WO2014010260A1 - X-ray diffraction measurement device and x-ray diffraction measurement system - Google Patents

X-ray diffraction measurement device and x-ray diffraction measurement system Download PDF

Info

Publication number
WO2014010260A1
WO2014010260A1 PCT/JP2013/051603 JP2013051603W WO2014010260A1 WO 2014010260 A1 WO2014010260 A1 WO 2014010260A1 JP 2013051603 W JP2013051603 W JP 2013051603W WO 2014010260 A1 WO2014010260 A1 WO 2014010260A1
Authority
WO
WIPO (PCT)
Prior art keywords
plane
ray
wall
imaging plate
pair
Prior art date
Application number
PCT/JP2013/051603
Other languages
French (fr)
Japanese (ja)
Inventor
洋一 丸山
Original Assignee
パルステック工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パルステック工業株式会社 filed Critical パルステック工業株式会社
Publication of WO2014010260A1 publication Critical patent/WO2014010260A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/06Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring the deformation in a solid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/25Measuring force or stress, in general using wave or particle radiation, e.g. X-rays, microwaves, neutrons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0047Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes measuring forces due to residual stresses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/207Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions

Definitions

  • the present invention relates to an X-ray diffraction measurement apparatus for irradiating a measurement object with X-rays, forming a diffraction ring on the surface of an imaging plate by X-rays diffracted by the measurement object, and reading the formed diffraction ring,
  • the present invention relates to an X-ray diffraction measurement system that measures a residual stress of an object to be measured using a diffraction ring that includes a diffraction measurement apparatus and is read by an X-ray diffraction measurement apparatus.
  • the residual stress of a measurement object is often measured by X-ray diffraction.
  • an X-ray diffraction measurement apparatus capable of reducing the size of the apparatus and shortening the X-ray irradiation time is disclosed, for example, in Patent Document 1 below.
  • the measuring device is arranged at a desired position on the rail as a measurement object, and a predetermined incident angle (30 in a plane perpendicular to the upper surface of the rail, including the extending direction of the rail).
  • X-rays radiated on the top surface of the rail at ⁇ 45 degrees and diffracted on the top surface of the rail have photosensitivity.
  • Light is received by the imaging plate, and an annular X-ray diffraction image (hereinafter, this annular X-ray diffraction image is simply referred to as a diffraction ring) is formed on the imaging plate.
  • the imaging plate is detached from the measuring device and attached to the diffraction ring reader, and the shape of the diffraction ring formed on the imaging plate is analyzed using the cos ⁇ method, and the residual stress in the rail axis direction on the rail upper surface is analyzed. I am trying to calculate.
  • the measurement object is movable, it is possible to irradiate X-rays from any direction.
  • the diffraction ring shown in the above prior art is used. It is necessary to use a small X-ray diffractometer that is formed to measure the residual stress.
  • the X-ray diffractometer shown in the above prior art measures the residual stress in the axial direction of the rail, and is not suitable for measuring the residual stress near the corner. That is, in the conventional X-ray diffraction measurement apparatus, X-rays are not accurately irradiated at a predetermined angle with respect to each surface of the measurement object at positions near the corners of the measurement object.
  • the diffraction ring for measuring the residual stress in the vicinity of the portion cannot be formed on the imaging plate with high accuracy.
  • the present invention has been made in order to solve the above-mentioned problems, and the purpose of the present invention is to easily irradiate X-rays at a predetermined angle with respect to each surface of the measurement object at positions near the corners of the measurement object.
  • an X-ray diffraction measurement apparatus that can form a diffraction ring by X-rays on an imaging plate and can measure the shape of the diffraction ring in the same apparatus without removing the imaging plate on which the diffraction ring is formed. There is also.
  • the present invention is characterized in that an X-ray emitter (20) that emits X-rays toward a measurement object and a table (30) in which a through-hole that allows X-rays to pass through is formed in the center. ) And a diffraction ring which is an image of the diffracted light, having a light receiving surface for receiving the X-ray diffracted light diffracted by the measurement object while passing through the X-ray at the center. It has an imaging plate (31) for recording, a laser light source that emits laser light, and a photodetector that receives the laser light.
  • the laser light is emitted to the light receiving surface of the imaging plate, and is emitted from the imaging plate by laser light irradiation.
  • Detector (50) that receives received light and outputs a received light signal corresponding to the received light intensity
  • a rotation mechanism (47) that rotates the table around the central axis of the through hole
  • X-ray emission A moving mechanism (41 to 43) for moving the table between an X-ray emission position where X-rays from the laser beam pass through the table and the imaging plate and a laser beam irradiation position where the imaging plate is irradiated with laser light from the laser detection device )
  • An X-ray diffraction measurement apparatus that irradiates an object and guides the diffracted
  • It has 1 plane wall (14) and 2nd plane wall (11), and the optical axis of the X-rays emitted from the X-ray emitter is orthogonal to the first plane wall and the second plane wall, respectively.
  • X-rays are included so that X-rays are emitted from a direction inclined by a first predetermined angle with respect to the second plane wall at a position near the intersection line of the first plane wall and the second plane wall.
  • An emitter is disposed in the case, and the first plane wall is brought into contact with one plane portion of the pair of plane portions with respect to the measurement object (OB) having a pair of plane portions (hp, vp) orthogonal to each other.
  • OB measurement object
  • the pair of flat portions is located at a position near the intersection line of the pair of flat portions in the one or other flat portion.
  • the X-ray from the X-ray emitter is emitted from the direction orthogonal to the intersecting line.
  • the first predetermined angle may be in the range of 35 degrees to 55 degrees.
  • the X-ray configured as described above can be used even when a measurement object having a pair of plane portions orthogonal to each other, that is, an L-shaped measurement object cannot be easily moved. If the diffraction measuring device is transported and the first flat wall is brought into contact with one flat portion of the pair of flat portions and the second flat wall is brought into contact with the other flat portion of the pair of flat portions, the one Alternatively, the X-ray from the X-ray emitter is irradiated with high accuracy to a position in the vicinity of the intersection line of the pair of plane portions in the other plane portion.
  • the X-ray emission direction is a direction inclined by a first predetermined angle with respect to the plane portion in contact with the second plane wall and is orthogonal to the intersecting line of the pair of plane portions. Therefore, X-rays can be irradiated to the positions near the corners of the L-shaped measurement object at a predetermined angle with respect to each surface of the measurement object.
  • the shape of the diffraction ring formed on the imaging plate by the X-ray irradiation is read using the light reception signal output from the laser detector, the shape of the read diffraction ring is obtained. Therefore, it is possible to accurately measure the residual stress in the vicinity of the corner of the L-shaped measuring object, which is perpendicular to the intersecting line of the measuring object and parallel to the first plane wall. Become.
  • the case further includes a flat inclined wall (17) that is orthogonal to the first flat wall and is inclined at a second predetermined angle with respect to the second flat wall toward the inside of the case.
  • a plane perpendicular to the first plane wall that includes the optical axis of the X-ray emitted from the X-ray emitter at a position in the vicinity of the intersection line of the pair of plane portions in the other plane portion is the intersection line of the pair of plane portions.
  • X-rays from the X-ray emitter are emitted in a state intersecting at a second predetermined angle with respect to a plane orthogonal to.
  • the second predetermined angle may be in the range of 20 degrees to 50 degrees.
  • the first flat wall is brought into contact with one flat portion of the pair of flat portions of the measurement object, and the inclined wall is brought into contact with the other flat portion of the pair of flat portions. If it is brought into contact with the plane part, the optical axis of the X-ray emitted from the X-ray emitter is positioned near the intersection line of the pair of plane parts in one or the other plane part of the L-shaped measurement object. The X-ray from the X-ray emitter is emitted with high accuracy in a state where the plane perpendicular to the first plane wall intersects the plane perpendicular to the intersection line of the pair of plane portions at the second predetermined angle. It will be.
  • the moving direction of the table by the moving mechanism may be the direction of the intersecting line between the first plane wall and the second plane wall.
  • the case is provided with a carrying handle (19). According to this, the X-ray diffraction measurement apparatus can be easily transported and moved.
  • a diffraction ring erasing means (63) for erasing the diffraction ring formed on the imaging plate is further provided.
  • the diffraction ring formed on the imaging plate can be easily deleted, and a new diffraction ring can be formed on the imaging plate, and the diffraction ring on the imaging plate by X-ray irradiation can be formed. Formation can be performed easily and repeatedly.
  • the case has a flat plate-shaped first plane wall and second plane wall orthogonal to each other, and the table is controlled by controlling the rotation mechanism. While rotating and moving the table by controlling the moving mechanism, the laser detection device is controlled to irradiate the light receiving surface of the imaging plate while detecting the irradiation position, and the light reception signal from the laser detection device is input. Then, a diffraction ring reading means (91, S200 to S248, S300 to S320) for reading the diffraction ring formed on the imaging plate by processing the detected irradiation position and the received light reception signal, and a pair of orthogonally crossing each other.
  • a diffraction ring reading means (91, S200 to S248, S300 to S320) for reading the diffraction ring formed on the imaging plate by processing the detected irradiation position and the received light reception signal, and a pair of orthogonally crossing each other.
  • a measurement object having a plane part is brought into contact with one plane part of the pair of plane parts and the second plane wall is paired with the pair of plane parts.
  • the case has a flat first flat wall and a second flat wall that are orthogonal to each other, is orthogonal to the first flat wall, and is inside the case with respect to the second flat wall.
  • the table is rotated by controlling the rotation mechanism, and the table is moved by controlling the moving mechanism.
  • the laser detection device is controlled to irradiate the light receiving surface of the imaging plate while detecting the irradiation position, and the light receiving signal from the laser detecting device is inputted, and the detected irradiation position and the input light receiving signal are inputted.
  • a diffraction ring reading means (91, S200 to S248, S300 to S320) for reading the diffraction ring formed on the imaging plate by processing, and a pair of planes orthogonal to each other
  • the first plane wall is brought into contact with one plane portion of the pair of plane portions
  • the second plane wall is brought into contact with the other plane portion of the pair of plane portions.
  • Data representing a diffraction ring formed on the imaging plate by X-ray irradiation from the line emitter, the data read by the diffraction ring reading means, and the first plane wall on one plane part of the pair of plane parts This is data representing a diffraction ring formed on the imaging plate by X-ray irradiation from the X-ray emitter by bringing the inclined wall into contact with the other flat portion of the pair of flat portions.
  • the residual stress in the vicinity of the intersection line of the pair of plane portions in the one or other plane portion, which is orthogonal to the intersection line of the pair of plane portions Residual stress in the direction parallel to the plane wall
  • FIG. 2 is a cross-sectional view of the X-ray diffraction measurement device viewed along line 2-2 in FIG.
  • FIG. 3 is a cross-sectional view of the X-ray diffraction measurement device viewed along line 3-3 in FIG.
  • FIG. 4 is a cross-sectional view of the X-ray diffraction measurement apparatus taken along line 4-4 of FIG.
  • FIG. 1 is an overall schematic block diagram showing an X-ray diffraction measurement system including an X-ray diffraction measurement apparatus. It is a flowchart which shows the diffraction ring imaging program performed by the controller of FIG. It is a flowchart which shows the first half part of the diffraction ring reading program performed by the controller of FIG. It is a flowchart which shows the latter half part of the said diffraction ring reading program. It is a flowchart which shows the diffraction ring shape detection program performed by the controller of FIG. 6 is a flowchart showing a diffraction ring erasing program executed by the controller of FIG. 5. It is a flowchart which shows the stress calculation program performed by the controller of FIG.
  • (A) is a top view in which an X-ray diffraction measurement device is arranged on the measurement object in the first diffraction ring measurement step
  • (B) is an X-ray diffraction on the measurement object in the second diffraction ring measurement step.
  • It is a top view which has arrange
  • FIG. 1A is a front view of an X-ray diffraction measurement apparatus according to an embodiment of the present invention
  • FIG. 1B is a top view of the X-ray diffraction measurement apparatus
  • FIG. 1C is the X-ray diffraction apparatus. It is a right view of a diffraction measuring apparatus.
  • This X-ray diffraction measurement apparatus has a case 10.
  • the case 10 includes a flat front wall 11, a back wall 12, a top wall 13, a bottom wall 14, a left side wall 15, and a right side wall 16 and is formed in a rectangular parallelepiped shape from metal or resin. That is, the front wall 11 and the back wall 12 are parallel, and the front wall 11 and the back wall 12 are orthogonal to the top wall 13, the bottom wall 14, the left side wall 15, and the right side wall 16.
  • the top wall 13 and the bottom wall 14 are also parallel, and the top wall 13 and the bottom wall 14 are orthogonal to the front wall 11, the back wall 12, the left side wall 15, and the right side wall 16.
  • the left side wall 15 and the right side wall 16 are also parallel, and the left side wall 15 and the right side wall 16 are orthogonal to the front wall 11, the back wall 12, the top wall 13, and the bottom wall 14.
  • An inclined wall 17 is provided at the right end of the front wall 11 and the front end of the right side wall 16 so as to cut a corner portion sandwiched between the front wall 11 and the right side wall 16 relatively large.
  • the inclined wall 17 is a flat plate-like member that is inclined by 30 degrees from the extending direction to the right side at the right end portion of the front wall 11 toward the back wall 12, that is, the inner side of the case 10. That is, the inclined wall 17 intersects the front wall 11 at an angle of 150 degrees and intersects the right side wall 16 at an angle of 120 degrees.
  • the inclined wall 17 intersects the top wall 13 and the bottom wall 14 at an angle of 90 degrees.
  • a notch 18 is formed by notching a corner portion sandwiched between the front wall 11 and the bottom wall 14. ing.
  • This notch 18 is also a flat member and intersects the front wall 11 and the bottom wall 14 at an angle of 135 degrees.
  • the notch 18 is provided with an oval through-hole 18 a that penetrates the inside and the outside of the case 10 at a position near the inclined wall 17.
  • a handle 19 is attached to the central portion of the top wall 13 so that a human can carry the X-ray diffraction measurement apparatus.
  • FIG. 2 is a cross-sectional view of the X-ray diffraction measurement apparatus taken along line 2-2 in FIG. 1
  • FIG. 3 is a cross-sectional view of the X-ray diffraction measurement apparatus taken along line 3-3 in FIG. is there.
  • FIG. 4 is a cross-sectional view of the X-ray diffraction measurement apparatus taken along line 4-4 of FIG.
  • the X-ray diffraction measurement apparatus includes an X-ray emitter 20 that emits X-rays, a table 30 for mounting an imaging plate 31 on which a diffraction ring is formed by diffracted X-rays, and a table driving mechanism that rotates and moves the table 30. 40 and a laser detector 50 for measuring a diffraction ring formed on the imaging plate 31 are accommodated in the case 10.
  • the X-ray emitter 20 is formed in a long shape and extends in the left-right direction at a position near the corner where the back wall 12 and the top wall 13 in the case 10 intersect, and is fixed to the case 10 by a fixing member (not shown). It is fixed and emits X-rays upon receiving a high voltage supplied from a high voltage power supply 95 described later.
  • This X-ray has a position in the vicinity of the intersection of the back wall 12 and the top wall 13 in a plane parallel to the right side wall 16 located slightly to the left of the left and right position where the front wall 11 and the inclined wall 17 intersect.
  • the light is emitted in a direction that forms an angle of 45 degrees with respect to the front wall 11 and the bottom wall 14 from the upper position on the straight line that connects the rear position slightly with respect to the intersection position of the front wall 11 and the bottom wall 14. Is done.
  • a through hole 18a formed in the notch 18 described above is provided, and this X-ray is emitted from the inside of the case 10 to the outside through the through hole 18a. That is, when the case 10 is placed on the measurement object OB with the bottom wall 14 of the case 10 being in contact with the upper surface of the measurement object OB, the optical axis of the X-ray emitted from the X-ray emitter 20 is measured.
  • the incident angle to the object OB (angle formed by the optical axis of the X-ray and the normal line of the measurement object OB) is 45 degrees.
  • the X-ray emitter 20 includes a cooling device (not shown).
  • the front wall 11 When forming the diffraction ring by irradiating the measurement object OB with X-rays, as shown in FIG. 3, the front wall 11 is brought into contact with the vertical surface vp of the measurement object OB having an L-shaped cross section, When the case 10 is positioned so that the bottom wall 14 is in contact with the horizontal plane hp, the X-ray is in a position on the horizontal plane hp close to the vertical plane vp in a plane orthogonal to the vertical plane vp and the horizontal plane hp.
  • the optical axis of the X-ray emitted from the X-ray irradiator 20 is in a plane parallel to the right side wall 16 (that is, in a plane orthogonal to the front wall 11 and the bottom wall 14), and It is necessary to set the X-ray emission direction accurately so that the X-ray is irradiated to the position on the back wall 12 side slightly from the intersection line between the front wall 11 and the bottom wall 14.
  • the table driving mechanism 40 is fixed in the case 10 by a fixing member (not shown), and includes a moving stage 41 below the X-ray emitter 20.
  • the moving stage 41 can be moved in a direction parallel to the front wall 11, the back wall 12, the top wall 13, and the bottom wall 14, that is, in a direction perpendicular to the left side wall 15 and the right side wall 16 by the feed motor 42 and the screw rod 43. It has become.
  • the feed motor 42 is fixed in the table driving mechanism 40 and cannot move with respect to the case 10.
  • the screw rod 43 extends in a direction perpendicular to the optical axis of the X-ray emitted from the X-ray emitter 20, and one end thereof is connected to the output shaft of the feed motor 42.
  • the other end portion of the screw rod 43 is rotatably supported by a bearing portion 44 provided in the table drive mechanism 40. Further, the moving stage 41 is sandwiched between a pair of opposed plate-like guides 45, 45 fixed in the table driving mechanism 40, respectively, and can move along the axial direction of the screw rod 43. ing. That is, when the feed motor 42 is driven forward or backward, the rotational motion of the feed motor 42 is converted into the linear motion of the moving stage 41.
  • An encoder 42 a is incorporated in the feed motor 42. The encoder 42a outputs a pulse train signal that alternately switches between a high level and a low level each time the feed motor 42 rotates by a predetermined minute rotation angle.
  • the upper ends of the pair of guides 45 are connected by a plate-like upper wall 46.
  • a through hole 46 a is provided in the upper wall 46, and the distal end portion of the emission port 21 of the X-ray emitter 20 is inserted into the through hole 46 a.
  • the positions of the X-ray emitter 20 and the moving stage 41 are set so that the tip of the emission port 21 of the X-ray emitter 20 does not contact the moving stage 41.
  • a spindle motor 47 is assembled to the moving stage 41.
  • an encoder 47a similar to the encoder 42a is incorporated. That is, the encoder 47a outputs a pulse train signal that alternately switches between a high level and a low level each time the spindle motor 47 rotates by a predetermined minute rotation angle. Furthermore, the encoder 47a outputs an index signal that switches from a low level to a high level for a predetermined short period of time each time the spindle motor 47 rotates once.
  • the table 30 is formed in a circular shape and is fixed to the tip of the output shaft of the spindle motor 47.
  • the center axis of the table 30 coincides with the center axis of the output shaft of the spindle motor 47.
  • the table 30 has a protruding portion 32 that protrudes downward from the central portion of the lower surface, and a thread is formed on the outer peripheral surface of the protruding portion 32.
  • the central axis of the protruding portion 32 coincides with the central axis of the output shaft of the spindle motor 47.
  • An imaging plate 31 is attached to the lower surface of the table 30.
  • the imaging plate 31 is a circular plastic film whose surface is coated with a phosphor.
  • a through hole 31a is provided in the center of the imaging plate 31, and the imaging plate 31 is fixed by screwing a nut-shaped fixture 33 into the protruding part 32 by passing the protruding part 32 through the through hole 31a. It is sandwiched and fixed between the tool 33 and the table 30.
  • the fixture 33 is a cylindrical member, and a thread corresponding to the thread of the protrusion 32 is formed on the inner peripheral surface.
  • the imaging plate 31 is driven by the feed motor 42 and moves together with the moving stage 41, the spindle motor 47 and the table 30 from the origin position to the diffraction ring imaging position for imaging the diffraction ring.
  • the imaging plate 31 is driven by the feed motor 42 while being rotated by the spindle motor 47, and is driven by the feed motor 42 to read the imaged diffraction ring together with the moving stage 41, the spindle motor 47 and the table 30, and in the diffraction ring reading region. It moves in the diffractive ring erasing region that erases the diffractive ring.
  • the front wall 11, the back wall 12, the top wall 13, and the center axis of the imaging plate 31 include the optical axis of the X-ray emitted from the X-ray emitter 20. It moves in a direction orthogonal to the optical axis of the X-ray while being maintained in a plane orthogonal to the bottom wall 14, that is, in a plane parallel to the left side wall 15 and the right side wall 16.
  • the moving stage 41, the output shaft of the spindle motor 47, the table 30, the imaging plate 31, and the fixture 33 are provided with through holes through which the X-rays emitted from the X-ray emitter 20 pass.
  • the center axis of these through holes and the rotation axis of the table 30 are coincident. That is, when the central axis of these through holes and the optical axis of the X-ray emitted from the X-ray emitter 20 coincide, the X-ray is irradiated onto the measurement object OB.
  • the position of the imaging plate 31 when irradiating the measurement object OB with X-rays is the diffraction ring imaging position.
  • a light receiving sensor 35 for example, an X-ray CCD for detecting the distance between the measurement object OB and the imaging plate 31 is assembled by a fixing member (not shown).
  • the light receiving sensor 35 includes a plurality of light receiving elements that receive X-rays reflected by the measurement object OB, and is sufficiently separated from the measurement object OB and the imaging plate 31 toward the feed motor 42 side.
  • the light receiving sensor 35 can directly receive the X-ray reflected by the measurement object OB.
  • the light receiving position of the X-ray on the light receiving surface of the light receiving sensor 35 corresponds to the height of the measurement object OB. In other words, this corresponds to the distance between the imaging plate 31 and the measurement object OB.
  • the light receiving sensor 35 outputs a light receiving signal received by each light receiving element.
  • the laser detection device 50 detects the intensity of light incident from the imaging plate 31 by irradiating the imaging plate 31 that images the diffraction ring with laser light.
  • the laser detector 50 is sufficiently separated from the through hole 18 a provided in the notch 18 and the imaging plate 31 at the diffraction ring imaging position toward the feed motor 42. That is, when the imaging plate 31 is at the diffraction ring imaging position, the X-ray diffracted by the measurement object OB is not blocked by the laser detection device 50.
  • the laser detection device 50 includes a laser light source 51, a collimating lens 52, a reflecting mirror 53, a polarizing beam splitter 54, a quarter wavelength plate 55, and an objective lens 56, as indicated by broken lines in FIG.
  • the laser light source 51 emits laser light that irradiates the imaging plate 31.
  • the collimating lens 52 converts the laser light emitted from the laser light source 51 into parallel light.
  • the reflecting mirror 53 reflects the laser light converted into parallel light by the collimating lens 52 toward the polarizing beam splitter 54.
  • the polarization beam splitter 54 transmits most of the laser light incident from the reflecting mirror 53 (for example, 95%) as it is and guides it to the quarter-wave plate 55.
  • the quarter wave plate 55 converts the laser light incident from the polarization beam splitter 54 from linearly polarized light to circularly polarized light.
  • the objective lens 56 focuses the laser light incident from the quarter wavelength plate 55 on the surface of the imaging plate 31.
  • the optical axis of the laser light emitted from the objective lens 56 is a plane orthogonal to the front wall 11, the back wall 12, the top wall 13, and the bottom wall 14 including the optical axis of the X-ray emitted from the X-ray emitter 20. It is in a plane parallel to the inner side, that is, the left side wall 15 and the right side wall 16 and is parallel to the optical axis of the X-ray, that is, a direction perpendicular to the moving direction of the moving stage 41.
  • a focus actuator 57 is assembled to the objective lens 56.
  • the focus actuator 57 is an actuator that moves the objective lens 56 in the optical axis direction of the laser light.
  • the objective lens 56 is located at the center of the movable range when the focus actuator 57 is not energized.
  • the laser beam condensed by the objective lens 56 is irradiated onto the surface of the imaging plate 31 where the diffraction ring is imaged
  • a photo-stimulated luminescence phenomenon occurs. That is, after imaging the diffraction ring, when the imaging plate 31 is irradiated with laser light, the phosphor of the imaging plate 31 is light corresponding to the intensity of the diffracted X-ray, and light having a wavelength shorter than the wavelength of the laser light. To emit.
  • the reflected light of the laser beam irradiated and reflected on the imaging plate 31 and the light emitted from the phosphor pass through the objective lens 56 and the quarter wavelength plate 55 and are reflected by the polarization beam splitter 54.
  • a condensing lens 58 In the reflection direction of the polarization beam splitter 54, a condensing lens 58, a cylindrical lens 59, and a photodetector 60 are provided.
  • the condensing lens 58 condenses the light incident from the polarization beam splitter 54 on the cylindrical lens 59.
  • the cylindrical lens 59 causes astigmatism in the transmitted light.
  • the photodetector 60 is constituted by a four-divided light receiving element composed of four light receiving elements of the same square shape divided by dividing lines, and the light incident on the light receiving areas A, B, C, and D arranged in the clockwise direction.
  • a detection signal having a magnitude proportional to the intensity is output as a light reception signal (a, b, c, d).
  • the laser detection device 50 includes a condenser lens 61 and a photodetector 62.
  • the condensing lens 61 condenses the laser light that is a part of the laser light emitted from the laser light source 51 and reflected without passing through the polarization beam splitter 54 on the light receiving surface of the photodetector 62.
  • the photodetector 62 is a light receiving element that outputs a light reception signal corresponding to the intensity of light collected on the light receiving surface. Therefore, the photodetector 62 outputs a light reception signal corresponding to the intensity of the laser light emitted from the laser light source 51.
  • an LED 63 is provided adjacent to the objective lens 56.
  • the LED 63 emits visible light and erases the diffraction ring imaged on the imaging plate 31.
  • the case 10 also includes an electric control device 70 that is connected to the X-ray emitter 20, the table drive mechanism 40, and the laser detection device 50 to control the operation thereof and to input detection signals. ing.
  • the electric control device 70 will be described with reference to FIG.
  • the electric control device 70 surrounded by a two-dot chain line in FIG. 5 is housed in the case 10 as indicated by a two-dot chain line in FIGS.
  • the connection line of the electric control apparatus 70, the X-ray emitter 20, the table drive mechanism 40, and the laser detection apparatus 50 is abbreviate
  • the case 10 is omitted.
  • the electric control device 70 includes a circuit described below.
  • the X-ray control circuit 71 is controlled by a controller 91 that configures a computer device 90 to be described later, and a driving current supplied to the X-ray emitter 20 so that X-rays with a certain intensity are emitted from the X-ray emitter 20. And control the drive voltage.
  • the X-ray control circuit 71 also controls a drive signal supplied to the cooling device built in the X-ray emitter 20. Thereby, the temperature of the X-ray emitter 20 is kept constant.
  • the X-ray emitter 20 is supplied with a high voltage from a high voltage power supply 95, but the high voltage power supply 95 is not included in the electric control device 70.
  • a position detection circuit 72 and a feed motor control circuit 73 are connected to the encoder 42a in the feed motor 42, and a feed motor control circuit 73 is connected to the feed motor 42.
  • the position detection circuit 72 and the feed motor control circuit 73 start to operate in response to a command from the controller 91.
  • the feed motor control circuit 73 drives the feed motor 42 to move the moving stage 41 to the feed motor 42 side.
  • the position detection circuit 72 outputs a signal indicating that the movement stage 41 has reached the movement limit position to the feed motor control circuit 73, and sets the count value to “0”. Set to.
  • the feed motor control circuit 73 When the feed motor control circuit 73 receives a signal indicating that the movement limit position has been reached from the position detection circuit 72, the feed motor control circuit 73 stops outputting the drive signal to the feed motor 42.
  • the above movement limit position is set as the origin position of the moving stage 41. Therefore, the position detection circuit 72 outputs a position signal representing “0” when the moving stage 41 moves to the left in FIG. 5 and reaches the movement limit position, and the movement stage 41 moves to the right from the movement limit position.
  • a signal representing the movement distance x from the movement limit position is output as a position signal.
  • the feed motor control circuit 73 When the feed motor control circuit 73 receives a set value indicating the position of the moving stage 41 from the controller 91, the feed motor control circuit 73 drives the feed motor 42 in the forward or reverse direction according to the set value.
  • the position detection circuit 72 counts the number of pulses of the pulse signal output from the encoder 42a. Then, the position detection circuit 72 calculates the current position of the movement stage 41 (movement distance x from the movement limit position) using the counted number of pulses, and outputs it to the controller 91 and the feed motor control circuit 73.
  • the feed motor control circuit 73 drives the feed motor 42 until the current position of the moving stage 41 input from the position detection circuit 72 matches the position of the moving destination input from the controller 91.
  • the feed motor control circuit 73 inputs a set value indicating the moving speed of the moving stage 41 from the controller 91. Then, the moving speed of the moving stage 41 is calculated using the number of pulses per unit time of the pulse signal input from the encoder 42a, so that the calculated moving speed of the moving stage 41 becomes the moving speed input from the controller 91. The feed motor 42 is driven.
  • a spindle motor control circuit 74 and a rotation angle detection circuit 75 are connected to the encoder 47a in the spindle motor 47, and a spindle motor control circuit 74 is connected to the spindle motor 47.
  • the spindle motor control circuit 74 and the rotation angle detection circuit 75 start to operate in response to a command from the controller 91.
  • the spindle motor control circuit 74 inputs a setting value representing the rotational speed of the spindle motor 47 from the controller 91. Then, the rotational speed of the spindle motor 47 is calculated using the number of pulses per unit time of the pulse signal input from the encoder 47a, and the drive signal is input to the spindle so that the calculated rotational speed becomes the rotational speed input from the controller 91.
  • the motor 47 is supplied.
  • the rotation angle detection circuit 75 counts the number of pulses of the pulse train signal output from the encoder 47a, calculates the rotation angle of the spindle motor 47, that is, the rotation angle ⁇ p of the imaging plate 31 using the count value, and sends it to the controller 91. Output. Then, when the rotation angle detection circuit 75 receives the index signal output from the encoder 47a, the rotation angle detection circuit 75 sets the count value to “0”. That is, the position where the index signal is input is the reference position with a rotation angle of 0 degree.
  • a sensor signal extraction circuit 76 is connected to the light receiving sensor 35.
  • the sensor signal extraction circuit 76 starts to operate in response to a command from the controller 91, detects the peak position of the light receiving signal on the light receiving surface of the light receiving sensor 35 using the light receiving signal input from the light receiving sensor 35, and corresponds to the peak position.
  • a light receiving position signal representing the received light receiving position is output to the controller 91.
  • a laser drive circuit 77 is connected to the laser light source 51 and the photodetector 62.
  • the laser drive circuit 77 is controlled by the controller 91, receives the light reception signal output from the photodetector 62, and controls the drive signal output to the laser light source 51 so that the intensity of the light reception signal becomes a predetermined intensity. Thereby, the intensity of the laser light applied to the imaging plate 31 is kept constant.
  • the LED drive circuit 84 is connected to the LED 63.
  • the LED drive circuit 84 is controlled by the controller 91 and supplies a drive signal for generating visible light having a predetermined intensity to the LED 63.
  • An amplifying circuit 78 is connected to the photodetector 60.
  • the amplification circuit 78 amplifies the light reception signals (a, b, c, d) output from the photodetector 60 with the same amplification factor to generate light reception signals (a ′, b ′, c ′, d ′), Output to the focus error signal generation circuit 79 and the SUM signal generation circuit 80.
  • focus servo control based on the astigmatism method is used.
  • the focus error signal generation circuit 79 generates a focus error signal by calculation using the amplified light reception signals (a ′, b ′, c ′, d ′).
  • the focus error signal generation circuit 79 calculates (a ′ + c ′) ⁇ (b ′ + d ′) and outputs the calculation result to the focus servo circuit 81 as a focus error signal.
  • the focus error signal (a ′ + c ′) ⁇ (b ′ + d ′) represents the amount of deviation of the focal position of the laser beam from the surface of the imaging plate 31.
  • the focus servo circuit 81 is controlled by the controller 91, generates a focus servo signal based on the focus error signal, and outputs the focus servo signal to the drive circuit 82.
  • the drive circuit 82 drives the focus actuator 57 according to the focus servo signal to displace the objective lens 56 in the optical axis direction of the laser light.
  • the focus servo signal is generated so that the value of the focus error signal (a ′ + c ′) ⁇ (b ′ + d ′) is always a constant value (for example, zero), so that the laser is applied to the surface of the imaging plate 31.
  • the light can be continuously collected.
  • the SUM signal generation circuit 80 adds the received light signals (a ′, b ′, c ′, d ′) to generate a SUM signal (a ′ + b ′ + c ′ + d ′) and outputs it to the A / D conversion circuit 83.
  • the intensity of the SUM signal corresponds to the intensity of the laser beam reflected by the imaging plate 31 and the intensity of the light generated by the stimulated emission, but the intensity of the laser beam reflected by the imaging plate 31 is substantially constant. Therefore, the intensity of the SUM signal corresponds to the intensity of light generated by the stimulated light emission. That is, the intensity of the SUM signal corresponds to the intensity of the diffracted X-ray incident on the imaging plate 31.
  • the A / D conversion circuit 83 is controlled by the controller 91, receives the SUM signal from the SUM signal generation circuit 80, converts the instantaneous value of the input SUM signal into digital data, and outputs the digital data to the controller 91.
  • the computer device 90 includes a controller 91, an input device 92, and a display device 93.
  • the controller 91 is an electronic control unit mainly including a microcomputer including a CPU, a ROM, a RAM, a mass storage device, and the like, and executes various programs shown in FIGS. 6 to 10 stored in the mass storage device.
  • the input device 92 is connected to the controller 91 and is used by the measurer to input various parameters, work instructions, and the like.
  • the display device 93 visually informs the measurer of various setting conditions, operating conditions, measurement results, and the like.
  • the high voltage power source 95 supplies a high voltage for X-ray emission to the X-ray emitter 20.
  • the case 10 and various devices incorporated in the case 10 are referred to as an X-ray diffraction measurement device, and a computer device 90 and a high-voltage power supply 95 added to the X-ray diffraction measurement device X This is called a line diffraction measurement system.
  • the measurement object OB is formed in an L shape with a cross section having an angle of 90 degrees, as indicated by a two-dot chain line in FIG. 3 and a solid line in FIG.
  • the measurement object OB has a horizontal plane hp and a vertical plane vp that form an angle of 90 degrees.
  • This type of measuring object OB is an iron part or iron member having an L-shaped cross section in which two iron metal plates are intersected at an angle of 90 degrees and the intersecting portion is joined by welding.
  • the present invention is not limited to the case where two metal plates are joined by welding, but an iron part or an iron member formed into a L-shaped cross section having a 90-degree cross section by a die, a bending process, or the like. Also applies.
