring and a 6-membered ring. L 1 , L 2 and L 3 each independently represents an unsubstituted methine group or a substituted methine group, D 1 represents an atomic group, and n represents an integer of 0 or more.)
Further, the counter electrode is preferably indium tin oxide.
 また、本発明の固体撮像素子の製造方法は、基板上に、複数の画素電極と、有機材料からなる光電変換層を有する光電変換部と、対向電極と、対向電極を覆う封止層とを、この順番で積層した後、封止層の上に、光電変換部の全面を含んで、光電変換層の形成範囲を超える形成範囲でカラーフィルタを形成し、カラーフィルタの形成面側に保護テープを貼着して、基板のバックグラインドを行い、バックグラインドを行った後、保護テープを剥離することを特徴とする固体撮像素子の製造方法を提供する。 The solid-state imaging device manufacturing method of the present invention includes a plurality of pixel electrodes, a photoelectric conversion unit having a photoelectric conversion layer made of an organic material, a counter electrode, and a sealing layer covering the counter electrode on a substrate. Then, after laminating in this order, a color filter is formed on the sealing layer, including the entire surface of the photoelectric conversion portion, in a formation range exceeding the formation range of the photoelectric conversion layer, and a protective tape on the color filter formation surface side A solid-state imaging device manufacturing method is provided, in which a substrate is back-grinded, a back-grinding is performed, and then a protective tape is peeled off.
 このような本発明の固体撮像素子の製造方法において、光電変換層の形成範囲を超えるカラーフィルタの形成範囲が、0.05μm以上であるのが好ましい。
 また、カラーフィルタの厚さが0.1μm以上であるのが好ましい。
 また、カラーフィルタが、赤フィルタ、緑フィルタおよび青フィルタを、画素電極に対応して配列してなるものである場合、赤フィルタおよび緑フィルタの少なくとも一方を、光電変換層の形成範囲を超えて形成するのが好ましい。
 また、光電変換部において、光電変換層の下層として、画素電極から光電変換層に電子が注入されるのを抑制するための電子ブロッキング層を積層するのが好ましい。
 また、光電変換層が、p型有機半導体材料とn型有機半導体材料とを混合してなるバルクヘテロ構造を有するのが好ましい。
 また、n型有機半導体材料が、フラーレンおよびフラーレン誘導体の少なくとも一方であるのが好ましい。
 また、p型半導体有機材料が、下記一般式(1)で示される化合物であるのが好ましい。
Figure JPOXMLDOC01-appb-C000004

(一般式(1)中、Zは少なくとも2つの炭素原子を含む環であって、5員環、6員環、または、5員環および6員環の少なくともいずれかを含む縮合環を表す。L、L、およびLはそれぞれ独立に無置換メチン基、または置換メチン基を表す。Dは原子群を表す。nは0以上の整数を表す。)
 さらに、対向電極が、酸化インジウム錫であるのが好ましい。
In such a method for producing a solid-state imaging device of the present invention, the formation range of the color filter that exceeds the formation range of the photoelectric conversion layer is preferably 0.05 μm or more.
The color filter preferably has a thickness of 0.1 μm or more.
In addition, when the color filter is a red filter, a green filter, and a blue filter arranged in correspondence with the pixel electrode, at least one of the red filter and the green filter exceeds the formation range of the photoelectric conversion layer. Preferably formed.
In the photoelectric conversion unit, an electron blocking layer for suppressing injection of electrons from the pixel electrode to the photoelectric conversion layer is preferably laminated as a lower layer of the photoelectric conversion layer.
The photoelectric conversion layer preferably has a bulk heterostructure formed by mixing a p-type organic semiconductor material and an n-type organic semiconductor material.
The n-type organic semiconductor material is preferably at least one of fullerene and fullerene derivatives.
In addition, the p-type semiconductor organic material is preferably a compound represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000004

