WO2014010304A1 - Ozone-containing liquid generating device and cleaning apparatus provided with same - Google Patents

Ozone-containing liquid generating device and cleaning apparatus provided with same Download PDF

Info

Publication number
WO2014010304A1
WO2014010304A1 PCT/JP2013/063564 JP2013063564W WO2014010304A1 WO 2014010304 A1 WO2014010304 A1 WO 2014010304A1 JP 2013063564 W JP2013063564 W JP 2013063564W WO 2014010304 A1 WO2014010304 A1 WO 2014010304A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
gas
ozone
trap
containing liquid
Prior art date
Application number
PCT/JP2013/063564
Other languages
French (fr)
Japanese (ja)
Inventor
藤田 昇
渡邊 圭一郎
博之 阿久澤
尾崎 正昭
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201380031750.9A priority Critical patent/CN104379244A/en
Publication of WO2014010304A1 publication Critical patent/WO2014010304A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0036Flash degasification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • B01F23/2323Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles by circulating the flow in guiding constructions or conduits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2376Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media characterised by the gas being introduced
    • B01F23/23761Aerating, i.e. introducing oxygen containing gas in liquids
    • B01F23/237613Ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • B01F25/3124Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof characterised by the place of introduction of the main flow
    • B01F25/31242Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof characterised by the place of introduction of the main flow the main flow being injected in the central area of the venturi, creating an aspiration in the circumferential part of the conduit
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • C01B13/11Preparation of ozone by electric discharge
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2201/00Preparation of ozone by electrical discharge
    • C01B2201/60Feed streams for electrical dischargers
    • C01B2201/62Air

