WO2014010421A1 - X-ray inspection method and x-ray inspection device - Google Patents

X-ray inspection method and x-ray inspection device Download PDF

Info

Publication number
WO2014010421A1
WO2014010421A1 PCT/JP2013/067506 JP2013067506W WO2014010421A1 WO 2014010421 A1 WO2014010421 A1 WO 2014010421A1 JP 2013067506 W JP2013067506 W JP 2013067506W WO 2014010421 A1 WO2014010421 A1 WO 2014010421A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
ray image
simulation
defect
inspection
Prior art date
Application number
PCT/JP2013/067506
Other languages
French (fr)
Japanese (ja)
Inventor
康敏 梅原
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2014010421A1 publication Critical patent/WO2014010421A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/611Specific applications or type of materials patterned objects; electronic devices
    • G01N2223/6116Specific applications or type of materials patterned objects; electronic devices semiconductor wafer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/646Specific applications or type of materials flaws, defects

Definitions

  • the present invention relates to an X-ray inspection method and an X-ray inspection apparatus that perform inspection based on an X-ray image.
  • Patent Document 1 a semiconductor inspection method for quickly and accurately counting semiconductor cells using a scanning electron microscope (SEM) (see, for example, Patent Document 1).
  • SEM scanning electron microscope
  • Patent Document 2 a method for specifying a defect site to be inspected using a three-dimensional X-ray CT apparatus is known (see, for example, Patent Document 2).
  • the present invention has been made in view of the above, and an object of the present invention is to provide an X-ray inspection method and an X-ray inspection apparatus capable of performing non-destructive inspection of a defect to be inspected at high speed.
  • the shape of the inspection object from the X-ray image acquisition step of acquiring the X-ray image of the inspection object and a plurality of simulation X-ray images having different shapes of the inspection object, the shape of the inspection object.
  • the simulation X-ray image acquisition step for acquiring the closest simulation X-ray image, and the defect to be inspected based on the difference between the X-ray image and the simulation X-ray image acquired by the X-ray image acquisition step.
  • a defect detection step of detecting is detecting.
  • an X-ray inspection method and an X-ray inspection apparatus capable of performing non-destructive inspection of a defect to be inspected at high speed.
  • TSV through silicon via
  • FIG. 1 is a diagram illustrating a schematic configuration of an X-ray inspection apparatus 100 according to the present embodiment.
  • an X-ray inspection apparatus 100 includes an image processing apparatus 110 and an X-ray imaging apparatus 120.
  • the X-ray imaging apparatus 120 captures an X-ray image to be inspected, and the inspection target is imaged. Based on the X-ray image, the image processing apparatus 110 detects a defect to be inspected.
  • the image processing apparatus 110 includes an imaging control unit 111, an image processing unit 112, an image database 113, a simulation X-ray image acquisition unit 114, a defect detection unit 115, and a defect classification database 116.
  • the imaging control unit 111 controls the overall operation of the X-ray imaging apparatus 120 that captures an X-ray image to be inspected, and acquires the X-ray image to be inspected that is captured by the X-ray imaging apparatus 120.
  • the image processing unit 112 performs image processing such as brightness adjustment on the X-ray image acquired by the X-ray imaging apparatus 120.
  • a plurality of simulation X-ray images of TSVs to be inspected which are generated by simulation based on different shape parameters, are registered.
  • a method for generating a simulation X-ray image will be described later.
  • the simulation X-ray image acquisition unit 114 acquires a simulation X-ray image having the TSV shape closest to the TSV X-ray image captured by the X-ray imaging apparatus 120 from the image database 113.
  • the defect detection unit 115 detects a defect in the TSV filled with Cu from the X-ray image of the TSV imaged by the X-ray imaging apparatus 120 and the simulation X-ray image acquired by the simulation X-ray image acquisition unit 114. Further, when a defect is detected in the TSV, the defect detection unit 115 obtains a feature amount such as a defect size and a position, for example. Further, the defect detection unit 115 classifies the defect based on the obtained feature amount, registers the defect in the defect classification database 116, and determines whether the TSV to be inspected is good or bad.
  • defect classification database 116 defects detected by the defect detection unit 115 are classified and registered.
  • the X-ray imaging apparatus 120 includes a fork 121, a notch aligner 122, an optical microscope 123, a thickness measuring instrument 124, an X-ray source 125, a stage 126, an X-ray camera 127, and the like, and is connected to the image processing apparatus 110.
  • the X direction shown in the drawing is the left-right direction in the drawing parallel to the surface of the stage 126
  • the Y direction is a direction parallel to the surface of the stage 126 and perpendicular to the X direction
  • the Z direction is a direction perpendicular to the surface of the stage 126.
  • the fork 121 holds the silicon wafer on which the TSV is formed, and the notch aligner 122 adjusts the notch position.
  • the optical microscope 123 can observe the appearance of a silicon wafer placed on the stage 126.
  • the thickness measuring device 124 is a spectral interference type thickness measuring device, for example, and can measure the thickness of the silicon wafer.
  • the X-ray source 125 irradiates a silicon wafer placed on the stage 126 with X-rays, and an X-ray camera 127 provided on the opposite side of the X-ray source 125 with the stage 126 interposed therebetween, An X-ray image of a silicon wafer is acquired.
  • the X-ray camera 127 is configured to include, for example, an image intensifier, a CCD image sensor, and the like.
  • the image intensifier converts X-rays that have passed through the inspection target into visible light, and visible light that is incident on the CCD image sensor. Is converted into an electrical signal.
  • the output of the X-ray camera 127 is input to the imaging control unit 111 of the image processing apparatus 110 and acquired as an X-ray image to be inspected.
  • the X-ray camera 127 is provided so as to be movable in the X and Y directions in the figure, and by moving in the X and Y directions, an X-ray image of the inspection object placed on the stage 126 is, for example, an angle ⁇ with respect to the Z direction. Images can be taken from an inclined direction, and an inclined image can be obtained.
  • FIG. 2 illustrates an X-ray image captured by the X-ray imaging apparatus 120 according to the present embodiment.
  • FIG. 2 is an X-ray image of a silicon wafer taken from a direction inclined by 9.5 degrees with respect to the Z direction by the X-ray camera 127, and a portion that appears black is TSV.
  • the X-ray inspection apparatus 100 detects defects of TSVs formed on a silicon wafer based on such X-ray images.
  • the inclination angle of the X-ray image used for defect detection by the X-ray inspection apparatus 100 is not limited to the above example, and can be set as appropriate. It is also possible to detect defects based on an X-ray image that is not inclined.
  • FIG. 3 is a diagram illustrating a hardware configuration of the image processing apparatus 110 according to the present embodiment.
  • the image processing apparatus 110 includes a CPU 101, an HDD (Hard Disk Drive) 102, a ROM (Read Only Memory) 103, a RAM (Read and Memory) 104, an input device 105, a display device 106, and a recording medium I. / F unit 107, imaging device I / F unit 108, and the like, which are connected to each other by bus B.
  • a CPU 101 an HDD (Hard Disk Drive) 102, a ROM (Read Only Memory) 103, a RAM (Read and Memory) 104, an input device 105, a display device 106, and a recording medium I. / F unit 107, imaging device I / F unit 108, and the like, which are connected to each other by bus B.
  • the CPU 101 is an arithmetic device that implements control of the X-ray imaging device 120 and functions of the image processing device 110 by reading programs and data from the storage device such as the HDD 102 and the ROM 103 onto the RAM 104 and executing the processing. is there.
  • the CPU 101 functions as, for example, the imaging control unit 111, the image processing unit 112, the simulation X-ray image acquisition unit 114, the defect detection unit 115, and the like.
  • the HDD 102 is a non-volatile storage device that stores programs and data.
  • the stored programs and data include an OS (Operating System) that is basic software for controlling the entire image processing apparatus 110 and application software that provides various functions on the OS.
  • the HDD 102 functions as, for example, an image database 113 and a defect classification database 116.
  • the ROM 103 is a nonvolatile semiconductor memory (storage device) that can retain programs and data even when the power is turned off.
  • the ROM 103 stores programs and data such as BIOS (Basic Input / Output System), OS settings, and network settings that are executed when the image processing apparatus 110 is activated.
  • BIOS Basic Input / Output System
  • the RAM 104 is a volatile semiconductor memory (storage device) that temporarily stores programs and data.
  • the input device 105 includes, for example, a keyboard and a mouse, and is used to input each operation signal to the image processing device 110.
  • the display device 106 includes, for example, a display and displays an X-ray image to be inspected, a simulation X-ray image, a defect detection result, and the like imaged by the X-ray imaging device 120.
  • the recording medium I / F unit 107 is an interface with the recording medium 109.
  • the image processing apparatus 110 can read and / or write the recording medium 109 via the recording medium I / F unit 107.
  • the recording medium 109 includes a flexible disk, a CD, a DVD (Digital Versatile Disk), an SD memory card (SD Memory Card), a USB memory (Universal Serial Bus memory), and the like.
  • the imaging device I / F unit 108 is an interface connected to the X-ray imaging device 120.
  • the image processing apparatus 110 can perform data communication with the X-ray imaging apparatus 120 via the imaging apparatus I / F unit 108.
  • a network I / F unit or the like may be provided as an interface for connecting to the network in the image processing apparatus 110 so as to perform data communication with other devices.
  • the simulation X-ray image is generated based on a plurality of shape parameters of the TSV to be inspected.