(In the general formula (1), Z 1 represents a ring containing at least two carbon atoms and represents a 5-membered ring, a 6-membered ring, or a condensed ring containing at least one of a 5-membered ring and a 6-membered ring. L 1 , L 2 and L 3 each independently represents an unsubstituted methine group or a substituted methine group, D 1 represents an atomic group, and n represents an integer of 0 or more.)
Further, the counter electrode is preferably indium tin oxide.
 上記構成を有する本発明によれば、受光した光に応じた電荷を生成する有機材料からなる有機光電変換層を用いる固体撮像素子において、バックグラインド工程における保護テープの剥離の際に、固体撮像素子を構成する層が剥離する膜剥がれを防止できる。
 そのため、本発明によれば、有機光電変換層を用いる固体撮像素子において、膜剥がれに起因する不良品を大幅に低減して、高い歩留りを得ることができる。
According to the present invention having the above configuration, in the solid-state imaging device using the organic photoelectric conversion layer made of an organic material that generates an electric charge according to the received light, the solid-state imaging device is used when the protective tape is peeled off in the back grinding process. Can be prevented from peeling off.
Therefore, according to the present invention, in a solid-state imaging device using an organic photoelectric conversion layer, defective products due to film peeling can be greatly reduced and a high yield can be obtained.
本発明の固体撮像素子の製造方法によって製造された、本発明の固体撮像素子の一例を概念的に示す図である。It is a figure which shows notionally an example of the solid-state image sensor of this invention manufactured by the manufacturing method of the solid-state image sensor of this invention. (a)~(c)は、本発明の固体撮像素子の製造方法を説明するための概念図である。(A)-(c) is a conceptual diagram for demonstrating the manufacturing method of the solid-state image sensor of this invention. (a)~(c)は、本発明の固体撮像素子の製造方法を説明するための概念図である。(A)-(c) is a conceptual diagram for demonstrating the manufacturing method of the solid-state image sensor of this invention.
 以下に、本発明の固体撮像素子、および、固体撮像素子の製造方法について、添付の図面に示す好適実施例を基に詳細に説明する。 Hereinafter, the solid-state imaging device of the present invention and the method for manufacturing the solid-state imaging device will be described in detail based on preferred embodiments shown in the accompanying drawings.
 図1に、本発明の固体撮像素子の製造方法によって製造される、本発明の固体撮像素子の一例を概念的に示す。
 この固体撮像素子は、一例として、デジタルカメラやデジタルビデオカメラ等の撮像装置、携帯電話の撮像モジュール、電子内視鏡の撮像モジュール等に搭載して用いられる。
FIG. 1 conceptually shows an example of the solid-state image sensor of the present invention manufactured by the method for manufacturing a solid-state image sensor of the present invention.
As an example, this solid-state imaging device is used by being mounted on an imaging device such as a digital camera or a digital video camera, an imaging module of a mobile phone, an imaging module of an electronic endoscope, or the like.
 図1に示す固体撮像素子10(以下、撮像素子10とする)は、基板12と、絶縁層14と、画素電極16と、光電変換部18と、対向電極20と、封止層22と、カラーフィルタ26とを有する。
 また、撮像素子10において、基板12には、読出し回路40と、対向電極電圧供給部42とが形成されている。
A solid-state imaging device 10 (hereinafter, referred to as imaging device 10) illustrated in FIG. 1 includes a substrate 12, an insulating layer 14, a pixel electrode 16, a photoelectric conversion unit 18, a counter electrode 20, a sealing layer 22, And a color filter 26.
In the image sensor 10, a read circuit 40 and a counter electrode voltage supply unit 42 are formed on the substrate 12.
 基板12は、基本的に、Si基板等の半導体基板が用いられる。また、基板12としては、ガラス基板も利用可能である。
 この基板12の上には公知の絶縁材料からなる絶縁層14が形成されている。
As the substrate 12, a semiconductor substrate such as an Si substrate is basically used. As the substrate 12, a glass substrate can also be used.
An insulating layer 14 made of a known insulating material is formed on the substrate 12.
 絶縁層14の表面には、複数の画素電極16が形成されている。画素電極16は、例えば、1次元または2次元状に配列される。
 画素電極16の材料としては、例えば、金属、金属酸化物、金属窒化物、金属硼化物、有機導電性化合物、これらの混合物等が挙げられる。具体的には、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化インジウム亜鉛(IZO)、酸化インジウムタングステン(IWO)、酸化チタン等の導電性金属酸化物、窒化チタン(TiN)等の金属窒化物、金(Au)、白金(Pt)、銀(Ag)、クロム(Cr)、ニッケル(Ni)、アルミニウム(Al)等の金属、更にこれらの金属と導電性金属酸化物との混合物または積層物、ポリアニリン、ポリチオフェン、ポリピロール等の有機導電性化合物、これらとITOとの積層物、などが挙げられる。画素電極16の材料として特に好ましいのは、窒化チタン、窒化モリブデン、窒化タンタル、窒化タングステンのいずれかの材料である。
A plurality of pixel electrodes 16 are formed on the surface of the insulating layer 14. The pixel electrodes 16 are arranged in a one-dimensional or two-dimensional manner, for example.
Examples of the material of the pixel electrode 16 include metals, metal oxides, metal nitrides, metal borides, organic conductive compounds, and mixtures thereof. Specifically, conductive metal oxides such as tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO), indium tungsten oxide (IWO), and titanium oxide, titanium nitride (TiN) Metal nitrides such as gold (Au), platinum (Pt), silver (Ag), chromium (Cr), nickel (Ni), aluminum (Al), etc., and these metals and conductive metal oxides A mixture or laminate of the above, an organic conductive compound such as polyaniline, polythiophene, and polypyrrole, a laminate of these with ITO, and the like. A particularly preferable material for the pixel electrode 16 is any one of titanium nitride, molybdenum nitride, tantalum nitride, and tungsten nitride.
 また、絶縁層14には、画素電極16と読出し回路40とを接続する第1の接続部44が形成されている。
 さらに、絶縁層14には、対向電極20と対向電極電圧供給部42とを接続する第2の接続部46が形成されている。第2の接続部46は、画素電極16および光電変換部18に接続されない位置に形成されている。第1の接続部44および第2の接続部46は、共に、導電性材料で形成されている。
In addition, a first connection portion 44 that connects the pixel electrode 16 and the readout circuit 40 is formed in the insulating layer 14.
Furthermore, a second connection portion 46 that connects the counter electrode 20 and the counter electrode voltage supply unit 42 is formed in the insulating layer 14. The second connection portion 46 is formed at a position not connected to the pixel electrode 16 and the photoelectric conversion portion 18. Both the first connection portion 44 and the second connection portion 46 are made of a conductive material.
 絶縁層14の内部には、読出し回路40および対向電極電圧供給部42を、例えば、撮像装置10の外部と接続するための配線層48が形成されている。配線層48は、導電性材料で形成されている。
 以下、このように、基板12上に形成された絶縁層14の表面に、各第1の接続部44に接続された画素電極16が形成されたものを、回路基板11と言う。なお、この回路基板11はCMOS基板とも言う。
A wiring layer 48 for connecting the readout circuit 40 and the counter electrode voltage supply unit 42 to, for example, the outside of the imaging device 10 is formed inside the insulating layer 14. The wiring layer 48 is made of a conductive material.
Hereinafter, the circuit board 11 is formed by forming the pixel electrodes 16 connected to the first connection portions 44 on the surface of the insulating layer 14 formed on the substrate 12 as described above. The circuit board 11 is also called a CMOS substrate.
 複数の画素電極16を覆うと共に、第2の接続部46を避けるようにして、光電変換部18が形成されている。光電変換部18は、有機光電変換材料を含む有機光電変換層50と、電子ブロッキング層52とを有する。光電変換部18は、電子ブロッキング層52が画素電極16側(下層側)に形成されており、電子ブロッキング層52上に光電変換層50が形成されている。 The photoelectric conversion unit 18 is formed so as to cover the plurality of pixel electrodes 16 and to avoid the second connection unit 46. The photoelectric conversion unit 18 includes an organic photoelectric conversion layer 50 containing an organic photoelectric conversion material and an electron blocking layer 52. In the photoelectric conversion unit 18, the electron blocking layer 52 is formed on the pixel electrode 16 side (lower layer side), and the photoelectric conversion layer 50 is formed on the electron blocking layer 52.
 電子ブロッキング層52は、画素電極16から光電変換層50に電子が注入されることを防ぐための層であり、単層または複数層で構成されている。また、電子ブロッキング層52は、有機材料もしくは無機材料、またはその両方を含むものである。
 電子ブロッキング層52は、有機材料単独膜で構成されてもよいし、複数の異なる有機材料の混合膜で構成されていてもよい。電子ブロッキング層52は、隣接する画素電極16からの電子注入障壁が高く、かつ、正孔輸送性が高い材料で形成するのが好ましい。電子注入障壁としては、隣接する電極の仕事関数よりも、電子ブロッキング層52の電子親和力が1eV以上小さいのが好ましく、1.3eV以上小さいのがより好ましく、1.5eV以上小さいのが特に好ましい。
 電子ブロッキング層52の形成材料に関しては、後に詳述する。
The electron blocking layer 52 is a layer for preventing electrons from being injected from the pixel electrode 16 into the photoelectric conversion layer 50, and is composed of a single layer or a plurality of layers. The electron blocking layer 52 includes an organic material, an inorganic material, or both.
The electron blocking layer 52 may be composed of a single organic material film, or may be composed of a mixed film of a plurality of different organic materials. The electron blocking layer 52 is preferably formed of a material having a high electron injection barrier from the adjacent pixel electrode 16 and high hole transportability. As an electron injection barrier, the electron affinity of the electron blocking layer 52 is preferably 1 eV or less, more preferably 1.3 eV or less, and particularly preferably 1.5 eV or more than the work function of the adjacent electrode.
The material for forming the electron blocking layer 52 will be described in detail later.
 電子ブロッキング層52は、画素電極16と光電変換層50の接触を十分に抑制し、また画素電極16表面に存在する欠陥やゴミの影響を避けるために、厚さが20nm以上であるのが好ましい。電子ブロッキング層52の厚さは、より好ましくは40nm以上、特に好ましいのは60nm以上である。
 電子ブロッキング層52を厚くしすぎると、光電変換層50に適切な電界強度を印加するために必要な、供給電圧が高くなってしまう問題や、電子ブロッキング層52中のキャリア輸送過程が、光電変換素子の性能に悪影響を与えてしまう問題が生じる場合が有る。そのため、電子ブロッキング層52の総膜厚は、300nm以下であるのが好ましい。電子ブロッキング層52の総膜厚は、より好ましくは200nm以下、さらに好ましくは100nm以下である。
The electron blocking layer 52 preferably has a thickness of 20 nm or more in order to sufficiently suppress the contact between the pixel electrode 16 and the photoelectric conversion layer 50 and to avoid the influence of defects and dust existing on the surface of the pixel electrode 16. . The thickness of the electron blocking layer 52 is more preferably 40 nm or more, and particularly preferably 60 nm or more.
If the electron blocking layer 52 is too thick, the problem of increasing the supply voltage necessary for applying an appropriate electric field strength to the photoelectric conversion layer 50 and the carrier transporting process in the electron blocking layer 52 are due to photoelectric conversion. There may be a problem that the performance of the element is adversely affected. Therefore, the total film thickness of the electron blocking layer 52 is preferably 300 nm or less. The total film thickness of the electron blocking layer 52 is more preferably 200 nm or less, and still more preferably 100 nm or less.
 光電変換層50は、入射光等の受光した光Lの光量に応じた電荷を発生するものであり、有機光電変換材料からなる(有機光電変換材料を主成分とする)ものである。
 有機光電変換材料からなる光電変換層50は、p型有機半導体材料またはn型有機半導体材料を含有した層であるのが好ましく例示される。光電変換層50は、p型有機半導体材料とn型有機半導体材料とを混合したバルクへテロ層であるのがさらに好ましい。さらに好ましくは、光電変換層50は、p型有機半導体材料とn型有機半導体材料としてのフラーレン(フラーレン誘導体)とを混合したバルクへテロ層である。
 光電変換層50として、バルクへテロ層を用いることにより、有機層のキャリア拡散長が短いという欠点を補い、光電変換効率を向上させることができる。最適な混合比率でバルクへテロ層を作製することにより、光電変換層50の電子移動度、正孔移動度を高くすることができ、光電変換素子の光応答速度を十分高速にすることができる。バルクへテロ層のフラーレンの比率としては、40%~85%(体積比)が好ましい。なお、バルクへテロ層(バルクへテロ接合構造)については、特開2005-303266号公報に詳細に説明されている。
 光電変換層50の形成材料に関しては、後に詳述する。
The photoelectric conversion layer 50 generates electric charge according to the amount of light L received such as incident light, and is made of an organic photoelectric conversion material (mainly composed of an organic photoelectric conversion material).
Preferably, the photoelectric conversion layer 50 made of an organic photoelectric conversion material is a layer containing a p-type organic semiconductor material or an n-type organic semiconductor material. The photoelectric conversion layer 50 is more preferably a bulk hetero layer in which a p-type organic semiconductor material and an n-type organic semiconductor material are mixed. More preferably, the photoelectric conversion layer 50 is a bulk hetero layer in which a p-type organic semiconductor material and a fullerene (fullerene derivative) as an n-type organic semiconductor material are mixed.
By using a bulk hetero layer as the photoelectric conversion layer 50, the disadvantage that the carrier diffusion length of the organic layer is short can be compensated and the photoelectric conversion efficiency can be improved. By producing a bulk hetero layer with an optimal mixing ratio, the electron mobility and hole mobility of the photoelectric conversion layer 50 can be increased, and the photoresponse speed of the photoelectric conversion element can be sufficiently increased. . The proportion of fullerene in the bulk hetero layer is preferably 40% to 85% (volume ratio). The bulk hetero layer (bulk hetero junction structure) is described in detail in Japanese Patent Application Laid-Open No. 2005-303266.
The material for forming the photoelectric conversion layer 50 will be described in detail later.
 光電変換層50の厚さは、10~1000nm以下が好ましく、より好ましくは50~800nm以下であり、特に好ましくは100~500nm以下である。
 光電変換層50の厚さを10nm以上とすることにより、好適な暗電流抑制効果が得られる。また、光電変換層50の厚さを1000nm以下とすることにより、好適な光電変換効率が得られる。
 なお、光電変換層50および電子ブロッキング層52は、画素電極16上では一定の膜厚であれば、それ以外で膜厚が一定でなくてもよい。
The thickness of the photoelectric conversion layer 50 is preferably 10 to 1000 nm or less, more preferably 50 to 800 nm or less, and particularly preferably 100 to 500 nm or less.
By setting the thickness of the photoelectric conversion layer 50 to 10 nm or more, a suitable dark current suppressing effect can be obtained. Moreover, suitable photoelectric conversion efficiency is obtained by making the thickness of the photoelectric conversion layer 50 1000 nm or less.
Note that the photoelectric conversion layer 50 and the electron blocking layer 52 may have other film thicknesses as long as the film thickness is constant on the pixel electrode 16.
 光電変換層50は、真空蒸着法で成膜するのが好ましい。光電変換層50を蒸着する際には、すべての工程は真空中で行われることが好ましく、基本的には、化合物が直接、外気の酸素、水分と接触しないようにする。また、光電変換層50を蒸着する際には、水晶振動子、干渉計等の膜厚モニタ-を用いて蒸着速度をPI制御もしくはPID制御することは好ましく用いられる。2種以上の化合物を同時に蒸着する場合には共蒸着法、フラッシュ蒸着法等を好ましく用いることができる。
 あるいは、光電変換層50を構成する有機光電変換材料(特に、p型有機半導体材料およびn型有機半導体材料)を含有する塗料を調製し、この塗料を塗布、乾燥し、さらに、必要に応じて熱処理を行う、塗布法によって、光電変換層50を形成してもよい。
The photoelectric conversion layer 50 is preferably formed by a vacuum evaporation method. When vapor-depositing the photoelectric conversion layer 50, it is preferable that all steps be performed in a vacuum. Basically, the compound is not directly in contact with oxygen and moisture in the outside air. Further, when vapor-depositing the photoelectric conversion layer 50, it is preferable to perform PI control or PID control of the vapor deposition rate using a film thickness monitor such as a crystal resonator or an interferometer. When two or more kinds of compounds are vapor-deposited simultaneously, a co-evaporation method, a flash vapor deposition method, or the like can be preferably used.
Or the coating material containing the organic photoelectric converting material (especially p-type organic-semiconductor material and n-type organic-semiconductor material) which comprises the photoelectric converting layer 50 is prepared, this coating material is apply | coated and dried, Furthermore, as needed The photoelectric conversion layer 50 may be formed by a coating method that performs heat treatment.
 対向電極(上部電極)20は、画素電極16と対向する電極であり、側面(後述する面方向の端部)を含んで、光電変換層50(さらに電子ブロッキング層52)の全面を覆って設けられている。従って、画素電極16と対向電極20との間に光電変換層50が設けられる。図示例において、この対向電極20は、全ての画素電極16に共通である。
 また、対向電極20は、光電変換層50よりも外側に配置された第2の接続部46と電気的に接続されており、第2の接続部46を介して対向電極電圧供給部42に接続されている。
The counter electrode (upper electrode) 20 is an electrode that faces the pixel electrode 16 and is provided so as to cover the entire surface of the photoelectric conversion layer 50 (further, the electron blocking layer 52) including side surfaces (end portions in the surface direction described later). It has been. Therefore, the photoelectric conversion layer 50 is provided between the pixel electrode 16 and the counter electrode 20. In the illustrated example, the counter electrode 20 is common to all the pixel electrodes 16.
Further, the counter electrode 20 is electrically connected to the second connection portion 46 disposed outside the photoelectric conversion layer 50, and is connected to the counter electrode voltage supply portion 42 through the second connection portion 46. Has been.
 対向電極20は、光電変換層に入射する光の絶対量を増加させ、外部量子効率を高くするために、好ましくは、透明導電性酸化物が用いられる。
 具体的には、ITO、IZO、SnO2、ATO(アンチモンドープ酸化スズ)、ZnO、AZO(Alドープ酸化亜鉛)、GZO(ガリウムドープ酸化亜鉛)、TiO2、FTO(フッ素ドープ酸化スズ)等が好適に例示される。
 また、対向電極20の形成は、材料によって種々の方法が利用可能であるが、スパッタ法が好適に例示される。
The counter electrode 20 is preferably made of a transparent conductive oxide in order to increase the absolute amount of light incident on the photoelectric conversion layer and increase the external quantum efficiency.
Specifically, ITO, IZO, SnO 2, ATO ( antimony-doped tin oxide), ZnO, AZO (Al-doped zinc oxide), GZO (gallium-doped zinc oxide), TiO 2, FTO (fluorine-doped tin oxide) or the like Preferably exemplified.
Various methods can be used to form the counter electrode 20 depending on the material, but a sputtering method is preferably exemplified.
 対向電極20の光透過率は、可視光波長において、60%以上が好ましく、より好ましくは80%以上で、より好ましくは90%以上、より好ましくは95%以上である。
 また、対向電極20は、厚さが5~20nmであるのが好ましい。対向電極20を5nm以上の膜厚にすることにより、下層を十分に被覆することができ、均一な性能が得られる。一方、対向電極20の膜厚が20nmを超えると、対向電極20と画素電極16とが局所的に短絡してしまい、暗電流が上昇してしまうことがある。また、対向電極20を20nm以下の膜厚にすることで、局所的な短絡の発生を抑制できる。
The light transmittance of the counter electrode 20 is preferably 60% or more, more preferably 80% or more, more preferably 90% or more, and more preferably 95% or more in the visible light wavelength.
The counter electrode 20 preferably has a thickness of 5 to 20 nm. By making the counter electrode 20 have a thickness of 5 nm or more, the lower layer can be sufficiently covered, and uniform performance can be obtained. On the other hand, if the thickness of the counter electrode 20 exceeds 20 nm, the counter electrode 20 and the pixel electrode 16 may be locally short-circuited, resulting in an increase in dark current. Moreover, generation | occurrence | production of a local short circuit can be suppressed by making the counter electrode 20 into a film thickness of 20 nm or less.
 対向電極電圧供給部42は、第2の接続部46を介して対向電極20に所定の電圧を印加するものである。対向電極20に印加すべき電圧が撮像素子10の電源電圧よりも高い場合は、チャージポンプ等の昇圧回路によって電源電圧を昇圧して上記所定の電圧を供給するものである。 The counter electrode voltage supply unit 42 applies a predetermined voltage to the counter electrode 20 via the second connection unit 46. When the voltage to be applied to the counter electrode 20 is higher than the power supply voltage of the image sensor 10, the power supply voltage is boosted by a booster circuit such as a charge pump to supply the predetermined voltage.
 画素電極16は、画素電極16とそれに対向する対向電極20との間にある光電変換層50で発生した電荷を捕集するための、電荷捕集用の電極である。画素電極16は、第1の接続部44を介して読出し回路40に接続されている。この読出し回路40は、複数の画素電極16の各々に対応して基板12に設けられており、対応する画素電極16で捕集された電荷に応じた信号を読み出すものである。
 画素電極16は、前述の画素電極16と同様の材料を用いることができる。このため、画素電極16の材料についての詳細な説明は省略する。
The pixel electrode 16 is a charge collecting electrode for collecting charges generated in the photoelectric conversion layer 50 between the pixel electrode 16 and the counter electrode 20 facing the pixel electrode 16. The pixel electrode 16 is connected to the readout circuit 40 via the first connection portion 44. The readout circuit 40 is provided on the substrate 12 corresponding to each of the plurality of pixel electrodes 16, and reads out a signal corresponding to the charge collected by the corresponding pixel electrode 16.
The pixel electrode 16 can be made of the same material as the pixel electrode 16 described above. Therefore, a detailed description of the material of the pixel electrode 16 is omitted.
 画素電極16は、端部において画素電極16の膜厚に相当する段差が急峻だったり、画素電極16の表面に顕著な凹凸が存在したり、画素電極16上に微小な塵埃(パーティクル)が付着したりすると、画素電極16上の層が所望の膜厚より薄くなったり亀裂が生じたりする。そのような状態で層上に対向電極20を形成すると、欠陥部分における画素電極16と対向電極20の接触や電界集中により、暗電流の増大や短絡などの画素不良が発生する。更に、上記の欠陥は、画素電極16とその上の層の密着性や、有機光電変換材料の耐熱性を低下させるおそれがある。 The pixel electrode 16 has a steep step corresponding to the film thickness of the pixel electrode 16 at the end, significant unevenness on the surface of the pixel electrode 16, and minute dust (particles) adheres to the pixel electrode 16. As a result, the layer on the pixel electrode 16 becomes thinner than a desired film thickness or a crack occurs. When the counter electrode 20 is formed on the layer in such a state, a pixel defect such as an increase in dark current or a short circuit occurs due to contact or electric field concentration between the pixel electrode 16 and the counter electrode 20 in the defective portion. Furthermore, the above-described defects may reduce the adhesion between the pixel electrode 16 and the layer thereon and the heat resistance of the organic photoelectric conversion material.
 この欠陥を防止して素子の信頼性を向上させるためには、画素電極16の表面粗さRaが0.6nm以下であるのが好ましい。画素電極16の表面粗さRaが小さいほど、表面の凹凸が小さいことを意味し、表面平坦性が良好である。
 また、画素電極16上のパーティクルを除去するため、電子ブロッキング層52を形成する前に、画素電極16等を洗浄することが特に好ましい。この洗浄は、半導体製造工程で利用されている一般的な洗浄技術を用いて行えばよい。
In order to prevent this defect and improve the reliability of the element, the surface roughness Ra of the pixel electrode 16 is preferably 0.6 nm or less. The smaller the surface roughness Ra of the pixel electrode 16, the smaller the surface unevenness, and the better the surface flatness.
In order to remove particles on the pixel electrode 16, it is particularly preferable to clean the pixel electrode 16 and the like before forming the electron blocking layer 52. This cleaning may be performed using a general cleaning technique used in a semiconductor manufacturing process.
 読出し回路40は、例えば、CCD、MOS回路、またはTFT回路等で構成されている。このこの読出し回路40は、絶縁層14内に設けられた遮光層(図示せず)によって遮光されている。なお、読出し回路40は、一般的なイメージセンサ用途ではCCDまたはCMOS回路を採用することが好ましく、ノイズおよび高速性の観点からはCMOS回路を採用するのが好ましい。
 なお、図示しないが、例えば、基板12にp領域によって囲まれた高濃度のn領域が形成されており、このn領域に第1の接続部44が接続されている。また、このp領域に読出し回路40が設けられている。n領域は光電変換層50の電荷を蓄積する電荷蓄積部として機能するものである。n領域に蓄積された信号電荷は読出し回路40によって、その電荷量に応じた信号に変換されて、例えば、配線層48を介して撮像素子10外部に出力される。
The readout circuit 40 is constituted by, for example, a CCD, a MOS circuit, or a TFT circuit. The read circuit 40 is shielded from light by a light shielding layer (not shown) provided in the insulating layer 14. The readout circuit 40 is preferably a CCD or CMOS circuit for general image sensor applications, and is preferably a CMOS circuit from the viewpoint of noise and high speed.
Although not shown, for example, a high-concentration n region surrounded by a p region is formed on the substrate 12, and the first connection portion 44 is connected to the n region. A read circuit 40 is provided in the p region. The n region functions as a charge storage unit that stores the charge of the photoelectric conversion layer 50. The signal charge accumulated in the n region is converted into a signal corresponding to the amount of charge by the readout circuit 40 and output to the outside of the image sensor 10 via the wiring layer 48, for example.
 封止層(保護層)22は、有機光電変換材料を含む光電変換層50を水分子などの劣化因子から保護するためのものである。封止層22は、側面を含んで、対向電極20の全面を覆って形成される。
 封止層22としては、次の条件が求められる。
 第一に、素子の各製造工程において溶液、プラズマなどに含まれる有機の光電変換材料を劣化させる因子の浸入を阻止して光電変換層を保護することが挙げられる。
 第二に、素子の製造後に、水分子などの有機の光電変換材料を劣化させる因子の浸入を阻止して、長期間の保存/使用にわたって、光電変換層50の劣化を防止する。
 第三に、封止層22を形成する際は既に形成された光電変換層を劣化させない。
 第四に、入射光は封止層22を通じて光電変換層50に到達するので、光電変換層50で検知する波長の光に対して封止層22は透明でなくてはならない。
The sealing layer (protective layer) 22 is for protecting the photoelectric conversion layer 50 containing an organic photoelectric conversion material from deterioration factors, such as a water molecule. The sealing layer 22 is formed to cover the entire surface of the counter electrode 20 including the side surfaces.
The following conditions are required for the sealing layer 22.
First, it is possible to protect the photoelectric conversion layer by preventing intrusion of factors that degrade the organic photoelectric conversion material contained in the solution, plasma, and the like in each manufacturing process of the device.
Secondly, after the device is manufactured, the intrusion of factors such as water molecules that degrade the organic photoelectric conversion material is prevented, and deterioration of the photoelectric conversion layer 50 is prevented over a long period of storage / use.
Third, when the sealing layer 22 is formed, the already formed photoelectric conversion layer is not deteriorated.
Fourth, since incident light reaches the photoelectric conversion layer 50 through the sealing layer 22, the sealing layer 22 must be transparent to light having a wavelength detected by the photoelectric conversion layer 50.
 封止層22は、単一材料からなる薄膜で構成することもできる。しかしながら、封止層22を、多層構成にして各層に別々の機能を付与することで、封止層22全体の応力緩和、製造工程中の発塵等によるクラック、ピンホールなどの欠陥発生の抑制、材料開発の最適化が容易になることなどの効果が期待できる。
 例えば、封止層22は、水分子などの劣化因子の浸透を阻止する本来の目的を果たす層の上に、その層で達成することが難しい機能を持たせた「封止補助層」を積層した2層構成を形成することができる。3層以上の構成も可能だが、製造コストを勘案すると、なるべく層数は少ない方が好ましい。
The sealing layer 22 can also be composed of a thin film made of a single material. However, by forming the sealing layer 22 in a multi-layer configuration and providing each layer with a different function, stress relaxation of the entire sealing layer 22, cracking due to dust generation during the manufacturing process, suppression of defects such as pinholes, etc. In addition, the effects such as easy optimization of material development can be expected.
For example, the sealing layer 22 is formed by laminating a “sealing auxiliary layer” having a function that is difficult to achieve on the layer that serves the original purpose of preventing the penetration of deterioration factors such as water molecules. A two-layer structure can be formed. Three or more layers are possible, but considering the manufacturing cost, it is preferable that the number of layers is as small as possible.
 また、封止層22は、例えば、以下のように形成すればよい。
 有機光電変換材料は、水分子などの劣化因子の存在で、顕著にその性能が劣化してしまう。そのために、水分子を浸透させない緻密な金属酸化膜・金属窒化膜・金属窒化酸化膜等で光電変換層全体を被覆して封止することが必要である。従来から、酸化アルミニウム、酸化珪素、窒化珪素、窒化酸化珪素やそれらの積層構成、それらと有機高分子の積層構成などを封止層として、各種真空成膜技術で形成されている。従来の封止層は、基板表面の構造物、基板表面の微小欠陥、基板表面に付着したパーティクルなどによる段差において、薄膜の成長が困難なので(段差が影になるので)平坦部と比べて膜厚が顕著に薄くなる。このために段差部分が劣化因子の浸透する経路になってしまう。この段差を封止層22で完全に被覆するには、平坦部において1μm以上の膜厚になるように成膜して、封止層22全体を厚くする必要がある。
Moreover, what is necessary is just to form the sealing layer 22 as follows, for example.
The performance of organic photoelectric conversion materials is significantly deteriorated due to the presence of deterioration factors such as water molecules. Therefore, it is necessary to cover and seal the entire photoelectric conversion layer with a dense metal oxide film, metal nitride film, metal oxynitride film, or the like that does not allow water molecules to permeate. Conventionally, aluminum oxide, silicon oxide, silicon nitride, silicon nitride oxide, a laminated structure thereof, a laminated structure of them and an organic polymer, or the like is used as a sealing layer by various vacuum film forming techniques. The conventional sealing layer is a film compared to the flat part because the growth of the thin film is difficult (because the step becomes a shadow) at the step due to structures on the substrate surface, minute defects on the substrate surface, particles adhering to the substrate surface, etc. The thickness is significantly reduced. For this reason, the step portion becomes a path through which the deterioration factor penetrates. In order to completely cover this step with the sealing layer 22, it is necessary to form the film so as to have a film thickness of 1 μm or more in the flat portion, thereby increasing the thickness of the entire sealing layer 22.
