WO2014010046A1 - Laser resonator control power supply, laser oscillator, and laser oscillation system - Google Patents

Laser resonator control power supply, laser oscillator, and laser oscillation system Download PDF

Info

Publication number
WO2014010046A1
WO2014010046A1 PCT/JP2012/067704 JP2012067704W WO2014010046A1 WO 2014010046 A1 WO2014010046 A1 WO 2014010046A1 JP 2012067704 W JP2012067704 W JP 2012067704W WO 2014010046 A1 WO2014010046 A1 WO 2014010046A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
output
pulse
control power
resonator
Prior art date
Application number
PCT/JP2012/067704
Other languages
French (fr)
Japanese (ja)
Inventor
京藤 友博
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2014524539A priority Critical patent/JPWO2014010046A1/en
Priority to PCT/JP2012/067704 priority patent/WO2014010046A1/en
Priority to TW102101591A priority patent/TW201403980A/en
Publication of WO2014010046A1 publication Critical patent/WO2014010046A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/131Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
    • H01S3/1312Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation by controlling the optical pumping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0853Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode

Definitions

  • the present invention relates to a laser resonator control power source, a laser oscillator, and a laser oscillation system that control the pulse width of laser light output from a laser resonator.
  • This laser processing apparatus is an apparatus that outputs pulsed laser light from a laser oscillator by supplying pulse power from an inverter circuit to the laser oscillator.
  • the laser processing apparatus described in Patent Document 1 calculates the energy value of the detected pulse, and controls the pulse output after the detected pulse and the pulse energy input per hole based on the calculation result.
  • the laser processing apparatus described in Patent Document 2 branches a part of the laser light irradiated to the workpiece from the laser oscillator, detects the energy, and controls the laser so that the energy becomes a predetermined value. Control the light.
  • the present invention has been made in view of the above, and provides a laser resonator control power source, a laser oscillator, and a laser oscillation system capable of outputting a pulse laser beam having a desired pulse width with an apparatus having a simple configuration.
  • the purpose is to obtain.
  • the present invention receives an output command in which the output timing of the pulse laser beam is designated and a pulse width command in which the pulse width of the pulse laser beam is designated, Based on the output command, the control power source for outputting the pulse laser beam to the laser resonator is turned ON, and based on the output timing of the pulse laser beam actually output from the laser resonator and the pulse width command, The control power supply is turned off.
  • FIG. 1 is a diagram illustrating a configuration of a laser processing apparatus according to the first embodiment.
  • FIG. 2 is a diagram showing a configuration of the laser oscillator according to the first embodiment.
  • FIG. 3 is a diagram for explaining the output timing of the laser light output from the laser oscillator according to the first embodiment.
  • FIG. 4 is a diagram illustrating a configuration of the laser output detection unit.
  • FIG. 5 is a diagram showing a configuration of the laser oscillator according to the second embodiment.
  • FIG. 6 is a diagram illustrating a configuration of a laser oscillator according to the third embodiment.
  • FIG. 7 is a diagram for explaining the output timing of the laser beam output from the laser oscillator according to the third embodiment.
  • FIG. 8 is a diagram illustrating a configuration of a laser oscillator according to the fourth embodiment.
  • FIG. 1 is a diagram illustrating a configuration of a laser processing apparatus according to the first embodiment.
  • the laser processing apparatus 100 ⁇ / b> X is an apparatus that performs laser drilling on a substrate (work) 11 that is a substrate to be processed by irradiating the pulse laser beam 10.
  • the laser processing apparatus 100X of the present embodiment includes a laser oscillator 1X that can control the pulse output in real time.
  • the laser processing apparatus 100X includes a laser oscillator 1X that oscillates the pulsed laser light 10, a laser processing unit 3 that performs laser processing of the substrate 11, and a laser processing control device 2.
  • the laser oscillator 1 ⁇ / b> X oscillates the pulse laser beam 10 and sends it to the laser processing unit 3.
  • the laser processing unit 3 includes galvanometer mirrors 15X and 15Y, galvanometer scanners 16X and 16Y, an f ⁇ lens (condensing lens) 14, and an XY table (processing table) 12.
  • the galvano scanners 16X and 16Y have a function of moving the irradiation position on the substrate 11 by changing the trajectory of the pulse laser beam 10, and each processing area (galvano area) set on the substrate 11 with the pulse laser beam 10 is set. ) In two dimensions.
  • the galvano scanners 16X and 16Y rotate the galvanometer mirrors 15X and 15Y to a predetermined angle in order to scan the pulse laser beam 10 in the XY direction.
  • Galvano mirrors 15X and 15Y reflect the pulsed laser beam 10 and deflect it at a predetermined angle.
  • the galvanometer mirror 15X deflects the pulse laser beam 10 in the X direction
  • the galvanometer mirror 15Y deflects the pulse laser beam 10 in the Y direction.
  • the f ⁇ lens 14 is a lens having telecentricity.
  • the f ⁇ lens 14 deflects the pulsed laser light 10 in a direction perpendicular to the main surface of the substrate 11 and condenses (irradiates) the pulsed laser light 10 at a processing position (hole position 13) of the substrate 11.
  • the substrate 11 is an object to be processed such as a printed wiring board, and drilling is performed at a plurality of locations.
  • the substrate 11 has, for example, a three-layer structure of copper foil (conductor layer), resin (insulating layer), and copper foil (conductor layer).
  • the XY table 12 places the substrate 11 and moves in the XY plane by driving a motor (not shown). As a result, the XY table 12 moves the substrate 11 in the in-plane direction.
  • the galvano area is a range (scannable area) in which laser processing can be performed by the operation of the galvano mechanism (galvano scanners 16X and 16Y, galvano mirrors 15X and 15Y) without moving the XY table 12.
  • the XY table 12 is moved in the XY plane, and then the pulse laser beam 10 is two-dimensionally scanned by the galvano scanners 16X and 16Y.
  • the XY table 12 moves in order so that the center of each galvano area is directly below the center of the f ⁇ lens 14 (galvano origin).
  • the galvano mechanism operates so that each hole position 13 set in the galvano area becomes an irradiation position of the pulse laser beam 10 in order.
  • the movement between the galvano areas by the XY table 12 and the two-dimensional scanning of the pulse laser beam 10 in the galvano area by the galvano mechanism are sequentially performed within the surface of the substrate 11. As a result, all hole positions 13 in the surface of the substrate 11 are laser processed.
  • the laser processing control device 2 is connected to the laser oscillator 1X and the laser processing unit 3 (not shown in FIG. 1), and controls the laser oscillator 1X and the laser processing unit 3.
  • the laser processing control device 2 instructs the laser oscillator 1 ⁇ / b> X and the laser processing unit 3 on the laser processing conditions set in the processing program.
  • the laser processing conditions here include the output timing of the pulse laser beam 10, the laser beam irradiation position (coordinate values on the substrate 11), and the like.
  • FIG. 2 is a diagram showing a configuration of the laser oscillator according to the first embodiment.
  • a configuration of a laser processing apparatus 100A that is an example of the laser processing apparatus 100X will be described.
  • the laser processing apparatus 100A includes a laser oscillator 1A that is an example of a laser oscillator 1X.
  • the laser oscillator 1A has a resonator 4, a resonator control power source (laser resonator control power source) 5A, and a laser output detector 6.
  • the resonator 4 outputs the pulse laser beam 10 to the laser processing unit 3 at a timing according to an instruction from the resonator control power source 5A.
  • the laser output detection unit 6 detects the pulse laser beam 10 actually output from the resonator 4 by using the leaked light of the pulse laser beam 10 that is actually output from the resonator 4 to the laser processing unit 3.
  • the laser output detector 6 sends the detection result (laser output waveform) of the pulse laser beam 10 to the resonator control power source 5A.
  • the resonator control power source 5 ⁇ / b> A is configured using a computer or the like and controls the resonator 4.
  • the resonator control power supply 5A may be a power supply device that controls pulse discharge or a power supply device that controls an excitation light source such as an LD (Laser Diode) bar.
  • LD Laser Diode
  • the resonator control power source 5A is connected to the laser processing control device 2, and causes the resonator 4 to output the pulse laser beam 10 having a pulse width designated by the laser processing control device 2.
  • the resonator control power source 5 ⁇ / b> A causes the resonator 4 to start pulse output at a timing based on an output command (a beam output command 32 described later) of the pulse laser beam 10 sent from the laser processing control device 2.
  • the resonator control power source 5A ends the pulse output being output to the resonator 4 at the timing based on the laser output waveform (laser output waveform 34 described later) sent from the laser output detector 6.
  • the resonator control power source 5A controls the rising timing of the output waveform of the pulse laser beam 10 according to the instruction sent from the laser processing control device 2, and the pulse laser according to the instruction sent from the laser output detector 6 The falling timing of the output waveform of the light 10 is controlled.
  • FIG. 3 is a diagram for explaining the output timing of the laser light output from the laser oscillator according to the first embodiment.
  • the laser processing control apparatus 2 instructs the laser processing unit 3 to irradiate the pulse laser light 10 to the laser light irradiation position set in the processing program. send. Further, the laser processing control device 2 sends the output timing of the pulsed laser light 10 set in the processing program to the resonator control power source 5A. For example, the laser processing control device 2 receives a pulse width command 31 that specifies the pulse width of the pulse laser beam 10 and a beam output command (trigger) 32 that specifies the output start timing of the pulse laser beam 10. Send to 5A.
  • the resonator control power source 5A includes a memory for storing the pulse width (set pulse width W1) specified by the pulse width command 31, and stores the set pulse width W1.
  • the resonator control power supply 5A turns on the pulse control power supply (control power supply waveform 33) based on the output start timing of the pulse laser beam 10 specified by the beam output command 32 (S1).
  • the resonator control power source 5A generates a pulse output command waveform having the output start timing specified by the beam output command 32 and sends it to the laser oscillator 1A.
  • the control power supply waveform 33 is a power supply waveform for outputting the pulsed laser light 10 from the resonator 4. When the control power supply waveform 33 is turned on (when the control power supply waveform 33 rises), the pulsed laser light 10 is output from the resonator 4. Is output.
  • the laser output detector 6 detects the actual laser output (laser output waveform 34) (S2).
  • the timing at which the beam output command 32 is turned on and the timing at which the control power waveform 33 is turned on are substantially the same. However, there may be variations between the timing when the control power supply waveform 33 is turned ON and the timing when the resonator 4 outputs the pulse laser beam 10 (the laser output waveform 34 rises). For this reason, the pulse laser beam 10 may be output with a delay with respect to the ON timing of the control power waveform 33.
  • the laser output detector 6 detects the actual laser output and notifies the resonator control power source 5A as a laser oscillation detection signal (laser output waveform 34).
  • the resonator control power source 5A detects the rise of the laser output waveform 34 (output start timing of the pulse laser beam 10), and outputs a trigger 35 to the pulse width control board in the resonator control power source 5A at this rise timing ( S3).
  • the trigger 35 is information indicating the output start timing of the actual laser output.
  • the resonator control power source 5A treats the ON timing of the trigger 35 as the ON timing of the actual laser output. Thereby, the resonator control power supply 5A generates the pulse waveform 36 having the set pulse width W1 based on the ON timing of the trigger 35 and the stored set pulse width W1 (S4).
  • the resonator control power source 5A sends a completion signal of the set pulse width W1 to the resonator 4 based on the timing when the pulse waveform 36 is turned off (S5).
  • the completion signal of the set pulse width W1 is a control signal for turning off the pulse control power supply (instruction for lowering the control power supply waveform 33).
  • the resonator 4 turns off the output of the pulse laser beam 10.
  • the laser output waveform 34 falls (S6).
  • the laser processing control device 2 When outputting the first pulsed light, the laser processing control device 2 sends the pulse width command 31 and the beam output command 32 to the resonator control power source 5A, and stores the set pulse width W1 in the resonator control power source 5A. Let me. The laser processing control device 2 sends a beam output command 32 to the resonator control power source 5A when outputting the second and subsequent pulse lights. Thereby, the resonator control power source 5A sends a completion signal of the set pulse width W1 to the resonator 4 based on the stored set pulse width W1.
  • the laser processing control device 2 supplies the resonator control power source 5A to the resonator control power source 5A.
  • a pulse width command 31 and a beam output command 32 may be sent.
  • the laser output detection unit 6 notifies the actual laser output timing to the resonator control power supply 5A, and the resonator control power supply 5A has the set pulse width W1 based on the actual laser output timing.
  • a completion signal is generated and sent to the resonator 4.
  • a completion signal having a set pulse width W1 is sent to the resonator 4 based on the ON timing of the actual laser output.
  • the resonator 4 turns off the laser pulse output (power supply) based on the generated completion signal, so that the resonator 4 can output the pulse laser beam 10 having the set pulse width W1. .
  • FIG. 4 is a diagram illustrating a configuration of the laser output detection unit.
  • the laser output detection unit 6 includes a laser detection sensor 21, an amplification circuit 22, a differentiation circuit 23, a laser oscillation determination circuit 24, and a determination output unit 25.
  • the laser detection sensor 21 is a high-speed sensor (photodetection sensor) using a photodiode or the like, and detects the pulsed laser light 10 at high speed.
  • the laser detection sensor 21 of the present embodiment detects the leaked light of the pulse laser beam 10.
  • the laser detection sensor 21 sends a leaked light detection result (detection signal) to the amplifier circuit 22.
  • the amplification circuit 22 amplifies the detection signal sent from the laser detection sensor 21 and sends it to the differentiation circuit 23.
  • the differentiation circuit 23 differentiates the detection signal amplified by the amplification circuit 22 and sends it to the laser oscillation determination circuit 24.
  • the laser oscillation determination circuit 24 determines the rising timing of the detection signal based on the differentiated voltage value of the detection signal and a preset threshold value. Thereby, the laser oscillation determination circuit 24 determines whether or not laser output has been performed.
  • the laser oscillation determination circuit 24 sends a detection signal to the determination output unit 25.
  • the determination output unit 25 converts the detection signal into a digital signal and removes noise, and sends the detection signal after noise removal to the resonator control power supply 5A as a laser oscillation detection signal.
  • the laser oscillator 1A includes the laser output detection unit 6.
  • the laser oscillator 1A and the laser output detection unit 6 may be configured separately.
  • the laser processing control device 2 and the resonator control power source 5X have a resolution that is less than the time variation from when the pulse control power source is turned on until the actual laser output is detected.
  • the laser output performed by the laser oscillator 1X is desirably controlled so that the peak output does not fluctuate greatly by using various methods such as current control or constant voltage control.
  • the resonator control power supply 5A detects the rise of the laser output waveform 34.
  • the rise of the laser output waveform 34 may be detected by the laser output detection unit 6.
  • the pulse waveform 36 having the set pulse width W1 is generated based on the timing at which the actual laser output detected using the laser output detector 6 is turned on.
  • the pulse width is controlled so that the actual laser output is turned off at the timing when the pulse waveform 36 is turned off. This makes it possible to control the pulse output in real time. Therefore, it is possible to output the pulse laser beam 10 having a desired pulse width (set pulse width W1) with an apparatus having a simple configuration. As a result, the pulse output can be stabilized, and the reliability of laser processing is improved.
  • Embodiment 2 FIG. Next, a second embodiment of the present invention will be described with reference to FIG.
  • the timing at which the actual laser output is turned ON is detected using the pulse laser beam 10 sent from the resonator 4 to the laser processing unit 3.
