WO2014008815A1 - 一种麻醉深度控制装置及方法 - Google Patents

一种麻醉深度控制装置及方法 Download PDF

Info

Publication number
WO2014008815A1
WO2014008815A1 PCT/CN2013/078271 CN2013078271W WO2014008815A1 WO 2014008815 A1 WO2014008815 A1 WO 2014008815A1 CN 2013078271 W CN2013078271 W CN 2013078271W WO 2014008815 A1 WO2014008815 A1 WO 2014008815A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
module
sub
anesthesia
depth
Prior art date
Application number
PCT/CN2013/078271
Other languages
English (en)
French (fr)
Inventor
麦超伟
钟鼎辉
周文军
麦玉麟
张誉雄
黄文鉴
Original Assignee
广西威利方舟科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广西威利方舟科技有限公司 filed Critical 广西威利方舟科技有限公司
Publication of WO2014008815A1 publication Critical patent/WO2014008815A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4821Determining level or depth of anaesthesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/172Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic
    • A61M5/1723Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic using feedback of body parameters, e.g. blood-sugar, pressure

Definitions

  • the present invention relates to the field of computers, and in particular to an anesthesia depth control apparatus and method.
  • the anesthesia is too shallow.
  • the patient may have memory or even pain in the operation.
  • it may cause mental or sleep disorders.
  • the "horror memory" that may be caused during surgery becomes another pain in postoperative life. If the anesthesia is too deep, it may cause nerves. After-effects, there may be discomfort for a long time after surgery, and even life-threatening.
  • Sedation is too deep, excessive drug can cause slow breathing, until the breathing stops, the brain is hypoxic, the brain is chronically hypoxic, causing the patient's heart to stop, causing the patient to die.
  • the anesthesia is too shallow, causing intraoperative awareness.
  • the patient may have memory or even pain in the operation.
  • it may cause mental or sleep disorders.
  • the "horror memory" that may be triggered during surgery becomes another pain in postoperative life. That is, the recovery of consciousness occurs during surgery under general anesthesia.
  • the patient may have an awareness of the sound of the surrounding environment, but cannot control any movement of the limb, including, for example, blinking or coughing. It has been reported to have an incidence of 0.1-0.2%.
  • Intraoperative awareness can cause adverse effects in the near and long term for patients undergoing anesthesia due to surgery. These include: nightmares, insomnia, fear, hallucination, traumatic stress disorder, some patients are even diagnosed with schizophrenia, some may develop post-traumatic mental disorder syndrome, and last longer, need to be given Medical treatment or psychological counseling.
  • the main purpose of deep monitoring of general anesthesia is to: determine the depth of anesthesia, detect the state of the central nervous system; avoid intraoperative awareness, avoid memory after surgery, reduce the amount of anesthetic drugs, shorten the recovery process, improve the safety of anesthesia, must be anesthetized
  • In-depth monitoring currently monitoring the depth of anesthesia through the EEG monitoring index is the most widely used method.
  • Bispectral inde X is an EEG quantitative analysis index that includes three characteristics of frequency, amplitude and phase. It mainly reflects the phase coupling between frequencies in the EEG signal. It is a composite index. . It mainly uses 0-100 to quantify the degree of contact between different EEG signals.
  • the anesthesiologist was informed to maintain a bispectral index of 40 to 60, avoiding during induction and maintenance.
  • the bispectral index value exceeds 60; this anesthesia management method benefits significantly:
  • the bispectral index was monitored before anesthesia induction, from the placement of the laryngoscope to the suture
  • the EEG bispectral index values were maintained between 40 and 60, and controlled administration was performed. Results This measure reduced the incidence of intraoperative awareness by 82%.
  • Panousis et al. pointed out that the bispectral index does not accurately reflect the anesthetic status when neuromuscular activity increases under anesthesia.
  • the investigators underwent analgesia with thoracic epidural anesthesia with the addition of end-tidal halothane, and the depth of anesthesia was monitored by PRST score, OAA/S scale, and BIS XP monitor.
  • the increase of noxious stimulation will also cause an increase in the EEG index. It does not mean that the depth of anaesthesia is insufficient, but the analgesic drug is insufficient. The EEG monitoring value at this time does not accurately reflect the depth of anesthesia.
