WO2014009514A2 - Installation de stockage de gaz comprimés sous l'eau et procédé d'installation correspondant - Google Patents

Installation de stockage de gaz comprimés sous l'eau et procédé d'installation correspondant Download PDF

Info

Publication number
WO2014009514A2
WO2014009514A2 PCT/EP2013/064770 EP2013064770W WO2014009514A2 WO 2014009514 A2 WO2014009514 A2 WO 2014009514A2 EP 2013064770 W EP2013064770 W EP 2013064770W WO 2014009514 A2 WO2014009514 A2 WO 2014009514A2
Authority
WO
WIPO (PCT)
Prior art keywords
installation
installation according
links
anchoring system
water
Prior art date
Application number
PCT/EP2013/064770
Other languages
English (en)
Other versions
WO2014009514A3 (fr
Inventor
Alain DELSUPEXHE
Frédéric GUYARD
Original Assignee
Alfred
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alfred filed Critical Alfred
Publication of WO2014009514A2 publication Critical patent/WO2014009514A2/fr
Publication of WO2014009514A3 publication Critical patent/WO2014009514A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/007Underground or underwater storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0142Shape conical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/03Orientation
    • F17C2201/032Orientation with substantially vertical main axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/054Size medium (>1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0614Single wall
    • F17C2203/0617Single wall with one layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0639Steels
    • F17C2203/0643Stainless steels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/066Plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0678Concrete
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/068Special properties of materials for vessel walls
    • F17C2203/0682Special properties of materials for vessel walls with liquid or gas layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0153Details of mounting arrangements
    • F17C2205/0184Attachments to the ground, e.g. mooring or anchoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/031Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/035High pressure (>10 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/04Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
    • F17C2223/042Localisation of the removal point
    • F17C2223/043Localisation of the removal point in the gas
    • F17C2223/045Localisation of the removal point in the gas with a dip tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/011Improving strength
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/015Facilitating maintenance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0118Offshore
    • F17C2270/0128Storage in depth
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/05Applications for industrial use
    • F17C2270/0581Power plants