Definitions

  • the present invention relates to an ozone-containing liquid generating device that generates an ozone-containing liquid and a cleaning device including the ozone-containing liquid generating device.
  • the ozone-containing liquid generating device includes an ozone generator and a gas-liquid mixer, and generates an ozone-containing liquid by mixing ozone gas generated by the ozone generator with a liquid such as water in the gas-liquid mixer. It is.
  • the generated ozone-containing liquid is widely used for cleaning applications such as sterilization and inactivation of harmful substances.
  • the ozone-containing liquid generating device is provided with a gas-liquid separator that gas-liquid separates the generated ozone-containing liquid.
  • the gas-liquid separator is for separating and removing residual gas containing ozone gas, which could not be dissolved in the liquid in the gas-liquid mixer, from the ozone-containing liquid.
  • the ozone-containing liquid generating apparatus provided with the gas-liquid separator is roughly classified into a so-called non-circulation type and a so-called circulation type.
  • the non-circular ozone-containing liquid generator temporarily stores the residual gas separated from the ozone-containing liquid in the gas-liquid separator in a storage tank or the like, and decomposes the ozone gas contained in the residual gas. Then, the ozone concentration is lowered to such an extent that the human body is not affected at least, and then it is exhausted to the outside.
  • the circulation type ozone-containing liquid generator recovers the residual gas separated from the ozone-containing liquid in the gas-liquid separator by connecting the gas-liquid separator and the ozone generator through a gas reflux path.
  • This is again configured to be supplied as a raw material gas to the ozone generator.
  • Patent Document 1 discloses an ozone water generating device classified as the circulation type ozone-containing liquid generating device.
  • This circulation type ozone-containing liquid generation device not only has the advantage that a mechanism for decomposing ozone gas is unnecessary, but also recycles ozone gas. Utilization can increase the utilization efficiency of ozone gas or increase the ozone concentration in the generated ozone-containing liquid, so that the advantage of improving the generation efficiency of the ozone-containing liquid can be obtained.
  • the residual gas flowing through the gas reflux path contains liquid vapor for dissolving ozone in a state close to saturation. For this reason, when the residual gas comes into contact with the flow path wall of the gas reflux path, condensation occurs, and the dew condensation liquid adheres to the flow path wall.
  • the condensed liquid adhering to the flow path wall is pushed downstream by the residual gas flowing through the gas reflux path, flows into the ozone generator, and adheres to the ozone generating electrode of the ozone generator.
  • Patent Document 1 describes that a dehumidifier can be one that adsorbs and removes moisture with a desiccant such as silica gel, or one that actively cools residual gas and separates and removes moisture. Yes.
  • the present invention has been made to solve the above-mentioned problems, and can prevent the deterioration of performance and the occurrence of failure, can be manufactured at a low cost and in a small size, and can further reduce the running cost. It is an object of the present invention to provide a generation device and a cleaning device including the same.
  • An ozone-containing liquid generating apparatus generates an ozone-containing liquid by containing ozone generating means for generating ozone using a gas containing oxygen and ozone generated by the ozone generating means.
  • Gas-liquid separation means for temporarily storing the ozone-containing liquid and gas-liquid separation of the ozone-containing liquid, and an ozone-containing liquid lead-out path for deriving the ozone-containing liquid after gas-liquid separation by the gas-liquid separation means to the outside
  • a gas reflux path for refluxing the gas containing ozone separated from the ozone-containing liquid by the gas-liquid separation means to the ozone generation means, and a liquid trap provided on the gas reflux path.
  • the ozone-containing liquid is a dissolved ozone liquid in a state where ozone is dissolved in a solvent, an ozone gas-containing liquid in which ozone is contained in a liquid state in a gaseous state, ozone containing both dissolved ozone and gaseous ozone.
  • a solvent in which ozone is dissolved or a liquid in which ozone is contained in a gaseous state water is typically exemplified, but the invention is not limited thereto.
  • the liquid trap preferably has a trap chamber having a cross-sectional area larger than the cross-sectional area of the gas reflux path.
  • the liquid captured by the liquid trap is collected by the gas-liquid separation means.
  • the liquid trap is preferably provided integrally with the gas-liquid separation means.
  • the liquid trap has a trap chamber having a cross-sectional area larger than the cross-sectional area of the gas reflux path, and is positioned directly above the gas-liquid separation means.
  • the gas-liquid separation means is provided integrally with the gas-liquid separation means, and the gas-liquid separation means has a gas-liquid separation chamber for temporarily storing the ozone-containing liquid and separating it.
  • the gas recirculation path in which the bottom of the trap chamber is located on the gas-liquid separation means side when viewed from the liquid trap so that the liquid trapped by the liquid trap is recovered by the gas-liquid separation means It is preferable to have an inclined shape inclined toward the connection end side with respect to the liquid trap.
  • the gas-liquid separation chamber and the trap chamber are partitioned by a partition wall formed with an opening as the gas reflux path located on the gas-liquid separation means side when viewed from the liquid trap.
  • the gas-liquid separation means and the liquid trap integrated together define the first container member having an upper surface opening that defines the gas-liquid separation chamber, the partition member constituting the partition, and the trap chamber. It is preferable that the first container member, the partition wall member, and the second container member are stacked in this order from the lower side to the upper side.
  • the gas introduction path includes an intake port for introducing a gas containing oxygen, and a gas containing oxygen only in a direction from the side where the intake port is located toward the side where the ozone generating means is located.
  • a flow restriction means that enables the flow of the gas, the connection end of the gas reflux path located on the ozone generating means side when viewed from the liquid trap is directly above the opening. It is preferable that the flow restricting means is provided at a position immediately above the opening so as to communicate with the trap chamber.
  • the connection end to the liquid trap of the gas reflux path located on the ozone generating means side when viewed from the liquid trap defines the trap chamber. It is preferable to be provided so as to protrude from the inner wall surface of the trap toward the inside of the trap chamber.
  • the ozone-containing liquid generating means is constituted by a gas-liquid mixing means for containing ozone in a liquid using the venturi effect.
  • the cleaning device according to the present invention includes the ozone-containing liquid generating device according to the present invention described above.
  • ADVANTAGE OF THE INVENTION can be set as the ozone containing liquid production
  • FIG. 2 is a schematic cross-sectional view in the vicinity of a liquid trap shown in FIG. 1. It is a schematic cross section which shows the other structural example of the liquid trap shown in FIG. It is a figure which shows schematic structure of the ozone containing liquid production
  • FIG. 6 is a schematic cross-sectional view in the vicinity of the liquid trap shown in FIG. 5. It is a graph which shows the change of the performance with time of the ozone containing liquid production
  • FIG. 9 is a schematic plan view when the bottom surface of the trap chamber of the liquid trap shown in FIG. 8 is viewed from above.
  • FIG. 1 is a diagram showing a schematic configuration of an ozone-containing liquid generation apparatus according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic cross-sectional view of the gas-liquid mixer shown in FIG.
  • generation apparatus 1A in this Embodiment and the detailed structure of the gas-liquid mixer 20 are demonstrated.
  • an ozone-containing liquid generating apparatus 1A in the present embodiment includes an ozone generator 10 as an ozone generating means, a gas-liquid mixer 20 as an ozone-containing liquid generating means, and a gas-liquid separating means.
  • Gas-liquid separator 30, liquid trap 40, liquid introduction path L1, ozone-containing liquid conveyance path L2, ozone-containing liquid outlet path L3, gas introduction path L4, ozone conveyance path L5, and gas reflux path L6 is mainly provided.
  • the liquid introduction path L1 has a liquid supply port 2 at one end and is connected to the gas-liquid mixer 20 at the other end.
  • the liquid supply port 2 provided at one end of the liquid introduction path L1 is connected to a water supply facility that is an external liquid supply source, whereby the liquid introduction path L1 receives supply of tap water as a liquid from the water supply facility.
  • the liquid introduction path L1 that receives the supply of tap water through the liquid supply port 2 introduces the supplied tap water into the gas-liquid mixer 20 from the other end.
  • the gas introduction path L4 has an intake port 4 at one end and is connected to the ozone generator 10 at the other end. From the intake port 4 provided at one end of the gas introduction path L4, air that is a gas containing oxygen serving as a raw material gas for generating ozone gas is sucked, and the gas introduction path L4 is supplied with air from the outside. Receive. The gas introduction path L4 that has been supplied with air through the intake port 4 introduces the supplied air into the ozone generator 10 from the other end.
  • the ozone transport path L5 has one end connected to the ozone generator 10 and the other end connected to the gas-liquid mixer 20.
  • a gas containing ozone gas generated in the ozone generator 10 is introduced from the one end of the ozone transport path L5, whereby the ozone transport path L5 is supplied with the gas from the ozone generator 10.
  • the ozone transport path L5 that has been supplied with a gas containing ozone gas through the one end introduces the supplied gas into the gas-liquid mixer 20 from the other end.
  • the ozone-containing liquid conveyance path L2 has one end connected to the gas-liquid mixer 20 and the other end connected to the gas-liquid separator 30. Ozone water as an ozone-containing liquid generated in the gas-liquid mixer 20 is introduced from the one end of the ozone-containing liquid conveyance path L2, and the ozone-containing liquid conveyance path L2 is thus supplied from the gas-liquid mixer 20 to the ozone. Get a water supply.
  • the ozone-containing liquid conveyance path L2 that has been supplied with ozone water through the one end introduces the supplied ozone water into the gas-liquid separator 30 from the other end.
  • One end of the ozone-containing liquid lead-out path L3 is connected to the gas-liquid separator 30, and the discharge port 3 is provided at the other end.
  • Ozone water after gas-liquid separation is performed in the gas-liquid separator 30 is introduced from the one end of the ozone-containing liquid lead-out path L3, whereby the ozone-containing liquid lead-out path L3 is connected to the gas-liquid separator 30 from the gas-liquid separator 30.
  • the ozone-containing liquid lead-out path L3 that has received the supply of ozone water after gas-liquid separation through the one end directs the supplied ozone water after separation from the discharge port 3 provided at the other end to the outside. To discharge.
  • the gas reflux path L6 has one end connected to the gas-liquid separator 30 and the other end connected to the ozone generator 10. From the one end of the gas reflux path L6, residual gas, which is a gas containing ozone gas separated from ozone water by gas-liquid separation in the gas-liquid separator 30, is introduced. Residual gas is supplied from the gas-liquid separator 30. The gas recirculation path L6 that has been supplied with the residual gas through the one end returns the supplied residual gas to the ozone generator 10 as a raw material gas from the other end.
  • the ozone water that has been subjected to gas-liquid separation in the gas-liquid separator 30 and the ozone water that has been separated from the gas-liquid separation discharged from the discharge port 3 are not distinguished from each other. This is shown using.
  • the ozone generator 10 generates ozone gas from the raw material gas introduced through the gas introduction path L4.
  • a photochemical reaction method a radiation irradiation method, and a discharge method
  • a discharge method is selected and used. Is done. There are mainly a discharge method using a silent discharge method and a corona discharge method, and any of them can be used.
  • a silent discharge type is used as the ozone generator 10.
  • the silent discharge type ozone generator 10 generates a silent discharge by applying an AC voltage between a pair of ozone generation electrodes sandwiching an insulator, and passes a gas containing oxygen at atmospheric pressure or higher between the ozone generation electrodes. Thus, ozone is generated.
  • the gas-liquid mixer 20 generates ozone water 100 as an ozone-containing liquid from tap water as a liquid introduced through the liquid introduction path L1 and a gas containing ozone gas introduced through the ozone transport path L5. Is to be generated.
  • a venturi-type gas-liquid mixing means capable of containing a gas containing ozone gas in tap water by utilizing the Venturi effect is employed. .
  • the gas-liquid mixer 20 includes a large-diameter channel portion 21 into which liquid is introduced, and a liquid that is located downstream of the large-diameter channel portion 21 and flows through the large-diameter channel portion 21.
  • the gas-liquid mixer 20 has a gas introduction passage portion 24 into which gas is introduced, and the gas introduction passage portion 24 communicates with the small-diameter passage portion 22 described above.
  • the other end of the liquid introduction path L1 described above is connected to the large diameter flow path section 21, and the other end of the ozone transport path L5 described above is connected to the gas introduction path section 24.
  • the one end of the ozone-containing liquid conveyance path L2 is connected to the conical channel section 23.
  • the tap water flowing through the large-diameter channel portion 21 is smaller in diameter than the large-diameter channel portion 21. 22 is introduced. Therefore, as is known from Bernoulli's theorem, in the small-diameter channel portion 22, the flow rate of tap water increases and the static pressure decreases.
  • the static pressure of tap water flowing through the small-diameter channel portion 22 becomes negative, and the gas containing ozone gas is sucked into the small-diameter channel portion 22 from the ozone transport path L5 through the gas introduction passage portion 24. Is done. Therefore, in the small-diameter channel portion 22, the gas containing the sucked ozone gas is mixed into the tap water, and the mixed ozone gas is dissolved in the tap water. Thereby, the ozone water 100 is generated in the small-diameter channel portion 22.
  • the mixed ozone gas is completely dissolved in the tap water.
  • the gas containing ozone gas exists in the liquid state in a part of bubbles. Will do.
  • the generated ozone water 100 is introduced into the conical channel portion 23, and then discharged from the conical channel portion 23 and introduced into the ozone-containing liquid conveyance path L2.
  • the gas-liquid mixer 20 which is a venturi-type gas-liquid mixing means
  • the gas containing the ozone gas is self-primed by the action of the gas-liquid mixer 20 and mixed into the tap water. Therefore, power for mixing the gas into tap water becomes unnecessary, and not only the running cost can be reduced, but also the manufacturing cost can be reduced with the simplification of the configuration.
  • the gas-liquid separator 30 temporarily stores the ozone water 100 and gas-liquid separates it, and includes a container that can store the ozone water 100 and residual gas.
  • the gas-liquid separator 30 residual gas containing ozone gas that has not been dissolved in the tap water in the gas-liquid mixer 20 is separated from the ozone water 100.
  • the residual gas floats on the liquid surface based on the specific gravity difference, is separated from the ozone water 100, and is stored above the gas-liquid separator 30. Therefore, only ozone water 100 that does not contain residual gas is stored below the gas-liquid separator 30, and the gas-liquid separator 30 is connected to the discharge port 3 via the ozone-containing liquid lead-out path L3. Only ozone water 100 that does not contain residual gas is discharged.
  • one end of the above-described gas reflux path L6 is connected above the gas-liquid separator 30.
  • the exhaust port provided in the container of the gas-liquid separator 30 connected to the gas reflux path L6 is higher in the vertical direction than the exhaust port of the gas-liquid separator 30 connected to the ozone-containing liquid lead-out path L3 (that is, It is arranged at a high place. Thereby, the residual gas containing the ozone gas stored in the gas-liquid separator 30 is discharged
  • the residual gas containing the ozone gas that has not been dissolved in the tap water in the gas-liquid mixer 20 is completely separated from the ozone water 100.
  • the gas containing the ozone gas contained in the gas does not necessarily need to be separated from the ozone water 100, and the residual gas containing the ozone gas contained in the ozone water 100 as relatively large bubbles without being sufficiently refined. Only this may be separated from the ozone water 100.
  • the liquid trap 40 is provided on the gas reflux path L6 described above.
  • the liquid trap 40 is for capturing the condensed liquid generated in the gas reflux path L6.
  • the liquid trap 40 is provided at a position in the middle of the gas reflux path L6. The details of the liquid trap 40 will be described later.
  • a check valve 5 is provided in the gas introduction path L4.
  • the check valve 5 is a flow restriction unit that restricts the flow direction of the fluid in one direction, and opens when the pressure on the inlet 4 side of the gas introduction path L4 is higher than the pressure on the ozone generator 10 side, Close when low.
  • the gas introduction path L4 circulates the air as the raw material gas only in the direction from the inlet 4 side toward the ozone generator 10 side. Therefore, even if the pressure on the ozone generator 10 side of the gas introduction path L4 rises higher than the pressure on the intake port 4 side, the ozone gas flows backward and is discharged from the intake port 4 to the outside. Can be prevented and safety can be improved.
  • a flow rate control valve capable of controlling the flow rate of the air as the raw material gas may be provided in the gas introduction path L4 as a flow restricting means.
  • the flow rate control valve includes, for example, a valve body capable of closing the gas introduction path L4. By adjusting the valve opening amount of the valve body, the flow control valve serves as a raw material gas from the intake port 4 side toward the ozone generator 10 side.
  • the air flow rate can be adjusted. More specifically, a mechanical type that does not require power, an electronic electromagnetic valve that uses power, or the like can be used as the flow restricting means.
  • the tap water introduced into the liquid introduction path L1 from the water supply facility which is an external liquid supply source through the liquid supply port 2 is introduced into the gas-liquid mixer 20 and flows through the gas-liquid mixer 20. Accordingly, due to the self-priming action of the gas-liquid mixer 20 described above, air as a raw material gas is stored in the gas-liquid separator 30 via the intake port 4 and the gas introduction path L4 and also via the gas reflux path L6. The resulting residual gas is introduced into the ozone generator 10 as a raw material gas. Thereby, in the ozone generator 10, the gas containing ozone gas is generated, and the gas containing the generated ozone gas is supplied to the gas-liquid mixer 20 via the ozone conveyance path L5.
  • the gas containing the supplied ozone gas is mixed into the tap water in the gas-liquid mixer 20, whereby the ozone water 100 is generated in the gas-liquid mixer 20.
  • the generated ozone water 100 is introduced into the gas-liquid separator 30 via the ozone-containing liquid conveyance path L2, and the gas-liquid separation is performed in the gas-liquid separator 30, and the residual gas contained in the ozone water 100 is removed. After being separated, it is introduced into the ozone-containing liquid lead-out path L3 and discharged toward the outside through the discharge port 3.
  • the residual gas separated from the ozone water 100 by the gas-liquid separator 30 is recovered via the gas recirculation path L6 and sent again to the ozone generator 10 via the gas introduction path L4.
  • the problem is solved by providing the liquid trap 40 on the gas reflux path L6 as described above.
  • FIG. 3 is a schematic cross-sectional view of the vicinity of the liquid trap shown in FIG.
  • the detailed configuration of the liquid trap 40 and the reason why the above-described problem can be solved will be described with reference to FIG.
  • the liquid trap 40 is connected to a gas reflux path L6 located on the gas-liquid separator 30 side via an inlet-side opening 43, and is also located on the ozone generator 10 side. It is comprised by the container 41 connected to L6 through the exit side opening part 44,
  • the trap chamber 42 is provided in the inside.
  • the trap chamber 42 is configured by a space having a cross-sectional area larger than the cross-sectional area of the gas recirculation path L6, and has a storage part 42a for storing ozone water 100 as a dew condensation liquid in the lower part thereof.
  • the droplet 101 of the ozone water 100 as the dew condensation liquid generated in the gas recirculation path L6 located on the gas-liquid separator 30 side is pushed out by the residual gas flowing through the gas recirculation path L6, so that the residual gas and the inlet side
  • the liquid flows into the trap chamber 42 of the liquid trap 40 through the opening 43.
  • the droplet 101 that has flowed into the trap chamber 42 falls inside the trap chamber 42, and is received and stored by a storage portion 42 a provided in the lower portion of the trap chamber 42.
  • the residual gas that has flowed into the trap chamber 42 flows through the trap chamber 42 and flows out through the outlet opening 44 to the gas reflux path L6 located on the ozone generator 10 side.
  • the residual gas that has flowed out of the trap chamber 42 and has flowed into the gas recirculation path L6 located on the ozone generator 10 side has been removed after the ozone water 100 as the dew condensation liquid has been removed by the action of the liquid trap 40. Therefore, the droplet 101 described above is hardly included.
  • the ozone water 100 as the dew condensation liquid is captured by the liquid trap 40, and therefore the ozone water 100 as the dew condensation liquid may flow into the ozone generator 10. It can be effectively prevented. Therefore, by using the ozone-containing liquid generating apparatus 1A in the present embodiment, performance deterioration and failure of the ozone generator 10 can be suppressed, and stable performance can be exhibited over a long period of time.
  • the liquid trap 40 described above can be realized with a very simple configuration in which the container 41 having the trap chamber 42 provided therein is installed in the middle of the gas reflux path L6, by adopting the above configuration, Ozone-containing liquid generation that can be manufactured at a lower cost and in a smaller size compared to the case where a separate desiccant is provided or a cooling means that actively cools residual gas is provided, and the running cost can be reduced. It can be a device.
  • the liquid trap 40 including the trap chamber 42 having a cross-sectional area larger than the cross-sectional area of the gas reflux path L6 as described above the area in contact with the residual gas on the flow path wall also increases. Therefore, the generation of the dew condensation liquid is also promoted, and more water vapor is removed from the residual gas. Therefore, by adopting the above configuration, it is possible to suppress the performance deterioration and failure of the ozone generator 10 in this respect as well.
  • FIG. 4 is a schematic cross-sectional view showing another configuration example of the liquid trap shown in FIG. Next, another configuration example of the liquid trap 40 will be described with reference to FIG.
  • the end of the gas reflux path L6 located on the ozone generator 10 side on the liquid trap 40 side is provided so as to protrude into the trap chamber 42, Thereby, the outlet side opening 44 of the liquid trap 40 is disposed inside the trap chamber 42 rather than the inner wall surface of the container 41 as a flow path wall.
  • the exit side opening part 44 can be kept away from the inner wall surface of the container 41, compared with the case where it is set as the liquid trap shown in FIG. 3 mentioned above, the ozone water 100 as a dew condensation liquid is ozone. It is possible to more reliably prevent the gas from flowing into the gas recirculation path L6 located on the generator 10 side. Therefore, when the said structure is employ
  • the apparatus 1A is configured to evaporate naturally when the apparatus 1A is not operating, but may be configured to return the ozone water 100 as the condensed liquid captured by the liquid trap 40 to the gas-liquid separator 30. .
  • the inlet side opening 43 provided in the container 41 is positioned lower than the outlet side opening 44 provided in the container 41 while the liquid trap 40 is horizontally disposed. If the water level of the ozone water 100 as the dew condensation liquid rises, it flows from the inlet side opening 43 into the gas reflux path L6 located on the gas-liquid separator 30 side. Since it is collected by the gas-liquid separator 30, it is possible to prevent the ozone water 100 as the dew condensation liquid from flowing out from the outlet side opening 44.
  • liquid trap 40 having the configuration shown in FIGS. 3 and 4 is tilted so that the inlet-side opening 43 is positioned lower than the outlet-side opening 44, or is erected along the vertical direction. It is good also as arranging vertically so that it may become.
  • FIG. 5 is a diagram showing a schematic configuration of the ozone-containing liquid generation apparatus according to Embodiment 2 of the present invention
  • FIG. 6 is a schematic cross-sectional view in the vicinity of the liquid trap shown in FIG.
  • FIG. 5 and FIG. 6 the schematic structure of the ozone containing liquid production
  • the liquid trap 40 is provided at the end of the gas reflux path L6 on the gas-liquid separator 30 side. In the point provided integrally, it differs from the ozone containing liquid production
  • the container 41 of the liquid trap 40 is integrally provided on the upper part of the container 31 of the gas-liquid separator 30.
  • the trap chamber 42 and the space inside the gas-liquid separator 30 are partitioned by the partition wall 50 positioned between the liquid trap 40 and the gas-liquid separator 30.
  • a through hole that communicates the trap chamber 42 and the space inside the gas-liquid separator 30 is provided at a predetermined position of the partition wall 50, and an inlet side opening 43 of the liquid trap 40 is configured by the through hole. ing.
  • the end of the gas reflux path L6 on the liquid trap 40 side protrudes into the trap chamber 42 as in the case of FIG. 4 described above.
  • the outlet side opening 44 of the liquid trap 40 is disposed inside the trap chamber 42 rather than the inner wall surface of the container 41 serving as a flow path wall.
  • the residual gas flows from the gas-liquid separator 30 into the trap chamber 42 through the inlet-side opening 43, whereby the droplet 101 of the ozone water 100 as the dew condensation liquid generated on the flow path wall of the container 41. Falls inside the trap chamber 42, is received by the storage portion 42 a provided in the lower portion of the trap chamber 42, and then returned to the gas-liquid separator 30 through the inlet-side opening 43.
  • the residual gas that has flowed into the trap chamber 42 flows through the trap chamber 42 and flows out to the gas reflux path L6 via the outlet side opening 44.
  • the residual gas flowing into the gas recirculation path L6 by flowing out from the trap chamber 42 is after the ozone water 100 as the dew condensation liquid is removed by the action of the liquid trap 40.
  • the droplet 101 is hardly contained.
  • the same effect as that described in the first embodiment can be obtained. Furthermore, by adopting the above configuration, it is possible to obtain an effect that the ozone water 100 as the condensed liquid captured by the liquid trap 40 can be easily configured to be collected by the gas-liquid separator 30. In addition, the number of parts can be reduced and the manufacturing cost can be reduced.
  • the ozone-containing liquid generating apparatus 1B in the present embodiment described above and an ozone-containing liquid generating apparatus having a different configuration from this are actually manufactured as examples and comparative examples, respectively, and their performance over time. A verification test that verifies the change in the above will be described.
  • generation apparatus which concerns on a comparative example is the ozone containing liquid production
  • the ozone-containing liquid generating device according to the example and the comparative example is intermittently repeatedly operated, and when the number of aging times reaches a predetermined number (0 times, 10000 times, 20000 times), from the discharge port.
  • the change in performance over time was confirmed by measuring the ozone concentration of the discharged ozone water.
  • FIG. 7 is a graph showing a change in performance over time of the ozone-containing liquid generating apparatus according to the example and the comparative example.
  • the horizontal axis represents the number of aging (times), and the vertical axis represents the ozone concentration (mg / L).
  • the ozone concentration of ozone water discharged from the ozone-containing liquid generating apparatus according to the comparative example was about 0.8 mg / L in the initial stage, but about 0.55 mg at the time when the number of aging times was 10,000. / L, and further decreases to about 0.5 mg / L at the time of 20,000 times of aging.
  • the ozone concentration of the ozone water discharged from the ozone-containing liquid generating apparatus according to the example was about 0.8 mg / L at the initial stage, but at the time of 10000 times and 20000 times. In any case, it is reduced only to about 0.7 mg / L.
  • the reason for the difference in the change in performance over time in the ozone-containing liquid generating apparatus according to the example and the comparative example is that the liquid trap is uniquely provided in the ozone-containing liquid generating apparatus according to the example. Therefore, it is considered that the liquid trap can suppress the ozone water as the dew condensation liquid generated in the gas reflux path from flowing into the ozone generator.
  • FIG. 8 is a schematic cross-sectional view of the vicinity of the liquid trap of the ozone-containing liquid generating apparatus according to the modification based on this embodiment
  • FIG. 9 is a top view of the bottom surface of the trap chamber of the liquid trap shown in FIG. FIG.
  • generation apparatus which concerns on this modification is demonstrated.
  • the ozone-containing liquid generating apparatus according to the present modification is the ozone-containing liquid generating in the present embodiment described above in that the gas-liquid separator 30 and the liquid trap 40 are integrally configured. It is common with the apparatus 1B.
  • the ozone-containing liquid generating apparatus according to this modification is different from the ozone-containing liquid generating apparatus 1B in the present embodiment described above in the specific structure near the portion where the liquid trap 40 is provided.
  • the integrated gas-liquid separator 30 and the liquid trap 40 include a first container member having an upper surface opening formed of a container 31, and a partition wall 50. 3 and a second container member having a lower surface opening made of the container 41.
  • the first container member, the partition member and the second container member are arranged in this order from the bottom to the top. It is formed by being laminated.
  • the gas-liquid separation chamber which is the space inside the gas-liquid separator 30 is defined by the container 31 and the partition wall 50.
  • the trap chamber 42 that is the space inside the liquid trap 40 is defined by the partition wall 50 and the container 41, and in particular, the bottom surface of the trap chamber 42 is defined by the upper surface of the partition wall 50.
  • the gas-liquid separation chamber and the trap chamber 42 are hermetically sealed to the outside between the first container member and the partition member and between the partition member and the second container member.
  • a seal member such as an O-ring is appropriately interposed.
  • the liquid trap 40 is provided integrally with the gas-liquid separator 30 at a position immediately above the gas-liquid separator 30, and these can be integrated with a simple configuration. It becomes possible. Therefore, the assembling work at the time of manufacture is facilitated, and the effect of further reducing the manufacturing cost can be obtained.
  • the entrance side opening 43 is provided in the predetermined position of the partition 50 by providing a through-hole.
  • the inlet-side opening 43 corresponds to the gas reflux path L6 located on the gas-liquid separator 30 side when viewed from the liquid trap 40.
  • the upper surface of the partition wall 50 which is the bottom surface of the trap chamber 42, is located at the above-described inlet-side opening 43. It is comprised by the inclined surface 51 which inclines toward the part to do.
  • the droplet 101 of the ozone water 100 as the condensed liquid captured by the liquid trap 40 is collected in the inlet-side opening 43 through the inclined surface 51.
  • the ozone water 100 can be efficiently recovered by the gas-liquid separator 30. 8 and 9, the direction of the flow of the ozone water 100 that flows along the inclined surface 51 is schematically represented by broken-line arrows.
  • the gas introduction path L4 in the ozone-containing liquid generating apparatus according to this modification, the gas introduction path L4, the intake port 4 provided in the gas introduction path L4, and the check valve as the flow restriction means 5 are disposed at positions immediately above the inlet side opening 43 described above.
  • the gas introduction path L4 can be further integrated with the integrated gas-liquid separator 30 and liquid trap 40, and the physique can be reduced after integration. Therefore, the apparatus configuration can be further simplified and downsized.
  • the venturi-type gas-liquid mixer 20 is used as the ozone-containing liquid generating means, whereby the self-priming of the gas-liquid mixer 20 is performed.
  • a gas-liquid mixing means having no self-priming action as the ozone-containing liquid generating means.
  • a means for forcibly pumping a gas such as a pump may be provided in the gas introduction path L4, the ozone transport path L5, and the gas reflux path L6 as necessary.
  • the gas-liquid separator 30 provided with the container is provided as the gas-liquid separating means
  • the gas-liquid separation is possible.
  • Any gas-liquid separating means can be used as the gas-liquid separating means.
  • a part of the piping connecting the ozone-containing liquid conveyance path L2 and the ozone-containing liquid lead-out path L3 is expanded and the gas-liquid separating means is used. It is also possible.
  • this invention is made into ozone containing liquid production
  • the present invention may be applied to a cleaning device configured to be integrated with a normal water supply facility in advance.
  • the present invention may be applied to an ozone-containing liquid generating device that can be attached as a cleaning unit to other liquid supply equipment other than normal water supply equipment, or other liquid supply other than normal water supply equipment
  • the present invention may be applied to a cleaning device configured to be integrated with equipment.
  • the above-described cleaning device it is used for cleaning water facilities provided in kitchens, bathrooms, toilets, washrooms, etc., pipes attached to dwelling units, factories, etc., or mechanical equipment installed in factories, etc. Cleaning equipment, parts cleaning equipment as production equipment installed in factories, cleaning equipment for various products and products including foodstuffs, various cleaning equipment used in medical facilities, hand washers and face washers, etc. And various cleaning devices for the purpose of sterilization, deodorization, bleaching and the like that are symmetrical about the floor or wall surface of the building.
  • 1A, 1B Ozone-containing liquid generating device 2 liquid inlet, 3 outlet, 4 air inlet, 5 check valve, 10 ozone generator, 20 gas-liquid mixer, 21 large-diameter channel, 22 small-diameter channel, 23, conical channel section, 24 gas introduction passage section, 30 gas-liquid separator, 31 container (first container member), 40 liquid trap, 41 container (second container member), 42 trap chamber, 42a storage section, 43 Inlet side opening, 44 Outlet side opening, 50 partition wall (partition member), 51 inclined surface, 100 ozone water, 101 droplet, L1 liquid introduction path, L2 ozone-containing liquid transport path, L3 ozone-containing liquid lead-out path, L4 Gas introduction path, L5 ozone transport path, L6 gas reflux path.