 画素寸法が2μm未満、特に1μm程度の撮像素子10において、カラーフィルタ26と光電変換層50との距離、すなわち、封止層22の膜厚が大きいと、封止層22内で入射光が回折または発散してしまい、混色が発生する。このために、画素寸法が1μm程度の撮像素子10は、封止層22全体の膜厚を減少させても素子性能が劣化しないような封止層材料、およびその製造方法が必要になる。 In the image sensor 10 having a pixel size of less than 2 μm, particularly about 1 μm, if the distance between the color filter 26 and the photoelectric conversion layer 50, that is, the film thickness of the sealing layer 22 is large, incident light is diffracted in the sealing layer 22. Or it diverges and color mixing occurs. For this reason, the imaging element 10 having a pixel size of about 1 μm requires a sealing layer material and a manufacturing method thereof that do not deteriorate the element performance even when the film thickness of the entire sealing layer 22 is reduced.
 ALD(原子層堆積)法は、CVD法の一種で、薄膜材料となる有機金属化合物分子、金属ハロゲン化物分子、金属水素化物分子の基板表面への吸着/反応と、それらに含まれる未反応基の分解を、交互に繰返して薄膜を形成する技術である。
 ALD法は、基板表面(被成膜面)へ薄膜材料が到達する際は低分子の状態なので、低分子が入り込めるごくわずかな空間さえあれば薄膜が成長可能である。そのために、従来の薄膜形成法では困難であった段差部分を完全に被覆し(段差部分に成長した薄膜の厚さが平坦部分に成長した薄膜の厚さと同じ)、すなわち段差被覆性が非常に優れる。そのため、基板表面の構造物、基板表面の微小欠陥、基板表面に付着したパーティクルなどによる段差を完全に被覆できるので、そのような段差部分が光電変換材料の劣化因子の浸入経路にならない。すなわち、封止層22の形成をALD法で行なった場合は、従来技術よりも効果的に必要な封止層膜厚を薄くすることが可能になる。
The ALD (atomic layer deposition) method is a kind of CVD method, and adsorption / reaction of organometallic compound molecules, metal halide molecules, and metal hydride molecules, which are thin film materials, onto the substrate surface and unreacted groups contained in them. Is a technique for forming a thin film by alternately repeating decomposition.
Since the ALD method is in a low molecular state when the thin film material reaches the substrate surface (deposition surface), the thin film can be grown in a very small space in which the low molecule can enter. For this reason, the step portion, which was difficult with the conventional thin film formation method, is completely covered (the thickness of the thin film grown on the step portion is the same as the thickness of the thin film grown on the flat portion), that is, the step coverage is very high. Excellent. For this reason, steps due to structures on the substrate surface, minute defects on the substrate surface, particles adhering to the substrate surface, and the like can be completely covered, and such a step portion does not become an intrusion path for a deterioration factor of the photoelectric conversion material. That is, when the sealing layer 22 is formed by the ALD method, the required sealing layer thickness can be reduced more effectively than in the prior art.
 ALD法で封止層22を形成する場合は、前述の封止層に要求される機能を発現する材料を適宜選択できる。しかしながら、有機光電変換材料が劣化しないような、比較的に低温で薄膜成長が可能な材料に制限される。
 アルキルアルミニウムやハロゲン化アルミニウムを材料としたALD法によると、有機光電変換材料が劣化しない200℃未満で緻密な酸化アルミニウム薄膜を形成することができる。特にトリメチルアルミニウムを使用した場合は、100℃程度でも酸化アルミニウム薄膜を形成することができるため好ましい。酸化珪素や酸化チタンも、材料を適切に選択することで酸化アルミニウムと同様に200℃未満で、封止層22として、緻密な薄膜を形成することができるため好ましい。
In the case of forming the sealing layer 22 by the ALD method, a material that exhibits the function required for the above-described sealing layer can be appropriately selected. However, it is limited to a material capable of growing a thin film at a relatively low temperature so that the organic photoelectric conversion material does not deteriorate.
According to the ALD method using alkyl aluminum or aluminum halide as a material, a dense aluminum oxide thin film can be formed at less than 200 ° C. at which the organic photoelectric conversion material does not deteriorate. In particular, when trimethylaluminum is used, an aluminum oxide thin film can be formed even at about 100 ° C., which is preferable. Silicon oxide and titanium oxide are also preferable because a dense thin film can be formed as the sealing layer 22 at a temperature lower than 200 ° C. similarly to aluminum oxide by appropriately selecting materials.
 ALD法により形成した薄膜は、段差被覆性、緻密性という観点からは比類なく良質な薄膜形成を低温で達成できる。しかし、薄膜がフォトリソグラフィ工程で使用する薬品で劣化してしまうことがある。例えば、ALD法で成膜した酸化アルミニウム薄膜は、非晶質なので、現像液や剥離液のようなアルカリ溶液で表面が侵食されてしまう。このような場合には、ALD法で形成した酸化アルミニウム薄膜上に、耐薬品性に優れる薄膜が必要である。すなわち、封止層22を保護する機能層となる封止補助層が必要である。 The thin film formed by the ALD method can achieve a high-quality thin film formation at a low temperature that is unmatched from the viewpoint of step coverage and denseness. However, the thin film may be deteriorated by chemicals used in the photolithography process. For example, since an aluminum oxide thin film formed by the ALD method is amorphous, the surface is eroded by an alkaline solution such as a developer or a stripping solution. In such a case, a thin film having excellent chemical resistance is required on the aluminum oxide thin film formed by the ALD method. That is, a sealing auxiliary layer that becomes a functional layer for protecting the sealing layer 22 is necessary.
 特に、封止層22を2層構成とし、第一封止層上に、プラズマCVD法もしくはスパッタ法で形成された、酸化アルミニウム、酸化珪素、窒化珪素、窒化酸化珪素のいずれか1つを含む第二封止層を有する構成とするのが好ましい。この際において、第一封止層は、酸化アルミニウム、酸化珪素、酸化チタンのいずれかを含むのが好ましい。
 第一付封止層および第二封止層の厚さは、各層の形成材料や形成方法等に応じて、適宜、設定すればよい。一例として、第一封止層が200MPa以上の高応力で高いバリア性を有する、例えばALD法による酸化アルミニウム膜で、第二封止層が100MPa以下の低応力を有する、例えばプラズマCVD法による窒化酸化珪素膜である場合には、第一封止層の厚さを1~40nm、第二封止層の厚さを75nm以上とするのが好ましい。
In particular, the sealing layer 22 has a two-layer structure, and includes any one of aluminum oxide, silicon oxide, silicon nitride, and silicon nitride oxide formed on the first sealing layer by plasma CVD or sputtering. A configuration having a second sealing layer is preferable. In this case, the first sealing layer preferably contains any of aluminum oxide, silicon oxide, and titanium oxide.
What is necessary is just to set suitably the thickness of a 1st sealing layer and a 2nd sealing layer according to the formation material, formation method, etc. of each layer. As an example, the first sealing layer has a high barrier property with a high stress of 200 MPa or more, for example, an aluminum oxide film by ALD method, and the second sealing layer has a low stress of 100 MPa or less, for example, nitriding by plasma CVD method In the case of a silicon oxide film, the thickness of the first sealing layer is preferably 1 to 40 nm and the thickness of the second sealing layer is preferably 75 nm or more.
 封止層22の上には、カラーフィルタ26が形成される。
 カラーフィルタ26は、入射した光を、例えば、R(赤)、G(緑)およびB(青)に分光して、光電変換層50の各画素電極16に対応する領域に入射させるためのものである。図示例において、カラーフィルタ26は、通常の固体撮像素子のカラーフィルタと同様に、各画素電極16の位置および配列に対応して、Rフィルタ26R、Gフィルタ26GおよびBフィルタ26Bの各色フィルタを、順次、繰り返して有している。
 すなわち、撮像素子10においては、光電変換部18、対向電極20および色フィルタが上方に設けられた画素電極16、1つが、画素(単位画素)になる。
 なお、本発明において、カラーフィルタは、R、GおよびBの3原色のフィルタに限定はされず、固体撮像素子で用いられている、各種のカラーフィルタ(色フィルタの組み合わせ)が利用可能である。例えば、C(シアン)、M(マゼンタ)およびY(イエロー)、あるいはさらにGの、補色の色フィルタを用いてもよい。
A color filter 26 is formed on the sealing layer 22.
The color filter 26 divides incident light into, for example, R (red), G (green), and B (blue), and makes the incident light enter the region corresponding to each pixel electrode 16 of the photoelectric conversion layer 50. It is. In the illustrated example, the color filter 26 corresponds to the color filters of the R filter 26R, the G filter 26G, and the B filter 26B corresponding to the position and arrangement of the pixel electrodes 16 in the same manner as the color filter of a normal solid-state imaging device. It has sequentially and repeatedly.
In other words, in the image sensor 10, the pixel electrode 16 and one pixel electrode 16 on which the photoelectric conversion unit 18, the counter electrode 20, and the color filter are provided are pixels (unit pixels).
In the present invention, the color filter is not limited to the three primary color filters of R, G, and B, and various color filters (combination of color filters) used in the solid-state imaging device can be used. . For example, C (cyan), M (magenta), Y (yellow), or even G complementary color filters may be used.
 本発明の撮像素子10において、カラーフィルタ26は、基本的に、フォトリソグラフィーなど、公知のカラーの固体撮像素子の製造で利用されている方法で形成すればよい。
 一例として、公知のネガ型感光性を有するカラーレジスト材料(例えば、特許第4717370号公報の段落番号[0017]~[0064]に記載される光硬化性組成物)を、カラーフィルタ26の形成面の全面に塗布し、プリベークを施す。次いで、カラーフィルタの形成部を露光するパターンを有するマスクを用いて、紫外光等で露光して現像可能な状態とする。その後、現像液によって遮光部を除去し、水洗、乾燥を行い、さらに、現像で除去されなかった部分にポストベークを施す。この操作を、Rフィルタ26R、Gフィルタ26GおよびBフィルタ26Bに応じて、3回行うことにより、R、GおよびBの各色フィルタを配列してなるカラーフィルタ26を形成する方法が、例示される。
In the image pickup device 10 of the present invention, the color filter 26 may basically be formed by a method used in the manufacture of a known color solid-state image pickup device such as photolithography.
As an example, a known color resist material having negative photosensitivity (for example, a photocurable composition described in paragraph Nos. [0017] to [0064] of Japanese Patent No. 4717370) is formed on the surface on which the color filter 26 is formed. Apply to the entire surface and pre-bake. Next, using a mask having a pattern for exposing the color filter forming portion, exposure is made with ultraviolet light or the like to make it developable. Thereafter, the light-shielding part is removed with a developing solution, washed with water and dried, and further post-baked on the part not removed by development. A method of forming the color filter 26 in which the R, G, and B color filters are arranged by performing this operation three times according to the R filter 26R, the G filter 26G, and the B filter 26B is exemplified. .
 ここで、本発明の撮像素子10においては、このカラーフィルタ26は、図1に示されるように、画素電極16の配列方向(以下、面方向とも言う)に光電変換層50の形成範囲を超える範囲まで形成される。すなわち、カラーフィルタ26は、面方向に、光電変換層50の面方向の端部を超える範囲まで形成される。
 言い換えれば、カラーフィルタ26は、封止層22の上で、面方向に、光電変換層50の形成領域の全面を覆い、かつ、面方向に、光電変換層50の形成範囲よりも広い範囲まで(光電変換層50の形成範囲からはみ出して)、形成される。
 本発明の撮像素子10は、このような構成を有することにより、バックグラインド工程における、光電変換層50と対向電極20との膜剥がれを防止して、歩留りを向上することができる。
Here, in the image sensor 10 of the present invention, the color filter 26 exceeds the formation range of the photoelectric conversion layer 50 in the arrangement direction of the pixel electrodes 16 (hereinafter also referred to as a plane direction), as shown in FIG. Formed to the extent. That is, the color filter 26 is formed in the surface direction up to a range exceeding the end portion of the photoelectric conversion layer 50 in the surface direction.
In other words, the color filter 26 covers the entire surface of the formation region of the photoelectric conversion layer 50 in the surface direction on the sealing layer 22 and extends to a range wider than the formation range of the photoelectric conversion layer 50 in the surface direction. It is formed (out of the formation range of the photoelectric conversion layer 50).
By having such a configuration, the imaging element 10 of the present invention can prevent the film separation between the photoelectric conversion layer 50 and the counter electrode 20 in the back grinding process, and can improve the yield.
 周知のように、シリコンウエハ等を用いた半導体装置の製造工程では、ウエハ上での素子の形成を終了した後、装置の小型化や軽量化等を目的として、ウエハの裏面(素子形成面と逆面)を研磨する、バックグラインド工程が行われる。
 このバックグラインド工程は、素子の形成面に、素子を保護するための保護テープ(いわゆるBGテープ)を貼着して、例えばBG用ホイールと呼ばれる研磨装置を用いて行われる。ウエハの裏面の研磨を終了したら、保護テープを剥離して、ウエハは次工程等に供給される。
As is well known, in the manufacturing process of a semiconductor device using a silicon wafer or the like, after the formation of elements on the wafer is completed, the back surface of the wafer (element forming surface and A back grinding process for polishing the reverse surface) is performed.
This back grinding process is performed using a polishing apparatus called a BG wheel, for example, by attaching a protective tape (so-called BG tape) for protecting the element to the element forming surface. When the polishing of the back surface of the wafer is completed, the protective tape is peeled off and the wafer is supplied to the next process or the like.
 ここで、本発明者は、有機光電変換材料からなる光電変換層を有する固体撮像素子では、このバックグラウンド工程における保護テープの剥離の際に、素子を構成する層(膜)の膜剥がれ(剥離)が生じ、この膜剥がれが、製品の歩留りが低下する一因になっていることを見出した。
 本発明者は、さらに、検討の結果、有機光電変換材料からなる光電変換層50と対向電極20とは、密着性が低く、膜剥がれが、有機光電変換材料からなる光電変換層50と対向電極20との間で生じ易いことを見出した。
Here, in the solid-state imaging device having a photoelectric conversion layer made of an organic photoelectric conversion material, the present inventor peels off a layer (film) of a layer (film) constituting the element at the time of peeling of the protective tape in the background process. It was found that this film peeling contributed to a decrease in product yield.
As a result of further investigation, the present inventor has a low adhesion between the photoelectric conversion layer 50 made of an organic photoelectric conversion material and the counter electrode 20, and peeling of the film is a photoelectric conversion layer 50 made of an organic photoelectric conversion material and the counter electrode. It was found that it is likely to occur between 20 and 20.
 本発明者は、この光電変換層50と対向電極20との間での膜剥がれを防止するために、鋭意検討を重ねた。なお、以下の説明では、特に記載が無い場合には、『膜剥がれ』とは、この光電変換層50と対向電極20との間の膜剥がれを示す。
 その結果、前述のように、カラーフィルタ26の形成範囲を光電変換層50の形成範囲よりも広くすることにより、すなわち、カラーフィルタ26を、面方向に光電変換層50の端部を超える範囲まで形成することにより、膜剥がれを防止できることを見出した。
 また、本発明者は、この光電変換層50と対向電極20との膜剥がれは、特に、光電変換層50が、p型有機半導体材料とn型有機半導体材料とを混合してなるバルクヘテロ構造を有する場合に生じ易く、本発明の効果が顕著なものとなることを見出した。中でも、n型有機半導体材料がフラーレン(フラーレン誘導体)である場合に、本発明の効果がより顕著となり、その中でも、p型有機半導体材料が、後述する一般式(1)で示される化合物である場合には、特に顕著となることを見出した。
 加えて、この光電変換層50と対向電極20との膜剥がれは、上記バルクヘテロ構造を有する光電変換層50に、ITOで形成した対向電極20を組み合わせた場合には、さらに生じ易く、本発明の効果は、さらに顕著なものとなることを見出した。
The inventor conducted extensive studies in order to prevent film peeling between the photoelectric conversion layer 50 and the counter electrode 20. In the following description, unless otherwise specified, “film peeling” indicates film peeling between the photoelectric conversion layer 50 and the counter electrode 20.
As a result, as described above, the formation range of the color filter 26 is made wider than the formation range of the photoelectric conversion layer 50, that is, the color filter 26 is extended to the range exceeding the end of the photoelectric conversion layer 50 in the plane direction. It was found that film peeling can be prevented by forming.
In addition, the present inventor indicated that the film peeling between the photoelectric conversion layer 50 and the counter electrode 20 has a bulk heterostructure in which the photoelectric conversion layer 50 is a mixture of a p-type organic semiconductor material and an n-type organic semiconductor material. It has been found that the effects of the present invention are prominent because it is likely to occur when it is included. In particular, when the n-type organic semiconductor material is fullerene (fullerene derivative), the effect of the present invention becomes more remarkable. Among them, the p-type organic semiconductor material is a compound represented by the general formula (1) described later. The case was found to be particularly noticeable.
In addition, the film peeling between the photoelectric conversion layer 50 and the counter electrode 20 is more likely to occur when the counter electrode 20 formed of ITO is combined with the photoelectric conversion layer 50 having the bulk heterostructure. It was found that the effect becomes even more remarkable.
 カラーフィルタ26を、面方向に光電変換層50の端部を超える領域まで形成することにより、カラーフィルタ26が、光電変換層50から対向電極52を剥離しようとする力を抑制する緩衝材となって作用し、膜剥がれを防止することができる。
 ここで、カラーフィルタ26の厚さは、0.1μm以上が好ましく、0.2μm以上がより好ましく、0.3μm以上が特に好ましい。カラーフィルタ26の厚さを、この厚さとすることにより、膜剥がれの防止効果を、より好適に得ることができる。一方、現像残渣を低減する観点から、カラーフィルタ26の厚さは、2.0μm以下が好ましく、1.5μm以下がより好ましく、1.0μm以下が特に好ましい。
 なお、カラーフィルタ26の厚さは、全てのカラーフィルタで同じでもよい。あるいは、カラーフィルタ26の厚さは、色や形成領域によって異なってもよい。
By forming the color filter 26 up to a region exceeding the end of the photoelectric conversion layer 50 in the surface direction, the color filter 26 becomes a buffer material that suppresses the force to peel the counter electrode 52 from the photoelectric conversion layer 50. And can prevent film peeling.
Here, the thickness of the color filter 26 is preferably 0.1 μm or more, more preferably 0.2 μm or more, and particularly preferably 0.3 μm or more. By setting the thickness of the color filter 26 to this thickness, the effect of preventing film peeling can be obtained more suitably. On the other hand, from the viewpoint of reducing development residue, the thickness of the color filter 26 is preferably 2.0 μm or less, more preferably 1.5 μm or less, and particularly preferably 1.0 μm or less.
The thickness of the color filter 26 may be the same for all color filters. Alternatively, the thickness of the color filter 26 may vary depending on the color and the formation region.
 そのため、本発明によれば、光電変換層50と対向電極20との間での膜剥がれに起因する歩留りの低下を抑制して、歩留りの高い撮像素子10を得ることができる。 Therefore, according to the present invention, it is possible to obtain the imaging device 10 with a high yield by suppressing a decrease in yield due to film peeling between the photoelectric conversion layer 50 and the counter electrode 20.
 カラーフィルタ26の形成範囲は、僅かでも面方向に光電変換層50の形成範囲を超えれば、膜剥がれを防止できる。
 本発明者の検討によれば、カラーフィルタ26を、面方向に0.05μm以上、光電変換層50の端部を超えた範囲まで形成することにより、膜剥がれの防止効果を、より好適に得ることができる。すなわち、図1に示す光電変換層50の端部とカラーフィルタ26の端部との距離a(光電変換層50の端部からのカラーフィルタ26の余分距離)は、0.05μm以上とするのが好ましい。さらに好ましくは、図1に示す光電変換層50の端部とカラーフィルタ26の端部との距離aは、0.1μm以上であり、特に好ましくは0.3μm以上である。
If the formation range of the color filter 26 slightly exceeds the formation range of the photoelectric conversion layer 50 in the surface direction, film peeling can be prevented.
According to the study of the present inventor, the color filter 26 is formed in a range of 0.05 μm or more in the plane direction and beyond the end portion of the photoelectric conversion layer 50, thereby obtaining the effect of preventing film peeling more suitably. be able to. That is, the distance a between the end of the photoelectric conversion layer 50 and the end of the color filter 26 shown in FIG. 1 (the extra distance of the color filter 26 from the end of the photoelectric conversion layer 50) is 0.05 μm or more. Is preferred. More preferably, the distance a between the end of the photoelectric conversion layer 50 shown in FIG. 1 and the end of the color filter 26 is 0.1 μm or more, and particularly preferably 0.3 μm or more.
 一方で、この距離aが大き過ぎると、(対向電極20と光電変換層50の)膜剥がれは防止できるが、バックグラインド工程における保護テープの剥離の際に、カラーフィルタ26の損傷や、カラーフィルタ26と封止層22との膜剥がれが生じ易くなってしまう。
 光電変換層50の端部とカラーフィルタ26の端部との距離aは、1.5mm以下が好ましく、1.0mm以下がより好ましい。距離aを1.5mm以下とすることにより、このようなカラーフィルタ26の損傷等を好適に防止することができる。
On the other hand, if the distance a is too large, film peeling (of the counter electrode 20 and the photoelectric conversion layer 50) can be prevented. However, when the protective tape is peeled off in the back grinding process, 26 and the sealing layer 22 are likely to be peeled off.
The distance a between the end of the photoelectric conversion layer 50 and the end of the color filter 26 is preferably 1.5 mm or less, and more preferably 1.0 mm or less. By setting the distance a to 1.5 mm or less, such damage to the color filter 26 can be suitably prevented.
 なお、光電変換層50の端部とカラーフィルタ26の端部との距離aは、光電変換層50の面方向の全周で均一である必要はない。
 すなわち、撮像素子10の構成等に応じて、光電変換層50の面方向の形状が四角形である場合には、四辺の内の一辺以上が、他の辺と距離aが異なってもよい。
The distance a between the end portion of the photoelectric conversion layer 50 and the end portion of the color filter 26 does not need to be uniform over the entire circumference in the surface direction of the photoelectric conversion layer 50.
That is, when the shape of the photoelectric conversion layer 50 in the surface direction is a square according to the configuration of the imaging element 10 or the like, one or more of the four sides may have a different distance a from the other sides.
 光電変換層50を超える領域に形成されるカラーフィルタ26の色、すなわち、面方向で最も外側の単位画素に対応する色フィルタは、Rフィルタ26RもしくはGフィルタ26Gにするのが好ましい。
 なお、この際において、この面方向に最も外側の単位画素の色フィルタは、統一しても統一しなくても良い。
The color filter 26 formed in the region beyond the photoelectric conversion layer 50, that is, the color filter corresponding to the outermost unit pixel in the surface direction is preferably an R filter 26R or a G filter 26G.
At this time, the color filters of the outermost unit pixels in the surface direction may or may not be unified.
 前述のように、カラーフィルタ26は、一例として、感光性を有する材料を用いて、露光・現像して、Rフィルタ26R、Gフィルタ26GおよびBフィルタ26Bの各色フィルタを形成することで、形成される。
 ここで、露光は、多くの場合、紫外線(UV光)を照射することで行われる。そのため、紫外線を最も多く吸収するBフィルタ26Bは、硬化しにくい。その結果、Bフィルタ26Bは、下部近傍の硬化が不十分で、脆く成り易い。そのため、Bフィルタ26Bは、他の色に比して、損傷や、封止層22との膜剥がれが生じ易い。
 これに対し、Rフィルタ26RおよびGフィルタ26Gは、紫外光を照射しても、下部が十分に硬化されるので、適正な強度で封止層22と密着し、前述の膜剥がれを防止する緩衝作用を、より好適に発現できる。
As described above, the color filter 26 is formed, for example, by forming each color filter of the R filter 26R, the G filter 26G, and the B filter 26B by exposing and developing using a photosensitive material. The
Here, in many cases, exposure is performed by irradiating ultraviolet rays (UV light). Therefore, the B filter 26B that absorbs the largest amount of ultraviolet rays is hard to be cured. As a result, the B filter 26 </ b> B is insufficiently cured in the vicinity of the lower portion, and easily becomes brittle. For this reason, the B filter 26B is more likely to be damaged or peeled off from the sealing layer 22 than other colors.
On the other hand, the lower part of the R filter 26R and the G filter 26G is sufficiently cured even when irradiated with ultraviolet light. The effect can be expressed more suitably.
 本発明の撮像素子10において、カラーフィルタ26は、各色のクロストーク(混色)を防止するために、各色フィルタの間に遮光性の隔壁を有してもよい。隔壁も、前述の各色フィルタと同様にして形成できる。
 また、撮像素子10は、封止層22上のカラーフィルタ26を設けた領域(有効画素領域)以外に、有効画素領域以外に形成された光電変換層50に光が入射することを防止する、遮光層を有してもよい。
In the image sensor 10 of the present invention, the color filter 26 may have a light-shielding partition wall between the color filters in order to prevent crosstalk (color mixing) of the colors. The partition walls can also be formed in the same manner as the color filters described above.
The imaging device 10 prevents light from entering the photoelectric conversion layer 50 formed outside the effective pixel region other than the region (effective pixel region) where the color filter 26 is provided on the sealing layer 22. You may have a light shielding layer.
 さらに、撮像素子10は、カラーフィルタ26の上(上面全面を覆って)に、カラーフィルタ26等を保護するための保護層(オーバーコート層)を有してもよい。
 保護層は、アクリル系樹脂、ポリシロキサン系樹脂、ポリスチレン系樹脂、弗素樹脂などのような高分子材料や、酸化珪素、窒化珪素のような無機材料を適宜使用できる。
 ポリスチレン系などの感光性樹脂を使用すると、フォトリソグラフィ法で保護層をパターニングできる。そのため、保護層を、ボンディング用パッド上の周辺遮光層、封止層、絶縁層などを開口する際のフォトレジストとして使用することや、保護層自体をマイクロレンズとして加工することが容易になり、好ましい。
 一方、保護層を反射防止層として使用することも可能であり、カラーフィルタ26の隔壁として使用した各種低屈折率材料を成膜することも好ましい。また、後工程に対する保護層としての機能、反射防止層としての機能を追求するために、保護層を上記材料を組合せた2層以上の構成にしてもよい。
Furthermore, the image sensor 10 may have a protective layer (overcoat layer) for protecting the color filter 26 and the like on the color filter 26 (covering the entire upper surface).
For the protective layer, a polymer material such as an acrylic resin, a polysiloxane resin, a polystyrene resin, or a fluorine resin, or an inorganic material such as silicon oxide or silicon nitride can be used as appropriate.
When a photosensitive resin such as polystyrene is used, the protective layer can be patterned by a photolithography method. Therefore, it becomes easy to use the protective layer as a photoresist when opening the peripheral light shielding layer, sealing layer, insulating layer, etc. on the bonding pad, or to process the protective layer itself as a microlens, preferable.
On the other hand, the protective layer can be used as an antireflection layer, and it is also preferable to form various low refractive index materials used as the partition walls of the color filter 26. In addition, in order to pursue a function as a protective layer and a function as an antireflection layer with respect to a subsequent process, the protective layer may have a structure of two or more layers combining the above materials.
 なお、図示例においては、画素電極16は、絶縁層14の表面に形成された構成であるが、これに限定されるものではなく、絶縁層14の表面部に埋設された構成でもよい。
 また、第2の接続部46および対向電極電圧供給部42を1つ設ける構成としたが、複数であってもよい。例えば、対向電極20の両端部から対向電極20へ電圧を供給することにより、対向電極20での電圧降下を抑制できる。第2の接続部46および対向電極電圧供給部42のセットの数は、素子のチップ面積を勘案して、適宜増減すればよい。
In the illustrated example, the pixel electrode 16 is formed on the surface of the insulating layer 14. However, the configuration is not limited thereto, and the pixel electrode 16 may be embedded in the surface portion of the insulating layer 14.
Moreover, although the structure which provides the 2nd connection part 46 and the counter electrode voltage supply part 42 was made, it may be plural. For example, a voltage drop at the counter electrode 20 can be suppressed by supplying a voltage from both ends of the counter electrode 20 to the counter electrode 20. The number of sets of the second connection unit 46 and the counter electrode voltage supply unit 42 may be appropriately increased or decreased in consideration of the chip area of the element.
 以下、撮像素子10の製造方法を説明することにより、本発明の固体撮像素子の製造方法を詳細に説明する。
 なお、以下の撮像素子10の製造において、各層(膜)の成膜条件は、層の形成材料等に応じて、適宜、設定すればよい。
Hereinafter, the manufacturing method of the solid-state imaging device of the present invention will be described in detail by explaining the manufacturing method of the imaging device 10.
In the following manufacturing of the image sensor 10, the film forming conditions of each layer (film) may be set as appropriate according to the layer forming material and the like.
 撮像素子10を製造する際には、一例として、図2(a)に概念的に示すように、読出し回路40と対向電極電圧供給部42とが形成された基板12上に、第1の接続部44と第2の接続部46と、配線層48が設けられた絶縁層14が形成され、さらに、絶縁層14の表面14aに、各第1の接続部44に接続された画素電極16が形成された回路基板11(CMOS基板)を用意する。
 この場合、前述のように、第1の接続部44と読出し回路40とが接続されており、第2の接続部46と対向電極電圧供給部42とが接続されている。画素電極16は、例えば、TiNで形成される。
When manufacturing the image sensor 10, as an example, as conceptually shown in FIG. 2A, the first connection is formed on the substrate 12 on which the readout circuit 40 and the counter electrode voltage supply unit 42 are formed. The insulating layer 14 provided with the portion 44, the second connecting portion 46, and the wiring layer 48 is formed. Further, the pixel electrode 16 connected to each first connecting portion 44 is formed on the surface 14a of the insulating layer 14. A formed circuit board 11 (CMOS substrate) is prepared.
In this case, as described above, the first connection unit 44 and the readout circuit 40 are connected, and the second connection unit 46 and the counter electrode voltage supply unit 42 are connected. The pixel electrode 16 is made of, for example, TiN.