  • the residual stress to be measured is the residual stress in the vicinity of the corner of the horizontal plane hp, which is perpendicular to the vertical plane vp, that is, perpendicular to the extending direction of the corner and parallel to the horizontal plane hp.
  • the residual stress in the direction (hereinafter referred to as the X direction) and the residual stress in the direction parallel to the vertical plane vp and the horizontal plane hp, that is, the direction parallel to the extending direction of the corner (hereinafter referred to as the Y direction).
  • the residual stress in the X direction in this plane stress state is ⁇ x
  • the residual stress in the Y direction is ⁇ y
  • ⁇ xy be the residual stress of shear in this plane stress state.
  • the bottom wall 14 is brought into contact with the horizontal plane hp of the measurement object OB and the case 10 is placed on the horizontal plane hp, and the front wall 11 is brought into contact with the vertical plane vp.
  • the X-ray has an angle of 45 degrees with respect to the horizontal plane hp, that is, an incident angle 45 in a plane orthogonal to the horizontal plane hp and the vertical plane vp, as indicated by a one-dot chain arrow in the figure.
  • the horizontal plane hp is irradiated from the X direction at a degree.
  • the bottom wall 14 is brought into contact with the horizontal plane hp of the measurement object OB and the case 10 is placed on the horizontal plane hp,
  • the inclined wall 17 is brought into contact with the vertical surface vp.
  • the X-ray is 45 degrees with respect to the horizontal plane hp within a plane perpendicular to the horizontal plane hp and 60 degrees with respect to the vertical plane vp, as indicated by a dashed line arrow in the figure.
  • the horizontal plane hp is irradiated from a direction at an angle of 45 degrees with respect to the horizontal plane hp in a plane parallel to a direction that forms an angle of 30 degrees with the X direction on the horizontal plane hp and perpendicular to the horizontal plane hp.
  • a diffraction ring imaging step for forming a diffraction ring on the imaging plate 31
  • a diffraction ring reading step for reading the diffraction ring formed on the imaging plate 31
  • a diffraction ring shape detecting step for detecting the shape
  • a diffraction ring erasing step for erasing the diffraction ring formed on the imaging plate 31 are performed.
  • residual stresses ⁇ x and ⁇ y in the X direction and the Y direction are calculated using the shapes of the two diffraction rings detected in the first and second diffraction ring measurement processes.
  • the first and second diffraction ring measurement steps and the stress calculation step including the diffraction ring imaging step, the diffraction ring reading step, the diffraction ring shape detection step, and the diffraction ring elimination step will be described in detail.
  • the measurer carries the diffraction ring measurement device with the handle 19 and moves the bottom wall 14 of the measurement object OB as shown in FIG.
  • the case 10 is placed on the horizontal plane hp in contact with the horizontal plane hp, and the front wall 11 is in contact with the vertical plane vp.
  • the high voltage power supply 95 is connected to the X-ray emitter 20 and the computer device 90 is connected to the electric control device 70.
  • the measurer inputs the material (for example, iron) of the measurement object OB using the input device 92 and instructs the start of measurement of the residual stress.
  • the controller 91 starts execution of the diffraction ring imaging program shown in FIG.
  • the diffraction ring imaging program is started in step S100 of FIG. 6, and the controller 91 controls the spindle motor control circuit 74 to rotate the imaging plate 31 at a low speed and inputs an index signal from the encoder 47a in step S102. At that time, the rotation of the imaging plate 31 is stopped. Thereby, at the start of measurement, the rotation angle of the imaging plate 31 is set to 0 degree.
  • the controller 91 starts the operation of the position detection circuit 72 in step S104, controls the feed motor control circuit 73 in step S106, and starts the operation of the feed motor 42. Thus, the operation of the feed motor 42 is stopped, and the imaging plate 31 is moved to the diffraction ring imaging position.
  • the controller 91 starts the operation of the sensor signal extraction circuit 76 in step S108.
  • step S110 the controller 91 controls the X-ray control circuit 71 to cause the X-ray emitter 20 to start emitting X-rays.
  • X-rays are irradiated onto the measurement object OB, and the X-rays reflected on the surface of the measurement object OB are received by the light receiving sensor 35.
  • step S112 the controller 91 inputs a light reception position signal from the sensor signal extraction circuit 76, and calculates the distance L between the imaging plate 31 and the measurement object OB using the input light reception position signal. Note that the calculated distance L is stored in a memory because it is used by processing to be described later.
  • step S114 the controller 91 determines whether or not the calculated distance L is within a predetermined reference range. If the distance L is not within the reference range, it is determined as “No”, and in step S116, the X-ray control circuit 71 is controlled to stop the irradiation of the measurement object OB with X-rays.
  • step S118 the controller 91 displays on the display device 93 that the set of the X-ray diffraction measurement device is inappropriate.
  • step S128 the execution of the diffraction ring imaging program ends.
  • the measurer resets the X-ray diffraction measurement device again, and then instructs the start of measurement again using the input device 92. Since the time required from the above steps S110 to S116 is very short, the diffractive ring is not imaged on the imaging plate 31. Even when the light receiving sensor 35 does not receive the X-ray reflected by the measurement object OB, a message that the set of the X-ray diffraction measurement device is inappropriate is displayed in step S118.
  • the measurer resets the X-ray diffraction measurement apparatus. Then, in response to the measurement start instruction, the processes of steps S102 to S114 described above are executed again, and the processes are repeated until the distance L is within a predetermined reference range. However, when the processes of steps S102 to S114 are repeatedly executed as described above, the processes of steps S102 to S108 are substantially unnecessary.
  • step S114 determines “Yes” in step S114, proceeds to step S120, and outputs a sensor signal extraction circuit.
  • the operation of 76 is stopped.
  • the controller 91 starts time measurement in step S122, and determines in step S124 whether or not a predetermined set time for forming a diffraction ring by X-rays on the imaging plate 31 has elapsed. If the predetermined set time has not elapsed since the start of time measurement, it is determined as “No” in step S124, and the determination process is continued. That is, the controller 91 stands by until a predetermined set time elapses from the start of time measurement.
  • step S124 determines “Yes” in step S124, and controls the X-ray control circuit 71 in step S126 to control the X-ray emitted by the X-ray emitter 20.
  • step S126 controls the X-ray control circuit 71 in step S126 to control the X-ray emitted by the X-ray emitter 20.
  • the irradiation of the line is stopped, and the execution of the diffraction ring imaging program is terminated in step S128.
  • a diffraction ring by diffraction X-rays from the measurement object OB is imaged on the imaging plate 31.
  • a diffraction ring is formed on the imaging plate 31 by the X-rays irradiated to the horizontal plane hp from the X direction at an incident angle of 45 degrees in a plane orthogonal to the horizontal plane hp and the vertical plane vp.
  • the controller 91 After execution of the diffraction ring imaging program, the controller 91 starts execution of the diffraction ring reading program of FIGS. 7A and 7B. In this case, the controller 91 also starts executing the diffraction ring shape detection program of FIG. 8 in parallel with the execution of the diffraction ring reading program.
  • the execution of the diffraction ring reading program is started in step S200 of FIG. 7A, and the controller 91 calculates the diffraction ring reference radius R0 in step S202.
  • the diffraction ring reference radius R0 is the radius of the diffraction ring when the residual stress of the measurement object OB is “0”.
  • the controller 91 instructs the feed motor control circuit 73 to move the imaging plate 31 to the reading start position in the diffraction ring reading region in step S204.
  • the feed motor control circuit 73 drives and controls the feed motor 42 in cooperation with the position detection circuit 72 to move the imaging plate 31 to the reading start position.
  • the center of the objective lens 56 that is, the irradiation position of the laser beam is located at a position smaller than the calculated diffraction ring reference radius R0 by a predetermined distance ⁇ .
  • the predetermined distance ⁇ is a distance that is slightly larger than the distance at which the radius of the imaged diffraction ring may deviate from the diffraction ring reference radius R0.
  • the position signal from the position detection circuit 72 indicating the movement distance x from the movement limit position of the moving stage 41 to the right in FIG. 5 and the irradiation position of the laser beam from the center of the imaging plate 31 (center of the objective lens 56).
  • the relationship with the distance to the position (that is, the radius r of the irradiation position of the laser beam) will be described.
  • the distance from the center of the imaging plate 31 to the center position of the objective lens 56 is Rx, as shown in FIG.
  • the objective lens 56 is leftward in FIG. 5 from the center position of the imaging plate 31, and the distance Rx is measured in advance and stored in the controller 91.
  • the radius r of the irradiation position of the laser beam is the position output from the position detection circuit 72 in future processing.
  • the value Rx stored in advance is added to the distance x represented by the signal.
  • the imaging plate 31 when the imaging plate 31 is moved to the reading start position, as shown in FIG. 12C, the irradiation position of the laser beam is on the inner side by a predetermined distance ⁇ from the diffraction ring reference radius R0.
  • step S206 the controller 91 instructs the spindle motor control circuit 74 to rotate the imaging plate 31 at a predetermined constant rotational speed.
  • the spindle motor control circuit 74 controls the rotation of the spindle motor 47 so that the imaging plate 31 rotates at the specified constant rotation speed while calculating the rotation speed using the pulse signal from the encoder 47a. Therefore, the imaging plate 31 starts to rotate at the predetermined constant rotation speed.
  • step S208 the controller 91 controls the laser driving circuit 77 to start irradiation of the imaging plate 31 with laser light from the laser light source 51.
  • step S210 the controller 91 instructs the focus servo circuit 81 to start focus servo control.
  • the focus servo circuit 81 starts focus servo control by driving and controlling the focus actuator 57 via the drive circuit 82 using the focus error signal from the amplifier circuit 78 and the focus error signal generation circuit 79.
  • the objective lens 56 is driven and controlled in the optical axis direction so that the focus of the laser light is on the surface of the imaging plate 31.
  • the controller 91 starts the operation of the rotation angle detection circuit 75 and the A / D conversion circuit 83 in step S212.
  • the rotation angle detection circuit 75 starts outputting the rotation angle ⁇ p from the reference position of the spindle motor 47 (imaging plate 31) to the controller 91, and the A / D conversion circuit 83 digital data of the instantaneous value of the SUM signal. Starts to be output to the controller 91.
  • the controller 91 instructs the feed motor control circuit 73 to start and move the imaging plate 31 in step S214.
  • the feed motor control circuit 73 drives and controls the feed motor 42 to move the imaging plate 31 from the reading start position to the bearing portion 44 side (right direction in FIG. 5) at a constant speed.
  • the irradiation position of the laser light starts to move relative to the imaging plate 31 at a constant speed from the inside to the outside by a predetermined distance ⁇ from the diffraction ring reference radius R0.
  • the irradiation position of the laser beam is relatively spirally rotated on the imaging plate 31 by the processing in steps S206 and S214.
  • the controller 91 After the process of step S214, the controller 91 initially sets the values of the circumferential direction number n and the radial direction number m to “1” in step S216.
  • the circumferential direction number n is an integer that changes from “1” to the maximum value N, each representing a circumferential position obtained by equally dividing N rotations (predetermined large values) in one rotation of the imaging plate 31.
  • the radial direction number m represents a radial position from the inside toward the outside of the imaging plate 31 and is a value that increases by “1” from “1” every time the imaging plate 31 rotates once.
  • the circumferential direction number n and the radial direction number m indicate a reading point P (n, m) that moves spirally on the imaging plate 31 as shown in FIG.
  • step S218 the controller 91 determines whether or not the rotation angle detection circuit 75 has input an index signal from the encoder 47a. If the rotation angle detection circuit 75 has not input the index signal, the controller 91 determines “No” in step S218 and continues to execute the determination process in step S218 repeatedly. When the rotation angle detection circuit 75 inputs the index signal, the controller 91 determines “Yes” in step S218, and takes in the current rotation angle ⁇ p of the imaging plate 31 from the rotation angle detection circuit 75 in step S220. .
  • the controller 91 stands by until the current rotation angle ⁇ p substantially matches the predetermined rotation angle (n ⁇ 1) ⁇ ⁇ o.
  • the controller 91 determines “Yes”, that is, the absolute value
  • step S224 the controller 91 takes the SUM signal from the A / D conversion circuit 83 and stores it in the memory as the signal intensity S (n, m) of the reading point P (n, m). Further, in this step S224, the position signal from the position detection circuit 72 is taken, the radius r is calculated by adding the predetermined distance Rx to the distance x represented by the position signal, and the reading point P (n, m ) Radius r (n, m) and stored in the memory in correspondence with the signal intensity S (n, m).
  • the signal intensity S (n, m) representing the intensity of the stimulated emission from the reading point P (n, m) of the imaging plate 31, that is, the intensity of the X-ray diffracted light with respect to the reading point P (n, m), It is stored in memory with a radius r (n, m) representing the radius of the read point P (n, m).
  • step S226 the controller 91 determines whether or not the stored signal intensity S (n, m) is equal to or greater than a predetermined reference value. If the signal intensity S (n, m) is greater than or equal to the predetermined reference value, the controller 91 determines “Yes” in step S226 and proceeds to step S230. On the other hand, if the signal strength S (n, m) is smaller than the predetermined reference value, the controller 91 determines “No” in step S226, and in step S228, the stored signal strength S (n, m). After erasing m) and radius r (n, m), the process proceeds to step S230.
  • the signal intensity S (n, m) and the radius r (n, m) are erased when the signal intensity S (n, m) smaller than a predetermined reference value is detected as the peak position of the diffraction X-ray intensity in the radial direction of the diffraction ring. This is because it is unnecessary.
  • step S230 the controller 91 adds “1” to the circumferential direction number n.
  • steps S220 to S232 described above are repeated until the circumferential direction number n becomes larger than the value N.
  • n, m) is stored in the memory.
  • the signal strength S (n, m) is smaller than a predetermined reference value by the processing in steps S226 and S228, the signal strength S (n, m) and the radius r (n, m) stored in the memory are stored. m) is erased.
  • the controller 91 executes the processing of steps S218 to S232 described above to read the reading point P corresponding to the rotation angles 0, ⁇ o, 2 ⁇ ⁇ o (N ⁇ 1) ⁇ ⁇ o at the next radial position.
  • the signal strength S (n, m) and radius r (n, m) for (n, m) are stored in the memory.
  • the signal strength S (n, m) and the radius r (n, m) are sequentially stored in the memory. Also in this case, if the signal strength S (n, m) is smaller than a predetermined reference value, the signal strength S (n, m) and the radius r (n, m) stored in the memory are deleted.
  • step S234 determines “Yes” in step S234 and proceeds to step S240 in FIG. 7B.
  • step S240 a diffraction ring shape detection program executed in parallel with the diffraction ring reading program will be described.
  • Execution of the diffraction ring shape detection program is started in step S300 of FIG. 8, and the controller 91 initially sets the circumferential direction number n to “1” in step S302.
  • the circumferential direction number n indicates the circumferential position for each predetermined angle ⁇ o as in the case of the diffraction ring reading program, but is independent of the circumferential direction number n used in the diffraction ring reading program. is there.
  • step S304 determines in step S304 whether a peak radius rp (n) described later in detail exists, that is, whether the peak radius rp (n) has been detected.
  • the rotation angle of the detected peak radius is represented by the circumferential direction number n. If the peak radius rp (n) has already been detected, the controller 91 determines “Yes” in step S304, adds “1” to the circumferential direction number n in step S306, and then proceeds to step S308. It is determined whether or not the direction number n is greater than a predetermined number.
  • the predetermined number in this case is also a value N representing the number of measurement positions in one round. If the circumferential direction number n is less than or equal to the predetermined number, the controller 91 determines “No” in step S308 and returns to step S304.
  • step S304 determines “No” in step S304, and stores the signal intensity S (() stored in step S310 by the process of step S224 in FIG. 7A. It is determined whether the number of (n, m) is greater than or equal to a predetermined number. If the number of the signal strengths S (n, m) is not equal to or greater than the predetermined number, the controller 91 determines “No” in step S310 and executes the processes of steps S306 and S308 described above to execute step S304 or step S304. Return to S302.
  • step S310 determines whether the peak detection processing described later is executed when the number of signal strengths S (n, m) is small. Note that the signal strength S (n, m) erased by the process of step S228 in FIG. 7 is not counted as the stored signal strength S (n, m).
  • the controller 91 determines “Yes” in step S310 and determines the presence or absence of a peak in step S312. To do. That is, the presence / absence of a peak in the value of the SUM signal is determined using all the radii r (n, m) and the signal strength S (n, m) at the circumferential position designated by the circumferential number n. Specifically, as shown in FIG. 14, all the radii r (n, m) at the circumferential position designated by the circumferential direction number n are taken on the horizontal axis and corresponded to the radius r (n, m).
  • step S312 determines “No” in step S312, performs the processes of steps S306 and S308 described above, and returns to step S304 or step S302.
  • the controller 91 determines “Yes” in step S312, and in step S314, the peak radius r (n, m). ) As a peak radius rp (n).
  • step S316 the controller 91 determines whether or not the number of acquired peak radii rp (n) is greater than or equal to a predetermined number.
  • the predetermined number in this case is also a value N representing the number of measurement positions in one round. If the number of acquired peak radii rp (n) is smaller than the predetermined number, the controller 91 determines “No” in step S316, executes the processes of steps S306 and S308 described above, and executes step S304 or step S306. Return to S302.
  • the controller 91 determines “Yes” in step S316, and outputs an end command indicating the end of diffraction ring shape detection in step S318. Then, the controller 91 ends the execution of the diffraction ring shape detection program in step S320.
  • the controller 91 determines “Yes” in step S234 in FIG. 7A, and stops the focus servo control for the focus servo circuit 81 in step S240 in FIG. 7B. To stop the focus servo control.
  • the controller 91 controls the laser drive circuit 77 to stop the laser light irradiation by the laser light source 51 in step S242.
  • the controller 91 stops the operation of the A / D conversion circuit 83 and the rotation angle detection circuit 75 in step S244, and controls the feed motor control circuit 73 to stop the operation of the feed motor 42 in step S246.
  • the imaging plate 31 is stopped, and the execution of the diffraction ring shape detection program is terminated in step S248. In this state, the operation of the position detection circuit 72 and the rotation of the imaging plate 31 are continued as before.
  • the controller 91 executes the diffraction ring elimination program shown in FIG. Execution of the diffraction ring erasure program is started in step S400, and the controller 91 instructs the feed motor control circuit 73 to move the imaging plate 31 to the erasure start position in the diffraction ring erasure region in step S402. To do.
  • the feed motor control circuit 73 drives and controls the feed motor 42 in cooperation with the position detection circuit 72 to move the imaging plate 31 to the erase start position.
  • the center of the visible light output from the LED 63 is located at a position smaller than the calculated diffraction ring reference radius R0 by a predetermined distance ⁇ .
  • this position is output from the position detection circuit 72 when the distance from the center of the imaging plate 31 to the center of the visible light of the LED is Ry ′ in a state where the imaging plate 31 is at the drive limit position.
  • This is the position where the position becomes R0- ⁇ -Ry ′.
  • the predetermined distance ⁇ is slightly larger than the predetermined distance ⁇ and is a position shifted with a margin from the radius of the imaged diffraction ring. Thereby, the imaged diffraction ring is surely erased by a process described later.
  • step S404 the controller 91 controls the LED drive circuit 84 to start irradiating the imaging plate 31 with visible light by the LED 63.
  • the controller 91 instructs the feed motor control circuit 73 to start and move the imaging plate 31 in step S406.
  • the feed motor control circuit 73 drives and controls the feed motor 42 to move the imaging plate 31 from the erase start position to the bearing portion 44 side (right direction in FIG. 5) at a constant speed.
  • visible light from the LED 63 starts moving at a constant speed from the inner side to the outer side by a predetermined distance ⁇ ( ⁇ > ⁇ ) from the diffraction ring reference radius R 0 while rotating in the imaging plate 31.
  • step S406 the controller 91 inputs a position signal indicating the position of the imaging plate 31 from the position detection circuit 72 in step S408, and in step S410, the current position of the imaging plate 31 indicates the erase end position. Determine if it has exceeded.
  • This end position is a position larger than the diffraction ring reference radius R0 by a predetermined distance ⁇ .
  • the position output from the position detection circuit 72 is a position where R0 + ⁇ Ry ′. Then, until the current position of the imaging plate 31 exceeds the erasure end position, the controller 91 determines “No” in step S410, and repeatedly executes the processes of steps S408 and S410.
  • step S410 determines “Yes” in step S410, and stops the movement of the imaging plate 31 in the feed motor control circuit 73 in step S412.
  • step S414 the LED drive circuit 84 is instructed to stop the irradiation of visible light by the LED 63.
  • the feed motor control circuit 73 stops the movement of the imaging plate 31 by stopping the operation of the feed motor 42.
  • the LED drive circuit 84 stops the irradiation of visible light from the LED 63. In this state, the imaged diffraction ring is completely erased.
  • step S414 the controller 91 stops the operation of the position detection circuit 72 in step S416, and instructs the spindle motor control circuit 74 to stop the rotation of the imaging plate 31 in step S418.
  • the spindle motor control circuit 74 stops the operation of the spindle motor 47 and stops the rotation of the imaging plate 31.
  • step S420 the controller 91 ends the execution of the diffraction ring erasure program in step S420. When the execution of the diffraction ring erasing program is completed, the first diffraction ring measurement step is completed.
  • the measurer moves the diffractive ring measuring apparatus by holding the handle 19 and moves the bottom wall 14 to the measuring object OB as shown in FIG.
  • the inclined wall 17 is brought into contact with the vertical plane vp in a state in which the case 10 is placed on the horizontal plane hp in contact with the horizontal plane hp.
  • the measurer uses the input device 92 to instruct the start of residual stress measurement.
  • the controller 91 starts execution of the diffraction ring imaging program shown in FIG.
  • the controller 91 executes the diffraction ring reading program shown in FIGS. 7A and 7B and the diffraction ring shape detection program shown in FIG. 8 in parallel, and also executes the diffraction ring elimination program shown in FIG. .
  • a diffraction ring by diffraction X-rays from the measurement object OB is imaged on the imaging plate 31.
  • the diffraction ring is orthogonal to the horizontal plane hp and is perpendicular to the vertical plane vp. 45 degrees with respect to the horizontal plane hp in the plane that forms 60 degrees, that is, with respect to the horizontal plane hp in a plane that is parallel to the direction that forms an angle of 30 degrees with the X direction in the horizontal plane hp and that is perpendicular to the horizontal plane hp.
  • a diffraction ring is formed on the imaging plate 31 by X-rays irradiated to the horizontal plane hp from the direction of an angle of 45 degrees.
  • the shape of the diffraction ring formed on the imaging plate 31 is detected by executing the diffraction ring reading program and the diffraction ring shape detection program. That is, the peak radii rp (n) at all the reading points P (n, m) in the circumferential direction are acquired.
  • the diffraction ring imaged on the imaging plate 31 is completely erased by irradiation of visible light from the LED 63 by executing the diffraction ring erasing program. Then, when the execution of the diffraction ring erasing program is completed, the second diffraction ring measurement process ends.
  • the measurer instructs the controller 91 to execute the stress calculation program using the input device 92.
  • the stress calculation program is shown in FIG. 10, and the controller 91 starts execution of the stress calculation program in step S500.
  • the residual stress ⁇ x in the X direction described above due to the X-rays incident on the horizontal plane hp of the measurement object OB from the X direction is calculated using the cos ⁇ method.
  • a cos ⁇ method is used to calculate the residual stress ⁇ in the direction that forms an angle of ⁇ with the X direction in the XY plane by X-rays that are incident on the horizontal plane hp at an angle of 45 degrees in a plane that is parallel and perpendicular to the horizontal plane hp calculate.
  • is an angle of the inclined wall 17 with respect to the front wall 11 and is 30 degrees.
  • step S506 the controller 91 calculates the residual stress ⁇ y in the Y direction described above using the residual stress ⁇ x, ⁇ xy, ⁇ ( ⁇ 30) in step S508.
  • the equation 2 is transformed as the following equation 3, and the residual stress ⁇ y is expressed as the following equation 4 using the residual stresses ⁇ x, ⁇ xy, ⁇ y, ⁇ .
  • step S508 the angle ⁇ is 30 degrees in the present embodiment. Therefore, in step S508, 30 degrees is substituted for the angle ⁇ in the equation 4, and the step Substituting the residual stress ⁇ x, ⁇ xy, ⁇ ( ⁇ 30) calculated in S502 to S506, the residual stress ⁇ y is calculated. After calculating the residual stress ⁇ y, the controller 91 ends the execution of the stress calculation program in step S510. When the execution of the stress calculation program ends, the stress calculation process ends.
  • X-rays can be easily irradiated at a predetermined angle to the vicinity of the corner of the measurement object OB having the L-shaped cross section, and the vicinity of the corner of the horizontal plane hp of the measurement object OB. Since the residual stress ⁇ x in the X direction, the residual stress ⁇ y in the Y direction, and the residual stress ⁇ xy in the shear direction can be measured, the position near the corner of the measurement object OB having an L shape can be accurately inspected. . In particular, it is possible to accurately inspect an iron part or an iron member having an L-shaped cross section where the intersecting portions are joined by welding.
  • the measurement object OB having the horizontal plane hp and the vertical plane vp perpendicular to each other that is, the measurement object OB having an L-shaped cross section cannot be moved easily.
  • the X-ray diffractometer is conveyed with the handle 19, the bottom wall 14 is brought into contact with the horizontal plane hp of the measurement object OB, and the front wall 11 is brought into contact with the vertical plane vp of the measurement object OB.
  • the X-ray emitter 10 is positioned from the direction perpendicular to the extending direction of the corner and at a predetermined angle with respect to the horizontal plane hp at a position near the corner in the horizontal plane hp.
  • X-rays from the laser beam are irradiated with high precision, and an accurate diffraction ring is formed on the imaging plate 31.
  • the bottom wall 14 is brought into contact with the horizontal plane hp of the measurement object OB and the inclined wall 17 is brought into contact with the vertical plane vp of the pair of measurement objects OB, the diffraction ring imaging program of FIG. 6 is executed.
  • X-rays from the X-ray emitter 10 are emitted with high accuracy, and a high-precision diffraction ring is formed on the imaging plate 31. That is, the measurer can irradiate X-rays at a predetermined angle with respect to each surface of the measurement object OB at a position near the corner of the measurement object OB with a simple operation, and provide a high-precision diffraction ring on the imaging plate 31. Can be formed.
  • X-rays can be irradiated from a predetermined direction with a simple operation, and the residual stresses ⁇ x and ⁇ y in the vicinity of the corners of the L-shaped measurement object OB can be accurately measured. Become.
  • the table 30 since the table 30 was moved in parallel with the front wall 11, the back surface wall 12, the upper surface wall 13, and the bottom wall 15, the X-ray emitter 10, the table 30, the imaging plate 31,
  • the case 10 accommodating the laser detection device 50 and the like can be formed into a simple rectangular parallelepiped shape, and the respective parts accommodated in the case 10 can be arranged in a compact manner, so that the case 10 can be reduced in size.
  • the case 10 is provided with the handle 19 for transportation, so that the transportation and movement of the X-ray diffraction measuring apparatus can be facilitated.
  • the diffraction ring formed on the imaging plate 31 is erased with visible light from the LED 63 by executing the diffraction ring erasing program of FIG. 9, so that it is formed on the imaging plate 31.
  • a new diffraction ring can be formed on the imaging plate 31 by easily erasing the existing diffraction ring, and formation of the diffraction ring on the imaging plate 31 by X-ray irradiation can be easily and repeatedly performed.
  • the residual stress ⁇ x in the X direction, the residual stress ⁇ y in the Y direction, and the residual stress ⁇ xy in the shear direction are measured at positions near the corners of the horizontal plane hp of the measurement object OB having an L-shaped cross section.
  • the bottom wall 14 of the case 10 is brought into contact with the vertical surface vp of the measurement object OB, and the front wall 11 is brought into contact with the horizontal plane hp of the measurement object OB.
  • the bottom wall 14 of the case 10 may be brought into contact with the vertical surface vp of the measurement object OB, and the inclined wall 17 may be brought into contact with the horizontal plane hp of the measurement object OB.
  • the X-ray from the X-ray irradiator 20 is irradiated from a predetermined direction to a position near the corner of the vertical surface vp of the measurement object OB having an L-shaped cross section, the horizontal plane hp described above and Similarly, the residual stress on the vertical plane vp can be measured.
  • the entire front wall 11, bottom wall 14, and inclined wall 17 are formed in a flat plate shape.
  • the bottom wall 14 is brought into contact with the horizontal plane hp of the measurement object OB
  • the front wall 11 and the inclined wall 17 are brought into contact with the vertical surface vp of the measurement object OB
  • the bottom wall 14 is brought into contact with the measurement object OB.
  • the front wall 11, the bottom wall 14, or the inclined wall 17 may be used as long as the front wall 11 and the inclined wall 17 can be brought into contact with the vertical surface vp and the horizontal surface hp of the measurement object OB. You may provide a recessed part in a part of, or a hole.
  • the shape of the case 10 including the flat front wall 11, back wall 12, top wall 13, bottom wall 14, left side wall 15, right side wall 16, and inclined wall 17 is a rectangular parallelepiped shape.
  • the front wall 11, the inclined wall 17 and the bottom wall 14 are planar, and the front wall 11 and the inclined wall 17 are the bottom wall 14.
  • the inclined wall 17 may be inclined at a predetermined angle (30 degrees in the present embodiment) in the inner direction of the case 10 with respect to the front wall 11. Therefore, the back wall 12, the top wall 13, the left side wall 16, and the right side wall 17, which are other parts of the case 10, may not be planar, and accordingly, the case 10 may not be particularly rectangular parallelepiped. .
  • the angle between the front wall 11 and the inclined wall 17, that is, the angle ⁇ is set to 30 degrees. This is because the calculation of sin 2 ⁇ , sin 2 ⁇ , cos 2 ⁇ in the above equation 4 is easy. Thus, the calculation of Equation 4 can be easily performed.
  • the residual stress ⁇ y can be calculated at any angle, and therefore the angle ⁇ formed by the front wall 11 and the inclined wall 17 can be set as appropriate. In this case, if the angle ⁇ is too large, the table 30 and the imaging plate 31 will hit the inclined wall 17. If the angle ⁇ is too small, the accuracy of the residual stress ⁇ y calculated by the above equation 4 is deteriorated. Therefore, the angle ⁇ is preferably in the range of 20 to 50 degrees.
  • the X-ray irradiation direction is set to 45 degrees with respect to the bottom wall 14 of the case 10, but the diffracted X-rays must be blocked by the front wall 11, the bottom wall 14, and the inclined wall 17.
  • the angle may be different from 45 degrees. If the measurement object OB is an iron part or an iron member, the angle of the diffracted X-ray with respect to the irradiated X-ray is about 24 degrees, so that the diffracted X-ray does not approach the front wall 11 and the bottom wall 14 too much.
  • the X-ray irradiation direction may be set to an angle within the range of 35 to 55 degrees with respect to the bottom wall 14 of the case 10.
  • the X-rays emitted from the X-ray emitter 20 and passing through the table 30 and the imaging plate 31 are slightly positioned on the back wall 12 side with respect to the intersection line between the front wall 11 and the bottom wall 14.
  • the X-rays may pass through a position slightly closer to the top wall 13 than the intersection line between the front wall 11 and the bottom wall 14. In this case, when the bottom wall 14 of the case 10 is brought into contact with the horizontal plane hp of the measurement object OB and the front wall 11 is brought into contact with the vertical surface vp of the measurement object OB, the bottom wall 14 of the case 10 is also moved.
  • the X-ray emission position with respect to the measurement object OB is the corner of the measurement object OB.
  • the vertical surface vp near the position is irradiated, and the residual stress near the corner of the vertical surface vp is measured.
  • the angle formed with the X-ray vertical plane vp and the X-ray optical axis when the inclined wall 17 is brought into contact with the vertical plane vp of the measurement object OB are orthogonal to the vertical plane vp.
  • the angle formed with the normal direction of the horizontal plane hp of the surface is not equal to the angle ⁇ 1 formed with the front wall 11 of the optical axis of the X-ray and the angle ⁇ 2 formed with the front wall 11 of the inclined wall 17 from the angles ⁇ 1 and ⁇ 2. It is necessary to calculate by calculation.
  • the bottom wall 14 of the case 10 is measured using the X-ray diffraction measurement apparatus according to the above-described embodiment as in the case of measuring the residual stress near the corner of the vertical plane vp.
  • the bottom wall 14 of the case 10 is brought into contact with the vertical plane vp of the measurement object OB.
  • the inclined wall 17 is brought into contact with the horizontal plane hp of the measurement object OB, the X-ray from the X-ray irradiator 20 is irradiated to a position near the corner of the horizontal plane hp of the measurement object OB.
  • the X plane of the plane perpendicular to the horizontal plane hp includes the angle formed with the horizontal plane hp of the X-ray and the optical axis of the X-ray when the inclined wall 17 is brought into contact with the horizontal plane hp of the measurement object OB.
  • the angle formed with the direction needs to be calculated by calculation from the angle ⁇ 1 and the angle ⁇ 2.
  • the residual stress ⁇ x in the direction perpendicular to the intersecting line direction of the measurement object OB at the position near the corner of the L-shaped measurement object OB and parallel to the horizontal plane hp, and the vicinity of the corner was measured.
  • the bottom wall 14 is brought into contact with the horizontal plane hp of the measurement object OB, and a pair of inclined walls 17 are provided.
  • the signal intensity S (n, m) and the radius r (n, m) each time the rotation angle of the imaging plate 31 reaches a predetermined rotation angle.
  • the rotation angle ⁇ (n, m), the signal intensity S (n, m), and the radius r (n, m) of the imaging plate 31 may be acquired and stored at predetermined time intervals. Good.
  • the reading start position is determined using the light receiving position of the light receiving sensor 35, assuming an area in which the radius of the captured diffraction ring may deviate from the diffraction ring reference radius R0. did.
  • the laser beam may always be irradiated to a certain region without using the diffraction ring reference radius R0.
  • the entire region of the imaging plate 31 may be irradiated with laser light.
  • the visible light emitted from the LED 63 may be constantly irradiated with visible light emitted from the LED 63 in a certain area.
  • the entire area of the imaging plate 31 may be irradiated with visible light from the LED 63.
  • the measurement time is longer than in the above embodiment.
  • the laser detection device 50 is controlled by the focus servo.
  • the variation in the distance between the light receiving surface of the imaging plate 31 and the objective lens 56 is minute. If so, focus servo control is unnecessary.
  • the laser light applied to the imaging plate 31 is a constant intensity laser light.
  • a preset high level intensity and a preset low level laser light are used.
  • a pulsed laser beam having repeated intensities may be used, and an instantaneous value of the SUM signal may be acquired at a timing when the intensity reaches a high level.
  • a laser beam having a high level of intensity is instantaneously applied to a point at which the instantaneous value of the SUM signal of the imaging plate 31 is acquired. That is, in the state where the laser beam is directed to the point where the instantaneous value of the SUM signal is acquired, the intensity of the laser beam is at a low level, and almost no light is generated by the stimulated emission.
  • the intensity of the laser beam becomes high and light due to the stimulated emission is generated.
  • the intensity of the light decreases due to the continued generation of light due to the stimulated light emission.
  • the instantaneous value of the SUM signal can be acquired.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