Abstract

An ozone-containing liquid generating device (1A) is provided with: an ozone generator (10) for generating ozone; a gas-liquid mixer (20) for producing ozone water (100) by having water contain the generated ozone; a gas introduction path (L4) for introducing a starting material gas into the ozone generator (10); a liquid introduction path (L1) for introducing water into the gas-liquid mixer (20); a gas-liquid separator (30) for separating the produced ozone water (100) into a gas and a liquid; an ozone-containing liquid lead-out path (L3) for leading out the ozone water (100) after the gas-liquid separation to the outside; a gas return path (L6) for returning the residual gas separated from the ozone water (100) to the ozone generator (10); and a liquid trap (40) that is provided on the gas return path (L6).

Description

オゾン含有液生成装置およびこれを備えた洗浄装置Ozone-containing liquid generating apparatus and cleaning apparatus equipped with the same
 本発明は、オゾン含有液を生成するオゾン含有液生成装置および当該オゾン含有液生成装置を備えた洗浄装置に関する。 The present invention relates to an ozone-containing liquid generating device that generates an ozone-containing liquid and a cleaning device including the ozone-containing liquid generating device.
 オゾン含有液生成装置は、オゾン発生器と気液混合器とを備え、オゾン発生器で発生させたオゾンガスを気液混合器にて水等の液体に混合させることでオゾン含有液を生成するものである。生成されたオゾン含有液は、たとえば殺菌や有害物質の不活化といった洗浄用途に広く利用される。 The ozone-containing liquid generating device includes an ozone generator and a gas-liquid mixer, and generates an ozone-containing liquid by mixing ozone gas generated by the ozone generator with a liquid such as water in the gas-liquid mixer. It is. The generated ozone-containing liquid is widely used for cleaning applications such as sterilization and inactivation of harmful substances.
 通常、オゾン含有液生成装置には、生成したオゾン含有液を気液分離する気液分離器が付設される。当該気液分離器は、気液混合器において液体に溶解させることができなかったオゾンガスを含む残留ガスをオゾン含有液から分離して除去するためのものである。当該気液分離器を備えたオゾン含有液生成装置は、非循環型と呼ばれるものと、循環型と呼ばれるものとに大別される。 Usually, the ozone-containing liquid generating device is provided with a gas-liquid separator that gas-liquid separates the generated ozone-containing liquid. The gas-liquid separator is for separating and removing residual gas containing ozone gas, which could not be dissolved in the liquid in the gas-liquid mixer, from the ozone-containing liquid. The ozone-containing liquid generating apparatus provided with the gas-liquid separator is roughly classified into a so-called non-circulation type and a so-called circulation type.
 非循環型のオゾン含有液生成装置は、気液分離器においてオゾン含有液から分離された残留ガスを貯留槽等の内部において一時的に貯留し、当該残留ガスに含まれたオゾンガスを分解処理して少なくとも人体に影響がない程度にまでそのオゾン濃度が下げられた後にこれを外部に向けて排気するように構成されたものである。 The non-circular ozone-containing liquid generator temporarily stores the residual gas separated from the ozone-containing liquid in the gas-liquid separator in a storage tank or the like, and decomposes the ozone gas contained in the residual gas. Then, the ozone concentration is lowered to such an extent that the human body is not affected at least, and then it is exhausted to the outside.
 一方、循環型のオゾン含有液生成装置は、気液分離器とオゾン発生器とを気体還流路を介して接続することにより、気液分離器においてオゾン含有液から分離された残留ガスを回収し、これを再度オゾン発生器に原料ガスとして供給するように構成されたものである。たとえば、特開平2-207892号公報(特許文献1)には、当該循環型のオゾン含有液生成装置に分類されるオゾン水生成装置が開示されている。 On the other hand, the circulation type ozone-containing liquid generator recovers the residual gas separated from the ozone-containing liquid in the gas-liquid separator by connecting the gas-liquid separator and the ozone generator through a gas reflux path. This is again configured to be supplied as a raw material gas to the ozone generator. For example, Japanese Patent Laid-Open No. 2-207892 (Patent Document 1) discloses an ozone water generating device classified as the circulation type ozone-containing liquid generating device.
 この循環型のオゾン含有液生成装置は、上述した非循環型のオゾン含有液生成装置に比べ、オゾンガスの分解処理を行なうための機構が不要になるといったメリットが得られるばかりでなく、オゾンガスを再利用することでオゾンガスの利用効率を高めたり、生成されるオゾン含有液におけるオゾン濃度を高めたりすることができるため、オゾン含有液の生成効率が向上するといったメリットも得られる。 This circulation type ozone-containing liquid generation device not only has the advantage that a mechanism for decomposing ozone gas is unnecessary, but also recycles ozone gas. Utilization can increase the utilization efficiency of ozone gas or increase the ozone concentration in the generated ozone-containing liquid, so that the advantage of improving the generation efficiency of the ozone-containing liquid can be obtained.
特開平2-207892号公報Japanese Patent Laid-Open No. 2-207892
 ここで、上述した循環型のオゾン含有液生成装置とした場合には、気体還流路を通流する残留ガスが、オゾンを溶解させるための液体の蒸気を飽和に近い状態で含有したものとなるため、当該残留ガスが気体還流路の流路壁と接触することによって結露し、流路壁に結露液が付着することとなってしまう。流路壁に付着した結露液は、気体還流路を通流する上記残留ガスによって下流側に押し出されてオゾン発生器に流入し、オゾン発生器のオゾン発生電極に付着することになる。 Here, in the case of the circulation type ozone-containing liquid generating device described above, the residual gas flowing through the gas reflux path contains liquid vapor for dissolving ozone in a state close to saturation. For this reason, when the residual gas comes into contact with the flow path wall of the gas reflux path, condensation occurs, and the dew condensation liquid adheres to the flow path wall. The condensed liquid adhering to the flow path wall is pushed downstream by the residual gas flowing through the gas reflux path, flows into the ozone generator, and adheres to the ozone generating electrode of the ozone generator.
 当該事象が生じることにより、循環型のオゾン含有液生成装置においては、オゾン発生電極における放電が不安定となったり、オゾン発生電極自体が当該結露液によって酸化されてしまったりし、結果としてオゾン発生器の性能の劣化や故障に繋がってしまうという問題があった。 Due to the occurrence of such an event, in the circulation type ozone-containing liquid generator, the discharge at the ozone generating electrode becomes unstable or the ozone generating electrode itself is oxidized by the condensed liquid, resulting in the generation of ozone. There was a problem that it would lead to deterioration or failure of the performance of the vessel.
 これに関し、上記特許文献1に開示のオゾン水生成装置にあっては、上記気体還流路上に除湿器が設置されており、これによりオゾン発生器に還流される残留ガスが乾燥された後のものとなるように構成されることで、上述した問題の解決が図られている。なお、上記特許文献1には、除湿器として、シリカゲル等の乾燥剤によって水分を吸着除去するものか、あるいは残留ガスを積極的に冷却して水分を分離除去するものが使用できると記載されている。 In this regard, in the ozone water generator disclosed in Patent Document 1, a dehumidifier is installed on the gas reflux path, and the residual gas returned to the ozone generator is thereby dried. The above-described problem is solved by being configured as follows. Patent Document 1 describes that a dehumidifier can be one that adsorbs and removes moisture with a desiccant such as silica gel, or one that actively cools residual gas and separates and removes moisture. Yes.
 しかしながら、これら除湿器は、いずれも複雑かつ大掛かりな構成のものであるため、当該構成を採用した場合には、オゾン含有液生成装置が全体として大型化してしまうことが避けられないといった問題や、製造コストおよびランニングコスト等が増大してしまうといった問題が別途生じてしまうことになる。 However, since these dehumidifiers are all of a complicated and large-scale configuration, when adopting the configuration, the problem that the ozone-containing liquid generation device is inevitably enlarged as a whole, The problem that manufacturing cost, running cost, etc. will increase will arise separately.
 したがって、本発明は、上述した問題点を解決すべくなされたものであり、性能の劣化や故障の発生が防止でき、低コストでかつ小型に製作でき、さらにはランニングコストが削減できるオゾン含有液生成装置およびこれを備えた洗浄装置を提供することを目的とする。 Accordingly, the present invention has been made to solve the above-mentioned problems, and can prevent the deterioration of performance and the occurrence of failure, can be manufactured at a low cost and in a small size, and can further reduce the running cost. It is an object of the present invention to provide a generation device and a cleaning device including the same.
 本発明に基づくオゾン含有液生成装置は、酸素を含む気体を用いてオゾンを発生させるオゾン発生手段と、上記オゾン発生手段にて発生させたオゾンを液体に含有させることでオゾン含有液を生成するオゾン含有液生成手段と、上記オゾン発生手段に酸素を含む気体を導入する気体導入路と、上記オゾン含有液生成手段に液体を導入する液体導入路と、上記オゾン含有液生成手段にて生成されたオゾン含有液を一時的に貯留してこれを気液分離する気液分離手段と、上記気液分離手段にて気液分離された後のオゾン含有液を外部に導出するオゾン含有液導出路と、上記気液分離手段にてオゾン含有液から分離されたオゾンを含む気体を上記オゾン発生手段に還流する気体還流路と、上記気体還流路上に設けられた液体トラップとを備えている。 An ozone-containing liquid generating apparatus according to the present invention generates an ozone-containing liquid by containing ozone generating means for generating ozone using a gas containing oxygen and ozone generated by the ozone generating means. The ozone-containing liquid generating means, a gas introduction path for introducing a gas containing oxygen to the ozone generating means, a liquid introduction path for introducing a liquid into the ozone-containing liquid generating means, and the ozone-containing liquid generating means Gas-liquid separation means for temporarily storing the ozone-containing liquid and gas-liquid separation of the ozone-containing liquid, and an ozone-containing liquid lead-out path for deriving the ozone-containing liquid after gas-liquid separation by the gas-liquid separation means to the outside And a gas reflux path for refluxing the gas containing ozone separated from the ozone-containing liquid by the gas-liquid separation means to the ozone generation means, and a liquid trap provided on the gas reflux path. .
 ここで、オゾン含有液は、オゾンが溶媒に溶解した状態にある溶存オゾン液や、オゾンが気体状態で液中に含有されたオゾンガス含有液、溶存オゾンおよび気体状態のオゾンの両方を含有するオゾン液を含む。また、上述したオゾンが溶解される溶媒や、オゾンが気体状態で含まれた液としては、代表的には水が挙げられるが、これに限定されるものではない。 Here, the ozone-containing liquid is a dissolved ozone liquid in a state where ozone is dissolved in a solvent, an ozone gas-containing liquid in which ozone is contained in a liquid state in a gaseous state, ozone containing both dissolved ozone and gaseous ozone. Contains liquid. Moreover, as a solvent in which ozone is dissolved or a liquid in which ozone is contained in a gaseous state, water is typically exemplified, but the invention is not limited thereto.
 上記本発明に基づくオゾン含有液生成装置にあっては、上記液体トラップが、上記気体還流路の断面積よりも大きい断面積を有するトラップ室を有していることが好ましい。 In the ozone-containing liquid generating apparatus according to the present invention, the liquid trap preferably has a trap chamber having a cross-sectional area larger than the cross-sectional area of the gas reflux path.
 上記本発明に基づくオゾン含有液生成装置にあっては、上記液体トラップにて捕捉した液体が、上記気液分離手段によって回収されるように構成されていることが好ましい。 In the ozone-containing liquid generating apparatus according to the present invention, it is preferable that the liquid captured by the liquid trap is collected by the gas-liquid separation means.
 上記本発明に基づくオゾン含有液生成装置にあっては、上記液体トラップが、上記気液分離手段に一体に設けられていることが好ましい。 In the ozone-containing liquid generating apparatus according to the present invention, the liquid trap is preferably provided integrally with the gas-liquid separation means.
 上記本発明に基づくオゾン含有液生成装置において、上記液体トラップが、上記気体還流路の断面積よりも大きい断面積を有するトラップ室を有するとともに、上記気液分離手段の直上に位置するように上記気液分離手段に一体に設けられ、さらに、上記気液分離手段が、オゾン含有液を一時的に貯留してこれを気液分離するための気液分離室を有するように構成されている場合には、上記液体トラップにて捕捉した液体が上記気液分離手段によって回収されるように、上記トラップ室の底面が、上記液体トラップから見て上記気液分離手段側に位置する上記気体還流路の上記液体トラップに対する接続端側に向けて傾斜した傾斜形状を有していることが好ましい。 In the ozone-containing liquid generating apparatus according to the present invention, the liquid trap has a trap chamber having a cross-sectional area larger than the cross-sectional area of the gas reflux path, and is positioned directly above the gas-liquid separation means. When the gas-liquid separation means is provided integrally with the gas-liquid separation means, and the gas-liquid separation means has a gas-liquid separation chamber for temporarily storing the ozone-containing liquid and separating it. The gas recirculation path in which the bottom of the trap chamber is located on the gas-liquid separation means side when viewed from the liquid trap so that the liquid trapped by the liquid trap is recovered by the gas-liquid separation means It is preferable to have an inclined shape inclined toward the connection end side with respect to the liquid trap.
 また、その場合において、上記気液分離室と上記トラップ室とが、上記液体トラップから見て上記気液分離手段側に位置する上記気体還流路としての開口部が形成された隔壁によって区画される場合には、一体化された上記気液分離手段および上記液体トラップが、上記気液分離室を規定する上面開口の第1容器部材と、上記隔壁を構成する隔壁部材と、上記トラップ室を規定する下面開口の第2容器部材とを含むとともに、これら第1容器部材、隔壁部材および第2容器部材がこの順で下方から上方に向かって積層されることで形成されていることが好ましい。 In this case, the gas-liquid separation chamber and the trap chamber are partitioned by a partition wall formed with an opening as the gas reflux path located on the gas-liquid separation means side when viewed from the liquid trap. In the case, the gas-liquid separation means and the liquid trap integrated together define the first container member having an upper surface opening that defines the gas-liquid separation chamber, the partition member constituting the partition, and the trap chamber. It is preferable that the first container member, the partition wall member, and the second container member are stacked in this order from the lower side to the upper side.
 また、その場合において、上記気体導入路が、酸素を含む気体を導入するための吸気口と、上記吸気口が位置する側から上記オゾン発生手段が位置する側に向かう方向にのみ酸素を含む気体の流通を可能にする流通制限手段とを含んでいる場合には、上記液体トラップから見て上記オゾン発生手段側に位置する上記気体還流路の上記液体トラップに対する接続端が、上記開口部の直上の位置から偏在した位置に設けられるとともに、上記流通制限手段が、上記トラップ室に連通するように上記開口部の直上の位置に設けられていることが好ましい。 In this case, the gas introduction path includes an intake port for introducing a gas containing oxygen, and a gas containing oxygen only in a direction from the side where the intake port is located toward the side where the ozone generating means is located. And a flow restriction means that enables the flow of the gas, the connection end of the gas reflux path located on the ozone generating means side when viewed from the liquid trap is directly above the opening. It is preferable that the flow restricting means is provided at a position immediately above the opening so as to communicate with the trap chamber.
 上記本発明に基づくオゾン含有液生成装置にあっては、上記液体トラップから見て上記オゾン発生手段側に位置する上記気体還流路の上記液体トラップに対する接続端が、上記トラップ室を規定する上記液体トラップの内壁面よりも上記トラップ室の内側に向けて突出するように設けられていることが好ましい。 In the ozone-containing liquid generating apparatus according to the present invention, the connection end to the liquid trap of the gas reflux path located on the ozone generating means side when viewed from the liquid trap defines the trap chamber. It is preferable to be provided so as to protrude from the inner wall surface of the trap toward the inside of the trap chamber.
 上記本発明に基づくオゾン含有液生成装置にあっては、上記オゾン含有液生成手段が、ベンチュリー効果を利用してオゾンを液体に含有させる気液混合手段にて構成されていることが好ましい。 In the ozone-containing liquid generating apparatus according to the present invention, it is preferable that the ozone-containing liquid generating means is constituted by a gas-liquid mixing means for containing ozone in a liquid using the venturi effect.
 本発明に基づく洗浄装置は、上述した本発明に基づくオゾン含有液生成装置を備えている。 The cleaning device according to the present invention includes the ozone-containing liquid generating device according to the present invention described above.
 本発明によれば、性能の劣化や故障の発生が防止でき、低コストでかつ小型に製作でき、さらにはランニングコストが削減できるオゾン含有液生成装置およびこれを備えた洗浄装置とすることができる。 ADVANTAGE OF THE INVENTION According to this invention, it can be set as the ozone containing liquid production | generation apparatus which can prevent degradation of a performance and generation | occurrence | production of a failure, can be manufactured in low cost and small size, and also can reduce running cost, and a washing | cleaning apparatus provided with the same. .
本発明の実施の形態1におけるオゾン含有液生成装置の概略的な構成を示す図である。It is a figure which shows schematic structure of the ozone containing liquid production | generation apparatus in Embodiment 1 of this invention. 図1に示す気液混合器の模式断面図である。It is a schematic cross section of the gas-liquid mixer shown in FIG. 図1に示す液体トラップ近傍の模式断面図である。FIG. 2 is a schematic cross-sectional view in the vicinity of a liquid trap shown in FIG. 1. 図1に示す液体トラップの他の構成例を示す模式断面図である。It is a schematic cross section which shows the other structural example of the liquid trap shown in FIG. 本発明の実施の形態2におけるオゾン含有液生成装置の概略的な構成を示す図である。It is a figure which shows schematic structure of the ozone containing liquid production | generation apparatus in Embodiment 2 of this invention. 図5に示す液体トラップ近傍の模式断面図である。FIG. 6 is a schematic cross-sectional view in the vicinity of the liquid trap shown in FIG. 5. 実施例および比較例に係るオゾン含有液生成装置の経時的な性能の変化を示すグラフである。It is a graph which shows the change of the performance with time of the ozone containing liquid production | generation apparatus which concerns on an Example and a comparative example. 本発明の実施の形態2に基づいた変形例に係るオゾン含有液生成装置の液体トラップ近傍の模式断面図である。It is a schematic cross section of the vicinity of a liquid trap of an ozone-containing liquid generation apparatus according to a modification based on Embodiment 2 of the present invention. 図8に示す液体トラップのトラップ室の底面を上方から見た場合の模式平面図である。FIG. 9 is a schematic plan view when the bottom surface of the trap chamber of the liquid trap shown in FIG. 8 is viewed from above.
 以下、本発明の実施の形態について、図を参照して詳細に説明する。以下に示す実施の形態においては、ユニット化されることで通常の水道設備に洗浄ユニットして付設可能とされ、これによりオゾン含有液としてのオゾン水の生成が可能とされたオゾン含有液生成装置に本発明を適用した場合を例示する。なお、同一のまたは共通する部分について図中同一の符号を付し、その説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the embodiment described below, an ozone-containing liquid generating apparatus that can be attached as a cleaning unit to a normal water supply facility by being unitized, thereby enabling generation of ozone water as an ozone-containing liquid. The case where this invention is applied to is illustrated. In addition, the same code | symbol is attached | subjected in the figure about the same or common part, and the description is not repeated.
 (実施の形態1)
 図1は、本発明の実施の形態1におけるオゾン含有液生成装置の概略的な構成を示す図であり、図2は、図1に示す気液混合器の模式断面図である。まず、これら図1および図2を参照して、本実施の形態におけるオゾン含有液生成装置1Aの概略的な構成および気液混合器20の詳細な構成について説明する。
(Embodiment 1)