  • the anesthesiologist prompts according to the feedback value of the monitoring value: If the depth of anesthesia is insufficient, increasing the dose of sedative anesthetic drugs may actually become too deep anesthesia. If the anesthesia is too deep, it may cause neurological sequelae. It may be uncomfortable for a long time after surgery, and even life-threatening.
  • Muscle relaxation monitoring is also a means of monitoring anesthesia and assisting physicians in performing anesthesia during surgical anesthesia. Through appropriate methods to monitor the degree of blockage and recovery of neuromuscular transmission function after application of muscle relaxants, reduce the incidence of various serious complications caused by residual muscle relaxant, and improve the clinical application of muscle relaxants The safety and rationality are necessary.
  • various indicators in the prior art for measuring the state of muscle relaxation such as Single-Twitch Stimulation (SS), and Train-of-Four Stimulation (TOF;). , Tetanic Stimulation (TS) and so on.
  • SS Single-Twitch Stimulation
  • TOF Train-of-Four Stimulation
  • TS Tetanic Stimulation
  • the depth of neuromuscular relaxation is only a state that reflects one aspect of the patient during surgery.
  • the present invention relates to the field of computers, and in particular to an anesthesia depth control apparatus and method.
  • the anesthesia depth control device and method provided by the invention can effectively eliminate the problem that the anesthesia depth monitoring value is inaccurate due to disturbances such as neuromuscular activity interference and surgical noxious stimulation enhancement.
  • the anesthesia depth control device of the present invention comprises:
  • a data receiving module for receiving bispectral index, noxious stimulation data, and neuromuscular block depth data
  • a data analysis module for receiving bispectral index, noxious stimulation data, and neuromuscular block depth data Analyze and compare horizontally to determine the cause of fluctuations in the bispectral index of the brain
  • the control output module outputs the administration parameter information according to the data analysis result, and controls the administration amount of the analgesic drug, the muscle relaxant drug, and the sedative drug.
  • the anesthesia depth control device of the present invention further comprises a synchronization curve module for establishing a bispectral index, noxious stimulation data, and neuromuscular block depth data and a corresponding synchronization parameter of the administration parameters.
  • the anesthesia depth control device of the present invention has the following structure:
  • the data receiving module includes an EEG dual-frequency index receiving sub-module, a noxious stimulation data receiving sub-module, and a neuromuscular block depth data receiving sub-module for receiving the bispectral index, the nociceptive data, and the neuromuscular block, respectively. Depth data
  • the data analysis module includes the EEG dual-frequency index analysis sub-module, the noxious stimulation data analysis sub-module, and the neuromuscular block depth data analysis sub-module. After three sub-modules analysis and lateral comparison, the generation of bispectral index fluctuations is determined. the reason;
  • the control output module comprises a target control operation sub-module and an injection control sub-module; the target control operation sub-module calculates a target-controlled drug delivery parameter according to the bispectral fluctuation of the EEG and the cause thereof; the injection control sub-module controls the analgesia according to the administration parameter The amount of drug, muscle relaxant, and sedative drug administered.
  • the anesthesia depth control device of the present invention the brain electricity dual frequency index analysis submodule, the noxious stimulation data analysis submodule, and the neuromuscular block depth data analysis submodule in the data analysis module respectively set upper and lower thresholds;
  • the noxious stimulation data analysis sub-module if the noxious stimulation data is below the lower threshold, transmits the data to the target control sub-module, calculates the amount of analgesic drug to be reduced, and controls the reduction of the analgesic drug through the injection control sub-module If the noxious stimulation data is above the upper threshold, transmit the data to the target control sub-module, calculate the amount of analgesic drug to be increased, and control the increase of the analgesic by the injection control sub-module;
  • the neuromuscular block depth data analysis sub-module if the neuromuscular block depth data is below the lower threshold, transmit data to the target control sub-module, calculate the amount of muscle relaxant drug to be reduced, and control the muscle through the injection control sub-module If the depth data of the neuromuscular block is higher than the upper threshold, the data is transmitted to the target control sub-module, and the amount of the muscle relaxant drug to be increased is calculated, and the increase of the muscle relaxant drug is controlled by the injection control sub-module;
  • the bispectral index analysis sub-module if the noxious stimulation data and the neuromuscular block depth data do not exceed the preset upper and lower thresholds, determine the bispectral index of the brain; if the bispectral index is lower than Lower threshold, transmitting data to the target Control the operation sub-module, calculate the amount of sedative drug to be reduced, control the reduction of sedative drugs through the injection control sub-module; if the EEG dual-frequency index data is above the upper threshold, transmit the data to the target control sub-module, and calculate An increased amount of sedative drug administration is required, and an increase in sedative drugs is controlled by the injection control sub-module.