An x-ray diffraction measurement device houses, in a case (10), an x-ray emitter (20), a mobile and rotatable table (30), an imaging plate (31) which is attached to the table (30), and a laser detection device (50). X-rays are projected from the x-ray emitter (20) at an x-ray measurement object, a diffraction ring is formed upon the image plate (31) by diffracted x-rays which are emitted from the measurement object, the shape of the diffraction ring which is formed upon the imaging plate (31) is read by the laser detection device (50), and residual stress of the measurement object is detected. A front face wall (11) and a bottom face wall (14) of the case (10) intersect, and the x-ray emitter (20) is positioned such that, when the bottom face wall (14) and the front face wall (11) are respectively brought into contact with a horizontal face and a vertical face of an L-shaped measurement object, the x-rays are emitted near a corner part of the horizontal face.

Description

X線回折測定装置及びX線回折測定システムX-ray diffraction measurement device and X-ray diffraction measurement system
 本発明は、測定対象物にX線を照射して、測定対象物で回折したX線によりイメージングプレートの表面に回折環を形成し、形成した回折環を読取るX線回折測定装置と、X線回折測定装置を含みX線回折測定装置で読取った回折環を用いて測定対象物の残留応力を測定するX線回折測定システムに関する。 The present invention relates to an X-ray diffraction measurement apparatus for irradiating a measurement object with X-rays, forming a diffraction ring on the surface of an imaging plate by X-rays diffracted by the measurement object, and reading the formed diffraction ring, The present invention relates to an X-ray diffraction measurement system that measures a residual stress of an object to be measured using a diffraction ring that includes a diffraction measurement apparatus and is read by an X-ray diffraction measurement apparatus.
 従来から、測定対象物の残留応力をX線回折により測定することはよく行われている。この残留応力の測定の分野においては、装置の小型化を図るとともに、X線の照射時間を短くすることが可能なX線回折測定装置が、例えば下記特許文献1に示されている。このX線回折測定装置においては、測定装置を測定対象物であるレール上の所望の位置に配置し、レールの延設方向を含みレールの上面に垂直な面内にて所定の入射角(30~45度)でX線をレールの上面に照射し、レールの上面にて回折したX線(以下、このような測定対象物にて回折したX線を回折X線という)を感光性を有するイメージングプレートで受光して、イメージングプレート上に環状のX線回折像(以下、この環状のX線回折像を単に回折環という)を形成するようにしている。そして、イメージングプレートを前記測定装置から取り外して回折環読取り装置に装着し、イメージングプレート上に形成された回折環の形状を、cosα法を用いて分析してレール上面部のレール軸線方向の残留応力を計算するようにしている。 Conventionally, the residual stress of a measurement object is often measured by X-ray diffraction. In the field of residual stress measurement, an X-ray diffraction measurement apparatus capable of reducing the size of the apparatus and shortening the X-ray irradiation time is disclosed, for example, in Patent Document 1 below. In this X-ray diffractometer, the measuring device is arranged at a desired position on the rail as a measurement object, and a predetermined incident angle (30 in a plane perpendicular to the upper surface of the rail, including the extending direction of the rail). X-rays radiated on the top surface of the rail at ~ 45 degrees and diffracted on the top surface of the rail (hereinafter, X-rays diffracted by such an object to be measured are referred to as diffracted X-rays) have photosensitivity. Light is received by the imaging plate, and an annular X-ray diffraction image (hereinafter, this annular X-ray diffraction image is simply referred to as a diffraction ring) is formed on the imaging plate. Then, the imaging plate is detached from the measuring device and attached to the diffraction ring reader, and the shape of the diffraction ring formed on the imaging plate is analyzed using the cos α method, and the residual stress in the rail axis direction on the rail upper surface is analyzed. I am trying to calculate.
特開2005-241308号公報Japanese Patent Laid-Open No. 2005-241308
 残留応力の測定技術分野では、断面形状が90度の角度を有する測定対象物すなわち断面がL字形状の測定対象物における角部近傍位置の残留応力を測定することも要求される。特に、2枚の鉄製の金属板を90度の角度をもって交差させるとともに、その交差部分を溶接で接合して断面がL字形状の鉄製部品又は鉄製部材を生成した場合、溶接部近傍位置すなわち測定対象物の角部近傍位置の残留応力を測定することが要求される。しかしながら、前記のような要求に対しては、次のような問題がある。 In the technical field of residual stress measurement, it is also required to measure the residual stress near the corner of a measurement object having a 90-degree cross-sectional shape, that is, a measurement object having an L-shaped cross-section. In particular, when two iron metal plates are intersected at an angle of 90 degrees and the intersecting portions are joined by welding to produce an iron part or an iron member having an L-shaped cross section, the position near the welded portion, that is, measurement It is required to measure the residual stress near the corner of the object. However, there are the following problems with respect to such a request.
 まず、測定対象物が移動可能であれば、X線をいずれの方向からも照射することは可能であるが、測定対象物が移動不能である場合には、上記従来技術に示した回折環を形成して残留応力を測定するような小型のX線回折測定装置を用いる必要がある。しかしながら、上記従来技術に示したX線回折測定装置は、レールの軸線方向の残留応力を測定するもので、角部近傍位置の残留応力の測定には不向きである。すなわち、上記従来のX線回折測定装置においては、測定対象物の角部近傍位置に測定対象物の各面に対して所定の角度でX線を正確に照射できるようになっておらず、角部近傍位置の残留応力を測定するための回折環を精度よくイメージングプレートに形成することができない。 First, if the measurement object is movable, it is possible to irradiate X-rays from any direction. However, if the measurement object is immovable, the diffraction ring shown in the above prior art is used. It is necessary to use a small X-ray diffractometer that is formed to measure the residual stress. However, the X-ray diffractometer shown in the above prior art measures the residual stress in the axial direction of the rail, and is not suitable for measuring the residual stress near the corner. That is, in the conventional X-ray diffraction measurement apparatus, X-rays are not accurately irradiated at a predetermined angle with respect to each surface of the measurement object at positions near the corners of the measurement object. The diffraction ring for measuring the residual stress in the vicinity of the portion cannot be formed on the imaging plate with high accuracy.
 本発明は上記問題を解決するためになされたもので、その目的は、容易に測定対象物の角部近傍位置に測定対象物の各面に対して所定の角度でX線を照射でき、測定対象物の角部近傍位置の残留応力を精度よく測定できるとともに、移動不能な測定対象物の角部近傍位置の残留応力を測定するために搬送可能な小型のX線回折測定装置を提供することにある。また、イメージングプレートにX線による回折環を形成できるとともに、回折環の形成されたイメージングプレートを取外すことなく、回折環の形状を同一装置内で測定できるようにしたX線回折測定装置を提供することにもある。なお、下記本発明の各構成要件の記載においては、本発明の理解を容易にするために、後述する実施形態の対応箇所の符号を括弧内に記載しているが、本発明の各構成要件は、この実施形態の符号によって示された対応箇所の構成に限定解釈されるべきものではない。 The present invention has been made in order to solve the above-mentioned problems, and the purpose of the present invention is to easily irradiate X-rays at a predetermined angle with respect to each surface of the measurement object at positions near the corners of the measurement object. To provide a small X-ray diffraction measuring apparatus that can accurately measure the residual stress near the corner of the object and can be transported to measure the residual stress near the corner of the measurement object that cannot move. It is in. Also provided is an X-ray diffraction measurement apparatus that can form a diffraction ring by X-rays on an imaging plate and can measure the shape of the diffraction ring in the same apparatus without removing the imaging plate on which the diffraction ring is formed. There is also. In the description of each constituent element of the present invention below, in order to facilitate understanding of the present invention, reference numerals of corresponding portions of the embodiments described later are shown in parentheses, but each constituent element of the present invention is described. Should not be construed as limited to the configuration of the corresponding parts indicated by the reference numerals of this embodiment.
 上記目的を達成するために、本発明の特徴は、測定対象物に向けてX線を出射するX線出射器(20)と、中央にX線を通過させる貫通孔が形成されたテーブル(30)と、テーブルに取付けられて、中央部にてX線を通過させるとともに、測定対象物にて回折したX線の回折光を受光する受光面を有し、回折光の像である回折環を記録す
るイメージングプレート(31)と、レーザ光を出射するレーザ光源及びレーザ光を受光するフォトディテクタを有し、レーザ光をイメージングプレートの受光面に照射するとともに、レーザ光の照射によってイメージングプレートから出射された光を受光して受光強度に応じた受光信号を出力するレーザ検出装置(50)と、テーブルを貫通孔の中心軸回りに回転させる回転機構(47)と、X線出射器からのX線をテーブル及びイメージングプレートを通過させるX線出射位置と、レーザ検出装置からのレーザ光をイメージングプレートに照射するレーザ光照射位置との間で、テーブルを移動させる移動機構(41~43)と、X線出射器、テーブル、イメージングプレート、レーザ検出装置、回転機構及び移動機構を収容したケース(10)とを備え、X線出射器から出射されたX線をケースを通過させて測定対象物に照射し、X線の照射により測定対象物から出射された回折X線をケースを通過させてイメージングプレートに導くX線回折測定装置であって、ケースは、互いに直交する平板状の第1平面壁(14)及び第2平面壁(11)を有し、X線出射器から出射されるX線の光軸が第1平面壁及び第2平面壁にそれぞれ直交する面内に含まれ、かつ第1平面壁と第2平面壁の交差線の近傍位置に第2平面壁に対して第1の所定角度だけ傾いた方向からX線が出射されるように、X線出射器をケース内に配置し、互いに直交する一対の平面部(hp,vp)を有する測定対象物(OB)に対して、第1平面壁を一対の平面部の一方の平面部に当接させるとともに、第2平面壁を前記一対の平面部の他方の平面部に当接させたとき、前記一方又は他方の平面部における一対の平面部の交差線の近傍位置に、一対の平面部の交差線に直交する方向からX線出射器からのX線が出射されるようにしたことにある。この場合、第1の所定角度は、35度から55度の範囲内にあるとよい。
In order to achieve the above object, the present invention is characterized in that an X-ray emitter (20) that emits X-rays toward a measurement object and a table (30) in which a through-hole that allows X-rays to pass through is formed in the center. ) And a diffraction ring which is an image of the diffracted light, having a light receiving surface for receiving the X-ray diffracted light diffracted by the measurement object while passing through the X-ray at the center. It has an imaging plate (31) for recording, a laser light source that emits laser light, and a photodetector that receives the laser light. The laser light is emitted to the light receiving surface of the imaging plate, and is emitted from the imaging plate by laser light irradiation. Detector (50) that receives received light and outputs a received light signal corresponding to the received light intensity, a rotation mechanism (47) that rotates the table around the central axis of the through hole, and X-ray emission A moving mechanism (41 to 43) for moving the table between an X-ray emission position where X-rays from the laser beam pass through the table and the imaging plate and a laser beam irradiation position where the imaging plate is irradiated with laser light from the laser detection device ) And a case (10) containing an X-ray emitter, a table, an imaging plate, a laser detector, a rotation mechanism, and a moving mechanism, and the X-ray emitted from the X-ray emitter passes through the case and is measured An X-ray diffraction measurement apparatus that irradiates an object and guides the diffracted X-rays emitted from the measurement object by irradiation of X-rays to the imaging plate through the case, and the case has a flat plate-like shape orthogonal to each other. It has 1 plane wall (14) and 2nd plane wall (11), and the optical axis of the X-rays emitted from the X-ray emitter is orthogonal to the first plane wall and the second plane wall, respectively. X-rays are included so that X-rays are emitted from a direction inclined by a first predetermined angle with respect to the second plane wall at a position near the intersection line of the first plane wall and the second plane wall. An emitter is disposed in the case, and the first plane wall is brought into contact with one plane portion of the pair of plane portions with respect to the measurement object (OB) having a pair of plane portions (hp, vp) orthogonal to each other. In addition, when the second flat wall is brought into contact with the other flat portion of the pair of flat portions, the pair of flat portions is located at a position near the intersection line of the pair of flat portions in the one or other flat portion. The X-ray from the X-ray emitter is emitted from the direction orthogonal to the intersecting line. In this case, the first predetermined angle may be in the range of 35 degrees to 55 degrees.
 上記のように構成した本発明によれば、互いに直交する一対の平面部を有する測定対象物すなわちL字形状の測定対象物が大きくて簡単に移動できない場合でも、上記のように構成したX線回折測定装置を搬送し、第1平面壁を一対の平面部の一方の平面部に当接させるとともに、第2平面壁を一対の平面部の他方の平面部に当接させれば、前記一方又は他方の平面部における一対の平面部の交差線の近傍位置に、X線出射器からのX線が精度よく照射される。また、このX線の出射方向は、第2平面壁に当接させた平面部に対して第1の所定角度だけ傾いた方向であって一対の平面部の交差線に直交する方向となる。したがって、L字形状の測定対象物の角部近傍位置に、測定対象物の各面に対して所定の角度でX線を照射できる。これにより、本発明によれば、このX線の照射によってイメージングプレートに形成される回折環の形状を、レーザ検出装置から出力される受光信号を用いて読取れば、この読取った回折環の形状から、断面L字形状の測定対象物の角部近傍位置の残留応力であって、測定対象物の交差線と直交し、第1平面壁に平行な方向の残留応力を精度よく測定できるようになる。 According to the present invention configured as described above, the X-ray configured as described above can be used even when a measurement object having a pair of plane portions orthogonal to each other, that is, an L-shaped measurement object cannot be easily moved. If the diffraction measuring device is transported and the first flat wall is brought into contact with one flat portion of the pair of flat portions and the second flat wall is brought into contact with the other flat portion of the pair of flat portions, the one Alternatively, the X-ray from the X-ray emitter is irradiated with high accuracy to a position in the vicinity of the intersection line of the pair of plane portions in the other plane portion. In addition, the X-ray emission direction is a direction inclined by a first predetermined angle with respect to the plane portion in contact with the second plane wall and is orthogonal to the intersecting line of the pair of plane portions. Therefore, X-rays can be irradiated to the positions near the corners of the L-shaped measurement object at a predetermined angle with respect to each surface of the measurement object. Thus, according to the present invention, if the shape of the diffraction ring formed on the imaging plate by the X-ray irradiation is read using the light reception signal output from the laser detector, the shape of the read diffraction ring is obtained. Therefore, it is possible to accurately measure the residual stress in the vicinity of the corner of the L-shaped measuring object, which is perpendicular to the intersecting line of the measuring object and parallel to the first plane wall. Become.
 また、本発明の他の特徴は、ケースは、さらに、第1平面壁に直交するとともに第2平面壁に対してケースの内側方向に第2の所定角度で傾斜した平板状の傾斜壁(17)を有し、第1平面壁を測定対象物の一対の平面部の一方の平面部に当接させるとともに、傾斜壁を一対の平面部の他方の平面部に当接させたとき、前記一方又は他方の平面部における一対の平面部の交差線の近傍位置に、X線出射器から出射されるX線の光軸を含み第1平面壁に直交する平面が、一対の平面部の交差線に直交する面に対して第2の所定角度で交差する状態で、X線出射器からのX線が出射されるようにしたことにある。この場合、前記第2の所定角度は、20度から50度の範囲内にあるとよい。 Another feature of the present invention is that the case further includes a flat inclined wall (17) that is orthogonal to the first flat wall and is inclined at a second predetermined angle with respect to the second flat wall toward the inside of the case. And when the first flat wall is brought into contact with one flat part of the pair of flat parts of the measurement object and the inclined wall is brought into contact with the other flat part of the pair of flat parts, Alternatively, a plane perpendicular to the first plane wall that includes the optical axis of the X-ray emitted from the X-ray emitter at a position in the vicinity of the intersection line of the pair of plane portions in the other plane portion is the intersection line of the pair of plane portions. X-rays from the X-ray emitter are emitted in a state intersecting at a second predetermined angle with respect to a plane orthogonal to. In this case, the second predetermined angle may be in the range of 20 degrees to 50 degrees.
 前記のように構成した本発明の他の特徴によれば、第1平面壁を測定対象物の一対の平面部の一方の平面部に当接させるとともに、傾斜壁を一対の平面部の他方の平面部に当接させれば、L字形状の測定対象物の一方又は他方の平面部における一対の平面部の交差線の近傍位置に、X線出射器から出射されるX線の光軸を含み第1平面壁に直交する平面が、一対の平面部の交差線に直交する面に対して第2の所定角度で交差する状態で、X線出射器からのX線が精度よく出射されることになる。したがって、この場合には、一対の平面部の交差線に直交し、第1平面壁に平行な方向の残留応力だけではなく、前記交差線の方向の残留応力成分を含む残留応力が測定され、測定された残留応力を用いて計算することにより、前記交差線の方向の残留応力も精度よく測定できるようになる。 According to another feature of the present invention configured as described above, the first flat wall is brought into contact with one flat portion of the pair of flat portions of the measurement object, and the inclined wall is brought into contact with the other flat portion of the pair of flat portions. If it is brought into contact with the plane part, the optical axis of the X-ray emitted from the X-ray emitter is positioned near the intersection line of the pair of plane parts in one or the other plane part of the L-shaped measurement object. The X-ray from the X-ray emitter is emitted with high accuracy in a state where the plane perpendicular to the first plane wall intersects the plane perpendicular to the intersection line of the pair of plane portions at the second predetermined angle. It will be. Therefore, in this case, not only the residual stress in the direction perpendicular to the intersection line of the pair of plane portions and parallel to the first plane wall, but also the residual stress including the residual stress component in the direction of the intersection line is measured. By calculating using the measured residual stress, the residual stress in the direction of the intersecting line can also be accurately measured.
 また、本発明の他の特徴は、移動機構によるテーブルの移動方向は、第1平面壁と第2平面壁の交差線の方向であるとよい。これによれば、X線出射器、テーブル、イメージングプレート、レーザ検出装置、回転機構及び移動機構を収容したケースを長尺状に形成でき、ケースを単純な形状とすることができるとともに、ケース内に収容された各部品をコンパクトに配置できるため、ケースを小型にすることができる。 Further, according to another feature of the present invention, the moving direction of the table by the moving mechanism may be the direction of the intersecting line between the first plane wall and the second plane wall. According to this, the case containing the X-ray emitter, the table, the imaging plate, the laser detection device, the rotation mechanism, and the moving mechanism can be formed in a long shape, and the case can be made into a simple shape, Since the components housed in the can be arranged in a compact manner, the case can be made small.
 また、本発明の他の特徴は、ケースに、搬送用の取っ手(19)を設けたことにある。これによれば、X線回折測定装置を簡単に搬送及び移動できるようになる。 Further, another feature of the present invention is that the case is provided with a carrying handle (19). According to this, the X-ray diffraction measurement apparatus can be easily transported and moved.
 また、本発明の他の特徴は、さらに、イメージングプレートに形成された回折環を消去する回折環消去手段(63)を備えたことにある。これによれば、イメージングプレート上に形成されている回折環を簡単に消去して、新たな回折環をイメージングプレート上に形成することができ、X線の照射によるイメージングプレート上への回折環の形成を簡単に繰り返し行うことができる。 Further, another feature of the present invention is that a diffraction ring erasing means (63) for erasing the diffraction ring formed on the imaging plate is further provided. According to this, the diffraction ring formed on the imaging plate can be easily deleted, and a new diffraction ring can be formed on the imaging plate, and the diffraction ring on the imaging plate by X-ray irradiation can be formed. Formation can be performed easily and repeatedly.
 また、本発明の他の特徴は、ケースが互いに直交する平板状の第1平面壁及び第2平面壁を有するようにした前記X線回折測定装置に加えて、回転機構を制御してテーブルを回転させるとともに、移動機構を制御してテーブルを移動させながら、レーザ検出装置を制御してイメージングプレートの受光面にレーザ光を照射位置を検出しながら照射するとともにレーザ検出装置からの受光信号を入力して、前記検出した照射位置と前記入力した受光信号を処理してイメージングプレートに形成された回折環を読取る回折環読取手段(91,S200~S248,S300~S320)と、互いに直交する一対の平面部を有する測定対象物に対して、第1平面壁を一対の平面部の一方の平面部に当接させるとともに、第2平面壁を一対の平面部の他方の平面部に当接させて、X線出射器からのX線の照射によりイメージングプレートに形成させた回折環を表すデータであって、回折環読取手段によって読取ったデータを用いて、一方又は他方の平面部における一対の平面部の交差線の近傍位置の残留応力であって、一対の平面部の交差線に直交し、第1平面壁に平行な方向の残留応力を計算する残留応力計算手段(91,S502)とを備えたことにある。これによれば、L字形状を有する測定対象物における角部近傍位置における角部の延設方向に直交し、第1平面壁に平行な方向の残留応力が精度よく得られる。 Another feature of the present invention is that, in addition to the X-ray diffraction measuring apparatus, the case has a flat plate-shaped first plane wall and second plane wall orthogonal to each other, and the table is controlled by controlling the rotation mechanism. While rotating and moving the table by controlling the moving mechanism, the laser detection device is controlled to irradiate the light receiving surface of the imaging plate while detecting the irradiation position, and the light reception signal from the laser detection device is input Then, a diffraction ring reading means (91, S200 to S248, S300 to S320) for reading the diffraction ring formed on the imaging plate by processing the detected irradiation position and the received light reception signal, and a pair of orthogonally crossing each other. A measurement object having a plane part is brought into contact with one plane part of the pair of plane parts and the second plane wall is paired with the pair of plane parts. Data representing a diffraction ring formed on the imaging plate by being irradiated with X-rays from the X-ray emitter in contact with the other plane portion, and using the data read by the diffraction ring reading means, Residual stress calculation for calculating the residual stress in the vicinity of the intersecting line of the pair of planar portions in the other planar portion and perpendicular to the intersecting line of the pair of planar portions and parallel to the first planar wall Means (91, S502). According to this, the residual stress in the direction orthogonal to the extending direction of the corner portion in the vicinity of the corner portion of the measurement object having the L shape and parallel to the first plane wall can be obtained with high accuracy.
 さらに、本発明の他の特徴は、ケースが、互いに直交する平板状の第1平面壁及び第2平面壁を有するとともに、第1平面壁に直交するとともに第2平面壁に対してケースの内側方向に第2の所定角度で傾斜した平板状の傾斜壁を有する前記X線回折測定装置に加えて、回転機構を制御してテーブルを回転させるとともに、移動機構を制御してテーブルを移動させながら、レーザ検出装置を制御してイメージングプレートの受光面にレーザ光を照射位置を検出しながら照射するとともにレーザ検出装置からの受光信号を入力して、前記検出した照射位置と前記入力した受光信号を処理してイメージングプレートに形成された回折環を読取る回折環読取手段(91,S200~S248,S300~S320)と、互いに直交する一対の平面部を有する測定対象物に対して、第1平面壁を一対の平面部の一方の平面部に当接させるとともに、第2平面壁を一対の平面部の他方の平面部に当接させて、X線出射器からのX線の照射によりイメージングプレートに形成させた回折環を表すデータであって、回折環読取手段によって読取ったデータと、第1平面壁を一対の平面部の一方の平面部に当接させるとともに、傾斜壁を一対の平面部の他方の平面部に当接させて、X線出射器からのX線の照射によりイメージングプレートに形成させた回折環を表すデータであって、回折環読取手段によって読取ったデータとを用いて、前記一方又は他方の平面部における一対の平面部の交差線の近傍位置の残留応力であって、一対の平面部の交差線に直交し、第1平面壁に平行な方向の残留応力及び前記交差線の方向の残留応力を計算する残留応力計算手段(91,S500~S510)とを備えたことにある。これによれば、L字形状を有する測定対象物における角部近傍位置における角部の延設方向及び前記延設方向に直交する方向の残留応力が精度よく得られる。 Furthermore, another feature of the present invention is that the case has a flat first flat wall and a second flat wall that are orthogonal to each other, is orthogonal to the first flat wall, and is inside the case with respect to the second flat wall. In addition to the X-ray diffraction measuring apparatus having a flat inclined wall inclined in the direction at a second predetermined angle, the table is rotated by controlling the rotation mechanism, and the table is moved by controlling the moving mechanism. The laser detection device is controlled to irradiate the light receiving surface of the imaging plate while detecting the irradiation position, and the light receiving signal from the laser detecting device is inputted, and the detected irradiation position and the input light receiving signal are inputted. A diffraction ring reading means (91, S200 to S248, S300 to S320) for reading the diffraction ring formed on the imaging plate by processing, and a pair of planes orthogonal to each other The first plane wall is brought into contact with one plane portion of the pair of plane portions, and the second plane wall is brought into contact with the other plane portion of the pair of plane portions. Data representing a diffraction ring formed on the imaging plate by X-ray irradiation from the line emitter, the data read by the diffraction ring reading means, and the first plane wall on one plane part of the pair of plane parts This is data representing a diffraction ring formed on the imaging plate by X-ray irradiation from the X-ray emitter by bringing the inclined wall into contact with the other flat portion of the pair of flat portions. Using the data read by the ring reading means, the residual stress in the vicinity of the intersection line of the pair of plane portions in the one or other plane portion, which is orthogonal to the intersection line of the pair of plane portions, Residual stress in the direction parallel to the plane wall Residual stress calculation means for calculating the direction of residual stress of the fine the intersection lines in (91, S500 ~ S510) and further comprising a. According to this, it is possible to accurately obtain the extension direction of the corner portion in the vicinity of the corner portion of the measurement object having an L-shape and the residual stress in the direction orthogonal to the extension direction.
(A)は本発明の一実施形態に係るX線回折測定装置の正面図であり、(B)は前記X線回折測定装置の上面図であり、(C)は前記X線回折測定装置の右側面図である。(A) is a front view of the X-ray-diffraction measuring apparatus which concerns on one Embodiment of this invention, (B) is a top view of the said X-ray-diffraction measuring apparatus, (C) is the said X-ray-diffraction measuring apparatus. It is a right view. 図1の2-2線に沿って見たX線回折測定装置の断面図である。FIG. 2 is a cross-sectional view of the X-ray diffraction measurement device viewed along line 2-2 in FIG. 図1の3-3線に沿って見たX線回折測定装置の断面図である。FIG. 3 is a cross-sectional view of the X-ray diffraction measurement device viewed along line 3-3 in FIG. 図3の4-4線に沿って見たX線回折測定装置の断面図である。FIG. 4 is a cross-sectional view of the X-ray diffraction measurement apparatus taken along line 4-4 of FIG. X線回折測定装置を含むX線回折測定システムを示す全体概略ブロック図である。1 is an overall schematic block diagram showing an X-ray diffraction measurement system including an X-ray diffraction measurement apparatus. 図5のコントローラによって実行される回折環撮像プログラムを示すフローチャートである。It is a flowchart which shows the diffraction ring imaging program performed by the controller of FIG. 図5のコントローラによって実行される回折環読取りプログラムの前半部分を示すフローチャートである。It is a flowchart which shows the first half part of the diffraction ring reading program performed by the controller of FIG. 前記回折環読取りプログラムの後半部分を示すフローチャートである。It is a flowchart which shows the latter half part of the said diffraction ring reading program. 図5のコントローラによって実行される回折環形状検出プログラムを示すフローチャートである。It is a flowchart which shows the diffraction ring shape detection program performed by the controller of FIG. 図5のコントローラによって実行される回折環消去プログラムを示すフローチャートである。6 is a flowchart showing a diffraction ring erasing program executed by the controller of FIG. 5. 図5のコントローラによって実行される応力計算プログラムを示すフローチャートである。It is a flowchart which shows the stress calculation program performed by the controller of FIG. (A)は第1の回折環測定工程において測定対象物上にX線回折測定装置を配置した上面図であり、(B)は第2の回折環測定工程において測定対象物上にX線回折測定装置を配置した上面図である。(A) is a top view in which an X-ray diffraction measurement device is arranged on the measurement object in the first diffraction ring measurement step, and (B) is an X-ray diffraction on the measurement object in the second diffraction ring measurement step. It is a top view which has arrange | positioned the measuring apparatus. イメージングプレートの移動限界位置からの移動距離と、イメージングプレートにおけるレーザ光の照射位置の半径方向距離(半径)との関係を説明するための図である。It is a figure for demonstrating the relationship between the movement distance from the movement limit position of an imaging plate, and the radial direction distance (radius) of the irradiation position of the laser beam in an imaging plate. 読取りポイントの軌跡を説明する説明図である。It is explanatory drawing explaining the locus | trajectory of a reading point. 信号強度のピークを説明するための受光曲線の一例を示すグラフである。It is a graph which shows an example of the light reception curve for demonstrating the peak of signal strength.
 本発明の一実施形態に係るX線回折測定装置について図1を用いて説明する。図1において、(A)は本発明の一実施形態に係るX線回折測定装置の正面図であり、(B)は前記X線回折測定装置の上面図であり、(C)は前記X線回折測定装置の右側面図である。 An X-ray diffraction measurement apparatus according to an embodiment of the present invention will be described with reference to FIG. 1A is a front view of an X-ray diffraction measurement apparatus according to an embodiment of the present invention, FIG. 1B is a top view of the X-ray diffraction measurement apparatus, and FIG. 1C is the X-ray diffraction apparatus. It is a right view of a diffraction measuring apparatus.
 このX線回折測定装置は、ケース10を有する。ケース10は、平板状の正面壁11、裏面壁12、上面壁13、底面壁14、左側面壁15及び右側面壁16からなり、金属又は樹脂により直方体状に形成されている。すなわち、正面壁11と裏面壁12は平行であり、正面壁11及び裏面壁12は、上面壁13、底面壁14、左側面壁15及び右側面壁16と直交している。上面壁13と底面壁14も平行であり、上面壁13と底面壁14は、正面壁11、裏面壁12、左側面壁15及び右側面壁16と直交している。左側面壁15と右側面壁16も平行であり、左側面壁15と右側面壁16は、正面壁11、裏面壁12、上面壁13及び底面壁14と直交している。 This X-ray diffraction measurement apparatus has a case 10. The case 10 includes a flat front wall 11, a back wall 12, a top wall 13, a bottom wall 14, a left side wall 15, and a right side wall 16 and is formed in a rectangular parallelepiped shape from metal or resin. That is, the front wall 11 and the back wall 12 are parallel, and the front wall 11 and the back wall 12 are orthogonal to the top wall 13, the bottom wall 14, the left side wall 15, and the right side wall 16. The top wall 13 and the bottom wall 14 are also parallel, and the top wall 13 and the bottom wall 14 are orthogonal to the front wall 11, the back wall 12, the left side wall 15, and the right side wall 16. The left side wall 15 and the right side wall 16 are also parallel, and the left side wall 15 and the right side wall 16 are orthogonal to the front wall 11, the back wall 12, the top wall 13, and the bottom wall 14.
 正面壁11の右側端部と右側面壁16の正面側端部とには、正面壁11と右側面壁16とに挟まれた角部分を比較的大きく切欠くように形成した傾斜壁17が設けられている。傾斜壁17は、正面壁11の右側端部にて右側への延設方向から裏面壁12側方向すなわわちケース10の内側方向に30度傾斜させた平板状の部材である。すなわち、傾斜壁17は、正面壁11と150度の角度で交差し、右側面壁16と120度の角度で交差している。なお、この傾斜壁17は、上面壁13及び底面壁14とは90度の角度で交差している。 An inclined wall 17 is provided at the right end of the front wall 11 and the front end of the right side wall 16 so as to cut a corner portion sandwiched between the front wall 11 and the right side wall 16 relatively large. ing. The inclined wall 17 is a flat plate-like member that is inclined by 30 degrees from the extending direction to the right side at the right end portion of the front wall 11 toward the back wall 12, that is, the inner side of the case 10. That is, the inclined wall 17 intersects the front wall 11 at an angle of 150 degrees and intersects the right side wall 16 at an angle of 120 degrees. The inclined wall 17 intersects the top wall 13 and the bottom wall 14 at an angle of 90 degrees.
 正面壁11及び傾斜壁17の下側端部と底面壁14の正面側端部とには、正面壁11と底面壁14とに挟まれた角部分を小さく切欠いた切欠き部18が設けられている。この切欠き部18も、平板状の部材であり、正面壁11及び底面壁14と135度の角度でそれぞれ交差している。この切欠き部18には、傾斜壁17の近傍位置にて、ケース10の内部と外部とを貫通させた長円状の貫通孔18aが設けられている。また、上面壁13の中央部分には、人間がX線回折測定装置を搬送可能とするための取っ手19が取り付けられている。 At the lower side end of the front wall 11 and the inclined wall 17 and the front side end of the bottom wall 14, a notch 18 is formed by notching a corner portion sandwiched between the front wall 11 and the bottom wall 14. ing. This notch 18 is also a flat member and intersects the front wall 11 and the bottom wall 14 at an angle of 135 degrees. The notch 18 is provided with an oval through-hole 18 a that penetrates the inside and the outside of the case 10 at a position near the inclined wall 17. A handle 19 is attached to the central portion of the top wall 13 so that a human can carry the X-ray diffraction measurement apparatus.
 次に、ケース10内に収容されたX線回折測定装置の内部構成について、図2乃至図4を用いて説明する。図2は図1の2-2線に沿って見たX線回折測定装置の断面図であり、図3は図1の3-3線に沿って見たX線回折測定装置の断面図である。図4は、図3の4-4線に沿って見たX線回折測定装置の断面図である。 Next, the internal configuration of the X-ray diffraction measurement apparatus accommodated in the case 10 will be described with reference to FIGS. FIG. 2 is a cross-sectional view of the X-ray diffraction measurement apparatus taken along line 2-2 in FIG. 1, and FIG. 3 is a cross-sectional view of the X-ray diffraction measurement apparatus taken along line 3-3 in FIG. is there. FIG. 4 is a cross-sectional view of the X-ray diffraction measurement apparatus taken along line 4-4 of FIG.
 X線回折測定装置は、X線を出射するX線出射器20と、回折X線による回折環が形成されるイメージングプレート31を取り付けるためのテーブル30と、テーブル30を回転及び移動させるテーブル駆動機構40と、イメージングプレート31に形成された回折環を測定するためのレーザ検出装置50とをケース10内に収容している。 The X-ray diffraction measurement apparatus includes an X-ray emitter 20 that emits X-rays, a table 30 for mounting an imaging plate 31 on which a diffraction ring is formed by diffracted X-rays, and a table driving mechanism that rotates and moves the table 30. 40 and a laser detector 50 for measuring a diffraction ring formed on the imaging plate 31 are accommodated in the case 10.
 X線出射器20は、長尺状に形成され、ケース10内の裏面壁12と上面壁13とが交差する角部近傍位置にて左右方向に延設されてケース10に図示しない固定部材によって固定されており、後述する高電圧電源95からの高電圧の供給を受けてX線を出射する。このX線は、正面壁11と傾斜壁17とが交差する左右方向位置よりも若干だけ左側に位置する右側面壁16に平行な面内において、裏面壁12と上面壁13の交差点近傍位置と、正面壁11と底面壁14の交差点位置よりも僅かに後方位置とを結ぶ直線上の上方側位置から下方に向けて、正面壁11及び底面壁14に対して45度の角度をなす方向に出射される。このX線の光軸上には、前述した切欠き部18に形成した貫通孔18aが設けられており、このX線は貫通孔18aを介してケース10の内部から外部に出射される。すなわち、ケース10の底面壁14を測定対象物OBの上面に当接させてケース10を測定対象物OB上に載置した場合、X線出射器20から出射されたX線の光軸の測定対象物OBへの入射角(X線の光軸と測定対象物OBの法線とがなす角度)は、45度となる。また、X線出射器20は、図示しない冷却装置を備えている。 The X-ray emitter 20 is formed in a long shape and extends in the left-right direction at a position near the corner where the back wall 12 and the top wall 13 in the case 10 intersect, and is fixed to the case 10 by a fixing member (not shown). It is fixed and emits X-rays upon receiving a high voltage supplied from a high voltage power supply 95 described later. This X-ray has a position in the vicinity of the intersection of the back wall 12 and the top wall 13 in a plane parallel to the right side wall 16 located slightly to the left of the left and right position where the front wall 11 and the inclined wall 17 intersect. The light is emitted in a direction that forms an angle of 45 degrees with respect to the front wall 11 and the bottom wall 14 from the upper position on the straight line that connects the rear position slightly with respect to the intersection position of the front wall 11 and the bottom wall 14. Is done. On the optical axis of the X-ray, a through hole 18a formed in the notch 18 described above is provided, and this X-ray is emitted from the inside of the case 10 to the outside through the through hole 18a. That is, when the case 10 is placed on the measurement object OB with the bottom wall 14 of the case 10 being in contact with the upper surface of the measurement object OB, the optical axis of the X-ray emitted from the X-ray emitter 20 is measured. The incident angle to the object OB (angle formed by the optical axis of the X-ray and the normal line of the measurement object OB) is 45 degrees. Further, the X-ray emitter 20 includes a cooling device (not shown).
 なお、測定対象物OBにX線を照射して回折環を形成する場合、図3に示すように、断面L字形状を有する測定対象物OBの垂直面vpに正面壁11を当接させ、水平面hpに底面壁14を当接させるようにケース10を位置させた際、X線は垂直面vpと水平面hpとに直交する面内にて、垂直面vpに近接する水平面hp上の位置に照射される必要があるので、X線照射器20から出射されるX線の光軸は右側面壁16に平行な面内(すなわち正面壁11及び底面壁14に直交する面内)にあり、かつX線は正面壁11と底面壁14との交差線よりも若干だけ裏面壁12側の位置に照射されるように、X線の出射方向を正確に設定しておく必要がある。 When forming the diffraction ring by irradiating the measurement object OB with X-rays, as shown in FIG. 3, the front wall 11 is brought into contact with the vertical surface vp of the measurement object OB having an L-shaped cross section, When the case 10 is positioned so that the bottom wall 14 is in contact with the horizontal plane hp, the X-ray is in a position on the horizontal plane hp close to the vertical plane vp in a plane orthogonal to the vertical plane vp and the horizontal plane hp. Since it is necessary to irradiate, the optical axis of the X-ray emitted from the X-ray irradiator 20 is in a plane parallel to the right side wall 16 (that is, in a plane orthogonal to the front wall 11 and the bottom wall 14), and It is necessary to set the X-ray emission direction accurately so that the X-ray is irradiated to the position on the back wall 12 side slightly from the intersection line between the front wall 11 and the bottom wall 14.