  • 4A and 4B are diagrams illustrating the shape parameters of the TSV in the present embodiment.
  • the shape parameters of the TSV in the present embodiment include an opening radius r1, a hole middle maximum radius r2, a bottom radius r3, a radius r4 of a portion hemispherically etched at the bottom, a maximum The depth h1 to the radius portion and the depth h2 from the maximum radius portion to the bottom portion.
  • the types and number of parameters used for generating the simulation X-ray image are not limited to the above example, and for example, the parameters may be set corresponding to the shape of the TSV as shown in FIG. It can be set as appropriate according to the shape of the inspection object, the configuration of the X-ray imaging apparatus 120, and the like.
  • a plurality of simulation X-ray images as illustrated in FIG. 5 are generated based on the set shape parameters based on the TSV shape parameters set in this way, and are registered in the image database 113.
  • FIG. 6 is a diagram for explaining a simulation X-ray image generation method according to this embodiment.
  • the simulation X-ray image is generated, for example, by the image processing unit 112 of the image processing apparatus 110 and registered in the image database 113.
  • the image processing unit 112 When generating a simulation X-ray image, the image processing unit 112 first creates an aggregate of voxels 51 having different X-ray transmittances according to shape parameters. Next, when the aggregate of voxels 51 is irradiated with X-rays from an X-ray source 50 defined as a point light source, the amount of X-ray transmission is calculated based on the transmittance of each voxel 51, and the detector 52 A simulated X-ray image is generated by reproducing the amount reached as an image.
  • materials such as Air, Cu, and Si are defined as the voxels 51, and the voxels 51 are transmitted through the voxels 51 using the transmittances measured individually for the respective materials to the detector 52. Calculate the X-ray dose reached.
  • the voxel 51 is, for example, a 0.1 ⁇ m cube, and the transmittance of each voxel 51 is set to, for example, Air: 1, Cu: 0.981 / 1 ⁇ m, Si: 0.999 / 1 ⁇ m, and a simulation X-ray image is obtained. Can be generated. Note that the values such as the type, size, and transmittance of the voxel are not limited to these, and can be set as appropriate.
  • the image processing unit 112 calculates the amount of X-ray transmission through the lower surface of each voxel 51 in order from the side closer to the X-ray source 50 with respect to the created collection of voxels 51, and the X-ray dose reaching the detector 52 , A simulation X-ray image corresponding to the shape parameter as illustrated in FIG. 5 is generated.
  • FIG. 7 shows an example of a flowchart of simulation X-ray image generation processing by the image processing unit 112 in the present embodiment.
  • step S1 the image processing unit 112 focuses on the design value of the TSV, and the inclination angle (position of the X-ray camera 127) for imaging each shape parameter r1, r2, r3, r4, h1, h2, and the inspection object.
  • a plurality of simulation X-ray image generation conditions such as the above are set.
  • image generation conditions are set at intervals of 0.1 ⁇ m from 19 ⁇ m to 21 ⁇ m with a design value of 20 ⁇ m as the center, and a large number of image generation conditions with different shape parameters are set.
  • step S2 the image processing unit 112 generates a plurality of simulation X-ray images by the above-described method based on the set plurality of image generation conditions.
  • step S3 the image processing unit 112 performs image correction processing such as distortion correction on the generated simulation X-ray image.
  • step S4 the image processing unit 112 creates a library of the plurality of generated simulation X-ray images, the shape parameters, the inclination angles for imaging the inspection object, and the like.
  • step S5 the library data is registered in the image database 113, and the simulation X-ray image generation process ends.
  • the image processing unit 112 of the image processing apparatus 110 generates in advance a large number of simulation X-ray images having different shape parameters and registers them in the image database 113 by the above-described processing.
  • the simulation X-ray image in the image database 113 may be registered by downloading or the like that is generated by another device.
  • a simulation image of a TSV that does not include a defect is generated and registered as a simulation X-ray image.
  • a simulation image of a TSV having a defect can also be generated.
  • FIG. 8 is a diagram illustrating a flowchart of defect detection processing in the X-ray inspection apparatus 100 according to the present embodiment.
  • step S11 the X-ray imaging apparatus 120 captures an X-ray image of a TSV formed on a silicon wafer.
  • step S12 the image processing unit 112 of the image processing apparatus 110 performs image processing such as brightness adjustment on the captured X-ray image.
  • the simulation X-ray image acquisition unit 114 of the image processing apparatus 110 estimates the shape parameter of the TSV that is the inspection target of the captured X-ray image, and the simulation X-ray image having the closest TSV shape is the image database 113. Get from.
  • the simulation X-ray image acquisition unit 114 inputs initial shape parameters for estimating the TSV shape parameters.
  • the initial shape parameter for example, a design value of TSV can be used.
  • the simulation X-ray image acquisition unit 114 acquires a simulation X-ray image of the shape parameter input from the image database 113.
  • the simulation X-ray image acquisition unit 114 has a matching score as an evaluation value representing the similarity between the X-ray image captured by the X-ray imaging apparatus 120 and the acquired simulation X-ray image. Is calculated. For example, normalized correlation, geometric correlation, or orientation code conversion can be used for calculating the matching score.
  • step S16 the simulation X-ray image acquisition unit 114 compares the calculated matching score with a reference value (for example, 0.95). If the matching score is less than or equal to the reference value, the simulation X-ray image acquisition unit 114 optimizes the shape parameter in step S17. Thereafter, the simulation X-ray image acquisition unit 114 acquires again the simulation X-ray image of the shape parameter optimized in step S14 from the image database 113, and calculates the matching score in step S15.
  • a reference value for example 0.95
  • step S14 to step S17 is repeated until the matching score exceeds the reference value, and the shape parameter is optimized.
  • an optimization algorithm such as a genetic algorithm or a gradient method can be used.
  • the simulation X-ray image acquisition unit 114 acquires a simulation X-ray image of the optimized shape parameter from the image database 113 in step S18.
  • step S ⁇ b> 19 the defect detection unit 115 performs TSV alignment between the X-ray image captured by the X-ray imaging apparatus 120 and the simulation X-ray image acquired by the simulation X-ray image acquisition unit 114.
  • the defect detection is performed by calculating the luminance difference after adjusting the luminance.
  • 9A to 9C and 10A to 10C are diagrams illustrating examples of TSV defect detection results by the X-ray inspection apparatus 100 according to the present embodiment.
  • 9A is an X-ray image with an inclination angle of 0 degree
  • FIG. 9B is a simulation X-ray image
  • FIG. 9C is a difference image between the X-ray image and the simulation image.
  • 10A is an X-ray image with an inclination angle of 15 degrees
  • FIG. 10B is a simulation X-ray image
  • FIG. 10C is a difference image between the X-ray image and the simulation image.
  • 9C and 10C are images showing the difference in luminance between the X-ray image and the simulation X-ray image, and are displayed in white as the luminance difference increases. For example, when there is a defect in TSV filled with Cu, the defect appears as a difference in luminance in the difference image, as shown in white portions in FIGS. 9C and 10C.
  • the defect detection unit 115 performs defect detection in step S19, and then extracts defect feature values in step S20.
  • the feature amount for example, parameters such as coordinates, area, center of gravity, and coordinates when a defect is approximated to an ellipse are extracted.
  • the defect detection unit 115 classifies the detected defect based on the extracted feature amount and registers it in the defect classification database 116.
  • a subspace method, a k-nearest neighbor method, a multilayer perceptron method which is a kind of neural network, or the like can be used.
  • the defect detection unit 115 After registering the defect detection unit 115 in the defect classification database 116, in step S22, the defect detection unit 115 detects the TSV to be inspected based on the feature amount of the defect detected by the defect detection unit 115 and the defect classification result. A pass / fail judgment is performed and the process is terminated. The pass / fail judgment is performed based on, for example, a comparison between the size of the defect and a predetermined threshold, or whether or not the defect exists in a predetermined region of the TSV.
  • the X-ray inspection apparatus 100 it is possible to inspect a defect to be inspected nondestructively. Further, for example, since defects can be detected by a simple process compared with the case of reproducing a CT image in an X-ray CT apparatus, high-speed defect inspection can be realized. Furthermore, it is possible to detect a foreign substance included in the inspection target from the difference image between the X-ray image and the simulation X-ray image by the same processing. Therefore, the X-ray inspection apparatus 100 according to the present embodiment can detect a defect or a foreign object to be inspected at a high speed and can inspect without cutting or the like, and is used for, for example, in-line inspection in a semiconductor manufacturing process. Can do. Further, in the present embodiment, the TSV filled with Cu has been described. Needless to say, the present invention can also be applied to a TSV filled with a conductor material including other metals such as W in addition to Cu. Yes.
  • a server apparatus When performing in-line inspection in a semiconductor manufacturing process or the like, a server apparatus connected to the image processing apparatus 110 of the plurality of X-ray inspection apparatuses 100 via a network or the like is provided, and the server apparatus detects a defect or a foreign object. It can also be configured to do so.
  • the server device is provided with an image processing unit 112, an image database 113, a simulation X-ray image acquisition unit 114, a defect detection unit 115, a defect classification database 116, etc. The results can be collected and managed.