Definitions

  • the invention relates generally to the storage of compressed gases and more particularly to the storage of compressed gases under water in an isobaric installation.
  • the installation allows storage of energy in the form of compressed gases resulting from the conversion of intermittent or fatal electrical energy into mechanical energy, for example and in no way limiting, the air pressurized from a compressor connected to a source of intermittent or fatal energy.
  • This compressed air is stored in the isobaric pressurized storage facility and can be advantageously used in a pressure reducer to be, in particular, converted into electrical energy supplied on demand to a transmission or distribution network of electrical energy.
  • the compressed gas storage facility is used as part of a Compressed Air Energy Storage (CAES) process.
  • CAES Compressed Air Energy Storage
  • the invention relates to the storage of compressed gases under water.
  • the compressed gas storage system under water is a known technique which consists in compressing a gas and storing it in pressurized storage tanks subjected to the substantially constant hydrostatic pressure of a column of water.
  • This type of compressed gas storage is particularly advantageous for isobarically storing air in a CAES process, since it makes it possible to use air compression and expansion means designed in particular to operate continuously under conditions rated at constant pressure.
  • the compressed gas storage technique it has been proposed to use submerged tanks in deep sea, or in lakes, the pressure of the water exerted on the reservoirs making it possible to obtain isobaric storage of the compressed gas, insofar as, in the case where the air is compressed to a compressed pressure identical to that of the water column above the storage, the pressure prevailing in the tanks remains constant regardless of their level of filling and especially when they are almost empty, the pressure depending only on the depth, and not no tank fill rate.
  • this type of installation has a certain number of disadvantages, in particular because of the presence of the flexible walls and the rate of swelling and deflation which induces mechanical forces and considerable wear of the flexible walls during the period of time. life of the installation. Indeed, the flexible walls can suffer fatal damage resulting in a reduction in the life of the facilities or an increase in maintenance and repair costs. For example, the flexible walls can be damaged during transport and installation, including by clamping between the hoisting chains. Once in the water, the material constituting them may de - lymerize in an accelerated manner, or suffer damage by the living medium in the water. These types of damage can lead to loss of longevity, sealing, flexibility or other essential mechanical properties.
  • JP5401 15 1 7 recommends, in this regard, to use a rigid wall installation.
  • the installation described in this document comprises a rigid air storage dome comprising a valve and an air pipe for accumulating the energy of the air. compressed in a water container placed at or on the seabed.
  • patent applications JP63239320 and US2012 / 0061 973A1 describe rigid boxes with open bottom and essentially horizontal axis, which are connected by a pipe which allows a compressed gas to enter and exit under pressure, and which have a water outlet system at its lower part. These boxes are placed at the bottom of the sea for the storage of compressed air and have a means of restraint against buoyancy.
  • a compressor When excess energy is available, a compressor is operated to supply the pressurized air box through a connecting pipe, and thus, by evacuating the seawater through a water passage hole, Energy is stored in the box in the form of compressed air. To produce electricity, a turbine is used to generate electricity by relaxing the compressed air stored in the box.
  • the object sought by the invention is to provide a compressed gas storage facility under water and a corresponding installation process, capable of considerably increasing compared to the state of the viability of a gas storage isobaric tablets under water, both from the economic point of view and industrial implementation.
  • the invention is particularly intended to facilitate the implementation of the installation.
  • the object of the invention is therefore, according to a first aspect, an installation for storing compressed gases under water comprising a gas storage means comprising a hollow structure of which a substantial part of the surface subjected to Archimedes' thrust is rigid.
  • This installation comprises a set of links fixed to the structure and converging towards a docking point and an anchoring system intended to cooperate with the docking point.
  • it comprises a removable fastening element from the anchoring point to the anchoring system so that the installation can be hooked or unhooked under water to the anchoring system and so that the descent in the water and the installation of the hollow structure can be carried out independently of the descent and the installation of the anchoring system.
  • the installation further comprises a second set of links intended to be connected between the removable fastening element and the anchoring system and the said removable fastening element is adapted to allow a free movement of the links of the second set of links relative to the removable fastening element.
  • the structure subjected to Archimedes' thrust is a rigid dome made of a material able to resist corrosion under the action of the stored gases and the surrounding water and to resist without deformation to the force mechanics resulting from the buoyancy of Archimedes when it contains a gas.
  • the installation further comprises a rigid frustoconical structure connected at one end to the hollow structure subjected to buoyancy and whose other end is open, said frustoconical structure being made of a material able to withstand the corrosion due to the action of stored gases and surrounding water.
  • a spacer in particular a polygonal or circular spacer on which the links fixed to the structure rest, allows the links to be separated from one another.
  • the surface subjected to buoyancy has several feed orifices of the gas installation,
  • the installation may furthermore include one or more supply chimneys of the compressed gas plant opening inside the hollow structure in the vicinity of the surface subjected to Archimedean thrust.
  • the chimney or chimneys may be connected to one or more feed orifices provided in the spacer.
  • the installation may also comprise a third set of links intended to be connected to the anchoring system and to be connected to the rest of the installation so as to prevent rotational movements along a vertical axis of the gas storage means.
  • the anchoring system comprises several weighting modules.
  • a layer of liquid material lighter than water and immiscible with it, is introduced into the gas storage means for separating the water from the stored gases.
  • the layer of liquid material is contained in a sealed pouch, flexible and movable.
  • the supply of the compressed gas storage facility may be sealingly connected to a flexible envelope contained within the gas storage means and for containing the stored gases.
  • the installation may also comprise one or more floats attached to the hollow structure and / or one or more volumes in particular toric located inside the hollow structure to maintain tensioned links fixed to the structure under the effect of the thrust. of Archimedes.
  • the object of the invention is also, and according to a second aspect, a method of implementing the installation as defined above, comprising a first step of lowering the anchoring system to the bottom of the water. a second step of immersing the gas storage means and a third step of securing the docking point to the anchoring system.
  • the anchoring system comprising several weighting modules, is immersed successively said modules.
  • Figure 1 is a schematic view of a compressed gas storage facility under water, according to a first embodiment
  • Figure 2 illustrates another embodiment of the installation of Figure 1, with a compressed gas supply line, a rigid structure and additional links and a gravitational anchor consisting of several modules.
  • This installation makes it possible to store compressed gases, for example and in no way to limit compressed ambient air by using electrical energy from an intermittent source of energy, in an isobaric manner.
  • isobaric means a substantially constant pressure generated by the column of water.
  • an overpressure or a depression is created in the storage means with respect to the constant pressure generated by the column of water, for example under the action of compression or dynamic decompression generated by a gas suction linked for example to the operation of the installation.
  • the pressure prevailing in the storage means and in a network of pipes carrying the stored compressed gas may possibly vary from a few bar, cyclically or otherwise, more specifically up to 10 bar of variation, with respect to the hydrostatic pressure. of reference exerted by the water column on the storage. Also, it is within the scope of the invention when the pressure differential between the interior of the storage assembly and the surrounding underwater environment varies between the top and bottom of the the storage assembly due to the vertical dimension of this assembly and the variation of the hydrostatic pressure of the surrounding medium with the depth (while the pressure inside the storage assembly is substantially constant).