  • the injection control sub-module realizes the regulation of the dose by pushing the transmission device through the stepping motor and the syringe.
  • the stepping motor and the syringe push the transmission device into three sets, respectively forming three channels, B and C, and the channel
  • A delivers a sedative drug
  • channel B delivers an analgesic drug
  • channel C delivers a muscle relaxant drug
  • the anesthesia depth control device of the present invention comprises an anesthesia monitor, and the anesthesia monitor is a prior art, such as a Datex-ohmeda anesthesia monitor of GE, USA, which is monitored by an anesthesia monitor to obtain a bispectral index and noxious stimulation. Data, transferred to the data receiving module.
  • the anesthesia monitor is a prior art, such as a Datex-ohmeda anesthesia monitor of GE, USA, which is monitored by an anesthesia monitor to obtain a bispectral index and noxious stimulation. Data, transferred to the data receiving module.
  • the anesthesia depth control device protected by the present invention further includes a muscle relaxation monitoring device, such as the technology described in the Chinese utility model patent entitled “Closed Loop Muscle Injection Device", Patent No. "201020152817.8”; muscle relaxation monitoring device by muscle Loose monitoring stimulation unit and muscle relaxation monitoring sensor composition; muscle relaxation monitoring stimulation unit stimulates wrist ulnar nerve to monitor the adductor pollicis muscle, real-time monitoring of neuromuscular blockade by muscle relaxation monitoring sensor to obtain neuromuscular block depth data, transmitted to data Receive module.
  • a muscle relaxation monitoring device such as the technology described in the Chinese utility model patent entitled “Closed Loop Muscle Injection Device", Patent No. "201020152817.8”
  • muscle relaxation monitoring device by muscle Loose monitoring stimulation unit and muscle relaxation monitoring sensor composition muscle relaxation monitoring stimulation unit stimulates wrist ulnar nerve to monitor the adductor pollicis muscle, real-time monitoring of neuromuscular blockade by muscle relaxation monitoring sensor to obtain neuromuscular block depth data, transmitted to data Receive module.
  • GE's already-listed S/5 anesthesia monitors can also monitor the degree of neuromuscular blockade, obtain depth data for neuromuscular blockade, and can be combined with the technical solution of the present invention as a source of depth data for neuromuscular blockade.
  • the anesthesia depth control method uses the anesthesia depth control device according to the present invention; the bispectral index, the noxious stimulation data and the neuromuscular block depth data are monitored by using an external device;
  • the anesthesia depth control device receives the bispectral index, noxious stimulation data, and neuromuscular block depth data, and analyzes the bispectral index, noxious stimulation data, neuromuscular block depth data, and lateral contrast to determine the brain.
  • the cause of the fluctuation of the electrical bi-frequency index; the administration of the analgesic drug, the muscle relaxant drug, and the sedative drug is then controlled by the anesthesia depth control device.
  • the anesthesia depth control method of the present invention comprises the following preferred steps:
  • the data data receiving module includes an EEG dual-frequency index receiving sub-module, a noxious stimulation data receiving sub-module, and a neuromuscular block depth data receiving sub-module for receiving the bispectral index, the noxious stimulation data, and the nerve, respectively. Muscle block depth data, transmitted to the data analysis module;
  • the data analysis module includes a data EEG dual-frequency index analysis sub-module, a noxious stimulation data analysis sub-module, and a neuromuscular block depth data analysis sub-module; the three sub-modules receive the bispectral index, noxious stimulation Data and neuromuscular block depth data were analyzed and laterally compared to determine the cause of bi-frequency index fluctuations in the brain, transmitted to the control output module; 4.
  • the control output module includes a target control operation sub-module and an injection control sub-module; the target control operation sub-module calculates a target-controlled drug delivery parameter according to the bispectral index fluctuation and its cause; the injection control sub-module controls according to the administration parameter The amount of analgesic, muscle relaxant, and sedative drugs administered.