 次に、電子ブロッキング層52の成膜室において、図2(b)に概念的に示すように、第2の接続部46上を除き、かつ全ての画素電極16を覆うように、電子ブロッキング材料を例えば真空蒸着によって成膜し、電子ブロッキング層52を形成する。
 後述するが、電子ブロッキング材料としては、カルバゾール誘導体が例示され、より好ましくはビフルオレン誘導体が例示される。
Next, in the film forming chamber for the electron blocking layer 52, as conceptually shown in FIG. 2B, the electron blocking material is formed so as to cover all the pixel electrodes 16 except on the second connection portion 46. Is deposited by, for example, vacuum deposition to form the electron blocking layer 52.
As will be described later, examples of the electron blocking material include carbazole derivatives, and more preferably bifluorene derivatives.
 次に、光電変換層50の成膜室において、図2(c)に概念的に示すように、電子ブロッキング層52の表面52aに、光電変換層50を形成する。
 この光電変換層50の形成により、光電変換部18が形成される。
Next, in the film formation chamber of the photoelectric conversion layer 50, the photoelectric conversion layer 50 is formed on the surface 52a of the electron blocking layer 52 as conceptually shown in FIG.
The photoelectric conversion part 18 is formed by forming the photoelectric conversion layer 50.
 次に、対向電極20の成膜室において、図3(a)に概念的に示すように、光電変換層18を覆い、かつ第2の接続部46上に形成されるパターンで、例えばスパッタ法によってITOを成膜して、対向電極20を形成する。 Next, in the film formation chamber of the counter electrode 20, as conceptually shown in FIG. 3A, a pattern that covers the photoelectric conversion layer 18 and is formed on the second connection portion 46, for example, a sputtering method. The counter electrode 20 is formed by depositing ITO.
 次に、封止層22の成膜室において、図3(b)に示すように、対向電極20を覆うようにして、絶縁層14の表面14aに、封止層22として、例えば酸化アルミニウム膜および窒化酸化珪素膜からなる積層膜を形成する。
 この場合、前述のように、酸化アルミニウム膜は、酸化アルミニウムを、ALD法を用いて絶縁層14の表面14aに成膜し、この酸化アルミニウム膜上に、窒化酸化珪素をプラズマCVD法もしくはスパッタリング法を用いて成膜し窒化酸化珪素膜を形成するのが好ましい。
 なお、封止層22は、単層膜であってもよいのは、前述のとおりである。
Next, in the film forming chamber for the sealing layer 22, as shown in FIG. 3B, an aluminum oxide film, for example, is formed as a sealing layer 22 on the surface 14 a of the insulating layer 14 so as to cover the counter electrode 20. Then, a laminated film made of a silicon nitride oxide film is formed.
In this case, as described above, for the aluminum oxide film, aluminum oxide is formed on the surface 14a of the insulating layer 14 by using the ALD method, and silicon nitride oxide is formed on the aluminum oxide film by plasma CVD or sputtering. It is preferable to form a silicon nitride oxide film by using the film.
The sealing layer 22 may be a single layer film as described above.
 封止層22を形成したら、カラーフィルタ26を形成する。
 前述のように、カラーフィルタ26は、一例として、以下のように形成する。すなわち、まず、フィルタとなるカラーレジスト材料を封止層22の表面22aに塗布してプリベークを行う。次いで、色フィルタの形成パターンに応じたマスクを用いて紫外光等で露光して、その後、現像を行って遮光部を除去する。さらに、水洗および乾燥を行った後、ポストベークを行って、色フィルタを形成する。
 この操作を、Rフィルタ26R、Gフィルタ26GおよびBフィルタ26Bの各色フィルタに対応して、3回、行うことにより、各色フィルタが配列されたカラーフィルタ26を形成する。
After forming the sealing layer 22, the color filter 26 is formed.
As described above, the color filter 26 is formed as follows as an example. That is, first, a color resist material to be a filter is applied to the surface 22a of the sealing layer 22 and prebaked. Next, exposure is performed with ultraviolet light or the like using a mask corresponding to the formation pattern of the color filter, and thereafter development is performed to remove the light shielding portion. Further, after washing and drying, post baking is performed to form a color filter.
This operation is performed three times corresponding to the color filters of the R filter 26R, the G filter 26G, and the B filter 26B, thereby forming the color filter 26 in which the color filters are arranged.
 ここで、本発明においては、面方向に光電変換層50の端部を超える領域まで、色フィルタを形成する塗料を塗布し、かつ、光電変換層50の端部を超える領域まで、カラーフィルタ26(対応する色フィルタ)を形成するマスクを用いて、このようなカラーフィルタ26の形成を行う。すなわち、本例においては、面方向の端部の単位画素を形成するマスクは、対応する単位画素において、光電変換層50の端部を超える領域まで露光するパターンを有する。
 これにより、図1に示すような、面方向に光電変換層50の形成範囲を超える形成範囲を有するカラーフィルタ26、すなわち、面方向に、光電変換層50の面方向端部を超える領域まで存在するカラーフィルタ26を形成する。
Here, in the present invention, the color filter 26 is applied up to the region exceeding the end of the photoelectric conversion layer 50 by applying a coating material for forming a color filter to the region exceeding the end of the photoelectric conversion layer 50 in the surface direction. Such a color filter 26 is formed using a mask for forming (corresponding color filter). That is, in this example, the mask that forms the unit pixel at the end in the surface direction has a pattern that exposes the area exceeding the end of the photoelectric conversion layer 50 in the corresponding unit pixel.
As a result, as shown in FIG. 1, the color filter 26 having a formation range that exceeds the formation range of the photoelectric conversion layer 50 in the plane direction, that is, the region in the plane direction that extends beyond the end of the photoelectric conversion layer 50 in the plane direction. The color filter 26 to be formed is formed.
 なお、塗料の塗布方法には、特に限定はなく、スピンコート法やバーコート法等の公知の方法が、各種、利用可能である。
 また、光電変換層50の面方向の端部を超える領域まで存在する色フィルタは、Rフィルタ26RもしくはGフィルタ26Gであるのが好ましく、かつ、光電変換層50の端部と、カラーフィルタ26の端部との距離aは、0.05μm以上とするのが好ましく、また、1.5mm以下とするのが好ましく、さらに、色フィルタの膜厚は0.1μm以上が好ましいのは、前述の通りである。
The coating method for coating is not particularly limited, and various known methods such as spin coating and bar coating can be used.
Further, the color filter existing up to the region beyond the edge in the surface direction of the photoelectric conversion layer 50 is preferably the R filter 26R or the G filter 26G, and the edge of the photoelectric conversion layer 50 and the color filter 26 The distance a to the end is preferably 0.05 μm or more, more preferably 1.5 mm or less, and the film thickness of the color filter is preferably 0.1 μm or more as described above. It is.
 なお、撮像素子10において、カラーフィルタ26は、各色フィルタの間に隔壁を有してもよい。
 また、必要に応じて、カラーフィルタ26を設けた領域以外の封止層22上に、前述のような遮光層を形成してもよく、さらに、最上層に、保護層(オーバーコート層)を形成してもよい。
In the image sensor 10, the color filter 26 may have a partition between the color filters.
Further, if necessary, a light shielding layer as described above may be formed on the sealing layer 22 other than the region where the color filter 26 is provided, and a protective layer (overcoat layer) is formed on the uppermost layer. It may be formed.
 このようにして、カラーフィルタ26を形成したら、バックグラインド工程を行う。まず、図3(c)に示すように、カラーフィルタ26(保護層を形成した場合には保護層)を覆うように、カラーフィルタ26の形成面に保護テープTを貼着する。
 次いで、基板12(回路基板11(ウエハ))の裏面を研磨する。なお、基板12の裏面の研磨は、BG用ホイールを用いる研磨等、半導体装置の製造で利用されている公知の方法で行えばよい。
When the color filter 26 is formed in this way, a back grinding process is performed. First, as shown in FIG. 3C, a protective tape T is attached to the surface on which the color filter 26 is formed so as to cover the color filter 26 (a protective layer when a protective layer is formed).
Next, the back surface of the substrate 12 (circuit substrate 11 (wafer)) is polished. The back surface of the substrate 12 may be polished by a known method used in the manufacture of semiconductor devices, such as polishing using a BG wheel.
 基板12の裏面の研磨を終了したら、保護テープTを剥離する。
 ここで、本発明においては、面方向に光電変換層50の形成範囲を超える範囲までカラーフィルタ26が形成されているので、このようなバックグラインド工程において、保護テープTを剥離しても、光電変換層50と対向電極20との間の膜剥がれが生じることを、好適に防止できる。
When the polishing of the back surface of the substrate 12 is completed, the protective tape T is peeled off.
Here, in the present invention, since the color filter 26 is formed in the plane direction up to a range exceeding the formation range of the photoelectric conversion layer 50, even if the protective tape T is peeled off in such a back grinding process, The film peeling between the conversion layer 50 and the counter electrode 20 can be suitably prevented.
 以下、光電変換層50およびブロッキング層52の形成材料について説明する。
 前述のように、本発明の撮像素子10は、有機材料からなる光電変換層50を有する。好ましくは、光電変換層50は、n型有機半導体材料とp型有機半導体材料とを混合してなる、バルクヘテロ構造を有する層である。
Hereinafter, materials for forming the photoelectric conversion layer 50 and the blocking layer 52 will be described.
As described above, the imaging element 10 of the present invention has the photoelectric conversion layer 50 made of an organic material. Preferably, the photoelectric conversion layer 50 is a layer having a bulk heterostructure formed by mixing an n-type organic semiconductor material and a p-type organic semiconductor material.
 p型有機半導体材料とn型有機半導体材料を接合させてドナ-アクセプタ界面を形成することにより励起子解離効率を増加させることができる。このために、p型有機半導体材料とn型有機半導体材料を接合させた構成の光電変換層は高い光電変換効率を発現する。特に、p型有機半導体材料とn型有機半導体材料を混合した光電変換層は、接合界面が増大して光電変換効率が向上するので好ましい。 Exciton dissociation efficiency can be increased by joining a p-type organic semiconductor material and an n-type organic semiconductor material to form a donor-acceptor interface. For this reason, the photoelectric conversion layer of the structure which joined the p-type organic-semiconductor material and the n-type organic-semiconductor material expresses high photoelectric conversion efficiency. In particular, a photoelectric conversion layer in which a p-type organic semiconductor material and an n-type organic semiconductor material are mixed is preferable because the junction interface is increased and the photoelectric conversion efficiency is improved.
 p型有機半導体材料(化合物)は、ドナー性有機半導体材料(化合物)であり、主に正孔輸送性有機化合物に代表され、電子を供与しやすい性質がある有機化合物をいう。更に詳しくは2つの有機材料を接触させて用いたときにイオン化ポテンシャルの小さい方の有機化合物をいう。したがって、ドナー性有機化合物は、電子供与性のある有機化合物であればいずれの有機化合物も使用可能である。例えば、トリアリールアミン化合物、ベンジジン化合物、ピラゾリン化合物、スチリルアミン化合物、ヒドラゾン化合物、トリフェニルメタン化合物、カルバゾール化合物、ポリシラン化合物、チオフェン化合物、フタロシアニン化合物、シアニン化合物、メロシアニン化合物、オキソノール化合物、ポリアミン化合物、インドール化合物、ピロール化合物、ピラゾール化合物、ポリアリーレン化合物、縮合芳香族炭素環化合物(ナフタレン誘導体、アントラセン誘導体、フェナントレン誘導体、テトラセン誘導体、ピレン誘導体、ペリレン誘導体、フルオランテン誘導体)、含窒素ヘテロ環化合物を配位子として有する金属錯体等を用いることができる。
 なお、これに限らず、上記したように、n型(アクセプター性)化合物として用いた有機化合物よりもイオン化ポテンシャルの小さい有機化合物であればドナー性有機半導体として用いてよい。
The p-type organic semiconductor material (compound) is a donor-type organic semiconductor material (compound), which is mainly represented by a hole-transporting organic compound and refers to an organic compound having a property of easily donating electrons. More specifically, an organic compound having a smaller ionization potential when two organic materials are used in contact with each other. Therefore, any organic compound can be used as the donor organic compound as long as it is an electron-donating organic compound. For example, triarylamine compound, benzidine compound, pyrazoline compound, styrylamine compound, hydrazone compound, triphenylmethane compound, carbazole compound, polysilane compound, thiophene compound, phthalocyanine compound, cyanine compound, merocyanine compound, oxonol compound, polyamine compound, indole Compounds, pyrrole compounds, pyrazole compounds, polyarylene compounds, condensed aromatic carbocyclic compounds (naphthalene derivatives, anthracene derivatives, phenanthrene derivatives, tetracene derivatives, pyrene derivatives, perylene derivatives, fluoranthene derivatives), nitrogen-containing heterocyclic compounds The metal complex etc. which it has as can be used.
Not limited to this, as described above, any organic compound having an ionization potential smaller than that of the organic compound used as the n-type (acceptor property) compound may be used as the donor organic semiconductor.
 n型有機半導体材料(化合物)は、アクセプター性有機半導体材料であり、主に電子輸送性有機化合物に代表され、電子を受容しやすい性質がある有機化合物をいう。更に詳しくは、n型有機半導体とは、2つの有機化合物を接触させて用いたときに電子親和力の大きい方の有機化合物をいう。したがって、アクセプター性有機化合物は、電子受容性のある有機化合物であればいずれの有機化合物も使用可能である。例えば、縮合芳香族炭素環化合物(ナフタレン誘導体、アントラセン誘導体、フェナントレン誘導体、テトラセン誘導体、ピレン誘導体、ペリレン誘導体、フルオランテン誘導体)、窒素原子、酸素原子、硫黄原子を含有する5~7員のヘテロ環化合物(例えば、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、キノリン、キノキサリン、キナゾリン、フタラジン、シンノリン、イソキノリン、プテリジン、アクリジン、フェナジン、フェナントロリン、テトラゾール、ピラゾール、イミダゾール、チアゾール、オキサゾール、インダゾール、ベンズイミダゾール、ベンゾトリアゾール、ベンゾオキサゾール、ベンゾチアゾール、カルバゾール、プリン、トリアゾロピリダジン、トリアゾロピリミジン、テトラザインデン、オキサジアゾール、イミダゾピリジン、ピラリジン、ピロロピリジン、チアジアゾロピリジン、ジベンズアゼピン、トリベンズアゼピン等)、ポリアリーレン化合物、フルオレン化合物、シクロペンタジエン化合物、シリル化合物、含窒素ヘテロ環化合物を配位子として有する金属錯体などが挙げられる。なお、これに限らず、上記したように、p型(ドナー性)化合物として用いた有機化合物よりも電子親和力の大きな有機化合物であればアクセプター性有機半導体として用いてよい。 The n-type organic semiconductor material (compound) is an acceptor organic semiconductor material, and is mainly represented by an electron-transporting organic compound and means an organic compound having a property of easily accepting electrons. More specifically, an n-type organic semiconductor refers to an organic compound having a larger electron affinity when two organic compounds are used in contact with each other. Therefore, as the acceptor organic compound, any organic compound can be used as long as it is an electron-accepting organic compound. For example, condensed aromatic carbocyclic compounds (naphthalene derivatives, anthracene derivatives, phenanthrene derivatives, tetracene derivatives, pyrene derivatives, perylene derivatives, fluoranthene derivatives), 5- to 7-membered heterocyclic compounds containing nitrogen atoms, oxygen atoms, and sulfur atoms (E.g., pyridine, pyrazine, pyrimidine, pyridazine, triazine, quinoline, quinoxaline, quinazoline, phthalazine, cinnoline, isoquinoline, pteridine, acridine, phenazine, phenanthroline, tetrazole, pyrazole, imidazole, thiazole, oxazole, indazole, benzimidazole, benzotriazole , Benzoxazole, benzothiazole, carbazole, purine, triazolopyridazine, triazolopyrimidine, tetrazaindene, oxy Diazole, imidazopyridine, pyralidine, pyrrolopyridine, thiadiazolopyridine, dibenzazepine, tribenzazepine, etc.), polyarylene compounds, fluorene compounds, cyclopentadiene compounds, silyl compounds, nitrogen-containing heterocyclic compounds as ligands Etc. Not limited to this, as described above, any organic compound having an electron affinity higher than that of the organic compound used as the p-type (donor property) compound may be used as the acceptor organic semiconductor.
 p型有機半導体材料、またはn型有機半導体材料としては、いかなる有機色素を用いても良いが、好ましくは、シアニン色素、スチリル色素、ヘミシアニン色素、メロシアニン色素(ゼロメチンメロシアニン(シンプルメロシアニン)を含む)、3核メロシアニン色素、4核メロシアニン色素、ロダシアニン色素、コンプレックスシアニン色素、コンプレックスメロシアニン色素、アロポーラー色素、オキソノール色素、ヘミオキソノール色素、スクアリウム色素、クロコニウム色素、アザメチン色素、クマリン色素、アリーリデン色素、アントラキノン色素、トリフェニルメタン色素、アゾ色素、アゾメチン色素、スピロ化合物、メタロセン色素、フルオレノン色素、フルギド色素、ペリレン色素、ペリノン色素、フェナジン色素、フェノチアジン色素、キノン色素、ジフェニルメタン色素、ポリエン色素、アクリジン色素、アクリジノン色素、ジフェニルアミン色素、キナクリドン色素、キノフタロン色素、フェノキサジン色素、フタロペリレン色素、ジケトピロロピロール色素、ジオキサン色素、ポルフィリン色素、クロロフィル色素、フタロシアニン色素、金属錯体色素、縮合芳香族炭素環系色素(ナフタレン誘導体、アントラセン誘導体、フェナントレン誘導体、テトラセン誘導体、ピレン誘導体、ペリレン誘導体、フルオランテン誘導体)が挙げられる。 Any organic dye may be used as the p-type organic semiconductor material or the n-type organic semiconductor material, but preferably a cyanine dye, a styryl dye, a hemicyanine dye, and a merocyanine dye (including zero methine merocyanine (simple merocyanine)). 3-nuclear merocyanine dye, 4-nuclear merocyanine dye, rhodacyanine dye, complex cyanine dye, complex merocyanine dye, allopolar dye, oxonol dye, hemioxonol dye, squalium dye, croconium dye, azamethine dye, coumarin dye, arylidene dye, anthraquinone dye , Triphenylmethane dye, azo dye, azomethine dye, spiro compound, metallocene dye, fluorenone dye, fulgide dye, perylene dye, perinone dye, phenazine dye, phenazine dye Thiazine dye, quinone dye, diphenylmethane dye, polyene dye, acridine dye, acridinone dye, diphenylamine dye, quinacridone dye, quinophthalone dye, phenoxazine dye, phthaloperylene dye, diketopyrrolopyrrole dye, dioxane dye, porphyrin dye, chlorophyll dye, phthalocyanine And dyes, metal complex dyes, and condensed aromatic carbocyclic dyes (naphthalene derivatives, anthracene derivatives, phenanthrene derivatives, tetracene derivatives, pyrene derivatives, perylene derivatives, fluoranthene derivatives).
 n型有機半導体材料として、電子輸送性に優れた、フラーレンおよび/またはフラーレン誘導体を用いることが特に好ましい。フラーレンとは、フラーレンC60、フラーレンC70、フラーレンC76、フラーレンC78、フラーレンC80、フラーレンC82、フラーレンC84、フラーレンC90、フラーレンC96、フラーレンC240、フラーレンC540、ミックスドフラーレン、フラーレンナノチューブを表す。また、フラーレン誘導体とは、これらに置換基が付加された化合物のことを表す。
 なお、n型有機半導体材料としては、フラーレンのみを用いてもよく、フラーレン誘導体のみを用いてもよく、フラーレンおよびフラーレン誘導体を併用してもよい。
As the n-type organic semiconductor material, it is particularly preferable to use fullerene and / or fullerene derivatives having excellent electron transport properties. The fullerene, fullerene C 60, fullerene C 70, fullerene C 76, fullerene C 78, fullerene C 80, fullerene C 82, fullerene C 84, fullerene C 90, fullerene C 96, fullerene C 240, fullerene C 540, mixed Fullerene and fullerene nanotube. Moreover, a fullerene derivative represents the compound which added the substituent to these.
In addition, as an n-type organic semiconductor material, only fullerene may be used, only a fullerene derivative may be used, and fullerene and a fullerene derivative may be used together.
 フラーレン誘導体の置換基として好ましくは、アルキル基、アリール基、または複素環基である。アルキル基として更に好ましくは、炭素数1~12までのアルキル基であり、アリール基、および複素環基として好ましくは、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、フルオレン環、トリフェニレン環、ナフタセン環、ビフェニル環、ピロール環、フラン環、チオフェン環、イミダゾール環、オキサゾール環、チアゾール環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、インドリジン環、インドール環、ベンゾフラン環、ベンゾチオフェン環、イソベンゾフラン環、ベンズイミダゾール環、イミダゾピリジン環、キノリジン環、キノリン環、フタラジン環、ナフチリジン環、キノキサリン環、キノキサゾリン環、イソキノリン環、カルバゾール環、フェナントリジン環、アクリジン環、フェナントロリン環、チアントレン環、クロメン環、キサンテン環、フェノキサチイン環、フェノチアジン環、またはフェナジン環であり、更に好ましくは、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ピリジン環、イミダゾール環、オキサゾール環、またはチアゾール環であり、特に好ましくはベンゼン環、ナフタレン環、またはピリジン環である。これらは更に置換基を有していてもよく、その置換基は可能な限り結合して環を形成してもよい。なお、複数の置換基を有しても良く、それらは同一であっても異なっていても良い。また、複数の置換基は可能な限り結合して環を形成してもよい。 The substituent for the fullerene derivative is preferably an alkyl group, an aryl group, or a heterocyclic group. The alkyl group is more preferably an alkyl group having 1 to 12 carbon atoms, and the aryl group and the heterocyclic group are preferably a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, fluorene ring, triphenylene ring, naphthacene ring. , Biphenyl ring, pyrrole ring, furan ring, thiophene ring, imidazole ring, oxazole ring, thiazole ring, pyridine ring, pyrazine ring, pyrimidine ring, pyridazine ring, indolizine ring, indole ring, benzofuran ring, benzothiophene ring, isobenzofuran Ring, benzimidazole ring, imidazopyridine ring, quinolidine ring, quinoline ring, phthalazine ring, naphthyridine ring, quinoxaline ring, quinoxazoline ring, isoquinoline ring, carbazole ring, phenanthridine ring, acridine ring, phenanthroli Ring, thianthrene ring, chromene ring, xanthene ring, phenoxathiin ring, phenothiazine ring, or phenazine ring, more preferably a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, pyridine ring, imidazole ring, oxazole ring, Or a thiazole ring, particularly preferably a benzene ring, a naphthalene ring, or a pyridine ring. These may further have a substituent, and the substituents may be bonded as much as possible to form a ring. In addition, you may have a some substituent and they may be the same or different. A plurality of substituents may be combined as much as possible to form a ring.
 光電変換層50がフラーレンおよび/またはフラーレン誘導体を含むことで、フラーレン分子またはフラーレン誘導体分子を経由して、光電変換により発生した電子を画素電極16または対向電極20まで早く輸送できる。フラーレン分子またはフラーレン誘導体分子が連なった状態になって電子の経路が形成されていると、電子輸送性が向上して光電変換素子の高速応答性が実現可能となる。このためにはフラーレンおよび/またはフラーレン誘導体が光電変換層50に40%(体積比)以上含まれていることが好ましい。もっとも、フラーレンおよび/またはフラーレン誘導体が多すぎるとp型有機半導体が少なくなって接合界面が小さくなり励起子解離効率が低下してしまう。 When the photoelectric conversion layer 50 contains fullerene and / or fullerene derivative, electrons generated by photoelectric conversion can be quickly transported to the pixel electrode 16 or the counter electrode 20 via the fullerene molecule or fullerene derivative molecule. When fullerene molecules or fullerene derivative molecules are connected to form an electron path, the electron transport property is improved, and high-speed response of the photoelectric conversion element can be realized. For this purpose, it is preferable that fullerene and / or fullerene derivatives are contained in the photoelectric conversion layer 50 by 40% (volume ratio) or more. However, when there are too many fullerenes and / or fullerene derivatives, the p-type organic semiconductor is reduced, the junction interface is reduced, and the exciton dissociation efficiency is lowered.
 光電変換層50において、フラーレンおよび/またはフラーレン誘導体と共に混合されるp型有機半導体材料として、特許第4213832号公報等に記載されたトリアリールアミン化合物を用いると光電変換素子の高SN比が発現可能になり、特に好ましい。光電変換層内のフラーレンまたはフラーレン誘導体の比率が大きすぎるとトリアリールアミン化合物が少なくなって入射光の吸収量が低下する。これにより光電変換効率が減少するので、光電変換層に含まれるフラーレンおよび/またはフラーレン誘導体は85%(体積比)以下の組成であることが好ましい。 When the triarylamine compound described in Japanese Patent No. 4213832 is used as a p-type organic semiconductor material mixed with fullerene and / or fullerene derivatives in the photoelectric conversion layer 50, a high SN ratio of the photoelectric conversion element can be expressed. It is particularly preferable. If the ratio of fullerene or fullerene derivative in the photoelectric conversion layer is too large, the amount of triarylamine compounds decreases and the amount of incident light absorbed decreases. As a result, the photoelectric conversion efficiency is reduced. Therefore, the fullerene and / or fullerene derivative contained in the photoelectric conversion layer preferably has a composition of 85% (volume ratio) or less.
 光電変換層50に用いられるp型半導体有機材料は、下記一般式(1)で示される化合物であるのが、特に好ましい。 The p-type semiconductor organic material used for the photoelectric conversion layer 50 is particularly preferably a compound represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 上記一般式(1)中、Zは少なくとも2つの炭素原子を含む環であって、5員環、6員環、または、5員環および6員環の少なくともいずれかを含む縮合環を表す。L、L、およびLはそれぞれ独立に無置換メチン基、または置換メチン基を表す。Dは原子群を表す。nは0以上の整数を表す。 In the general formula (1), Z 1 represents a ring containing at least two carbon atoms and represents a 5-membered ring, a 6-membered ring, or a condensed ring containing at least one of a 5-membered ring and a 6-membered ring. . L 1 , L 2 , and L 3 each independently represent an unsubstituted methine group or a substituted methine group. D 1 represents an atomic group. n represents an integer of 0 or more.
 Zは少なくとも2つの炭素原子を含む環であって、5員環、6員環、または、5員環および6員環の少なくともいずれかを含む縮合環を表す。5員環、6員環、または、5員環および6員環の少なくともいずれかを含む縮合環としては、通常メロシアニン色素で酸性核として用いられるものが好ましい。
 その具体例としては、例えば以下のものが挙げられる。
Z 1 is a ring containing at least two carbon atoms, and represents a 5-membered ring, a 6-membered ring, or a condensed ring containing at least one of a 5-membered ring and a 6-membered ring. As the condensed ring containing at least one of a 5-membered ring, a 6-membered ring, and a 5-membered ring and a 6-membered ring, those usually used as an acidic nucleus in a merocyanine dye are preferable.
Specific examples thereof include the following.
 (a) 1,3-ジカルボニル核:例えば1,3-インダンジオン核、1,3-シクロヘキサンジオン、5,5-ジメチル-1,3-シクロヘキサンジオン、1,3-ジオキサン-4,6-ジオン等。
 (b) ピラゾリノン核:例えば1-フェニル-2-ピラゾリン-5-オン、3-メチル-1-フェニル-2-ピラゾリン-5-オン、1-(2-ベンゾチアゾイル)-3-メチル-2-ピラゾリン-5-オン等。
 (c) イソオキサゾリノン核:例えば3-フェニル-2-イソオキサゾリン-5-オン、3-メチル-2-イソオキサゾリン-5-オン等。
 (d) オキシインドール核:例えば1-アルキル-2,3-ジヒドロ-2-オキシインドール等。
 (e) 2,4,6-トリケトヘキサヒドロピリミジン核:例えばバルビツル酸または2-チオバルビツル酸およびその誘導体等。誘導体としては例えば1-メチル、1-エチル等の1-アルキル体、1,3-ジメチル、1,3-ジエチル、1,3-ジブチル等の1,3-ジアルキル体、1,3-ジフェニル、1,3-ジ(p-クロロフェニル)、1,3-ジ(p-エトキシカルボニルフェニル)等の1,3-ジアリール体、1-エチル-3-フェニル等の1-アルキル-1-アリール体、1,3-ジ(2―ピリジル)等の1,3位ジヘテロ環置換体等が挙げられる。
 (f) 2-チオ-2,4-チアゾリジンジオン核:例えばローダニンおよびその誘導体等。誘導体としては例えば3-メチルローダニン、3-エチルローダニン、3-アリルローダニン等の3-アルキルローダニン、3-フェニルローダニン等の3-アリールローダニン、3-(2-ピリジル)ローダニン等の3位ヘテロ環置換ローダニン等が挙げられる。
(A) 1,3-dicarbonyl nucleus: for example, 1,3-indandione nucleus, 1,3-cyclohexanedione, 5,5-dimethyl-1,3-cyclohexanedione, 1,3-dioxane-4,6- Zeon etc.
(B) pyrazolinone nucleus: for example 1-phenyl-2-pyrazolin-5-one, 3-methyl-1-phenyl-2-pyrazolin-5-one, 1- (2-benzothiazoyl) -3-methyl-2 -Pyrazolin-5-one and the like.
(C) isoxazolinone nucleus: for example, 3-phenyl-2-isoxazolin-5-one, 3-methyl-2-isoxazolin-5-one, etc.
(D) Oxindole nucleus: For example, 1-alkyl-2,3-dihydro-2-oxindole and the like.
(E) 2,4,6-triketohexahydropyrimidine nucleus: for example, barbituric acid or 2-thiobarbituric acid and its derivatives. Examples of the derivatives include 1-alkyl compounds such as 1-methyl and 1-ethyl, 1,3-dialkyl compounds such as 1,3-dimethyl, 1,3-diethyl and 1,3-dibutyl, 1,3-diphenyl, 1,3-diaryl compounds such as 1,3-di (p-chlorophenyl) and 1,3-di (p-ethoxycarbonylphenyl), 1-alkyl-1-aryl compounds such as 1-ethyl-3-phenyl, Examples include 1,3-di (2-pyridyl) 1,3-diheterocyclic substituents and the like.
(F) 2-thio-2,4-thiazolidinedione nucleus: for example, rhodanine and its derivatives. Examples of the derivatives include 3-alkylrhodanine such as 3-methylrhodanine, 3-ethylrhodanine and 3-allylrhodanine, 3-arylrhodanine such as 3-phenylrhodanine, and 3- (2-pyridyl) rhodanine. And the like.
 (g) 2-チオ-2,4-オキサゾリジンジオン(2-チオ-2,4-(3H,5H)-オキサゾールジオン核:例えば3-エチル-2-チオ-2,4-オキサゾリジンジオン等。
 (h) チアナフテノン核:例えば3(2H)-チアナフテノン-1,1-ジオキサイド等。
 (i) 2-チオ-2,5-チアゾリジンジオン核:例えば3-エチル-2-チオ-2,5-チアゾリジンジオン等。
 (j) 2,4-チアゾリジンジオン核:例えば2,4-チアゾリジンジオン、3-エチル-2,4-チアゾリジンジオン、3-フェニル-2,4-チアゾリジンジオン等。
 (k) チアゾリン-4-オン核:例えば4-チアゾリノン、2-エチル-4-チアゾリノン等。
 (l) 2,4-イミダゾリジンジオン(ヒダントイン)核:例えば2,4-イミダゾリジンジオン、3-エチル-2,4-イミダゾリジンジオン等。
 (m) 2-チオ-2,4-イミダゾリジンジオン(2-チオヒダントイン)核:例えば2-チオ-2,4-イミダゾリジンジオン、3-エチル-2-チオ-2,4-イミダゾリジンジオン等。
 (n) イミダゾリン-5-オン核:例えば2-プロピルメルカプト-2-イミダゾリン-5-オン等。
 (o) 3,5-ピラゾリジンジオン核:例えば1,2-ジフェニル-3,5-ピラゾリジンジオン、1,2-ジメチル-3,5-ピラゾリジンジオン等。
 (p) ベンゾチオフェンー3-オン核:例えばベンゾチオフェンー3-オン、オキソベンゾチオフェンー3-オン、ジオキソベンゾチオフェンー3-オン等。
 (q) インダノン核:例えば1-インダノン、3-フェニルー1-インダノン、3-メチルー1-インダノン、3,3-ジフェニルー1-インダノン、3,3-ジメチルー1-インダノン等。
(G) 2-thio-2,4-oxazolidinedione (2-thio-2,4- (3H, 5H) -oxazoledione nucleus: for example, 3-ethyl-2-thio-2,4-oxazolidinedione and the like.
(H) Tianaphthenone nucleus: For example, 3 (2H) -thianaphthenone-1,1-dioxide and the like.
(I) 2-thio-2,5-thiazolidinedione nucleus: for example, 3-ethyl-2-thio-2,5-thiazolidinedione and the like.
(J) 2,4-thiazolidinedione nucleus: for example, 2,4-thiazolidinedione, 3-ethyl-2,4-thiazolidinedione, 3-phenyl-2,4-thiazolidinedione and the like.
(K) Thiazolin-4-one nucleus: for example, 4-thiazolinone, 2-ethyl-4-thiazolinone and the like.
(L) 2,4-imidazolidinedione (hydantoin) nucleus: for example, 2,4-imidazolidinedione, 3-ethyl-2,4-imidazolidinedione, etc.
(M) 2-thio-2,4-imidazolidinedione (2-thiohydantoin) nucleus: for example, 2-thio-2,4-imidazolidinedione, 3-ethyl-2-thio-2,4-imidazolidinedione etc.
(N) Imidazolin-5-one nucleus: for example, 2-propylmercapto-2-imidazolin-5-one and the like.
(O) 3,5-pyrazolidinedione nucleus: for example, 1,2-diphenyl-3,5-pyrazolidinedione, 1,2-dimethyl-3,5-pyrazolidinedione and the like.
(P) Benzothiophen-3-one nucleus: for example, benzothiophen-3-one, oxobenzothiophen-3-one, dioxobenzothiophen-3-one and the like.
(Q) Indanone nucleus: for example, 1-indanone, 3-phenyl-1-indanone, 3-methyl-1-indanone, 3,3-diphenyl-1-indanone, 3,3-dimethyl-1-indanone, etc.