  • the installation essentially comprises a compressed gas storage means 8 comprising a hollow structure 1 subject to the buoyancy of Archimedes which forms a dome capering a frustoconical structure 2 sealingly integral with the structure 1 subject to the thrust of Archimedes.
  • the set of gas storage means including the hollow structure 1 and the frustoconical structure 2, constitutes a downwardly open enclosure intended to contain the gas under pressure and to be immersed, for example at sea or in a lake, at a chosen depth depending on the storage pressure to be obtained.
  • the frustoconical structure is thus open in its lower part 3, and the dome is retained by a set of links 4 fixed to the hollow structure 1 and extending for example along the outer surface of the frustoconical structure 2 to converge towards a stowage center 6 itself retained by an anchoring system 7 intended to rest at the bottom of the water.
  • the anchoring system 7 essentially comprises a ballast made in the form of one or more concrete blocks capable of opposing the buoyancy force applied to the installation. .
  • This anchoring system is fixed to the stowage center by means of a second set of links 11.
  • the stowage center is associated with an attachment element E, of the shackle or carabiner type, capable of providing a detachable attachment of the docking center to the anchoring system.
  • the shape of the structure 1 subjected to the Archimedes thrust of the conical trunk 2 is chosen in such a way that the Archimedes force applying to the upper part of the container can be retained by a dome whose convex shape matches a curve minimizing the mechanical limitations on the gas storage means, and thus minimizing the cost of the installation.
  • the cupola 1 and the frustoconical structure 2 are preferably rigid and are for example and in no way limiting made of PVC, stainless steel or concrete, for example armed. It will be noted, however, that preferably, a substantial part of the paro i of the hollow structure, subjected to the thrust of Archimedes, and in particular the upper part of this structure, is made of such a material. Substantial part here means at least a part of this wall, excluding the attachment zone 4.
  • the rigid walls undergo less stress and wear than those exerted on an equivalent installation with a flexible wall, thus reducing maintenance operations.
  • the installation will be able to withstand corrosion for periods longer than 20 years, even in seawater, without however being forced to use large steel surfaces and thus allowing the use of stainless steel in spite of its cost.
  • the buoyancy of Archimedes is essentially exerted on the upper part of the hollow structure 1, the frustoconical structure 2 does not need to withstand heavy mechanical stresses. Therefore, its thickness can be minimized, which reduces the cost of materials involved in the constitution of the facility.
  • the upper part of the anchoring system attached to the tie-down point 6 by the second set of links 11, is advantageously provided with an element 13 chosen to allow a free movement of links 1 1 and in particular a sliding of these links 1 1 which attach the docking point to the anchoring system 12.
  • an element 13 chosen to allow a free movement of links 1 1 and in particular a sliding of these links 1 1 which attach the docking point to the anchoring system 12.
  • one or more swivels will be used.
  • This embodiment and in particular the use of a removable attachment element E, of the shackle or carabiner type, makes it possible to separate the installation at sea from the gas storage means from that of the means used to anchor it in such a way not to cumulate the difficulties related to the weight of the anchorage and the handling difficulties related to the size of the hollow structure and the frustoconical structure.
  • the degrees of freedom allowed by the links 1 1 and the element 13 and the essentially vertical structure of the installation due to the presence of the frustoconical structure 2 allow the installation to adapt to slopes strong and irregular without the risk of breaking or unbalancing the anchoring system 12.
  • this type of storage facility does not require to provide surfaces sive support, while not being sensitive to landslides or earthquakes.
  • the verticality and the floatation of the gas storage means is ensured even when the structure is filled with water.
  • One or more balloons 18 floats attached to the outside of the structure 1 subject to buoyancy may advantageously complement or replace this effect.
  • the compressed gas under the action of a surface compression system is first fed into the gas storage means by a feed comprising one or more orifices 15 formed in the upper part of the hollow structure 1 subjected to the thrust of Archimedes and which communicate with a pressurized gas supply line (not shown).
  • the compressed gas is stored in the storage means 8 as necessary. Because of its lower density than that of water, the compressed gas tends to rise just under the hollow structure 1 subject to buoyancy.
  • Such a layer may, if necessary, be contained in a sealed, flexible and mobile pocket. In this embodiment, in which a flexible bag is used, there is therefore no direct contact between the gas and the seawater. This layer therefore has the advantage of allowing insulation of the gas stored relative to to water, thus avoiding the salification of gas or the absorption of gas by water.
  • a valve and a pump upstream of the supply line connected to the orifice 15 can then optionally control the flow into and out of the storage means.
  • it is then pumped out of the storage means 8 via the same orifice 15 and the hollow structure and the frustoconical structure are then filled almost exclusively with water.
  • FIG. 2 shows the gas storage means 8 comprising the dome-shaped hollow structure 1 subjected to buoyancy and the structure 2 sealingly attached to the hollow structure 1, the first set of links 4 fixed. to the hollow structure 1 and converging towards the stowing point 6 and the anchoring system 7 releasably connected to the stitching point 6 by a second set of links 11.
  • Structure 2 is however here generally cylindrical.
  • the links of the second set of links are further separated from each other by a rigid circular spacer 9 located between the cylindrical structure 2 and the stowage point 6.
  • the installation comprises a third set of links 5 connecting the periphery of the hollow structure 1 subjected to the buoyancy force or the rigid annular spacing piece 9 at the periphery of the lower part of the anchoring system 12 so as to to prevent the rotational movements of the gas storage means along a vertical axis.
  • the supply of compressed gas in this example is made by one or more chimneys 16 passing through the open bottom end 3 of the cylindrical structure 2.
  • this chimney may optionally be integral. of the annular spacer 9, and to rise vertically to the interior of the cylindrical structure 2 to the upper end of the hollow structure 1 so as to extract as much gas as possible when the water level is at the top of the gas storage means 8.
  • the chimney or chimneys are connected to one or more feed orifices provided in the spacer 9. This solidifies the overall behavior of the installation and makes use of the spacer 9 as a means of interconnecting the compressed gas network supplying the installation.
  • the anchoring system 12 comprises several weighting modules, such as reinforced concrete slabs or mineral blocks 14, which can be lowered several times and be installed to form a single gravitational anchor.
  • the stowage point 6 can be hung up.
  • This makes it possible to mobilize only low - cost, standard cranes to lower the anchoring elements, and to avoid the use of cranes of more than 2,000 tons, which are few in number. world, and thus not very available and very expensive, while reaching anchoring weights higher than those which can descend the largest existing cranes.
  • the anchoring system can be made competitive with other anchoring techniques in spite of the very high weight that it is necessary to go down deep to moor large capacity gas containers which have to be anchored. set to resist the buoyancy of Archimedes.
  • the exemplary embodiment of the invention can thus be lowered to the greatest depths existing.
  • this example of implementation can also be completed, as illustrated, by float balloons 1 8 as well as by a toric volume placed in the hollow structure 1 and subject to buoyancy.
  • a layer of liquid material, possibly placed in a pocket can also be arranged between the stored gas and the surrounding water.
  • the links of the third set of links are here stretched after the docking point has been hooked to the anchoring system. It is not beyond the scope of the invention by installing several orifices instead of one at the top of the structure (1) subject to the thrust of Archimedes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