FIG. 1 is a diagram showing a schematic configuration of an ozone-containing liquid generation apparatus according to Embodiment 1 of the present invention, and FIG. 2 is a schematic cross-sectional view of the gas-liquid mixer shown in FIG. First, with reference to these FIG. 1 and FIG. 2, the schematic structure of the ozone containing liquid production | generation apparatus 1A in this Embodiment and the detailed structure of the gas-liquid mixer 20 are demonstrated.
 図1に示すように、本実施の形態におけるオゾン含有液生成装置1Aは、オゾン発生手段としてのオゾン発生器10と、オゾン含有液生成手段としての気液混合器20と、気液分離手段としての気液分離器30と、液体トラップ40と、液体導入路L1と、オゾン含有液搬送路L2と、オゾン含有液導出路L3と、気体導入路L4と、オゾン搬送路L5と、気体還流路L6とを主として備えている。 As shown in FIG. 1, an ozone-containing liquid generating apparatus 1A in the present embodiment includes an ozone generator 10 as an ozone generating means, a gas-liquid mixer 20 as an ozone-containing liquid generating means, and a gas-liquid separating means. Gas-liquid separator 30, liquid trap 40, liquid introduction path L1, ozone-containing liquid conveyance path L2, ozone-containing liquid outlet path L3, gas introduction path L4, ozone conveyance path L5, and gas reflux path L6 is mainly provided.
 液体導入路L1は、その一端に給液口2を有しており、その他端が気液混合器20に接続されている。液体導入路L1の一端に設けられた給液口2は、外部の液体供給源である水道設備に接続され、これにより液体導入路L1は、水道設備から液体としての水道水の供給を受ける。給液口2を介して水道水の供給を受けた液体導入路L1は、供給された水道水を上記他端から気液混合器20に導入する。 The liquid introduction path L1 has a liquid supply port 2 at one end and is connected to the gas-liquid mixer 20 at the other end. The liquid supply port 2 provided at one end of the liquid introduction path L1 is connected to a water supply facility that is an external liquid supply source, whereby the liquid introduction path L1 receives supply of tap water as a liquid from the water supply facility. The liquid introduction path L1 that receives the supply of tap water through the liquid supply port 2 introduces the supplied tap water into the gas-liquid mixer 20 from the other end.
 気体導入路L4は、その一端に吸気口4を有しており、その他端がオゾン発生器10に接続されている。気体導入路L4の一端に設けられた吸気口4からは、オゾンガスを発生させるための原料ガスとなる酸素を含む気体である空気が吸気され、これにより気体導入路L4は、外部から空気の供給を受ける。吸気口4を介して空気の供給を受けた気体導入路L4は、供給された空気を上記他端からオゾン発生器10に導入する。 The gas introduction path L4 has an intake port 4 at one end and is connected to the ozone generator 10 at the other end. From the intake port 4 provided at one end of the gas introduction path L4, air that is a gas containing oxygen serving as a raw material gas for generating ozone gas is sucked, and the gas introduction path L4 is supplied with air from the outside. Receive. The gas introduction path L4 that has been supplied with air through the intake port 4 introduces the supplied air into the ozone generator 10 from the other end.
 オゾン搬送路L5は、その一端がオゾン発生器10に接続されており、その他端が気液混合器20に接続されている。オゾン搬送路L5の上記一端からは、オゾン発生器10において発生させられたオゾンガスを含む気体が導入され、これによりオゾン搬送路L5は、オゾン発生器10から当該気体の供給を受ける。上記一端を介してオゾンガスを含む気体の供給を受けたオゾン搬送路L5は、供給された当該気体を上記他端から気液混合器20に導入する。 The ozone transport path L5 has one end connected to the ozone generator 10 and the other end connected to the gas-liquid mixer 20. A gas containing ozone gas generated in the ozone generator 10 is introduced from the one end of the ozone transport path L5, whereby the ozone transport path L5 is supplied with the gas from the ozone generator 10. The ozone transport path L5 that has been supplied with a gas containing ozone gas through the one end introduces the supplied gas into the gas-liquid mixer 20 from the other end.
 オゾン含有液搬送路L2は、その一端が気液混合器20に接続されており、その他端が気液分離器30に接続されている。オゾン含有液搬送路L2の上記一端からは、気液混合器20にて生成されたオゾン含有液としてのオゾン水が導入され、これによりオゾン含有液搬送路L2は、気液混合器20からオゾン水の供給を受ける。上記一端を介してオゾン水の供給を受けたオゾン含有液搬送路L2は、供給されたオゾン水を上記他端から気液分離器30に導入する。 The ozone-containing liquid conveyance path L2 has one end connected to the gas-liquid mixer 20 and the other end connected to the gas-liquid separator 30. Ozone water as an ozone-containing liquid generated in the gas-liquid mixer 20 is introduced from the one end of the ozone-containing liquid conveyance path L2, and the ozone-containing liquid conveyance path L2 is thus supplied from the gas-liquid mixer 20 to the ozone. Get a water supply. The ozone-containing liquid conveyance path L2 that has been supplied with ozone water through the one end introduces the supplied ozone water into the gas-liquid separator 30 from the other end.
 オゾン含有液導出路L3は、その一端が気液分離器30に接続されており、その他端に吐出口3を有している。オゾン含有液導出路L3の上記一端からは、気液分離器30において気液分離が行われた後のオゾン水が導入され、これによりオゾン含有液導出路L3は、気液分離器30から当該気液分離後のオゾン水の供給を受ける。上記一端を介して気液分離後のオゾン水の供給を受けたオゾン含有液導出路L3は、供給された気液分離後のオゾン水を上記他端に設けられた吐出口3から外部に向けて吐出する。 One end of the ozone-containing liquid lead-out path L3 is connected to the gas-liquid separator 30, and the discharge port 3 is provided at the other end. Ozone water after gas-liquid separation is performed in the gas-liquid separator 30 is introduced from the one end of the ozone-containing liquid lead-out path L3, whereby the ozone-containing liquid lead-out path L3 is connected to the gas-liquid separator 30 from the gas-liquid separator 30. Receives ozone water after gas-liquid separation. The ozone-containing liquid lead-out path L3 that has received the supply of ozone water after gas-liquid separation through the one end directs the supplied ozone water after separation from the discharge port 3 provided at the other end to the outside. To discharge.
 気体還流路L6は、その一端が気液分離器30に接続されており、その他端がオゾン発生器10に接続されている。気体還流路L6の上記一端からは、気液分離器30において気液分離が行われることでオゾン水から分離されたオゾンガスを含む気体である残留ガスが導入され、これにより気体還流路L6は、気液分離器30から残留ガスの供給を受ける。上記一端を介して残留ガスの供給を受けた気体還流路L6は、供給された残留ガスを上記他端からオゾン発生器10に原料ガスとして還流する。 The gas reflux path L6 has one end connected to the gas-liquid separator 30 and the other end connected to the ozone generator 10. From the one end of the gas reflux path L6, residual gas, which is a gas containing ozone gas separated from ozone water by gas-liquid separation in the gas-liquid separator 30, is introduced. Residual gas is supplied from the gas-liquid separator 30. The gas recirculation path L6 that has been supplied with the residual gas through the one end returns the supplied residual gas to the ozone generator 10 as a raw material gas from the other end.
 なお、図1中においては、気液分離器30において気液分離が行なわれているオゾン水および吐出口3から吐出された気液分離後のオゾン水を区別することなく、これらをともに符号100を用いて示している。 In FIG. 1, the ozone water that has been subjected to gas-liquid separation in the gas-liquid separator 30 and the ozone water that has been separated from the gas-liquid separation discharged from the discharge port 3 are not distinguished from each other. This is shown using.
 オゾン発生器10は、気体導入路L4を介して導入された原料ガスからオゾンガスを発生させるものである。オゾン発生器10としては、光化学反応法、放射線照射法または放電法のいずれかを利用してオゾンガスを発生させるものが使用できるが、特に好適には、放電法を利用するものが選択されて使用される。放電法には、主として無声放電方式によるものとコロナ放電方式によるものとが存在するが、いずれの使用も可能である。 The ozone generator 10 generates ozone gas from the raw material gas introduced through the gas introduction path L4. As the ozone generator 10, one that generates ozone gas by using any one of a photochemical reaction method, a radiation irradiation method, and a discharge method can be used. Particularly preferably, one that uses a discharge method is selected and used. Is done. There are mainly a discharge method using a silent discharge method and a corona discharge method, and any of them can be used.
 本実施の形態においては、オゾン発生器10として、無声放電方式のものを採用している。無声放電方式のオゾン発生器10は、絶縁物を挟んだ一対のオゾン発生電極間に交流電圧を印加して無声放電を発生させ、オゾン発生電極間に大気圧以上の酸素を含む気体を通過させることにより、オゾンを発生させるものである。 In the present embodiment, a silent discharge type is used as the ozone generator 10. The silent discharge type ozone generator 10 generates a silent discharge by applying an AC voltage between a pair of ozone generation electrodes sandwiching an insulator, and passes a gas containing oxygen at atmospheric pressure or higher between the ozone generation electrodes. Thus, ozone is generated.
 気液混合器20は、液体導入路L1を介して導入された液体としての水道水と、オゾン搬送路L5を介して導入されたオゾンガスを含む気体とから、オゾン含有液としてのオゾン水100を生成するものである。ここで、本実施の形態においては、気液混合器20として、ベンチュリー効果を利用することにより、オゾンガスを含む気体を水道水に含有させることができるベンチュリー型の気液混合手段を採用している。 The gas-liquid mixer 20 generates ozone water 100 as an ozone-containing liquid from tap water as a liquid introduced through the liquid introduction path L1 and a gas containing ozone gas introduced through the ozone transport path L5. Is to be generated. Here, in the present embodiment, as the gas-liquid mixer 20, a venturi-type gas-liquid mixing means capable of containing a gas containing ozone gas in tap water by utilizing the Venturi effect is employed. .
 図2に示すように、気液混合器20は、液体が導入される大径流路部21と、当該大径流路部21の下流側に位置し、大径流路部21を通流した液体が導入される小径流路部22と、小径流路部22の下流側に位置し、小径流路部22を通流した液体が導入される円錐台形状の流路を含む円錐状流路部23とを有している。また、気液混合器20は、気体が導入される気体導入通路部24を有しており、当該気体導入通路部24は、上述した小径流路部22に連通している。 As shown in FIG. 2, the gas-liquid mixer 20 includes a large-diameter channel portion 21 into which liquid is introduced, and a liquid that is located downstream of the large-diameter channel portion 21 and flows through the large-diameter channel portion 21. A small-diameter channel portion 22 to be introduced, and a conical channel portion 23 including a frustoconical channel that is located downstream of the small-diameter channel portion 22 and into which the liquid flowing through the small-diameter channel portion 22 is introduced. And have. The gas-liquid mixer 20 has a gas introduction passage portion 24 into which gas is introduced, and the gas introduction passage portion 24 communicates with the small-diameter passage portion 22 described above.
 大径流路部21には、上述した液体導入路L1の上記他端が接続され、気体導入通路部24には、上述したオゾン搬送路L5の上記他端が接続されている。また、円錐状流路部23には、上述したオゾン含有液搬送路L2の上記一端が接続されている。 The other end of the liquid introduction path L1 described above is connected to the large diameter flow path section 21, and the other end of the ozone transport path L5 described above is connected to the gas introduction path section 24. The one end of the ozone-containing liquid conveyance path L2 is connected to the conical channel section 23.
 液体導入路L1から大径流路部21に液体としての水道水が導入されると、大径流路部21を通流した水道水は、当該大径流路部21よりも内径の小さい小径流路部22に導入される。そのため、ベルヌーイの定理によって知られるように、小径流路部22においては、水道水の流速が増加し、静圧が減少することになる。 When tap water as a liquid is introduced from the liquid introduction path L1 into the large-diameter channel portion 21, the tap water flowing through the large-diameter channel portion 21 is smaller in diameter than the large-diameter channel portion 21. 22 is introduced. Therefore, as is known from Bernoulli's theorem, in the small-diameter channel portion 22, the flow rate of tap water increases and the static pressure decreases.
 その結果、小径流路部22を通流する水道水の静圧は負圧となり、気体導入通路部24を介してオゾン搬送路L5からオゾンガスを含む気体が小径流路部22内に向けて吸引される。そのため、小径流路部22において、吸引されたオゾンガスを含む気体が水道水に対して混入されることになり、混入されたオゾンガスが水道水に溶解することになる。これにより、小径流路部22において、オゾン水100が生成される。 As a result, the static pressure of tap water flowing through the small-diameter channel portion 22 becomes negative, and the gas containing ozone gas is sucked into the small-diameter channel portion 22 from the ozone transport path L5 through the gas introduction passage portion 24. Is done. Therefore, in the small-diameter channel portion 22, the gas containing the sucked ozone gas is mixed into the tap water, and the mixed ozone gas is dissolved in the tap water. Thereby, the ozone water 100 is generated in the small-diameter channel portion 22.
 なお、気液混合器20においては、混入されたオゾンガスが完全に水道水に溶解させられることが好ましいが、キャビテーション現象が生じること等により、液中においてオゾンガスを含む気体が一部気泡状態で存在することになる。 In the gas-liquid mixer 20, it is preferable that the mixed ozone gas is completely dissolved in the tap water. However, due to the occurrence of cavitation phenomenon, etc., the gas containing ozone gas exists in the liquid state in a part of bubbles. Will do.
 生成されたオゾン水100は、円錐状流路部23に導入され、その後、当該円錐状流路部23から排出されてオゾン含有液搬送路L2に導入される。 The generated ozone water 100 is introduced into the conical channel portion 23, and then discharged from the conical channel portion 23 and introduced into the ozone-containing liquid conveyance path L2.
 このように、ベンチュリー型の気液混合手段である気液混合器20を利用することにより、気液混合器20の作用によってオゾンガスを含む気体が自吸されて水道水に混入されることになるため、当該気体を水道水に混入させるための動力が不要となり、ランニングコストを低減することができるばかりでなく、構成の簡素化に伴って製造コストを削減することも可能になる。 In this way, by using the gas-liquid mixer 20 which is a venturi-type gas-liquid mixing means, the gas containing the ozone gas is self-primed by the action of the gas-liquid mixer 20 and mixed into the tap water. Therefore, power for mixing the gas into tap water becomes unnecessary, and not only the running cost can be reduced, but also the manufacturing cost can be reduced with the simplification of the configuration.
 図1に示すように、気液分離器30は、オゾン水100を一時的に貯留してこれを気液分離するものであり、オゾン水100および残留ガスを貯留できる容器を含んでいる。当該気液分離器30においては、気液混合器20において水道水に溶解されなかったオゾンガスを含む残留ガスがオゾン水100から分離される。 As shown in FIG. 1, the gas-liquid separator 30 temporarily stores the ozone water 100 and gas-liquid separates it, and includes a container that can store the ozone water 100 and residual gas. In the gas-liquid separator 30, residual gas containing ozone gas that has not been dissolved in the tap water in the gas-liquid mixer 20 is separated from the ozone water 100.
 気液分離器30においては、残留ガスがその比重差に基づいて液面に浮上し、オゾン水100から分離されて気液分離器30の上方に貯留されることになる。そのため、気液分離器30の下方には、残留ガスを含まないオゾン水100のみが貯留されることになり、気液分離器30からは、オゾン含有液導出路L3を介して吐出口3に向けて残留ガスを含まないオゾン水100のみが排出されることになる。 In the gas-liquid separator 30, the residual gas floats on the liquid surface based on the specific gravity difference, is separated from the ozone water 100, and is stored above the gas-liquid separator 30. Therefore, only ozone water 100 that does not contain residual gas is stored below the gas-liquid separator 30, and the gas-liquid separator 30 is connected to the discharge port 3 via the ozone-containing liquid lead-out path L3. Only ozone water 100 that does not contain residual gas is discharged.
 また、気液分離器30の上方には、上述した気体還流路L6の一端が接続されている。気体還流路L6に接続された気液分離器30の容器に設けられた排気口は、オゾン含有液導出路L3に接続された気液分離器30の排液口よりも鉛直方向において上方(すなわち高所)に配置されている。これにより、気液分離器30に貯留されたオゾンガスを含む残留ガスは、気体還流路L6に対して上記排気口を介して排出されることになる。 Further, one end of the above-described gas reflux path L6 is connected above the gas-liquid separator 30. The exhaust port provided in the container of the gas-liquid separator 30 connected to the gas reflux path L6 is higher in the vertical direction than the exhaust port of the gas-liquid separator 30 connected to the ozone-containing liquid lead-out path L3 (that is, It is arranged at a high place. Thereby, the residual gas containing the ozone gas stored in the gas-liquid separator 30 is discharged | emitted via the said exhaust port with respect to the gas reflux path L6.
 なお、気液分離器30においては、気液混合器20において水道水に溶解されなかったオゾンガスを含む残留ガスが完全にオゾン水100から分離されることが好ましいが、微細気泡としてオゾン水100中に含有されたオゾンガスを含む気体については、必ずしもこれがすべてオゾン水100から分離される必要はなく、十分に微細化されずに比較的大きな気泡としてオゾン水100中に含有されたオゾンガスを含む残留ガスについてのみこれがオゾン水100から分離されるようにしてもよい。 In the gas-liquid separator 30, it is preferable that the residual gas containing the ozone gas that has not been dissolved in the tap water in the gas-liquid mixer 20 is completely separated from the ozone water 100. The gas containing the ozone gas contained in the gas does not necessarily need to be separated from the ozone water 100, and the residual gas containing the ozone gas contained in the ozone water 100 as relatively large bubbles without being sufficiently refined. Only this may be separated from the ozone water 100.
 液体トラップ40は、上述した気体還流路L6上に設けられている。液体トラップ40は、気体還流路L6において発生する結露液を捕捉するためのものである。ここで、本実施の形態においては、液体トラップ40が、気体還流路L6の途中の位置に設けられている。なお、液体トラップ40の詳細については、後述することとする。 The liquid trap 40 is provided on the gas reflux path L6 described above. The liquid trap 40 is for capturing the condensed liquid generated in the gas reflux path L6. Here, in the present embodiment, the liquid trap 40 is provided at a position in the middle of the gas reflux path L6. The details of the liquid trap 40 will be described later.
 気体導入路L4には、逆止弁5が設けられている。逆止弁5は、流体の流動方向を一方向に制限する流通制限手段であり、気体導入路L4の吸気口4側の圧力がオゾン発生器10側の圧力よりも高い場合に開弁し、低い場合に閉弁する。 A check valve 5 is provided in the gas introduction path L4. The check valve 5 is a flow restriction unit that restricts the flow direction of the fluid in one direction, and opens when the pressure on the inlet 4 side of the gas introduction path L4 is higher than the pressure on the ozone generator 10 side, Close when low.
 当該逆止弁5を設けることにより、気体導入路L4は、吸気口4側からオゾン発生器10側に向かう方向にのみ原料ガスとしての空気を流通させることになる。したがって、万が一にも気体導入路L4のオゾン発生器10側の圧力が吸気口4側の圧力よりも上昇した場合であっても、オゾンガスが逆流して吸気口4から外部に排出されてしまうことが防止でき、安全性の向上を図ることができる。 By providing the check valve 5, the gas introduction path L4 circulates the air as the raw material gas only in the direction from the inlet 4 side toward the ozone generator 10 side. Therefore, even if the pressure on the ozone generator 10 side of the gas introduction path L4 rises higher than the pressure on the intake port 4 side, the ozone gas flows backward and is discharged from the intake port 4 to the outside. Can be prevented and safety can be improved.