  • FIG. 5 is a diagram showing a configuration of the laser oscillator according to the second embodiment.
  • a configuration of a laser processing apparatus 100B which is an example of the laser processing apparatus 100X will be described.
  • the laser processing apparatus 100B includes a laser oscillator 1B that is an example of a laser oscillator 1X.
  • the same number is attached
  • the laser oscillator 1B has a resonator 4, a resonator control power source 5A, a laser output detection unit 6, and a spectroscopic unit 7.
  • a spectroscopic unit 7 is disposed between the resonator 4 and the laser processing unit 3.
  • the laser output detection unit 6 is connected to the spectroscopic unit 7 and the resonator control power source 5A.
  • the spectroscopic unit 7 splits the pulsed laser light 10 sent from the resonator 4 to the laser processing unit 3. Specifically, the spectroscopic unit 7 uses the pulse laser beam 10 output from the resonator 4 as a first laser beam used for laser processing and a second laser beam used for detecting the output waveform of the pulse laser beam 10. And then spectroscopically. The spectroscopic unit 7 sends one pulsed laser beam 10 (first laser beam) subjected to the spectroscopy to the laser processing unit 3 and the other pulsed laser beam 10 (second laser beam) subjected to the spectroscopy to the laser output detection unit 6. Send to.
  • first laser beam first laser beam
  • second laser beam pulsed laser beam
  • the spectroscopic unit 7 may send the partially transmitted light of the pulsed laser light 10 output from the resonator 4 to the laser output detecting unit 6, or laser the partially reflected light of the pulsed laser light 10 output from the resonator 4. You may send to the output detection part 6.
  • the laser output detection unit 6 of the present embodiment detects the ON timing (output) of the pulse laser beam 10 using the pulse laser beam 10 dispersed by the spectroscopic unit 7 and sends it to the resonator control power source 5A.
  • the laser oscillator 1A according to the first embodiment detects the timing at which the actual laser output is turned on by using leakage light
  • the laser oscillator 1B according to the second embodiment has a pulsed laser beam that is spectrally separated. 10 is used to detect the timing when the actual laser output is turned ON.
  • the resonator control power supply 5A generates a pulse waveform 36 having a set pulse width W1 based on the timing when the actual laser output detected using the laser output detector 6 is turned on, as in the first embodiment. . Then, the resonator control power source 5A controls the resonator 4 so that the actual laser output is turned OFF at the OFF timing of the pulse waveform 36.
  • the laser oscillator 1B includes the spectroscopic unit 7 and the laser output detection unit 6. However, at least one of the spectroscopic unit 7 and the laser output detection unit 6 is configured separately from the laser oscillator 1B. Also good.
  • the actual laser output with the set pulse width W1 is based on the timing at which the actual laser output detected using the laser output detector 6 is turned on. Since the resonator 4 is controlled so as to be turned off, the pulse output can be controlled in real time. Therefore, it is possible to output the pulse laser beam 10 having a desired pulse width with an apparatus having a simple configuration.
  • Embodiment 3 FIG. Next, Embodiment 3 of the present invention will be described with reference to FIGS.
  • the output timing of the pulsed laser light 10 is controlled with a high-speed shutter based on the timing at which the actual laser output detected using the laser output detector 6 is turned on.
  • FIG. 6 is a diagram illustrating a configuration of a laser oscillator according to the third embodiment.
  • a configuration of a laser processing apparatus 100C which is an example of the laser processing apparatus 100X will be described.
  • the laser processing apparatus 100C includes a laser oscillator 1C that is an example of a laser oscillator 1X. 6 that are the same as those of the laser processing apparatus 100A of the first embodiment shown in FIG. 2 and the laser processing apparatus 100B of the second embodiment shown in FIG.
  • the description which overlaps is abbreviate
  • the laser oscillator 1C has a resonator 4, a resonator control power source 5B, a laser output detection unit 6, a spectroscopic unit 7, a high speed shutter 8, and a high speed shutter control power source 9.
  • a high-speed shutter 8 and a spectroscopic unit 7 are disposed between the resonator 4 and the laser processing unit 3.
  • the high-speed shutter 8 is disposed between the resonator 4 and the spectroscopic unit 7, and the spectroscopic unit 7 is disposed between the high-speed shutter 8 and the laser processing unit 3.
  • the laser output detection unit 6 is connected to the spectroscopic unit 7 and the high-speed shutter control power source 9, and the high-speed shutter control power source 9 is connected to the laser processing control device 2, the laser output detection unit 6 and the high-speed shutter 8.
  • the resonator control power source 5B is connected to the laser processing control device 2, and causes the resonator 4 to output a pulse laser beam 10 having a pulse width designated by the laser processing control device 2.
  • the laser processing control device 2 according to the present embodiment provides a pulse width command for causing the resonator control power supply 5B to output a pulse laser beam 10 having a pulse width (pulse width W2 described later) wider than a desired set pulse width W1. send.
  • the resonator control power source 5B supplies the pulse laser beam 10 having the pulse width W2 to the resonator 4 at a timing based on an output command (a beam output command 42 described later) of the pulse laser beam 10 sent from the laser processing control device 2.
  • the resonator control power source 5 ⁇ / b> B controls ON / OFF of the pulse laser beam 10 (start and end of pulse output) in accordance with a command from the laser processing control device 2.
  • the high-speed shutter 8 is configured using, for example, an optical switch element.
  • the high-speed shutter 8 switches ON / OFF of the pulse laser beam 10 sent from the resonator 4 to the laser processing unit 3. In other words, the high-speed shutter 8 switches between transmission and blocking of the pulsed laser light 10 output from the resonator 4.
  • the pulse laser beam 10 output from the resonator 4 is sent to the laser processing unit 3 via the spectroscopic unit 7.
  • the pulsed laser light 10 output from the resonator 4 is stopped by the high-speed shutter 8, so that the pulsed laser light 10 does not reach the spectroscopic unit 7 or the laser processing unit 3.
  • the spectroscopic unit 7 splits the pulsed laser light 10 sent from the resonator 4 to the laser processing unit 3 via the high-speed shutter 8.
  • the spectroscopic unit 7 sends one pulsed laser beam 10 that has been split to the laser processing unit 3, and sends the other split pulsed laser beam 10 to the laser output detecting unit 6.
  • the laser output detection unit 6 of the present embodiment detects the ON timing (output) of the pulse laser beam 10 using the pulse laser beam 10 (second laser beam) split by the spectroscopic unit 7, and performs high-speed shutter control. Send to power source 9.
  • the high-speed shutter control power source 9 is configured using EO (electro-optical element), AO (acousto-optical element), or the like, and is a power source that controls the high-speed shutter 8.
  • the high-speed shutter control power source 9 is connected to the laser processing control device 2 and causes the high-speed shutter 8 to output a pulse laser beam 10 having a pulse width (set pulse width W1) designated by the laser processing control device 2.
  • the high-speed shutter control power source 9 causes the resonator 4 to start pulse output at a timing based on an output command (a beam output command 42 described later) of the pulse laser beam 10 sent from the laser processing control device 2.
  • the high-speed shutter control power source 9 of the present embodiment ends the pulse output being output to the high-speed shutter 8 at a timing based on the laser output waveform (laser output waveform 45 described later) sent from the laser output detection unit 6.
  • the high-speed shutter control power source 9 controls the rising timing of the output waveform of the pulse laser beam 10 according to the instruction sent from the laser processing control device 2, and the pulse laser according to the instruction sent from the laser output detection unit 6.
  • the falling timing of the output waveform of the light 10 is controlled.
  • FIG. 7 is a diagram for explaining the output timing of the laser beam output from the laser oscillator according to the third embodiment.
  • the laser processing control apparatus 2 instructs the laser processing unit 3 to irradiate the pulse laser light 10 to the laser light irradiation position set in the processing program. send. Further, the laser processing control device 2 sends the output timing of the pulsed laser light 10 set in the processing program to the resonator control power source 5B.
  • the laser processing control device 2 receives a pulse width command (not shown) that specifies the pulse width of the pulse laser beam 10 and a beam output command (trigger) 42 that specifies the output start timing of the pulse laser beam 10. This is sent to the resonator control power source 5B. Further, the laser processing control device 2 outputs, for example, a pulse width command 41 specifying the pulse width of the pulsed laser light 10 and a beam output command (trigger) 42 specifying the output start timing of the pulsed laser light 10 at a high-speed shutter. Send to control power supply 9.
  • a pulse width command (not shown) that specifies the pulse width of the pulse laser beam 10
  • a beam output command (trigger) 42 specifies the output start timing of the pulse laser beam 10.
  • the beam output command 42 designating the same timing is sent to the resonator control power supply 5B and the high-speed shutter control power supply 9.
  • the pulse width command 41 is a command for designating a set pulse width W1, which is a desired pulse width.
  • the pulse width command sent to the resonator control power source 5B is a command for designating a pulse width W2 wider than the set pulse width W1.
  • the resonator control power source 5B stores the pulse width W2.
  • the resonator control power supply 5B turns on the pulse control power supply based on the output start timing and the pulse width W2 of the pulse laser beam 10 specified by the laser processing control device 2.
  • the resonator control power source 5 ⁇ / b> B causes the resonator 4 to output the pulse laser beam 10 having a waveform based on the command specified by the laser processing control device 2.
  • the pulse laser beam 10 having the laser output waveform 43 (pulse width W2) having a pulse width wider than the set pulse width W1 is input to the high-speed shutter 8.
  • the high-speed shutter control power supply 9 turns on the high-speed shutter 8 (control power supply waveform 44) based on the output start timing of the pulse laser beam 10 specified by the beam output command 42 (S11). In other words, the high-speed shutter control power supply 9 generates a pulse output command waveform having the output start timing specified by the beam output command 42 and sends it to the high-speed shutter 8.
  • the control power supply waveform (switching control power supply) 44 is a power supply waveform for outputting the pulse laser beam 10 from the high-speed shutter 8. When the control power supply waveform 44 is turned on, the pulse laser beam 10 is output from the high-speed shutter 8.
  • the pulse laser beam 10 is sent to the spectroscopic unit 7. Thereby, the actual laser output (laser output waveform 45) is detected by the laser output detector 6 (S12).
  • the timing at which the beam output command 42 is turned on and the timing at which the control power waveform 44 is turned on are substantially the same. However, there may be variations between the timing when the control power supply waveform 44 is turned ON and the timing when the high-speed shutter 8 outputs the pulse laser beam 10 (the laser output waveform 45 rises). For this reason, the pulse laser beam 10 may be output with a delay with respect to the ON timing of the control power waveform 44.
  • the laser output detector 6 detects the actual laser output and notifies the resonator control power supply 5B as a laser oscillation detection signal (laser output waveform 45).
  • the resonator control power source 5B detects the rise of the laser output waveform 45 (output start timing of the pulse laser beam 10), and outputs the trigger 46 to the pulse width control board in the resonator control power source 5A at this rise timing ( S13).
  • the trigger 46 is information indicating the output start timing of the actual laser output.
  • the high-speed shutter control power supply 9 When the high-speed shutter control power supply 9 receives the trigger 46 from the laser output detector 6, the high-speed shutter control power supply 9 treats the ON timing of the trigger 46 as the ON timing of the actual laser output. Thereby, the high-speed shutter control power supply 9 generates a pulse waveform 47 having the set pulse width W1 based on the ON timing of the trigger 46 and the stored set pulse width W1 (S14).
  • the high-speed shutter control power supply 9 sends a completion signal of the set pulse width W1 to the high-speed shutter 8 based on the timing when the pulse waveform 47 is turned off (S15).
  • the completion signal of the set pulse width W1 is a control signal (instruction to lower the control power waveform 44) for turning off the switching control power to the high-speed shutter 8.
  • the high-speed shutter 8 turns off the output of the pulse laser beam 10.
  • the laser output waveform 45 falls (S16).
  • the laser output detection unit 6 notifies the high-speed shutter control power supply 9 of the laser output ON timing, and the high-speed shutter control power supply 9 sets the set pulse width W1 based on the laser output ON timing. Is generated and sent to the high-speed shutter 8.
  • a completion signal having the set pulse width W ⁇ b> 1 is sent to the high-speed shutter 8 based on the ON timing of the laser output waveform 45.
  • the high-speed shutter 8 turns off the laser pulse output (power supply) based on the generated completion signal, so that the high-speed shutter 8 can output the pulse laser beam 10 having the set pulse width W1. .
  • the laser oscillator 1C includes the spectroscopic unit 7 and the laser output detection unit 6. However, at least one of the spectroscopic unit 7, the laser output detection unit 6, the high-speed shutter 8, and the high-speed shutter control power source 9 is used. One may be configured separately from the laser oscillator 1C.
  • a pulse width command specifying a pulse width W2 wider than the set pulse width W1 is sent from the laser processing control device 2 to the resonator control power supply 5B.
  • a pulse width command specifying the set pulse width W1 may be sent to the resonator control power supply 5B.
  • the resonator control power supply 5B sets the pulse width W2 using the set pulse width W1.
  • the high-speed shutter 8 is set so that the actual laser output is turned off with the set pulse width W1. Since the control is performed, the pulse output can be controlled in real time. Therefore, it is possible to output the pulse laser beam 10 having a desired pulse width with an apparatus having a simple configuration.
  • Embodiment 4 a fourth embodiment of the present invention will be described with reference to FIG.
  • a high-speed shutter 8, a high-speed shutter control power source 9, a spectroscopic unit 7, and a laser output detection unit 6 are configured separately from a laser oscillator (laser oscillator 1D described later).
  • a laser oscillation system is configured by using the laser oscillator 1D, the high-speed shutter 8, the high-speed shutter control power source 9, the spectroscopic unit 7, and the laser output detection unit 6.
  • FIG. 8 is a diagram showing a configuration of a laser oscillator according to the fourth embodiment.
  • a configuration of a laser processing apparatus 100D which is an example of the laser processing apparatus 100X will be described.
  • the laser processing apparatus 100D includes a laser oscillator 1D that is an example of a laser oscillator 1X. Note that, among the components in FIG. 8, the components that achieve the same functions as those of the laser processing apparatuses 100A to 100C shown in FIGS. 2, 5, and 6 are given the same numbers, and redundant descriptions are omitted. .
  • the laser oscillator 1D has a resonator 4 and a resonator control power source 5B.
  • a high-speed shutter 8 and a spectroscopic unit 7 are disposed between the laser oscillator 1D and the laser processing unit 3.
  • the high-speed shutter 8 is disposed between the resonator 4 and the spectroscopic unit 7, and the spectroscopic unit 7 is disposed between the high-speed shutter 8 and the laser processing unit 3.
  • the laser output detection unit 6 is connected to the spectroscopic unit 7 and the high-speed shutter control power source 9, and the high-speed shutter control power source 9 is connected to the laser processing control device 2, the laser output detection unit 6 and the high-speed shutter 8.
  • the high-speed shutter 8, the high-speed shutter control power source 9, the spectroscopic unit 7, and the laser output detection unit 6 are configured separately from the laser oscillator 1D.
  • the high-speed shutter 8 and the spectroscopic unit 7 are arranged in the optical path between the laser oscillator 1D and the laser processing unit 3.
  • the actual laser output is set with the set pulse width W1 based on the timing at which the actual laser output detected using the laser output detector 6 is turned on, as in the second embodiment. Since the high-speed shutter 8 is controlled to be turned off, the pulse output can be controlled in real time. Therefore, it is possible to output the pulse laser beam 10 having a desired pulse width with an apparatus having a simple configuration.
  • the laser resonator control power source, the laser oscillator, and the laser oscillation system according to the present invention are suitable for the pulse width control of the laser beam output from the laser resonator.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Lasers (AREA)
  • Laser Beam Processing (AREA)