Cette installation de stockage de gaz comprimés sous l'eau comprend un moyen de stockage de gaz comprenant une structure creuse dont une partie substantielle de la surface (1) soumise à la poussée d'Archimède est rigide. Elle comporte un ensemble de liens (4) fixés à la structure et convergeant vers un point d'arrimage (6) et un système d'ancrage (7) coopérant avec le point d'arrimage.

Description

Installation de stockage de gaz comprimés sous l'eau et procédé d'installation correspondant
L 'invention concerne, de manière générale, le stockage de gaz comprimés et plus particulièrement le stockage de gaz comprimés sous l ' eau dans une installation isobare.
Selon une application particulièrement intéressante de l' invention, l ' installation permet un stockage d' énergie sous forme de gaz comprimés issus de la conversion d' énergie électrique intermittente ou fatale en énergie mécanique, par exemple et de manière nullement limitative, l ' air pressurisé issu d'un compresseur relié à une source d' énergie intermittente ou fatale. Cet air comprimé est stocké dans l' installation de stockage pressurisée isobare et peut être avantageusement utilisé dans un détendeur pour être, notamment, converti en énergie électrique fournie à la demande à un réseau de transport ou de distribution d' énergie électrique. Dans ce cas, l' installation de stockage de gaz comprimé est utilisée dans le cadre d'un procédé de stockage d ' énergie sous forme d' air comprimé, ou CAES (« Compressed Air Energy Storage » en Anglais) .
Ainsi, de manière générale, l ' invention concerne le stockage de gaz comprimés sous l ' eau. Le système de stockage de gaz comprimés sous l ' eau est une technique connue qui consiste à comprimer un gaz et à le stocker dans des réservoirs de stockage pressurisés soumis à la pression hydrostatique sensiblement constante d'une colonne d' eau. Ce type de stockage de gaz comprimé est particulièrement avantageux pour stocker de manière isobare de l ' air dans un procédé CAES , puisqu' il permet d'utiliser des moyens de compression et de détente de l ' air dimensionnés notamment pour fonctionner en permanence en conditions nominales à pression constante.
En particulier, en ce qui concerne la technique de stockage du gaz comprimé, il a été proposé d'utiliser des réservoirs immergés en mer à grande profondeur, ou dans des lacs, la pression de l ' eau s ' exerçant sur les réservoirs permettant d 'obtenir un stockage isobare du gaz comprimé, dans la mesure où, dans l ' hypothèse où l ' air est comprimé à une pression identique à celle de la colonne d' eau au dessus du stockage, la pression régnant dans les réservoirs reste constante quel que soit leur niveau de remplissage et notamment lorsqu' ils sont presque vides, la pression ne dépendant que de la profondeur, et non pas du taux de remplissage des réservoirs .
On pourra notamment se référer aux documents US4873828 , US6863474, et US201 1 /0253558 A l qui décrivent des installations de stockage d' air comprimé sous l ' eau à parois flexibles .
Il a été remarqué que ce type d'installation présente un certain nombre d' inconvénients, notamment en raison de la présence des parois flexibles et du rythme de gonflement et dégonflement qui induit des efforts mécaniques et une usure considérable des parois flexibles pendant la durée de vie de l ' installation. En effet, les parois flexibles peuvent subir des détériorations fatales aboutissant à une réduction de la durée de vie des installations ou à une augmentation des coûts de maintenance et de réparation. Par exemple, les parois flexibles peuvent être endommagées lors de leur transport et de leur installation, notamment par pincement entre les chaînes de levage. Une fois dans l ' eau, le matériau qui les constitue peut se dépo lymériser de manière accélérée, ou subir des détériorations par le milieu vivant dans l ' eau. Ces types de détériorations peuvent engendrer une perte de longévité, d' étanchéité, de flexibilité ou d ' autres propriétés mécaniques essentielles.
La demande de brevet JP5401 15 1 7 préconise, à cet égard, d'utiliser une installation à parois rigides . L 'installation décrite dans ce document comporte un dôme rigide de stockage d'air comprenant un clapet et un tuyau d'air permettant d' accumuler l'énergie de l ' air comprimé dans un récipient à eau placé au ou sur le fond de la mer. De même, les demandes de brevets JP63239320 et US2012/0061 973 A l décrivent des caissons rigides à fond ouvert et à axe essentiellement horizontal, qui sont reliés par une canalisation qui permet de faire rentrer et sortir un gaz sous pression à un système de compression, et qui disposent d'un système de sortie d' eau au niveau de sa partie basse. Ces caissons sont placés au fond de la mer pour le stockage d'air comprimé et disposent d'un moyen de retenue contre la poussée d'Archimède . Lorsque de l'énergie excédentaire est disponible, un compresseur est actionné pour alimenter le caisson en air sous pression à travers un tuyau de raccordement, et ainsi, en évacuant l'eau de mer à travers un trou de passage de l'eau, l'énergie est stockée dans le caisson sous forme d' air comprimé. Pour produire de l ' électricité, une turbine est utilisée pour générer l ' électricité en détendant l'air comprimé stocké dans le caisson.
Cependant, comme ces installations sont conçues selon la dimension essentiellement horizontale, leur empreinte au so l est bien supérieure à celle d'une installation dont l ' axe principal est vertical. De plus, le nombre réduit de degrés de liberté entre le stockage et la surface du sol ne permettent pas à l ' installation de s ' adapter à des pentes fortes et irrégulières sans risquer de casser ou de déséquilibrer l ' ancrage. En particulier, ces grandes structures rigides principalement horizontales nécessitant des surfaces d' appui au sol importantes sont par conséquent sensibles aux glissements de terrains ou aux tremblements de terre.
On pourra finalement se référer aux documents WO201 1 /099014 A2, et US201 1 /007003 1 Al . Il s ' agit, notamment, dans ces documents, d'utiliser un lestage à base de sédiments, au dessus ou à l ' intérieur de l 'installation de stockage fermée afin d'utiliser une fixation gravitationnelle de l ' installation. Cela nécessite de mettre en œuvre des moyens d'installation capables de supporter des poids très importants pour descendre ou transporter le ballast au fond de l'eau.
Au vu de ce qui précède, le but que cherche à atteindre l'invention est de proposer une installation de stockage de gaz comprimés sous l'eau et un procédé d'installation correspondant, capable d'augmenter considérablement par rapport à l'état de l'art la viabilité d'un stockage de gaz comprimés isobare sous l'eau, tant du point de vue économique que de la mise en œuvre industrielle.
L'invention a en particulier pour but de faciliter la mise en œuvre de l'installation.
L'invention a donc pour objet, selon un premier aspect, une installation de stockage de gaz comprimés sous l'eau comprenant un moyen de stockage de gaz comprenant une structure creuse dont une partie substantielle de la surface soumise à la poussée d'Archimède est rigide.
Cette installation comporte un ensemble de liens fixés à la structure et convergeant vers un point d'arrimage et un système d'ancrage destiné à coopérer avec le point d'arrimage.
Dans un mode de réalisation, elle comporte un élément de fixation amovible du point d'arrimage au système d'ancrage de sorte que l'installation puisse être accrochée ou décrochée sous l'eau au système d'ancrage et de sorte que la descente dans l'eau et l'installation de la structure creuse puisse être effectuée indépendamment de la descente et de l'installation du système d'ancrage.
Selon une autre caractéristique de l'invention, l'installation comporte en outre un deuxième ensemble de liens destinés à être raccordés entre l'élément de fixation amovible et le système d'ancrage et ledit élément de fixation amovible est adapté pour autoriser un déplacement libre des liens du deuxième ensemble de liens par rapport à l' élément de fixation amovible.
Selon encore une autre caractéristique, la structure soumise à la poussée d'Archimède est une coupole rigide réalisée en un matériau apte à résister à la corrosion sous l ' action des gaz stockés et de l ' eau environnante et à résister sans déformation à la force mécanique résultant de la poussée d'Archimède lorsqu' elle contient un gaz.