 テーブル駆動機構40は、図示しない固定部材によってケース10内に固定され、X線出射器20の下方にて、移動ステージ41を備えている。移動ステージ41は、フィードモータ42及びスクリューロッド43により、正面壁11、裏面壁12、上面壁13及び底面壁14に対して平行な方向すなわち左側面壁15及び右側面壁16と直交する方向に移動可能となっている。フィードモータ42は、テーブル駆動機構40内に固定されていてケース10に対して移動不能となっている。スクリューロッド43は、X線出射器20から出射されたX線の光軸に垂直な方向に延設されていて、その一端部がフィードモータ42の出力軸に連結されている。スクリューロッド43の他端部は、テーブル駆動機構40内に設けた軸受部44に回転可能に支持されている。また、移動ステージ41は、それぞれテーブル駆動機構40内にて固定された、対向する1対の板状のガイド45,45により挟まれていて、スクリューロッド43の軸線方向に沿って移動可能となっている。すなわち、フィードモータ42を正転又は逆転駆動すると、フィードモータ42の回転運動が移動ステージ41の直線運動に変換される。フィードモータ42内には、エンコーダ42aが組み込まれている。エンコーダ42aは、フィードモータ42が所定の微小回転角度だけ回転するたびに、ハイレベルとローレベルとに交互に切り替わるパルス列信号を出力する。 The table driving mechanism 40 is fixed in the case 10 by a fixing member (not shown), and includes a moving stage 41 below the X-ray emitter 20. The moving stage 41 can be moved in a direction parallel to the front wall 11, the back wall 12, the top wall 13, and the bottom wall 14, that is, in a direction perpendicular to the left side wall 15 and the right side wall 16 by the feed motor 42 and the screw rod 43. It has become. The feed motor 42 is fixed in the table driving mechanism 40 and cannot move with respect to the case 10. The screw rod 43 extends in a direction perpendicular to the optical axis of the X-ray emitted from the X-ray emitter 20, and one end thereof is connected to the output shaft of the feed motor 42. The other end portion of the screw rod 43 is rotatably supported by a bearing portion 44 provided in the table drive mechanism 40. Further, the moving stage 41 is sandwiched between a pair of opposed plate- like guides 45, 45 fixed in the table driving mechanism 40, respectively, and can move along the axial direction of the screw rod 43. ing. That is, when the feed motor 42 is driven forward or backward, the rotational motion of the feed motor 42 is converted into the linear motion of the moving stage 41. An encoder 42 a is incorporated in the feed motor 42. The encoder 42a outputs a pulse train signal that alternately switches between a high level and a low level each time the feed motor 42 rotates by a predetermined minute rotation angle.
 一対のガイド45,45の上端は、板状の上壁46によって連結されている。上壁46には、貫通孔46aが設けられていて、貫通孔46aには、X線出射器20の出射口21の先端部が挿入されている。なお、X線出射器20の出射口21の先端が移動ステージ41に当接しないように、X線出射器20及び移動ステージ41の位置が設定されている。 The upper ends of the pair of guides 45 are connected by a plate-like upper wall 46. A through hole 46 a is provided in the upper wall 46, and the distal end portion of the emission port 21 of the X-ray emitter 20 is inserted into the through hole 46 a. The positions of the X-ray emitter 20 and the moving stage 41 are set so that the tip of the emission port 21 of the X-ray emitter 20 does not contact the moving stage 41.
 また、移動ステージ41には、スピンドルモータ47が組み付けられている。スピンドルモータ47内には、エンコーダ42aと同様のエンコーダ47aが組み込まれている。すなわち、エンコーダ47aは、スピンドルモータ47が所定の微小回転角度だけ回転するたびに、ハイレベルとローレベルとに交互に切り替わるパルス列信号を出力する。さらに、エンコーダ47aは、スピンドルモータ47が1回転するごとに、所定の短い期間だけローレベルからハイレベルに切り替わるインデックス信号を出力する。 Also, a spindle motor 47 is assembled to the moving stage 41. In the spindle motor 47, an encoder 47a similar to the encoder 42a is incorporated. That is, the encoder 47a outputs a pulse train signal that alternately switches between a high level and a low level each time the spindle motor 47 rotates by a predetermined minute rotation angle. Furthermore, the encoder 47a outputs an index signal that switches from a low level to a high level for a predetermined short period of time each time the spindle motor 47 rotates once.
 テーブル30は、円形状に形成され、スピンドルモータ47の出力軸の先端部に固定されている。テーブル30の中心軸と、スピンドルモータ47の出力軸の中心軸とは一致している。テーブル30は、下面中央部から下方へ突出した突出部32を有していて、突出部32の外周面には、ねじ山が形成されている。突出部32の中心軸は、スピンドルモータ47の出力軸の中心軸と一致している。テーブル30の下面には、イメージングプレート31が取付けられている。イメージングプレート31は、表面に蛍光体が塗布された円形のプラスチックフィルムである。イメージングプレート31の中心部には、貫通孔31aが設けられていて、この貫通孔31aに突出部32を通し、突出部32にナット状の固定具33をねじ込むことにより、イメージングプレート31が、固定具33とテーブル30の間に挟まれて固定される。固定具33は、円筒状の部材で、内周面に、突出部32のねじ山に対応するねじ山が形成されている。 The table 30 is formed in a circular shape and is fixed to the tip of the output shaft of the spindle motor 47. The center axis of the table 30 coincides with the center axis of the output shaft of the spindle motor 47. The table 30 has a protruding portion 32 that protrudes downward from the central portion of the lower surface, and a thread is formed on the outer peripheral surface of the protruding portion 32. The central axis of the protruding portion 32 coincides with the central axis of the output shaft of the spindle motor 47. An imaging plate 31 is attached to the lower surface of the table 30. The imaging plate 31 is a circular plastic film whose surface is coated with a phosphor. A through hole 31a is provided in the center of the imaging plate 31, and the imaging plate 31 is fixed by screwing a nut-shaped fixture 33 into the protruding part 32 by passing the protruding part 32 through the through hole 31a. It is sandwiched and fixed between the tool 33 and the table 30. The fixture 33 is a cylindrical member, and a thread corresponding to the thread of the protrusion 32 is formed on the inner peripheral surface.
 イメージングプレート31は、フィードモータ42によって駆動されて、移動ステージ41、スピンドルモータ47及びテーブル30と共に原点位置から回折環を撮像する回折環撮像位置へ移動する。また、イメージングプレート31は、スピンドルモータ47によって駆動されて回転しながら、フィードモータ42によって駆動されて、移動ステージ41、スピンドルモータ47及びテーブル30と共に撮像した回折環を読み取る回折環読取り領域内、及び回折環を消去する回折環消去領域内を移動する。なお、この場合のイメージングプレート31の移動においては、イメージングプレート31の中心軸が、X線出射器20から出射されたX線の光軸を含む、正面壁11、裏面壁12、上面壁13及び底面壁14と直交する平面すなわち左側面壁15及び右側面壁16に対して平行な平面内に保たれた状態で、前記X線の光軸と直交する方向に移動する。 The imaging plate 31 is driven by the feed motor 42 and moves together with the moving stage 41, the spindle motor 47 and the table 30 from the origin position to the diffraction ring imaging position for imaging the diffraction ring. The imaging plate 31 is driven by the feed motor 42 while being rotated by the spindle motor 47, and is driven by the feed motor 42 to read the imaged diffraction ring together with the moving stage 41, the spindle motor 47 and the table 30, and in the diffraction ring reading region. It moves in the diffractive ring erasing region that erases the diffractive ring. In the movement of the imaging plate 31 in this case, the front wall 11, the back wall 12, the top wall 13, and the center axis of the imaging plate 31 include the optical axis of the X-ray emitted from the X-ray emitter 20. It moves in a direction orthogonal to the optical axis of the X-ray while being maintained in a plane orthogonal to the bottom wall 14, that is, in a plane parallel to the left side wall 15 and the right side wall 16.
 また、移動ステージ41、スピンドルモータ47の出力軸、テーブル30、イメージングプレート31及び固定具33には、X線出射器20から出射されたX線を通過させる貫通孔がそれぞれ設けられている。これらの貫通孔の中心軸と、テーブル30の回転軸は一致している。すなわち、これらの貫通孔の中心軸と、X線出射器20から出射されるX線の光軸とが一致するとき、X線が測定対象物OBに照射されるようになっている。このように、X線を測定対象物OBに照射するときのイメージングプレート31の位置が、回折環撮像位置である。 Further, the moving stage 41, the output shaft of the spindle motor 47, the table 30, the imaging plate 31, and the fixture 33 are provided with through holes through which the X-rays emitted from the X-ray emitter 20 pass. The center axis of these through holes and the rotation axis of the table 30 are coincident. That is, when the central axis of these through holes and the optical axis of the X-ray emitted from the X-ray emitter 20 coincide, the X-ray is irradiated onto the measurement object OB. Thus, the position of the imaging plate 31 when irradiating the measurement object OB with X-rays is the diffraction ring imaging position.
 フィードモータ42の下方には、測定対象物OBとイメージングプレート31間の距離を検出するための受光センサ35(例えば、X線CCD)が図示しない固定部材によって組み付けられている。受光センサ35は、測定対象物OBにて反射したX線を受光する複数の受光素子からなり、測定対象物OB及びイメージングプレート31からフィードモータ42側に充分離れている。これにより、イメージングプレート31が回折環撮像位置にあるとき、受光センサ35は、測定対象物OBにて反射したX線を直接受光できる。受光センサ35の受光面におけるX線の受光位置は、測定対象物OBの高さに対応している。言い換えれば、イメージングプレート31と測定対象物OBとの距離に対応している。受光センサ35は、それぞれの受光素子が受光した受光信号を出力する。 Below the feed motor 42, a light receiving sensor 35 (for example, an X-ray CCD) for detecting the distance between the measurement object OB and the imaging plate 31 is assembled by a fixing member (not shown). The light receiving sensor 35 includes a plurality of light receiving elements that receive X-rays reflected by the measurement object OB, and is sufficiently separated from the measurement object OB and the imaging plate 31 toward the feed motor 42 side. Thus, when the imaging plate 31 is at the diffraction ring imaging position, the light receiving sensor 35 can directly receive the X-ray reflected by the measurement object OB. The light receiving position of the X-ray on the light receiving surface of the light receiving sensor 35 corresponds to the height of the measurement object OB. In other words, this corresponds to the distance between the imaging plate 31 and the measurement object OB. The light receiving sensor 35 outputs a light receiving signal received by each light receiving element.
 レーザ検出装置50は、回折環を撮像したイメージングプレート31にレーザ光を照射して、イメージングプレート31から入射した光の強度を検出する。レーザ検出装置50は、切欠き部18に設けた貫通孔18a及び回折環撮像位置にあるイメージングプレート31からフィードモータ42側に充分離れている。すなわち、イメージングプレート31が回折環撮像位置にあるとき、測定対象物OBにて回折したX線がレーザ検出装置50によって遮られないようになっている。 The laser detection device 50 detects the intensity of light incident from the imaging plate 31 by irradiating the imaging plate 31 that images the diffraction ring with laser light. The laser detector 50 is sufficiently separated from the through hole 18 a provided in the notch 18 and the imaging plate 31 at the diffraction ring imaging position toward the feed motor 42. That is, when the imaging plate 31 is at the diffraction ring imaging position, the X-ray diffracted by the measurement object OB is not blocked by the laser detection device 50.
 次に、このレーザ検出装置50について説明する。レーザ検出装置50は、図5に破線で示すように、レーザ光源51、コリメートレンズ52、反射鏡53、偏光ビームスプリッタ54、1/4波長板55及び対物レンズ56を内蔵している。レーザ光源51は、イメージングプレート31に照射するレーザ光を出射する。コリメートレンズ52は、レーザ光源51から出射されたレーザ光を平行光に変換する。反射鏡53は、コリメートレンズ52にて平行光に変換されたレーザ光を、偏光ビームスプリッタ54に向けて反射する。偏光ビームスプリッタ54は、反射鏡53から入射したレーザ光の大半(例えば、95%)をそのまま透過させて1/4波長板55に導く。1/4波長板55は、偏光ビームスプリッタ54から入射したレーザ光を直線偏光から円偏光に変換する。対物レンズ56は、1/4波長板55から入射したレーザ光をイメージングプレート31の表面に集光させる。この対物レンズ56から出射されるレーザ光の光軸は、X線出射器20から出射されたX線の光軸を含む正面壁11、裏面壁12、上面壁13及び底面壁14と直交する平面内すなわち左側面壁15及び右側面壁16に平行な平面内であって、前記X線の光軸に平行な方向、すなわち移動ステージ41の移動方向に対して垂直な方向である。 Next, the laser detector 50 will be described. The laser detection device 50 includes a laser light source 51, a collimating lens 52, a reflecting mirror 53, a polarizing beam splitter 54, a quarter wavelength plate 55, and an objective lens 56, as indicated by broken lines in FIG. The laser light source 51 emits laser light that irradiates the imaging plate 31. The collimating lens 52 converts the laser light emitted from the laser light source 51 into parallel light. The reflecting mirror 53 reflects the laser light converted into parallel light by the collimating lens 52 toward the polarizing beam splitter 54. The polarization beam splitter 54 transmits most of the laser light incident from the reflecting mirror 53 (for example, 95%) as it is and guides it to the quarter-wave plate 55. The quarter wave plate 55 converts the laser light incident from the polarization beam splitter 54 from linearly polarized light to circularly polarized light. The objective lens 56 focuses the laser light incident from the quarter wavelength plate 55 on the surface of the imaging plate 31. The optical axis of the laser light emitted from the objective lens 56 is a plane orthogonal to the front wall 11, the back wall 12, the top wall 13, and the bottom wall 14 including the optical axis of the X-ray emitted from the X-ray emitter 20. It is in a plane parallel to the inner side, that is, the left side wall 15 and the right side wall 16 and is parallel to the optical axis of the X-ray, that is, a direction perpendicular to the moving direction of the moving stage 41.
 対物レンズ56には、フォーカスアクチュエータ57が組み付けられている。フォーカスアクチュエータ57は、対物レンズ56をレーザ光の光軸方向に移動させるアクチュエータである。なお、対物レンズ56は、フォーカスアクチュエータ57が通電されていないときに、その可動範囲の中心に位置する。 A focus actuator 57 is assembled to the objective lens 56. The focus actuator 57 is an actuator that moves the objective lens 56 in the optical axis direction of the laser light. The objective lens 56 is located at the center of the movable range when the focus actuator 57 is not energized.
 対物レンズ56によって集光されたレーザ光を、イメージングプレート31の表面であって、回折環が撮像されている部分に照射すると、輝尽発光(Photo-Stimulated Luminesence)現象が生じる。すなわち、回折環を撮像した後、イメージングプレート31にレーザ光を照射すると、イメージングプレート31の蛍光体が回折X線の強度に応じた光であって、レーザ光の波長よりも波長が短い光を発する。イメージングプレート31に照射されて反射したレーザ光の反射光及び蛍光体から発せられた光は、対物レンズ56及び1/4波長板55を通過して、偏光ビームスプリッタ54にて反射する。偏光ビームスプリッタ54の反射方向には、集光レンズ58、シリンドリカルレンズ59及びフォトディテクタ60が設けられている。集光レンズ58は、偏光ビームスプリッタ54から入射した光を、シリンドリカルレンズ59に集光する。シリンドリカルレンズ59は、透過した光に非点収差を生じさせる。フォトディテクタ60は、分割線で区切られた4つの同一正方形状の受光素子からなる4分割受光素子によって構成されており、時計回りに配置された受光領域A,B,C,Dに入射した光の強度に比例した大きさの検出信号を受光信号(a,b,c,d)として出力する。 When the laser beam condensed by the objective lens 56 is irradiated onto the surface of the imaging plate 31 where the diffraction ring is imaged, a photo-stimulated luminescence phenomenon occurs. That is, after imaging the diffraction ring, when the imaging plate 31 is irradiated with laser light, the phosphor of the imaging plate 31 is light corresponding to the intensity of the diffracted X-ray, and light having a wavelength shorter than the wavelength of the laser light. To emit. The reflected light of the laser beam irradiated and reflected on the imaging plate 31 and the light emitted from the phosphor pass through the objective lens 56 and the quarter wavelength plate 55 and are reflected by the polarization beam splitter 54. In the reflection direction of the polarization beam splitter 54, a condensing lens 58, a cylindrical lens 59, and a photodetector 60 are provided. The condensing lens 58 condenses the light incident from the polarization beam splitter 54 on the cylindrical lens 59. The cylindrical lens 59 causes astigmatism in the transmitted light. The photodetector 60 is constituted by a four-divided light receiving element composed of four light receiving elements of the same square shape divided by dividing lines, and the light incident on the light receiving areas A, B, C, and D arranged in the clockwise direction. A detection signal having a magnitude proportional to the intensity is output as a light reception signal (a, b, c, d).
 また、レーザ検出装置50は、集光レンズ61及びフォトディテクタ62を備えている。集光レンズ61は、レーザ光源51から出射されたレーザ光の一部であって、偏光ビームスプリッタ54を透過せずに反射したレーザ光をフォトディテクタ62の受光面に集光する。フォトディテクタ62は、受光面に集光された光の強度に応じた受光信号を出力する受光素子である。従って、フォトディテクタ62は、レーザ光源51が出射したレーザ光の強度に対応した受光信号を出力する。 Further, the laser detection device 50 includes a condenser lens 61 and a photodetector 62. The condensing lens 61 condenses the laser light that is a part of the laser light emitted from the laser light source 51 and reflected without passing through the polarization beam splitter 54 on the light receiving surface of the photodetector 62. The photodetector 62 is a light receiving element that outputs a light reception signal corresponding to the intensity of light collected on the light receiving surface. Therefore, the photodetector 62 outputs a light reception signal corresponding to the intensity of the laser light emitted from the laser light source 51.
 また、対物レンズ56に隣接して、LED63が設けられている。LED63は、可視光を発して、イメージングプレート31に撮像された回折環を消去する。 Also, an LED 63 is provided adjacent to the objective lens 56. The LED 63 emits visible light and erases the diffraction ring imaged on the imaging plate 31.
 また、ケース10内には、X線出射器20、テーブル駆動機構40及びレーザ検出装置50に接続されてそれらを作動制御したり、検出信号を入力したりするための電気制御装置70も内蔵されている。この電気制御装置70について図5を用いて説明する。図5において2点鎖線で囲んだ電気制御装置70は、図2及び図4にて2点鎖線で示すようにケース10内に納められている。ただし、図2及び図4においては、電気制御装置70とX線出射器20、テーブル駆動機構40及びレーザ検出装置50との接続線は省略されている。また、図5においては、ケース10は省略されている。 The case 10 also includes an electric control device 70 that is connected to the X-ray emitter 20, the table drive mechanism 40, and the laser detection device 50 to control the operation thereof and to input detection signals. ing. The electric control device 70 will be described with reference to FIG. The electric control device 70 surrounded by a two-dot chain line in FIG. 5 is housed in the case 10 as indicated by a two-dot chain line in FIGS. However, in FIG.2 and FIG.4, the connection line of the electric control apparatus 70, the X-ray emitter 20, the table drive mechanism 40, and the laser detection apparatus 50 is abbreviate | omitted. In FIG. 5, the case 10 is omitted.
 電気制御装置70は、以下に説明する回路を含む。X線制御回路71は、後述するコンピュータ装置90を構成するコントローラ91によって制御され、X線出射器20から一定の強度のX線が出射されるように、X線出射器20に供給する駆動電流及び駆動電圧を制御する。また、X線制御回路71は、X線出射器20に内蔵された冷却装置に供給する駆動信号も制御する。これにより、X線出射器20の温度が一定に保たれる。なお、X線出射器20には高電圧電源95から高電圧が供給されるようになっているが、この高電圧電源95は電気制御装置70に含まれるものではない。 The electric control device 70 includes a circuit described below. The X-ray control circuit 71 is controlled by a controller 91 that configures a computer device 90 to be described later, and a driving current supplied to the X-ray emitter 20 so that X-rays with a certain intensity are emitted from the X-ray emitter 20. And control the drive voltage. The X-ray control circuit 71 also controls a drive signal supplied to the cooling device built in the X-ray emitter 20. Thereby, the temperature of the X-ray emitter 20 is kept constant. The X-ray emitter 20 is supplied with a high voltage from a high voltage power supply 95, but the high voltage power supply 95 is not included in the electric control device 70.
 フィードモータ42内のエンコーダ42aには位置検出回路72及びフィードモータ制御回路73が接続され、フィードモータ42にはフィードモータ制御回路73が接続されている。これらの位置検出回路72及びフィードモータ制御回路73は、コントローラ91からの指令により作動開始する。測定開始直後において、フィードモータ制御回路73は、フィードモータ42を駆動して移動ステージ41をフィードモータ42側へ移動させる。位置検出回路72は、エンコーダ42aから出力されるパルス信号が入力されなくなると、移動ステージ41が移動限界位置に達したことを表す信号をフィードモータ制御回路73に出力し、カウント値を「0」に設定する。フィードモータ制御回路73は、位置検出回路72から移動限界位置に達したことを表す信号を入力すると、フィードモータ42への駆動信号の出力を停止する。上記の移動限界位置を移動ステージ41の原点位置とする。したがって、位置検出回路72は、移動ステージ41が図5の左方向に移動して移動限界位置に達したときに「0」を表す位置信号を出力し、移動ステージ41が移動限界位置から右方向へ移動するとき、移動限界位置からの移動距離xを表す信号を位置信号として出力する。 A position detection circuit 72 and a feed motor control circuit 73 are connected to the encoder 42a in the feed motor 42, and a feed motor control circuit 73 is connected to the feed motor 42. The position detection circuit 72 and the feed motor control circuit 73 start to operate in response to a command from the controller 91. Immediately after the start of measurement, the feed motor control circuit 73 drives the feed motor 42 to move the moving stage 41 to the feed motor 42 side. When the pulse signal output from the encoder 42a is not input, the position detection circuit 72 outputs a signal indicating that the movement stage 41 has reached the movement limit position to the feed motor control circuit 73, and sets the count value to “0”. Set to. When the feed motor control circuit 73 receives a signal indicating that the movement limit position has been reached from the position detection circuit 72, the feed motor control circuit 73 stops outputting the drive signal to the feed motor 42. The above movement limit position is set as the origin position of the moving stage 41. Therefore, the position detection circuit 72 outputs a position signal representing “0” when the moving stage 41 moves to the left in FIG. 5 and reaches the movement limit position, and the movement stage 41 moves to the right from the movement limit position. When moving to, a signal representing the movement distance x from the movement limit position is output as a position signal.
 フィードモータ制御回路73は、コントローラ91から移動ステージ41の移動先の位置を表す設定値を入力すると、その設定値に応じてフィードモータ42を正転又は逆転駆動する。位置検出回路72は、エンコーダ42aが出力するパルス信号のパルス数をカウントする。そして、位置検出回路72は、カウントしたパルス数を用いて移動ステージ41の現在の位置(移動限界位置からの移動距離x)を計算し、コントローラ91及びフィードモータ制御回路73に出力する。フィードモータ制御回路73は、位置検出回路72から入力した移動ステージ41の現在の位置が、コントローラ91から入力した移動先の位置と一致するまでフィードモータ42を駆動する。 When the feed motor control circuit 73 receives a set value indicating the position of the moving stage 41 from the controller 91, the feed motor control circuit 73 drives the feed motor 42 in the forward or reverse direction according to the set value. The position detection circuit 72 counts the number of pulses of the pulse signal output from the encoder 42a. Then, the position detection circuit 72 calculates the current position of the movement stage 41 (movement distance x from the movement limit position) using the counted number of pulses, and outputs it to the controller 91 and the feed motor control circuit 73. The feed motor control circuit 73 drives the feed motor 42 until the current position of the moving stage 41 input from the position detection circuit 72 matches the position of the moving destination input from the controller 91.
 また、フィードモータ制御回路73は、移動ステージ41の移動速度を表す設定値をコントローラ91から入力する。そして、エンコーダ42aから入力したパルス信号の単位時間当たりのパルス数を用いて、移動ステージ41の移動速度を計算し、前記計算した移動ステージ41の移動速度がコントローラ91から入力した移動速度になるようにフィードモータ42を駆動する。 Further, the feed motor control circuit 73 inputs a set value indicating the moving speed of the moving stage 41 from the controller 91. Then, the moving speed of the moving stage 41 is calculated using the number of pulses per unit time of the pulse signal input from the encoder 42a, so that the calculated moving speed of the moving stage 41 becomes the moving speed input from the controller 91. The feed motor 42 is driven.
 スピンドルモータ47内のエンコーダ47aにはスピンドルモータ制御回路74及び回転角度検出回路75が接続され、スピンドルモータ47にはスピンドルモータ制御回路74が接続されている。これらのスピンドルモータ制御回路74及び回転角度検出回路75は、コントローラ91からの指令により作動開始する。スピンドルモータ制御回路74は、コントローラ91から、スピンドルモータ47の回転速度を表す設定値を入力する。そして、エンコーダ47aから入力したパルス信号の単位時間当たりのパルス数を用いてスピンドルモータ47の回転速度を計算し、計算した回転速度がコントローラ91から入力した回転速度になるように、駆動信号をスピンドルモータ47に供給する。回転角度検出回路75は、エンコーダ47aから出力されたパルス列信号のパルス数をカウントし、そのカウント値を用いてスピンドルモータ47の回転角度すなわちイメージングプレート31の回転角度θpを計算して、コントローラ91に出力する。そして、回転角度検出回路75は、エンコーダ47aから出力されたインデックス信号を入力すると、カウント値を「0」に設定する。すなわち、インデックス信号を入力した位置が回転角度0度の基準位置である。 A spindle motor control circuit 74 and a rotation angle detection circuit 75 are connected to the encoder 47a in the spindle motor 47, and a spindle motor control circuit 74 is connected to the spindle motor 47. The spindle motor control circuit 74 and the rotation angle detection circuit 75 start to operate in response to a command from the controller 91. The spindle motor control circuit 74 inputs a setting value representing the rotational speed of the spindle motor 47 from the controller 91. Then, the rotational speed of the spindle motor 47 is calculated using the number of pulses per unit time of the pulse signal input from the encoder 47a, and the drive signal is input to the spindle so that the calculated rotational speed becomes the rotational speed input from the controller 91. The motor 47 is supplied. The rotation angle detection circuit 75 counts the number of pulses of the pulse train signal output from the encoder 47a, calculates the rotation angle of the spindle motor 47, that is, the rotation angle θp of the imaging plate 31 using the count value, and sends it to the controller 91. Output. Then, when the rotation angle detection circuit 75 receives the index signal output from the encoder 47a, the rotation angle detection circuit 75 sets the count value to “0”. That is, the position where the index signal is input is the reference position with a rotation angle of 0 degree.
 受光センサ35には、センサ信号取出回路76が接続されている。センサ信号取出回路76は、コントローラ91からの指令により作動開始し、受光センサ35から入力した受光信号を用いて、受光センサ35の受光面における受光信号のピーク位置を検出して、ピーク位置に対応した受光位置を表す受光位置信号をコントローラ91に出力する。 A sensor signal extraction circuit 76 is connected to the light receiving sensor 35. The sensor signal extraction circuit 76 starts to operate in response to a command from the controller 91, detects the peak position of the light receiving signal on the light receiving surface of the light receiving sensor 35 using the light receiving signal input from the light receiving sensor 35, and corresponds to the peak position. A light receiving position signal representing the received light receiving position is output to the controller 91.
 レーザ光源51及びフォトディテクタ62には、レーザ駆動回路77が接続されている。レーザ駆動回路77は、コントローラ91によって制御され、フォトディテクタ62から出力された受光信号を入力して、受光信号の強度が所定の強度になるようにレーザ光源51に出力する駆動信号を制御する。これにより、イメージングプレート31に照射されるレーザ光の強度が一定に維持される。 A laser drive circuit 77 is connected to the laser light source 51 and the photodetector 62. The laser drive circuit 77 is controlled by the controller 91, receives the light reception signal output from the photodetector 62, and controls the drive signal output to the laser light source 51 so that the intensity of the light reception signal becomes a predetermined intensity. Thereby, the intensity of the laser light applied to the imaging plate 31 is kept constant.
 LED63には、LED駆動回路84が接続されている。LED駆動回路84は、コントローラ91によって制御され、LED63に、所定の強度の可視光を発生させるための駆動信号を供給する。 The LED drive circuit 84 is connected to the LED 63. The LED drive circuit 84 is controlled by the controller 91 and supplies a drive signal for generating visible light having a predetermined intensity to the LED 63.
 フォトディテクタ60には、増幅回路78が接続されている。増幅回路78は、フォトディテクタ60から出力された受光信号(a,b,c,d)をそれぞれ同じ増幅率で増幅して受光信号(a’,b’,c’,d’)を生成し、フォーカスエラー信号生成回路79及びSUM信号生成回路80へ出力する。本実施形態においては、非点収差法によるフォーカスサーボ制御を用いる。フォーカスエラー信号生成回路79は、増幅された受光信号(a’,b’,c’,d’)を用いて、演算によりフォーカスエラー信号を生成する。すなわち、フォーカスエラー信号生成回路79は、(a’+c’)-(b’+d’)の演算を行い、この演算結果をフォーカスエラー信号としてフォーカスサーボ回路81へ出力する。フォーカスエラー信号(a’+c’)-(b’+d’)は、レーザ光の焦点位置のイメージングプレート31の表面からのずれ量を表している。 An amplifying circuit 78 is connected to the photodetector 60. The amplification circuit 78 amplifies the light reception signals (a, b, c, d) output from the photodetector 60 with the same amplification factor to generate light reception signals (a ′, b ′, c ′, d ′), Output to the focus error signal generation circuit 79 and the SUM signal generation circuit 80. In this embodiment, focus servo control based on the astigmatism method is used. The focus error signal generation circuit 79 generates a focus error signal by calculation using the amplified light reception signals (a ′, b ′, c ′, d ′). That is, the focus error signal generation circuit 79 calculates (a ′ + c ′) − (b ′ + d ′) and outputs the calculation result to the focus servo circuit 81 as a focus error signal. The focus error signal (a ′ + c ′) − (b ′ + d ′) represents the amount of deviation of the focal position of the laser beam from the surface of the imaging plate 31.
 フォーカスサーボ回路81は、コントローラ91により制御され、フォーカスエラー信号に基づいて、フォーカスサーボ信号を生成してドライブ回路82に出力する。ドライブ回路82は、このフォーカスサーボ信号に応じてフォーカスアクチュエータ57を駆動して、対物レンズ56をレーザ光の光軸方向に変位させる。この場合、フォーカスエラー信号(a’+c’)-(b’+d’)の値が常に一定値(例えば、ゼロ)となるようにフォーカスサーボ信号を生成することにより、イメージングプレート31の表面にレーザ光を集光させ続けることができる。 The focus servo circuit 81 is controlled by the controller 91, generates a focus servo signal based on the focus error signal, and outputs the focus servo signal to the drive circuit 82. The drive circuit 82 drives the focus actuator 57 according to the focus servo signal to displace the objective lens 56 in the optical axis direction of the laser light. In this case, the focus servo signal is generated so that the value of the focus error signal (a ′ + c ′) − (b ′ + d ′) is always a constant value (for example, zero), so that the laser is applied to the surface of the imaging plate 31. The light can be continuously collected.
 SUM信号生成回路80は、受光信号(a’,b’,c’,d’)を合算してSUM信号(a’+b’+c’+d’)を生成し、A/D変換回路83に出力する。SUM信号の強度は、イメージングプレート31にて反射したレーザ光の強度と輝尽発光により発生した光の強度を合わせた強度に相当するが、イメージングプレート31にて反射したレーザ光の強度はほぼ一定であるので、SUM信号の強度は、輝尽発光により発生した光の強度に相当する。すなわち、SUM信号の強度は、イメージングプレート31に入射した回折X線の強度に相当する。A/D変換回路83は、コントローラ91によって制御され、SUM信号生成回路80からSUM信号を入力し、入力したSUM信号の瞬時値をディジタルデータに変換してコントローラ91に出力する。 The SUM signal generation circuit 80 adds the received light signals (a ′, b ′, c ′, d ′) to generate a SUM signal (a ′ + b ′ + c ′ + d ′) and outputs it to the A / D conversion circuit 83. To do. The intensity of the SUM signal corresponds to the intensity of the laser beam reflected by the imaging plate 31 and the intensity of the light generated by the stimulated emission, but the intensity of the laser beam reflected by the imaging plate 31 is substantially constant. Therefore, the intensity of the SUM signal corresponds to the intensity of light generated by the stimulated light emission. That is, the intensity of the SUM signal corresponds to the intensity of the diffracted X-ray incident on the imaging plate 31. The A / D conversion circuit 83 is controlled by the controller 91, receives the SUM signal from the SUM signal generation circuit 80, converts the instantaneous value of the input SUM signal into digital data, and outputs the digital data to the controller 91.
 コンピュータ装置90は、コントローラ91、入力装置92及び表示装置93からなる。コントローラ91は、CPU、ROM、RAM、大容量記憶装置などを備えたマイクロコンピュータを主要部とした電子制御装置であり、大容量記憶装置に記憶された図6乃至図10の各種プログラムを実行する。入力装置92は、コントローラ91に接続されて、測定者により、各種パラメータ、作業指示などの入力のために利用される。表示装置93は、測定者に対して各種の設定状況、作動状況、測定結果などを視覚的に知らせる。高電圧電源95は、X線出射器20にX線出射のための高電圧を供給する。なお、本実施形態においては、ケース10及びケース10内に組み込まれた各種装置をX線回折測定装置と呼び、このX線回折測定装置にコンピュータ装置90及び高電圧電源95を加えたものをX線回折測定システムと呼ぶ。 The computer device 90 includes a controller 91, an input device 92, and a display device 93. The controller 91 is an electronic control unit mainly including a microcomputer including a CPU, a ROM, a RAM, a mass storage device, and the like, and executes various programs shown in FIGS. 6 to 10 stored in the mass storage device. . The input device 92 is connected to the controller 91 and is used by the measurer to input various parameters, work instructions, and the like. The display device 93 visually informs the measurer of various setting conditions, operating conditions, measurement results, and the like. The high voltage power source 95 supplies a high voltage for X-ray emission to the X-ray emitter 20. In the present embodiment, the case 10 and various devices incorporated in the case 10 are referred to as an X-ray diffraction measurement device, and a computer device 90 and a high-voltage power supply 95 added to the X-ray diffraction measurement device X This is called a line diffraction measurement system.
 次に、このX線回折測定システムにより、測定対象物OBの残留応力を測定する手順について説明する。測定対象物OBは、図3に2点鎖線及び図11に実線で示すように、断面が90度の角度を有するL字形状に形成されたものである。そして、この測定対象物OBにおいては、90度の角度をなす水平面hp及び垂直面vpを有する。この種の測定対象物OBは、2枚の鉄製の金属板を90度の角度をもって交差させるとともに、その交差部分を溶接で接合した断面L字形状の鉄製部品又は鉄製部材である。ただし、本発明は、溶接で2枚の金属板を接合した場合に限らず、金型、曲げ加工などにより、断面が90度の角度を有する断面L字形状に形成された鉄製部品又は鉄製部材にも適用される。また、ここで、測定されるべき残留応力は、水平面hpの角部近傍における残留応力であって、垂直面vpに直交する方向、すなわち角部の延設方向と直交し、水平面hpと平行な方向(以下、X方向という)の残留応力と、垂直面vpと水平面hpに平行な方向、すなわち角部の延設方向に平行な方向(以下、Y方向という)の残留応力とである。以下、この平面応力状態におけるX方向の残留応力をσxとし、Y方向の残留応力をσyとする。また、この平面応力状態のせん断の残留応力をτxyとする。 Next, a procedure for measuring the residual stress of the measurement object OB using this X-ray diffraction measurement system will be described. The measurement object OB is formed in an L shape with a cross section having an angle of 90 degrees, as indicated by a two-dot chain line in FIG. 3 and a solid line in FIG. The measurement object OB has a horizontal plane hp and a vertical plane vp that form an angle of 90 degrees. This type of measuring object OB is an iron part or iron member having an L-shaped cross section in which two iron metal plates are intersected at an angle of 90 degrees and the intersecting portion is joined by welding. However, the present invention is not limited to the case where two metal plates are joined by welding, but an iron part or an iron member formed into a L-shaped cross section having a 90-degree cross section by a die, a bending process, or the like. Also applies. Here, the residual stress to be measured is the residual stress in the vicinity of the corner of the horizontal plane hp, which is perpendicular to the vertical plane vp, that is, perpendicular to the extending direction of the corner and parallel to the horizontal plane hp. The residual stress in the direction (hereinafter referred to as the X direction) and the residual stress in the direction parallel to the vertical plane vp and the horizontal plane hp, that is, the direction parallel to the extending direction of the corner (hereinafter referred to as the Y direction). Hereinafter, the residual stress in the X direction in this plane stress state is σx, and the residual stress in the Y direction is σy. Moreover, let τxy be the residual stress of shear in this plane stress state.
 X方向の残留応力σxと、Y方向の残留応力σyを測定するために、第1及び第2の回折環測定工程により、第1及び第2の回折環をそれぞれ測定する必要がある。第1の回折環測定工程においては、図11(A)に示すように、底面壁14を測定対象物OBの水平面hpに当接させてケース10を水平面hp上に載置するとともに、正面壁11を垂直面vpに当接させる。これにより、この場合には、X線は、図示1点鎖線矢印で示すように、水平面hpと垂直面vpとに直交する平面内にて、水平面hpに対して45度の角度すなわち入射角45度でX方向から水平面hpに照射される。また、第2の回折環測定工程においては、図11(B)に示すように、底面壁14を測定対象物OBの水平面hpに当接させてケース10を水平面hp上に載置するとともに、傾斜壁17を垂直面vpに当接させる。これにより、この場合には、X線は、図示1点鎖線矢印で示すように、水平面hpに垂直かつ垂直面vpに対して60度をなす平面内にて、水平面hpに対して45度の角度、すなわち水平面hpにおいてX方向と30度の角度をなす方向に平行かつ水平面hpに垂直な面内にて水平面hpに対して45度の角度の方向から水平面hpに照射される。 In order to measure the residual stress σx in the X direction and the residual stress σy in the Y direction, it is necessary to measure the first and second diffraction rings by the first and second diffraction ring measurement steps, respectively. In the first diffraction ring measurement step, as shown in FIG. 11A, the bottom wall 14 is brought into contact with the horizontal plane hp of the measurement object OB and the case 10 is placed on the horizontal plane hp, and the front wall 11 is brought into contact with the vertical plane vp. Thereby, in this case, the X-ray has an angle of 45 degrees with respect to the horizontal plane hp, that is, an incident angle 45 in a plane orthogonal to the horizontal plane hp and the vertical plane vp, as indicated by a one-dot chain arrow in the figure. The horizontal plane hp is irradiated from the X direction at a degree. Further, in the second diffraction ring measurement step, as shown in FIG. 11B, the bottom wall 14 is brought into contact with the horizontal plane hp of the measurement object OB and the case 10 is placed on the horizontal plane hp, The inclined wall 17 is brought into contact with the vertical surface vp. Thereby, in this case, the X-ray is 45 degrees with respect to the horizontal plane hp within a plane perpendicular to the horizontal plane hp and 60 degrees with respect to the vertical plane vp, as indicated by a dashed line arrow in the figure. The horizontal plane hp is irradiated from a direction at an angle of 45 degrees with respect to the horizontal plane hp in a plane parallel to a direction that forms an angle of 30 degrees with the X direction on the horizontal plane hp and perpendicular to the horizontal plane hp.
 第1及び第2の回折環測定工程においては、イメージングプレート31に回折環を形成するための回折環撮像工程、イメージングプレート31に形成された回折環を読取る回折環読取り工程、読取った回折環の形状を検出する回折環形状検出工程、及びイメージングプレート31に形成された回折環を消去する回折環消去工程がそれぞれ実行される。そして、応力計算工程において、第1及び第2の回折環測定工程によって検出された2つの回折環の形状を用いて、X方向及びY方向の残留応力σx,σyが計算される。 In the first and second diffraction ring measurement steps, a diffraction ring imaging step for forming a diffraction ring on the imaging plate 31, a diffraction ring reading step for reading the diffraction ring formed on the imaging plate 31, A diffraction ring shape detecting step for detecting the shape and a diffraction ring erasing step for erasing the diffraction ring formed on the imaging plate 31 are performed. In the stress calculation process, residual stresses σx and σy in the X direction and the Y direction are calculated using the shapes of the two diffraction rings detected in the first and second diffraction ring measurement processes.
 以下に、回折環撮像工程、回折環読取り工程、回折環形状検出工程及び回折環消去工程をそれぞれ含む第1及び第2の回折環測定工程、並びに応力計算工程について詳しく説明する。 Hereinafter, the first and second diffraction ring measurement steps and the stress calculation step including the diffraction ring imaging step, the diffraction ring reading step, the diffraction ring shape detection step, and the diffraction ring elimination step will be described in detail.
 まず、第1の回折環測定工程について説明すると、測定者は、取っ手19を持って回折環測定装置を搬送して、図11(A)に示すように、底面壁14を測定対象物OBの水平面hpに当接させてケース10を水平面hp上に載置するとともに、正面壁11を垂直面vpに当接させる。そして、高電圧電源95をX線出射器20に接続するとともに、コンピュータ装置90を電気制御装置70に接続する。そして、測定者が、入力装置92を用いて、測定対象物OBの材質(例えば、鉄)を入力し、残留応力の測定開始を指示する。これにより、コントローラ91は、図6に示す回折環撮像プログラムの実行を開始する。 First, the first diffraction ring measurement step will be described. The measurer carries the diffraction ring measurement device with the handle 19 and moves the bottom wall 14 of the measurement object OB as shown in FIG. The case 10 is placed on the horizontal plane hp in contact with the horizontal plane hp, and the front wall 11 is in contact with the vertical plane vp. Then, the high voltage power supply 95 is connected to the X-ray emitter 20 and the computer device 90 is connected to the electric control device 70. Then, the measurer inputs the material (for example, iron) of the measurement object OB using the input device 92 and instructs the start of measurement of the residual stress. Thereby, the controller 91 starts execution of the diffraction ring imaging program shown in FIG.