Abstract

Receiving a beam output command by which the output timing of pulse laser light is specified and a pulse width command by which the pulse width (W1) of the pulse laser light is specified, a laser resonator control power supply turns on, according to the beam output command, a pulse control power supply for outputting the pulse laser light to a laser resonator and turns off, according to the output timing of the pulse laser light actually output from the laser resonator and the pulse width command, the pulse control power supply for outputting the pulse laser light to the laser resonator.

Description

レーザ共振器制御電源、レーザ発振器およびレーザ発振システムLaser resonator control power supply, laser oscillator and laser oscillation system
 本発明は、レーザ共振器から出力されるレーザ光のパルス幅を制御するレーザ共振器制御電源、レーザ発振器およびレーザ発振システムに関する。 The present invention relates to a laser resonator control power source, a laser oscillator, and a laser oscillation system that control the pulse width of laser light output from a laser resonator.
 パルスレーザ光を用いてプリント基板などの被加工物に穴あけ加工をする装置としてレーザ加工装置がある。このレーザ加工装置は、インバータ回路からレーザ発振器にパルス電力を供給することによって、レーザ発振器からパルスレーザ光を出力させる装置である。 There is a laser processing device as a device for drilling a workpiece such as a printed circuit board using a pulsed laser beam. This laser processing apparatus is an apparatus that outputs pulsed laser light from a laser oscillator by supplying pulse power from an inverter circuit to the laser oscillator.
 特許文献1に記載のレーザ加工装置は、検出したパルスのエネルギ値を算出し、算出結果に基づいて、検出したパルス以降のパルス出力や、1穴あたりに投入するパルスエネルギを制御している。 The laser processing apparatus described in Patent Document 1 calculates the energy value of the detected pulse, and controls the pulse output after the detected pulse and the pulse energy input per hole based on the calculation result.
 また、特許文献2に記載のレーザ加工装置は、レーザ発振器から被加工物に照射されるレーザ光の一部を分岐して、そのエネルギを検出し、該エネルギが所定値となるように、レーザ光を制御している。 Further, the laser processing apparatus described in Patent Document 2 branches a part of the laser light irradiated to the workpiece from the laser oscillator, detects the energy, and controls the laser so that the energy becomes a predetermined value. Control the light.
特開平11-287707号公報JP 11-287707 A 特開2003-53564号公報JP 2003-53564 A
 しかしながら、上記前者の従来技術では、照射中のパルス出力をリアルタイムに制御することは困難であった。また、上記後者の従来技術では、エネルギの検出精度やエネルギ検出後の制御の応答性によってシステムの信頼性が左右されるので、実現性に乏しかった。また、安定したシステムを構築できたとしても、信頼性の高い部品を使用する必要があるので、非常に高額なシステムになってしまうという問題があった。 However, in the former prior art, it is difficult to control the pulse output during irradiation in real time. In the latter prior art, the reliability of the system depends on the energy detection accuracy and the control responsiveness after energy detection. Even if a stable system can be constructed, it is necessary to use highly reliable parts, which results in a very expensive system.
 本発明は、上記に鑑みてなされたものであって、簡易な構成の装置で所望のパルス幅を有したパルスレーザ光を出力させることができるレーザ共振器制御電源、レーザ発振器およびレーザ発振システムを得ることを目的とする。 The present invention has been made in view of the above, and provides a laser resonator control power source, a laser oscillator, and a laser oscillation system capable of outputting a pulse laser beam having a desired pulse width with an apparatus having a simple configuration. The purpose is to obtain.
 上述した課題を解決し、目的を達成するために、本発明は、パルスレーザ光の出力タイミングが指定された出力指令および前記パルスレーザ光のパルス幅が指定されたパルス幅指令を受信するとともに、前記出力指令に基づいて、レーザ共振器に前記パルスレーザ光を出力させる制御電源をONにし、前記レーザ共振器から実際に出力されたパルスレーザ光の出力タイミングおよび前記パルス幅指令に基づいて、前記制御電源をOFFにすることを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention receives an output command in which the output timing of the pulse laser beam is designated and a pulse width command in which the pulse width of the pulse laser beam is designated, Based on the output command, the control power source for outputting the pulse laser beam to the laser resonator is turned ON, and based on the output timing of the pulse laser beam actually output from the laser resonator and the pulse width command, The control power supply is turned off.
 本発明によれば、簡易な構成の装置で所望のパルス幅を有したパルスレーザ光を出力させることができるという効果を奏する。 According to the present invention, it is possible to output a pulsed laser beam having a desired pulse width with an apparatus having a simple configuration.
図1は、実施の形態1に係るレーザ加工装置の構成を示す図である。FIG. 1 is a diagram illustrating a configuration of a laser processing apparatus according to the first embodiment. 図2は、実施の形態1に係るレーザ発振器の構成を示す図である。FIG. 2 is a diagram showing a configuration of the laser oscillator according to the first embodiment. 図3は、実施の形態1に係るレーザ発振器から出力されるレーザ光の出力タイミングを説明するための図である。FIG. 3 is a diagram for explaining the output timing of the laser light output from the laser oscillator according to the first embodiment. 図4は、レーザ出力検出部の構成を示す図である。FIG. 4 is a diagram illustrating a configuration of the laser output detection unit. 図5は、実施の形態2に係るレーザ発振器の構成を示す図である。FIG. 5 is a diagram showing a configuration of the laser oscillator according to the second embodiment. 図6は、実施の形態3に係るレーザ発振器の構成を示す図である。FIG. 6 is a diagram illustrating a configuration of a laser oscillator according to the third embodiment. 図7は、実施の形態3に係るレーザ発振器から出力されるレーザ光の出力タイミングを説明するための図である。FIG. 7 is a diagram for explaining the output timing of the laser beam output from the laser oscillator according to the third embodiment. 図8は、実施の形態4に係るレーザ発振器の構成を示す図である。FIG. 8 is a diagram illustrating a configuration of a laser oscillator according to the fourth embodiment.
 以下に、本発明の実施の形態に係るレーザ共振器制御電源、レーザ発振器およびレーザ発振システムを図面に基づいて詳細に説明する。なお、これらの実施の形態によりこの発明が限定されるものではない。 Hereinafter, a laser resonator control power source, a laser oscillator, and a laser oscillation system according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to these embodiments.
実施の形態1.
 図1は、実施の形態1に係るレーザ加工装置の構成を示す図である。レーザ加工装置100Xは、パルスレーザ光10を照射することによって被処理基板である基板(ワーク)11にレーザ穴あけ加工を行う装置である。本実施の形態のレーザ加工装置100Xは、リアルタイムにパルス出力を制御可能なレーザ発振器1Xを備えている。
Embodiment 1 FIG.
FIG. 1 is a diagram illustrating a configuration of a laser processing apparatus according to the first embodiment. The laser processing apparatus 100 </ b> X is an apparatus that performs laser drilling on a substrate (work) 11 that is a substrate to be processed by irradiating the pulse laser beam 10. The laser processing apparatus 100X of the present embodiment includes a laser oscillator 1X that can control the pulse output in real time.
 レーザ加工装置100Xは、パルスレーザ光10を発振するレーザ発振器1Xと、基板11のレーザ加工を行うレーザ加工部3と、レーザ加工制御装置2と、を備えている。レーザ発振器1Xは、パルスレーザ光10を発振して、レーザ加工部3に送出する。レーザ加工部3は、ガルバノミラー15X,15Y、ガルバノスキャナ16X,16Y、fθレンズ(集光レンズ)14、XYテーブル(加工テーブル)12を備えている。 The laser processing apparatus 100X includes a laser oscillator 1X that oscillates the pulsed laser light 10, a laser processing unit 3 that performs laser processing of the substrate 11, and a laser processing control device 2. The laser oscillator 1 </ b> X oscillates the pulse laser beam 10 and sends it to the laser processing unit 3. The laser processing unit 3 includes galvanometer mirrors 15X and 15Y, galvanometer scanners 16X and 16Y, an fθ lens (condensing lens) 14, and an XY table (processing table) 12.
 ガルバノスキャナ16X,16Yは、パルスレーザ光10の軌道を変化させて基板11への照射位置を移動させる機能を有しており、パルスレーザ光10を基板11に設定された各加工エリア(ガルバノエリア)内で2次元的に走査する。ガルバノスキャナ16X,16Yは、パルスレーザ光10をX-Y方向に走査するために、ガルバノミラー15X,15Yを所定の角度に回転させる。 The galvano scanners 16X and 16Y have a function of moving the irradiation position on the substrate 11 by changing the trajectory of the pulse laser beam 10, and each processing area (galvano area) set on the substrate 11 with the pulse laser beam 10 is set. ) In two dimensions. The galvano scanners 16X and 16Y rotate the galvanometer mirrors 15X and 15Y to a predetermined angle in order to scan the pulse laser beam 10 in the XY direction.
 ガルバノミラー15X,15Yは、パルスレーザ光10を反射して所定の角度に偏向させる。ガルバノミラー15Xは、パルスレーザ光10をX方向に偏向させ、ガルバノミラー15Yは、パルスレーザ光10をY方向に偏向させる。 Galvano mirrors 15X and 15Y reflect the pulsed laser beam 10 and deflect it at a predetermined angle. The galvanometer mirror 15X deflects the pulse laser beam 10 in the X direction, and the galvanometer mirror 15Y deflects the pulse laser beam 10 in the Y direction.
 fθレンズ14は、テレセントリック性を有したレンズである。fθレンズ14は、パルスレーザ光10を基板11の主面に対して垂直な方向に偏向させるとともに、パルスレーザ光10を基板11の加工位置(穴位置13)に集光(照射)させる。 The fθ lens 14 is a lens having telecentricity. The fθ lens 14 deflects the pulsed laser light 10 in a direction perpendicular to the main surface of the substrate 11 and condenses (irradiates) the pulsed laser light 10 at a processing position (hole position 13) of the substrate 11.
 基板11は、プリント配線板などの加工対象物であり、複数個所に穴あけ加工が行なわれる。基板11は、例えば、銅箔(導体層)、樹脂(絶縁層)、銅箔(導体層)の3層構造をなしている。 The substrate 11 is an object to be processed such as a printed wiring board, and drilling is performed at a plurality of locations. The substrate 11 has, for example, a three-layer structure of copper foil (conductor layer), resin (insulating layer), and copper foil (conductor layer).
 XYテーブル12は、基板11を載置するとともに、図示しないモータの駆動によってXY平面内を移動する。これにより、XYテーブル12は、基板11を面内方向に移動させる。 The XY table 12 places the substrate 11 and moves in the XY plane by driving a motor (not shown). As a result, the XY table 12 moves the substrate 11 in the in-plane direction.
 XYテーブル12を移動させることなくガルバノ機構(ガルバノスキャナ16X,16Y、ガルバノミラー15X,15Y)の動作によってレーザ加工が可能な範囲(走査可能領域)がガルバノエリア(スキャンエリア)である。レーザ加工装置100Xでは、XYテーブル12をXY平面内で移動させた後、ガルバノスキャナ16X,16Yによってパルスレーザ光10を2次元走査する。XYテーブル12は、各ガルバノエリアの中心がfθレンズ14の中心直下(ガルバノ原点)となるよう順番に移動していく。ガルバノ機構は、ガルバノエリア内に設定されている各穴位置13が順番にパルスレーザ光10の照射位置となるよう動作する。XYテーブル12によるガルバノエリア間の移動とガルバノ機構によるガルバノエリア内でのパルスレーザ光10の2次元走査とが、基板11面内で順番に行なわれていく。これにより、基板11面内の全ての穴位置13がレーザ加工される。 The galvano area (scanning area) is a range (scannable area) in which laser processing can be performed by the operation of the galvano mechanism ( galvano scanners 16X and 16Y, galvano mirrors 15X and 15Y) without moving the XY table 12. In the laser processing apparatus 100X, the XY table 12 is moved in the XY plane, and then the pulse laser beam 10 is two-dimensionally scanned by the galvano scanners 16X and 16Y. The XY table 12 moves in order so that the center of each galvano area is directly below the center of the fθ lens 14 (galvano origin). The galvano mechanism operates so that each hole position 13 set in the galvano area becomes an irradiation position of the pulse laser beam 10 in order. The movement between the galvano areas by the XY table 12 and the two-dimensional scanning of the pulse laser beam 10 in the galvano area by the galvano mechanism are sequentially performed within the surface of the substrate 11. As a result, all hole positions 13 in the surface of the substrate 11 are laser processed.
 レーザ加工制御装置2は、レーザ発振器1Xおよびレーザ加工部3に接続(図1では図示せず)されており、レーザ発振器1Xおよびレーザ加工部3を制御する。レーザ加工制御装置2は、基板11をレーザ加工する際には、加工プログラムに設定されたレーザ加工条件をレーザ発振器1Xとレーザ加工部3に指示する。ここでのレーザ加工条件は、パルスレーザ光10の出力タイミング、レーザ光照射位置(基板11上の座標値)などを含んでいる。 The laser processing control device 2 is connected to the laser oscillator 1X and the laser processing unit 3 (not shown in FIG. 1), and controls the laser oscillator 1X and the laser processing unit 3. When laser processing the substrate 11, the laser processing control device 2 instructs the laser oscillator 1 </ b> X and the laser processing unit 3 on the laser processing conditions set in the processing program. The laser processing conditions here include the output timing of the pulse laser beam 10, the laser beam irradiation position (coordinate values on the substrate 11), and the like.
 つぎに、レーザ発振器1Xの構成について説明する。図2は、実施の形態1に係るレーザ発振器の構成を示す図である。ここでは、レーザ加工装置100Xの一例であるレーザ加工装置100Aの構成について説明する。レーザ加工装置100Aは、レーザ発振器1Xの一例であるレーザ発振器1Aを備えている。 Next, the configuration of the laser oscillator 1X will be described. FIG. 2 is a diagram showing a configuration of the laser oscillator according to the first embodiment. Here, a configuration of a laser processing apparatus 100A that is an example of the laser processing apparatus 100X will be described. The laser processing apparatus 100A includes a laser oscillator 1A that is an example of a laser oscillator 1X.
 レーザ発振器1Aは、共振器4、共振器制御電源(レーザ共振器制御電源)5A、レーザ出力検出部6を有している。共振器4は、共振器制御電源5Aからの指示に従ったタイミングでパルスレーザ光10をレーザ加工部3に出力する。 The laser oscillator 1A has a resonator 4, a resonator control power source (laser resonator control power source) 5A, and a laser output detector 6. The resonator 4 outputs the pulse laser beam 10 to the laser processing unit 3 at a timing according to an instruction from the resonator control power source 5A.
 レーザ出力検出部6は、共振器4がレーザ加工部3に実際に出力したパルスレーザ光10の漏れ光を用いて、共振器4から実際に出力されたパルスレーザ光10を検出する。レーザ出力検出部6は、パルスレーザ光10の検出結果(レーザ出力波形)を共振器制御電源5Aに送る。 The laser output detection unit 6 detects the pulse laser beam 10 actually output from the resonator 4 by using the leaked light of the pulse laser beam 10 that is actually output from the resonator 4 to the laser processing unit 3. The laser output detector 6 sends the detection result (laser output waveform) of the pulse laser beam 10 to the resonator control power source 5A.
 共振器制御電源5Aは、コンピュータなどを用いて構成されており、共振器4を制御する。共振器制御電源5Aは、パルス放電を制御する電源装置であってもよいし、LD(Laser Diode)バーなどの励起光源を制御する電源装置であってもよい。 The resonator control power source 5 </ b> A is configured using a computer or the like and controls the resonator 4. The resonator control power supply 5A may be a power supply device that controls pulse discharge or a power supply device that controls an excitation light source such as an LD (Laser Diode) bar.