Abstract

[Problem] To provide an x-ray inspection method and an x-ray inspection device that can perform defect inspection of an inspection subject at a high speed without breaking down. [Solution] The x-ray inspection method has: an x-ray image acquisition step for acquiring an x-ray image of the inspection subject; a simulated x-ray image acquisition step for acquiring a simulated x-ray image having the closest shape to the inspection subject among a plurality of simulated x-ray images of differing inspection subject shapes; and a defect detection step for detecting defects of the inspection subject on the basis of the difference between the x-ray image and the simulated x-ray image acquired by the simulated x-ray image acquisition step.

Description

X線検査方法及びX線検査装置X-ray inspection method and X-ray inspection apparatus
 本発明は、X線画像に基づいて検査を行うX線検査方法及びX線検査装置に関する。 The present invention relates to an X-ray inspection method and an X-ray inspection apparatus that perform inspection based on an X-ray image.
 近年の半導体プロセスの進化に伴い、シリコンウェハ等に形成される各種パターンの微細化、高密度化が進んでいる。この様に微細に形成される各種パターンの形状を計測して検査を行うために、様々な方法が提案されている。 With recent advances in semiconductor processes, various patterns formed on silicon wafers and the like are becoming increasingly fine and dense. Various methods have been proposed in order to measure and inspect the shape of various patterns formed in this manner.
 この様な方法として、走査型電子顕微鏡(SEM)を用いて迅速且つ正確に半導体セルのカウントを行う半導体検査方法が知られている(例えば特許文献1参照)。また、3次元X線CT装置を用いて、検査対象の欠陥部位を特定する方法が知られている(例えば特許文献2参照)。 As such a method, there is known a semiconductor inspection method for quickly and accurately counting semiconductor cells using a scanning electron microscope (SEM) (see, for example, Patent Document 1). In addition, a method for specifying a defect site to be inspected using a three-dimensional X-ray CT apparatus is known (see, for example, Patent Document 2).
特開2010-171022号公報JP 2010-171022 A 特開2006-300697号公報JP 2006-300697 A
 しかしながら、例えばSEMを用いてシリコンウェハの検査を行う場合には、FIB(Focused Ion Beam)等によりシリコンウェハを切削する必要があり、切断面と検査対象の中心位置とのずれ等により、計測する形状の寸法に誤差が生じる可能性がある。また、SEM観察時には切断面でエッジのチャージアップ効果等により輝度が誇張されることで計測誤差が生じる虞がある。さらに、SEM像を取得するためにシリコンウェハの切削等の作業を要するため、多数の検査対象を計測するのは困難な場合がある。 However, when a silicon wafer is inspected using, for example, an SEM, it is necessary to cut the silicon wafer by FIB (Focused Ion) Beam) or the like, and measurement is performed based on a deviation between the cut surface and the center position of the inspection target. There may be errors in the dimensions of the shape. In addition, during SEM observation, there is a risk that measurement errors may occur due to exaggerated luminance due to the edge charge-up effect on the cut surface. Furthermore, since an operation such as cutting of a silicon wafer is required to acquire an SEM image, it may be difficult to measure a large number of inspection objects.
 また、例えばX線CT装置を用いてシリコンウェハの検査を行う場合には、撮像可能な大きさにシリコンウェハを切削する必要があり、SEMを用いて検査する場合と同様に煩雑な作業を要し、多数の検査対象の計測には多大な時間が必要となる。また、CT像の再現には、高度且つ膨大な画像処理アルゴリズムを必要とし、検査対象の形状測定に多大な時間を要すると共に、アプリケーションソフトウェアや処理を行うコンピュータ等のコストが増大する虞がある。 For example, when an inspection of a silicon wafer is performed using an X-ray CT apparatus, it is necessary to cut the silicon wafer to a size that can be imaged, and a complicated operation is required as in the case of an inspection using an SEM. However, a lot of time is required to measure a large number of inspection objects. In addition, CT image reproduction requires an advanced and enormous image processing algorithm, and it takes a lot of time to measure the shape of the inspection object, and there is a risk that the cost of application software, a computer for processing, and the like will increase.
 本発明は上記に鑑みてなされたものであって、非破壊で検査対象の欠陥検査を高速に行うことが可能なX線検査方法及びX線検査装置を提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide an X-ray inspection method and an X-ray inspection apparatus capable of performing non-destructive inspection of a defect to be inspected at high speed.
 本発明の一態様のX線検査方法によれば、検査対象のX線画像を取得するX線画像取得ステップと、前記検査対象の形状が異なる複数のシミュレーションX線画像から、前記検査対象の形状が最も近いシミュレーションX線画像を取得するシミュレーションX線画像取得ステップと、前記X線画像と前記X線画像取得ステップにより取得された前記シミュレーションX線画像との差分に基づき、前記検査対象の欠陥を検出する欠陥検出ステップとを有する。 According to the X-ray inspection method of one aspect of the present invention, from the X-ray image acquisition step of acquiring the X-ray image of the inspection object and a plurality of simulation X-ray images having different shapes of the inspection object, the shape of the inspection object The simulation X-ray image acquisition step for acquiring the closest simulation X-ray image, and the defect to be inspected based on the difference between the X-ray image and the simulation X-ray image acquired by the X-ray image acquisition step. A defect detection step of detecting.
 本発明の実施形態によれば、非破壊で検査対象の欠陥検査を高速に行うことが可能なX線検査方法及びX線検査装置を提供できる。 According to the embodiment of the present invention, it is possible to provide an X-ray inspection method and an X-ray inspection apparatus capable of performing non-destructive inspection of a defect to be inspected at high speed.
実施形態に係るX線検査装置の概略構成を例示する図である。It is a figure which illustrates schematic structure of the X-ray inspection apparatus which concerns on embodiment. 実施形態に係るX線撮像装置によって撮像されたX線画像を例示する図である。It is a figure which illustrates the X-ray image imaged with the X-ray imaging device which concerns on embodiment. 実施形態に係る画像処理装置のハードウェア構成を例示する図である。It is a figure which illustrates the hardware constitutions of the image processing apparatus which concerns on embodiment. 実施形態におけるTSVの形状パラメータを例示する図である。It is a figure which illustrates the shape parameter of TSV in an embodiment. 実施形態におけるTSVの形状パラメータを例示する図である。It is a figure which illustrates the shape parameter of TSV in an embodiment. 実施形態において形状パラメータに基づいて生成されるシミュレーションX線画像を例示する図である。It is a figure which illustrates the simulation X-ray image produced | generated based on a shape parameter in embodiment. 実施形態におけるシミュレーションX線画像の生成方法を説明する図である。It is a figure explaining the production | generation method of the simulation X-ray image in embodiment. 実施形態における画像生成部によるシミュレーションX線画像生成処理のフローチャートを例示する図である。It is a figure which illustrates the flowchart of the simulation X-ray image generation process by the image generation part in embodiment. 実施形態に係るX線検査装置による欠陥検出処理のフローチャートを例示する図である。It is a figure which illustrates the flowchart of the defect detection process by the X-ray inspection apparatus which concerns on embodiment. 実施形態に係るX線検査装置によるX線画像を例示する図である。It is a figure which illustrates the X-ray image by the X-ray inspection apparatus which concerns on embodiment. 実施形態に係るX線検査装置によるシミュレーションX線画像を例示する図である。It is a figure which illustrates the simulation X-ray image by the X-ray inspection apparatus which concerns on embodiment. 実施形態に係るX線検査装置によるX線画像とシミュレーションX線画像との差分像を例示する図である。It is a figure which illustrates the difference image of the X-ray image and simulation X-ray image by the X-ray inspection apparatus which concerns on embodiment. 実施形態に係るX線検査装置によるX線画像を例示する図である。It is a figure which illustrates the X-ray image by the X-ray inspection apparatus which concerns on embodiment. 実施形態に係るX線検査装置によるシミュレーションX線画像を例示する図である。It is a figure which illustrates the simulation X-ray image by the X-ray inspection apparatus which concerns on embodiment. 実施形態に係るX線検査装置によるX線画像とシミュレーションX線画像との差分像を例示する図である。It is a figure which illustrates the difference image of the X-ray image and simulation X-ray image by the X-ray inspection apparatus which concerns on embodiment.
 以下、図面を参照して発明を実施するための形態について説明する。なお、本実施形態では、検査対象としてシリコンウェハに形成されているCuが充填されたシリコン貫通電極(through-silicon via、以下「TSV」という)の欠陥を検出する方法について説明するが、検査対象はこれに限るものではない。また、検査対象に含まれる異物等を検出することも可能である。 Hereinafter, embodiments for carrying out the invention will be described with reference to the drawings. In this embodiment, a method for detecting a defect of a through silicon via (hereinafter referred to as “TSV”) filled with Cu formed on a silicon wafer as an inspection target will be described. Is not limited to this. It is also possible to detect foreign matter or the like included in the inspection target.
 <X線検査装置の構成>
 本実施形態に係るX線検査装置100の構成について説明する。図1は、本実施形態に係るX線検査装置100の概略構成を例示する図である。
<Configuration of X-ray inspection apparatus>
A configuration of the X-ray inspection apparatus 100 according to the present embodiment will be described. FIG. 1 is a diagram illustrating a schematic configuration of an X-ray inspection apparatus 100 according to the present embodiment.
 図1に示す様に、X線検査装置100は、画像処理装置110とX線撮像装置120とを有し、X線撮像装置120が検査対象のX線画像を撮像し、撮像された検査対象のX線画像に基づいて、画像処理装置110が検査対象の欠陥を検出する。 As shown in FIG. 1, an X-ray inspection apparatus 100 includes an image processing apparatus 110 and an X-ray imaging apparatus 120. The X-ray imaging apparatus 120 captures an X-ray image to be inspected, and the inspection target is imaged. Based on the X-ray image, the image processing apparatus 110 detects a defect to be inspected.
 画像処理装置110は、撮像制御部111、画像処理部112、画像データベース113、シミュレーションX線画像取得部114、欠陥検出部115、欠陥分類データベース116を有する。 The image processing apparatus 110 includes an imaging control unit 111, an image processing unit 112, an image database 113, a simulation X-ray image acquisition unit 114, a defect detection unit 115, and a defect classification database 116.