Par exemple, l 'installation comporte en outre une structure tronconique rigide raccordée par une extrémité à la structure creuse soumise à la poussée d'Archimède et dont l ' autre extrémité est ouverte, ladite structure tronconique étant réalisée en un matériau apte à résister à la corrosion sous l ' action des gaz stockés et de l ' eau environnante.
Dans un mode de réalisation, une pièce d ' écartement notamment polygonale ou circulaire sur laquelle reposent les liens fixés à la structure permet d' écarter les liens les uns des autres.
Par exemple, la surface soumise à la poussée d'Archimède comporte plusieurs orifices d ' alimentation de l 'installation en gaz,
L 'installation peut en outre comporter une ou plusieurs cheminées d' alimentation de l ' installation en gaz comprimés débouchant à l' intérieur de la structure creuse au voisinage de la surface soumise à la poussée d'Archimède.
La ou les cheminées peuvent êtres raccordées à un ou plusieurs orifices d' alimentation prévus dans la pièce d' écartement.
L'installation peut encore comporter un troisième ensemble de liens destinés à être raccordés au système d' ancrage et à être raccordés au reste de l ' installation de manière à empêcher les mouvements de rotation selon un axe vertical du moyen de stockage de gaz.
Par exemple, le système d' ancrage comporte plusieurs modules de lestage. Selon une autre caractéristique de l'invention, une couche de matière liquide, plus légère que l ' eau et non miscible avec elle, est introduite dans le moyen de stockage de gaz pour séparer l ' eau des gaz stockés .
Par exemple, la couche de matière liquide est contenue dans une poche étanche, souple et mobile.
L ' alimentation de l 'installation de stockage en gaz comprimés peut être reliée de manière étanche à une enveloppe souple contenue à l' intérieur les moyens de stockage de gaz et destinée à contenir les gaz stockés .
L 'installation peut par ailleurs comporter un ou plusieurs flotteurs attachés à la structure creuse et/ou un ou plusieurs volumes notamment toriques situés à l' intérieur de la structure creuse pour maintenir tendus les liens fixés à la structure sous l ' effet de la poussée d' Archimède.
L 'invention a également pour obj et, selon un deuxième aspect, un procédé de mise en œuvre de l 'installation telle que définie ci- dessus, comprenant une première étape consistant à descendre sur le fond de l ' eau le système d' ancrage, une deuxième étape consistant à immerger les moyens de stockage de gaz et une troisième étape de fixation du point d' arrimage au système d' ancrage.
Par exemple, le système d' ancrage comprenant plusieurs modules de lestage, on immerge successivement lesdits modules .
On peut par ailleurs tendre les liens du troisième ensemble de liens après que le point d' arrimage ait été accroché au système d' ancrage.
D ' autres buts, caractéristiques et avantages de l ' invention apparaîtront à la lecture de la description suivante, donnée uniquement à titre d ' exemple non limitatif, et faite en référence aux dessins annexés sur lesquels : la figure 1 est une vue schématique d'une installation de stockage de gaz comprimés sous l ' eau, selon un premier mode de réalisation ;
la figure 2 illustre un autre exemple de réalisation de l' installation de la figure 1 , dotée d'une conduite d' alimentation en gaz comprimés, une structure rigide et de liens supplémentaires ainsi qu'un ancrage gravitationnel constitué de plusieurs mo dules .
En se référant tout d' abord à la figure 1 , on va décrire un premier mode de réalisation d'une installation de stockage de gaz comprimés sous l' eau.
Cette installation permet de stocker des gaz comprimés, par exemple et de manière nullement limitative de l ' air ambiant comprimé en utilisant l ' énergie électrique provenant d'une source d' énergie intermittente, de manière isobare. On notera que par le terme isobare, on entend une pression sensiblement constante engendrée par la co lonne d' eau. Toutefois, on ne sort pas du cadre de l ' invention lorsque l' on crée une surpression ou une dépression dans les moyens de stockage par rapport à la pression constante engendrée par la co lonne d' eau, par exemple sous l ' action d'une compression ou d'une décompression dynamique engendrée par une aspiration de gaz liée par exemple au fonctionnement de l ' installation.
Ainsi, la pression régnant dans les moyens de stockage et dans un réseau de tuyaux transportant le gaz comprimé stocké pourra éventuellement varier de quelques bar, de manière cyclique ou non, plus spécifiquement jusqu' à 10 bar de variation, par rapport à la pression hydrostatique de référence exercée par la colonne d' eau sur le stockage. De même, on ne sort pas du cadre de l 'invention lorsque le différentiel de pression entre l ' intérieur de l ' ensemble de stockage et le milieu sous-marin environnant varie entre le haut et le bas de l ' ensemble de stockage du fait de la dimension verticale de cet ensemble et de la variation de la pression hydrostatique du milieu environnant avec la profondeur (alors que la pression à l ' intérieur de l ' ensemble de stockage est sensiblement constante) .
Comme on le voit sur la figure 1 sur laquelle on a représenté l' installation dans une position verticale d'utilisation, dans l ' exemple de réalisation considéré, l ' installation comporte essentiellement un moyen 8 de stockage de gaz comprimés comprenant une structure creuse 1 soumise à la poussée d'Archimède qui forme une coupole chapeautant une structure tronconique 2 solidaire de manière étanche de la structure 1 soumise à la poussée d'Archimède.
L ' ensemble des moyens de stockage de gaz, y compris la structure creuse 1 et la structure tronconique 2, constitue une enceinte ouverte vers le bas destinée à contenir le gaz sous pression et à être immergée, par exemple en mer ou dans un lac, à une profondeur choisie en fonction de la pression de stockage à obtenir.
La structure tronconique est ainsi ouverte dans sa partie inférieure 3 , et la coupole est retenue par un ensemble de liens 4 fixés à la structure creuse 1 et s ' étendant par exemple le long de la surface externe de la structure tronconique 2 pour converger vers un centre d' arrimage 6 lui-même retenu par un système d' ancrage 7 destiné à reposer au fond de l ' eau.
Comme on le voit sur la figure 1 , le système d' ancrage 7 comprend essentiellement un lest réalisé sous la forme d'un ou de plusieurs blocs de béton capables de s ' opposer à la poussée d'Archimède s ' appliquant sur l ' installation. Ce système d' ancrage est fixé au centre d' arrimage au moyen d'un deuxième ensemble de liens 1 1 .
On notera que le centre d' arrimage est associé à un élément E de fixation, de type manille ou mousqueton, capable d' assurer une fixation amovible du centre d' arrimage au système d' ancrage. La forme de la structure 1 soumise à la poussée d'Archimède so lidaire du tronc conique 2 est choisie de telle manière que la force d'Archimède s ' appliquant à la partie haute du conteneur puisse être retenue par une coupole dont la forme convexe épouse une courbe minimisant les so llicitations mécaniques sur les moyens de stockage de gaz, et minimisant ainsi le coût de l ' installation.
La coupole 1 et la structure tronconique 2 sont de préférence rigides et sont par exemple et de manière nullement limitative réalisées en PVC, en acier inox ou en béton, par exemple armé. On notera toutefois que de préférence, une partie substantielle de la paro i de la structure creuse, soumise à la poussée d 'Archimède, et notamment la partie supérieure de cette structure, est réalisée en un tel matériau. Par partie substantielle, on entend ici au moins une partie de cette paroi, à l' exclusion de la zone de fixation des liens 4.
Les parois rigides subissent dans ce cas des sollicitations et une usure inférieures à celles exercées sur une installation équivalente avec une paroi flexible, réduisant ainsi les opérations de maintenance. L 'installation pourra ainsi résister à la corrosion pendant des durées supérieures à 20 ans, même en eau de mer, sans être toutefois contrainte d'utiliser des surfaces importantes d' acier et en permettant ainsi l 'utilisation d' acier inox en dépit de son coût. De plus, comme la poussée d'Archimède s ' exerce essentiellement sur la partie supérieure de la structure creuse 1 , la structure tronconique 2 n' a pas besoin de résister à d' importantes sollicitations mécaniques . De ce fait, son épaisseur peut être minimisée, ce qui réduit le coût des matériaux entrant dans la constitution de l ' installation.
On notera que la partie haute du système d' ancrage accroché au point d' arrimage 6 par le deuxième ensemble de liens 1 1 , est avantageusement dotée d 'un élément 13 choisi pour permettre une libre circulation des liens 1 1 et notamment un glissement de ces liens 1 1 qui attachent le point d' arrimage au système d' ancrage 12. On utilisera à cet égard, par exemple, un ou plusieurs émerillons.