 共振器制御電源5Aは、レーザ加工制御装置2に接続されており、レーザ加工制御装置2から指定されたパルス幅のパルスレーザ光10を共振器4に出力させる。共振器制御電源5Aは、レーザ加工制御装置2から送られてくるパルスレーザ光10の出力指令(後述するビーム出力指令32)に基づくタイミングで共振器4にパルス出力を開始させる。また、本実施の形態の共振器制御電源5Aは、レーザ出力検出部6から送られてくるレーザ出力波形(後述するレーザ出力波形34)に基づくタイミングで共振器4に出力中のパルス出力を終了させる。 The resonator control power source 5A is connected to the laser processing control device 2, and causes the resonator 4 to output the pulse laser beam 10 having a pulse width designated by the laser processing control device 2. The resonator control power source 5 </ b> A causes the resonator 4 to start pulse output at a timing based on an output command (a beam output command 32 described later) of the pulse laser beam 10 sent from the laser processing control device 2. Further, the resonator control power source 5A according to the present embodiment ends the pulse output being output to the resonator 4 at the timing based on the laser output waveform (laser output waveform 34 described later) sent from the laser output detector 6. Let
 換言すると、共振器制御電源5Aは、レーザ加工制御装置2から送られてくる指示に従ってパルスレーザ光10の出力波形の立ち上がりタイミングを制御し、レーザ出力検出部6から送られてくる指示に従ってパルスレーザ光10の出力波形の立ち下がりタイミングを制御する。 In other words, the resonator control power source 5A controls the rising timing of the output waveform of the pulse laser beam 10 according to the instruction sent from the laser processing control device 2, and the pulse laser according to the instruction sent from the laser output detector 6 The falling timing of the output waveform of the light 10 is controlled.
 つぎに、レーザ発振器1Aから出力されるパルスレーザ光10の出力タイミングについて説明する。図3は、実施の形態1に係るレーザ発振器から出力されるレーザ光の出力タイミングを説明するための図である。 Next, the output timing of the pulse laser beam 10 output from the laser oscillator 1A will be described. FIG. 3 is a diagram for explaining the output timing of the laser light output from the laser oscillator according to the first embodiment.
 レーザ加工装置100Aが基板11へのレーザ加工を開始すると、レーザ加工制御装置2は、加工プログラムに設定されているレーザ光照射位置にパルスレーザ光10が照射されるようレーザ加工部3に指示を送る。また、レーザ加工制御装置2は、加工プログラムに設定されているパルスレーザ光10の出力タイミングを共振器制御電源5Aに送る。レーザ加工制御装置2は、例えば、パルスレーザ光10のパルス幅を指定したパルス幅指令31と、パルスレーザ光10の出力開始タイミングを指定したビーム出力指令(トリガ)32と、を共振器制御電源5Aに送る。 When the laser processing apparatus 100A starts laser processing on the substrate 11, the laser processing control apparatus 2 instructs the laser processing unit 3 to irradiate the pulse laser light 10 to the laser light irradiation position set in the processing program. send. Further, the laser processing control device 2 sends the output timing of the pulsed laser light 10 set in the processing program to the resonator control power source 5A. For example, the laser processing control device 2 receives a pulse width command 31 that specifies the pulse width of the pulse laser beam 10 and a beam output command (trigger) 32 that specifies the output start timing of the pulse laser beam 10. Send to 5A.
 共振器制御電源5Aは、パルス幅指令31で指定されたパルス幅(設定パルス幅W1)を記憶しておくメモリなどを具備しており、設定パルス幅W1を記憶しておく。共振器制御電源5Aは、ビーム出力指令32で指定されたパルスレーザ光10の出力開始タイミングに基づいて、パルス制御電源(制御電源波形33)をONにする(S1)。換言すると、共振器制御電源5Aは、ビーム出力指令32で指定された出力開始タイミングを有したパルス出力指令波形を生成してレーザ発振器1Aに送る。制御電源波形33は、共振器4からパルスレーザ光10を出力させる電源の波形であり、制御電源波形33がONになると(制御電源波形33が立ち上がると)、共振器4からパルスレーザ光10が出力される。 The resonator control power source 5A includes a memory for storing the pulse width (set pulse width W1) specified by the pulse width command 31, and stores the set pulse width W1. The resonator control power supply 5A turns on the pulse control power supply (control power supply waveform 33) based on the output start timing of the pulse laser beam 10 specified by the beam output command 32 (S1). In other words, the resonator control power source 5A generates a pulse output command waveform having the output start timing specified by the beam output command 32 and sends it to the laser oscillator 1A. The control power supply waveform 33 is a power supply waveform for outputting the pulsed laser light 10 from the resonator 4. When the control power supply waveform 33 is turned on (when the control power supply waveform 33 rises), the pulsed laser light 10 is output from the resonator 4. Is output.
 共振器4がパルスレーザ光10を出力すると、レーザ出力検出部6によって実レーザ出力(レーザ出力波形34)が検出される(S2)。ビーム出力指令32がONになるタイミングと制御電源波形33がONになるタイミングは略同じである。ところが、制御電源波形33がONになるタイミングと、共振器4がパルスレーザ光10を出力する(レーザ出力波形34が立ち上がる)タイミングには、ばらつきを生じる場合がある。このため、制御電源波形33のONタイミングに対してパルスレーザ光10が遅れて出力される場合がある。 When the resonator 4 outputs the pulse laser beam 10, the laser output detector 6 detects the actual laser output (laser output waveform 34) (S2). The timing at which the beam output command 32 is turned on and the timing at which the control power waveform 33 is turned on are substantially the same. However, there may be variations between the timing when the control power supply waveform 33 is turned ON and the timing when the resonator 4 outputs the pulse laser beam 10 (the laser output waveform 34 rises). For this reason, the pulse laser beam 10 may be output with a delay with respect to the ON timing of the control power waveform 33.
 レーザ出力検出部6は、実レーザ出力を検出し、レーザ発振検出信号(レーザ出力波形34)として共振器制御電源5Aに通知する。共振器制御電源5Aは、レーザ出力波形34の立ち上がり(パルスレーザ光10の出力開始タイミング)を検出するとともに、この立ち上がりタイミングでトリガ35を共振器制御電源5A内のパルス幅制御基板に出力する(S3)。トリガ35は、実レーザ出力の出力開始タイミングを示す情報である。 The laser output detector 6 detects the actual laser output and notifies the resonator control power source 5A as a laser oscillation detection signal (laser output waveform 34). The resonator control power source 5A detects the rise of the laser output waveform 34 (output start timing of the pulse laser beam 10), and outputs a trigger 35 to the pulse width control board in the resonator control power source 5A at this rise timing ( S3). The trigger 35 is information indicating the output start timing of the actual laser output.
 そして、共振器制御電源5Aは、トリガ35のONタイミングを実レーザ出力のONタイミングとして扱う。これにより、共振器制御電源5Aは、トリガ35のONタイミングと、記憶しておいた設定パルス幅W1と、に基づいて、設定パルス幅W1を有したパルス波形36を生成する(S4)。 And the resonator control power source 5A treats the ON timing of the trigger 35 as the ON timing of the actual laser output. Thereby, the resonator control power supply 5A generates the pulse waveform 36 having the set pulse width W1 based on the ON timing of the trigger 35 and the stored set pulse width W1 (S4).
 そして、共振器制御電源5Aは、パルス波形36がOFFになるタイミングに基づいて、設定パルス幅W1の完了信号を共振器4に送る(S5)。設定パルス幅W1の完了信号は、パルス制御電源をOFFにさせる制御信号(制御電源波形33を立ち下げる指示)である。これにより、共振器4は、パルスレーザ光10の出力をOFFにする。この結果、レーザ出力波形34が立ち下がる(S6)。 Then, the resonator control power source 5A sends a completion signal of the set pulse width W1 to the resonator 4 based on the timing when the pulse waveform 36 is turned off (S5). The completion signal of the set pulse width W1 is a control signal for turning off the pulse control power supply (instruction for lowering the control power supply waveform 33). Thereby, the resonator 4 turns off the output of the pulse laser beam 10. As a result, the laser output waveform 34 falls (S6).
 レーザ加工制御装置2は、1つ目のパルス光を出力させる際には、パルス幅指令31およびビーム出力指令32を共振器制御電源5Aに送り、設定パルス幅W1を共振器制御電源5Aに記憶させておく。そして、レーザ加工制御装置2は、2つ目以降のパルス光を出力させる際には、ビーム出力指令32を共振器制御電源5Aに送る。これにより、共振器制御電源5Aは、記憶しておいた設定パルス幅W1に基づいて、設定パルス幅W1の完了信号を共振器4に送る。 When outputting the first pulsed light, the laser processing control device 2 sends the pulse width command 31 and the beam output command 32 to the resonator control power source 5A, and stores the set pulse width W1 in the resonator control power source 5A. Let me. The laser processing control device 2 sends a beam output command 32 to the resonator control power source 5A when outputting the second and subsequent pulse lights. Thereby, the resonator control power source 5A sends a completion signal of the set pulse width W1 to the resonator 4 based on the stored set pulse width W1.
 なお、本実施の形態では、共振器制御電源5Aが設定パルス幅W1を記憶しておく場合について説明したが、各パルス光を出力させるたびに、レーザ加工制御装置2から共振器制御電源5Aにパルス幅指令31およびビーム出力指令32を送ってもよい。 In the present embodiment, the case where the resonator control power source 5A stores the set pulse width W1 has been described. However, every time each pulse light is output, the laser processing control device 2 supplies the resonator control power source 5A to the resonator control power source 5A. A pulse width command 31 and a beam output command 32 may be sent.
 このように、本実施の形態では、レーザ出力検出部6が実際のレーザ出力タイミングを共振器制御電源5Aに通知し、共振器制御電源5Aが実際のレーザ出力タイミングを基準として設定パルス幅W1の完了信号を生成し、共振器4に送っている。換言すると、レーザ発振器1Aでは、実レーザ出力のONタイミングに基づいて、設定パルス幅W1の完了信号が共振器4に送られている。これにより、共振器4は、生成された完了信号に基づいて、レーザパルス出力(電源)をOFFするので、共振器4は、設定パルス幅W1のパルスレーザ光10を出力することが可能となる。 As described above, in the present embodiment, the laser output detection unit 6 notifies the actual laser output timing to the resonator control power supply 5A, and the resonator control power supply 5A has the set pulse width W1 based on the actual laser output timing. A completion signal is generated and sent to the resonator 4. In other words, in the laser oscillator 1A, a completion signal having a set pulse width W1 is sent to the resonator 4 based on the ON timing of the actual laser output. Thereby, the resonator 4 turns off the laser pulse output (power supply) based on the generated completion signal, so that the resonator 4 can output the pulse laser beam 10 having the set pulse width W1. .
 つぎに、レーザ出力検出部6の構成について説明する。図4は、レーザ出力検出部の構成を示す図である。レーザ出力検出部6は、レーザ検出センサ21、増幅回路22、微分回路23、レーザ発振判定回路24、判定出力部25を有している。 Next, the configuration of the laser output detector 6 will be described. FIG. 4 is a diagram illustrating a configuration of the laser output detection unit. The laser output detection unit 6 includes a laser detection sensor 21, an amplification circuit 22, a differentiation circuit 23, a laser oscillation determination circuit 24, and a determination output unit 25.
 レーザ検出センサ21は、フォトダイオードなどを用いた高速センサ(光検出用センサ)であり、パルスレーザ光10を高速に検出する。本実施の形態のレーザ検出センサ21は、パルスレーザ光10の漏れ光を検出する。レーザ検出センサ21は、漏れ光の検出結果(検出信号)を増幅回路22に送る。増幅回路22は、レーザ検出センサ21から送られてくる検出信号を増幅して微分回路23に送る。 The laser detection sensor 21 is a high-speed sensor (photodetection sensor) using a photodiode or the like, and detects the pulsed laser light 10 at high speed. The laser detection sensor 21 of the present embodiment detects the leaked light of the pulse laser beam 10. The laser detection sensor 21 sends a leaked light detection result (detection signal) to the amplifier circuit 22. The amplification circuit 22 amplifies the detection signal sent from the laser detection sensor 21 and sends it to the differentiation circuit 23.
 微分回路23は、増幅回路22で増幅された検出信号を微分することによってレーザ発振判定回路24に送る。レーザ発振判定回路24は、微分された検出信号の電圧値と、予め設定しておいた閾値とに基づいて、検出信号の立ち上がりタイミングを判定する。これにより、レーザ発振判定回路24は、レーザ出力したか否かを判定する。レーザ発振判定回路24は、レーザ発振したと判定すると、検出信号を判定出力部25に送る。判定出力部25は、検出信号をデジタル信号に変換するとともにノイズを除去し、ノイズ除去後の検出信号をレーザ発振検出信号として共振器制御電源5Aに送る。 The differentiation circuit 23 differentiates the detection signal amplified by the amplification circuit 22 and sends it to the laser oscillation determination circuit 24. The laser oscillation determination circuit 24 determines the rising timing of the detection signal based on the differentiated voltage value of the detection signal and a preset threshold value. Thereby, the laser oscillation determination circuit 24 determines whether or not laser output has been performed. When the laser oscillation determination circuit 24 determines that laser oscillation has occurred, the laser oscillation determination circuit 24 sends a detection signal to the determination output unit 25. The determination output unit 25 converts the detection signal into a digital signal and removes noise, and sends the detection signal after noise removal to the resonator control power supply 5A as a laser oscillation detection signal.
 なお、本実施の形態では、レーザ発振器1Aがレーザ出力検出部6を備える構成としたが、レーザ発振器1Aとレーザ出力検出部6とを別構成としてもよい。また、レーザ加工制御装置2および共振器制御電源5Xは、パルス制御電源がONしてから実レーザ出力が検出されるまでの時間ばらつき以下の分解能を有していることが望ましい。また、レーザ発振器1Xが行うレーザ出力は、電流制御または電圧一定制御などの各種手法を用いることによってピーク出力が大きく変動しないよう制御されることが望ましい。 In the present embodiment, the laser oscillator 1A includes the laser output detection unit 6. However, the laser oscillator 1A and the laser output detection unit 6 may be configured separately. Further, it is desirable that the laser processing control device 2 and the resonator control power source 5X have a resolution that is less than the time variation from when the pulse control power source is turned on until the actual laser output is detected. Further, the laser output performed by the laser oscillator 1X is desirably controlled so that the peak output does not fluctuate greatly by using various methods such as current control or constant voltage control.
 また、本実施の形態では、レーザ出力波形34の立ち上がりを共振器制御電源5Aが検出する場合について説明したが、レーザ出力波形34の立ち上がりは、レーザ出力検出部6が検出してもよい。 In the present embodiment, the case where the resonator control power supply 5A detects the rise of the laser output waveform 34 has been described. However, the rise of the laser output waveform 34 may be detected by the laser output detection unit 6.
 このように、実施の形態1によれば、レーザ出力検出部6を用いて検出した実レーザ出力がONになるタイミングに基づいて、設定パルス幅W1を有したパルス波形36を生成している。そして、パルス波形36がOFFになるタイミングで実レーザ出力がOFFになるようパルス幅を制御している。これにより、リアルタイムにパルス出力を制御することが可能となる。したがって、簡易な構成の装置で所望のパルス幅(設定パルス幅W1)を有したパルスレーザ光10を出力させることが可能となる。この結果、パルス出力を安定させることができるので、レーザ加工の信頼性が向上する。 Thus, according to the first embodiment, the pulse waveform 36 having the set pulse width W1 is generated based on the timing at which the actual laser output detected using the laser output detector 6 is turned on. The pulse width is controlled so that the actual laser output is turned off at the timing when the pulse waveform 36 is turned off. This makes it possible to control the pulse output in real time. Therefore, it is possible to output the pulse laser beam 10 having a desired pulse width (set pulse width W1) with an apparatus having a simple configuration. As a result, the pulse output can be stabilized, and the reliability of laser processing is improved.
実施の形態2.
 つぎに、図5を用いてこの発明の実施の形態2について説明する。実施の形態2では、共振器4からレーザ加工部3に送られるパルスレーザ光10を用いて実レーザ出力がONになるタイミングを検出する。
Embodiment 2. FIG.
Next, a second embodiment of the present invention will be described with reference to FIG. In the second embodiment, the timing at which the actual laser output is turned ON is detected using the pulse laser beam 10 sent from the resonator 4 to the laser processing unit 3.