 撮像制御部111は、検査対象のX線画像を撮像するX線撮像装置120の全体の動作を制御し、X線撮像装置120が撮像する検査対象のX線画像を取得する。 The imaging control unit 111 controls the overall operation of the X-ray imaging apparatus 120 that captures an X-ray image to be inspected, and acquires the X-ray image to be inspected that is captured by the X-ray imaging apparatus 120.
 画像処理部112は、X線撮像装置120によって取得されたX線画像に対して、例えば輝度の調整等の画像処理を実施する。 The image processing unit 112 performs image processing such as brightness adjustment on the X-ray image acquired by the X-ray imaging apparatus 120.
 画像データベース113には、異なる形状パラメータに基づいてシミュレーションにより生成された、検査対象となるTSVの複数のシミュレーションX線画像が登録されている。シミュレーションX線画像の生成方法については後述する。 In the image database 113, a plurality of simulation X-ray images of TSVs to be inspected, which are generated by simulation based on different shape parameters, are registered. A method for generating a simulation X-ray image will be described later.
 シミュレーションX線画像取得部114は、X線撮像装置120によって撮像されたTSVのX線画像に、TSVの形状が最も近いシミュレーションX線画像を画像データベース113から取得する。 The simulation X-ray image acquisition unit 114 acquires a simulation X-ray image having the TSV shape closest to the TSV X-ray image captured by the X-ray imaging apparatus 120 from the image database 113.
 欠陥検出部115は、X線撮像装置120によって撮像されたTSVのX線画像及びシミュレーションX線画像取得部114によって取得されたシミュレーションX線画像から、Cuが充填されたTSVの欠陥を検出する。また、欠陥検出部115は、TSVに欠陥が検出された場合には、例えば欠陥の大きさ、位置等の特徴量を求める。さらに、欠陥検出部115は、求めた特徴量に基づいて欠陥を分類し、欠陥分類データベース116に登録し、検査対象であるTSVの良否判定を行う。 The defect detection unit 115 detects a defect in the TSV filled with Cu from the X-ray image of the TSV imaged by the X-ray imaging apparatus 120 and the simulation X-ray image acquired by the simulation X-ray image acquisition unit 114. Further, when a defect is detected in the TSV, the defect detection unit 115 obtains a feature amount such as a defect size and a position, for example. Further, the defect detection unit 115 classifies the defect based on the obtained feature amount, registers the defect in the defect classification database 116, and determines whether the TSV to be inspected is good or bad.
 欠陥分類データベース116は、欠陥検出部115により検出された欠陥が分類されて登録されている。 In the defect classification database 116, defects detected by the defect detection unit 115 are classified and registered.
 X線撮像装置120は、フォーク121、ノッチアライナ122、光学顕微鏡123、厚さ測定器124、X線源125、ステージ126、X線カメラ127等を備え、画像処理装置110に接続されている。図中に示すX方向はステージ126の表面に平行な図中左右方向で、Y方向は、ステージ126の表面に平行且つX方向に直交する方向、Z方向はステージ126の表面に対する垂直方向である。 The X-ray imaging apparatus 120 includes a fork 121, a notch aligner 122, an optical microscope 123, a thickness measuring instrument 124, an X-ray source 125, a stage 126, an X-ray camera 127, and the like, and is connected to the image processing apparatus 110. The X direction shown in the drawing is the left-right direction in the drawing parallel to the surface of the stage 126, the Y direction is a direction parallel to the surface of the stage 126 and perpendicular to the X direction, and the Z direction is a direction perpendicular to the surface of the stage 126. .
 X線撮像装置120では、TSVが形成されたシリコンウェハをフォーク121が保持し、ノッチアライナ122がノッチ位置の調整を行う。光学顕微鏡123は、ステージ126上に載置されるシリコンウェハの外観観察等を行うことができる。また、厚さ測定器124は、例えば分光干渉式の厚さ測定器であり、シリコンウェハの厚さを測定できる。 In the X-ray imaging apparatus 120, the fork 121 holds the silicon wafer on which the TSV is formed, and the notch aligner 122 adjusts the notch position. The optical microscope 123 can observe the appearance of a silicon wafer placed on the stage 126. The thickness measuring device 124 is a spectral interference type thickness measuring device, for example, and can measure the thickness of the silicon wafer.
 X線源125は、ステージ126上に載置されるシリコンウェハに対してX線を照射し、X線源125に対してステージ126を挟んで反対側に設けられているX線カメラ127が、シリコンウェハのX線画像を取得する。 The X-ray source 125 irradiates a silicon wafer placed on the stage 126 with X-rays, and an X-ray camera 127 provided on the opposite side of the X-ray source 125 with the stage 126 interposed therebetween, An X-ray image of a silicon wafer is acquired.
 X線カメラ127は、例えばイメージインテンシファイア、CCDイメージセンサ等を備えて構成され、イメージインテンシファイアが検査対象を透過したX線を可視光に変換し、CCDイメージセンサが入射される可視光を電気信号に変換する。X線カメラ127の出力は画像処理装置110の撮像制御部111に入力され、検査対象のX線画像として取得される。 The X-ray camera 127 is configured to include, for example, an image intensifier, a CCD image sensor, and the like. The image intensifier converts X-rays that have passed through the inspection target into visible light, and visible light that is incident on the CCD image sensor. Is converted into an electrical signal. The output of the X-ray camera 127 is input to the imaging control unit 111 of the image processing apparatus 110 and acquired as an X-ray image to be inspected.
 X線カメラ127は、図中XY方向に移動可能に設けられており、XY方向に移動することで、ステージ126に載置される検査対象のX線画像を、例えばZ方向に対して角度α傾斜した方向から撮像し、傾斜像を得ることができる。 The X-ray camera 127 is provided so as to be movable in the X and Y directions in the figure, and by moving in the X and Y directions, an X-ray image of the inspection object placed on the stage 126 is, for example, an angle α with respect to the Z direction. Images can be taken from an inclined direction, and an inclined image can be obtained.
 図2に、本実施形態に係るX線撮像装置120によって撮像されたX線画像を例示する。 FIG. 2 illustrates an X-ray image captured by the X-ray imaging apparatus 120 according to the present embodiment.
 図2は、X線カメラ127によってZ方向に対して9.5度傾斜した方向から撮像されたシリコンウェハのX線画像であり、黒く見える部分がTSVである。本実施形態に係るX線検査装置100は、この様なX線画像に基づいてシリコンウェハに形成されたTSVの欠陥検出を行う。なお、X線検査装置100が欠陥検出に用いるX線画像の傾斜角は上記例に限るものではなく、適宜設定可能である。また、傾斜していないX線画像に基づいて欠陥検出を行うことも可能である。 FIG. 2 is an X-ray image of a silicon wafer taken from a direction inclined by 9.5 degrees with respect to the Z direction by the X-ray camera 127, and a portion that appears black is TSV. The X-ray inspection apparatus 100 according to the present embodiment detects defects of TSVs formed on a silicon wafer based on such X-ray images. The inclination angle of the X-ray image used for defect detection by the X-ray inspection apparatus 100 is not limited to the above example, and can be set as appropriate. It is also possible to detect defects based on an X-ray image that is not inclined.
 <画像処理装置のハードウェア構成>
 図3は、本実施形態に係る画像処理装置110のハードウェア構成を例示する図である。
<Hardware configuration of image processing apparatus>
FIG. 3 is a diagram illustrating a hardware configuration of the image processing apparatus 110 according to the present embodiment.
 図3に示す様に、画像処理装置110は、CPU101、HDD(Hard Disk Drive)102、ROM(Read Only Memory)103、RAM(Read and Memory)104、入力装置105、表示装置106、記録媒体I/F部107、撮像装置I/F部108等を備え、それぞれがバスBで相互に接続されている。 As shown in FIG. 3, the image processing apparatus 110 includes a CPU 101, an HDD (Hard Disk Drive) 102, a ROM (Read Only Memory) 103, a RAM (Read and Memory) 104, an input device 105, a display device 106, and a recording medium I. / F unit 107, imaging device I / F unit 108, and the like, which are connected to each other by bus B.
 CPU101は、HDD102やROM103等の記憶装置からプログラムやデータをRAM104上に読み出し、処理を実行することで、X線撮像装置120の制御や、画像処理装置110が備える各機能を実現する演算装置である。CPU101は、例えば撮像制御部111、画像処理部112、シミュレーションX線画像取得部114、欠陥検出部115等として機能する。 The CPU 101 is an arithmetic device that implements control of the X-ray imaging device 120 and functions of the image processing device 110 by reading programs and data from the storage device such as the HDD 102 and the ROM 103 onto the RAM 104 and executing the processing. is there. The CPU 101 functions as, for example, the imaging control unit 111, the image processing unit 112, the simulation X-ray image acquisition unit 114, the defect detection unit 115, and the like.
 HDD102は、プログラムやデータを格納する不揮発性の記憶装置である。格納されるプログラムやデータには、画像処理装置110全体を制御する基本ソフトウェアであるOS(Operating System)、及びOS上において各種機能を提供するアプリケーションソフトウェアなどがある。また、HDD102は、例えば画像データベース113、欠陥分類データベース116として機能する。 The HDD 102 is a non-volatile storage device that stores programs and data. The stored programs and data include an OS (Operating System) that is basic software for controlling the entire image processing apparatus 110 and application software that provides various functions on the OS. The HDD 102 functions as, for example, an image database 113 and a defect classification database 116.
 ROM103は、電源を切ってもプログラムやデータを保持することができる不揮発性の半導体メモリ(記憶装置)である。ROM103には、画像処理装置110の起動時に実行されるBIOS(Basic Input/Output System)、OS設定、及びネットワーク設定などのプログラムやデータが格納されている。RAM104は、プログラムやデータを一時保持する揮発性の半導体メモリ(記憶装置)である。 The ROM 103 is a nonvolatile semiconductor memory (storage device) that can retain programs and data even when the power is turned off. The ROM 103 stores programs and data such as BIOS (Basic Input / Output System), OS settings, and network settings that are executed when the image processing apparatus 110 is activated. The RAM 104 is a volatile semiconductor memory (storage device) that temporarily stores programs and data.
 入力装置105は、例えばキーボードやマウス等を含み、画像処理装置110に各操作信号を入力するのに用いられる。表示装置106は、例えばディスプレイ等を含み、X線撮像装置120により撮像された検査対象のX線画像や、シミュレーションX線画像、欠陥検出結果等を表示する。 The input device 105 includes, for example, a keyboard and a mouse, and is used to input each operation signal to the image processing device 110. The display device 106 includes, for example, a display and displays an X-ray image to be inspected, a simulation X-ray image, a defect detection result, and the like imaged by the X-ray imaging device 120.
 記録媒体I/F部107は、記録媒体109とのインタフェースである。画像処理装置110は、記録媒体I/F部107を介して記録媒体109の読み取り及び/又は書き込みを行うことができる。記録媒体109にはフレキシブルディスク、CD、DVD(Digital Versatile Disk)、SDメモリカード(SD Memory card)、USBメモリ(Universal Serial Bus memory)等がある。 The recording medium I / F unit 107 is an interface with the recording medium 109. The image processing apparatus 110 can read and / or write the recording medium 109 via the recording medium I / F unit 107. The recording medium 109 includes a flexible disk, a CD, a DVD (Digital Versatile Disk), an SD memory card (SD Memory Card), a USB memory (Universal Serial Bus memory), and the like.