 なお、上述した逆止弁5に代えて、原料ガスとしての空気の流量が制御可能な流量制御弁を流通制限手段として気体導入路L4に設けることとしてもよい。流量制御弁は、たとえば上記気体導入路L4を閉塞可能な弁体を含み、当該弁体の開弁量を調整することで吸気口4側からオゾン発生器10側に向けての原料ガスとしての空気の流量を調整可能にするものであり、より具体的には、動力を要しない機械式のものや、動力を用いる電子式の電磁バルブ等が流通制限手段として使用できる。 Note that, instead of the check valve 5 described above, a flow rate control valve capable of controlling the flow rate of the air as the raw material gas may be provided in the gas introduction path L4 as a flow restricting means. The flow rate control valve includes, for example, a valve body capable of closing the gas introduction path L4. By adjusting the valve opening amount of the valve body, the flow control valve serves as a raw material gas from the intake port 4 side toward the ozone generator 10 side. The air flow rate can be adjusted. More specifically, a mechanical type that does not require power, an electronic electromagnetic valve that uses power, or the like can be used as the flow restricting means.
 次に、図1を参照して、本実施の形態におけるオゾン含有液生成装置1Aにおいてオゾン含有液としてのオゾン水100を生成する動作について説明する。 Next, an operation for generating ozone water 100 as an ozone-containing liquid in the ozone-containing liquid generating apparatus 1A according to the present embodiment will be described with reference to FIG.
 外部の液体供給源である水道設備から給液口2を介して液体導入路L1に導入された水道水は、気液混合器20に導入され、当該気液混合器20内を通流する。これに伴い、上述した気液混合器20の自吸作用により、吸気口4および気体導入路L4を介して原料ガスとしての空気が、また気体還流路L6を介して気液分離器30に貯留された残留ガスが原料ガスとして、それぞれオゾン発生器10に導入される。これにより、オゾン発生器10においては、オゾンガスを含む気体が発生させられ、発生させられたオゾンガスを含む気体がオゾン搬送路L5を介して気液混合器20に供給される。 The tap water introduced into the liquid introduction path L1 from the water supply facility which is an external liquid supply source through the liquid supply port 2 is introduced into the gas-liquid mixer 20 and flows through the gas-liquid mixer 20. Accordingly, due to the self-priming action of the gas-liquid mixer 20 described above, air as a raw material gas is stored in the gas-liquid separator 30 via the intake port 4 and the gas introduction path L4 and also via the gas reflux path L6. The resulting residual gas is introduced into the ozone generator 10 as a raw material gas. Thereby, in the ozone generator 10, the gas containing ozone gas is generated, and the gas containing the generated ozone gas is supplied to the gas-liquid mixer 20 via the ozone conveyance path L5.
 供給されたオゾンガスを含む気体は、気液混合器20において水道水に混入され、これにより気液混合器20においてオゾン水100が生成される。生成されたオゾン水100は、オゾン含有液搬送路L2を介して気液分離器30に導入され、当該気液分離器30においてその気液分離が行なわれてオゾン水100に含まれる残留ガスが分離された後にオゾン含有液導出路L3に導入されて吐出口3を介して外部に向けて吐出される。なお、気液分離器30にてオゾン水100から分離された残留ガスは、気体還流路L6を介して回収され、気体導入路L4を介して再びオゾン発生器10へと送られる。 The gas containing the supplied ozone gas is mixed into the tap water in the gas-liquid mixer 20, whereby the ozone water 100 is generated in the gas-liquid mixer 20. The generated ozone water 100 is introduced into the gas-liquid separator 30 via the ozone-containing liquid conveyance path L2, and the gas-liquid separation is performed in the gas-liquid separator 30, and the residual gas contained in the ozone water 100 is removed. After being separated, it is introduced into the ozone-containing liquid lead-out path L3 and discharged toward the outside through the discharge port 3. The residual gas separated from the ozone water 100 by the gas-liquid separator 30 is recovered via the gas recirculation path L6 and sent again to the ozone generator 10 via the gas introduction path L4.
 ここで、気体還流路L6を通流する残留ガスは、水蒸気を飽和に近い状態で含有しているため、当該残留ガスが気体還流路L6の流路壁と接触することによって結露が生じ、結露液としてのオゾン水100が発生する。発生した結露液としてのオゾン水100がオゾン発生器10に流入した場合には、前述したようにオゾン発生器10の性能劣化や故障に繋がることとなってしまう。そこで、本実施の形態においては、上述したように気体還流路L6上に液体トラップ40を設けることにより、当該問題の解決が図られている。 Here, since the residual gas flowing through the gas recirculation path L6 contains water vapor in a state close to saturation, condensation occurs when the residual gas comes into contact with the flow path wall of the gas recirculation path L6. Ozone water 100 as a liquid is generated. When the ozone water 100 as the generated dew condensation liquid flows into the ozone generator 10, it leads to performance deterioration or failure of the ozone generator 10 as described above. Thus, in the present embodiment, the problem is solved by providing the liquid trap 40 on the gas reflux path L6 as described above.
 図3は、図1に示す液体トラップ近傍の模式断面図である。以下においては、この図3を参照して、液体トラップ40の詳細な構成および上記問題の解決が図られる理由について説明する。 FIG. 3 is a schematic cross-sectional view of the vicinity of the liquid trap shown in FIG. Hereinafter, the detailed configuration of the liquid trap 40 and the reason why the above-described problem can be solved will be described with reference to FIG.
 図3に示すように、液体トラップ40は、気液分離器30側に位置する気体還流路L6に入口側開口部43を介して接続されるとともに、オゾン発生器10側に位置する気体還流路L6に出口側開口部44を介して接続された容器41によって構成されており、その内部にトラップ室42を備えている。トラップ室42は、気体還流路L6の断面積よりも大きい断面積を有する空間にて構成されており、その下部に結露液としてのオゾン水100を貯留する貯留部42aを有している。 As shown in FIG. 3, the liquid trap 40 is connected to a gas reflux path L6 located on the gas-liquid separator 30 side via an inlet-side opening 43, and is also located on the ozone generator 10 side. It is comprised by the container 41 connected to L6 through the exit side opening part 44, The trap chamber 42 is provided in the inside. The trap chamber 42 is configured by a space having a cross-sectional area larger than the cross-sectional area of the gas recirculation path L6, and has a storage part 42a for storing ozone water 100 as a dew condensation liquid in the lower part thereof.
 気液分離器30側に位置する気体還流路L6において発生した結露液としてのオゾン水100の液滴101は、気体還流路L6を通流する残留ガスによって押し出されることで当該残留ガスとともに入口側開口部43を介して液体トラップ40のトラップ室42に流入する。トラップ室42に流入した液滴101は、トラップ室42の内部において落下し、トラップ室42の下部に設けられた貯留部42aによって受け止められて貯留される。 The droplet 101 of the ozone water 100 as the dew condensation liquid generated in the gas recirculation path L6 located on the gas-liquid separator 30 side is pushed out by the residual gas flowing through the gas recirculation path L6, so that the residual gas and the inlet side The liquid flows into the trap chamber 42 of the liquid trap 40 through the opening 43. The droplet 101 that has flowed into the trap chamber 42 falls inside the trap chamber 42, and is received and stored by a storage portion 42 a provided in the lower portion of the trap chamber 42.
 一方、トラップ室42に流入した残留ガスは、トラップ室42内を通流し、出口側開口部44を介してオゾン発生器10側に位置する気体還流路L6に流出する。ここで、トラップ室42から流出することでオゾン発生器10側に位置する気体還流路L6に流入した残留ガスは、上記液体トラップ40の作用によって結露液としてのオゾン水100が取り除かれた後のものであるため、上述した液滴101はほとんど含まれていないことになる。 On the other hand, the residual gas that has flowed into the trap chamber 42 flows through the trap chamber 42 and flows out through the outlet opening 44 to the gas reflux path L6 located on the ozone generator 10 side. Here, the residual gas that has flowed out of the trap chamber 42 and has flowed into the gas recirculation path L6 located on the ozone generator 10 side has been removed after the ozone water 100 as the dew condensation liquid has been removed by the action of the liquid trap 40. Therefore, the droplet 101 described above is hardly included.
 そのため、上記構成を採用することにより、結露液としてのオゾン水100が液体トラップ40によって捕捉されることになるため、当該結露液としてのオゾン水100がオゾン発生器10に流入してしまうことが効果的に防止できることになる。したがって、本実施の形態におけるオゾン含有液生成装置1Aとすることにより、オゾン発生器10の性能劣化や故障が抑制できることになり、安定した性能を長期間にわたって発揮できるものとすることができる。 Therefore, by adopting the above configuration, the ozone water 100 as the dew condensation liquid is captured by the liquid trap 40, and therefore the ozone water 100 as the dew condensation liquid may flow into the ozone generator 10. It can be effectively prevented. Therefore, by using the ozone-containing liquid generating apparatus 1A in the present embodiment, performance deterioration and failure of the ozone generator 10 can be suppressed, and stable performance can be exhibited over a long period of time.
 また、上述した液体トラップ40は、内部にトラップ室42が設けられた容器41を気体還流路L6の途中位置に設置するという非常に簡素な構成で実現できるため、上記構成を採用することにより、別途乾燥剤を設けたり、積極的に残留ガスを冷却する冷却手段を設けたりする場合に比べ、低コストでかつ小型に製作することができ、またランニングコストの削減が可能になるオゾン含有液生成装置とすることができる。 Moreover, since the liquid trap 40 described above can be realized with a very simple configuration in which the container 41 having the trap chamber 42 provided therein is installed in the middle of the gas reflux path L6, by adopting the above configuration, Ozone-containing liquid generation that can be manufactured at a lower cost and in a smaller size compared to the case where a separate desiccant is provided or a cooling means that actively cools residual gas is provided, and the running cost can be reduced. It can be a device.
 加えて、上述した如くの、気体還流路L6の断面積よりも大きい断面積を有するトラップ室42を備えた液体トラップ40とすることにより、流路壁の残留ガスに接触する面積も増大することになるため、結露液の発生も促進されることになり、残留ガスからより多くの水蒸気が取り除かれることになる。したがって、上記構成を採用することにより、この点においてもオゾン発生器10の性能劣化や故障が抑制できることになる。なお、当該効果を高めるためには、残留ガスの流動方向に沿ってトラップ室42の長さを長くすることが好ましいが、残留ガスから水蒸気を完全に除去する必要はなく、オゾン発生器10に悪影響が出ない程度にまで水蒸気の除去が可能な長さとすればよい。 In addition, by using the liquid trap 40 including the trap chamber 42 having a cross-sectional area larger than the cross-sectional area of the gas reflux path L6 as described above, the area in contact with the residual gas on the flow path wall also increases. Therefore, the generation of the dew condensation liquid is also promoted, and more water vapor is removed from the residual gas. Therefore, by adopting the above configuration, it is possible to suppress the performance deterioration and failure of the ozone generator 10 in this respect as well. In order to enhance the effect, it is preferable to increase the length of the trap chamber 42 along the flow direction of the residual gas, but it is not necessary to completely remove water vapor from the residual gas. The length may be such that water vapor can be removed to such an extent that no adverse effects occur.
 以上において説明したように、本実施の形態の如くの構成を採用することにより、性能の劣化や故障の発生が防止でき、低コストでかつ小型に製作でき、さらにはランニングコストが削減できるオゾン含有液生成装置1Aとすることができる。 As described above, by adopting the configuration as in the present embodiment, it is possible to prevent the deterioration of the performance and the occurrence of failure, can be manufactured at a low cost and in a small size, and can further reduce the running cost. It can be set as the liquid production | generation apparatus 1A.
 図4は、図1に示す液体トラップの他の構成例を示す模式断面図である。次に、この図4を参照して、液体トラップ40の他の構成例について説明する。 FIG. 4 is a schematic cross-sectional view showing another configuration example of the liquid trap shown in FIG. Next, another configuration example of the liquid trap 40 will be described with reference to FIG.
 図4に示すように、本構成例においては、オゾン発生器10側に位置する気体還流路L6の液体トラップ40側の端部がトラップ室42内に向けて突出するように設けられており、これにより液体トラップ40の出口側開口部44が、流路壁としての容器41の内壁面よりもトラップ室42の内側に配設されている。 As shown in FIG. 4, in this configuration example, the end of the gas reflux path L6 located on the ozone generator 10 side on the liquid trap 40 side is provided so as to protrude into the trap chamber 42, Thereby, the outlet side opening 44 of the liquid trap 40 is disposed inside the trap chamber 42 rather than the inner wall surface of the container 41 as a flow path wall.
 このように構成すれば、出口側開口部44を容器41の内壁面から遠ざけることが可能になるため、上述した図3に示す液体トラップとした場合に比べ、結露液としてのオゾン水100がオゾン発生器10側に位置する気体還流路L6に流入してしまうことをより確実に防止することができる。したがって、当該構成を採用した場合には、オゾン発生器10に性能劣化や故障が生じてしまうことをより効果的に防止することができる。 If comprised in this way, since the exit side opening part 44 can be kept away from the inner wall surface of the container 41, compared with the case where it is set as the liquid trap shown in FIG. 3 mentioned above, the ozone water 100 as a dew condensation liquid is ozone. It is possible to more reliably prevent the gas from flowing into the gas recirculation path L6 located on the generator 10 side. Therefore, when the said structure is employ | adopted, it can prevent more effectively that the ozone generator 10 will perform performance degradation and a failure.
 なお、上述した図3および図4に示す液体トラップ40は、いずれもトラップ室42に設けられた貯留部42aの容量を大きくすることにより、貯留した結露液としてのオゾン水100がオゾン含有液生成装置1Aの非動作時において自然に蒸発するように構成したものであるが、液体トラップ40にて捕捉した結露液としてのオゾン水100を気液分離器30に戻すように構成することとしてもよい。 3 and 4 described above both increase the capacity of the reservoir 42a provided in the trap chamber 42, so that the ozone water 100 as the dew condensation liquid is generated as an ozone-containing liquid. The apparatus 1A is configured to evaporate naturally when the apparatus 1A is not operating, but may be configured to return the ozone water 100 as the condensed liquid captured by the liquid trap 40 to the gas-liquid separator 30. .
 具体的には、図3および図4に示すように液体トラップ40を水平配置した状態のまま、容器41に設けられる入口側開口部43を容器41に設けられる出口側開口部44よりも低所に配設することとすれば、結露液としてのオゾン水100の水位が上昇した場合にも、これが入口側開口部43から気液分離器30側に位置する気体還流路L6に流入することで気液分離器30によって回収されることになるため、結露液としてのオゾン水100が出口側開口部44から流出してしまうことが防止できる。 Specifically, as shown in FIGS. 3 and 4, the inlet side opening 43 provided in the container 41 is positioned lower than the outlet side opening 44 provided in the container 41 while the liquid trap 40 is horizontally disposed. If the water level of the ozone water 100 as the dew condensation liquid rises, it flows from the inlet side opening 43 into the gas reflux path L6 located on the gas-liquid separator 30 side. Since it is collected by the gas-liquid separator 30, it is possible to prevent the ozone water 100 as the dew condensation liquid from flowing out from the outlet side opening 44.
 また、図3および図4に示す構成の液体トラップ40をそのまま入口側開口部43が出口側開口部44よりも低所に位置するように傾斜させたり、あるいは鉛直方向に沿って起立した姿勢となるように垂直配置させたりすることとしてもよい。 Further, the liquid trap 40 having the configuration shown in FIGS. 3 and 4 is tilted so that the inlet-side opening 43 is positioned lower than the outlet-side opening 44, or is erected along the vertical direction. It is good also as arranging vertically so that it may become.
 (実施の形態2)
 図5は、本発明の実施の形態2におけるオゾン含有液生成装置の概略的な構成を示す図であり、図6は、図5に示す液体トラップ近傍の模式断面図である。以下、これら図5および図6を参照して、本実施の形態におけるオゾン含有液生成装置1Bの概略的な構成および液体トラップ40の詳細について説明する。
(Embodiment 2)
FIG. 5 is a diagram showing a schematic configuration of the ozone-containing liquid generation apparatus according to Embodiment 2 of the present invention, and FIG. 6 is a schematic cross-sectional view in the vicinity of the liquid trap shown in FIG. Hereinafter, with reference to these FIG. 5 and FIG. 6, the schematic structure of the ozone containing liquid production | generation apparatus 1B in this Embodiment and the detail of the liquid trap 40 are demonstrated.
 図5に示すように、本実施の形態におけるオゾン含有液生成装置1Bは、液体トラップ40が気体還流路L6の気液分離器30側の端部に設けられるとともに、これが気液分離器30と一体に設けられている点において、上述した実施の形態1におけるオゾン含有液生成装置1Aと相違している。 As shown in FIG. 5, in the ozone-containing liquid generating apparatus 1B according to the present embodiment, the liquid trap 40 is provided at the end of the gas reflux path L6 on the gas-liquid separator 30 side. In the point provided integrally, it differs from the ozone containing liquid production | generation apparatus 1A in Embodiment 1 mentioned above.
 具体的には、図6に示すように、オゾン含有液生成装置1Bにあっては、液体トラップ40の容器41は、気液分離器30の容器31の上部に一体に設けられており、これら液体トラップ40と気液分離器30との間に位置する隔壁50により、トラップ室42と気液分離器30の内部の空間とが区画されている。当該隔壁50の所定位置には、トラップ室42と気液分離器30の内部の空間とを連通する貫通孔が設けられており、当該貫通孔によって液体トラップ40の入口側開口部43が構成されている。 Specifically, as shown in FIG. 6, in the ozone-containing liquid generating apparatus 1 </ b> B, the container 41 of the liquid trap 40 is integrally provided on the upper part of the container 31 of the gas-liquid separator 30. The trap chamber 42 and the space inside the gas-liquid separator 30 are partitioned by the partition wall 50 positioned between the liquid trap 40 and the gas-liquid separator 30. A through hole that communicates the trap chamber 42 and the space inside the gas-liquid separator 30 is provided at a predetermined position of the partition wall 50, and an inlet side opening 43 of the liquid trap 40 is configured by the through hole. ing.
 また、本実施の形態におけるオゾン含有液生成装置1Bにあっては、上述した図4の場合と同様に、気体還流路L6の液体トラップ40側の端部がトラップ室42内に向けて突出するように設けられており、これにより液体トラップ40の出口側開口部44が、流路壁としての容器41の内壁面よりもトラップ室42の内側に配設されている。 Further, in the ozone-containing liquid generating apparatus 1B in the present embodiment, the end of the gas reflux path L6 on the liquid trap 40 side protrudes into the trap chamber 42 as in the case of FIG. 4 described above. As a result, the outlet side opening 44 of the liquid trap 40 is disposed inside the trap chamber 42 rather than the inner wall surface of the container 41 serving as a flow path wall.
 ここで、残留ガスが入口側開口部43を介して気液分離器30からトラップ室42に流入することにより、容器41の流路壁にて発生した結露液としてのオゾン水100の液滴101は、トラップ室42の内部において落下し、トラップ室42の下部に設けられた貯留部42aによって受け止められ、その後、入口側開口部43を介して気液分離器30に戻されることになる。 Here, the residual gas flows from the gas-liquid separator 30 into the trap chamber 42 through the inlet-side opening 43, whereby the droplet 101 of the ozone water 100 as the dew condensation liquid generated on the flow path wall of the container 41. Falls inside the trap chamber 42, is received by the storage portion 42 a provided in the lower portion of the trap chamber 42, and then returned to the gas-liquid separator 30 through the inlet-side opening 43.
 一方で、トラップ室42に流入した残留ガスは、トラップ室42内を通流し、出口側開口部44を介して気体還流路L6に流出する。ここで、トラップ室42から流出することで気体還流路L6に流入した残留ガスは、上記液体トラップ40の作用によって結露液としてのオゾン水100が取り除かれた後のものであるため、上述した液滴101はほとんど含まれていないことになる。 On the other hand, the residual gas that has flowed into the trap chamber 42 flows through the trap chamber 42 and flows out to the gas reflux path L6 via the outlet side opening 44. Here, the residual gas flowing into the gas recirculation path L6 by flowing out from the trap chamber 42 is after the ozone water 100 as the dew condensation liquid is removed by the action of the liquid trap 40. The droplet 101 is hardly contained.