 図5は、実施の形態2に係るレーザ発振器の構成を示す図である。ここでは、レーザ加工装置100Xの一例であるレーザ加工装置100Bの構成について説明する。レーザ加工装置100Bは、レーザ発振器1Xの一例であるレーザ発振器1Bを備えている。なお、図5の各構成要素のうち図2に示す実施の形態1のレーザ加工装置100Aと同一機能を達成する構成要素については同一番号を付しており、重複する説明は省略する。 FIG. 5 is a diagram showing a configuration of the laser oscillator according to the second embodiment. Here, a configuration of a laser processing apparatus 100B which is an example of the laser processing apparatus 100X will be described. The laser processing apparatus 100B includes a laser oscillator 1B that is an example of a laser oscillator 1X. In addition, the same number is attached | subjected about the component which achieves the same function as the laser processing apparatus 100A of Embodiment 1 shown in FIG. 2 among each component of FIG. 5, and the overlapping description is abbreviate | omitted.
 レーザ発振器1Bは、共振器4、共振器制御電源5A、レーザ出力検出部6、分光部7を有している。本実施の形態のレーザ発振器1Bには、共振器4とレーザ加工部3との間に分光部7が配置されている。そして、レーザ出力検出部6は、分光部7および共振器制御電源5Aに接続されている。 The laser oscillator 1B has a resonator 4, a resonator control power source 5A, a laser output detection unit 6, and a spectroscopic unit 7. In the laser oscillator 1B of the present embodiment, a spectroscopic unit 7 is disposed between the resonator 4 and the laser processing unit 3. The laser output detection unit 6 is connected to the spectroscopic unit 7 and the resonator control power source 5A.
 分光部7は、共振器4からレーザ加工部3に送られるパルスレーザ光10を分光する。具体的には、分光部7は、共振器4から出力されたパルスレーザ光10を、レーザ加工に用いる第1のレーザ光と、パルスレーザ光10の出力波形の検出に用いる第2のレーザ光と、に分光する。分光部7は、分光した一方のパルスレーザ光10(第1のレーザ光)をレーザ加工部3に送るとともに、分光した他方のパルスレーザ光10(第2のレーザ光)をレーザ出力検出部6に送る。分光部7は、共振器4から出力されたパルスレーザ光10の部分透過光をレーザ出力検出部6に送ってもよいし、共振器4から出力されたパルスレーザ光10の部分反射光をレーザ出力検出部6に送ってもよい。 The spectroscopic unit 7 splits the pulsed laser light 10 sent from the resonator 4 to the laser processing unit 3. Specifically, the spectroscopic unit 7 uses the pulse laser beam 10 output from the resonator 4 as a first laser beam used for laser processing and a second laser beam used for detecting the output waveform of the pulse laser beam 10. And then spectroscopically. The spectroscopic unit 7 sends one pulsed laser beam 10 (first laser beam) subjected to the spectroscopy to the laser processing unit 3 and the other pulsed laser beam 10 (second laser beam) subjected to the spectroscopy to the laser output detection unit 6. Send to. The spectroscopic unit 7 may send the partially transmitted light of the pulsed laser light 10 output from the resonator 4 to the laser output detecting unit 6, or laser the partially reflected light of the pulsed laser light 10 output from the resonator 4. You may send to the output detection part 6. FIG.
 本実施の形態のレーザ出力検出部6は、分光部7によって分光されたパルスレーザ光10を用いてパルスレーザ光10のONタイミング(出力)を検出して共振器制御電源5Aに送る。このように、実施の形態1のレーザ発振器1Aは、漏れ光を用いて実レーザ出力がONになるタイミングを検出するのに対し、実施の形態2のレーザ発振器1Bは、分光されたパルスレーザ光10を用いて実レーザ出力がONになるタイミングを検出する。 The laser output detection unit 6 of the present embodiment detects the ON timing (output) of the pulse laser beam 10 using the pulse laser beam 10 dispersed by the spectroscopic unit 7 and sends it to the resonator control power source 5A. As described above, the laser oscillator 1A according to the first embodiment detects the timing at which the actual laser output is turned on by using leakage light, whereas the laser oscillator 1B according to the second embodiment has a pulsed laser beam that is spectrally separated. 10 is used to detect the timing when the actual laser output is turned ON.
 共振器制御電源5Aは、実施の形態1と同様に、レーザ出力検出部6を用いて検出した実レーザ出力がONになるタイミングに基づいて、設定パルス幅W1を有したパルス波形36を生成する。そして、共振器制御電源5Aは、パルス波形36のOFFタイミングで実レーザ出力がOFFになるよう共振器4を制御する。 The resonator control power supply 5A generates a pulse waveform 36 having a set pulse width W1 based on the timing when the actual laser output detected using the laser output detector 6 is turned on, as in the first embodiment. . Then, the resonator control power source 5A controls the resonator 4 so that the actual laser output is turned OFF at the OFF timing of the pulse waveform 36.
 なお、本実施の形態では、レーザ発振器1Bが分光部7およびレーザ出力検出部6を備える構成としたが、分光部7およびレーザ出力検出部6の少なくとも1つをレーザ発振器1Bとは別構成としてもよい。 In the present embodiment, the laser oscillator 1B includes the spectroscopic unit 7 and the laser output detection unit 6. However, at least one of the spectroscopic unit 7 and the laser output detection unit 6 is configured separately from the laser oscillator 1B. Also good.
 このように、実施の形態2によれば、実施の形態1と同様に、レーザ出力検出部6を用いて検出した実レーザ出力がONになるタイミングに基づいて、設定パルス幅W1で実レーザ出力がOFFになるよう共振器4を制御するので、リアルタイムにパルス出力を制御することが可能となる。したがって、簡易な構成の装置で所望のパルス幅を有したパルスレーザ光10を出力させることが可能となる。 Thus, according to the second embodiment, as in the first embodiment, the actual laser output with the set pulse width W1 is based on the timing at which the actual laser output detected using the laser output detector 6 is turned on. Since the resonator 4 is controlled so as to be turned off, the pulse output can be controlled in real time. Therefore, it is possible to output the pulse laser beam 10 having a desired pulse width with an apparatus having a simple configuration.
実施の形態3.
 つぎに、図6および図7を用いてこの発明の実施の形態3について説明する。実施の形態3では、レーザ出力検出部6を用いて検出した実レーザ出力がONになるタイミングに基づいて、高速シャッターでパルスレーザ光10の出力タイミングを制御する。
Embodiment 3 FIG.
Next, Embodiment 3 of the present invention will be described with reference to FIGS. In the third embodiment, the output timing of the pulsed laser light 10 is controlled with a high-speed shutter based on the timing at which the actual laser output detected using the laser output detector 6 is turned on.
 図6は、実施の形態3に係るレーザ発振器の構成を示す図である。ここでは、レーザ加工装置100Xの一例であるレーザ加工装置100Cの構成について説明する。レーザ加工装置100Cは、レーザ発振器1Xの一例であるレーザ発振器1Cを備えている。なお、図6の各構成要素のうち図2に示す実施の形態1のレーザ加工装置100Aや図5に示す実施の形態2のレーザ加工装置100Bと同一機能を達成する構成要素については同一番号を付しており、重複する説明は省略する。 FIG. 6 is a diagram illustrating a configuration of a laser oscillator according to the third embodiment. Here, a configuration of a laser processing apparatus 100C which is an example of the laser processing apparatus 100X will be described. The laser processing apparatus 100C includes a laser oscillator 1C that is an example of a laser oscillator 1X. 6 that are the same as those of the laser processing apparatus 100A of the first embodiment shown in FIG. 2 and the laser processing apparatus 100B of the second embodiment shown in FIG. The description which overlaps is abbreviate | omitted.
 レーザ発振器1Cは、共振器4、共振器制御電源5B、レーザ出力検出部6、分光部7、高速シャッター8、高速シャッター制御電源9を有している。本実施の形態のレーザ発振器1Cには、共振器4とレーザ加工部3との間に高速シャッター8および分光部7が配置されている。高速シャッター8は、共振器4と分光部7との間に配置され、分光部7は、高速シャッター8とレーザ加工部3との間に配置されている。 The laser oscillator 1C has a resonator 4, a resonator control power source 5B, a laser output detection unit 6, a spectroscopic unit 7, a high speed shutter 8, and a high speed shutter control power source 9. In the laser oscillator 1 </ b> C of the present embodiment, a high-speed shutter 8 and a spectroscopic unit 7 are disposed between the resonator 4 and the laser processing unit 3. The high-speed shutter 8 is disposed between the resonator 4 and the spectroscopic unit 7, and the spectroscopic unit 7 is disposed between the high-speed shutter 8 and the laser processing unit 3.
 また、レーザ出力検出部6は、分光部7および高速シャッター制御電源9に接続され、高速シャッター制御電源9は、レーザ加工制御装置2、レーザ出力検出部6および高速シャッター8に接続されている。 The laser output detection unit 6 is connected to the spectroscopic unit 7 and the high-speed shutter control power source 9, and the high-speed shutter control power source 9 is connected to the laser processing control device 2, the laser output detection unit 6 and the high-speed shutter 8.
 共振器制御電源5Bは、レーザ加工制御装置2に接続されており、レーザ加工制御装置2から指定されたパルス幅のパルスレーザ光10を共振器4に出力させる。本実施の形態のレーザ加工制御装置2は、所望の設定パルス幅W1よりも広いパルス幅(後述するパルス幅W2)のパルスレーザ光10を出力させるためのパルス幅指令を共振器制御電源5Bに送る。 The resonator control power source 5B is connected to the laser processing control device 2, and causes the resonator 4 to output a pulse laser beam 10 having a pulse width designated by the laser processing control device 2. The laser processing control device 2 according to the present embodiment provides a pulse width command for causing the resonator control power supply 5B to output a pulse laser beam 10 having a pulse width (pulse width W2 described later) wider than a desired set pulse width W1. send.
 共振器制御電源5Bは、レーザ加工制御装置2から送られてくるパルスレーザ光10の出力指令(後述するビーム出力指令42)に基づくタイミングで、パルス幅W2のパルスレーザ光10を共振器4にパルス出力させる。換言すると、共振器制御電源5Bは、レーザ加工制御装置2からの指令に従ってパルスレーザ光10のONとOFFと(パルス出力の開始と終了)を制御する。 The resonator control power source 5B supplies the pulse laser beam 10 having the pulse width W2 to the resonator 4 at a timing based on an output command (a beam output command 42 described later) of the pulse laser beam 10 sent from the laser processing control device 2. Pulse output. In other words, the resonator control power source 5 </ b> B controls ON / OFF of the pulse laser beam 10 (start and end of pulse output) in accordance with a command from the laser processing control device 2.
 高速シャッター8は、例えば光学スイッチ素子を用いて構成されている。高速シャッター8は、共振器4からレーザ加工部3に送られるパルスレーザ光10のONとOFFとを切り替える。換言すると、高速シャッター8は、共振器4から出力されたパルスレーザ光10の透過と遮断とを切り替える。高速シャッター8が開いている状態では、共振器4から出力されたパルスレーザ光10が分光部7を介してレーザ加工部3に送られる。一方、高速シャッター8が閉じている状態では、共振器4から出力されたパルスレーザ光10が高速シャッター8で止められるので、分光部7やレーザ加工部3へはパルスレーザ光10は届かない。 The high-speed shutter 8 is configured using, for example, an optical switch element. The high-speed shutter 8 switches ON / OFF of the pulse laser beam 10 sent from the resonator 4 to the laser processing unit 3. In other words, the high-speed shutter 8 switches between transmission and blocking of the pulsed laser light 10 output from the resonator 4. In a state where the high-speed shutter 8 is open, the pulse laser beam 10 output from the resonator 4 is sent to the laser processing unit 3 via the spectroscopic unit 7. On the other hand, in a state where the high-speed shutter 8 is closed, the pulsed laser light 10 output from the resonator 4 is stopped by the high-speed shutter 8, so that the pulsed laser light 10 does not reach the spectroscopic unit 7 or the laser processing unit 3.
 分光部7は、共振器4から高速シャッター8を介してレーザ加工部3に送られるパルスレーザ光10を分光する。分光部7は、分光した一方のパルスレーザ光10をレーザ加工部3に送るとともに、分光した他方のパルスレーザ光10をレーザ出力検出部6に送る。 The spectroscopic unit 7 splits the pulsed laser light 10 sent from the resonator 4 to the laser processing unit 3 via the high-speed shutter 8. The spectroscopic unit 7 sends one pulsed laser beam 10 that has been split to the laser processing unit 3, and sends the other split pulsed laser beam 10 to the laser output detecting unit 6.
 本実施の形態のレーザ出力検出部6は、分光部7によって分光されたパルスレーザ光10(第2のレーザ光)を用いてパルスレーザ光10のONタイミング(出力)を検出し、高速シャッター制御電源9に送る。 The laser output detection unit 6 of the present embodiment detects the ON timing (output) of the pulse laser beam 10 using the pulse laser beam 10 (second laser beam) split by the spectroscopic unit 7, and performs high-speed shutter control. Send to power source 9.
 高速シャッター制御電源9は、EO(電気光学素子)やAO(音響光学素子)などを用いて構成されており、高速シャッター8を制御する電源である。高速シャッター制御電源9は、レーザ加工制御装置2に接続されており、レーザ加工制御装置2から指定されたパルス幅(設定パルス幅W1)のパルスレーザ光10を高速シャッター8に出力させる。高速シャッター制御電源9は、レーザ加工制御装置2から送られてくるパルスレーザ光10の出力指令(後述するビーム出力指令42)に基づくタイミングで共振器4にパルス出力を開始させる。また、本実施の形態の高速シャッター制御電源9は、レーザ出力検出部6から送られてくるレーザ出力波形(後述するレーザ出力波形45)に基づくタイミングで高速シャッター8に出力中のパルス出力を終了させる。 The high-speed shutter control power source 9 is configured using EO (electro-optical element), AO (acousto-optical element), or the like, and is a power source that controls the high-speed shutter 8. The high-speed shutter control power source 9 is connected to the laser processing control device 2 and causes the high-speed shutter 8 to output a pulse laser beam 10 having a pulse width (set pulse width W1) designated by the laser processing control device 2. The high-speed shutter control power source 9 causes the resonator 4 to start pulse output at a timing based on an output command (a beam output command 42 described later) of the pulse laser beam 10 sent from the laser processing control device 2. In addition, the high-speed shutter control power source 9 of the present embodiment ends the pulse output being output to the high-speed shutter 8 at a timing based on the laser output waveform (laser output waveform 45 described later) sent from the laser output detection unit 6. Let
 換言すると、高速シャッター制御電源9は、レーザ加工制御装置2から送られてくる指示に従ってパルスレーザ光10の出力波形の立ち上がりタイミングを制御し、レーザ出力検出部6から送られてくる指示に従ってパルスレーザ光10の出力波形の立ち下がりタイミングを制御する。 In other words, the high-speed shutter control power source 9 controls the rising timing of the output waveform of the pulse laser beam 10 according to the instruction sent from the laser processing control device 2, and the pulse laser according to the instruction sent from the laser output detection unit 6. The falling timing of the output waveform of the light 10 is controlled.
 つぎに、レーザ発振器1Cから出力されるパルスレーザ光10の出力タイミングについて説明する。図7は、実施の形態3に係るレーザ発振器から出力されるレーザ光の出力タイミングを説明するための図である。 Next, the output timing of the pulse laser beam 10 output from the laser oscillator 1C will be described. FIG. 7 is a diagram for explaining the output timing of the laser beam output from the laser oscillator according to the third embodiment.
 レーザ加工装置100Cが基板11へのレーザ加工を開始すると、レーザ加工制御装置2は、加工プログラムに設定されているレーザ光照射位置にパルスレーザ光10が照射されるようレーザ加工部3に指示を送る。また、レーザ加工制御装置2は、加工プログラムに設定されているパルスレーザ光10の出力タイミングを共振器制御電源5Bに送る。 When the laser processing apparatus 100C starts laser processing on the substrate 11, the laser processing control apparatus 2 instructs the laser processing unit 3 to irradiate the pulse laser light 10 to the laser light irradiation position set in the processing program. send. Further, the laser processing control device 2 sends the output timing of the pulsed laser light 10 set in the processing program to the resonator control power source 5B.