  • the method for controlling the depth of anesthesia according to the present invention includes the following further preferred steps:
  • the injection control sub-module realizes the regulation of the dosage by controlling the stepping motor and the syringe to drive the transmission device, and the stepping motor and the syringe driving the transmission device have three sets, respectively, respectively, B, C three channels, channels A delivers a sedative drug, channel B delivers an analgesic drug, and channel C delivers a muscle relaxant drug;
  • the noxious stimulation data analysis sub-module if the noxious stimulation data is below the lower threshold, transmits the data to the target control sub-module, calculates the amount of analgesic drug to be reduced, and reduces the analgesia by controlling the channel B through the injection control sub-module
  • the dose of the drug if the noxious stimulus data is above the upper threshold, the data is transmitted to the target control sub-module, and the amount of the analgesic drug to be increased is calculated, and the analgesic drug is increased by controlling the channel B through the injection control sub-module.
  • Amount of administration if the noxious stimulation data is below the lower threshold, transmits the data to the target control sub-module, calculates the amount of analgesic drug to be reduced, and reduces the analgesia by controlling the channel B through the injection control sub-module.
  • the neuromuscular block depth data analysis sub-module if the neuromuscular block depth data is below the lower threshold, transmit data to the target control sub-module, calculate the amount of muscle relaxant drug to be reduced, and control the channel through the injection control sub-module C reduces the dose of muscle relaxant drug; if the neuromuscular block depth data is above the upper threshold, transmit data to the target control sub-module, calculate the amount of muscle relaxant drug to be increased, and control the channel through the injection control sub-module C increases the dose of muscle relaxant drug; the bispectral index analysis sub-module, if the noxious stimulation data and the neuromuscular block depth data do not exceed the preset upper and lower thresholds, the EEG dual-frequency index is judged; If the bispectral index of the EEG is below the lower threshold, transmitting data to the target control sub-module, calculating the amount of sedative drug to be reduced, and controlling the channel A by the injection control sub-module to reduce the dose of the sedative drug;
  • the anesthesia depth control method establishes a bispectral index, noxious stimulation data, and neuromuscular block depth data and a corresponding synchronization parameter of the administration parameters through a synchronization curve module.
  • the noxious stimulation data of the present invention includes noxious stimulation blood pressure data, heart rate variability data HRV or other clinically applied data.
  • the neuromuscular block depth data of the present invention includes four times of string stimulation data TOF, four times of string stimulation data, the first twitch response height data T1 or other clinical application data.
  • the anesthesia depth control device of the present invention analyzes and compares the two major data information of neuromuscular activity interference and surgical noxious stimulation, and controls the injecting drugs respectively to realize the interference of neuromuscular activity interference and noxious stimulation. Minimized. Deep monitoring of EEG anesthesia After the elimination of interference and then optimized anesthesia control, the anesthesia depth control can be stabilized as a straight line, achieving machine control throughout the anesthesia process, changing the anesthesia process mainly relies on The physician's experience in anesthesia judges this condition, overcomes the influence of individual differences of patients, and ensures the safety of the anesthesia process to the greatest extent. It has very good social value and application prospects.
  • FIG. 1 is a schematic structural view of an anesthesia depth control apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of an anesthesia depth control device provided with an embodiment of the present invention.
  • FIG. 3 is a synchronization graph of monitoring data and corresponding administration parameters provided by an embodiment of the present invention.
  • the anesthesia monitor monitors and obtains the bispectral index and the noxious stimulation blood pressure data, and transmits the data to the data receiving module
  • the muscle relaxation monitoring device obtains the neuromuscular block depth data, and transmits the data to the data receiving module
  • the data data receiving module comprises an EEG dual-frequency index receiving sub-module, a noxious stimulation data receiving sub-module, and a neuromuscular block depth data receiving sub-module for receiving the bispectral index, the nociceptive data and the neuromuscular resistance, respectively. Depth data, transmitted to the data analysis module;
  • the data analysis module includes a data EEG dual-frequency index analysis sub-module, a noxious stimulation data analysis sub-module, and a neuromuscular block depth data analysis sub-module; the three sub-modules receive the bispectral index, the noxious stimulation data, and The neuromuscular block depth data is analyzed and laterally compared to determine the cause of the bispectral index fluctuations, which are transmitted to the control output module;
  • the control output module comprises a target control operation sub-module and an injection control sub-module; the target control operation sub-module calculates a target-controlled drug delivery parameter according to the bispectral fluctuation of the EEG and the cause thereof; the injection control sub-module controls the analgesia according to the administration parameter The amount of drug, muscle relaxant, and sedative drug administered.