 したがって、このように構成した場合にも、上述した実施の形態1において説明した効果と同様の効果が得られることになる。さらには、上記構成を採用することにより、液体トラップ40にて捕捉した結露液としてのオゾン水100が気液分離器30にて回収されるように容易に構成することができる効果が得られるとともに、部品点数の削減が図られて製造コストが削減できる効果も得られる。 Therefore, even in such a configuration, the same effect as that described in the first embodiment can be obtained. Furthermore, by adopting the above configuration, it is possible to obtain an effect that the ozone water 100 as the condensed liquid captured by the liquid trap 40 can be easily configured to be collected by the gas-liquid separator 30. In addition, the number of parts can be reduced and the manufacturing cost can be reduced.
 以下においては、上述した本実施の形態におけるオゾン含有液生成装置1Bと、これとは構成の異なるオゾン含有液生成装置をそれぞれ実施例および比較例として実際に試作するとともに、それらの経時的な性能の変化を検証した検証試験について説明する。なお、比較例に係るオゾン含有液生成装置は、上述した本実施の形態におけるオゾン含有液生成装置1Bにおいて、液体トラップ40を設けずに、気体還流路L6を気液分離器30の内部の空間に直接接続した構成のものである。 In the following, the ozone-containing liquid generating apparatus 1B in the present embodiment described above and an ozone-containing liquid generating apparatus having a different configuration from this are actually manufactured as examples and comparative examples, respectively, and their performance over time. A verification test that verifies the change in the above will be described. In addition, the ozone containing liquid production | generation apparatus which concerns on a comparative example is the ozone containing liquid production | generation apparatus 1B in this Embodiment mentioned above, without providing the liquid trap 40, the gas reflux path L6 is the space inside the gas-liquid separator 30. It is the thing of the structure connected directly to.
 検証試験においては、実施例および比較例に係るオゾン含有液生成装置を断続的に繰り返し動作させ、そのエージング回数が所定の回数(0回、10000回、20000回)となった時点で吐出口から吐出されるオゾン水のオゾン濃度を測定することにより、経時的な性能の変化を確認した。 In the verification test, the ozone-containing liquid generating device according to the example and the comparative example is intermittently repeatedly operated, and when the number of aging times reaches a predetermined number (0 times, 10000 times, 20000 times), from the discharge port. The change in performance over time was confirmed by measuring the ozone concentration of the discharged ozone water.
 図7は、実施例および比較例に係るオゾン含有液生成装置の経時的な性能の変化を示すグラフである。図7においては、横軸がエージング回数(回)を、縦軸がオゾン濃度(mg/L)をそれぞれ表わしている。 FIG. 7 is a graph showing a change in performance over time of the ozone-containing liquid generating apparatus according to the example and the comparative example. In FIG. 7, the horizontal axis represents the number of aging (times), and the vertical axis represents the ozone concentration (mg / L).
 図7に示すように、初期において同等の性能を有していた実施例および比較例に係るオゾン含有液生成装置は、エージング回数を重ねるに連れ、その性能に差が生じることが確認された。 As shown in FIG. 7, it was confirmed that the ozone-containing liquid generating apparatuses according to the example and the comparative example, which had the same performance in the initial stage, differed in performance as the number of aging was increased.
 具体的には、比較例に係るオゾン含有液生成装置から吐出されるオゾン水のオゾン濃度は、初期に約0.8mg/Lであったものが、エージング回数10000回の時点において約0.55mg/Lに低下し、さらにエージング回数20000回の時点において約0.5mg/Lにまで低下している。これに対し、実施例に係るオゾン含有液生成装置から吐出されるオゾン水のオゾン濃度は、初期に約0.8mg/Lであったものが、エージング回数10000回の時点および20000回の時点のいずれにおいても、約0.7mg/Lにまでにしか低下していない。 Specifically, the ozone concentration of ozone water discharged from the ozone-containing liquid generating apparatus according to the comparative example was about 0.8 mg / L in the initial stage, but about 0.55 mg at the time when the number of aging times was 10,000. / L, and further decreases to about 0.5 mg / L at the time of 20,000 times of aging. On the other hand, the ozone concentration of the ozone water discharged from the ozone-containing liquid generating apparatus according to the example was about 0.8 mg / L at the initial stage, but at the time of 10000 times and 20000 times. In any case, it is reduced only to about 0.7 mg / L.
 このように、実施例および比較例に係るオゾン含有液生成装置において経時的な性能の変化に差が生じた理由は、一意に実施例に係るオゾン含有液生成装置において、液体トラップを設けたことにあり、当該液体トラップによって、気体還流経路において発生する結露液としてのオゾン水がオゾン発生器に流入することが抑制できている点にあると考察される。 As described above, the reason for the difference in the change in performance over time in the ozone-containing liquid generating apparatus according to the example and the comparative example is that the liquid trap is uniquely provided in the ozone-containing liquid generating apparatus according to the example. Therefore, it is considered that the liquid trap can suppress the ozone water as the dew condensation liquid generated in the gas reflux path from flowing into the ozone generator.
 したがって、以上の検証試験の結果から、本発明により、性能の劣化や故障の発生が効果的に防止できることが確認された。 Therefore, from the results of the above verification tests, it was confirmed that the present invention can effectively prevent performance degradation and failure.
 図8は、本実施の形態に基づいた変形例に係るオゾン含有液生成装置の液体トラップ近傍の模式断面図であり、図9は、図8に示す液体トラップのトラップ室の底面を上方から見た場合の模式平面図である。以下、これら図8および図9を参照して、本変形例に係るオゾン含有液生成装置について説明する。 FIG. 8 is a schematic cross-sectional view of the vicinity of the liquid trap of the ozone-containing liquid generating apparatus according to the modification based on this embodiment, and FIG. 9 is a top view of the bottom surface of the trap chamber of the liquid trap shown in FIG. FIG. Hereinafter, with reference to these FIG. 8 and FIG. 9, the ozone containing liquid production | generation apparatus which concerns on this modification is demonstrated.
 図8に示すように、本変形例に係るオゾン含有液生成装置は、気液分離器30と液体トラップ40とが一体に構成されている点において、上述した本実施の形態におけるオゾン含有液生成装置1Bと共通している。一方で、本変形例に係るオゾン含有液生成装置は、液体トラップ40が設けられた部分近傍の具体的な構造において、上述した本実施の形態におけるオゾン含有液生成装置1Bと相違している。 As shown in FIG. 8, the ozone-containing liquid generating apparatus according to the present modification is the ozone-containing liquid generating in the present embodiment described above in that the gas-liquid separator 30 and the liquid trap 40 are integrally configured. It is common with the apparatus 1B. On the other hand, the ozone-containing liquid generating apparatus according to this modification is different from the ozone-containing liquid generating apparatus 1B in the present embodiment described above in the specific structure near the portion where the liquid trap 40 is provided.
 より詳細には、本変形例に係るオゾン含有液生成装置にあっては、一体化された気液分離器30および液体トラップ40が、容器31からなる上面開口の第1容器部材と、隔壁50を構成する隔壁部材と、容器41からなる下面開口の第2容器部材の3つの部材を含んでおり、これら第1容器部材、隔壁部材および第2容器部材がこの順で下方から上方に向かって積層されることで形成されている。 More specifically, in the ozone-containing liquid generating apparatus according to this modification, the integrated gas-liquid separator 30 and the liquid trap 40 include a first container member having an upper surface opening formed of a container 31, and a partition wall 50. 3 and a second container member having a lower surface opening made of the container 41. The first container member, the partition member and the second container member are arranged in this order from the bottom to the top. It is formed by being laminated.
 これにより、気液分離器30の内部の空間である気液分離室は、容器31および隔壁50によって規定されることになる。また、液体トラップ40の内部の空間であるトラップ室42は、隔壁50および容器41によって規定されることになり、特にトラップ室42の底面は、隔壁50の上面によって規定されることになる。なお、第1容器部材と隔壁部材との間および隔壁部材と第2容器部材との間には、これら気液分離室およびトラップ室42がいずれも外部に対して気密に封止されることとなるように、適宜Oリング等のシール部材が介装される。 Thereby, the gas-liquid separation chamber which is the space inside the gas-liquid separator 30 is defined by the container 31 and the partition wall 50. Further, the trap chamber 42 that is the space inside the liquid trap 40 is defined by the partition wall 50 and the container 41, and in particular, the bottom surface of the trap chamber 42 is defined by the upper surface of the partition wall 50. The gas-liquid separation chamber and the trap chamber 42 are hermetically sealed to the outside between the first container member and the partition member and between the partition member and the second container member. Thus, a seal member such as an O-ring is appropriately interposed.
 したがって、このように構成することにより、液体トラップ40が、気液分離器30の直上の位置において気液分離器30と一体に設けられることになり、簡易な構成でこれらを一体化させることが可能になる。そのため、製造の際の組付作業が容易化することになり、製造コストをさらに削減できる効果が得られる。 Therefore, with this configuration, the liquid trap 40 is provided integrally with the gas-liquid separator 30 at a position immediately above the gas-liquid separator 30, and these can be integrated with a simple configuration. It becomes possible. Therefore, the assembling work at the time of manufacture is facilitated, and the effect of further reducing the manufacturing cost can be obtained.
 隔壁50の所定位置には、貫通孔が設けられることで入口側開口部43が設けられている。当該入口側開口部43は、液体トラップ40から見て気液分離器30側に位置する気体還流路L6に相当することになる。 The entrance side opening 43 is provided in the predetermined position of the partition 50 by providing a through-hole. The inlet-side opening 43 corresponds to the gas reflux path L6 located on the gas-liquid separator 30 side when viewed from the liquid trap 40.
 ここで、図8および図9に示すように、本変形例に係るオゾン含有液生成装置にあっては、トラップ室42の底面である隔壁50の上面が、上述した入口側開口部43が位置する部分に向けて傾斜する傾斜面51にて構成されている。このように構成することにより、液体トラップ40にて捕捉された結露液としてのオゾン水100の液滴101が、当該傾斜面51をつたって入口側開口部43に集められることになるため、より効率的に当該オゾン水100を気液分離器30にて回収することが可能になる。なお、図8および図9においては、傾斜面51をつたって流れるオゾン水100の流れの向きを模式的に破線矢印にて表わしている。 Here, as shown in FIGS. 8 and 9, in the ozone-containing liquid generating apparatus according to this modification, the upper surface of the partition wall 50, which is the bottom surface of the trap chamber 42, is located at the above-described inlet-side opening 43. It is comprised by the inclined surface 51 which inclines toward the part to do. By configuring in this way, the droplet 101 of the ozone water 100 as the condensed liquid captured by the liquid trap 40 is collected in the inlet-side opening 43 through the inclined surface 51. The ozone water 100 can be efficiently recovered by the gas-liquid separator 30. 8 and 9, the direction of the flow of the ozone water 100 that flows along the inclined surface 51 is schematically represented by broken-line arrows.
 また、図8に示すように、本変形例に係るオゾン含有液生成装置にあっては、液体トラップ40から見てオゾン発生器10側に位置する気体還流路L6の液体トラップ40に対する接続端である出口側開口部44が、上述した入口側開口部43の直上の位置から偏在した位置に配設されている。このように構成することにより、トラップ室42の水平方向に沿った大きさを拡大することができるため、上述したトラップ室42の傾斜面51にて構成される底面の大きさを大きく確保することが可能となり、液体トラップ40にてオゾン水100を捕捉してこれを気液分離器30にて回収させる機能がより高められることになる。 Further, as shown in FIG. 8, in the ozone-containing liquid generating apparatus according to this modification, at the connection end to the liquid trap 40 of the gas reflux path L6 located on the ozone generator 10 side when viewed from the liquid trap 40. A certain outlet side opening 44 is arranged at a position that is unevenly distributed from the position directly above the inlet side opening 43 described above. By configuring in this way, the size of the trap chamber 42 along the horizontal direction can be increased, so that a large size of the bottom surface constituted by the inclined surface 51 of the trap chamber 42 described above is ensured. Thus, the function of capturing the ozone water 100 with the liquid trap 40 and collecting it with the gas-liquid separator 30 is further enhanced.
 さらに、図8に示すように、本変形例に係るオゾン含有液生成装置にあっては、気体導入路L4と、当該気体導入路L4に設けられる吸気口4および流通制限手段としての逆止弁5が、いずれも上述した入口側開口部43の直上の位置に配設されている。このように構成することにより、一体化された気液分離器30および液体トラップ40に対して、さらに気体導入路L4をも一体化させることが可能になるとともに、一体化後においてその体格を小さく構成することができるため、装置構成のさらなる簡素化および小型化が図られることになる。 Further, as shown in FIG. 8, in the ozone-containing liquid generating apparatus according to this modification, the gas introduction path L4, the intake port 4 provided in the gas introduction path L4, and the check valve as the flow restriction means 5 are disposed at positions immediately above the inlet side opening 43 described above. With this configuration, the gas introduction path L4 can be further integrated with the integrated gas-liquid separator 30 and liquid trap 40, and the physique can be reduced after integration. Therefore, the apparatus configuration can be further simplified and downsized.
 以上において説明した本発明の実施の形態1および2ならびにその変形例においては、オゾン含有液生成手段としてベンチュリー型の気液混合器20を利用することとし、これにより気液混合器20の自吸作用によって気液混合器20に原料ガスが供給されるように構成した場合を例示したが、オゾン含有液生成手段として自吸作用を有しない気液混合手段を用いることも可能である。その場合には、気体導入路L4、オゾン搬送路L5および気体還流路L6に必要に応じてポンプ等の気体を強制的に圧送する手段を設けることとすればよい。 In the first and second embodiments of the present invention described above and the modifications thereof, the venturi-type gas-liquid mixer 20 is used as the ozone-containing liquid generating means, whereby the self-priming of the gas-liquid mixer 20 is performed. Although the case where the raw material gas is supplied to the gas-liquid mixer 20 by the action is illustrated, it is possible to use a gas-liquid mixing means having no self-priming action as the ozone-containing liquid generating means. In that case, a means for forcibly pumping a gas such as a pump may be provided in the gas introduction path L4, the ozone transport path L5, and the gas reflux path L6 as necessary.
 また、上述した本発明の実施の形態1および2ならびにその変形例においては、気液分離手段として容器を備えた気液分離器30を設けた場合を例示したが、気液分離が可能なものであればどのようなものでも気液分離手段として利用することが可能であり、たとえばオゾン含有液搬送路L2およびオゾン含有液導出路L3を繋ぐ部分の配管の一部を広げて気液分離手段とすることも可能である。 Further, in the first and second embodiments of the present invention and the modifications thereof, the case where the gas-liquid separator 30 provided with the container is provided as the gas-liquid separating means is exemplified, but the gas-liquid separation is possible. Any gas-liquid separating means can be used as the gas-liquid separating means. For example, a part of the piping connecting the ozone-containing liquid conveyance path L2 and the ozone-containing liquid lead-out path L3 is expanded and the gas-liquid separating means is used. It is also possible.
 また、上述した本発明の実施の形態1および2ならびにその変形例においては、外部の空気を原料ガスとして吸気するように構成した場合を例示したが、酸素ボンベ等に気体導入路L4の吸気口4が接続されて使用されることとしてもよい。 Further, in the above-described first and second embodiments of the present invention and the modifications thereof, the case where the external air is sucked as the raw material gas has been exemplified. However, the inlet of the gas introduction path L4 to the oxygen cylinder or the like is exemplified. 4 may be connected and used.
 また、上述した本発明の実施の形態1および2ならびにその変形例においては、ユニット化されることで通常の水道設備に洗浄ユニットとして付設可能とされたオゾン含有液生成装置1A,1Bに本発明を適用した場合を例示したが、通常の水道設備と予め一体化されるように構成された洗浄装置に本発明を適用してもよい。さらには、通常の水道設備以外の他の給液設備に洗浄ユニットして付設可能とされたオゾン含有液生成装置に本発明を適用してもよいし、通常の水道設備以外の他の給液設備に一体化されるように構成された洗浄装置に本発明を適用することとしてもよい。 Moreover, in Embodiment 1 and 2 of this invention mentioned above and its modification, this invention is made into ozone containing liquid production | generation apparatus 1A, 1B which can be attached as a washing | cleaning unit to normal water supply equipment by unitizing. However, the present invention may be applied to a cleaning device configured to be integrated with a normal water supply facility in advance. Furthermore, the present invention may be applied to an ozone-containing liquid generating device that can be attached as a cleaning unit to other liquid supply equipment other than normal water supply equipment, or other liquid supply other than normal water supply equipment The present invention may be applied to a cleaning device configured to be integrated with equipment.
 ここで、上述した洗浄装置としては、キッチン、浴室、トイレ、洗面所等に設けられる水回り設備や、住戸や工場等に付設される配管あるいは工場等に設置された機械設備の洗浄に使用される洗浄装置、工場等に設置された生産設備としての部品の洗浄装置や食料品を含む各種商品や製品の洗浄装置、医療施設等において使用される各種の洗浄装置、手洗い器や洗顔器をはじめとする各種美容健康器具、建物の床面や壁面等を対称とする殺菌や消臭、漂白等を目的とした各種の清掃装置などが挙げられる。 Here, as the above-described cleaning device, it is used for cleaning water facilities provided in kitchens, bathrooms, toilets, washrooms, etc., pipes attached to dwelling units, factories, etc., or mechanical equipment installed in factories, etc. Cleaning equipment, parts cleaning equipment as production equipment installed in factories, cleaning equipment for various products and products including foodstuffs, various cleaning equipment used in medical facilities, hand washers and face washers, etc. And various cleaning devices for the purpose of sterilization, deodorization, bleaching and the like that are symmetrical about the floor or wall surface of the building.
 このように、本発明は、その趣旨に照らして逸脱しない範囲で各種の洗浄ユニットや洗浄装置に適用が可能である。 Thus, the present invention can be applied to various cleaning units and cleaning devices without departing from the spirit of the present invention.
 以上において開示した上記実施の形態ならびにその変形例はすべての点で例示であって、制限的なものではない。本発明の技術的範囲は請求の範囲によって画定され、また請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。 The above-described embodiments and modifications thereof disclosed above are examples in all respects and are not restrictive. The technical scope of the present invention is defined by the scope of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1A,1B オゾン含有液生成装置、2 吸液口、3 吐出口、4 吸気口、5 逆止弁、10 オゾン発生器、20 気液混合器、21 大径流路部、22 小径流路部、23 円錐状流路部、24 気体導入通路部、30 気液分離器、31 容器(第1容器部材)、40 液体トラップ、41 容器(第2容器部材)、42 トラップ室、42a 貯留部、43 入口側開口部、44 出口側開口部、50 隔壁(隔壁部材)、51 傾斜面、100 オゾン水、101 液滴、L1 液体導入路、L2 オゾン含有液搬送路、L3 オゾン含有液導出路、L4 気体導入路、L5 オゾン搬送路、L6 気体還流路。 1A, 1B Ozone-containing liquid generating device, 2 liquid inlet, 3 outlet, 4 air inlet, 5 check valve, 10 ozone generator, 20 gas-liquid mixer, 21 large-diameter channel, 22 small-diameter channel, 23, conical channel section, 24 gas introduction passage section, 30 gas-liquid separator, 31 container (first container member), 40 liquid trap, 41 container (second container member), 42 trap chamber, 42a storage section, 43 Inlet side opening, 44 Outlet side opening, 50 partition wall (partition member), 51 inclined surface, 100 ozone water, 101 droplet, L1 liquid introduction path, L2 ozone-containing liquid transport path, L3 ozone-containing liquid lead-out path, L4 Gas introduction path, L5 ozone transport path, L6 gas reflux path.