 撮像装置I/F部108は、X線撮像装置120に接続するインタフェースである。画像処理装置110は、撮像装置I/F部108を介してX線撮像装置120との間でデータの通信を行うことができる。 The imaging device I / F unit 108 is an interface connected to the X-ray imaging device 120. The image processing apparatus 110 can perform data communication with the X-ray imaging apparatus 120 via the imaging apparatus I / F unit 108.
 また、画像処理装置110にネットワークに接続するインタフェースとしてネットワークI/F部等を設け、他の機器との間でデータ通信を行う様に構成しても良い。 Further, a network I / F unit or the like may be provided as an interface for connecting to the network in the image processing apparatus 110 so as to perform data communication with other devices.
 <シミュレーションX線画像の生成>
 次に、画像処理装置110の画像データベース113に記憶されるシミュレーションX線画像の生成方法について説明する。シミュレーションX線画像は、検査対象となるTSVの複数の形状パラメータに基づいて生成される。
<Generation of simulation X-ray image>
Next, a method for generating a simulation X-ray image stored in the image database 113 of the image processing apparatus 110 will be described. The simulation X-ray image is generated based on a plurality of shape parameters of the TSV to be inspected.
 図4A及び図4Bは、本実施形態におけるTSVの形状パラメータを例示する図である。 4A and 4B are diagrams illustrating the shape parameters of the TSV in the present embodiment.
 本実施形態では、シリコンウェハに形成されているTSVの形状を表す形状パラメータとして、図4(a)に例示する6種類のパラメータを用い、さらにX線画像の傾斜角度αを決定するためのX線カメラ127のX方向位置及びY方向位置をパラメータとして用いている。本実施形態におけるTSVの形状パラメータは、図4(a)に示す様に、開口部半径r1、ホール中間部最大半径r2、底部半径r3、底部に半球状にエッチングされた部分の半径r4、最大半径部分までの深さh1、最大半径部から底部までの深さh2である。なお、シミュレーションX線画像の生成に用いるパラメータの種類、数等は上記例に限るものではなく、例えば図4(b)に示す様にTSVの形状に対応させてパラメータを設定しても良く、検査対象の形状、X線撮像装置120の構成等に応じて適宜設定することが可能である。この様に設定されるTSVの形状パラメータに基づいて、図5に例示される様なシミュレーションX線画像が、設定された複数の形状パラメータに基づいて複数生成され、画像データベース113に登録される。 In the present embodiment, six types of parameters illustrated in FIG. 4A are used as the shape parameters representing the shape of the TSV formed on the silicon wafer, and X for determining the inclination angle α of the X-ray image. The X direction position and Y direction position of the line camera 127 are used as parameters. As shown in FIG. 4 (a), the shape parameters of the TSV in the present embodiment include an opening radius r1, a hole middle maximum radius r2, a bottom radius r3, a radius r4 of a portion hemispherically etched at the bottom, a maximum The depth h1 to the radius portion and the depth h2 from the maximum radius portion to the bottom portion. Note that the types and number of parameters used for generating the simulation X-ray image are not limited to the above example, and for example, the parameters may be set corresponding to the shape of the TSV as shown in FIG. It can be set as appropriate according to the shape of the inspection object, the configuration of the X-ray imaging apparatus 120, and the like. A plurality of simulation X-ray images as illustrated in FIG. 5 are generated based on the set shape parameters based on the TSV shape parameters set in this way, and are registered in the image database 113.
 図6は、本実施形態におけるシミュレーションX線画像の生成方法を説明する図である。シミュレーションX線画像は、例えば画像処理装置110の画像処理部112によって生成され、画像データベース113に登録される。 FIG. 6 is a diagram for explaining a simulation X-ray image generation method according to this embodiment. The simulation X-ray image is generated, for example, by the image processing unit 112 of the image processing apparatus 110 and registered in the image database 113.
 画像処理部112は、シミュレーションX線画像の生成に際して、まず形状パラメータに応じてX線の透過率が異なるボクセル(Voxel)51の集合体を作成する。次に、ボクセル51の集合体に、点光源として定義されるX線源50からX線を照射した時に、各ボクセル51の透過率に基づいてX線の透過量を算出し、検出器52に到達する量を画像として再現することにより、シミュレーションX線画像を生成する。 When generating a simulation X-ray image, the image processing unit 112 first creates an aggregate of voxels 51 having different X-ray transmittances according to shape parameters. Next, when the aggregate of voxels 51 is irradiated with X-rays from an X-ray source 50 defined as a point light source, the amount of X-ray transmission is calculated based on the transmittance of each voxel 51, and the detector 52 A simulated X-ray image is generated by reproducing the amount reached as an image.
 ボクセル51としては、図6に示す様に、例えばAir、Cu、Si等の材料を定義し、それぞれの材料について個別に測定される透過率を用いて各ボクセル51を透過して検出器52に到達するX線量を算出する。ボクセル51は、例えば0.1μmの立方体とし、各ボクセル51の透過率を、例えばAir:1、Cu:0.981/1μm、Si:0.999/1μmと設定することでシミュレーションX線画像を生成できる。なお、ボクセルの種類、大きさ、透過率等の各値はこれらに限るものではなく、適宜設定することができる。 As shown in FIG. 6, for example, materials such as Air, Cu, and Si are defined as the voxels 51, and the voxels 51 are transmitted through the voxels 51 using the transmittances measured individually for the respective materials to the detector 52. Calculate the X-ray dose reached. The voxel 51 is, for example, a 0.1 μm cube, and the transmittance of each voxel 51 is set to, for example, Air: 1, Cu: 0.981 / 1 μm, Si: 0.999 / 1 μm, and a simulation X-ray image is obtained. Can be generated. Note that the values such as the type, size, and transmittance of the voxel are not limited to these, and can be set as appropriate.
 画像処理部112は、作成したボクセル51の集合体に対して、X線源50に近い方から順に各ボクセル51の下面でのX線の透過量を算出し、検出器52に到達するX線量を求めることで、図5に例示する様な、形状パラメータに対応するシミュレーションX線画像を生成する。 The image processing unit 112 calculates the amount of X-ray transmission through the lower surface of each voxel 51 in order from the side closer to the X-ray source 50 with respect to the created collection of voxels 51, and the X-ray dose reaching the detector 52 , A simulation X-ray image corresponding to the shape parameter as illustrated in FIG. 5 is generated.
 図7に、本実施形態における画像処理部112によるシミュレーションX線画像の生成処理のフローチャートの一例を示す。 FIG. 7 shows an example of a flowchart of simulation X-ray image generation processing by the image processing unit 112 in the present embodiment.
 画像処理部112は、まずステップS1にて、TSVの設計値を中心として、各形状パラメータr1、r2、r3、r4、h1、h2及び検査対象を撮像する傾斜角度(X線カメラ127の位置)等のシミュレーションX線画像生成条件を複数設定する。例えば、形状パラメータr1を、設計値である20μmを中心に19μmから21μmまで、0.1μm間隔で画像生成条件を設定し、各形状パラメータが異なる多数の画像生成条件を設定する。 First, in step S1, the image processing unit 112 focuses on the design value of the TSV, and the inclination angle (position of the X-ray camera 127) for imaging each shape parameter r1, r2, r3, r4, h1, h2, and the inspection object. A plurality of simulation X-ray image generation conditions such as the above are set. For example, for the shape parameter r1, image generation conditions are set at intervals of 0.1 μm from 19 μm to 21 μm with a design value of 20 μm as the center, and a large number of image generation conditions with different shape parameters are set.
 次に、ステップS2にて、画像処理部112が、設定された複数の画像生成条件に基づいて、上記した方法により複数のシミュレーションX線画像を生成する。 Next, in step S2, the image processing unit 112 generates a plurality of simulation X-ray images by the above-described method based on the set plurality of image generation conditions.
 ステップS3では、画像処理部112が、生成されたシミュレーションX線画像に対して、例えば歪補正等の画像補正処理を行う。 In step S3, the image processing unit 112 performs image correction processing such as distortion correction on the generated simulation X-ray image.
 続いて、ステップS4にて、画像処理部112は、生成した複数のシミュレーションX線画像と、形状パラメータ及び検査対象を撮像する傾斜角度等とをライブラリ化する。ステップS5では、画像データベース113にライブラリ化したデータを登録してシミュレーションX線画像の生成処理を終了する。 Subsequently, in step S4, the image processing unit 112 creates a library of the plurality of generated simulation X-ray images, the shape parameters, the inclination angles for imaging the inspection object, and the like. In step S5, the library data is registered in the image database 113, and the simulation X-ray image generation process ends.
 画像処理装置110の画像処理部112は、上記した処理によって、形状パラメータが異なる多数のシミュレーションX線画像を予め生成し、画像データベース113に登録する。なお、画像データベース113のシミュレーションX線画像は、他の装置によって生成されたものをダウンロード等して登録されたものでも良い。また、本実施形態では、シミュレーションX線画像として欠陥を含まないTSVのシミュレーション画像を生成して登録するが、欠陥を有するTSVのシミュレーション画像を生成することも可能である。 The image processing unit 112 of the image processing apparatus 110 generates in advance a large number of simulation X-ray images having different shape parameters and registers them in the image database 113 by the above-described processing. Note that the simulation X-ray image in the image database 113 may be registered by downloading or the like that is generated by another device. In the present embodiment, a simulation image of a TSV that does not include a defect is generated and registered as a simulation X-ray image. However, a simulation image of a TSV having a defect can also be generated.
 <欠陥検出方法>
 図8は、本実施形態に係るX線検査装置100における欠陥検出処理のフローチャートを例示する図である。
<Defect detection method>
FIG. 8 is a diagram illustrating a flowchart of defect detection processing in the X-ray inspection apparatus 100 according to the present embodiment.
 X線検査装置100における欠陥検出では、まずステップS11にて、X線撮像装置120がシリコンウェハに形成されているTSVのX線画像を撮像する。次に、ステップS12にて、画像処理装置110の画像処理部112が、撮像されたX線画像に対して例えば輝度の調整等の画像処理を施す。 In defect detection in the X-ray inspection apparatus 100, first, in step S11, the X-ray imaging apparatus 120 captures an X-ray image of a TSV formed on a silicon wafer. Next, in step S12, the image processing unit 112 of the image processing apparatus 110 performs image processing such as brightness adjustment on the captured X-ray image.