  • the noxious stimulation blood pressure data analysis sub-module if the noxious stimulation blood pressure data MAP is lower than the lower threshold 70, transmitting data to the target control sub-module, calculating the amount of analgesic drug to be reduced, and controlling the channel through the injection control sub-module B reducing the dose of analgesic drugs; if the noxious stimulation blood pressure data MAP is above the upper threshold 105, transmitting data to the target control sub-module, calculating the amount of analgesic drug to be increased, controlled by the injection control sub-module Channel B increases the amount of analgesic drug administered;
  • Neuromuscular block depth data analysis sub-module if the neuromuscular block depth data is lower than the user-set threshold (such as TOF 10%), transmit data to the target control sub-module, reduce the rate of muscle relaxant drug delivery, by injection
  • the control sub-module controls channel C to reduce the dose of muscle relaxant drug; if the neuromuscular block depth data is higher than a user-set threshold (eg, T0F 10%), the data is transmitted to the target control sub-module to improve the administration of the muscle relaxant drug.
  • Speed increase the muscle by controlling the channel C through the injection control sub-module The amount of pine drug administered;
  • the bispectral index analysis sub-module if the noxious stimulation blood pressure data and the neuromuscular block depth data do not exceed the preset upper and lower limits, the EEG bi-frequency index is judged; if the EEG bi-frequency index BIS is low At 40, transmitting data to the target control sub-module, reducing the amount of sedative drug administered, controlling the channel A by the injection control sub-module to reduce the dose of the sedative drug; if the EEG dual-frequency index data is higher than 60, transmitting the data To the target control sub-module, the increased amount of sedative drug administered, the channel A is controlled by the injection control sub-module to increase the amount of sedative drug administered.
  • the Synchronization Curve module establishes a bi-frequency index, noxious stimulation blood pressure data, and neuromuscular block depth data and their corresponding dosing parameters synchronization curves. From top to bottom, respectively: A channel is the brain power bi-frequency index target control curve, B channel noxious stimulation blood pressure data target control curve, C channel is the four times of string stimulation data reflecting the depth of neuromuscular block The first twitch response height data T1 target control curve. The X-axis of each graph is time, and the time coordinate width is the same, which is synchronous data.
  • the Y-axis of the graph is a double coordinate, and the A-slot-shaped wavy line indicates the EEG bispectral index detection data, and the corresponding coordinates are on the left; the trapezoidal curve indicates the sedative drug target concentration, and the corresponding coordinates are on the right.
  • B channel-sawtooth wavy line indicates blood pressure data, reflecting noxious stimulation data, corresponding coordinates are on the left; trapezoidal curve indicates the concentration of analgesic drug target control, and the corresponding coordinates are on the right.
  • the zigzag wavy line indicates the first twitch response height data in the four series of stimulation data, the corresponding coordinates are on the left; the trapezoidal curve indicates the muscle relaxation drug feedback injection data, and the corresponding coordinates are on the right.
  • the graph can reflect the principle of EEG bispectral index, noxious stimulation data and neuromuscular block depth data analysis and lateral contrast through longitudinal contrast.
  • the working process of the example graph is as follows:
  • monitoring the noxious stimulation blood pressure data is greater than the preset upper limit, control B channel to increase analgesic drug injection;
  • the synchronization curve module establishes a bienergy index, heart rate variability data, and neuromuscular block depth data and their corresponding dosing parameter synchronization curves. From top to bottom, respectively: A channel is the brain power bi-frequency index target control curve, B channel is the heart rate variability data target control curve reflecting the noxious stimulation condition, and C channel is the reflection of the depth of the neuromuscular block.
  • the X-axis of each graph is time, and the time coordinate width is the same, which is synchronous data.
  • the lower limit threshold for heart rate variability data for noxious stimuli is 100 and the upper threshold is 200.
  • the Y-axis of the graph is a double coordinate, and the A-slot-shaped wavy line indicates the EEG bispectral index detection data, and the corresponding coordinates are on the left; the trapezoidal curve indicates the sedative drug target concentration, and the corresponding coordinates are on the right.
  • the B-channel-zigzag wavy line represents heart rate variability data, reflecting the noxious stimulus data, with the corresponding coordinates on the left; the ladder curve representing the target concentration of the analgesic drug, with the corresponding coordinates on the right.
  • the c-saw-toothed wavy line represents the first twitch response height data in the four series of stimulation data, the corresponding coordinates are on the left; the trapezoidal curve represents the muscle pine drug feedback injection data, and the corresponding coordinates are on the right.