 Z1で形成される環として好ましくは、1,3-ジカルボニル核、ピラゾリノン核、2,4,6-トリケトヘキサヒドロピリミジン核(チオケトン体も含み、例えばバルビツル酸核、2-チオバルビツール酸核)、2-チオ-2,4-チアゾリジンジオン核、2-チオ-2,4-オキサゾリジンジオン核、2-チオ-2,5-チアゾリジンジオン核、2,4-チアゾリジンジオン核、2,4-イミダゾリジンジオン核、2-チオ-2,4-イミダゾリジンジオン核、2-イミダゾリン-5-オン核、3,5-ピラゾリジンジオン核、ベンゾチオフェンー3-オン核、インダノン核であり、より好ましくは1,3-ジカルボニル核、2,4,6-トリケトヘキサヒドロピリミジン核(チオケトン体も含み、例えばバルビツル酸核、2-チオバルビツール酸核)、3,5-ピラゾリジンジオン核、ベンゾチオフェンー3-オン核、インダノン核であり、更に好ましくは1,3-ジカルボニル核、2,4,6-トリケトヘキサヒドロピリミジン核(チオケトン体も含み、例えばバルビツル酸核、2-チオバルビツール酸核)であり、特に好ましくは1,3-インダンジオン核、バルビツル酸核、2-チオバルビツール酸核およびそれらの誘導体である。 The ring formed by Z 1 is preferably a 1,3-dicarbonyl nucleus, a pyrazolinone nucleus, a 2,4,6-triketohexahydropyrimidine nucleus (including a thioketone body, for example, a barbituric acid nucleus, 2-thiobarbitur tool) Acid nucleus), 2-thio-2,4-thiazolidinedione nucleus, 2-thio-2,4-oxazolidinedione nucleus, 2-thio-2,5-thiazolidinedione nucleus, 2,4-thiazolidinedione nucleus, 2, In 4-imidazolidinedione nucleus, 2-thio-2,4-imidazolidinedione nucleus, 2-imidazolin-5-one nucleus, 3,5-pyrazolidinedione nucleus, benzothiophen-3-one nucleus, indanone nucleus More preferably 1,3-dicarbonyl nucleus, 2,4,6-triketohexahydropyrimidine nucleus (including thioketones, such as barbituric acid nucleus, Tool acid nucleus), 3,5-pyrazolidinedione nucleus, benzothiophen-3-one nucleus, indanone nucleus, more preferably 1,3-dicarbonyl nucleus, 2,4,6-triketohexahydropyrimidine Nuclei (including thioketone bodies, such as barbituric acid nuclei, 2-thiobarbituric acid nuclei), particularly preferably 1,3-indandione nuclei, barbituric acid nuclei, 2-thiobarbituric acid nuclei and their derivatives. is there.
 L1、L2、およびL3はそれぞれ独立に、無置換のメチン基、または置換メチン基を表す。置換メチン基同士が結合して環(例、6員環、例えば、ベンゼン環)を形成してもよい。置換メチン基の置換基は置換基Wが挙げられるが、L1、L2、L3は全てが無置換メチン基であるのが好ましい。
 L1~L3は互いに連結して環を形成しても良く、形成する環として好ましくはシクロヘキセン環、シクロペンテン環、ベンゼン環、チオフェン環等が挙げられる。
L 1 , L 2 , and L 3 each independently represent an unsubstituted methine group or a substituted methine group. The substituted methine groups may be bonded to each other to form a ring (eg, a 6-membered ring such as a benzene ring). Although the substituent W of the substituted methine group includes the substituent W, it is preferable that all of L 1 , L 2 and L 3 are unsubstituted methine groups.
L 1 to L 3 may be connected to each other to form a ring, and preferred examples of the ring formed include a cyclohexene ring, a cyclopentene ring, a benzene ring, and a thiophene ring.
 nは0以上の整数を表し、好ましくは0以上3以下の整数を表し、より好ましくは0である。nを増大させた場合、吸収波長域が長波長にする事ができるか、熱による分解温度が低くなる。可視域に適切な吸収を有し、かつ蒸着成膜時の熱分解を抑制する点でn=0が好ましい。 N represents an integer of 0 or more, preferably 0 or more and 3 or less, more preferably 0. When n is increased, the absorption wavelength region can be made longer, or the thermal decomposition temperature is lowered. N = 0 is preferable in that it has appropriate absorption in the visible region and suppresses thermal decomposition during vapor deposition.
 D1は原子群を表す。D1は-NRa(Rb)を含む基であることが好ましく、-NRa(Rb)が置換したアリーレン基を表す場合が更に好ましい。Ra、Rbはそれぞれ独立に、水素原子、または置換基を表す。 D 1 represents an atomic group. D 1 is preferably a group containing —NR a (R b ), more preferably —NR a (R b ) represents a substituted arylene group. R a and R b each independently represent a hydrogen atom or a substituent.
 D1が表すアリーレン基としては、好ましくは炭素数6~30のアリーレン基であり、より好ましくは炭素数6~18のアリーレン基である。アリーレン基は、後述の置換基Wを有していてもよく、好ましくは炭素数1~4のアルキル基を有していてもよい炭素数6~18のアリーレン基である。例えば、フェニレン基、ナフチレン基、アントラセニレン基、ピレニレン基、フェナントレニレン基、メチルフェニレン基、ジメチルフェニレン基等が挙げられ、フェニレン基またはナフチレン基が好ましい。 The arylene group represented by D 1 is preferably an arylene group having 6 to 30 carbon atoms, and more preferably an arylene group having 6 to 18 carbon atoms. The arylene group may have a substituent W described later, and is preferably an arylene group having 6 to 18 carbon atoms which may have an alkyl group having 1 to 4 carbon atoms. Examples thereof include a phenylene group, a naphthylene group, an anthracenylene group, a pyrenylene group, a phenanthrenylene group, a methylphenylene group, and a dimethylphenylene group, and a phenylene group or a naphthylene group is preferable.
 Ra、Rbで表される置換基としては後述の置換基Wが挙げられ、好ましくは、脂肪族炭化水素基(好ましくは置換されてよいアルキル基、アルケニル基)、アリール基(好ましくは置換されてよいフェニル基)、またはヘテロ環基である。 Examples of the substituent represented by R a and R b include the substituent W described later, and preferably an aliphatic hydrocarbon group (preferably an alkyl group or alkenyl group which may be substituted) or an aryl group (preferably substituted). A phenyl group which may be substituted), or a heterocyclic group.
 Ra、Rbが表すアリール基としては、それぞれ独立に、好ましくは炭素数6~30のアリール基であり、より好ましくは炭素数6~18のアリール基である。アリール基は、置換基を有していてもよく、好ましくは炭素数1~4のアルキル基または炭素数6~18のアリール基を有していてもよい炭素数6~18のアリール基である。例えば、フェニル基、ナフチル基、アントラセニル基、ピレニル基、フェナントレニル基、メチルフェニル基、ジメチルフェニル基、ビフェニル基等が挙げられ、フェニル基またはナフチル基が好ましい。 The aryl groups represented by R a and R b are each independently preferably an aryl group having 6 to 30 carbon atoms, and more preferably an aryl group having 6 to 18 carbon atoms. The aryl group may have a substituent, and is preferably an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 18 carbon atoms which may have an aryl group having 6 to 18 carbon atoms. . Examples thereof include a phenyl group, a naphthyl group, an anthracenyl group, a pyrenyl group, a phenanthrenyl group, a methylphenyl group, a dimethylphenyl group, and a biphenyl group, and a phenyl group or a naphthyl group is preferable.
 Ra、Rbが表すヘテロ環基としては、それぞれ独立に、好ましくは炭素数3~30のヘテロ環基であり、より好ましくは炭素数3~18のヘテロ環基である。ヘテロ環基は、置換基を有していてもよく、好ましくは炭素数1~4のアルキル基または炭素数6~18のアリール基を有していてもよい炭素数3~18のヘテロ環基である。また、Ra、Rbが表すヘテロ環基は縮環構造であることが好ましく、フラン環、チオフェン環、セレノフェン環、シロール環、ピリジン環、ピラジン環、ピリミジン環、オキサゾール環、チアゾール環、トリアゾール環、オキサジアゾール環、チアジアゾール環からから選ばれる環の組み合わせ(同一でも良い)の縮環構造が好ましく、キノリン環、イソキノリン環、ベンゾチオフェン環、ジベンゾチオフェン環、チエノチオフェン環、ビチエノベンゼン環、ビチエノチオフェン環が好ましい。 The heterocyclic groups represented by R a and R b are each independently preferably a heterocyclic group having 3 to 30 carbon atoms, more preferably a heterocyclic group having 3 to 18 carbon atoms. The heterocyclic group may have a substituent, and preferably a C 3-18 heterocyclic group which may have an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 18 carbon atoms. It is. The heterocyclic group represented by R a and R b is preferably a condensed ring structure, and is a furan ring, thiophene ring, selenophene ring, silole ring, pyridine ring, pyrazine ring, pyrimidine ring, oxazole ring, thiazole ring, triazole. A condensed ring structure of a ring combination selected from a ring, an oxadiazole ring, and a thiadiazole ring (which may be the same) is preferable. A quinoline ring, an isoquinoline ring, a benzothiophene ring, a dibenzothiophene ring, a thienothiophene ring, and a bithienobenzene ring A bithienothiophene ring is preferred.
 D1、Ra、およびRbが表すアリーレン基およびアリール基はベンゼン環または縮環構造であることが好ましく、ベンゼン環を含む縮環構造であることがより好ましく、ナフタレン環、アントラセン環、ピレン環、フェナントレン環を挙げることができ、ベンゼン環、ナフタレン環またはアントラセン環がより好ましくは、ベンゼン環またはナフタレン環が更に好ましい。 The arylene group and aryl group represented by D 1 , R a , and R b are preferably a benzene ring or a condensed ring structure, more preferably a condensed ring structure containing a benzene ring, a naphthalene ring, an anthracene ring, pyrene A benzene ring, a naphthalene ring or an anthracene ring, more preferably a benzene ring or a naphthalene ring.
 置換基Wとしてはハロゲン原子、アルキル基(シクロアルキル基、ビシクロアルキル基、トリシクロアルキル基を含む)、アルケニル基(シクロアルケニル基、ビシクロアルケニル基を含む)、アルキニル基、アリール基、複素環基(ヘテロ環基といっても良い)、シアノ基、ヒドロキシ基、ニトロ基、カルボキシ基、アルコキシ基、アリールオキシ基、シリルオキシ基、ヘテロ環オキシ基、アシルオキシ基、カルバモイルオキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、アミノ基(アニリノ基を含む)、アンモニオ基、アシルアミノ基、アミノカルボニルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルファモイルアミノ基、アルキルおよびアリールスルホニルアミノ基、メルカプト基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、スルファモイル基、スルホ基、アルキルおよびアリールスルフィニル基、アルキルおよびアリールスルホニル基、アシル基、アリールオキシカルボニル基、アルコキシカルボニル基、カルバモイル基、アリールおよびヘテロ環アゾ基、イミド基、ホスフィノ基、ホスフィニル基、ホスフィニルオキシ基、ホスフィニルアミノ基、ホスホノ基、シリル基、ヒドラジノ基、ウレイド基、ボロン酸基(-B(OH)2)、ホスファト基(-OPO(OH)2)、スルファト基(-OSO3H)、その他の公知の置換基が挙げられる。 As the substituent W, a halogen atom, an alkyl group (including a cycloalkyl group, a bicycloalkyl group, and a tricycloalkyl group), an alkenyl group (including a cycloalkenyl group and a bicycloalkenyl group), an alkynyl group, an aryl group, and a heterocyclic group (May be referred to as a heterocyclic group), cyano group, hydroxy group, nitro group, carboxy group, alkoxy group, aryloxy group, silyloxy group, heterocyclic oxy group, acyloxy group, carbamoyloxy group, alkoxycarbonyl group, aryl Oxycarbonyl group, amino group (including anilino group), ammonio group, acylamino group, aminocarbonylamino group, alkoxycarbonylamino group, aryloxycarbonylamino group, sulfamoylamino group, alkyl and arylsulfonylamino group, mercap Group, alkylthio group, arylthio group, heterocyclic thio group, sulfamoyl group, sulfo group, alkyl and arylsulfinyl group, alkyl and arylsulfonyl group, acyl group, aryloxycarbonyl group, alkoxycarbonyl group, carbamoyl group, aryl and heterocyclic ring Azo group, imide group, phosphino group, phosphinyl group, phosphinyloxy group, phosphinylamino group, phosphono group, silyl group, hydrazino group, ureido group, boronic acid group (-B (OH) 2 ), phosphato group (-OPO (OH) 2 ), sulfato group (-OSO 3 H), and other known substituents.
 Ra、Rbが置換基(好ましくはアルキル基、アルケニル基)を表す場合、それらの置換基は、-NRa(Rb)が置換したアリール基の芳香環(好ましくはベンゼン環)骨格の水素原子、または置換基と結合して環(好ましくは6員環)を形成してもよい。
 Ra、Rbは互いに置換基同士が結合して環(好ましくは5員または6員環、より好ましくは6員環)を形成してもよく、また、Ra、RbはそれぞれがL(L1、L2、L3のいずれかを表す)中の置換基と結合して環(好ましくは5員または6員環、より好ましくは6員環)を形成してもよい。
When R a and R b represent a substituent (preferably an alkyl group or an alkenyl group), the substituent is an aromatic ring (preferably benzene ring) skeleton of an aryl group substituted by —NR a (R b ). It may combine with a hydrogen atom or a substituent to form a ring (preferably a 6-membered ring).
R a and R b may be bonded to each other to form a ring (preferably a 5- or 6-membered ring, more preferably a 6-membered ring), and R a and R b are each L A ring (preferably a 5-membered or 6-membered ring, more preferably a 6-membered ring) may be formed by combining with a substituent in (represents any one of L 1 , L 2 , and L 3 ).
 一般式(1)で表される化合物は、特開2000-297068号公報に記載される化合物であり、前記公報に記載のない化合物も、前記公報に記載の合成方法に準じて製造することができる。また、一般式(1)で表される化合物は一般式(2)で表される化合物であるのが好ましい。 The compound represented by the general formula (1) is a compound described in Japanese Patent Application Laid-Open No. 2000-297068, and a compound not described in the above publication can be produced according to the synthesis method described in the above publication. it can. Moreover, it is preferable that the compound represented by General formula (1) is a compound represented by General formula (2).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 一般式(2)中、Z2、L21、L22、L23、およびnは、一般式(1)におけるZ1、L1、L2、L3、およびnと同義であり、その好ましい例も同様である。D21は置換または無置換のアリーレン基を表す。D22、およびD23はそれぞれ独立に、置換若しくは無置換のアリール基または置換若しくは無置換のヘテロ環基を表す。 In the general formula (2), Z 2 , L 21 , L 22 , L 23 , and n are synonymous with Z 1 , L 1 , L 2 , L 3 , and n in the general formula (1), and preferred The example is similar. D 21 represents a substituted or unsubstituted arylene group. D 22 and D 23 each independently represents a substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group.
 D21が表すアリーレン基は、D1が表すアリーレン環基と同義であり、その好ましい例も同様である。D22、およびD23が表すアリール基は、それぞれ独立に、Ra、およびRbが表すヘテロ環基と同義であり、その好ましい例も同様である。 The arylene group represented by D 21 has the same meaning as the arylene ring group represented by D 1 , and preferred examples thereof are also the same. The aryl group represented by D 22 and D 23 is independently the same as the heterocyclic group represented by R a and R b , and preferred examples thereof are also the same.
 以下に一般式(1)で表される化合物の好ましい具体例を、一般式(3)を用いて示すが、本発明はこれらに限定されるものではない。 Hereinafter, preferred specific examples of the compound represented by the general formula (1) are shown using the general formula (3), but the present invention is not limited to these.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 一般式(3)中、Z3は以下に示す化4におけるA-1~A-12のいずれかを表す。L31がメチレンを表し、nが0を表す。D31がB-1~B-9のいずれかであり、D32、およびD33がC-1~C-16のいずれかを表す。Z3としては、A-2が好ましく、D32、およびD33はC-1、C-2、C-15、C-16から選択されることが好ましく、D31はB-1またはB-9であるのが好ましい。 In the general formula (3), Z 3 represents any one of A-1 to A-12 in Chemical Formula 4 shown below. L 31 represents methylene and n represents 0. D 31 represents any one of B-1 to B-9, and D 32 and D 33 represent any one of C-1 to C-16. Z 3 is preferably A-2, D 32 and D 33 are preferably selected from C-1, C-2, C-15, and C-16, and D 31 is B-1 or B- 9 is preferred.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 特に好ましいp型有機材料としては、染料若しくは5個以上の縮環構造を持たない材料(縮環構造を0~4個、好ましは1~3個有する材料)が挙げられる。有機薄膜太陽電池で一般的に使用されている顔料系p型材料を用いると、pn界面での暗時電流が増大しやすい傾向になること、結晶性の粒界でのトラップにより光応答が遅くなりがちであることから、撮像素子用として用いることが難しい。このため、結晶化しにくい染料系のp型材料、若しくは5個以上の縮環構造を持たない材料が撮像素子用に好ましく用いることができる。 Particularly preferred p-type organic materials include dyes or materials having no 5 or more condensed ring structures (materials having 0 to 4, preferably 1 to 3 condensed ring structures). When using a pigment-based p-type material generally used in organic thin-film solar cells, the dark current tends to increase at the pn interface, and the light response is slow due to trapping at the crystalline grain boundary. Since it tends to be, it is difficult to use for an image sensor. For this reason, a dye-based p-type material that is difficult to crystallize, or a material that does not have five or more condensed ring structures can be preferably used for the imaging element.
 一般式(1)で表される化合物の更に好ましい具体例は、一般式(3)における以下に示す置換基、連結基および部分構造の組み合わせであるが、本発明はこれらに限定されるものではない。 More preferred specific examples of the compound represented by the general formula (1) are combinations of the substituents, linking groups and partial structures shown below in the general formula (3), but the present invention is not limited to these. Absent.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 なお、上記化7中のA-1~A-12、B-1~B-9、およびC-1~C-16は上記化4に示したものと同義である。
 以下に、一般式(1)で表される化合物の特に好ましい具体例を示すが、本発明はこれらに限定されるものではない。
In the chemical formula 7, A-1 to A-12, B-1 to B-9, and C-1 to C-16 have the same meanings as shown in the chemical formula 4.
Although the especially preferable specific example of a compound represented by General formula (1) below is shown, this invention is not limited to these.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 (分子量)
 一般式(1)で表される化合物は、成膜適性の観点から、分子量が300~1500であることが好ましく、350~1200であることがより好ましく、400~900であることが更に好ましい。分子量が小さすぎる場合では、成膜した光電変換膜の膜厚が揮発により減少してしまい、逆に分子量が大きすぎる場合では蒸着ができず、光電変換素子を作製できない。
(Molecular weight)
The compound represented by the general formula (1) preferably has a molecular weight of 300 to 1500, more preferably 350 to 1200, and still more preferably 400 to 900, from the viewpoint of film forming suitability. When the molecular weight is too small, the film thickness of the formed photoelectric conversion film decreases due to volatilization. Conversely, when the molecular weight is too large, vapor deposition cannot be performed, and a photoelectric conversion element cannot be manufactured.
 (融点)
 一般式(1)で表される化合物は、蒸着安定性の観点から、融点が200℃以上であることが好ましく、220℃以上がより好ましく、240℃以上が更に好ましい。融点が低いと蒸着前に融解してしまい、安定に成膜できないことに加え、化合物の分解物が多くなるため、光電変換性能が劣化する。
(Melting point)
The compound represented by the general formula (1) has a melting point of preferably 200 ° C. or higher, more preferably 220 ° C. or higher, and further preferably 240 ° C. or higher from the viewpoint of vapor deposition stability. If the melting point is low, it melts before vapor deposition, and in addition to being unable to form a stable film, the decomposition product of the compound increases, so the photoelectric conversion performance deteriorates.
 (吸収スペクトル)
 一般式(1)で表される化合物の吸収スペクトルのピーク波長は、可視領域の光を幅広く吸収するという観点から400nm~700nmであることが好ましい。
(Absorption spectrum)
The peak wavelength of the absorption spectrum of the compound represented by the general formula (1) is preferably 400 nm to 700 nm from the viewpoint of absorbing a wide range of light in the visible region.
 (ピーク波長のモル吸光係数)
 一般式(1)で表される化合物は、光を効率よく利用する観点から、モル吸光係数は高ければ高いほどよい。吸収スペクトル(クロロホルム溶液)が、波長400nmから700nmまでの可視領域において、モル吸光係数は20000M-1cm-1以上が好ましく、30000M-1cm-1以上がより好ましく、40000M-1cm-1以上が更に好ましい。
(Molar extinction coefficient of peak wavelength)
The higher the molar extinction coefficient is, the better the compound represented by the general formula (1) is from the viewpoint of efficiently using light. Absorption spectrum (chloroform solution), in the visible region of the wavelength 400nm to 700 nm, the molar absorption coefficient preferably 20000 -1 cm -1 or more, more preferably 30000 m -1 cm -1 or more, 40000M -1 cm -1 or more Is more preferable.
 このような有機光電変換材料からなる光電変換層50と共に光電変換部18を構成する電子ブロッキング層52には、電子供与性有機材料を用いることができる。
 具体的には、低分子材料では、N,N’-ビス(3-メチルフェニル)-(1,1’-ビフェニル)-4,4’-ジアミン(TPD)や4,4’-ビス[N-(ナフチル)-N-フェニル-アミノ]ビフェニル(α-NPD)等の芳香族ジアミン化合物、オキサゾール、オキサジアゾール、トリアゾール、イミダゾール、イミダゾロン、スチルベン誘導体、ピラゾリン誘導体、テトラヒドロイミダゾール、ポリアリールアルカン、ブタジエン、4,4’,4”-トリス(N-(3-メチルフェニル)N-フェニルアミノ)トリフェニルアミン(m-MTDATA)、ポルフィン、テトラフェニルポルフィン銅、フタロシアニン、銅フタロシアニン、チタニウムフタロシアニンオキサイド等のポリフィリン化合物、トリアゾール誘導体、オキサジザゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アニールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、シラザン誘導体、カルバゾール誘導体、ビフルオレン誘導体などを用いることができ、高分子材料では、フェニレンビニレン、フルオレン、カルバゾール、インドール、ピレン、ピロール、ピコリン、チオフェン、アセチレン、ジアセチレン等の重合体や、その誘導体を用いることができる。
 電子供与性化合物でなくとも、充分な正孔輸送性を有する化合物であれば用いることは可能である。
An electron donating organic material can be used for the electron blocking layer 52 which comprises the photoelectric conversion part 18 with the photoelectric converting layer 50 which consists of such an organic photoelectric converting material.
Specifically, for low molecular weight materials, N, N′-bis (3-methylphenyl)-(1,1′-biphenyl) -4,4′-diamine (TPD) or 4,4′-bis [N Aromatic diamine compounds such as-(naphthyl) -N-phenyl-amino] biphenyl (α-NPD), oxazole, oxadiazole, triazole, imidazole, imidazolone, stilbene derivative, pyrazoline derivative, tetrahydroimidazole, polyarylalkane, butadiene 4,4 ′, 4 ″ -tris (N- (3-methylphenyl) N-phenylamino) triphenylamine (m-MTDATA), porphine, tetraphenylporphine copper, phthalocyanine, copper phthalocyanine, titanium phthalocyanine oxide, etc. Porphyrin compounds, triazole derivatives, oxazizazo Derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, annealed amine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, silazane derivatives, carbazole derivatives, bifluorenes Derivatives and the like can be used. As the polymer material, polymers such as phenylene vinylene, fluorene, carbazole, indole, pyrene, pyrrole, picoline, thiophene, acetylene, diacetylene, and derivatives thereof can be used.
Even if it is not an electron-donating compound, it can be used as long as it has a sufficient hole transporting property.
 電子ブロッキング層52には、無機材料を用いることもできる。
 一般的に、無機材料は有機材料よりも誘電率が大きいため、電子ブロッキング層52に用いた場合に、光電変換層に電圧が多くかかるようになり、光電変換効率を高くすることができる。電子ブロッキング層52となりうる材料としては、酸化カルシウム、酸化クロム、酸化クロム銅、酸化マンガン、酸化コバルト、酸化ニッケル、酸化銅、酸化ガリウム銅、酸化ストロンチウム銅、酸化ニオブ、酸化モリブデン、酸化インジウム銅、酸化インジウム銀、酸化イリジウム等がある。
An inorganic material can also be used for the electron blocking layer 52.
In general, since an inorganic material has a dielectric constant larger than that of an organic material, when it is used for the electron blocking layer 52, a large voltage is applied to the photoelectric conversion layer, and the photoelectric conversion efficiency can be increased. Materials that can be the electron blocking layer 52 include calcium oxide, chromium oxide, chromium oxide copper, manganese oxide, cobalt oxide, nickel oxide, copper oxide, gallium copper oxide, strontium copper oxide, niobium oxide, molybdenum oxide, indium copper oxide, Examples include indium silver oxide and iridium oxide.
 以上、本発明の固体撮像素子および固体撮像素子の製造方法について、詳細に説明したが、本発明は上述の例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行ってもよいのは、もちろんである。 As described above, the solid-state imaging device and the method for manufacturing the solid-state imaging device of the present invention have been described in detail. However, the present invention is not limited to the above-described examples, and various improvements and modifications can be made without departing from the gist of the present invention. Of course, you may do this.
 以下、本発明の具体的実施例を示すことにより、本発明を、より詳細に説明する。 Hereinafter, the present invention will be described in more detail by showing specific examples of the present invention.
 [実施例(実施例1~4、比較例1~4)]
 基板は、Si基板上に、CMOS呼び出し回路、配線層、絶縁層および画素電極を、標準CMOSイメージセンサプロセスにより作製した物を用いた。
 この基板を、有機蒸着室に搬送して、有機蒸着室を閉塞し、室内を、1×10-4Paまで減圧した。画素電極上に、下記の化合物1を、蒸着速度0.1~0.12nm/secで真空蒸着して、厚さ100nmの電子ブロッキング層を形成した。
Figure JPOXMLDOC01-appb-C000011
[Examples (Examples 1 to 4, Comparative Examples 1 to 4)]
As the substrate, a CMOS calling circuit, a wiring layer, an insulating layer, and a pixel electrode formed on a Si substrate by a standard CMOS image sensor process was used.
This substrate was transported to the organic vapor deposition chamber, the organic vapor deposition chamber was closed, and the interior was depressurized to 1 × 10 −4 Pa. The following compound 1 was vacuum deposited on the pixel electrode at a deposition rate of 0.1 to 0.12 nm / sec to form an electron blocking layer having a thickness of 100 nm.
Figure JPOXMLDOC01-appb-C000011
 この電子ブロッキング層上に、下記の化合物2およびフラーレンC60を、それぞれ蒸着速度0.16~0.18nm/sec、0.25~0.25nm/secで真空蒸着(共蒸着)して、厚さ400nmの光電変換層を形成した。
Figure JPOXMLDOC01-appb-C000012
On this electron blocking layer, the following compound 2 and fullerene C60 were vacuum deposited (co-evaporated) at a deposition rate of 0.16 to 0.18 nm / sec and 0.25 to 0.25 nm / sec, respectively, A 400 nm photoelectric conversion layer was formed.
Figure JPOXMLDOC01-appb-C000012
 光電変換層を形成した基板を有機蒸着室から取り出し、スパッタ室に搬送した。スパッタ室において、光電変換層上に、ITO膜をRFマグネトロンスパッタによって成膜して、厚さ10nmの対向電極を形成した。
 対向電極を形成した基板をスパッタ室から取り出し、ALD室に搬送した。ALD室において、対向電極上に、酸化アルミニウム膜をALDによって成膜して、厚さ30nmの第一封止層を形成した。
 第一封止層を形成した基板をALD室から取り出し、プラズマCVD室に搬送した。プラズマCVD室において、第一封止層上に、SiON膜を成膜し、厚さ300nmの第二封止層を形成し、封止層を完成した。
The substrate on which the photoelectric conversion layer was formed was taken out from the organic vapor deposition chamber and transferred to the sputtering chamber. In the sputtering chamber, an ITO film was formed on the photoelectric conversion layer by RF magnetron sputtering to form a counter electrode having a thickness of 10 nm.
The substrate on which the counter electrode was formed was taken out of the sputtering chamber and transferred to the ALD chamber. In the ALD chamber, an aluminum oxide film was formed by ALD on the counter electrode to form a first sealing layer having a thickness of 30 nm.
The substrate on which the first sealing layer was formed was taken out of the ALD chamber and transferred to the plasma CVD chamber. In the plasma CVD chamber, a SiON film was formed on the first sealing layer, a second sealing layer having a thickness of 300 nm was formed, and the sealing layer was completed.
 封止層の上に、Rフィルタ用カラーレジストとして富士フイルムエレクトロマテリアルズ(株)製のCOLOR MOSAIC―EXIS SR-4000Lを均一塗布し、プリベークを施した。
 次いで、Rフィルタに対応する部分を、i線ステッパー((株)ニコン製 NSR-2205i12D)を用いてパターン露光し、さらに、現像液(富士フイルムエレクトロマテリアルズ(株)製 CD-2060)で現像して遮光部を除去し、その後、水洗および乾燥した後、ポストベークを施して、Rフィルタを形成した。
 さらに、同様の処理を、GフィルタおよびBフィルタにも対応して行い、封止層の上に、画素電極に対応するRフィルタ、GフィルタおよびBフィルタを配列してなるカラーフィルタを形成し、複数種の図1に示されるような固体撮像素子を作製した。
On the sealing layer, COLOR MOSAIC-EXIS SR-4000L manufactured by FUJIFILM Electromaterials Co., Ltd. was uniformly applied as an R filter color resist, and prebaked.
Next, the portion corresponding to the R filter is subjected to pattern exposure using an i-line stepper (NSR-2205i12D manufactured by Nikon Corporation), and further developed with a developer (CD-2060 manufactured by Fuji Film Electromaterials Co., Ltd.). Then, the light shielding part was removed, then washed with water and dried, and then post-baked to form an R filter.
Further, the same processing is performed for the G filter and the B filter, and a color filter formed by arranging an R filter, a G filter, and a B filter corresponding to the pixel electrode on the sealing layer is formed. A plurality of types of solid-state imaging devices as shown in FIG. 1 were produced.
 カラーフィルタは、厚さが0.1μmもしくは0.3μmとなるように制御した。
 また、カラーフィルタは、面方向において、光電変換層の端部(形成範囲)からの距離を-200~1500μmの範囲で変更して形成した。カラーフィルタの形成範囲の正負の符号は、カラーフィルタの形成範囲が光電変換層の形成範囲を超えている場合(図1に示す状態)を正、超えていない場合(光電変換層の端部よりも内側)を負とした。
 なお、光電変換層の形成範囲を超えるのは、Bフィルタとした。
 固体撮像装置は、このカラーフィルタの厚さと、カラーフィルタの光電変換層の端部からの距離との組み合わせで、合計で8種類(実施例1~4および比較例1~4)を作製した。
The color filter was controlled to have a thickness of 0.1 μm or 0.3 μm.
The color filter was formed by changing the distance from the end (formation range) of the photoelectric conversion layer in the plane direction within a range of −200 to 1500 μm. The sign of the color filter formation range is positive when the color filter formation range exceeds the photoelectric conversion layer formation state (the state shown in FIG. 1), and does not exceed (from the end of the photoelectric conversion layer) Was also negative.
In addition, it was B filter that exceeded the formation range of a photoelectric converting layer.
A total of eight types of solid-state imaging devices (Examples 1 to 4 and Comparative Examples 1 to 4) were produced by combining the thickness of the color filter and the distance from the end of the photoelectric conversion layer of the color filter.
 作製した8種類の固体撮像装置のカラーフィルタに、粘着テープ(電気化学工業(株)製 BGE―194U)を貼着した。なお、粘着テープは、ウェハーマウンター((株)テクノビジョン製 UT-114)を用いて貼り着けた。
 次いで、この粘着テープを、180°方向に引っ張るようにして剥離した。
Adhesive tape (BGE-194U, manufactured by Denki Kagaku Kogyo Co., Ltd.) was attached to the color filters of the eight types of solid-state imaging devices that were produced. The adhesive tape was attached using a wafer mounter (UT-114 manufactured by Technovision).
Next, the adhesive tape was peeled off by pulling in the 180 ° direction.
 粘着テープを剥離した後、撮像素子のカラーフィルタ形成面を、光学顕微鏡((株)ニコン製 ECRIPSE LV100D)によって確認した。
 膜剥がれが確認されなかった物を『優秀』、膜剥がれの確率(膜剥がれ素子数/試験素子数)が1%未満であるものを『良好』、膜剥がれの確率が1%以上のものを『不可』と評価した。
 カラーフィルタの膜厚および光電変換層の端部からの距離、膜剥がれの確率、および、評価を、下記表にまとめて示す。
After peeling off the adhesive tape, the color filter forming surface of the image sensor was confirmed with an optical microscope (Nikon Corporation ECRIPSE LV100D).
“Excellent” when the film peeling was not confirmed, “Good” when the probability of film peeling (number of film peeling elements / number of test elements) was less than 1%, and the probability of film peeling of 1% or more Rated as “impossible”.
The film thickness of the color filter, the distance from the end of the photoelectric conversion layer, the probability of film peeling, and the evaluation are summarized in the following table.
Figure JPOXMLDOC01-appb-T000013