 この回折環撮像プログラムは図6のステップS100にて開始され、コントローラ91は、ステップS102にて、スピンドルモータ制御回路74を制御して、イメージングプレート31を低速回転させ、エンコーダ47aからインデックス信号を入力した時点で、イメージングプレート31の回転を停止させる。これにより、測定開始時において、イメージングプレート31の回転角度が0度に設定される。次に、コントローラ91は、ステップS104にて位置検出回路72の作動を開始させ、ステップS106にて、フィードモータ制御回路73を制御し、フィードモータ42の作動を開始させるとともに、位置検出回路72との協働によりフィードモータ42の作動を停止させて、イメージングプレート31を回折環撮像位置まで移動させる。 The diffraction ring imaging program is started in step S100 of FIG. 6, and the controller 91 controls the spindle motor control circuit 74 to rotate the imaging plate 31 at a low speed and inputs an index signal from the encoder 47a in step S102. At that time, the rotation of the imaging plate 31 is stopped. Thereby, at the start of measurement, the rotation angle of the imaging plate 31 is set to 0 degree. Next, the controller 91 starts the operation of the position detection circuit 72 in step S104, controls the feed motor control circuit 73 in step S106, and starts the operation of the feed motor 42. Thus, the operation of the feed motor 42 is stopped, and the imaging plate 31 is moved to the diffraction ring imaging position.
 次に、コントローラ91は、ステップS108にて、センサ信号取出回路76の作動を開始させる。次に、コントローラ91は、ステップS110にて、X線制御回路71を制御してX線出射器20にX線の出射を開始させる。これにより、X線が測定対象物OBに照射され、測定対象物OBの表面にて反射したX線が受光センサ35に受光される。次に、コントローラ91は、ステップS112にて、センサ信号取出回路76から受光位置信号を入力し、前記入力した受光位置信号を用いてイメージングプレート31と測定対象物OBとの距離Lを算出する。なお、この算出した距離Lは、後述する処理によって利用されるので、メモリに記憶しておく。そして、コントローラ91は、ステップS114にて、前記算出した距離Lが所定の基準範囲内にあるか否か判定する。距離Lが基準範囲内になければ、「No」と判定して、ステップS116にて、X線制御回路71を制御して測定対象物OBへのX線の照射を停止させる。 Next, the controller 91 starts the operation of the sensor signal extraction circuit 76 in step S108. Next, in step S110, the controller 91 controls the X-ray control circuit 71 to cause the X-ray emitter 20 to start emitting X-rays. Thereby, X-rays are irradiated onto the measurement object OB, and the X-rays reflected on the surface of the measurement object OB are received by the light receiving sensor 35. Next, in step S112, the controller 91 inputs a light reception position signal from the sensor signal extraction circuit 76, and calculates the distance L between the imaging plate 31 and the measurement object OB using the input light reception position signal. Note that the calculated distance L is stored in a memory because it is used by processing to be described later. In step S114, the controller 91 determines whether or not the calculated distance L is within a predetermined reference range. If the distance L is not within the reference range, it is determined as “No”, and in step S116, the X-ray control circuit 71 is controlled to stop the irradiation of the measurement object OB with X-rays.
 そして、コントローラ91は、ステップS118にて、表示装置93に、X線回折測定装置のセットが不適切である旨を表示する。そして、ステップS128にて、回折環撮像プログラムの実行を終了する。この場合、測定者は、X線回折測定装置を再度セットし直した後、入力装置92を用いて、再度、測定開始を指示する。上記のステップS110~S116までの所要時間は僅かなので、イメージングプレート31には回折環が撮像されない。また、受光センサ35が測定対象物OBにて反射したX線を受光しない場合も、ステップS118にて、X線回折測定装置のセットが不適切である旨が表示される。この場合も、測定者は、X線回折測定装置をセットし直す。そして、前記測定開始の指示により、前述したステップS102~S114の処理が再度実行され、距離Lが所定の基準範囲内になるまで前記処理が繰り返される。ただし、このようにステップS102~S114の処理が繰り返し実行される場合には、ステップS102~S108の処理は、実質的には不要である。 Then, in step S118, the controller 91 displays on the display device 93 that the set of the X-ray diffraction measurement device is inappropriate. In step S128, the execution of the diffraction ring imaging program ends. In this case, the measurer resets the X-ray diffraction measurement device again, and then instructs the start of measurement again using the input device 92. Since the time required from the above steps S110 to S116 is very short, the diffractive ring is not imaged on the imaging plate 31. Even when the light receiving sensor 35 does not receive the X-ray reflected by the measurement object OB, a message that the set of the X-ray diffraction measurement device is inappropriate is displayed in step S118. Also in this case, the measurer resets the X-ray diffraction measurement apparatus. Then, in response to the measurement start instruction, the processes of steps S102 to S114 described above are executed again, and the processes are repeated until the distance L is within a predetermined reference range. However, when the processes of steps S102 to S114 are repeatedly executed as described above, the processes of steps S102 to S108 are substantially unnecessary.
 一方、ステップS114の判定処理時に、距離Lが所定の基準範囲内である場合には、コントローラ91は、ステップS114にて「Yes」と判定して、ステップS120に処理を進め、センサ信号取出回路76の作動を停止させる。そして、コントローラ91は、ステップS122にて時間計測を開始し、ステップS124にてイメージングプレート31にX線による回折環を形成するための所定の設定時間が経過したか否かを判定する。時間計測開始から所定の設定時間を経過していなければ、ステップS124にて「No」と判定して判定処理を実行し続ける。すなわち、コントローラ91は、時間計測開始から所定の設定時間を経過するまで待機する。そして、時間計測開始から所定の設定時間が経過すると、コントローラ91は、ステップS124にて「Yes」と判定して、ステップS126にてX線制御回路71を制御してX線出射器20によるX線の照射を停止させ、ステップS128にて回折環撮像プログラムの実行を終了する。 On the other hand, when the distance L is within the predetermined reference range at the time of the determination process in step S114, the controller 91 determines “Yes” in step S114, proceeds to step S120, and outputs a sensor signal extraction circuit. The operation of 76 is stopped. The controller 91 starts time measurement in step S122, and determines in step S124 whether or not a predetermined set time for forming a diffraction ring by X-rays on the imaging plate 31 has elapsed. If the predetermined set time has not elapsed since the start of time measurement, it is determined as “No” in step S124, and the determination process is continued. That is, the controller 91 stands by until a predetermined set time elapses from the start of time measurement. Then, when a predetermined set time has elapsed from the start of time measurement, the controller 91 determines “Yes” in step S124, and controls the X-ray control circuit 71 in step S126 to control the X-ray emitted by the X-ray emitter 20. The irradiation of the line is stopped, and the execution of the diffraction ring imaging program is terminated in step S128.
 これにより、この状態では、測定対象物OBからの回折X線による回折環がイメージングプレート31に撮像されている。この場合、水平面hpと垂直面vpに直交する平面内にて入射角45度でX方向から水平面hpに照射されたX線により、イメージングプレート31に回折環が形成される。 Thereby, in this state, a diffraction ring by diffraction X-rays from the measurement object OB is imaged on the imaging plate 31. In this case, a diffraction ring is formed on the imaging plate 31 by the X-rays irradiated to the horizontal plane hp from the X direction at an incident angle of 45 degrees in a plane orthogonal to the horizontal plane hp and the vertical plane vp.
 前記回折環撮像プログラムの実行後、コントローラ91は、図7A及び図7Bの回折環読取りプログラムの実行を開始する。この場合、コントローラ91は、この回折環読取りプログラムの実行に並行して、図8の回折環形状検出プログラムの実行をも開始する。回折環読取りプログラムの実行は図7AのステップS200にて開始され、コントローラ91は、ステップS202にて回折環基準半径R0を計算する。回折環基準半径R0は、測定対象物OBの残留応力が「0」である場合の回折環の半径である。回折環基準半径R0は、測定対象物OBの材質及びイメージングプレート31から測定対象物OBまでの距離Lに依存する。すなわち、残留応力が「0」であるので、回折角θxは材質(本実施形態では、鉄である)によって決定される。距離Lと回折環基準半径R0とは比例関係にあるので、予め材質ごとに、回折角θxを記憶しておけば、回折環基準半径R0を、R0=L・tan(θx)の演算によって算出できる。この計算された回折環基準半径R0はメモリに記憶される。 After execution of the diffraction ring imaging program, the controller 91 starts execution of the diffraction ring reading program of FIGS. 7A and 7B. In this case, the controller 91 also starts executing the diffraction ring shape detection program of FIG. 8 in parallel with the execution of the diffraction ring reading program. The execution of the diffraction ring reading program is started in step S200 of FIG. 7A, and the controller 91 calculates the diffraction ring reference radius R0 in step S202. The diffraction ring reference radius R0 is the radius of the diffraction ring when the residual stress of the measurement object OB is “0”. The diffraction ring reference radius R0 depends on the material of the measurement object OB and the distance L from the imaging plate 31 to the measurement object OB. That is, since the residual stress is “0”, the diffraction angle θx is determined by the material (in this embodiment, iron). Since the distance L and the diffraction ring reference radius R0 are in a proportional relationship, if the diffraction angle θx is stored in advance for each material, the diffraction ring reference radius R0 is calculated by the calculation of R0 = L · tan (θx). it can. The calculated diffraction ring reference radius R0 is stored in the memory.
 前記ステップS202の処理後、コントローラ91は、ステップS204にて、フィードモータ制御回路73に、イメージングプレート31を回折環読取り領域内の読取り開始位置へ移動させることを指示する。フィードモータ制御回路73は、位置検出回路72と協働してフィードモータ42を駆動制御して、イメージングプレート31を読取り開始位置へ移動させる。このイメージングプレート31が読取り開始位置にある状態では、対物レンズ56の中心すなわちレーザ光の照射位置が前記計算した回折環基準半径R0よりも所定距離αだけ小さい位置に位置する。なお、所定距離αは、撮像した回折環の半径が回折環基準半径R0からずれる可能性のある距離よりもやや大きい距離である。これにより、後述の処理により、回折環の測定が回折環の充分に内側から開始されて、回折環が確実に検出される。 After the processing in step S202, the controller 91 instructs the feed motor control circuit 73 to move the imaging plate 31 to the reading start position in the diffraction ring reading region in step S204. The feed motor control circuit 73 drives and controls the feed motor 42 in cooperation with the position detection circuit 72 to move the imaging plate 31 to the reading start position. When the imaging plate 31 is in the reading start position, the center of the objective lens 56, that is, the irradiation position of the laser beam is located at a position smaller than the calculated diffraction ring reference radius R0 by a predetermined distance α. The predetermined distance α is a distance that is slightly larger than the distance at which the radius of the imaged diffraction ring may deviate from the diffraction ring reference radius R0. Thereby, the measurement of the diffraction ring is started sufficiently from the inside of the diffraction ring by the processing described later, and the diffraction ring is reliably detected.
 ここで、移動ステージ41の移動限界位置から図5の右方向への移動距離xを表す位置検出回路72からの位置信号と、イメージングプレート31の中心からレーザ光の照射位置(対物レンズ56の中心位置)までの距離(すなわちレーザ光の照射位置の半径r)との関係について説明しておく。移動ステージ41すなわちイメージングプレート31が移動限界位置にある状態においては、図12(A)に示すように、イメージングプレート31の中心から対物レンズ56の中心位置までの距離をRxとする。なお、この場合、対物レンズ56は前記イメージングプレート31の中心位置から図5にて左方向にあり、また前記距離Rxは予め測定されてコントローラ91に記憶されている。一方、図12(B)に示すように、イメージングプレート31を移動限界位置から図5の右方向へ距離xだけ移動させると、レーザ光の照射位置の半径rは、r=x+Rxで表される。この場合、距離xは、前述のように位置検出回路72から出力される位置信号によって示されるので、今後の処理において、レーザ光の照射位置の半径rは、位置検出回路72から出力される位置信号によって表された距離xに予め記憶されている値Rxを加算することになる。 Here, the position signal from the position detection circuit 72 indicating the movement distance x from the movement limit position of the moving stage 41 to the right in FIG. 5 and the irradiation position of the laser beam from the center of the imaging plate 31 (center of the objective lens 56). The relationship with the distance to the position (that is, the radius r of the irradiation position of the laser beam) will be described. In the state where the moving stage 41, that is, the imaging plate 31 is at the movement limit position, the distance from the center of the imaging plate 31 to the center position of the objective lens 56 is Rx, as shown in FIG. In this case, the objective lens 56 is leftward in FIG. 5 from the center position of the imaging plate 31, and the distance Rx is measured in advance and stored in the controller 91. On the other hand, as shown in FIG. 12B, when the imaging plate 31 is moved from the movement limit position to the right in FIG. 5 by the distance x, the radius r of the irradiation position of the laser beam is represented by r = x + Rx. . In this case, since the distance x is indicated by the position signal output from the position detection circuit 72 as described above, the radius r of the irradiation position of the laser beam is the position output from the position detection circuit 72 in future processing. The value Rx stored in advance is added to the distance x represented by the signal.
 そして、前記のように、イメージングプレート31を読取り開始位置へ移動させる場合には、図12(C)に示すように、レーザ光の照射位置は、回折環基準半径R0よりも所定距離αだけ内側に位置するので、この場合の半径rは距離R0-αに等しくなるはずである。したがって、イメージングプレート31を駆動限界位置から図5の右方向へ移動させる距離xは、x=R0-α-Rxに等しくなる。すなわち、前記ステップS204における読取り開始位置への移動処理においては、位置検出回路72から出力される位置信号により表される距離x(=R0-α-Rx)だけ、テーブル30を図5の右方向へ移動させればよい。 As described above, when the imaging plate 31 is moved to the reading start position, as shown in FIG. 12C, the irradiation position of the laser beam is on the inner side by a predetermined distance α from the diffraction ring reference radius R0. The radius r in this case should be equal to the distance R0-α. Therefore, the distance x for moving the imaging plate 31 from the drive limit position to the right in FIG. 5 is equal to x = R0−α−Rx. That is, in the movement process to the reading start position in step S204, the table 30 is moved to the right in FIG. 5 by the distance x (= R0−α−Rx) represented by the position signal output from the position detection circuit 72. Just move to.
 次に、コントローラ91は、ステップS206にて、スピンドルモータ制御回路74に対して、所定の一定回転速度でイメージングプレート31を回転させることを指示する。スピンドルモータ制御回路74は、エンコーダ47aからのパルス信号を用いて回転速度を計算しながら、前記指示された一定回転速度でイメージングプレート31が回転するようにスピンドルモータ47の回転を制御する。したがって、イメージングプレート31は前記所定の一定回転速度で回転し始める。次に、コントローラ91は、ステップS208にて、レーザ駆動回路77を制御してレーザ光源51によるレーザ光のイメージングプレート31に対する照射を開始させる。 Next, in step S206, the controller 91 instructs the spindle motor control circuit 74 to rotate the imaging plate 31 at a predetermined constant rotational speed. The spindle motor control circuit 74 controls the rotation of the spindle motor 47 so that the imaging plate 31 rotates at the specified constant rotation speed while calculating the rotation speed using the pulse signal from the encoder 47a. Therefore, the imaging plate 31 starts to rotate at the predetermined constant rotation speed. Next, in step S208, the controller 91 controls the laser driving circuit 77 to start irradiation of the imaging plate 31 with laser light from the laser light source 51.
 次に、コントローラ91は、ステップS210にて、フォーカスサーボ回路81に対して、フォーカスサーボ制御の開始を指示する。これにより、フォーカスサーボ回路81は、増幅回路78及びフォーカスエラー信号生成回路79からのフォーカスエラー信号を用いて、ドライブ回路82を介してフォーカスアクチュエータ57を駆動制御することにより、フォーカスサーボ制御を開始する。その結果、対物レンズ56が、レーザ光の焦点がイメージングプレート31の表面に合うように光軸方向に駆動制御される。ステップS210の処理後、コントローラ91は、ステップS212にて、回転角度検出回路75及びA/D変換回路83の作動を開始させる。これにより、回転角度検出回路75は、スピンドルモータ47(イメージングプレート31)の基準位置からの回転角度θpをコントローラ91に出力し始め、A/D変換回路83は、SUM信号の瞬時値のディジタルデータをコントローラ91に出力し始める。 Next, in step S210, the controller 91 instructs the focus servo circuit 81 to start focus servo control. Accordingly, the focus servo circuit 81 starts focus servo control by driving and controlling the focus actuator 57 via the drive circuit 82 using the focus error signal from the amplifier circuit 78 and the focus error signal generation circuit 79. . As a result, the objective lens 56 is driven and controlled in the optical axis direction so that the focus of the laser light is on the surface of the imaging plate 31. After the process of step S210, the controller 91 starts the operation of the rotation angle detection circuit 75 and the A / D conversion circuit 83 in step S212. As a result, the rotation angle detection circuit 75 starts outputting the rotation angle θp from the reference position of the spindle motor 47 (imaging plate 31) to the controller 91, and the A / D conversion circuit 83 digital data of the instantaneous value of the SUM signal. Starts to be output to the controller 91.
 次に、コントローラ91は、ステップS214にて、フィードモータ制御回路73に対して、イメージングプレート31の移動開始及び移動速度を指示する。フィードモータ制御回路73は、フィードモータ42を駆動制御して、イメージングプレート31を読取り開始位置から軸受部44側(図5の右方向)へ一定速度で移動させる。これにより、レーザ光の照射位置が、イメージングプレート31において、回折環基準半径R0から所定距離αだけ内側から外側方向に一定速度で相対移動し始める。なお、この状態では、レーザ光の照射位置は、前記ステップS206,S214の処理により、相対的にイメージングプレート31上を螺旋状に回転している。 Next, the controller 91 instructs the feed motor control circuit 73 to start and move the imaging plate 31 in step S214. The feed motor control circuit 73 drives and controls the feed motor 42 to move the imaging plate 31 from the reading start position to the bearing portion 44 side (right direction in FIG. 5) at a constant speed. Thereby, the irradiation position of the laser light starts to move relative to the imaging plate 31 at a constant speed from the inside to the outside by a predetermined distance α from the diffraction ring reference radius R0. In this state, the irradiation position of the laser beam is relatively spirally rotated on the imaging plate 31 by the processing in steps S206 and S214.
 前記ステップS214の処理後、コントローラ91は、ステップS216にて、周方向番号n及び半径方向番号mの値をそれぞれ「1」に初期設定する。周方向番号nは、イメージングプレート31における1回転をN個(所定の大きな値)で等分した周方向位置をそれぞれ表す「1」から最大値Nまで変化する整数である。半径方向番号mは、イメージングプレート31の内側から外側に向かう径方向位置をそれぞれ表し、イメージングプレート31が1回転するごとに「1」から「1」ずつ増加する値である。そして、これらの周方向番号n及び半径方向番号mにより、図13に示すように、イメージングプレート31上を螺旋状に移動する読取りポイントP(n,m)が示される。 After the process of step S214, the controller 91 initially sets the values of the circumferential direction number n and the radial direction number m to “1” in step S216. The circumferential direction number n is an integer that changes from “1” to the maximum value N, each representing a circumferential position obtained by equally dividing N rotations (predetermined large values) in one rotation of the imaging plate 31. The radial direction number m represents a radial position from the inside toward the outside of the imaging plate 31 and is a value that increases by “1” from “1” every time the imaging plate 31 rotates once. The circumferential direction number n and the radial direction number m indicate a reading point P (n, m) that moves spirally on the imaging plate 31 as shown in FIG.
 次に、コントローラ91は、ステップS218にて、回転角度検出回路75がエンコーダ47aからのインデックス信号を入力したか否かを判定する。回転角度検出回路75がインデックス信号を入力していなければ、コントローラ91はステップS218にて「No」と判定して、ステップS218の判定処理を繰り返し実行し続ける。回転角度検出回路75がインデックス信号を入力すると、コントローラ91は、ステップS218にて「Yes」と判定して、ステップS220にて、回転角度検出回路75からイメージングプレート31の現在の回転角度θpを取り込む。 Next, in step S218, the controller 91 determines whether or not the rotation angle detection circuit 75 has input an index signal from the encoder 47a. If the rotation angle detection circuit 75 has not input the index signal, the controller 91 determines “No” in step S218 and continues to execute the determination process in step S218 repeatedly. When the rotation angle detection circuit 75 inputs the index signal, the controller 91 determines “Yes” in step S218, and takes in the current rotation angle θp of the imaging plate 31 from the rotation angle detection circuit 75 in step S220. .
 そして、コントローラ91は、ステップS222にて、現在の回転角度θpと変数nによって指定される回転角度(n-1)・θo(この場合、n=1であるので「0」)との差の絶対値|θp-(n-1)・θo|が所定の許容値未満であるか否か判定する。この場合、θoは、360度を周方向番号nの最大値Nで除した予め記憶されている所定値である。前記絶対値|θp-(n-1)・θo|が所定の許容値未満でなければ、コントローラ91は、ステップS222にて「No」と判定してステップS220,S222の処理を繰り返し実行する。すなわち、コントローラ91は、現在の回転角度θpが所定の回転角度(n-1)・θoにほぼ一致するまで待機する。そして、現在の回転角度θpが所定の回転角度(n-1)・θoにほぼ一致すると、コントローラ91は、ステップS222にて「Yes」すなわち前記絶対値|θp-(n-1)・θo|が所定の許容値未満であると判定して、ステップS224に進む。 In step S222, the controller 91 calculates the difference between the current rotation angle θp and the rotation angle (n−1) · θo specified by the variable n (in this case, n = 1 and “0”). It is determined whether or not the absolute value | θp− (n−1) · θo | is less than a predetermined allowable value. In this case, θo is a predetermined value stored in advance by dividing 360 degrees by the maximum value N of the circumferential direction number n. If the absolute value | θp− (n−1) · θo | is not less than the predetermined allowable value, the controller 91 makes a “No” determination in step S222 to repeatedly execute the processes in steps S220 and S222. That is, the controller 91 stands by until the current rotation angle θp substantially matches the predetermined rotation angle (n−1) · θo. When the current rotation angle θp substantially coincides with the predetermined rotation angle (n−1) · θo, the controller 91 determines “Yes”, that is, the absolute value | θp− (n−1) · θo | Is less than the predetermined allowable value, the process proceeds to step S224.
 ステップS224においては、コントローラ91は、A/D変換回路83からSUM信号を取り込んで、読取りポイントP(n,m)の信号強度S(n,m)としてメモリにそれぞれ記憶する。また、このステップS224においては、位置検出回路72からの位置信号を取り込んで、位置信号によって表される距離xに所定距離Rxを加算して半径rを計算して、読取りポイントP(n,m)の半径r(n,m)として前記信号強度S(n,m)に対応させてメモリに記憶する。これにより、イメージングプレート31の読取りポイントP(n,m)からの輝尽発光の強度すなわち読取りポイントP(n,m)に対するX線回折光の強度を表す信号強度S(n,m)が、読取りポイントP(n,m)の半径を表す半径r(n,m)と共にメモリに記憶される。 In step S224, the controller 91 takes the SUM signal from the A / D conversion circuit 83 and stores it in the memory as the signal intensity S (n, m) of the reading point P (n, m). Further, in this step S224, the position signal from the position detection circuit 72 is taken, the radius r is calculated by adding the predetermined distance Rx to the distance x represented by the position signal, and the reading point P (n, m ) Radius r (n, m) and stored in the memory in correspondence with the signal intensity S (n, m). Thereby, the signal intensity S (n, m) representing the intensity of the stimulated emission from the reading point P (n, m) of the imaging plate 31, that is, the intensity of the X-ray diffracted light with respect to the reading point P (n, m), It is stored in memory with a radius r (n, m) representing the radius of the read point P (n, m).
 次に、コントローラ91は、ステップS226にて、前記記憶した信号強度S(n,m)が、所定の基準値以上であるか否か判定する。信号強度S(n,m)が所定の基準値以上であれば、コントローラ91は、ステップS226にて「Yes」と判定して、ステップS230に進む。一方、信号強度S(n,m)が、所定の基準値より小さければ、コントローラ91は、ステップS226にて「No」と判定して、ステップS228にて、前記記憶した信号強度S(n,m)及び半径r(n,m)を消去した後、ステップS230に進む。この信号強度S(n,m)及び半径r(n,m)の消去は、所定の基準値より小さな信号強度S(n,m)は回折X線強度の回折環半径方向のピーク位置の検出に不要であるからである。 Next, in step S226, the controller 91 determines whether or not the stored signal intensity S (n, m) is equal to or greater than a predetermined reference value. If the signal intensity S (n, m) is greater than or equal to the predetermined reference value, the controller 91 determines “Yes” in step S226 and proceeds to step S230. On the other hand, if the signal strength S (n, m) is smaller than the predetermined reference value, the controller 91 determines “No” in step S226, and in step S228, the stored signal strength S (n, m). After erasing m) and radius r (n, m), the process proceeds to step S230. The signal intensity S (n, m) and the radius r (n, m) are erased when the signal intensity S (n, m) smaller than a predetermined reference value is detected as the peak position of the diffraction X-ray intensity in the radial direction of the diffraction ring. This is because it is unnecessary.
 ステップS230においては、コントローラ91は、周方向番号nに「1」を加算する。そして、コントローラ91は、ステップS232にて、変数nが1周当たりの読取りポイントP(n,m)の数を表す値Nより大きいか、すなわちイメージングプレート31が1回転したか否かを判定する。この場合、n=2であり、周方向番号nは値N以下であるので、コントローラ91は、ステップS232にて「No」と判定して、ステップS220に戻る。 In step S230, the controller 91 adds “1” to the circumferential direction number n. In step S232, the controller 91 determines whether the variable n is larger than a value N representing the number of reading points P (n, m) per round, that is, whether the imaging plate 31 has made one rotation. . In this case, since n = 2 and the circumferential direction number n is equal to or less than the value N, the controller 91 determines “No” in step S232 and returns to step S220.
 そして、前述したステップS220~S232の処理を、周方向番号nが値Nよりも大きくなるまで繰り返す。このステップS220~S232の繰り返し処理により、回転角度0,θo,2・θo・・・(N-1) ・θoにそれぞれ対応した所定角度θoごとの信号強度S(n,m)及び半径r(n,m)がメモリに記憶される。ただし、この場合も、ステップS226,S228の処理により、信号強度S(n,m)が所定の基準値より小さければ、メモリに記憶された信号強度S(n,m)及び半径r(n,m)は消去される。 Then, the processes in steps S220 to S232 described above are repeated until the circumferential direction number n becomes larger than the value N. By repeating the steps S220 to S232, the signal intensity S (n, m) and radius r () for each predetermined angle θo corresponding to the rotation angles 0, θo, 2 · θo (N−1) · θo, respectively. n, m) is stored in the memory. However, also in this case, if the signal strength S (n, m) is smaller than a predetermined reference value by the processing in steps S226 and S228, the signal strength S (n, m) and the radius r (n, m) stored in the memory are stored. m) is erased.
 このようなステップS220~S232の循環処理により、周方向番号nが値Nよりも大きくなると、コントローラ91は、ステップS232にて「Yes」と判定して、ステップS234にて、後述の回折環形状検出プログラムによる終了指令の有無を判定する。未だ終了指令がないときは、コントローラ91は、ステップS234にて「No」と判定し、ステップS236にて半径方向番号mに「1」を加算し(この場合、m=2になる)、ステップS228にて周方向番号nを「1」に戻す。そして、コントローラ91は、前述したステップS218~S232の処理を実行して、次の半径方向位置の回転角度0,θo,2・θo・・・(N-1) ・θoに対応した読取りポイントP(n,m)に関する信号強度S(n,m)及び半径r(n,m)をメモリに記憶する。 When the circumferential direction number n becomes larger than the value N by the circulation process in steps S220 to S232, the controller 91 determines “Yes” in step S232, and in step S234, the diffractive ring shape to be described later. The presence or absence of an end command by the detection program is determined. If there is no end command yet, the controller 91 determines “No” in step S234, adds “1” to the radial direction number m in step S236 (in this case, m = 2), and step In S228, the circumferential direction number n is returned to "1". Then, the controller 91 executes the processing of steps S218 to S232 described above to read the reading point P corresponding to the rotation angles 0, θo, 2 · θo (N−1) · θo at the next radial position. The signal strength S (n, m) and radius r (n, m) for (n, m) are stored in the memory.
 そして、終了指令の指示があるまで、このようなステップS218~S238の処理により、「1」ずつ順次大きくなる半径方向番号m(=1,2,3・・)と、各半径方向番号mごとに回転角度0,θo,2・θo・・・(N-1) ・θoにそれぞれ対応した周方向番号n(=1~N)とにより指定される読取りポイントP(n,m)に対応する信号強度S(n,m)及び半径r(n,m)がメモリに順次記憶される。なお、この場合も、信号強度S(n,m)が所定の基準値より小さければ、メモリに記憶された信号強度S(n,m)及び半径r(n,m)は消去される。 Then, until the end command is given, the processing in steps S218 to S238 is performed to increase the radial direction number m (= 1, 2, 3,...) Sequentially increasing by “1” and each radial direction number m. Corresponding to the reading point P (n, m) specified by the circumferential direction number n (= 1 to N) corresponding to the rotation angles 0, θo, 2 · θo (N-1) · θo, respectively. The signal strength S (n, m) and the radius r (n, m) are sequentially stored in the memory. Also in this case, if the signal strength S (n, m) is smaller than a predetermined reference value, the signal strength S (n, m) and the radius r (n, m) stored in the memory are deleted.
 そして、前記回折環形状検出プログラムによる終了指令の指示があると、コントローラ91は、ステップS234にて「Yes」と判定し、図7BのステップS240に進む。ここで、この回折環読取りプログラムと並行して実行されている回折環形状検出プログラムについて説明する。 Then, when there is an instruction to end the diffraction ring shape detection program, the controller 91 determines “Yes” in step S234 and proceeds to step S240 in FIG. 7B. Here, a diffraction ring shape detection program executed in parallel with the diffraction ring reading program will be described.
 回折環形状検出プログラムの実行は図8のステップS300にて開始され、コントローラ91は、ステップS302にて周方向番号nを「1」に初期設定する。なお、この周方向番号nは、回折環読取りプログラムの場合と同様に所定角度θoごとの周方向位置を示すものであるが、回折環読取りプログラムで用いられる周方向番号nとは独立したものである。 Execution of the diffraction ring shape detection program is started in step S300 of FIG. 8, and the controller 91 initially sets the circumferential direction number n to “1” in step S302. The circumferential direction number n indicates the circumferential position for each predetermined angle θo as in the case of the diffraction ring reading program, but is independent of the circumferential direction number n used in the diffraction ring reading program. is there.
 前記ステップS302の処理後、コントローラ91は、ステップS304にて、詳しくは後述するピーク半径rp(n)が存在するか、すなわちピーク半径rp(n)が検出済みであるかを判定する。この場合、ピーク半径rp(n)においては、検出されたピーク半径の回転角度が周方向番号nによって表される。ピーク半径rp(n)が検出済みであれば、コントローラ91は、ステップS304にて「Yes」と判定して、ステップS306にて周方向番号nに「1」を加算し、ステップS308にて周方向番号nが所定数より大きいか否かを判定する。この場合の所定数も、1周の測定位置数を表す値Nである。周方向番号nが所定数以下であれば、コントローラ91は、ステップS308にて「No」と判定してステップS304に戻る。 After the process of step S302, the controller 91 determines in step S304 whether a peak radius rp (n) described later in detail exists, that is, whether the peak radius rp (n) has been detected. In this case, at the peak radius rp (n), the rotation angle of the detected peak radius is represented by the circumferential direction number n. If the peak radius rp (n) has already been detected, the controller 91 determines “Yes” in step S304, adds “1” to the circumferential direction number n in step S306, and then proceeds to step S308. It is determined whether or not the direction number n is greater than a predetermined number. The predetermined number in this case is also a value N representing the number of measurement positions in one round. If the circumferential direction number n is less than or equal to the predetermined number, the controller 91 determines “No” in step S308 and returns to step S304.
 一方、ピーク半径rp(n)が未検出であれば、コントローラ91は、ステップS304にて「No」と判定して、ステップS310にて前記図7AのステップS224の処理によって記憶した信号強度S(n,m)の数が所定数以上であるか否か判定する。信号強度S(n,m)の数が所定数以上でなければ、コントローラ91は、ステップS310にて「No」と判定して、前述したステップS306,S308の処理を実行してステップS304又はステップS302に戻る。このステップS310の判定処理は、信号強度S(n,m)の数が少ない場合には後述するピーク検出処理を実行しても無駄であるからである。なお、前記図7のステップS228の処理によって消去された信号強度S(n,m)は、記憶した信号強度S(n,m)としてカウントされない。 On the other hand, if the peak radius rp (n) is not detected, the controller 91 determines “No” in step S304, and stores the signal intensity S (() stored in step S310 by the process of step S224 in FIG. 7A. It is determined whether the number of (n, m) is greater than or equal to a predetermined number. If the number of the signal strengths S (n, m) is not equal to or greater than the predetermined number, the controller 91 determines “No” in step S310 and executes the processes of steps S306 and S308 described above to execute step S304 or step S304. Return to S302. This is because the determination processing in step S310 is useless even if the peak detection processing described later is executed when the number of signal strengths S (n, m) is small. Note that the signal strength S (n, m) erased by the process of step S228 in FIG. 7 is not counted as the stored signal strength S (n, m).
 一方、前記記憶した信号強度S(n,m)の数が所定数以上であるときは、コントローラ91は、ステップS310にて「Yes」と判定して、ステップS312にて、ピークの有無を判定する。すなわち、周方向番号nによって指定される周方向位置の全ての半径r(n,m)及び信号強度S(n,m)を用いて、SUM信号の値のピークの有無を判定する。具体的には、図14に示すように、周方向番号nによって指定される周方向位置の全ての半径r(n,m)を横軸に取り、その半径r(n,m)に対応させて信号強度S(n,m)を縦軸に取った受光曲線において、信号強度S(n,m)にピークが存在するか、すなわち信号強度S(n,m)が増加した後に減少したかを判定するとよい。そして、ピークが存在しなければ、コントローラ91は、ステップS312にて「No」と判定して、前述したステップS306,S308の処理を実行してステップS304又はステップS302に戻る。 On the other hand, when the number of the stored signal strengths S (n, m) is equal to or larger than the predetermined number, the controller 91 determines “Yes” in step S310 and determines the presence or absence of a peak in step S312. To do. That is, the presence / absence of a peak in the value of the SUM signal is determined using all the radii r (n, m) and the signal strength S (n, m) at the circumferential position designated by the circumferential number n. Specifically, as shown in FIG. 14, all the radii r (n, m) at the circumferential position designated by the circumferential direction number n are taken on the horizontal axis and corresponded to the radius r (n, m). Whether the signal intensity S (n, m) has a peak in the light receiving curve with the signal intensity S (n, m) on the vertical axis, that is, has the signal intensity S (n, m) decreased after increasing? It is good to judge. If there is no peak, the controller 91 determines “No” in step S312, performs the processes of steps S306 and S308 described above, and returns to step S304 or step S302.
 このように、ステップS302~S312を繰り返し実行している間に、並行して実行されている回折環読取りプログラムの処理により、さらに半径r(n,m)及び信号強度S(n,m)が取り込まれてメモリに次々に記憶されていく。このため、ステップS312にてピークが検出されるようになり、検出されると、コントローラ91は、ステップS312にて「Yes」と判定して、ステップS314にて、ピークの半径r(n,m)をピーク半径rp(n)としてメモリに記憶する。次に、コントローラ91は、ステップS316にて、取得したピーク半径rp(n)の数が所定数以上であるか否かを判定する。この場合の所定数も、1周の測定位置数を表す値Nである。そして、取得したピーク半径rp(n)の数が所定数より小さければ、コントローラ91は、ステップS316にて「No」と判定し、前述したステップS306,S308の処理を実行してステップS304又はステップS302に戻る。 As described above, while the steps S302 to S312 are repeatedly executed, the radius r (n, m) and the signal intensity S (n, m) are further increased by the processing of the diffraction ring reading program executed in parallel. It is taken in and stored in memory one after another. Therefore, the peak is detected in step S312, and when detected, the controller 91 determines “Yes” in step S312, and in step S314, the peak radius r (n, m). ) As a peak radius rp (n). Next, in step S316, the controller 91 determines whether or not the number of acquired peak radii rp (n) is greater than or equal to a predetermined number. The predetermined number in this case is also a value N representing the number of measurement positions in one round. If the number of acquired peak radii rp (n) is smaller than the predetermined number, the controller 91 determines “No” in step S316, executes the processes of steps S306 and S308 described above, and executes step S304 or step S306. Return to S302.
 このようにステップS302~S316の処理を繰り返すことで、取得したピーク半径rp(n)の数が増えていき所定数に達すると、すなわち周方向の全ての読取りポイントP(n,m)にてピーク半径rp(n)が取得されると、コントローラ91は、ステップS316にて「Yes」と判定し、ステップS318にて回折環形状検出の終了を示す終了指令を出力する。そして、コントローラ91は、ステップS320にて回折環形状検出プログラムの実行を終了する。このような周方向の全ての読取りポイントP(n,m)におけるピーク半径rp(n)の検出により、回折環の形状が検出されたことになる。この第1の回折環測定工程におけるピーク半径rp(n)(n=1~N)が、後述する応力計算工程で利用される回折環の形状を表す第1測定値である。 By repeating the processing of steps S302 to S316 in this way, the number of acquired peak radii rp (n) increases and reaches a predetermined number, that is, at all reading points P (n, m) in the circumferential direction. When the peak radius rp (n) is acquired, the controller 91 determines “Yes” in step S316, and outputs an end command indicating the end of diffraction ring shape detection in step S318. Then, the controller 91 ends the execution of the diffraction ring shape detection program in step S320. By detecting the peak radius rp (n) at all the reading points P (n, m) in the circumferential direction, the shape of the diffraction ring is detected. The peak radius rp (n) (n = 1 to N) in the first diffraction ring measurement step is a first measurement value representing the shape of the diffraction ring used in the stress calculation step described later.
 ここで、図7A及び図7Bの回折環読取りプログラムの説明にふたたび戻る。前述のように終了指令が出力されると、コントローラ91は、図7AのステップS234にて「Yes」と判定し、図7BのステップS240にて、フォーカスサーボ回路81に対してフォーカスサーボ制御の停止を指示することにより、フォーカスサーボ制御を停止させる。次に、コントローラ91は、ステップS242にて、レーザ駆動回路77を制御して、レーザ光源51によるレーザ光の照射を停止させる。さらに、コントローラ91は、ステップS244にて、A/D変換回路83及び回転角度検出回路75の作動を停止させ、ステップS246にて、フィードモータ制御回路73を制御してフィードモータ42の作動を停止させることにより、イメージングプレート31を停止させて、ステップS248にて回折環形状検出プログラムの実行を終了する。なお、この状態では、位置検出回路72の作動及びイメージングプレート31の回転は、以前と同様のまま継続されている。 Here, we will return to the explanation of the diffraction ring reading program in FIGS. 7A and 7B. When the end command is output as described above, the controller 91 determines “Yes” in step S234 in FIG. 7A, and stops the focus servo control for the focus servo circuit 81 in step S240 in FIG. 7B. To stop the focus servo control. Next, the controller 91 controls the laser drive circuit 77 to stop the laser light irradiation by the laser light source 51 in step S242. Further, the controller 91 stops the operation of the A / D conversion circuit 83 and the rotation angle detection circuit 75 in step S244, and controls the feed motor control circuit 73 to stop the operation of the feed motor 42 in step S246. As a result, the imaging plate 31 is stopped, and the execution of the diffraction ring shape detection program is terminated in step S248. In this state, the operation of the position detection circuit 72 and the rotation of the imaging plate 31 are continued as before.
 次に、コントローラ91は、図9の回折環消去プログラムを実行する。回折環消去プログラムの実行は、ステップS400にて開始され、コントローラ91は、ステップS402にて、フィードモータ制御回路73に、イメージングプレート31を回折環消去領域内の消去開始位置へ移動させることを指示する。フィードモータ制御回路73は、位置検出回路72と協働してフィードモータ42を駆動制御して、イメージングプレート31を消去開始位置へ移動させる。このイメージングプレート31が消去開始位置にある状態では、LED63から出力される可視光の中心が前記計算した回折環基準半径R0よりも所定距離γだけ小さい位置に位置する。具体的には、この位置は、イメージングプレート31が駆動限界位置にある状態において、イメージングプレート31の中心からLEDの可視光の中心までの距離をRy’とすると、位置検出回路72から出力される位置がR0-γ-Ry’になる位置である。なお、所定距離γは、前記所定距離αよりも若干大きく、前記撮像された回折環の半径よりは余裕をもってずれた位置である。これにより、後述の処理により、前記撮像された回折環が確実に消去される。 Next, the controller 91 executes the diffraction ring elimination program shown in FIG. Execution of the diffraction ring erasure program is started in step S400, and the controller 91 instructs the feed motor control circuit 73 to move the imaging plate 31 to the erasure start position in the diffraction ring erasure region in step S402. To do. The feed motor control circuit 73 drives and controls the feed motor 42 in cooperation with the position detection circuit 72 to move the imaging plate 31 to the erase start position. When the imaging plate 31 is at the erasing start position, the center of the visible light output from the LED 63 is located at a position smaller than the calculated diffraction ring reference radius R0 by a predetermined distance γ. Specifically, this position is output from the position detection circuit 72 when the distance from the center of the imaging plate 31 to the center of the visible light of the LED is Ry ′ in a state where the imaging plate 31 is at the drive limit position. This is the position where the position becomes R0-γ-Ry ′. Note that the predetermined distance γ is slightly larger than the predetermined distance α and is a position shifted with a margin from the radius of the imaged diffraction ring. Thereby, the imaged diffraction ring is surely erased by a process described later.