  • the graph can reflect the principle of EEG bispectral index, noxious stimulation data and neuromuscular block depth data analysis and lateral contrast through longitudinal contrast.
  • the working process of the example graph is as follows:
  • the heart rate variability data and the four times of string stimulation data showed that the first twitch response height data was normal, the EEG bispectral index was greater than the preset upper limit value, and the control A channel control increased the sedative drug injection. ;
  • the heart rate variability data and the four times of string stimulation data showed that the first twitch response height data was normal, the bispectral index was still greater than the preset value, and the control channel A increased sedative drug injection;
  • monitoring heart rate variability data is greater than the preset upper limit, control B channel to increase analgesic drug injection;

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Anesthesiology (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Vascular Medicine (AREA)
  • Psychology (AREA)
  • Psychiatry (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Electrotherapy Devices (AREA)

Abstract

公开了一种麻醉深度控制装置及方法。该麻醉深度控制装置通过对脑电双频指数、伤害性刺激数据、神经肌肉阻滞深度数据进行分析以及横向对比,分别控制注射药物,有效排除了神经肌肉阻滞恢复及伤害性刺激增强对脑电监测麻醉深度的干扰,使脑电监测麻醉深度能够准确有效地反映病人麻醉深度的数值。同时,脑电监测麻醉深度经过消除干扰后优化的麻醉控制,使得麻醉深度控制像一条直线一样稳定,实现麻醉全过程的机器控制,改变了麻醉过程主要依靠医师的麻醉经验进行判断的状况,克服了病人个体差异的影响,最大限度地保证了麻醉过程的安全。

Description

一种麻醉深度控制装置及方法
技术领域
本发明涉及计算机领域, 具体涉及一种麻醉深度控制装置及方法。
背景技术
据临床统计, 大约只有 60%的病人能够享受到完全优质的麻醉服务, 约 14%的患者被过 度麻醉, 16%的患者麻醉过浅, 10%的患者处于时浅时深。
麻醉过浅, 病人可能对手术有记忆甚至感到疼痛, 严重的还会引起精神或睡眠障碍, 术 中可能引发的 "恐怖回忆"成为术后生活的又一痛苦; 而麻醉过深, 可能造成神经后遗症, 术后长时间可能有不适感, 甚至危及生命。
镇静麻醉过深, 药物过量会引起呼吸变慢, 至呼吸停止, 大脑缺氧, 大脑长期缺氧, 引 起病人心脏停止, 造成病人死亡。 麻醉过浅, 引起术中知晓, 病人可能对手术有记忆甚至感 到疼痛, 严重的还会引起精神或睡眠障碍, 术中可能引发的 "恐怖回忆"成为术后生活的又 一痛苦; 术中知晓也即在全麻下手术过程中发生意识的恢复。 在这种状况下, 患者可存在意 识, 可听见周围环境的声音, 但是无法控制肢体的任何运动, 包括例如睁眼、 咳嗽。 有报道 其发生率为 0.1-0.2%。 按照这个比例来算, 美国每年有两千万人接受全麻手术, 将有两万至 四万人发生术中知晓。 这个数目足以引起公众和媒体的关注。 国内也有类似关于术中知晓的 调查及分析, 颅内肿瘤手术知晓率为 1%, 非心脏非脑科手术知晓率 2%, 心脏手术知晓率高 达 6%。