 次に、画像処理装置110のシミュレーションX線画像取得部114が、撮像されたX線画像の検査対象であるTSVの形状パラメータを推定し、TSVの形状が最も近いシミュレーションX線画像を画像データベース113から取得する。ステップS13では、シミュレーションX線画像取得部114が、TSVの形状パラメータの推定を行うための初期形状パラメータを入力する。初期形状パラメータとしては、例えばTSVの設計値等を用いることができる。次に、ステップS14にて、シミュレーションX線画像取得部114が、画像データベース113から入力された形状パラメータのシミュレーションX線画像を取得する。続いてステップS15にて、シミュレーションX線画像取得部114が、X線撮像装置120によって撮像されたX線画像と、取得したシミュレーションX線画像との間の類似性を表す評価値としてのマッチングスコアの算出を行う。マッチングスコアの算出には、例えば正規化相関、幾何学相関、オリエンテーションコード変換等を用いることができる。 Next, the simulation X-ray image acquisition unit 114 of the image processing apparatus 110 estimates the shape parameter of the TSV that is the inspection target of the captured X-ray image, and the simulation X-ray image having the closest TSV shape is the image database 113. Get from. In step S13, the simulation X-ray image acquisition unit 114 inputs initial shape parameters for estimating the TSV shape parameters. As the initial shape parameter, for example, a design value of TSV can be used. Next, in step S14, the simulation X-ray image acquisition unit 114 acquires a simulation X-ray image of the shape parameter input from the image database 113. Subsequently, in step S15, the simulation X-ray image acquisition unit 114 has a matching score as an evaluation value representing the similarity between the X-ray image captured by the X-ray imaging apparatus 120 and the acquired simulation X-ray image. Is calculated. For example, normalized correlation, geometric correlation, or orientation code conversion can be used for calculating the matching score.
 ステップS16にて、シミュレーションX線画像取得部114は、算出したマッチングスコアと基準値(例えば0.95)との比較を行う。マッチングスコアが基準値以下の場合には、シミュレーションX線画像取得部114が、ステップS17にて形状パラメータの最適化を行う。その後、シミュレーションX線画像取得部114は、再びステップS14にて最適化された形状パラメータのシミュレーションX線画像を画像データベース113から取得し、ステップS15にてマッチングスコアを算出する。 In step S16, the simulation X-ray image acquisition unit 114 compares the calculated matching score with a reference value (for example, 0.95). If the matching score is less than or equal to the reference value, the simulation X-ray image acquisition unit 114 optimizes the shape parameter in step S17. Thereafter, the simulation X-ray image acquisition unit 114 acquires again the simulation X-ray image of the shape parameter optimized in step S14 from the image database 113, and calculates the matching score in step S15.
 マッチングスコアが基準値を超えるまで、ステップS14からステップS17の処理を繰り返し行い、形状パラメータの最適化を行う。ステップS17における形状パラメータの最適化には、例えば遺伝的アルゴリズム、勾配法等の最適化アルゴリズムを用いることができる。 The process from step S14 to step S17 is repeated until the matching score exceeds the reference value, and the shape parameter is optimized. For optimization of the shape parameter in step S17, for example, an optimization algorithm such as a genetic algorithm or a gradient method can be used.
 ステップS16にてマッチングスコアが基準値を超えた場合には、ステップS18にて、シミュレーションX線画像取得部114が、画像データベース113から最適化された形状パラメータのシミュレーションX線画像を取得する。 If the matching score exceeds the reference value in step S16, the simulation X-ray image acquisition unit 114 acquires a simulation X-ray image of the optimized shape parameter from the image database 113 in step S18.
 次に、ステップS19にて、欠陥検出部115が、X線撮像装置120によって撮像されたX線画像と、シミュレーションX線画像取得部114によって取得されたシミュレーションX線画像とのTSVの位置合わせを行い、輝度の調整を行った後に輝度の差分を算出することで欠陥検出を行う。 Next, in step S <b> 19, the defect detection unit 115 performs TSV alignment between the X-ray image captured by the X-ray imaging apparatus 120 and the simulation X-ray image acquired by the simulation X-ray image acquisition unit 114. The defect detection is performed by calculating the luminance difference after adjusting the luminance.
 図9A~C及び図10A~Cは、本実施形態に係るX線検査装置100によるTSVの欠陥検出結果を例示する図である。図9Aは傾斜角0度のX線画像、図9BはシミュレーションX線画像、図9CはX線画像とシミュレーション画像との差分像である。また、図10Aは傾斜角15度のX線画像、図10BはシミュレーションX線画像、図10CはX線画像とシミュレーション画像との差分像である。 9A to 9C and 10A to 10C are diagrams illustrating examples of TSV defect detection results by the X-ray inspection apparatus 100 according to the present embodiment. 9A is an X-ray image with an inclination angle of 0 degree, FIG. 9B is a simulation X-ray image, and FIG. 9C is a difference image between the X-ray image and the simulation image. 10A is an X-ray image with an inclination angle of 15 degrees, FIG. 10B is a simulation X-ray image, and FIG. 10C is a difference image between the X-ray image and the simulation image.
 図9C及び図10Cに例示する差分像は、X線画像とシミュレーションX線画像との輝度の差を示す画像であり、輝度の差が大きくなるにつれて白く表示されている。例えばCuが充填されているTSVに欠陥が存在する場合には、図9C及び図10Cの白く抜けた部分に示される様に、差分像に輝度の差として欠陥が表れる。 9C and 10C are images showing the difference in luminance between the X-ray image and the simulation X-ray image, and are displayed in white as the luminance difference increases. For example, when there is a defect in TSV filled with Cu, the defect appears as a difference in luminance in the difference image, as shown in white portions in FIGS. 9C and 10C.
 欠陥検出部115は、ステップS19にて欠陥検出を行った後、ステップS20にて欠陥の特徴量の抽出を行う。特徴量としては、例えば欠陥を楕円近似した時の座標、面積、重心、座標等のパラメータを抽出する。次に、ステップS21にて、欠陥検出部115は、抽出した特徴量に基づいて検出した欠陥を分類して欠陥分類データベース116に登録する。欠陥の分類には、例えば部分空間法、k近傍法、ニューラルネットの一種である多層パーセプトロン法等を用いることができる。 The defect detection unit 115 performs defect detection in step S19, and then extracts defect feature values in step S20. As the feature amount, for example, parameters such as coordinates, area, center of gravity, and coordinates when a defect is approximated to an ellipse are extracted. Next, in step S <b> 21, the defect detection unit 115 classifies the detected defect based on the extracted feature amount and registers it in the defect classification database 116. For classification of defects, for example, a subspace method, a k-nearest neighbor method, a multilayer perceptron method which is a kind of neural network, or the like can be used.
 欠陥検出部115は、欠陥分類データベース116への登録を行った後、ステップS22にて、欠陥検出部115が検出された欠陥の特徴量及び欠陥の分類結果に基づいて、検査対象であるTSVの良否判定を実施して処理を終了する。良否判定は、例えば欠陥の大きさと所定の閾値との比較、或いは欠陥がTSVの所定領域に存在するか否か等に基づいて行われる。 After registering the defect detection unit 115 in the defect classification database 116, in step S22, the defect detection unit 115 detects the TSV to be inspected based on the feature amount of the defect detected by the defect detection unit 115 and the defect classification result. A pass / fail judgment is performed and the process is terminated. The pass / fail judgment is performed based on, for example, a comparison between the size of the defect and a predetermined threshold, or whether or not the defect exists in a predetermined region of the TSV.
 以上で説明した様に、本実施形態に係るX線検査装置100によれば、非破壊で検査対象の欠陥検査を行うことが可能である。また、例えばX線CT装置においてCT像を再現する場合に比べて簡便な処理で欠陥を検出できるため、高速な欠陥検査を実現できる。さらに、同様の処理によりX線画像とシミュレーションX線画像との差分像から、検査対象に含まれる異物を検出することも可能である。したがって、本実施形態に係るX線検査装置100は、検査対象の欠陥又は異物検出を高速に行い、切削等することなく検査することが可能であるため、例えば半導体製造プロセスにおけるインライン検査に用いることができる。また、本実施形態では、Cuが充填されたTSVについて説明したが、Cu以外にも例えばWなど他の金属をはじめとした導電体材料が充填されたTSV等についても適用可能であることは言うまでもない。 As described above, according to the X-ray inspection apparatus 100 according to the present embodiment, it is possible to inspect a defect to be inspected nondestructively. Further, for example, since defects can be detected by a simple process compared with the case of reproducing a CT image in an X-ray CT apparatus, high-speed defect inspection can be realized. Furthermore, it is possible to detect a foreign substance included in the inspection target from the difference image between the X-ray image and the simulation X-ray image by the same processing. Therefore, the X-ray inspection apparatus 100 according to the present embodiment can detect a defect or a foreign object to be inspected at a high speed and can inspect without cutting or the like, and is used for, for example, in-line inspection in a semiconductor manufacturing process. Can do. Further, in the present embodiment, the TSV filled with Cu has been described. Needless to say, the present invention can also be applied to a TSV filled with a conductor material including other metals such as W in addition to Cu. Yes.
 なお、半導体製造プロセス等においてインライン検査を行う場合には、複数のX線検査装置100の画像処理装置110にネットワーク等を介して接続するサーバ装置を設け、サーバ装置において欠陥又は異物等の検出を行う様に構成することも可能である。この場合には、例えばサーバ装置に画像処理部112、画像データベース113、シミュレーションX線画像取得部114、欠陥検出部115、欠陥分類データベース116等を設け、サーバ装置において検査を一括して行い、検査結果を集約して管理することが可能になる。 When performing in-line inspection in a semiconductor manufacturing process or the like, a server apparatus connected to the image processing apparatus 110 of the plurality of X-ray inspection apparatuses 100 via a network or the like is provided, and the server apparatus detects a defect or a foreign object. It can also be configured to do so. In this case, for example, the server device is provided with an image processing unit 112, an image database 113, a simulation X-ray image acquisition unit 114, a defect detection unit 115, a defect classification database 116, etc. The results can be collected and managed.
 以上、実施形態に係るX線検査方法及びX線検査装置について説明したが、本発明は上記実施例に限定されるものではなく、本発明の範囲内で種々の変形及び改良が可能である。 The X-ray inspection method and the X-ray inspection apparatus according to the embodiment have been described above. However, the present invention is not limited to the above-described embodiments, and various modifications and improvements can be made within the scope of the present invention.
 本国際出願は、2012年7月9日に出願された日本国特許出願2012-153610号に基づく優先権を主張するものであり、日本国特許出願2012-153610号の全内容を本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2012-153610 filed on July 9, 2012. The entire contents of Japanese Patent Application No. 2012-153610 are incorporated herein by reference. Incorporate.
100 X線検査装置
110 画像処理装置
112 画像処理部
114 シミュレーションX線画像取得部
115 欠陥検出部
120 X線撮像装置
DESCRIPTION OF SYMBOLS 100 X-ray inspection apparatus 110 Image processing apparatus 112 Image processing part 114 Simulation X-ray image acquisition part 115 Defect detection part 120 X-ray imaging device