 次に、コントローラ91は、ステップS404にて、LED駆動回路84を制御してLED63による可視光のイメージングプレート31に対する照射を開始させる。次に、コントローラ91は、ステップS406にて、フィードモータ制御回路73に対して、イメージングプレート31の移動開始及び移動速度を指示する。フィードモータ制御回路73は、フィードモータ42を駆動制御して、イメージングプレート31を消去開始位置から軸受部44側(図5の右方向)に一定速度で移動させる。これにより、LED63による可視光が、イメージングプレート31において、回転しながら、回折環基準半径R0から所定距離γ(γ>α)だけ内側から外側方向に一定速度で移動し始める。 Next, in step S404, the controller 91 controls the LED drive circuit 84 to start irradiating the imaging plate 31 with visible light by the LED 63. Next, the controller 91 instructs the feed motor control circuit 73 to start and move the imaging plate 31 in step S406. The feed motor control circuit 73 drives and controls the feed motor 42 to move the imaging plate 31 from the erase start position to the bearing portion 44 side (right direction in FIG. 5) at a constant speed. Thereby, visible light from the LED 63 starts moving at a constant speed from the inner side to the outer side by a predetermined distance γ (γ> α) from the diffraction ring reference radius R 0 while rotating in the imaging plate 31.
 前記ステップS406の処理後、コントローラ91は、ステップS408にて位置検出回路72からイメージングプレート31の位置を表す位置信号を入力し、ステップS410にて、イメージングプレート31の現在の位置が消去終了位置を超えているか否かを判定する。この終了位置は、回折環基準半径R0よりも所定距離γだけ大きな位置である。具体的には、位置検出回路72から出力される位置がR0+γ-Ry’になる位置である。そして、イメージングプレート31の現在の位置が消去終了位置を超えるまで、コントローラ91は、ステップS410にて「No」と判定して、ステップS408,S410の処理を繰り返し実行する。これにより、回転するイメージングプレート31に対し、前記回折環基準半径R0から所定距離γだけ内側から所定距離γだけ外側まで、LED63による可視光が照射されるので、前記回折X線によって形成された回折環は内側から徐々に消去されていく。 After the process of step S406, the controller 91 inputs a position signal indicating the position of the imaging plate 31 from the position detection circuit 72 in step S408, and in step S410, the current position of the imaging plate 31 indicates the erase end position. Determine if it has exceeded. This end position is a position larger than the diffraction ring reference radius R0 by a predetermined distance γ. Specifically, the position output from the position detection circuit 72 is a position where R0 + γ−Ry ′. Then, until the current position of the imaging plate 31 exceeds the erasure end position, the controller 91 determines “No” in step S410, and repeatedly executes the processes of steps S408 and S410. Thereby, visible light from the LED 63 is irradiated from the diffraction ring reference radius R0 to the rotating imaging plate 31 from the inner side by a predetermined distance γ to the outer side by a predetermined distance γ, so that the diffraction formed by the diffracted X-rays. The ring is gradually erased from the inside.
 そして、イメージングプレート31の現在の位置が消去終了位置を超えると、コントローラ91は、ステップS410にて「Yes」と判定して、ステップS412にてフィードモータ制御回路73にイメージングプレート31の移動停止を指示し、ステップS414にてLED駆動回路84にLED63による可視光の照射停止を指示する。これにより、フィードモータ制御回路73は、フィードモータ42の作動を停止させることによりイメージングプレート31の移動を停止させる。LED駆動回路84は、LED63による可視光の照射を停止させる。この状態では、前記撮像された回折環は完全に消去されている。 If the current position of the imaging plate 31 exceeds the erasing end position, the controller 91 determines “Yes” in step S410, and stops the movement of the imaging plate 31 in the feed motor control circuit 73 in step S412. In step S414, the LED drive circuit 84 is instructed to stop the irradiation of visible light by the LED 63. Accordingly, the feed motor control circuit 73 stops the movement of the imaging plate 31 by stopping the operation of the feed motor 42. The LED drive circuit 84 stops the irradiation of visible light from the LED 63. In this state, the imaged diffraction ring is completely erased.
 前記ステップS414の処理後、コントローラ91は、ステップS416にて位置検出回路72の作動を停止させ、ステップS418にてスピンドルモータ制御回路74に対してイメージングプレート31の回転停止を指示する。この指示に応答して、スピンドルモータ制御回路74は、スピンドルモータ47の作動を停止させて、イメージングプレート31の回転を停止させる。前記イメージングプレート31の回転停止後、コントローラ91は、ステップS420にて回折環消去プログラムの実行を終了する。この回折環消去プログラムの実行終了をもって、第1の回折環測定工程が終了する。 After the process of step S414, the controller 91 stops the operation of the position detection circuit 72 in step S416, and instructs the spindle motor control circuit 74 to stop the rotation of the imaging plate 31 in step S418. In response to this instruction, the spindle motor control circuit 74 stops the operation of the spindle motor 47 and stops the rotation of the imaging plate 31. After stopping the rotation of the imaging plate 31, the controller 91 ends the execution of the diffraction ring erasure program in step S420. When the execution of the diffraction ring erasing program is completed, the first diffraction ring measurement step is completed.
 次に、第2の回折環測定工程について説明すると、測定者は、取っ手19を持って回折環測定装置を移動させて、図11(B)に示すように、底面壁14を測定対象物OBの水平面hpに当接させてケース10を水平面hp上に載置した状態で、傾斜壁17を垂直面vpに当接させる。そして、測定者は、入力装置92を用いて、残留応力の測定開始を指示する。これにより、コントローラ91は、上述した図6に示す回折環撮像プログラムの実行を開始する。その後、コントローラ91は、上述した図7A及び図7Bに示す回折環読取りプログラム及び図8に示す回折環形状検出プログラムを並行して実行するとともに、上述した図9に示す回折環消去プログラムを実行する。 Next, the second diffractive ring measuring step will be described. The measurer moves the diffractive ring measuring apparatus by holding the handle 19 and moves the bottom wall 14 to the measuring object OB as shown in FIG. The inclined wall 17 is brought into contact with the vertical plane vp in a state in which the case 10 is placed on the horizontal plane hp in contact with the horizontal plane hp. Then, the measurer uses the input device 92 to instruct the start of residual stress measurement. Thereby, the controller 91 starts execution of the diffraction ring imaging program shown in FIG. Thereafter, the controller 91 executes the diffraction ring reading program shown in FIGS. 7A and 7B and the diffraction ring shape detection program shown in FIG. 8 in parallel, and also executes the diffraction ring elimination program shown in FIG. .
 この場合も、回折環撮像プログラムの実行により、測定対象物OBからの回折X線による回折環がイメージングプレート31に撮像されるが、この場合には、水平面hpと直交し、垂直面vpに対して60度をなす平面内にて、水平面hpに対して45度の角度、すなわち水平面hpにおいてX方向と30度の角度をなす方向に平行かつ水平面hpに垂直な面内にて水平面hpに対して45度の角度の方向から水平面hpに照射されたX線により、イメージングプレート31に回折環が形成される。そして、回折環読取りプログラム及び回折環形状検出プログラムの実行により、前記イメージングプレート31に形成された回折環の形状が検出される。すなわち、周方向の全ての読取りポイントP(n,m)におけるピーク半径rp(n)が取得される。この第2の回折環測定工程におけるピーク半径rp(n)(n=1~N)が、後述する応力計算工程で利用される回折環の形状を表す第2測定値である。その後、回折環消去プログラムの実行により、前記イメージングプレート31に撮像された回折環が、LED63からの可視光の照射により、完全に消去される。そして、この回折環消去プログラムの実行終了をもって、第2の回折環測定工程が終了する。 Also in this case, by executing the diffraction ring imaging program, a diffraction ring by diffraction X-rays from the measurement object OB is imaged on the imaging plate 31. In this case, the diffraction ring is orthogonal to the horizontal plane hp and is perpendicular to the vertical plane vp. 45 degrees with respect to the horizontal plane hp in the plane that forms 60 degrees, that is, with respect to the horizontal plane hp in a plane that is parallel to the direction that forms an angle of 30 degrees with the X direction in the horizontal plane hp and that is perpendicular to the horizontal plane hp. A diffraction ring is formed on the imaging plate 31 by X-rays irradiated to the horizontal plane hp from the direction of an angle of 45 degrees. The shape of the diffraction ring formed on the imaging plate 31 is detected by executing the diffraction ring reading program and the diffraction ring shape detection program. That is, the peak radii rp (n) at all the reading points P (n, m) in the circumferential direction are acquired. The peak radius rp (n) (n = 1 to N) in the second diffraction ring measurement step is a second measurement value representing the shape of the diffraction ring used in the stress calculation step described later. Thereafter, the diffraction ring imaged on the imaging plate 31 is completely erased by irradiation of visible light from the LED 63 by executing the diffraction ring erasing program. Then, when the execution of the diffraction ring erasing program is completed, the second diffraction ring measurement process ends.
 次に、応力計算工程について説明する。測定者は、入力装置92を用いて応力計算プログラムの実行をコントローラ91に指示する。応力計算プログラムは図10に示されており、コントローラ91は、この応力計算プログラムの実行をステップS500にて開始する。この応力計算プログラムの実行開始後、コントローラ91は、ステップS502にて、上記第1の回折環測定工程で検出した第1測定値である回折環の形状を表すピーク半径rp(n)(n=1~N)を用いて、すなわちピーク半径rp(n)(n=1~N)及びそれに対応した回転角度(n-1)θo(n=1~N)を用いて、入射角45度でX方向から測定対象物OBの水平面hpに入射させたX線による上述したX方向の残留応力σxをcosα法を用いて計算する。次に、コントローラ91は、ステップS504にて、前記第1の測定値であるピーク半径rp(n)(n=1~N)及びそれに対応した回転角度(n-1)θo(n=1~N)を用いて、入射角45度でX方向から測定対象物OBの水平面hpに入射させたX線による上述したせん断の残留応力τxyをcosα法を用いて計算する。 Next, the stress calculation process will be described. The measurer instructs the controller 91 to execute the stress calculation program using the input device 92. The stress calculation program is shown in FIG. 10, and the controller 91 starts execution of the stress calculation program in step S500. After starting execution of the stress calculation program, the controller 91 in step S502, the peak radius rp (n) (n = 1 to N), that is, using the peak radius rp (n) (n = 1 to N) and the corresponding rotation angle (n−1) θo (n = 1 to N) at an incident angle of 45 degrees. The residual stress σx in the X direction described above due to the X-rays incident on the horizontal plane hp of the measurement object OB from the X direction is calculated using the cos α method. Next, in step S504, the controller 91 determines the peak radius rp (n) (n = 1 to N) as the first measured value and the corresponding rotation angle (n−1) θo (n = 1 to N), the above-described shear residual stress τxy caused by the X-ray incident on the horizontal plane hp of the measurement object OB from the X direction at an incident angle of 45 degrees is calculated using the cos α method.
 さらに、コントローラ91は、ステップS506にて、上記第2の回折環測定工程で検出した第2測定値である回折環の形状を表すピーク半径rp(n)(n=1~N)を用いて、すなわちピーク半径rp(n)(n=1~N)及びそれに対応した回転角度(n-1)θo(n=1~N)を用いて、水平面hpにおいてX方向と角度θをなす方向に平行かつ水平面hpに垂直な面内にて水平面hpに対して45度の角度で入射させたX線による、XY平面においてX方向とθの角度をなす方向の残留応力σθをcosα法を用いて計算する。なお、この実施形態では、θは傾斜壁17の正面壁11に対する角度であって、30度である。また、cosα法による残留応力σx,τxy,σθ(σ30)の計算に関しては、例えば特開2005-241308号公報及び非特許文献である「残留応力のX線評価 -基礎と応用-」(2006年7月29日
(株)養賢堂発行)の第317頁及び第318頁に記載されている周知の技術事項であるので、詳しい説明を省略する。
Further, in step S506, the controller 91 uses the peak radius rp (n) (n = 1 to N) representing the shape of the diffraction ring, which is the second measurement value detected in the second diffraction ring measurement step. That is, using the peak radius rp (n) (n = 1 to N) and the corresponding rotation angle (n−1) θo (n = 1 to N), in the direction forming the angle θ with the X direction on the horizontal plane hp. A cos α method is used to calculate the residual stress σθ in the direction that forms an angle of θ with the X direction in the XY plane by X-rays that are incident on the horizontal plane hp at an angle of 45 degrees in a plane that is parallel and perpendicular to the horizontal plane hp calculate. In this embodiment, θ is an angle of the inclined wall 17 with respect to the front wall 11 and is 30 degrees. Regarding the calculation of residual stresses σx, τxy, σθ (σ30) by the cos α method, for example, Japanese Patent Application Laid-Open No. 2005-241308 and non-patent document “X-ray Evaluation of Residual Stress: Basics and Applications” (2006) July 29
Since it is a well-known technical matter described on page 317 and page 318 of Yokendo Co., Ltd.), detailed explanation is omitted.
 前記ステップS506の処理後、コントローラ91は、ステップS508にて、前記残留応力σx,τxy,σθ(σ30)を用いて、上述したY方向の残留応力σyを計算する。 After the process of step S506, the controller 91 calculates the residual stress σy in the Y direction described above using the residual stress σx, τxy, σθ (σ30) in step S508.
 ここで、残留応力σx,τxy,σyと、残留応力σθとの関係について説明しておく。前述のような平面応力状態をテンソルで表すと、下記数1のように表される。
Figure JPOXMLDOC01-appb-M000001
Here, the relationship between the residual stresses σx, τxy, σy and the residual stress σθ will be described. When the plane stress state as described above is represented by a tensor, it is represented by the following formula 1.
Figure JPOXMLDOC01-appb-M000001
 前記数1で表されたテンソルをコーシーの定理で座標変換したX方向から角度θだけ傾いた方向の残留応力は、前記計算した残留応力σθに等しいので、下記数2が成立する。
Figure JPOXMLDOC01-appb-M000002
Since the residual stress in the direction inclined by the angle θ from the X direction obtained by coordinate conversion of the tensor expressed by the equation 1 by Cauchy's theorem is equal to the calculated residual stress σθ, the following equation 2 is established.
Figure JPOXMLDOC01-appb-M000002
 そして、前記数2は下記数3のように変形され、残留応力σyは残留応力σx,τxy,σy,σθを用いて下記数4のように表される。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Then, the equation 2 is transformed as the following equation 3, and the residual stress σy is expressed as the following equation 4 using the residual stresses σx, τxy, σy, σθ.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 ふたたび、図10のステップS508の説明に戻ると、前記角度θは本実施形態では30度であるので、前記ステップS508においては、前記数4において、角度θに30度を代入するとともに、前記ステップS502~S506で計算した残留応力σx,τxy,σθ(σ30)を代入すれば、残留応力σyが計算される。前記残留応力σyの計算後、コントローラ91は、ステップS510にて応力計算プログラムの実行を終了する。そして、この応力計算プログラムの実行終了をもって、応力計算工程が終了する。 Returning to the description of step S508 in FIG. 10 again, the angle θ is 30 degrees in the present embodiment. Therefore, in step S508, 30 degrees is substituted for the angle θ in the equation 4, and the step Substituting the residual stress σx, τxy, σθ (σ30) calculated in S502 to S506, the residual stress σy is calculated. After calculating the residual stress σy, the controller 91 ends the execution of the stress calculation program in step S510. When the execution of the stress calculation program ends, the stress calculation process ends.
 このように、上記実施形態によれば、容易に断面L字形状を有する測定対象物OBの角部近傍位置に所定の角度でX線を照射でき、測定対象物OBの水平面hpの角部近傍位置おけるX方向の残留応力σx、Y方向の残留応力σy、及びせん断の残留応力τxyを測定できるので、L字形状を有する測定対象物OBの角部近傍位置の検査を精度よく行うことができる。特に、交差部分を溶接で接合した断面がL字形状の鉄製部品又は鉄製部材の検査を精度よく行うことができる。 Thus, according to the above-described embodiment, X-rays can be easily irradiated at a predetermined angle to the vicinity of the corner of the measurement object OB having the L-shaped cross section, and the vicinity of the corner of the horizontal plane hp of the measurement object OB. Since the residual stress σx in the X direction, the residual stress σy in the Y direction, and the residual stress τxy in the shear direction can be measured, the position near the corner of the measurement object OB having an L shape can be accurately inspected. . In particular, it is possible to accurately inspect an iron part or an iron member having an L-shaped cross section where the intersecting portions are joined by welding.
 また、上記説明からも理解できるように、上記実施形態によれば、互いに直交する水平面hp及び垂直面vpを有する測定対象物OBすなわち断面L字形状の測定対象物OBが大きく容易に移動できない場合でも、取っ手19を持ってX線回折測定装置を搬送し、底面壁14を測定対象物OBの水平面hpに当接させるとともに、正面壁11を測定対象物OBの垂直面vpに当接させ、図6の回折環撮像プログラムを実行させれば、水平面hpにおける角部近傍位置に、角部の延設方向に直交し、水平面hpに対して所定の角度をなす方向から、X線出射器10からのX線が精度よく照射されて、イメージングプレート31には精度のよい回折環が形成される。また、底面壁14を測定対象物OBの水平面hpに当接させるとともに、傾斜壁17を一対の測定対象物OBの垂直面vpに当接させ、図6の回折環撮像プログラムを実行させれば、水平面hpにおける角部近傍位置に、水平面hp及び垂直面vpに直交する面に対して所定角度(本実勢形態では、30度)をなす面内において水平面hpに対して所定の角度をなす方向からX線出射器10からのX線が精度よく出射されて、イメージングプレート31には精度のよい回折環が形成される。すなわち、測定者は、簡単な操作で測定対象物OBの角部近傍位置に測定対象物OBの各面に対して所定の角度でX線を照射でき、イメージングプレート31に高精度の回折環を形成できる。 Further, as can be understood from the above description, according to the above embodiment, the measurement object OB having the horizontal plane hp and the vertical plane vp perpendicular to each other, that is, the measurement object OB having an L-shaped cross section cannot be moved easily. However, the X-ray diffractometer is conveyed with the handle 19, the bottom wall 14 is brought into contact with the horizontal plane hp of the measurement object OB, and the front wall 11 is brought into contact with the vertical plane vp of the measurement object OB. When the diffraction ring imaging program of FIG. 6 is executed, the X-ray emitter 10 is positioned from the direction perpendicular to the extending direction of the corner and at a predetermined angle with respect to the horizontal plane hp at a position near the corner in the horizontal plane hp. X-rays from the laser beam are irradiated with high precision, and an accurate diffraction ring is formed on the imaging plate 31. Further, when the bottom wall 14 is brought into contact with the horizontal plane hp of the measurement object OB and the inclined wall 17 is brought into contact with the vertical plane vp of the pair of measurement objects OB, the diffraction ring imaging program of FIG. 6 is executed. A direction that forms a predetermined angle with respect to the horizontal plane hp in a plane that forms a predetermined angle (30 degrees in the present embodiment) with respect to a plane orthogonal to the horizontal plane hp and the vertical plane vp at a position near the corner in the horizontal plane hp. X-rays from the X-ray emitter 10 are emitted with high accuracy, and a high-precision diffraction ring is formed on the imaging plate 31. That is, the measurer can irradiate X-rays at a predetermined angle with respect to each surface of the measurement object OB at a position near the corner of the measurement object OB with a simple operation, and provide a high-precision diffraction ring on the imaging plate 31. Can be formed.
 そして、図7A及び図7Bの回折環読取りプログラム及び図8の回折環形状検出プログラムの実行により、前記のようにしてイメージングプレート31に形成された回折環の形状を検出し、図10の応力計算プログラムを実行させれば、L字形状の測定対象物OBの角部近傍位置における測定対象物OBの角部の延設方向と直交し、水平面hpに平行な方向の高精度の残留応力σxが計算されるとともに、前記角部近傍位置における測定対象物OBの交差線方向の高精度の残留応力σyが計算される。その結果、上記実施形態によれば、簡単な操作で所定の方向からX線を照射できるとともに、L字形状の測定対象物OBの角部近傍の残留応力σx,σyを精度よく測定できるようになる。 Then, by executing the diffraction ring reading program of FIGS. 7A and 7B and the diffraction ring shape detection program of FIG. 8, the shape of the diffraction ring formed on the imaging plate 31 as described above is detected, and the stress calculation of FIG. When the program is executed, a highly accurate residual stress σx in a direction perpendicular to the extending direction of the corner of the measurement object OB at a position near the corner of the L-shaped measurement object OB and parallel to the horizontal plane hp is obtained. In addition to the calculation, a highly accurate residual stress σy in the direction of the intersecting line of the measurement object OB at the corner vicinity position is calculated. As a result, according to the above-described embodiment, X-rays can be irradiated from a predetermined direction with a simple operation, and the residual stresses σx and σy in the vicinity of the corners of the L-shaped measurement object OB can be accurately measured. Become.
 また、上記実施形態によれば、テーブル30を正面壁11、裏面壁12、上面壁13及び底面壁15と平行に移動させるようにしたので、X線出射器10、テーブル30、イメージングプレート31、レーザ検出装置50などを収容したケース10を簡単な直方体形状にすることできるとともに、ケース10内に収容された前記各部品をコンパクトに配置できるため、ケース10を小型にすることができる。 Moreover, according to the said embodiment, since the table 30 was moved in parallel with the front wall 11, the back surface wall 12, the upper surface wall 13, and the bottom wall 15, the X-ray emitter 10, the table 30, the imaging plate 31, The case 10 accommodating the laser detection device 50 and the like can be formed into a simple rectangular parallelepiped shape, and the respective parts accommodated in the case 10 can be arranged in a compact manner, so that the case 10 can be reduced in size.
 また、上記実施形態によれば、ケース10に、搬送用の取っ手19を設けたので、X線回折測定装置の搬送、移動などが容易になる。また、上記実施形態によれば、図9の回折環消去プログラムの実行により、イメージングプレート31に形成された回折環をLED63から可視光で消去するようにしたので、イメージングプレート31上に形成されている回折環を簡単に消去して、新たな回折環をイメージングプレート31上に形成することができ、X線の照射によるイメージングプレート31上への回折環の形成を簡単に繰り返し行うことができる。 Further, according to the above embodiment, the case 10 is provided with the handle 19 for transportation, so that the transportation and movement of the X-ray diffraction measuring apparatus can be facilitated. Further, according to the above embodiment, the diffraction ring formed on the imaging plate 31 is erased with visible light from the LED 63 by executing the diffraction ring erasing program of FIG. 9, so that it is formed on the imaging plate 31. A new diffraction ring can be formed on the imaging plate 31 by easily erasing the existing diffraction ring, and formation of the diffraction ring on the imaging plate 31 by X-ray irradiation can be easily and repeatedly performed.
 なお、上記説明においては、断面L字形状を有する測定対象物OBの水平面hpの角部近傍位置におけるX方向の残留応力σx、Y方向の残留応力σy、及びせん断の残留応力τxyを測定するようにしたが、断面L字形状を有する測定対象物OBの垂直面vpの角部近傍位置におけるX方向の残留応力σx、Y方向の残留応力σy、及びせん断の残留応力τxyを測定することもできる。この場合、第1の測定工程においては、ケース10の底面壁14を測定対象物OBの垂直面vpに当接させ、かつ正面壁11を測定対象物OBの水平面hpに当接させ、また第2の測定工程においては、ケース10の底面壁14を測定対象物OBの垂直面vpに当接させるとともに、傾斜壁17を測定対象物OBの水平面hpに当接させればよい。これによれば、X線照射器20からのX線は断面L字形状を有する測定対象物OBの垂直面vpの角部近傍位置に所定の方向から照射されるので、上記説明の水平面hpと同様に垂直面vpの残留応力の測定が可能となる。 In the above description, the residual stress σx in the X direction, the residual stress σy in the Y direction, and the residual stress τxy in the shear direction are measured at positions near the corners of the horizontal plane hp of the measurement object OB having an L-shaped cross section. However, it is possible to measure the residual stress σx in the X direction, the residual stress σy in the Y direction, and the residual stress τxy in the shear direction at a position near the corner of the vertical surface vp of the measurement object OB having an L-shaped cross section. . In this case, in the first measurement step, the bottom wall 14 of the case 10 is brought into contact with the vertical surface vp of the measurement object OB, and the front wall 11 is brought into contact with the horizontal plane hp of the measurement object OB. In the second measurement step, the bottom wall 14 of the case 10 may be brought into contact with the vertical surface vp of the measurement object OB, and the inclined wall 17 may be brought into contact with the horizontal plane hp of the measurement object OB. According to this, since the X-ray from the X-ray irradiator 20 is irradiated from a predetermined direction to a position near the corner of the vertical surface vp of the measurement object OB having an L-shaped cross section, the horizontal plane hp described above and Similarly, the residual stress on the vertical plane vp can be measured.
 さらに、本発明の実施にあたっては、上記実施形態に限定されるものではなく、本発明の目的を逸脱しない限りにおいて種々の変更が可能である。 Furthermore, the implementation of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the object of the present invention.
 上記実施形態においては、正面壁11、底面壁14及び傾斜壁17の全体を平板状に形成するようにした。しかし、底面壁14を測定対象物OBの水平面hpに当接させるとともに、正面壁11及び傾斜壁17を測定対象物OBの垂直面vpに当接させたり、底面壁14を測定対象物OBの垂直面vpに当接させるとともに、正面壁11及び傾斜壁17を測定対象物OBの水平面hpに当接させたりすることが可能であればよいので、正面壁11、底面壁14又は傾斜壁17の一部に凹部を設けたり、穴を設けたりしてもよい。 In the above embodiment, the entire front wall 11, bottom wall 14, and inclined wall 17 are formed in a flat plate shape. However, the bottom wall 14 is brought into contact with the horizontal plane hp of the measurement object OB, the front wall 11 and the inclined wall 17 are brought into contact with the vertical surface vp of the measurement object OB, or the bottom wall 14 is brought into contact with the measurement object OB. The front wall 11, the bottom wall 14, or the inclined wall 17 may be used as long as the front wall 11 and the inclined wall 17 can be brought into contact with the vertical surface vp and the horizontal surface hp of the measurement object OB. You may provide a recessed part in a part of, or a hole.
 また、上記実施形態においては、平板状の正面壁11、裏面壁12、上面壁13、底面壁14、左側面壁15、右側面壁16及び傾斜壁17からなるケース10の形状を直方体形状にした。しかし、X線出射器10による測定対象物OBのX線の照射のためには、正面壁11、傾斜壁17及び底面壁14が平面状であり、正面壁11及び傾斜壁17が底面壁14に対してそれぞれ直交しており、かつ傾斜壁17が正面壁11に対してケース10の内側方向に所定角度(本実施形態では、30度)で傾斜していればよい。したがって、ケース10の他の部分である裏面壁12、上面壁13、左側面壁16及び右側面壁17に関しては、平面状でなくてもよく、それに伴い、ケース10も特に直方体形状でなくてもよい。 In the above embodiment, the shape of the case 10 including the flat front wall 11, back wall 12, top wall 13, bottom wall 14, left side wall 15, right side wall 16, and inclined wall 17 is a rectangular parallelepiped shape. However, in order to irradiate the measurement object OB with X-rays by the X-ray emitter 10, the front wall 11, the inclined wall 17 and the bottom wall 14 are planar, and the front wall 11 and the inclined wall 17 are the bottom wall 14. The inclined wall 17 may be inclined at a predetermined angle (30 degrees in the present embodiment) in the inner direction of the case 10 with respect to the front wall 11. Therefore, the back wall 12, the top wall 13, the left side wall 16, and the right side wall 17, which are other parts of the case 10, may not be planar, and accordingly, the case 10 may not be particularly rectangular parallelepiped. .
 また、上記実施形態においては、正面壁11と傾斜壁17とがなす角度すなわち角度θを30度にしたが、これは、上記数4のsin2θ,sin2θ,cos2θの計算が簡単になり、上記数4の計算を簡単に行えるようにするためである。しかし、上記数4を用いれば、残留応力σyの計算はいかなる角度でも可能であるので、前記正面壁11と傾斜壁17とがなす角度θは適宜設定できる。この場合、前記角度θが大きすぎると、傾斜壁17にテーブル30及びイメージングプレート31が当たってしまう。また、前記角度θが小さすぎると、上記数4によって計算される残留応力σyの精度が悪くなるので、前記角度θは20~50度の範囲にあるとよい。 In the above embodiment, the angle between the front wall 11 and the inclined wall 17, that is, the angle θ is set to 30 degrees. This is because the calculation of sin 2θ, sin 2 θ, cos 2 θ in the above equation 4 is easy. Thus, the calculation of Equation 4 can be easily performed. However, if the above equation 4 is used, the residual stress σy can be calculated at any angle, and therefore the angle θ formed by the front wall 11 and the inclined wall 17 can be set as appropriate. In this case, if the angle θ is too large, the table 30 and the imaging plate 31 will hit the inclined wall 17. If the angle θ is too small, the accuracy of the residual stress σy calculated by the above equation 4 is deteriorated. Therefore, the angle θ is preferably in the range of 20 to 50 degrees.
 また、上記実施形態においては、X線の照射方向をケース10の底面壁14に対して45度に設定したが、回折X線が正面壁11、底面壁14及び傾斜壁17によって遮られなければ、45度とは異なる角度にしてもよい。測定対象物OBが鉄製部品又は鉄製部材であれば、照射したX線に対する回折X線の角度は24度程度であるので、回折X線が正面壁11及び底面壁14に近づき過ぎないことを考慮して、X線の照射方向はケース10の底面壁14に対して35~55度の範囲内の角度に設定すればよい。 In the above embodiment, the X-ray irradiation direction is set to 45 degrees with respect to the bottom wall 14 of the case 10, but the diffracted X-rays must be blocked by the front wall 11, the bottom wall 14, and the inclined wall 17. The angle may be different from 45 degrees. If the measurement object OB is an iron part or an iron member, the angle of the diffracted X-ray with respect to the irradiated X-ray is about 24 degrees, so that the diffracted X-ray does not approach the front wall 11 and the bottom wall 14 too much. The X-ray irradiation direction may be set to an angle within the range of 35 to 55 degrees with respect to the bottom wall 14 of the case 10.
 また、上記実施形態においては、X線出射器20から出射されてテーブル30及びイメージングプレート31を介したX線が、正面壁11と底面壁14の交差線よりも僅かに裏面壁12側の位置を通過するようにした。しかし、これに代えて、前記X線が、正面壁11と底面壁14の交差線よりも僅かに上面壁13側の位置を通過するようにしてもよい。この場合、ケース10の底面壁14を測定対象物OBの水平面hpに当接させ、かつ正面壁11を測定対象物OBの垂直面vpに当接させたとき、またケース10の底面壁14を測定対象物OBの水平面hpに当接させ、傾斜壁17を測定対象物OBの垂直面vpに当接させたとき、X線の測定対象物OBに対する出射位置は、測定対象物OBの角部近傍位置の垂直面vpに照射され、垂直面vpの角部近傍位置の残留応力が測定されることになる。ただし、この場合には、傾斜壁17を測定対象物OBの垂直面vpに当接させたときの、X線の垂直面vpとなす角度及びX線の光軸を含み垂直面vpと直交する面の水平面hpの法線方向となす角度は、X線の光軸の正面壁11となす角度θ1及び傾斜壁17の正面壁11となす角度θ2とを等しくならず、角度θ1及び角度θ2から計算により算出する必要がある。 Further, in the above embodiment, the X-rays emitted from the X-ray emitter 20 and passing through the table 30 and the imaging plate 31 are slightly positioned on the back wall 12 side with respect to the intersection line between the front wall 11 and the bottom wall 14. To pass. However, instead of this, the X-rays may pass through a position slightly closer to the top wall 13 than the intersection line between the front wall 11 and the bottom wall 14. In this case, when the bottom wall 14 of the case 10 is brought into contact with the horizontal plane hp of the measurement object OB and the front wall 11 is brought into contact with the vertical surface vp of the measurement object OB, the bottom wall 14 of the case 10 is also moved. When the measurement object OB is brought into contact with the horizontal plane hp and the inclined wall 17 is brought into contact with the vertical surface vp of the measurement object OB, the X-ray emission position with respect to the measurement object OB is the corner of the measurement object OB. The vertical surface vp near the position is irradiated, and the residual stress near the corner of the vertical surface vp is measured. However, in this case, the angle formed with the X-ray vertical plane vp and the X-ray optical axis when the inclined wall 17 is brought into contact with the vertical plane vp of the measurement object OB are orthogonal to the vertical plane vp. The angle formed with the normal direction of the horizontal plane hp of the surface is not equal to the angle θ1 formed with the front wall 11 of the optical axis of the X-ray and the angle θ2 formed with the front wall 11 of the inclined wall 17 from the angles θ1 and θ2. It is necessary to calculate by calculation.
 また、この場合にも、上述した上記実施形態に係るX線回折測定装置を用いて垂直面vpの角部近傍位置の残留応力の測定の場合と同様に、ケース10の底面壁14を測定対象物OBの垂直面vpに当接させ、かつ正面壁11を測定対象物OBの水平面hpに当接させたとき、またケース10の底面壁14を測定対象物OBの垂直面vpに当接させ、かつ傾斜壁17を測定対象物OBの水平面hpに当接させたとき、X線照射器20からのX線は測定対象物OBの水平面hpの角部近傍位置に照射されるので、水平面hpの角部近傍位置の残留応力の測定が可能となる。そして、この場合にも、傾斜壁17を測定対象物OBの水平面hpに当接させたときの、X線の水平面hpとなす角度及びX線の光軸を含み水平面hpと直交する面のX方向となす角度は、前記角度θ1及び角度θ2から計算により算出する必要がある。 Also in this case, the bottom wall 14 of the case 10 is measured using the X-ray diffraction measurement apparatus according to the above-described embodiment as in the case of measuring the residual stress near the corner of the vertical plane vp. When the front wall 11 is brought into contact with the vertical plane vp of the object OB and the front wall 11 is brought into contact with the horizontal plane hp of the measurement object OB, the bottom wall 14 of the case 10 is brought into contact with the vertical plane vp of the measurement object OB. When the inclined wall 17 is brought into contact with the horizontal plane hp of the measurement object OB, the X-ray from the X-ray irradiator 20 is irradiated to a position near the corner of the horizontal plane hp of the measurement object OB. It is possible to measure the residual stress near the corners. In this case as well, the X plane of the plane perpendicular to the horizontal plane hp includes the angle formed with the horizontal plane hp of the X-ray and the optical axis of the X-ray when the inclined wall 17 is brought into contact with the horizontal plane hp of the measurement object OB. The angle formed with the direction needs to be calculated by calculation from the angle θ1 and the angle θ2.
 また、上記実施形態においては、L字形状の測定対象物OBの角部近傍位置における測定対象物OBの交差線方向と直交し、水平面hpに平行な方向の残留応力σxと、前記角部近傍位置における測定対象物OBの交差線方向の残留応力σyとを測定するようにした。しかし、前記角部近傍位置における測定対象物OBの交差線方向の残留応力σyの測定が不要であれば、底面壁14を測定対象物OBの水平面hpに当接させるとともに、傾斜壁17を一対の測定対象物OBの垂直面vpに当接させて、イメージングプレート31に回折環を形成させる必要がない。したがって、この場合には、ケース10に傾斜壁17を設ける必要はない。また、この場合には、図10のステップS504~S508の処理も不要となる。 Further, in the above embodiment, the residual stress σx in the direction perpendicular to the intersecting line direction of the measurement object OB at the position near the corner of the L-shaped measurement object OB and parallel to the horizontal plane hp, and the vicinity of the corner The residual stress σy in the direction of the intersecting line of the measurement object OB at the position was measured. However, if it is not necessary to measure the residual stress σy in the direction of the intersecting line of the measurement object OB in the vicinity of the corner, the bottom wall 14 is brought into contact with the horizontal plane hp of the measurement object OB, and a pair of inclined walls 17 are provided. It is not necessary to form a diffraction ring on the imaging plate 31 in contact with the vertical surface vp of the measurement object OB. Therefore, in this case, it is not necessary to provide the inclined wall 17 in the case 10. In this case, the processing of steps S504 to S508 in FIG. 10 is also unnecessary.
 また、上記実施形態においては、回折環の形状を測定するために、イメージングプレート31の回転角度が所定の回転角度になるごとに、信号強度S(n,m)及び半径r(n,m)を記憶するようにした。しかし、これに代えて、所定の時間間隔で、イメージングプレート31の回転角度θ(n,m)、信号強度S(n,m)及び半径r(n,m)を取得して記憶してもよい。 In the above embodiment, in order to measure the shape of the diffraction ring, the signal intensity S (n, m) and the radius r (n, m) each time the rotation angle of the imaging plate 31 reaches a predetermined rotation angle. I remembered. However, instead of this, the rotation angle θ (n, m), the signal intensity S (n, m), and the radius r (n, m) of the imaging plate 31 may be acquired and stored at predetermined time intervals. Good.
 また、上記実施形態においては、受光センサ35の受光位置を用いて、撮像した回折環の半径が回折環基準半径R0からずれる可能性のある領域を想定して、読取り開始位置を決定するようにした。しかし、回折環基準半径R0を用いることなく、常に一定の領域にレーザ光を照射するようにしてもよい。例えば、イメージングプレート31の全領域にレーザ光を照射するようにしてもよい。また、LED63による可視光の照射についても同様に、常に一定の領域にLED63から発せられた可視光を照射するようにしてもよい。例えば、イメージングプレート31の全領域にLED63からの可視光を照射するようにしてもよい。ただし、この場合、上記実施形態の場合よりも測定時間が長くなる。 Further, in the above-described embodiment, the reading start position is determined using the light receiving position of the light receiving sensor 35, assuming an area in which the radius of the captured diffraction ring may deviate from the diffraction ring reference radius R0. did. However, the laser beam may always be irradiated to a certain region without using the diffraction ring reference radius R0. For example, the entire region of the imaging plate 31 may be irradiated with laser light. Similarly, the visible light emitted from the LED 63 may be constantly irradiated with visible light emitted from the LED 63 in a certain area. For example, the entire area of the imaging plate 31 may be irradiated with visible light from the LED 63. However, in this case, the measurement time is longer than in the above embodiment.
 また、上記実施形態においては、レーザ検出装置50は、フォーカスサーボ制御されるようにしたが、イメージングプレート31を回転させた際のイメージングプレート31の受光面と対物レンズ56との距離の変動が微小であれば、フォーカスサーボ制御は不要である。 Further, in the above embodiment, the laser detection device 50 is controlled by the focus servo. However, when the imaging plate 31 is rotated, the variation in the distance between the light receiving surface of the imaging plate 31 and the objective lens 56 is minute. If so, focus servo control is unnecessary.
 また、上記実施形態においては、イメージングプレート31に照射されるレーザ光は、一定強度のレーザ光としたが、これに代えて、予め設定されたハイレベルの強度と、予め設定されたローレベルの強度が繰り返されるパルス状のレーザ光とし、ハイレベルの強度になるタイミングでSUM信号の瞬時値を取得するようにしてもよい。この場合、イメージングプレート31のSUM信号の瞬時値を取得するポイントに瞬間的にハイレベルの強度のレーザ光を照射する。すなわち、SUM信号の瞬時値を取得するポイントにレーザ光が向かう状態では、レーザ光の強度はローレベルであり、輝尽発光により発生する光はほとんど無い。そして、SUM信号の瞬時値を取得するポイントに近づいたとき、レーザ光の強度がハイレベルになって輝尽発光による光が発生する。常にハイレベルの強度のレーザ光を照射した場合は、輝尽発光による光が生じ続けることで光の強度が減少するが、上記のように構成すれば、輝尽発光によって大きな強度の光を利用して、SUM信号の瞬時値を取得することができる。 In the above embodiment, the laser light applied to the imaging plate 31 is a constant intensity laser light. Instead of this, a preset high level intensity and a preset low level laser light are used. A pulsed laser beam having repeated intensities may be used, and an instantaneous value of the SUM signal may be acquired at a timing when the intensity reaches a high level. In this case, a laser beam having a high level of intensity is instantaneously applied to a point at which the instantaneous value of the SUM signal of the imaging plate 31 is acquired. That is, in the state where the laser beam is directed to the point where the instantaneous value of the SUM signal is acquired, the intensity of the laser beam is at a low level, and almost no light is generated by the stimulated emission. Then, when approaching the point at which the instantaneous value of the SUM signal is obtained, the intensity of the laser beam becomes high and light due to the stimulated emission is generated. When laser light with a high level of intensity is always radiated, the intensity of the light decreases due to the continued generation of light due to the stimulated light emission. Thus, the instantaneous value of the SUM signal can be acquired.