 上記表に示されるように、カラーフィルタの形成範囲が光電変換層の形成範囲を超えていない比較例1~4は、密着力の弱い光電変換層と対向電極との間で、多くの膜剥がれが発生してしまった。
 これに対し、光電変換層の形成範囲を超えてカラーフィルタを形成した本発明の固体撮像素子(実施例1~4)は、光電変換層と対向電極との間の膜剥がれの発生が、1%未満である。
 以上の結果より、本発明の効果は明らかである。
Figure JPOXMLDOC01-appb-T000013

As shown in the above table, in Comparative Examples 1 to 4 in which the color filter formation range does not exceed the photoelectric conversion layer formation range, a large amount of film peeling occurs between the photoelectric conversion layer having weak adhesion and the counter electrode. Has occurred.
On the other hand, in the solid-state imaging device of the present invention (Examples 1 to 4) in which the color filter is formed beyond the formation range of the photoelectric conversion layer, the occurrence of film peeling between the photoelectric conversion layer and the counter electrode is 1 %.
From the above results, the effects of the present invention are clear.
 10 (固体)撮像素子
 12 基板
 14 絶縁層
 16 画素電極
 18 光電変換部
 20 対向電極
 22 封止層
 26 カラーフィルタ
 26R Rフィルタ
 26G Gフィルタ
 26B Bフィルタ
 40 読出し回路
 42 対向電極電圧供給部
 44 第1の接続部
 46 第2の接続部
 50 光電変換層
 52 電子ブロッキング層
DESCRIPTION OF SYMBOLS 10 (Solid) image pick-up element 12 Board | substrate 14 Insulating layer 16 Pixel electrode 18 Photoelectric conversion part 20 Counter electrode 22 Sealing layer 26 Color filter 26R R filter 26G G filter 26B B filter 40 Reading circuit 42 Counter electrode voltage supply part 44 1st Connection unit 46 Second connection unit 50 Photoelectric conversion layer 52 Electron blocking layer