Claims (11)

  1.  酸素を含む気体を用いてオゾンを発生させるオゾン発生手段と、
     前記オゾン発生手段にて発生させたオゾンを液体に含有させることでオゾン含有液を生成するオゾン含有液生成手段と、
     前記オゾン発生手段に酸素を含む気体を導入する気体導入路と、
     前記オゾン含有液生成手段に液体を導入する液体導入路と、
     前記オゾン含有液生成手段にて生成されたオゾン含有液を一時的に貯留してこれを気液分離する気液分離手段と、
     前記気液分離手段にて気液分離された後のオゾン含有液を外部に導出するオゾン含有液導出路と、
     前記気液分離手段にてオゾン含有液から分離されたオゾンを含む気体を前記オゾン発生手段に還流する気体還流路と、
     前記気体還流路上に設けられた液体トラップとを備えた、オゾン含有液生成装置。
    Ozone generating means for generating ozone using a gas containing oxygen;
    Ozone-containing liquid generating means for generating an ozone-containing liquid by containing ozone generated by the ozone generating means in a liquid;
    A gas introduction path for introducing a gas containing oxygen into the ozone generating means;
    A liquid introduction path for introducing liquid into the ozone-containing liquid generation means;
    A gas-liquid separating means for temporarily storing the ozone-containing liquid generated by the ozone-containing liquid generating means and gas-liquid separating the ozone-containing liquid;
    An ozone-containing liquid lead-out path for leading out the ozone-containing liquid after being gas-liquid separated by the gas-liquid separation means;
    A gas reflux path for refluxing the gas containing ozone separated from the ozone-containing liquid by the gas-liquid separation means to the ozone generation means;
    An ozone-containing liquid generation apparatus comprising a liquid trap provided on the gas reflux path.
  2.  前記液体トラップが、前記気体還流路の断面積よりも大きい断面積を有するトラップ室を有している、請求項1に記載のオゾン含有液生成装置。 The ozone-containing liquid generating apparatus according to claim 1, wherein the liquid trap has a trap chamber having a cross-sectional area larger than a cross-sectional area of the gas reflux path.
  3.  前記液体トラップから見て前記オゾン発生手段側に位置する前記気体還流路の前記液体トラップに対する接続端が、前記トラップ室を規定する前記液体トラップの内壁面よりも前記トラップ室の内側に向けて突出するように設けられている、請求項2に記載のオゾン含有液生成装置。 A connection end of the gas recirculation path located on the ozone generating means side when viewed from the liquid trap to the liquid trap protrudes toward the inside of the trap chamber from an inner wall surface of the liquid trap defining the trap chamber. The ozone-containing liquid production | generation apparatus of Claim 2 provided so that it may do.
  4.  前記液体トラップにて捕捉した液体が、前記気液分離手段によって回収されるように構成されている、請求項1から3のいずれかに記載のオゾン含有液生成装置。 The ozone-containing liquid generating apparatus according to any one of claims 1 to 3, wherein the liquid captured by the liquid trap is configured to be collected by the gas-liquid separation means.
  5.  前記液体トラップが、前記気液分離手段に一体に設けられている、請求項1から4のいずれかに記載のオゾン含有液生成装置。 The ozone-containing liquid generating apparatus according to any one of claims 1 to 4, wherein the liquid trap is provided integrally with the gas-liquid separating means.
  6.  前記液体トラップが、前記気体還流路の断面積よりも大きい断面積を有するトラップ室を有し、前記気液分離手段の直上に位置するように前記気液分離手段に一体に設けられ、
     前記気液分離手段が、オゾン含有液を一時的に貯留してこれを気液分離するための気液分離室を有し、
     前記液体トラップにて捕捉した液体が前記気液分離手段によって回収されるように、前記トラップ室の底面が、前記液体トラップから見て前記気液分離手段側に位置する前記気体還流路の前記液体トラップに対する接続端側に向けて傾斜した傾斜形状を有している、請求項1に記載のオゾン含有液生成装置。
    The liquid trap has a trap chamber having a cross-sectional area larger than the cross-sectional area of the gas reflux path, and is provided integrally with the gas-liquid separation means so as to be located immediately above the gas-liquid separation means,
    The gas-liquid separation means has a gas-liquid separation chamber for temporarily storing the ozone-containing liquid and gas-liquid separation thereof;
    The liquid in the gas reflux path in which the bottom surface of the trap chamber is located on the gas-liquid separation means side when viewed from the liquid trap so that the liquid captured by the liquid trap is recovered by the gas-liquid separation means The ozone-containing liquid production | generation apparatus of Claim 1 which has the inclination shape inclined toward the connection end side with respect to a trap.
  7.  前記気液分離室と前記トラップ室とが、前記液体トラップから見て前記気液分離手段側に位置する前記気体還流路としての開口部が形成された隔壁によって区画され、
     一体化された前記気液分離手段および前記液体トラップが、前記気液分離室を規定する上面開口の第1容器部材と、前記隔壁を構成する隔壁部材と、前記トラップ室を規定する下面開口の第2容器部材とを含み、これら第1容器部材、隔壁部材および第2容器部材がこの順で下方から上方に向かって積層されることで形成されている、請求項6に記載のオゾン含有液生成装置。
    The gas-liquid separation chamber and the trap chamber are partitioned by a partition wall formed with an opening as the gas reflux path located on the gas-liquid separation means side when viewed from the liquid trap,
    The gas-liquid separation means and the liquid trap integrated with each other include a first container member having an upper surface opening that defines the gas-liquid separation chamber, a partition member that forms the partition wall, and a lower surface opening that defines the trap chamber. The ozone-containing liquid according to claim 6, comprising: a second container member, wherein the first container member, the partition member, and the second container member are laminated in this order from the bottom to the top. Generator.
  8.  前記気体導入路が、酸素を含む気体を導入するための吸気口と、前記吸気口が位置する側から前記オゾン発生手段が位置する側に向かう方向にのみ酸素を含む気体の流通を可能にする流通制限手段とを含み、
     前記液体トラップから見て前記オゾン発生手段側に位置する前記気体還流路の前記液体トラップに対する接続端が、前記開口部の直上の位置から偏在した位置に設けられ、
     前記流通制限手段が、前記トラップ室に連通するように前記開口部の直上の位置に設けられている、請求項7に記載のオゾン含有液生成装置。
    The gas introduction path enables an air inlet for introducing a gas containing oxygen, and a gas containing oxygen only in a direction from the side where the air inlet is located toward the side where the ozone generating means is located. Distribution restriction means,
    A connection end to the liquid trap of the gas reflux path located on the ozone generating means side when viewed from the liquid trap is provided at a position unevenly distributed from a position immediately above the opening,
    The ozone-containing liquid generating apparatus according to claim 7, wherein the flow restriction means is provided at a position immediately above the opening so as to communicate with the trap chamber.
  9.  前記液体トラップから見て前記オゾン発生手段側に位置する前記気体還流路の前記液体トラップに対する接続端が、前記トラップ室を規定する前記液体トラップの内壁面よりも前記トラップ室の内側に向けて突出するように設けられている、請求項6から8のいずれかに記載のオゾン含有液生成装置。 A connection end of the gas recirculation path located on the ozone generating means side when viewed from the liquid trap to the liquid trap protrudes toward the inside of the trap chamber from an inner wall surface of the liquid trap defining the trap chamber. The ozone-containing liquid production | generation apparatus in any one of Claim 6 to 8 provided so that it may do.
  10.  前記オゾン含有液生成手段が、ベンチュリー効果を利用してオゾンを液体に含有させる気液混合手段にて構成されている、請求項1から9のいずれかに記載のオゾン含有液生成装置。 The ozone-containing liquid generating device according to any one of claims 1 to 9, wherein the ozone-containing liquid generating means is constituted by a gas-liquid mixing means for containing ozone in a liquid using a venturi effect.
  11.  請求項1から10のいずれかに記載のオゾン含有液生成装置を備えた、洗浄装置。 A cleaning apparatus comprising the ozone-containing liquid generating apparatus according to any one of claims 1 to 10.
PCT/JP2013/063564 2012-07-13 2013-05-15 Ozone-containing liquid generating device and cleaning apparatus provided with same WO2014010304A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380031750.9A CN104379244A (en) 2012-07-13 2013-05-15 Ozone-containing liquid generating device and cleaning apparatus provided with same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012157216A JP2013240777A (en) 2012-04-25 2012-07-13 Apparatus for generating ozone-containing fluid and cleaning apparatus having the same
JP2012-157216 2012-07-13