Ce mode de réalisation, et en particulier l 'utilisation d'un élément E de fixation amovible, de type manille ou mousqueton, permet de séparer l ' installation en mer du moyen de stockage de gaz de celle des moyens utilisés pour son ancrage de manière à ne pas cumuler les difficultés liées au poids de l ' ancrage et les difficultés de manutention liées à la taille de la structure creuse et de la structure tronconique. De plus, les degrés de liberté permis par les liens 1 1 et par l ' élément 13 ainsi que la structure essentiellement verticale de l' installation due à la présence de la structure tronconique 2 permettent à l ' installation de s ' adapter à des pentes fortes et irrégulières sans risquer de casser ou de déséquilibrer le système d' ancrage 12. A la différence d'une grande structure lestée avec des sédiments ou des structures rigides essentiellement horizontales, ce type d' installation de stockage ne nécessite pas de prévoir des surfaces d' appui au so l importantes, tout en étant peu sensible aux glissements de terrains ou aux tremblements de terre.
Par ailleurs, dans l ' exemple de la figure 1 , la verticalité et la flottaison du moyen de stockage de gaz est assurée même lorsque la structure est remplie d ' eau.
On pourra à cet égard utiliser un ou plusieurs volumes 19 , qui pourront être notamment torique, situés à l 'intérieur de la structure 1 soumise à la poussée d'Archimède de manière à maintenir les liens du premier ensemble de liens 4 tendus en permanence sous l ' effet de la poussée d'Archimède sur ledit vo lume. Un ou plusieurs ballons 1 8 flotteurs attachés à l ' extérieur de la structure 1 soumise à la poussée d'Archimède peuvent avantageusement venir compléter ou remplacer cet effet. On va maintenant décrire le mode de fonctionnement de l'installation de stockage de gaz comprimés qui vient d'être décrite.
On notera tout d'abord que grâce à l'utilisation d'un élément de fixation amovible du point d'arrimage au système d'ancrage, l'immersion de l'installation qui vient d'être décrite consiste en premier lieu à immerger le système d'ancrage, puis à immerger le moyen de stockage de gaz 8. La fixation du moyen de stockage au système d'ancrage est ensuite réalisée au moyen de l'élément de fixation amovible.
Le gaz comprimé sous l'action d'un système de compression en surface est premièrement acheminé dans le moyen de stockage de gaz par une alimentation comprenant en un ou plusieurs orifices 15 pratiqués dans la partie haute de la structure creuse 1 soumise à la poussée d'Archimède et qui communiquent avec une conduite d'alimentation en gaz sous pression (non représentée).
Le gaz comprimé est stocké dans le moyen de stockage 8 tant que cela est nécessaire. En raison de sa densité inférieure à celle de l'eau, le gaz comprimé a tendance à remonter juste sous la structure creuse 1 soumise à la poussée d'Archimède. Une couche de matière liquide 17, plus légère que l'eau et non miscible avec elle (telle que de l'huile), est introduite dans la structure creuse pour séparer l'eau des gaz stockés. Une telle cette couche pourra le cas échant être contenue dans une poche étanche, souple et mobile. Dans cet exemple de réalisation, dans lequel on utilise une poche souple, il n'y a donc pas de contact direct entre le gaz et l'eau de mer. Cette couche a donc l'avantage de permettre une isolation du gaz stocké par rapport à l'eau, évitant ainsi la salification du gaz ou l'absorption du gaz par l'eau. Une vanne et une pompe en amont de la conduite d'alimentation connectée à l'orifice 15 permettent ensuite éventuellement de contrôler le débit entrant et sortant du moyen de stockage. Lorsque l'on désire déstocker le gaz comprimé, il est alors pompé en dehors du moyen de stockage 8 par l 'intermédiaire du même orifice 15 et la structure creuse ainsi que la structure tronconique sont alors remplies presque exclusivement d' eau. En se référant maintenant à la figure 2, on va maintenant décrire un autre mode de réalisation d'une installation de gaz comprimés selon l' invention.
Sur cette figure, des éléments identiques au mode de réalisation de la figure 1 portent les mêmes références numériques .
On reconnaît sur la figure 2 le moyen de stockage de gaz 8 comprenant la structure creuse 1 en forme de coupole soumise à la poussée d'Archimède et la structure 2 fixée de manière étanche à la structure creuse 1 , le premier ensemble de liens 4 fixés à la structure creuse 1 et convergeant vers le point d' arrimage 6 et le système d' ancrage 7 lié de manière amovible au point d ' arrimage 6 par un deuxième ensemble de liens 1 1 .
La structure 2 est toutefois ici généralement cylindrique.
Les liens du deuxième ensemble de liens sont en outre écartés les uns des autres par une pièce d' écartement circulaire rigide 9 située entre la structure cylindrique 2 et le point d' arrimage 6. Dans cette variante, en plus du deuxième ensemble de liens 4, l 'installation comporte un troisième ensemble de liens 5 reliant la périphérie de la structure creuse l soumise à la poussée d'Archimède ou la pièce d' écartement annulaire rigide 9 à la périphérie de la partie basse du système d' ancrage 12 de manière à empêcher les mouvements de rotation du moyen de stockage de gaz selon un axe vertical.
De plus, l ' alimentation de l 'installation en gaz comprimés se fait dans cet exemple par une ou plusieurs cheminées 16 passant par l ' extrémité inférieure ouverte 3 de la structure cylindrique 2. Dans un mode de réalisation, cette cheminée peut éventuellement être solidaire de la pièce d' écartement annulaire 9 , et monter verticalement à l' intérieur de la structure cylindrique 2 jusqu' à l ' extrémité supérieure de la structure creuse 1 de manière à pouvoir soutirer la plus grande quantité de gaz possible lorsque le niveau d' eau se situe en haut du moyen de stockage de gaz 8. Comme on le voit, dans ce mode de réalisation, la ou les cheminées sont raccordées à un ou plusieurs orifices d' alimentation prévus dans la pièce d ' écartement 9. Cela permet de solidifier le comportement global de l ' installation et d'utiliser la pièce d' écartement 9 comme un moyen d' interconnexion du réseau de gaz comprimés alimentant l 'installation.
En outre, dans cette figure 2, le système d' ancrage 12 comporte plusieurs modules de lestage, tels que des galettes de béton armé ou des blo cs minéraux 14, qui peuvent être descendus en plusieurs fois et être installés pour constituer un ancrage gravitationnel unique auquel pourra être accroché le point d' arrimage 6. Cela permet de ne mobiliser que des grues courantes et peu coûteuses pour descendre les éléments d' ancrage, et d' éviter l 'usage de grues de plus de 2.000 tonnes, peu nombreuses dans le monde, et donc peu disponibles et très coûteuses, tout en atteignant des poids d' ancrage supérieurs à ceux que peuvent descendre les plus grandes grues existantes. Ainsi, l ' on peut rendre compétitif le système d' ancrage par rapport à d' autres techniques d' ancrage en dépit du poids très élevé qu' il est nécessaire de descendre en profondeur pour amarrer des conteneurs de gaz de grande capacité qui doivent être fixés pour résister à la poussée d'Archimède. L ' exemple de réalisation de l' invention peut ainsi être descendu aux plus grandes profondeurs existantes .
Bien entendu, cet exemple de mise en œuvre peut également être complété, comme illustré, par des ballons flotteurs 1 8 ainsi que par un vo lume torique placé dans la structure creuse 1 et soumis à la poussée d'Archimède. Une couche de matière liquide, éventuellement placée dans une poche pourra également être disposée entre le gaz stocké et l'eau environnante.
On notera que dans cet exemple de réalisation la mise en œuvre de l'installation est similaire à celle qui a été décrite précédemment.
Toutefois, les liens du troisième ensemble de liens sont ici tendus après que le point d'arrimage ait été accroché au système d'ancrage. On ne sort pas du cadre de l'invention en installant plusieurs orifices au lieu d'un seul en partie haute de la structure (1) soumise à la poussée d'Archimède.
De même, on ne sort pas du cadre de l'invention si l'alimentation de l'installation en gaz comprimés se fait par plusieurs cheminées 16 au lieu d'une seule passant par l'extrémité inférieure ouverte de la partie 2.
Enfin, on pourra avantageusement installer plusieurs orifices 20 au lieu d'un seul dans la pièce d'écartement 9.