Claims (9)

  1.  検査対象のX線画像を取得するX線画像取得ステップと、
     前記検査対象の形状が異なる複数のシミュレーションX線画像から、前記検査対象の形状が最も近いシミュレーションX線画像を取得するシミュレーションX線画像取得ステップと、
     前記X線画像と前記X線画像取得ステップにより取得された前記シミュレーションX線画像との差分に基づき、前記検査対象の欠陥を検出する欠陥検出ステップとを有する
    ことを特徴とするX線検査方法。
    An X-ray image acquisition step of acquiring an X-ray image to be inspected;
    A simulation X-ray image acquisition step of acquiring a simulation X-ray image having the closest shape of the inspection target from a plurality of simulation X-ray images having different shapes of the inspection target;
    An X-ray inspection method comprising: a defect detection step of detecting a defect of the inspection object based on a difference between the X-ray image and the simulation X-ray image acquired by the X-ray image acquisition step.
  2.  前記欠陥検出ステップは、輝度調整及び前記検査対象の位置合わせが行われた前記X線画像と前記X線画像取得ステップにより取得された前記シミュレーションX線画像との輝度の差分に基づき、前記欠陥を検出する
    ことを特徴とする請求項1に記載のX線検査方法。
    In the defect detection step, the defect is determined based on a difference in luminance between the X-ray image subjected to luminance adjustment and alignment of the inspection target and the simulation X-ray image acquired in the X-ray image acquisition step. The X-ray inspection method according to claim 1, wherein detection is performed.
  3.  前記欠陥検出ステップにより検出された前記欠陥の特徴量を抽出する特徴量抽出ステップを有する
    ことを特徴とする請求項1に記載のX線検査方法。
    The X-ray inspection method according to claim 1, further comprising a feature amount extraction step of extracting a feature amount of the defect detected by the defect detection step.
  4.  前記特徴量抽出ステップにより抽出された前記欠陥の特徴量に基づき、前記欠陥を分類する欠陥分類ステップを有する
    ことを特徴とする請求項3に記載のX線検査方法。
    The X-ray inspection method according to claim 3, further comprising a defect classification step of classifying the defect based on the feature amount of the defect extracted by the feature amount extraction step.
  5.  前記欠陥検出ステップにより検出された前記欠陥の特徴量及び前記欠陥分類ステップによる分類結果に基づき、前記検査対象の良否を判定する良否判定ステップを有する
    ことを特徴とする請求項4に記載のX線検査方法。
    5. The X-ray according to claim 4, further comprising: a pass / fail determination step for determining pass / fail of the inspection object based on a feature amount of the defect detected by the defect detection step and a classification result by the defect classification step. Inspection method.
  6.  前記シミュレーションX線画像は、前記検査対象の形状に応じて形成される、X線の透過率が異なるボクセルの集合体に、前記X線を照射した時に前記透過率に基づいて前記ボクセルの集合体を透過する前記X線の透過量を算出することにより作成された画像である
    ことを特徴とする請求項1に記載のX線検査方法。
    The simulation X-ray image is formed according to the shape of the inspection object, and the aggregate of voxels based on the transmittance when the aggregate of voxels having different X-ray transmittances is irradiated with the X-ray. The X-ray inspection method according to claim 1, wherein the X-ray inspection method is an image created by calculating an amount of transmission of the X-rays that pass through.
  7.  前記検査対象は、シリコンウェハに形成されている導電性材料が充填されたシリコン貫通電極である
    ことを特徴とする請求項1に記載のX線検査方法。
    The X-ray inspection method according to claim 1, wherein the inspection object is a through silicon via filled with a conductive material formed on a silicon wafer.
  8.  検査対象のX線画像を取得するX線撮像装置と、
     前記検査対象の形状が異なる複数のシミュレーションX線画像から、前記検査対象の形状が最も近いシミュレーションX線画像を取得するシミュレーションX線画像取得部と、
     前記X線画像と前記X線画像取得部により取得された前記シミュレーションX線画像との差分に基づき、前記検査対象の欠陥を検出する欠陥検出部とを有する
    ことを特徴とするX線検査装置。
    An X-ray imaging apparatus for acquiring an X-ray image of an inspection object;
    A simulation X-ray image acquisition unit for acquiring a simulation X-ray image having the closest shape to be inspected from a plurality of simulation X-ray images having different shapes to be inspected;
    An X-ray inspection apparatus comprising: a defect detection unit that detects a defect of the inspection target based on a difference between the X-ray image and the simulation X-ray image acquired by the X-ray image acquisition unit.
  9.  前記検査対象は、シリコンウェハに形成されている導電性材料が充填されたシリコン貫通電極である
    ことを特徴とする請求項8に記載のX線検査装置。
    The X-ray inspection apparatus according to claim 8, wherein the inspection object is a through silicon via electrode filled with a conductive material formed on a silicon wafer.
PCT/JP2013/067506 2012-07-09 2013-06-26 X-ray inspection method and x-ray inspection device WO2014010421A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012153610A JP2014016239A (en) 2012-07-09 2012-07-09 X-ray inspection method and x-ray inspection device
JP2012-153610 2012-07-09