Claims (9)

  1.  測定対象物に向けてX線を出射するX線出射器と、
     中央にX線を通過させる貫通孔が形成されたテーブルと、
     前記テーブルに取付けられて、中央部にてX線を通過させるとともに、測定対象物にて回折したX線の回折光を受光する受光面を有し、回折光の像である回折環を記録するイメージングプレートと、
     レーザ光を出射するレーザ光源及びレーザ光を受光するフォトディテクタを有し、レーザ光を前記イメージングプレートの受光面に照射するとともに、レーザ光の照射によって前記イメージングプレートから出射された光を受光して受光強度に応じた受光信号を出力するレーザ検出装置と、
     前記テーブルを貫通孔の中心軸回りに回転させる回転機構と、
     前記X線出射器からのX線を前記テーブル及び前記イメージングプレートを通過させるX線出射位置と、前記レーザ検出装置からのレーザ光を前記イメージングプレートに照射するレーザ光照射位置との間で、前記テーブルを移動させる移動機構と、
     前記X線出射器、前記テーブル、前記イメージングプレート、前記レーザ検出装置、前記回転機構及び前記移動機構を収容したケースとを備え、
     前記X線出射器から出射されたX線を前記ケースを通過させて測定対象物に照射し、前記X線の照射により測定対象物から出射された回折X線を前記ケースを通過させて前記イメージングプレートに導くX線回折測定装置であって、
     前記ケースは、互いに直交する平板状の第1平面壁及び第2平面壁を有し、
     前記X線出射器から出射されるX線の光軸が前記第1平面壁及び第2平面壁にそれぞれ直交する面内に含まれ、かつ前記第1平面壁と前記第2平面壁の交差線の近傍位置に前記第2平面壁に対して第1の所定角度だけ傾いた方向からX線が出射されるように、前記X線出射器を前記ケース内に配置し、
     互いに直交する一対の平面部を有する測定対象物に対して、前記第1平面壁を前記一対の平面部の一方の平面部に当接させるとともに、前記第2平面壁を前記一対の平面部の他方の平面部に当接させたとき、前記一方又は他方の平面部における前記一対の平面部の交差線の近傍位置に、前記一対の平面部の交差線に直交する方向から前記X線出射器からのX線が出射されるようにようにしたX線回折測定装置。
    An X-ray emitter that emits X-rays toward the measurement object;
    A table formed with a through-hole through which X-rays pass in the center;
    Mounted on the table, allows X-rays to pass through the central portion, and has a light-receiving surface for receiving X-ray diffracted light diffracted by the measurement object, and records a diffraction ring that is an image of diffracted light An imaging plate;
    It has a laser light source that emits laser light and a photodetector that receives the laser light, and irradiates the light receiving surface of the imaging plate with the laser light and receives and emits the light emitted from the imaging plate by the laser light irradiation. A laser detection device that outputs a light reception signal corresponding to the intensity;
    A rotation mechanism for rotating the table around the central axis of the through hole;
    Between the X-ray emission position through which the X-ray from the X-ray emitter passes through the table and the imaging plate, and the laser light irradiation position at which the imaging plate is irradiated with laser light from the laser detection device, A moving mechanism for moving the table;
    A case housing the X-ray emitter, the table, the imaging plate, the laser detection device, the rotation mechanism, and the moving mechanism;
    The X-ray emitted from the X-ray emitter passes through the case to irradiate the measurement object, and the diffracted X-ray emitted from the measurement object by the irradiation of the X-ray passes through the case to perform the imaging. An X-ray diffraction measurement device that leads to a plate,
    The case has a flat first flat wall and a second flat wall that are orthogonal to each other,
    The optical axis of the X-ray emitted from the X-ray emitter is included in a plane orthogonal to the first plane wall and the second plane wall, respectively, and an intersection line of the first plane wall and the second plane wall The X-ray emitter is disposed in the case so that X-rays are emitted from a direction inclined by a first predetermined angle with respect to the second plane wall at a position near
    With respect to the measurement object having a pair of plane parts orthogonal to each other, the first plane wall is brought into contact with one plane part of the pair of plane parts, and the second plane wall is brought into contact with the pair of plane parts. The X-ray emitter from the direction perpendicular to the crossing line of the pair of planar parts at a position in the vicinity of the crossing line of the pair of planar parts in the one or other plane part when being brought into contact with the other planar part. X-ray diffraction measuring apparatus adapted to emit X-rays from
  2.  請求項1に記載のX線回折測定装置において、
     前記ケースは、さらに、前記第1平面壁に直交するとともに前記第2平面壁に対して前記ケースの内側方向に第2の所定角度で傾斜した平板状の傾斜壁を有し、
     前記第1平面壁を前記測定対象物の一対の平面部の一方の平面部に当接させるとともに前記傾斜壁を前記一対の平面部の他方の平面部に当接させたとき、前記一方又は他方の平面部における前記一対の平面部の交差線の近傍位置に、前記X線出射器から出射されるX線の光軸を含み前記第1平面壁に直交する平面が、前記一対の平面部の交差線に直交する面に対して前記第2の所定角度で交差する状態で、前記X線出射器からのX線が出射されるようにしたX線回折測定装置。
    The X-ray diffraction measurement apparatus according to claim 1,
    The case further includes a flat inclined wall that is orthogonal to the first plane wall and is inclined at a second predetermined angle in an inner direction of the case with respect to the second plane wall,
    When the first planar wall is brought into contact with one planar portion of the pair of planar portions of the measurement object and the inclined wall is brought into contact with the other planar portion of the pair of planar portions, the one or the other A plane that includes the optical axis of the X-ray emitted from the X-ray emitter and is orthogonal to the first plane wall at a position near the intersecting line of the pair of plane portions in the plane portion of An X-ray diffraction measuring apparatus configured to emit X-rays from the X-ray emitter in a state of intersecting at a second predetermined angle with respect to a plane orthogonal to the intersecting line.
  3.  前記第2の所定角度は20度から50度の範囲内にある請求項2に記載したX線回折測定装置。 3. The X-ray diffraction measurement apparatus according to claim 2, wherein the second predetermined angle is in a range of 20 degrees to 50 degrees.
  4.  前記第1の所定角度は35度から55度の範囲内にある請求項1乃至3のうちのいずれか1つに記載したX線回折測定装置。 The X-ray diffraction measurement apparatus according to any one of claims 1 to 3, wherein the first predetermined angle is in a range of 35 degrees to 55 degrees.
  5.  前記移動機構によるテーブルの移動方向は、前記第1平面壁と前記第2平面壁の交差線の方向である請求項1乃至4のうちのいずれか1つに記載したX線回折測定装置。 The X-ray diffraction measurement apparatus according to any one of claims 1 to 4, wherein a moving direction of the table by the moving mechanism is a direction of an intersecting line between the first planar wall and the second planar wall.
  6.  前記ケースに、搬送用の取っ手を設けた請求項1乃至5のうちのいずれか1つに記載したX線回折測定装置。 The X-ray diffraction measurement apparatus according to any one of claims 1 to 5, wherein a handle for transportation is provided in the case.
  7.  請求項1乃至6のうちのいずれか1つに記載したX線回折測定装置において、さらに
     前記イメージングプレートに形成された回折環を消去する回折環消去手段を備えたX線回折測定装置。
    The X-ray diffraction measurement apparatus according to any one of claims 1 to 6, further comprising a diffraction ring erasing unit that erases a diffraction ring formed on the imaging plate.
  8.  請求項1に記載のX線回折測定装置に加えて、
     前記回転機構を制御して前記テーブルを回転させるとともに、前記移動機構を制御して前記テーブルを移動させながら、前記レーザ検出装置を制御して前記イメージングプレートの受光面にレーザ光を照射位置を検出しながら照射するとともに前記レーザ検出装置からの受光信号を入力して、前記検出した照射位置と前記入力した受光信号を処理して前記イメージングプレートに形成された回折環を読取る回折環読取手段と、
     互いに直交する一対の平面部を有する測定対象物に対して、前記第1平面壁を前記一対の平面部の一方の平面部に当接させるとともに、前記第2平面壁を前記一対の平面部の他方の平面部に当接させて、前記X線出射器からのX線の照射により前記イメージングプレートに形成させた回折環を表すデータであって、前記回折環読取手段によって読取ったデータを用いて、前記一方又は他方の平面部における前記一対の平面部の交差線の近傍位置の残留応力であって、前記一対の平面部の交差線に直交し、前記第1平面壁に平行な方向の残留応力を計算する残留応力計算手段とを備えたX線回折測定システム。
    In addition to the X-ray diffraction measurement device according to claim 1,
    The rotation mechanism is controlled to rotate the table, and the movement mechanism is controlled to move the table, while the laser detection device is controlled to detect the irradiation position of the light receiving surface of the imaging plate. Diffracting ring reading means for reading the diffracting ring formed on the imaging plate by inputting the light receiving signal from the laser detection device and irradiating while processing the detected irradiation position and the input light receiving signal;
    With respect to the measurement object having a pair of plane parts orthogonal to each other, the first plane wall is brought into contact with one plane part of the pair of plane parts, and the second plane wall is brought into contact with the pair of plane parts. Data representing a diffraction ring formed on the imaging plate by irradiation with X-rays from the X-ray emitter in contact with the other plane part, using the data read by the diffraction ring reading means , Residual stress at a position in the vicinity of the intersection line of the pair of plane portions in the one or the other plane portion, and remaining in a direction perpendicular to the intersection line of the pair of plane portions and parallel to the first plane wall An X-ray diffraction measurement system comprising a residual stress calculation means for calculating stress.
  9.  請求項2に記載のX線回折測定装置に加えて、
     前記回転機構を制御して前記テーブルを回転させるとともに、前記移動機構を制御して前記テーブルを移動させながら、前記レーザ検出装置を制御して前記イメージングプレートの受光面にレーザ光を照射位置を検出しながら照射するとともに前記レーザ検出装置からの受光信号を入力して、前記検出した照射位置と前記入力した受光信号を処理して前記イメージングプレートに形成された回折環を読取る回折環読取手段と、
     互いに直交する一対の平面部を有する測定対象物に対して、前記第1平面壁を前記一対の平面部の一方の平面部に当接させるとともに、前記第2平面壁を前記一対の平面部の他方の平面部に当接させて、前記X線出射器からのX線の照射により前記イメージングプレートに形成させた回折環を表すデータであって、前記回折環読取手段によって読取ったデータと、前記第1平面壁を前記一対の平面部の一方の平面部に当接させるとともに、前記傾斜壁を前記一対の平面部の他方の平面部に当接させて、前記X線出射器からのX線の照射により前記イメージングプレートに形成させた回折環を表すデータであって、前記回折環読取手段によって読取ったデータとを用いて、前記一方又は他方の平面部における前記一対の平面部の交差線の近傍位置の残留応力であって、前記一対の平面部の交差線に直交し、前記第1平面壁に平行な方向の残留応力及び前記交差線の方向の残留応力を計算する残留応力計算手段とを備えたX線回折測定システム。
    In addition to the X-ray diffraction measurement apparatus according to claim 2,
    The rotation mechanism is controlled to rotate the table, and the movement mechanism is controlled to move the table, while the laser detection device is controlled to detect the irradiation position of the light receiving surface of the imaging plate. Diffracting ring reading means for reading the diffracting ring formed on the imaging plate by inputting the light receiving signal from the laser detection device and irradiating while processing the detected irradiation position and the input light receiving signal;
    With respect to the measurement object having a pair of plane parts orthogonal to each other, the first plane wall is brought into contact with one plane part of the pair of plane parts, and the second plane wall is brought into contact with the pair of plane parts. Data representing a diffraction ring formed on the imaging plate by irradiation with X-rays from the X-ray emitter in contact with the other plane part, the data read by the diffraction ring reading means, X-rays from the X-ray emitter are brought into contact with one flat portion of the pair of flat portions and the inclined wall is brought into contact with the other flat portion of the pair of flat portions. The data representing the diffraction ring formed on the imaging plate by irradiation of the data, and using the data read by the diffraction ring reading means, the intersection line of the pair of plane parts in the one or the other plane part Proximity A residual stress calculating means for calculating a residual stress in a direction perpendicular to an intersection line of the pair of plane portions and parallel to the first plane wall and a residual stress in the direction of the intersection line. X-ray diffraction measurement system.
PCT/JP2013/051603 2012-07-09 2013-01-25 X-ray diffraction measurement device and x-ray diffraction measurement system WO2014010260A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012153202A JP5708582B2 (en) 2012-07-09 2012-07-09 X-ray diffraction measurement device and X-ray diffraction measurement system
JP2012-153202 2012-07-09