Claims (18)

  1.  複数の画素電極と、
     前記画素電極の上に設けられる、受光した光に応じた電荷を生成する有機材料からなる光電変換層を含む光電変換部と、
     前記光電変換部の上に設けられる、前記複数の画素電極に共通な対向電極と、
     前記対向電極の上に、この対向電極を覆って設けられる封止層と、
     前記封止層の上に、前記光電変換部の全面を覆って設けられるカラーフィルタと、
     前記画素電極に捕集された電荷に応じた信号を読み出す読出し回路とを有し、
     かつ、前記カラーフィルタが、前記光電変換層の形成範囲を超える範囲まで形成されていることを特徴とする固体撮像素子。
    A plurality of pixel electrodes;
    A photoelectric conversion unit including a photoelectric conversion layer made of an organic material that generates charges according to received light, provided on the pixel electrode;
    A counter electrode provided on the photoelectric conversion portion and common to the plurality of pixel electrodes;
    A sealing layer provided on the counter electrode so as to cover the counter electrode;
    A color filter provided on the sealing layer so as to cover the entire surface of the photoelectric conversion unit;
    A readout circuit that reads out a signal corresponding to the charge collected by the pixel electrode;
    And the said color filter is formed to the range exceeding the formation range of the said photoelectric converting layer, The solid-state image sensor characterized by the above-mentioned.
  2.  前記光電変換層の形成範囲を超える前記カラーフィルタの形成範囲が、0.05μm以上である請求項1に記載の固体撮像素子。 The solid-state imaging device according to claim 1, wherein a formation range of the color filter exceeding a formation range of the photoelectric conversion layer is 0.05 μm or more.
  3.  前記カラーフィルタの厚さが、0.1μm以上である請求項1または2に記載の固体撮像素子。 The solid-state imaging device according to claim 1 or 2, wherein the color filter has a thickness of 0.1 µm or more.
  4.  前記カラーフィルタが、赤フィルタ、緑フィルタおよび青フィルタを、前記画素電極に対応して配列してなるものである場合、
     前記光電変換層の形成範囲を超えて形成されるのが、赤フィルタおよび緑フィルタの少なくとも一方である請求項1~3のいずれかに記載の固体撮像素子。
    When the color filter is formed by arranging a red filter, a green filter, and a blue filter corresponding to the pixel electrode,
    The solid-state imaging device according to any one of claims 1 to 3, wherein at least one of a red filter and a green filter is formed beyond a formation range of the photoelectric conversion layer.
  5.  前記光電変換部が、前記光電変換層の下層に、前記画素電極から光電変換層に電子が注-入されるのを抑制するための電子ブロッキング層を有する請求項1~4のいずれかに記載の固体撮像素子。 5. The photoelectric conversion unit according to claim 1, further comprising an electron blocking layer for suppressing electrons from being injected into the photoelectric conversion layer from the pixel electrode under the photoelectric conversion layer. Solid-state image sensor.
  6.  前記光電変換層が、p型有機半導体材料とn型有機半導体材料とを混合してなるバルクヘテロ構造を有する請求項1~5のいずれかに記載の固体撮像素子。 The solid-state imaging device according to any one of claims 1 to 5, wherein the photoelectric conversion layer has a bulk heterostructure formed by mixing a p-type organic semiconductor material and an n-type organic semiconductor material.
  7.  前記n型有機半導体材料が、フラーレンおよびフラーレン誘導体の少なくとも一方である請求項6に記載の固体撮像素子。 The solid-state imaging device according to claim 6, wherein the n-type organic semiconductor material is at least one of fullerene and a fullerene derivative.
  8.  前記p型半導体有機材料が、下記一般式(1)で示される化合物である請求項6または7に記載の固体撮像素子。
    Figure JPOXMLDOC01-appb-C000001