 レーザ加工制御装置2は、例えば、パルスレーザ光10のパルス幅を指定したパルス幅指令(図示せず)と、パルスレーザ光10の出力開始タイミングを指定したビーム出力指令(トリガ)42と、を共振器制御電源5Bに送る。また、レーザ加工制御装置2は、例えば、パルスレーザ光10のパルス幅を指定したパルス幅指令41と、パルスレーザ光10の出力開始タイミングを指定したビーム出力指令(トリガ)42と、を高速シャッター制御電源9に送る。 For example, the laser processing control device 2 receives a pulse width command (not shown) that specifies the pulse width of the pulse laser beam 10 and a beam output command (trigger) 42 that specifies the output start timing of the pulse laser beam 10. This is sent to the resonator control power source 5B. Further, the laser processing control device 2 outputs, for example, a pulse width command 41 specifying the pulse width of the pulsed laser light 10 and a beam output command (trigger) 42 specifying the output start timing of the pulsed laser light 10 at a high-speed shutter. Send to control power supply 9.
 共振器制御電源5Bおよび高速シャッター制御電源9には、同じタイミングを指定したビーム出力指令42が送られる。また、パルス幅指令41は、所望のパルス幅である設定パルス幅W1を指定する指令である。 The beam output command 42 designating the same timing is sent to the resonator control power supply 5B and the high-speed shutter control power supply 9. The pulse width command 41 is a command for designating a set pulse width W1, which is a desired pulse width.
 共振器制御電源5Bに送られるパルス幅指令は、設定パルス幅W1よりも広いパルス幅W2を指定する指令である。共振器制御電源5Bは、パルス幅W2を記憶しておく。そして、共振器制御電源5Bは、レーザ加工制御装置2によって指定されたパルスレーザ光10の出力開始タイミングおよびパルス幅W2に基づいて、パルス制御電源をONにする。換言すると、共振器制御電源5Bは、レーザ加工制御装置2によって指定された指令に基づく波形のパルスレーザ光10を共振器4に出力させる。これにより、設定パルス幅W1よりも広いパルス幅を有したレーザ出力波形43(パルス幅W2)のパルスレーザ光10が高速シャッター8に入力される。 The pulse width command sent to the resonator control power source 5B is a command for designating a pulse width W2 wider than the set pulse width W1. The resonator control power source 5B stores the pulse width W2. Then, the resonator control power supply 5B turns on the pulse control power supply based on the output start timing and the pulse width W2 of the pulse laser beam 10 specified by the laser processing control device 2. In other words, the resonator control power source 5 </ b> B causes the resonator 4 to output the pulse laser beam 10 having a waveform based on the command specified by the laser processing control device 2. Thereby, the pulse laser beam 10 having the laser output waveform 43 (pulse width W2) having a pulse width wider than the set pulse width W1 is input to the high-speed shutter 8.
 また、高速シャッター制御電源9は、ビーム出力指令42で指定されたパルスレーザ光10の出力開始タイミングに基づいて、高速シャッター8(制御電源波形44)をONにする(S11)。換言すると、高速シャッター制御電源9は、ビーム出力指令42で指定された出力開始タイミングを有したパルス出力指令波形を生成して高速シャッター8に送る。制御電源波形(切替制御電源)44は、高速シャッター8からパルスレーザ光10を出力させる電源の波形であり、制御電源波形44がONになると、高速シャッター8からパルスレーザ光10が出力される。 Further, the high-speed shutter control power supply 9 turns on the high-speed shutter 8 (control power supply waveform 44) based on the output start timing of the pulse laser beam 10 specified by the beam output command 42 (S11). In other words, the high-speed shutter control power supply 9 generates a pulse output command waveform having the output start timing specified by the beam output command 42 and sends it to the high-speed shutter 8. The control power supply waveform (switching control power supply) 44 is a power supply waveform for outputting the pulse laser beam 10 from the high-speed shutter 8. When the control power supply waveform 44 is turned on, the pulse laser beam 10 is output from the high-speed shutter 8.
 高速シャッター8がパルスレーザ光10を出力すると、パルスレーザ光10は分光部7に送られる。これにより、レーザ出力検出部6によって実レーザ出力(レーザ出力波形45)が検出される(S12)。ビーム出力指令42がONになるタイミングと制御電源波形44がONになるタイミングは略同じである。ところが、制御電源波形44がONになるタイミングと、高速シャッター8がパルスレーザ光10を出力する(レーザ出力波形45が立ち上がる)タイミングには、ばらつきを生じる場合がある。このため、制御電源波形44のONタイミングに対してパルスレーザ光10が遅れて出力される場合がある。 When the high-speed shutter 8 outputs the pulse laser beam 10, the pulse laser beam 10 is sent to the spectroscopic unit 7. Thereby, the actual laser output (laser output waveform 45) is detected by the laser output detector 6 (S12). The timing at which the beam output command 42 is turned on and the timing at which the control power waveform 44 is turned on are substantially the same. However, there may be variations between the timing when the control power supply waveform 44 is turned ON and the timing when the high-speed shutter 8 outputs the pulse laser beam 10 (the laser output waveform 45 rises). For this reason, the pulse laser beam 10 may be output with a delay with respect to the ON timing of the control power waveform 44.
 レーザ出力検出部6は、実レーザ出力を検出し、レーザ発振検出信号(レーザ出力波形45)として共振器制御電源5Bに通知する。共振器制御電源5Bは、レーザ出力波形45の立ち上がり(パルスレーザ光10の出力開始タイミング)を検出するとともに、この立ち上がりタイミングでトリガ46を共振器制御電源5A内のパルス幅制御基板に出力する(S13)。トリガ46は、実レーザ出力の出力開始タイミングを示す情報である。 The laser output detector 6 detects the actual laser output and notifies the resonator control power supply 5B as a laser oscillation detection signal (laser output waveform 45). The resonator control power source 5B detects the rise of the laser output waveform 45 (output start timing of the pulse laser beam 10), and outputs the trigger 46 to the pulse width control board in the resonator control power source 5A at this rise timing ( S13). The trigger 46 is information indicating the output start timing of the actual laser output.
 高速シャッター制御電源9は、レーザ出力検出部6からトリガ46を受信すると、トリガ46のONタイミングを実レーザ出力のONタイミングとして扱う。これにより、高速シャッター制御電源9は、トリガ46のONタイミングと、記憶しておいた設定パルス幅W1と、に基づいて、設定パルス幅W1を有したパルス波形47を生成する(S14)。 When the high-speed shutter control power supply 9 receives the trigger 46 from the laser output detector 6, the high-speed shutter control power supply 9 treats the ON timing of the trigger 46 as the ON timing of the actual laser output. Thereby, the high-speed shutter control power supply 9 generates a pulse waveform 47 having the set pulse width W1 based on the ON timing of the trigger 46 and the stored set pulse width W1 (S14).
 そして、高速シャッター制御電源9は、パルス波形47がOFFになるタイミングに基づいて、設定パルス幅W1の完了信号を高速シャッター8に送る(S15)。設定パルス幅W1の完了信号は、高速シャッター8への切替制御電源をOFFにさせる制御信号(制御電源波形44を立ち下げる指示)である。これにより、高速シャッター8は、パルスレーザ光10の出力をOFFにする。この結果、レーザ出力波形45が立ち下がる(S16)。 Then, the high-speed shutter control power supply 9 sends a completion signal of the set pulse width W1 to the high-speed shutter 8 based on the timing when the pulse waveform 47 is turned off (S15). The completion signal of the set pulse width W1 is a control signal (instruction to lower the control power waveform 44) for turning off the switching control power to the high-speed shutter 8. Thereby, the high-speed shutter 8 turns off the output of the pulse laser beam 10. As a result, the laser output waveform 45 falls (S16).
 このように、本実施の形態では、レーザ出力検出部6がレーザ出力のONタイミングを高速シャッター制御電源9に通知し、高速シャッター制御電源9がレーザ出力のONタイミングを基準とした設定パルス幅W1の完了信号を生成し、高速シャッター8に送っている。換言すると、レーザ発振器1Cでは、レーザ出力波形45のONタイミングに基づいて、設定パルス幅W1の完了信号が高速シャッター8に送られている。これにより、高速シャッター8は、生成された完了信号に基づいて、レーザパルス出力(電源)をOFFするので、高速シャッター8は、設定パルス幅W1のパルスレーザ光10を出力することが可能となる。 As described above, in the present embodiment, the laser output detection unit 6 notifies the high-speed shutter control power supply 9 of the laser output ON timing, and the high-speed shutter control power supply 9 sets the set pulse width W1 based on the laser output ON timing. Is generated and sent to the high-speed shutter 8. In other words, in the laser oscillator 1 </ b> C, a completion signal having the set pulse width W <b> 1 is sent to the high-speed shutter 8 based on the ON timing of the laser output waveform 45. As a result, the high-speed shutter 8 turns off the laser pulse output (power supply) based on the generated completion signal, so that the high-speed shutter 8 can output the pulse laser beam 10 having the set pulse width W1. .
 なお、本実施の形態では、レーザ発振器1Cが分光部7およびレーザ出力検出部6を備える構成としたが、分光部7、レーザ出力検出部6、高速シャッター8および高速シャッター制御電源9の少なくとも1つをレーザ発振器1Cとは別構成としてもよい。 In this embodiment, the laser oscillator 1C includes the spectroscopic unit 7 and the laser output detection unit 6. However, at least one of the spectroscopic unit 7, the laser output detection unit 6, the high-speed shutter 8, and the high-speed shutter control power source 9 is used. One may be configured separately from the laser oscillator 1C.
 また、本実施の形態では、設定パルス幅W1よりも広いパルス幅W2を指定したパルス幅指令をレーザ加工制御装置2から共振器制御電源5Bに送る場合について説明したが、レーザ加工制御装置2から共振器制御電源5Bに設定パルス幅W1を指定したパルス幅指令を送ってもよい。この場合、共振器制御電源5Bが、設定パルス幅W1を用いてパルス幅W2を設定する。 In the present embodiment, a case has been described in which a pulse width command specifying a pulse width W2 wider than the set pulse width W1 is sent from the laser processing control device 2 to the resonator control power supply 5B. A pulse width command specifying the set pulse width W1 may be sent to the resonator control power supply 5B. In this case, the resonator control power supply 5B sets the pulse width W2 using the set pulse width W1.
 このように実施の形態3によれば、レーザ出力検出部6を用いて検出した実レーザ出力がONになるタイミングに基づいて、設定パルス幅W1で実レーザ出力がOFFになるよう高速シャッター8を制御するので、リアルタイムにパルス出力を制御することが可能となる。したがって、簡易な構成の装置で所望のパルス幅を有したパルスレーザ光10を出力させることが可能となる。 As described above, according to the third embodiment, based on the timing at which the actual laser output detected using the laser output detection unit 6 is turned on, the high-speed shutter 8 is set so that the actual laser output is turned off with the set pulse width W1. Since the control is performed, the pulse output can be controlled in real time. Therefore, it is possible to output the pulse laser beam 10 having a desired pulse width with an apparatus having a simple configuration.
実施の形態4.
 つぎに、図8を用いてこの発明の実施の形態4について説明する。実施の形態4では、レーザ発振器(後述するレーザ発振器1D)に対して、高速シャッター8、高速シャッター制御電源9、分光部7、レーザ出力検出部6を別構成としておく。そして、レーザ発振器1Dと、高速シャッター8と、高速シャッター制御電源9と、分光部7と、レーザ出力検出部6と、を用いてレーザ発振システムを構成する。
Embodiment 4 FIG.
Next, a fourth embodiment of the present invention will be described with reference to FIG. In the fourth embodiment, a high-speed shutter 8, a high-speed shutter control power source 9, a spectroscopic unit 7, and a laser output detection unit 6 are configured separately from a laser oscillator (laser oscillator 1D described later). Then, a laser oscillation system is configured by using the laser oscillator 1D, the high-speed shutter 8, the high-speed shutter control power source 9, the spectroscopic unit 7, and the laser output detection unit 6.
 図8は、実施の形態4に係るレーザ発振器の構成を示す図である。ここでは、レーザ加工装置100Xの一例であるレーザ加工装置100Dの構成について説明する。レーザ加工装置100Dは、レーザ発振器1Xの一例であるレーザ発振器1Dを備えている。なお、図8の各構成要素のうち図2、図5、図6に示すレーザ加工装置100A~100Cと同一機能を達成する構成要素については同一番号を付しており、重複する説明は省略する。 FIG. 8 is a diagram showing a configuration of a laser oscillator according to the fourth embodiment. Here, a configuration of a laser processing apparatus 100D which is an example of the laser processing apparatus 100X will be described. The laser processing apparatus 100D includes a laser oscillator 1D that is an example of a laser oscillator 1X. Note that, among the components in FIG. 8, the components that achieve the same functions as those of the laser processing apparatuses 100A to 100C shown in FIGS. 2, 5, and 6 are given the same numbers, and redundant descriptions are omitted. .
 レーザ発振器1Dは、共振器4、共振器制御電源5Bを有している。本実施の形態のレーザ加工装置100Dには、レーザ発振器1Dとレーザ加工部3との間に高速シャッター8および分光部7が配置されている。高速シャッター8は、共振器4と分光部7との間に配置され、分光部7は、高速シャッター8とレーザ加工部3との間に配置されている。 The laser oscillator 1D has a resonator 4 and a resonator control power source 5B. In the laser processing apparatus 100D of the present embodiment, a high-speed shutter 8 and a spectroscopic unit 7 are disposed between the laser oscillator 1D and the laser processing unit 3. The high-speed shutter 8 is disposed between the resonator 4 and the spectroscopic unit 7, and the spectroscopic unit 7 is disposed between the high-speed shutter 8 and the laser processing unit 3.
 また、レーザ出力検出部6は、分光部7および高速シャッター制御電源9に接続され、高速シャッター制御電源9は、レーザ加工制御装置2、レーザ出力検出部6および高速シャッター8に接続されている。 The laser output detection unit 6 is connected to the spectroscopic unit 7 and the high-speed shutter control power source 9, and the high-speed shutter control power source 9 is connected to the laser processing control device 2, the laser output detection unit 6 and the high-speed shutter 8.
 このように、本実施の形態では、高速シャッター8、高速シャッター制御電源9、分光部7、レーザ出力検出部6を、それぞれレーザ発振器1Dとは別構成にしている。そして、高速シャッター8および分光部7をレーザ発振器1Dとレーザ加工部3との間の光路中に配置している。 Thus, in the present embodiment, the high-speed shutter 8, the high-speed shutter control power source 9, the spectroscopic unit 7, and the laser output detection unit 6 are configured separately from the laser oscillator 1D. The high-speed shutter 8 and the spectroscopic unit 7 are arranged in the optical path between the laser oscillator 1D and the laser processing unit 3.
 このように実施の形態3によれば、実施の形態2と同様に、レーザ出力検出部6を用いて検出した実レーザ出力がONになるタイミングに基づいて、設定パルス幅W1で実レーザ出力がOFFになるよう高速シャッター8を制御するので、リアルタイムにパルス出力を制御することが可能となる。したがって、簡易な構成の装置で所望のパルス幅を有したパルスレーザ光10を出力させることが可能となる。 As described above, according to the third embodiment, the actual laser output is set with the set pulse width W1 based on the timing at which the actual laser output detected using the laser output detector 6 is turned on, as in the second embodiment. Since the high-speed shutter 8 is controlled to be turned off, the pulse output can be controlled in real time. Therefore, it is possible to output the pulse laser beam 10 having a desired pulse width with an apparatus having a simple configuration.
 以上のように、本発明に係るレーザ共振器制御電源、レーザ発振器およびレーザ発振システムは、レーザ共振器から出力されるレーザ光のパルス幅制御に適している。 As described above, the laser resonator control power source, the laser oscillator, and the laser oscillation system according to the present invention are suitable for the pulse width control of the laser beam output from the laser resonator.
 1A~1D,1X レーザ発振器
 2 レーザ加工制御装置
 3 レーザ加工部
 4 共振器
 5A,5B,5X 共振器制御電源
 6 レーザ出力検出部
 7 分光部
 8 高速シャッター
 9 高速シャッター制御電源
 10 パルスレーザ光
 100A~100D,100X レーザ加工装置
DESCRIPTION OF SYMBOLS 1A-1D, 1X Laser oscillator 2 Laser processing control apparatus 3 Laser processing part 4 Resonator 5A, 5B, 5X Resonator control power supply 6 Laser output detection part 7 Spectrometer part 8 High speed shutter 9 High speed shutter control power supply 10 Pulse laser beam 100A- 100D, 100X laser processing equipment