Publications (1)

Publication Number Publication Date
WO2014010260A1 true WO2014010260A1 (en) 2014-01-16

Family

ID=49915739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051603 WO2014010260A1 (en) 2012-07-09 2013-01-25 X-ray diffraction measurement device and x-ray diffraction measurement system

Country Status (2)

Country Link
JP (1) JP5708582B2 (en)
WO (1) WO2014010260A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106168518A (en) * 2016-08-05 2016-11-30 中北大学 Selective laser melting molded article residual stress real-time detection apparatus
JP6198088B1 (en) * 2016-10-25 2017-09-20 パルステック工業株式会社 Diffraction ring imaging device, diffraction ring reader, and X-ray diffraction measurement method
EP3839488A1 (en) * 2019-12-20 2021-06-23 Commissariat à l'énergie atomique et aux énergies alternatives Device for determining residual stress by diffraction
CN113936838A (en) * 2021-10-11 2022-01-14 散裂中子源科学中心 Two-stage positioning neutron diaphragm switching mechanism

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5728753B2 (en) * 2012-09-25 2015-06-03 パルステック工業株式会社 X-ray diffraction measurement device
JP6037237B2 (en) * 2014-02-04 2016-12-07 パルステック工業株式会社 X-ray diffractometer and measurement method using X-ray diffractometer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06109669A (en) * 1992-09-25 1994-04-22 Nippon Steel Corp Method and apparatus for evaluating crystal of single crystal product plate
JPH10185842A (en) * 1996-12-20 1998-07-14 Toshiba Fa Syst Eng Kk X-ray inspection apparatus
JPH10332608A (en) * 1997-05-27 1998-12-18 Toshiba Corp Equipment for examining neutron diffracting material
JP2000292377A (en) * 1999-04-07 2000-10-20 Japan Science & Technology Corp X-ray diffraction device
JP2001013095A (en) * 1999-06-30 2001-01-19 Horiba Ltd Inorganic matter analyzing apparatus in sample and inorganic and/or organic matter analyzing apparatus in sample
JP2012073193A (en) * 2010-09-29 2012-04-12 Rigaku Corp X-ray crystal orientation measuring device and x-ray crystal orientation measuring method
JP2012122737A (en) * 2010-12-06 2012-06-28 Hitachi-Ge Nuclear Energy Ltd X-ray diffraction device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06109669A (en) * 1992-09-25 1994-04-22 Nippon Steel Corp Method and apparatus for evaluating crystal of single crystal product plate
JPH10185842A (en) * 1996-12-20 1998-07-14 Toshiba Fa Syst Eng Kk X-ray inspection apparatus
JPH10332608A (en) * 1997-05-27 1998-12-18 Toshiba Corp Equipment for examining neutron diffracting material
JP2000292377A (en) * 1999-04-07 2000-10-20 Japan Science & Technology Corp X-ray diffraction device
JP2001013095A (en) * 1999-06-30 2001-01-19 Horiba Ltd Inorganic matter analyzing apparatus in sample and inorganic and/or organic matter analyzing apparatus in sample
JP2012073193A (en) * 2010-09-29 2012-04-12 Rigaku Corp X-ray crystal orientation measuring device and x-ray crystal orientation measuring method
JP2012122737A (en) * 2010-12-06 2012-06-28 Hitachi-Ge Nuclear Energy Ltd X-ray diffraction device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106168518A (en) * 2016-08-05 2016-11-30 中北大学 Selective laser melting molded article residual stress real-time detection apparatus
JP6198088B1 (en) * 2016-10-25 2017-09-20 パルステック工業株式会社 Diffraction ring imaging device, diffraction ring reader, and X-ray diffraction measurement method
JP2018072003A (en) * 2016-10-25 2018-05-10 パルステック工業株式会社 Diffraction ring imaging apparatus, diffraction ring reading apparatus and method of measuring x-ray diffraction
EP3839488A1 (en) * 2019-12-20 2021-06-23 Commissariat à l'énergie atomique et aux énergies alternatives Device for determining residual stress by diffraction
FR3105413A1 (en) * 2019-12-20 2021-06-25 Commissariat A L'energie Atomique Et Aux Energies Alternatives DEVICE FOR DETERMINING RESIDUAL CONSTRAINTS BY DIFFRACTION
CN113936838A (en) * 2021-10-11 2022-01-14 散裂中子源科学中心 Two-stage positioning neutron diaphragm switching mechanism
CN113936838B (en) * 2021-10-11 2023-09-26 散裂中子源科学中心 Two-stage positioning neutron diaphragm switching mechanism

Also Published As

Publication number Publication date
JP5708582B2 (en) 2015-04-30
JP2014016220A (en) 2014-01-30

Similar Documents

Publication Publication Date Title
JP5708582B2 (en) X-ray diffraction measurement device and X-ray diffraction measurement system
JP5835191B2 (en) Diffraction ring forming apparatus and diffraction ring forming system
JP6055970B2 (en) Surface hardness evaluation method using X-ray diffractometer and X-ray diffractometer
JP5967394B2 (en) Diffraction ring forming device and X-ray diffraction measuring device
JP6264591B1 (en) Thermal expansion coefficient measuring method and X-ray diffraction measuring apparatus
JP2012225796A (en) X-ray diffraction apparatus
JP5522411B2 (en) X-ray diffraction measurement apparatus and X-ray diffraction measurement method
JP5915943B2 (en) Diffraction ring formation system and X-ray diffraction measurement system
JP5408234B2 (en) X-ray diffraction measurement apparatus and residual stress measurement method
JP6037237B2 (en) X-ray diffractometer and measurement method using X-ray diffractometer
JP6221199B1 (en) X-ray diffraction measurement device
JP5920593B2 (en) X-ray diffraction measurement system
JP5967491B2 (en) X-ray diffractometer and X-ray incident angle detection method in X-ray diffractometer
JP5728753B2 (en) X-ray diffraction measurement device
JP5949704B2 (en) Diffraction ring formation method
JP5327285B2 (en) X-ray diffraction measurement device
JP2015215343A (en) Axial force evaluation method using diffraction ring formation device
JP5569510B2 (en) X-ray diffractometer
JP5962737B2 (en) X-ray diffraction measurement apparatus and X-ray diffraction measurement method
JP2014190899A (en) X-ray diffraction measurement equipment and x-ray diffraction measurement system
JP6115597B2 (en) X-ray diffractometer
JP2018072003A (en) Diffraction ring imaging apparatus, diffraction ring reading apparatus and method of measuring x-ray diffraction
JP6246965B1 (en) Axial force evaluation method using X-ray diffractometer
JP6195140B1 (en) X-ray diffraction measurement device
WO2014112031A1 (en) X-ray diffraction measurement apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13817477

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13817477

Country of ref document: EP

Kind code of ref document: A1