Claims

REVENDICATIONS
1. Installation de stockage de gaz comprimés sous l'eau comprenant un moyen de stockage de gaz comprenant une structure creuse dont une partie substantielle de la surface (1) soumise à la poussée d'Archimède est rigide, caractérisée en ce qu'elle comporte un ensemble de liens (4) fixés à la structure et convergeant vers un point d'arrimage (6) et un système d'ancrage (7) destiné à coopérer avec le point d'arrimage.
2 Installation selon la revendication 1, caractérisée en ce qu'elle comporte un élément (6) de fixation amovible du point d'arrimage au système d'ancrage de sorte que l'installation puisse être accrochée ou décrochée sous l'eau au système d'ancrage (7) et de sorte que la descente dans l'eau et l'installation de la structure creuse (8) puisse être effectuée indépendamment de la descente et de l'installation du système d'ancrage (7).
3. Installation selon la revendication 2, caractérisée en ce qu'elle comporte en outre un deuxième ensemble de liens destinés à être raccordés entre l'élément (13) de fixation amovible et le système d'ancrage (7), et en ce que ledit élément de fixation amovible est adapté pour autoriser un déplacement libre des liens du deuxième ensemble de liens par rapport à l'élément de fixation amovible.
4. Installation selon l'une quelconque des revendications 1 à 3, caractérisée en ce que la structure (1) soumise à la poussée d'Archimède est une coupole rigide réalisée en un matériau apte à résister à la corrosion sous l'action des gaz stockés et de l'eau environnante et à résister sans déformation à la force mécanique résultant de la poussée d'Archimède lorsqu'elle contient un gaz.
5. Installation selon l'une quelconque des revendications 1 à 4, caractérisée en ce qu'elle comporte en outre une structure tronconique (2) rigide raccordée par une extrémité à la structure creuse (1) soumise à la poussée d'Archimède et dont l'autre extrémité est ouverte, ladite structure tronconique étant réalisée en un matériau apte à résister à la corrosion sous l'action des gaz stockés et de l'eau environnante.
6. Installation selon l'une quelconque des revendications 1 à 5, caractérisée en ce qu'elle comporte une pièce d'écartement circulaire (9) sur laquelle reposent les liens (4) fixés à la structure de sorte qu'ils soient écartés les uns des autres.
7. Installation selon l'une quelconque des revendications 1 à 6, caractérisée en ce que la surface (1) soumise à la poussée d'Archimède comporte plusieurs orifices d'alimentation de l'installation en gaz.
8. Installation selon l'une quelconque des revendications 1 à 6, caractérisée en ce qu'elle comporte une ou plusieurs cheminées (16) d'alimentation de l'installation en gaz comprimés débouchant à l'intérieur de la structure creuse au voisinage de la surface (1) soumise à la poussée d'Archimède.
9. Installation selon la revendication 8, dépendante de la revendication 6, caractérisée en ce que la ou les cheminées sont raccordées à un ou plusieurs orifices d'alimentation prévus dans la pièce d'écartement (9).
10. Installation selon l'une quelconque des revendications 1 à
9, caractérisée qu'elle comporte un troisième ensemble de liens (5) destinés à être raccordés au système d'ancrage (12) et à être raccordés au reste de l'installation de manière à empêcher les mouvements de rotation selon un axe vertical du moyen de stockage de gaz.
11. Installation selon l'une quelconque des revendications 1 à
10, caractérisée en ce que le système d'ancrage (12) comporte plusieurs modules de lestage.
12. Installation selon l'une quelconque des revendications 1 à 11, caractérisée en ce qu'une couche de matière liquide (17), plus légère que l'eau et non miscible avec elle, est introduite dans le moyen de stockage de gaz pour séparer l'eau des gaz stockés.
13 Installation selon la revendication 12, caractérisée en ce que la couche de matière liquide est contenue dans une poche étanche, souple et mobile.
14. Installation selon l'une quelconque des revendications 1 à
13, caractérisée en ce que l'alimentation de l'installation de stockage en gaz comprimés est reliée de manière étanche à une enveloppe souple contenue à l'intérieur de les moyens de stockage de gaz et destinée à contenir les gaz stockés.
15. Installation selon l'une quelconque des revendications 1 à
14, caractérisée en ce qu'elle comporte un ou plusieurs flotteurs (18) attachés à la structure creuse.
16. Installation selon l'une quelconque des revendications 1 à
15, caractérisée en ce qu'elle comporte un ou plusieurs volumes notamment toriques (19) situés à l'intérieur de la structure creuse pour maintenir tendus les liens (4) fixés à la structure sous l'effet de la poussée d'Archimède.
17. Procédé de mise en œuvre de l'installation selon l'une quelconque des revendications 1 à 16, comprenant une première étape consistant à descendre sur le fond de l'eau le système d'ancrage (7), une deuxième étape consistant à immerger les moyens de stockage de gaz et une troisième étape de fixation du point d'arrimage au système d'ancrage (7).
18. Procédé selon la revendication 17, caractérisé en ce que le système d'ancrage (7) comprenant plusieurs modules de lestage, on immerge successivement lesdits modules.
19. Procédé selon l'une des revendications 17 et 18, caractérisé en ce que l'on tend les liens du troisième ensemble de liens après que le point d'arrimage (6) ait été accroché au système d'ancrage (7).
PCT/EP2013/064770 2012-07-13 2013-07-12 Installation de stockage de gaz comprimés sous l'eau et procédé d'installation correspondant WO2014009514A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1256796 2012-07-13
FR1256796A FR2993341B1 (fr) 2012-07-13 2012-07-13 Installation de stockage de gaz comprimes sous l'eau et procede d'installation correspondant