    (一般式(1)中、Zは少なくとも2つの炭素原子を含む環であって、5員環、6員環、または、5員環および6員環の少なくともいずれかを含む縮合環を表す。L、L、およびLはそれぞれ独立に無置換メチン基、または置換メチン基を表す。Dは原子群を表す。nは0以上の整数を表す。)
    The solid-state imaging device according to claim 6 or 7, wherein the p-type semiconductor organic material is a compound represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001

    (In the general formula (1), Z 1 represents a ring containing at least two carbon atoms and represents a 5-membered ring, a 6-membered ring, or a condensed ring containing at least one of a 5-membered ring and a 6-membered ring. L 1 , L 2 and L 3 each independently represents an unsubstituted methine group or a substituted methine group, D 1 represents an atomic group, and n represents an integer of 0 or more.)
  9.  前記対向電極が、酸化インジウム錫である請求項1~8のいずれかに記載の固体撮像素子。 The solid-state imaging device according to any one of claims 1 to 8, wherein the counter electrode is indium tin oxide.
  10.  基板上に、複数の画素電極と、有機材料からなる光電変換層を有する光電変換部と、対向電極と、前記対向電極を覆う封止層とを、この順番で積層した後、
     前記封止層の上に、前記光電変換部の全面を含んで、前記光電変換層の形成範囲を超える形成範囲でカラーフィルタを形成し、
     前記カラーフィルタの形成面側に保護テープを貼着して、前記基板のバックグラインドを行い、バックグラインドを行った後、前記保護テープを剥離することを特徴とする固体撮像素子の製造方法。
    After laminating a plurality of pixel electrodes, a photoelectric conversion part having a photoelectric conversion layer made of an organic material, a counter electrode, and a sealing layer covering the counter electrode in this order on the substrate,
    On the sealing layer, including the entire surface of the photoelectric conversion part, forming a color filter in a formation range exceeding the formation range of the photoelectric conversion layer,
    A method for producing a solid-state imaging device, comprising: attaching a protective tape to the color filter forming surface side, performing back grinding of the substrate, performing back grinding, and then peeling the protective tape.
  11.  前記光電変換層の形成範囲を超える前記カラーフィルタの形成範囲が、0.05μm以上である請求項10に記載の固体撮像素子の製造方法。 The method for manufacturing a solid-state imaging device according to claim 10, wherein a formation range of the color filter exceeding a formation range of the photoelectric conversion layer is 0.05 μm or more.
  12.  前記カラーフィルタの厚さが、0.1μm以上である請求項10または11に記載の固体撮像素子の製造方法。 The method for manufacturing a solid-state imaging device according to claim 10 or 11, wherein the color filter has a thickness of 0.1 µm or more.
  13.  前記カラーフィルタが、赤フィルタ、緑フィルタおよび青フィルタを、前記画素電極に対応して配列してなるものである場合、
     前記赤フィルタおよび緑フィルタの少なくとも一方を、前記光電変換層の形成範囲を超えて形成する請求項10~12のいずれかに記載の固体撮像素子の製造方法。
    When the color filter is formed by arranging a red filter, a green filter, and a blue filter corresponding to the pixel electrode,
    The method for manufacturing a solid-state imaging device according to any one of claims 10 to 12, wherein at least one of the red filter and the green filter is formed beyond a formation range of the photoelectric conversion layer.
  14.  前記光電変換部において、前記光電変換層の下層として、前記画素電極から光電変換層に電子が注入されるのを抑制するための電子ブロッキング層を積層する請求項10~13のいずれかに記載の固体撮像素子の製造方法。 14. The photoelectric conversion unit according to claim 10, wherein an electron blocking layer for suppressing injection of electrons from the pixel electrode to the photoelectric conversion layer is laminated as a lower layer of the photoelectric conversion layer. Manufacturing method of solid-state image sensor.
  15.  前記光電変換層が、p型有機半導体材料とn型有機半導体材料とを混合してなるバルクヘテロ構造を有する請求項10~14のいずれかに記載の固体撮像素子の製造方法。 15. The method for manufacturing a solid-state imaging device according to claim 10, wherein the photoelectric conversion layer has a bulk heterostructure formed by mixing a p-type organic semiconductor material and an n-type organic semiconductor material.
  16.  前記n型有機半導体材料が、フラーレンおよびフラーレン誘導体の少なくとも一方である請求項15に記載の固体撮像素子の製造方法。 The method for manufacturing a solid-state imaging device according to claim 15, wherein the n-type organic semiconductor material is at least one of fullerene and a fullerene derivative.
  17.  前記p型半導体有機材料が、下記一般式(1)で示される化合物である請求項15または16に記載の固体撮像素子の製造方法。
    Figure JPOXMLDOC01-appb-C000002

    (一般式(1)中、Zは少なくとも2つの炭素原子を含む環であって、5員環、6員環、または、5員環および6員環の少なくともいずれかを含む縮合環を表す。L、L、およびLはそれぞれ独立に無置換メチン基、または置換メチン基を表す。Dは原子群を表す。nは0以上の整数を表す。)
    The method for producing a solid-state imaging device according to claim 15 or 16, wherein the p-type semiconductor organic material is a compound represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000002

    (In the general formula (1), Z 1 represents a ring containing at least two carbon atoms and represents a 5-membered ring, a 6-membered ring, or a condensed ring containing at least one of a 5-membered ring and a 6-membered ring. L 1 , L 2 and L 3 each independently represents an unsubstituted methine group or a substituted methine group, D 1 represents an atomic group, and n represents an integer of 0 or more.)
  18.  前記対向電極が、酸化インジウム錫である請求項10~17のいずれかに記載の固体撮像素子の製造方法。 The method for manufacturing a solid-state imaging device according to any one of claims 10 to 17, wherein the counter electrode is indium tin oxide.
PCT/JP2013/067689 2012-07-09 2013-06-27 Solid state imaging element and method for manufacturing solid state imaging element WO2014010432A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020147037127A KR101671609B1 (en) 2012-07-09 2013-06-27 Solid state imaging element and method for manufacturing solid state imaging element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-153736 2012-07-09
JP2012153736A JP5806176B2 (en) 2012-07-09 2012-07-09 Solid-state imaging device and method for manufacturing solid-state imaging device

Publications (1)

Publication Number Publication Date
WO2014010432A1 true WO2014010432A1 (en) 2014-01-16

Family

ID=49915896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067689 WO2014010432A1 (en) 2012-07-09 2013-06-27 Solid state imaging element and method for manufacturing solid state imaging element

Country Status (3)

Country Link
JP (1) JP5806176B2 (en)
KR (1) KR101671609B1 (en)
WO (1) WO2014010432A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10964754B2 (en) 2016-12-02 2021-03-30 Sony Semiconductor Solutions Corporation Solid-state image pickup element and manufacturing method thereof, and electronic device
US11430833B2 (en) 2017-08-16 2022-08-30 Sony Corporation Imaging element, laminated imaging element, and solid-state imaging device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6344555B2 (en) * 2014-05-28 2018-06-20 パナソニックIpマネジメント株式会社 Solid-state imaging device
JP6737266B2 (en) * 2015-05-19 2020-08-05 ソニー株式会社 Imaging device and imaging device
EP3671840A4 (en) * 2017-08-16 2020-08-19 Sony Corporation Imaging element, layered imaging element and solid-state imaging device
KR102564457B1 (en) * 2018-04-02 2023-08-07 삼성전자주식회사 Image sensor and method of manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06224397A (en) * 1993-01-26 1994-08-12 Sony Corp Manufacture of solid-state image sensor
JP2007035987A (en) * 2005-07-28 2007-02-08 Matsushita Electric Ind Co Ltd Organic photoelectric conversion sensor, manufacturing method thereof, and information reader using organic photoelectric conversion sensor
JP2011100894A (en) * 2009-11-06 2011-05-19 Fujifilm Corp Photoelectric conversion film lamination imaging device and manufacturing method therefor
JP2012064822A (en) * 2010-09-17 2012-03-29 Panasonic Corp Solid-state imaging device and manufacturing method therefor
JP2012094660A (en) * 2010-10-26 2012-05-17 Fujifilm Corp Photoelectric conversion element and solid-state imaging element
JP2012114197A (en) * 2010-11-24 2012-06-14 Panasonic Corp Solid-state imaging device and method of manufacturing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100823841B1 (en) * 2006-12-21 2008-04-21 동부일렉트로닉스 주식회사 Method for manufacturing image sensor
JP5108339B2 (en) 2007-03-12 2012-12-26 富士フイルム株式会社 Solid-state image sensor
JP5087304B2 (en) 2007-03-30 2012-12-05 富士フイルム株式会社 Manufacturing method of solid-state imaging device
JP2011071482A (en) * 2009-08-28 2011-04-07 Fujifilm Corp Solid-state imaging device, process of making the same, digital still camera, digital video camera, mobile phone, and endoscope

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06224397A (en) * 1993-01-26 1994-08-12 Sony Corp Manufacture of solid-state image sensor
JP2007035987A (en) * 2005-07-28 2007-02-08 Matsushita Electric Ind Co Ltd Organic photoelectric conversion sensor, manufacturing method thereof, and information reader using organic photoelectric conversion sensor
JP2011100894A (en) * 2009-11-06 2011-05-19 Fujifilm Corp Photoelectric conversion film lamination imaging device and manufacturing method therefor
JP2012064822A (en) * 2010-09-17 2012-03-29 Panasonic Corp Solid-state imaging device and manufacturing method therefor
JP2012094660A (en) * 2010-10-26 2012-05-17 Fujifilm Corp Photoelectric conversion element and solid-state imaging element
JP2012114197A (en) * 2010-11-24 2012-06-14 Panasonic Corp Solid-state imaging device and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10964754B2 (en) 2016-12-02 2021-03-30 Sony Semiconductor Solutions Corporation Solid-state image pickup element and manufacturing method thereof, and electronic device
US11430833B2 (en) 2017-08-16 2022-08-30 Sony Corporation Imaging element, laminated imaging element, and solid-state imaging device

Also Published As

Publication number Publication date
KR101671609B1 (en) 2016-11-16
JP5806176B2 (en) 2015-11-10
KR20150027175A (en) 2015-03-11
JP2014017374A (en) 2014-01-30

Similar Documents

Publication Publication Date Title
JP6059697B2 (en) Photoelectric conversion device and imaging device
JP5270642B2 (en) Photoelectric conversion element and imaging element
JP5323025B2 (en) Solid-state image sensor
JP6046649B2 (en) Photoelectric conversion device and imaging device using the same
JP5264865B2 (en) Photoelectric conversion element and imaging element
JP6010514B2 (en) Photoelectric conversion device and imaging device
JP5288640B2 (en) Image sensor and manufacturing method thereof
JP5814293B2 (en) PHOTOELECTRIC CONVERSION ELEMENT AND IMAGING ELEMENT, PHOTOELECTRIC CONVERSION ELEMENT MANUFACTURING METHOD, AND IMAGING ELEMENT MANUFACTURING METHOD
JP5806176B2 (en) Solid-state imaging device and method for manufacturing solid-state imaging device
JP5824436B2 (en) Photoelectric conversion device and imaging device using the same
WO2013031471A1 (en) Photoelectric conversion element manufacturing method and image capture element manufacturing method
JP2011198856A (en) Method of manufacturing organic photoelectric conversion element, organic photoelectric conversion element, imaging element, and imaging apparatus
JP5651507B2 (en) Manufacturing method of organic photoelectric conversion element, organic photoelectric conversion element, imaging element, imaging apparatus
JP6231435B2 (en) Solid-state image sensor
KR101846975B1 (en) Method of manufacturing organic photo-electric conversion device, organic photo-electric conversion device, imaging device, and imaging apparatus
JP2013055248A (en) Manufacturing method of photoelectric conversion element
JP2010129778A (en) Photoelectric converting element, imaging device, and production process for photoelectric converting element
JP2015074793A (en) Manufacturing method of photoelectric conversion layer and vapor deposition method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13817415

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147037127

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13817415

Country of ref document: EP

Kind code of ref document: A1