Publications (1)

Publication Number Publication Date
WO2014010304A1 true WO2014010304A1 (en) 2014-01-16

Family

ID=49917349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063564 WO2014010304A1 (en) 2012-07-13 2013-05-15 Ozone-containing liquid generating device and cleaning apparatus provided with same

Country Status (3)

Country Link
JP (1) JP2013240777A (en)
CN (1) CN104379244A (en)
WO (1) WO2014010304A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106310722A (en) * 2015-07-02 2017-01-11 北京水创新能科技有限责任公司 Device for removing suspended gas in liquids and application thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106964268B (en) * 2017-04-28 2023-07-04 宁波福莱源纳米科技有限公司 Micro-nano bubble generating device
CN108328578B (en) * 2018-01-29 2020-03-10 荣成海奥斯生物科技有限公司 Filling device for gaseous available chlorine aqueous solution
CN108408868A (en) * 2018-04-19 2018-08-17 曹祚 A kind of high-concentrated ozone water producing method
KR102189633B1 (en) * 2018-12-14 2020-12-11 (주)에코비즈넷 Culture device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5516089A (en) * 1978-07-17 1980-02-04 Dut Pty Ltd Method of simultaneously cooling and dehydrating hydrocarbon gas mixture
JPH02207892A (en) * 1989-02-08 1990-08-17 Reika Kogyo Kk Ozonized water forming device
JPH0429797A (en) * 1990-05-25 1992-01-31 Japan Steel Works Ltd:The Making apparatus for ozonized water
JP2002239359A (en) * 2001-02-21 2002-08-27 Daikin Ind Ltd Water droplet removing device for ozone water generator and ozone water generator
JP2002292262A (en) * 2001-04-03 2002-10-08 Daikin Ind Ltd Ozone water generating apparatus
JP2010177535A (en) * 2009-01-30 2010-08-12 Toyota Motor Corp Semiconductor wafer cleaning system
JP2011104508A (en) * 2009-11-17 2011-06-02 Nitto Denko Corp Degassing system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201290973Y (en) * 2008-11-05 2009-08-19 唐平安 Ultrasonic cleaning treatment instrument with wound surface cleaning and sterilizing function

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5516089A (en) * 1978-07-17 1980-02-04 Dut Pty Ltd Method of simultaneously cooling and dehydrating hydrocarbon gas mixture
JPH02207892A (en) * 1989-02-08 1990-08-17 Reika Kogyo Kk Ozonized water forming device
JPH0429797A (en) * 1990-05-25 1992-01-31 Japan Steel Works Ltd:The Making apparatus for ozonized water
JP2002239359A (en) * 2001-02-21 2002-08-27 Daikin Ind Ltd Water droplet removing device for ozone water generator and ozone water generator
JP2002292262A (en) * 2001-04-03 2002-10-08 Daikin Ind Ltd Ozone water generating apparatus
JP2010177535A (en) * 2009-01-30 2010-08-12 Toyota Motor Corp Semiconductor wafer cleaning system
JP2011104508A (en) * 2009-11-17 2011-06-02 Nitto Denko Corp Degassing system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106310722A (en) * 2015-07-02 2017-01-11 北京水创新能科技有限责任公司 Device for removing suspended gas in liquids and application thereof

Also Published As

Publication number Publication date
JP2013240777A (en) 2013-12-05
CN104379244A (en) 2015-02-25

Similar Documents

Publication Publication Date Title
WO2014010304A1 (en) Ozone-containing liquid generating device and cleaning apparatus provided with same
JP4621095B2 (en) Air purifier
US9119284B2 (en) Plasma generator and method for producing radical, and cleaning and purifying apparatus and small-sized electrical appliance using the same
JP2012204249A (en) Plasma generating device and washing and cleaning device using the same
JP2017029709A (en) Air purification device
WO2013191072A1 (en) Ozone-containing liquid generation device, and cleaning device provided therewith
KR102026185B1 (en) Plasma type water treatment device with improved treatment efficiency by micro bubble
WO2013065355A1 (en) Ozone liquid generator and ozone liquid generation method
JP6413088B2 (en) Air purification device
WO2013001926A1 (en) Ozone liquid generator, method for generating ozone liquid, and toilet
JP2016002533A (en) Production apparatus and method of ozone water using dissolved oxygen contained in raw water as raw material
JP2016087075A (en) Air cleaning apparatus
JP6672248B2 (en) Drinking water generator
JP6741991B2 (en) Liquid processing device
JP5455942B2 (en) Ozone liquid generator, water purifier and cleaning method thereof
KR20190105643A (en) Potable water generator
JP6607828B2 (en) Organic substance decomposition apparatus and organic substance decomposition method
JP2014004499A (en) Ozone-containing liquid generator and washing device with the same
JP2015040343A (en) Ozone-containing liquid generator and ozone-containing liquid generating method
JP5424225B2 (en) Ozone water generator
JP2013202493A (en) Ozone-containing liquid generator and washing device including the same
KR101595372B1 (en) A water cleaning and sterilizing device for aquarium
JP6117667B2 (en) Ozone-containing liquid generator
WO2013065356A1 (en) Ozone liquid generation device
JP2002219474A (en) Photooxidation reaction equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13816749

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13816749

Country of ref document: EP

Kind code of ref document: A1