Publications (2)

Publication Number Publication Date
WO2014009514A2 true WO2014009514A2 (fr) 2014-01-16
WO2014009514A3 WO2014009514A3 (fr) 2014-03-20

Family

ID=46852258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/064770 WO2014009514A2 (fr) 2012-07-13 2013-07-12 Installation de stockage de gaz comprimés sous l'eau et procédé d'installation correspondant

Country Status (2)

Country Link
FR (1) FR2993341B1 (fr)
WO (1) WO2014009514A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2534709A1 (es) * 2014-06-26 2015-04-27 Enrique GONZÁLEZ BLANCO Depósito flexible de aire comprimido submarino de profundidad constante regulada

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5411517B2 (fr) 1974-01-24 1979-05-15
JPS63239320A (ja) 1987-03-27 1988-10-05 Takenaka Komuten Co Ltd 水中エネルギ貯蔵装置
US4873828A (en) 1983-11-21 1989-10-17 Oliver Laing Energy storage for off peak electricity
US6863474B2 (en) 2003-03-31 2005-03-08 Dresser-Rand Company Compressed gas utilization system and method with sub-sea gas storage
US20110070031A1 (en) 2009-09-23 2011-03-24 Scott Raymond Frazier System for underwater compressed fluid energy storage and method of deploying same
WO2011099014A2 (fr) 2010-02-15 2011-08-18 Arothron Ltd. Système de stockage d'énergie sous-marine et centrale alimentée grâce à celui-ci
US20110253558A1 (en) 2010-04-15 2011-10-20 Cameron Phillip Lewis Modularly deployable and scalable compressed air energy accumulator
US20120061973A1 (en) 2010-09-13 2012-03-15 Zelony James C Method and Apparatus for Compressed Gas Energy Storage in Offshore Wind Farms

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130127426A (ko) * 2010-07-14 2013-11-22 브라이트 에너지 스토리지 테크놀로지스, 엘엘피 열 에너지를 저장하기 위한 시스템 및 방법
FR2975841A1 (fr) * 2011-05-24 2012-11-30 Jean-Claude Pastorelli Dispositif et procede de stockage de l'energie generee par un reseau electrique.

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5411517B2 (fr) 1974-01-24 1979-05-15
US4873828A (en) 1983-11-21 1989-10-17 Oliver Laing Energy storage for off peak electricity
JPS63239320A (ja) 1987-03-27 1988-10-05 Takenaka Komuten Co Ltd 水中エネルギ貯蔵装置
US6863474B2 (en) 2003-03-31 2005-03-08 Dresser-Rand Company Compressed gas utilization system and method with sub-sea gas storage
US20110070031A1 (en) 2009-09-23 2011-03-24 Scott Raymond Frazier System for underwater compressed fluid energy storage and method of deploying same
WO2011099014A2 (fr) 2010-02-15 2011-08-18 Arothron Ltd. Système de stockage d'énergie sous-marine et centrale alimentée grâce à celui-ci
US20110253558A1 (en) 2010-04-15 2011-10-20 Cameron Phillip Lewis Modularly deployable and scalable compressed air energy accumulator
US20120061973A1 (en) 2010-09-13 2012-03-15 Zelony James C Method and Apparatus for Compressed Gas Energy Storage in Offshore Wind Farms

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2534709A1 (es) * 2014-06-26 2015-04-27 Enrique GONZÁLEZ BLANCO Depósito flexible de aire comprimido submarino de profundidad constante regulada

Also Published As

Publication number Publication date
WO2014009514A3 (fr) 2014-03-20
FR2993341B1 (fr) 2014-07-11
FR2993341A1 (fr) 2014-01-17

Similar Documents

Publication Publication Date Title
EP1606159B8 (fr) Dispositif de flottabilite et procede de stabilisation et de controle de la descente ou remontee d'une structure entre la surface et le fond de la mer
EP3854670B1 (fr) Procédé d'installation d'une éolienne offshore munie d'une structure de support flottant
EP2318267B1 (fr) Support flottant comprenant un touret equipe de deux bouees d'amarrage de lignes d'ancrage et de conduites de liaison fond/surface
EP2252500B1 (fr) Support comprenant un touret equipe d'une bouee d'amarrage de conduites de liaison fond/surface deconnectable
EP2536934B1 (fr) Système de stockage d'énergie sous-marine et centrale alimentée grâce à celui-ci
EP0096636A1 (fr) Système d'exploitation des fluides d'un gisement
EP2125503B1 (fr) Dispositif de decoupe et ouverture/fermeture d'un orifice dans une paroi au fond de la mer
FR2988424A1 (fr) Installation de liaisons fond-surface de type tour hybride multi-risers comprenant des conduites flexibles a flottabilite positive
EP0942102B1 (fr) Plate-forme auto-élévatrice à réservoir immergé et procédés de mise en place et de relevage du réservoir
EP3259404B1 (fr) Structure de support et d'ancrage d'éolienne maritime du type embase gravitaire et procédé de remorquage et dépose en mer
EP1606160B1 (fr) Dispositif et procede de stabilisation et de controle de la descente ou remontee d'une structure lourde entre la surface et le fond de la mer
WO2014009514A2 (fr) Installation de stockage de gaz comprimés sous l'eau et procédé d'installation correspondant
EP1449762B1 (fr) Procédé et installation de récupération d'effluents en mer à l'aide d'un réservoir navette
EP2997220A1 (fr) Dispositif d'ancrage d'un support de goulottes d'une installation fond-surface
WO2014044930A1 (fr) Procédé et dispositif de collecte d'un fluide sous marin léger tel que de l'eau douce ou des hydrocarbures
EP4036313B1 (fr) Procédé de stockage et restitution d'hydrogène dans une structure offshore gravitaire et structure gravitaire associée
FR2645827A1 (fr) Plate-forme marine formee d'une pluralite d'elements modulaires pour le stockage de produits et pour l'amarrage et le chargement directs des navires, et procede d'installation, de demontage et de reinstallation en un autre endroit de cette plate-forme
FR3029886A1 (fr) Support flottant comportant un compartiment rempli de gaz et de liquide
WO2016132056A1 (fr) Structure de support et d'ancrage d'eolienne maritime du type tour treillis et procede de remorquage et depose en mer
FR2463847A1 (fr) Perfectionnements des structures sous-marines a utiliser dans l'exploitation des gisements miniers
FR2775993A1 (fr) Plate-forme auto-elevatrice a reservoir immerge et procede de mise en place et de relevage du reservoir
WO2011048578A1 (fr) Conduite sous-marine appliquee a l'exploitation de l'energie thermique des mers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13740224

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct app. not ent. europ. phase

Ref document number: 13740224

Country of ref document: EP

Kind code of ref document: A2