Publications (1)

Publication Number Publication Date
WO2014010421A1 true WO2014010421A1 (en) 2014-01-16

Family

ID=49915885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067506 WO2014010421A1 (en) 2012-07-09 2013-06-26 X-ray inspection method and x-ray inspection device

Country Status (2)

Country Link
JP (1) JP2014016239A (en)
WO (1) WO2014010421A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107209130A (en) * 2015-02-09 2017-09-26 株式会社尼康 A kind of image rebuilding method of X-ray measurement equipment, the manufacture method of works, the image reconstruction program of X-ray measurement equipment and X-ray measurement equipment

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2927945B1 (en) 2014-04-04 2023-05-31 Nordson Corporation X-ray inspection apparatus for inspecting semiconductor wafers
JP6791479B2 (en) * 2016-06-06 2020-11-25 富士電機株式会社 Inspection system
JP7250301B2 (en) * 2018-06-29 2023-04-03 株式会社イシダ Inspection device, inspection system, inspection method, inspection program and recording medium

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59192944A (en) * 1983-04-15 1984-11-01 Hitachi Ltd Classifying method of pattern defect
JPH02132353A (en) * 1988-11-14 1990-05-21 Toshiba Corp Mask inspection device
JPH02138855A (en) * 1988-08-26 1990-05-28 Hitachi Ltd Inspecting method of soldered part by x-ray transmission image, apparatus therefor and packaging structure of electronic component on circuit board
JPH02238313A (en) * 1989-03-13 1990-09-20 Toshiba Corp Mask inspecting apparatus
JPH06118029A (en) * 1992-10-08 1994-04-28 Matsushita Electric Ind Co Ltd X-ray inspecting device and x-ray inspecting method
JPH1194761A (en) * 1997-09-19 1999-04-09 Hitachi Ltd Pattern inspection apparatus
JPH11183393A (en) * 1997-10-13 1999-07-09 Mitsubishi Electric Corp Pattern flaw inspecting device and pattern flaw inspecting method
JP2000035406A (en) * 1998-06-22 2000-02-02 Mitsubishi Electric Inf Technol Center America Inc Object rendering system and method thereof
JP2005207827A (en) * 2004-01-21 2005-08-04 Nagoya Electric Works Co Ltd X-ray inspection device and method, and control program of x-ray inspection device
JP2012088291A (en) * 2010-09-23 2012-05-10 Meiwa E Tec:Kk X-ray inspection apparatus

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59192944A (en) * 1983-04-15 1984-11-01 Hitachi Ltd Classifying method of pattern defect
JPH02138855A (en) * 1988-08-26 1990-05-28 Hitachi Ltd Inspecting method of soldered part by x-ray transmission image, apparatus therefor and packaging structure of electronic component on circuit board
JPH02132353A (en) * 1988-11-14 1990-05-21 Toshiba Corp Mask inspection device
JPH02238313A (en) * 1989-03-13 1990-09-20 Toshiba Corp Mask inspecting apparatus
JPH06118029A (en) * 1992-10-08 1994-04-28 Matsushita Electric Ind Co Ltd X-ray inspecting device and x-ray inspecting method
JPH1194761A (en) * 1997-09-19 1999-04-09 Hitachi Ltd Pattern inspection apparatus
JPH11183393A (en) * 1997-10-13 1999-07-09 Mitsubishi Electric Corp Pattern flaw inspecting device and pattern flaw inspecting method
JP2000035406A (en) * 1998-06-22 2000-02-02 Mitsubishi Electric Inf Technol Center America Inc Object rendering system and method thereof
JP2005207827A (en) * 2004-01-21 2005-08-04 Nagoya Electric Works Co Ltd X-ray inspection device and method, and control program of x-ray inspection device
JP2012088291A (en) * 2010-09-23 2012-05-10 Meiwa E Tec:Kk X-ray inspection apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SUEOKA, K ET AL.: "TSV Diagnostics by X-ray Microscopy", ELECTRONICS PACKAGING TECHNOLOGY CONFERENCE (EPTC), 2011 IEEE 13TH, 7 December 2011 (2011-12-07), pages 695 - 698 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107209130A (en) * 2015-02-09 2017-09-26 株式会社尼康 A kind of image rebuilding method of X-ray measurement equipment, the manufacture method of works, the image reconstruction program of X-ray measurement equipment and X-ray measurement equipment
EP3258251A4 (en) * 2015-02-09 2018-10-17 Nikon Corporation Image reconstruction method for x-ray measurement device, method for manufacturing structure, image reconstruction program for x-ray measurement device, and x-ray measurement device
US20200284735A1 (en) * 2015-02-09 2020-09-10 Nikon Corporation Image reconstruction method for x-ray measuring device, structure manufacturing method, image reconstruction program for x-ray measuring device, and x-ray measuring device
US11860111B2 (en) 2015-02-09 2024-01-02 Nikon Corporation Image reconstruction method for X-ray measuring device, structure manufacturing method, image reconstruction program for X-ray measuring device, and X-ray measuring device

Also Published As

Publication number Publication date
JP2014016239A (en) 2014-01-30

Similar Documents

Publication Publication Date Title
TWI774708B (en) Methods and systems for inspection of semiconductor structures
KR102131897B1 (en) Defect classification using topographical attributes
KR102083706B1 (en) Adaptive sampling for semiconductor inspection recipe creation, defect review, and metrology
TWI669766B (en) Using three-dimensional representations for defect-related applications
KR102132328B1 (en) Defect classification using cad-based context attributes
JP3959355B2 (en) Measuring method of three-dimensional shape of fine pattern
WO2013164971A1 (en) X-ray inspection method and x-ray inspection device
TWI580952B (en) Methods and apparatus for classification of defects using surface height attributes
JP5543872B2 (en) Pattern inspection method and pattern inspection apparatus
TW201602565A (en) Using high resolution full die image data for inspection
WO2010024064A1 (en) Defect check method and device thereof
JP2017516107A (en) Defect sampling for electron beam review based on defect attributes from optical inspection and optical review
US20090084953A1 (en) Method and system for observing a specimen using a scanning electron microscope
WO2014010421A1 (en) X-ray inspection method and x-ray inspection device
TW201925757A (en) Broadband wafer defect detection system and broadband wafer defect detection method
US11454596B2 (en) Orientation determination and mapping by stage rocking electron channeling and imaging reconstruction
TWI388822B (en) Method and system for determining a defect during sample inspection involving charged particle beam imaging
TWI688763B (en) Systems and methods for classification of defects
JP7410164B2 (en) Testing systems and non-transitory computer-readable media
WO2023248583A1 (en) Information processing device, information processing method, and information processing program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13817556

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13817556

Country of ref document: EP

Kind code of ref document: A1