Claims (6)

  1.  パルスレーザ光の出力タイミングが指定された出力指令および前記パルスレーザ光のパルス幅が指定されたパルス幅指令を受信するとともに、
     前記出力指令に基づいて、レーザ共振器に前記パルスレーザ光を出力させる制御電源をONにし、
     前記レーザ共振器から実際に出力されたパルスレーザ光の出力タイミングおよび前記パルス幅指令に基づいて、前記制御電源をOFFにすることを特徴とするレーザ共振器制御電源。
    While receiving the output command in which the output timing of the pulse laser beam is designated and the pulse width command in which the pulse width of the pulse laser beam is designated,
    Based on the output command, the control power source for outputting the pulse laser beam to the laser resonator is turned ON,
    A laser resonator control power source, wherein the control power source is turned off based on an output timing of pulse laser light actually output from the laser resonator and the pulse width command.
  2.  前記レーザ共振器から実際に出力されたパルスレーザ光の出力波形を検出するレーザ出力検出部から、前記パルスレーザ光の出力波形を受信するとともに、
     前記出力波形に基づいて、前記レーザ共振器から実際に出力されたパルスレーザ光の出力タイミングを検出し、
     検出した出力タイミングおよび前記パルス幅指令に基づいて、前記制御電源をOFFにすることを特徴とする請求項1に記載のレーザ共振器制御電源。
    While receiving the output waveform of the pulse laser beam from the laser output detector that detects the output waveform of the pulse laser beam actually output from the laser resonator,
    Based on the output waveform, detect the output timing of the pulse laser light actually output from the laser resonator,
    The laser resonator control power supply according to claim 1, wherein the control power supply is turned off based on the detected output timing and the pulse width command.
  3.  パルスレーザ光を出力するレーザ共振器と、
     前記レーザ共振器に出力させるパルスレーザ光のONとOFFとを制御電源によって制御するレーザ共振器制御電源と、
     前記レーザ共振器から実際に出力されたパルスレーザ光の出力波形を検出するレーザ出力検出部と、
     を備え、
     前記レーザ共振器制御電源は、
     前記パルスレーザ光の出力タイミングが指定された出力指令および前記パルスレーザ光のパルス幅が指定されたパルス幅指令を受信するとともに、
     前記出力指令に基づいて、前記制御電源をONにし、
     前記出力波形に基づいて、前記レーザ共振器から実際に出力されたパルスレーザ光の出力タイミングを検出し、
     検出した出力タイミングおよび前記パルス幅指令に基づいて、前記制御電源をOFFにすることを特徴とするレーザ発振器。
    A laser resonator that outputs pulsed laser light;
    A laser resonator control power source for controlling ON and OFF of the pulsed laser light to be output to the laser resonator by a control power source;
    A laser output detector for detecting an output waveform of pulse laser light actually output from the laser resonator;
    With
    The laser resonator control power supply is
    While receiving the output command in which the output timing of the pulse laser beam is designated and the pulse width command in which the pulse width of the pulse laser beam is designated,
    Based on the output command, the control power is turned on,
    Based on the output waveform, detect the output timing of the pulse laser light actually output from the laser resonator,
    A laser oscillator, wherein the control power supply is turned off based on the detected output timing and the pulse width command.
  4.  前記レーザ出力検出部は、
     前記レーザ共振器から出力されたパルスレーザ光の漏れ光を用いて前記パルスレーザ光の出力波形を検出することを特徴とする請求項3に記載のレーザ発振器。
    The laser output detector is
    4. The laser oscillator according to claim 3, wherein an output waveform of the pulse laser beam is detected using leakage light of the pulse laser beam output from the laser resonator.
  5.  前記レーザ共振器から出力されたパルスレーザ光を、レーザ加工に用いる第1のパルスレーザ光と、前記パルスレーザ光の出力波形の検出に用いる第2のパルスレーザ光と、に分光する分光部をさらに備え、
     前記レーザ出力検出部は、前記第2のパルスレーザ光を用いて前記パルスレーザ光の出力波形を検出することを特徴とする請求項3に記載のレーザ発振器。
    A spectroscopic unit that splits the pulse laser beam output from the laser resonator into a first pulse laser beam used for laser processing and a second pulse laser beam used to detect an output waveform of the pulse laser beam; In addition,
    4. The laser oscillator according to claim 3, wherein the laser output detection unit detects an output waveform of the pulse laser beam using the second pulse laser beam. 5.
  6.  パルスレーザ光を出力するレーザ共振器と、
     前記レーザ共振器に出力させるパルスレーザ光のONとOFFとを出力制御電源によって制御するレーザ共振器制御電源と、
     前記レーザ共振器から出力されたパルスレーザ光の透過と遮断とを切り替えるシャッターと、
     前記レーザ共振器から前記シャッターを介して出力されたパルスレーザ光を、レーザ加工に用いる第1のパルスレーザ光と、前記パルスレーザ光の出力波形の検出に用いる第2のパルスレーザ光と、に分光する分光部と、
     実際に出力された前記第2のパルスレーザ光の出力波形を検出するレーザ出力検出部と、
     前記第2のパルスレーザ光の出力波形に基づいて、前記シャッターによる透過と遮断とを切替制御電源によって制御するシャッター制御電源と、
     を備え、
     前記シャッター制御電源は、
     前記パルスレーザ光の出力タイミングが指定された出力指令および前記パルスレーザ光のパルス幅が指定されたパルス幅指令を受信するとともに、
     前記出力指令に基づいて、前記切替制御電源をONにし、
     前記出力波形に基づいて、前記シャッターから実際に出力されたパルスレーザ光の出力タイミングを検出し、
     検出した出力タイミングおよび前記パルス幅指令に基づいて、前記切替制御電源をOFFにすることを特徴とするレーザ発振システム。
    A laser resonator that outputs pulsed laser light;
    A laser resonator control power source for controlling ON and OFF of the pulse laser beam to be output to the laser resonator by an output control power source;
    A shutter that switches between transmission and blocking of the pulsed laser light output from the laser resonator;
    The pulse laser beam output from the laser resonator via the shutter is converted into a first pulse laser beam used for laser processing and a second pulse laser beam used for detection of an output waveform of the pulse laser beam. A spectroscopic unit for spectroscopic analysis;
    A laser output detector that detects an output waveform of the second pulse laser beam that is actually output;
    Based on the output waveform of the second pulse laser beam, a shutter control power source that controls transmission and blocking by the shutter by a switching control power source;
    With
    The shutter control power supply is
    While receiving the output command in which the output timing of the pulse laser beam is designated and the pulse width command in which the pulse width of the pulse laser beam is designated,
    Based on the output command, turn on the switching control power supply,
    Based on the output waveform, detect the output timing of the pulse laser light actually output from the shutter,
    A laser oscillation system, wherein the switching control power supply is turned off based on the detected output timing and the pulse width command.
PCT/JP2012/067704 2012-07-11 2012-07-11 Laser resonator control power supply, laser oscillator, and laser oscillation system WO2014010046A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014524539A JPWO2014010046A1 (en) 2012-07-11 2012-07-11 Laser resonator control power supply, laser oscillator and laser oscillation system
PCT/JP2012/067704 WO2014010046A1 (en) 2012-07-11 2012-07-11 Laser resonator control power supply, laser oscillator, and laser oscillation system
TW102101591A TW201403980A (en) 2012-07-11 2013-01-16 Laser resonator control power, laser oscillator, and laser oscillation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/067704 WO2014010046A1 (en) 2012-07-11 2012-07-11 Laser resonator control power supply, laser oscillator, and laser oscillation system

Publications (1)

Publication Number Publication Date
WO2014010046A1 true WO2014010046A1 (en) 2014-01-16

Family

ID=49915549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067704 WO2014010046A1 (en) 2012-07-11 2012-07-11 Laser resonator control power supply, laser oscillator, and laser oscillation system

Country Status (3)

Country Link
JP (1) JPWO2014010046A1 (en)
TW (1) TW201403980A (en)
WO (1) WO2014010046A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015153917A (en) * 2014-02-17 2015-08-24 住友重機械工業株式会社 Laser processing device
JP2015188932A (en) * 2014-03-31 2015-11-02 ビアメカニクス株式会社 Laser processing apparatus and laser processing method
KR20190092254A (en) 2018-01-30 2019-08-07 스미도모쥬기가이고교 가부시키가이샤 Laser control apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN212160348U (en) * 2020-05-14 2020-12-15 苏州苏大维格科技集团股份有限公司 Photoetching equipment with power-off protection device
JP2023007738A (en) * 2021-07-02 2023-01-19 住友重機械工業株式会社 Laser control device and laser pulse cutting-out method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63257283A (en) * 1987-04-14 1988-10-25 Fuji Photo Film Co Ltd Method for monitoring power of gas laser
JP2000263271A (en) * 1999-01-14 2000-09-26 Hitachi Via Mechanics Ltd Laser beam machining method and laser beam machine
JP2001287056A (en) * 2000-04-03 2001-10-16 Matsushita Electric Ind Co Ltd Laser beam machining device
JP2003053564A (en) * 2001-08-15 2003-02-26 Sumitomo Heavy Ind Ltd Method and device for controlling laser beam machining
JP2004042103A (en) * 2002-07-12 2004-02-12 Sumitomo Heavy Ind Ltd Trigger controller of laser beam machining mechanism
JP2004228590A (en) * 2004-03-11 2004-08-12 Matsushita Electric Ind Co Ltd Device for manufacturing circuit board
JP2006280479A (en) * 2005-03-31 2006-10-19 Manii Kk Method of manufacturing eyeless needle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63257283A (en) * 1987-04-14 1988-10-25 Fuji Photo Film Co Ltd Method for monitoring power of gas laser
JP2000263271A (en) * 1999-01-14 2000-09-26 Hitachi Via Mechanics Ltd Laser beam machining method and laser beam machine
JP2001287056A (en) * 2000-04-03 2001-10-16 Matsushita Electric Ind Co Ltd Laser beam machining device
JP2003053564A (en) * 2001-08-15 2003-02-26 Sumitomo Heavy Ind Ltd Method and device for controlling laser beam machining
JP2004042103A (en) * 2002-07-12 2004-02-12 Sumitomo Heavy Ind Ltd Trigger controller of laser beam machining mechanism
JP2004228590A (en) * 2004-03-11 2004-08-12 Matsushita Electric Ind Co Ltd Device for manufacturing circuit board
JP2006280479A (en) * 2005-03-31 2006-10-19 Manii Kk Method of manufacturing eyeless needle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015153917A (en) * 2014-02-17 2015-08-24 住友重機械工業株式会社 Laser processing device
JP2015188932A (en) * 2014-03-31 2015-11-02 ビアメカニクス株式会社 Laser processing apparatus and laser processing method
KR20190092254A (en) 2018-01-30 2019-08-07 스미도모쥬기가이고교 가부시키가이샤 Laser control apparatus
TWI750434B (en) * 2018-01-30 2021-12-21 日商住友重機械工業股份有限公司 Laser control device

Also Published As

Publication number Publication date
JPWO2014010046A1 (en) 2016-06-20
TW201403980A (en) 2014-01-16

Similar Documents

Publication Publication Date Title
WO2014010046A1 (en) Laser resonator control power supply, laser oscillator, and laser oscillation system
JP6234296B2 (en) Laser processing apparatus and laser processing method
JP6355496B2 (en) Laser processing apparatus and pulse laser beam output method
US9656348B2 (en) Laser processing apparatus
TWI606881B (en) Laser processing machine
JP2017163079A (en) Laser processing device
KR20060131606A (en) Device for switching over a laser beam and laser machining device
JP2015153917A (en) Laser processing device
JP4632248B2 (en) Laser processing equipment
JP4575825B2 (en) Laser processing equipment
KR102333897B1 (en) Laser Processing Apparatus
JP2009006369A (en) Laser beam machining apparatus and laser beam machining method
JP2013226590A (en) Laser cutting apparatus and laser cutting method
JP6199224B2 (en) Laser processing apparatus and laser processing method
JP2019076919A (en) Controller of laser processing machine, laser processing method, and laser processing machine
JP2001300755A (en) Method and device for laser beam machining
JP3980289B2 (en) Laser processing equipment
JP2000126880A (en) Laser beam machine, and laser beam machining method
JP2003236692A (en) Method and device for controlling galvano-scanner
JP4680871B2 (en) Beam profile measuring apparatus and laser processing apparatus
KR20220122165A (en) LED Laser Repairing System
JPH07155971A (en) Laser beam machine
KR20230107364A (en) Controlling the laser repair process of electronic circuits using the spectral components of the light induced and emitted during repair
JP2005021947A (en) Method and device for monitoring energy of laser beam machining apparatus
JP2003251477A (en) Laser beam machining device and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12880821

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014524539

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12880821

Country of ref document: EP

Kind code of ref document: A1