术中知晓的不良影响:术中知晓可以给因手术而实施麻醉的患者带来近期乃至长期的不 良影响。 包括: 噩梦, 失眠, 恐惧, 幻觉重现, 创伤性精神紧张性障碍, 有的患者甚至被诊 断为精神分裂症, 有些可能发展为创伤后精神紊乱综合征, 且持续时间比较长, 需要给与药 物治疗或心理疏导。
为了降低麻醉用药过浅或过深的发生率, 就需要监测麻醉深度。全身麻醉深度监测主要 目的是: 确定麻醉深度, 探测中枢神经系统的状态; 同时避免术中知晓, 避免病人术后有记 忆, 同时减小麻醉药物用量, 缩短复苏过程, 提高麻醉安全, 必须进行麻醉深度的监测, 目 前通过脑电监测指数来监测麻醉深度是最广泛采用方式。
脑电双频指数 (Bispectral indeX,BIS ) 是包括了频率、 振幅、 位相 3 种特性的脑电图定 量分析指标, 主要反映脑电图信号中频率间的相位偶联, 是一种复合指数。 它主要以 0-100 来定量不同脑电信号频率的联系程度。
在一项研究中,告知麻醉人员维持脑电双频指数值在 40 〜60 ,在诱导和维持阶段避免 脑电双频指数值超过 60; 这种麻醉管理方式获益显著: 在 4945 例受试患者中, 麻醉诱导前 即开始监测脑电双频指数, 从置入喉镜至缝皮的全过程中, 脑电双频指数值均维持在 40 〜 60 之间, 进行控制给药。 结果这项措施将术中知晓发生率降低了 82%
但是, 使用脑电指数监测麻醉深度有时不能正确的反映病人真实的麻醉深度。 德国 Panousis 等总结多份病例报告后指出,麻醉状态下神经肌肉活动增加时,脑电双频指数并不能 准确反映麻醉状态。 研究者对纳入病例在给予呼气末地氟烷的同时加用胸段硬膜外麻醉进行 镇痛,并通过 PRST评分、 OAA/S量表及 BIS XP监测仪监测麻醉深度。 结果表明, 患者肌电 活动明显增强,这提示神经肌肉阻滞作用正在消失,而此时其脑电双频指数值从 40~55 增至 70~80,这提示麻醉深度可能不足根据年龄将地氟烷的呼气末给药浓度调至 1 MAC后,脑电双 频指数值仍无变化,静脉注射瑞芬太尼后脑电双频指数值亦无变化。 虽然脑电双频指数对肌电 活动可起到提示作用,但如果肌电活动>35 dB, 脑电双频指数监测并不能准确反映麻醉深度。
同时根据多项研究表明, 伤害性刺激的增加也会明显引起脑电指数的增加, 并不代表麻 醉深度不足, 只是镇痛药物不足, 此时的脑电监测数值并不能准确反映麻醉深度。
此时若麻醉医生根据监测数值反馈的信息提示: 麻醉深度不足, 加大镇静麻醉药物的剂 量, 可能反而会超成麻醉过深。 而麻醉过深, 可能造成神经后遗症, 术后长时间可能有不适 感, 甚至危及生命。
肌松监测也是手术麻醉过程中采用的一种监控麻醉效果和辅助医生实施麻醉的手段。 通 过适宜的方法监测应用肌松药后机体神经肌肉传递功能的阻滞程度和恢复状况, 对于降低术后因肌松作用 残留而引起的各种严重并发症的发生率、 提高肌松药临床应用的安全性和合理性十分必要。 根据刺激手段 和方式的不同, 现有技术中有多种衡量肌松状态的指标, 例如单刺激 (Single-Twitch Stimulation, SS)、 四个成串刺激(Train-of-Four Stimulation,TOF;)、 强直刺激(Tetanic Stimulation, TS)等等。 目前已经有商 品化的肌松监测仪。 然而, 神经肌肉松弛深度仅仅是反应了手术中病人的一个方面的状态。
因此, 目前临床上麻醉很多情况下需要依赖麻醉医生的经验, 判断何时给予何量的何种 药物。 由于麻醉医生的经验和技能差异, 以及病人的个体差异, 往往会给麻醉过程带来无法 预知的风险。 发明内容
本发明涉及计算机领域, 具体涉及一种麻醉深度控制装置及方法。 本发明提供的麻醉深 度控制装置及方法能有效排除由于神经肌肉活动干扰及手术伤害性刺激增强等干扰所造成的 麻醉深度监测数值不准确的问题。 本发明所述的麻醉深度控制装置, 包括:
数据接收模块, 用于接收脑电双频指数、 伤害性刺激数据和神经肌肉阻滞深度数据; 数据分析模块, 对收到的脑电双频指数、 伤害性刺激数据、 神经肌肉阻滞深度数据进行 分析以及横向对比, 确定脑电双频指数波动的产生原因;
控制输出模块, 根据数据分析结果, 输出给药参数信息, 控制镇痛药物、 肌松药物和镇 静药物的给药量。
本发明所述的麻醉深度控制装置, 还包括同步曲线模块, 用于建立脑电双频指数、 伤害 性刺激数据和神经肌肉阻滞深度数据及其相对应的给药参数同步曲线图。
本发明所述的麻醉深度控制装置, 各模块的结构如下:
数据接收模块包括脑电双频指数接受子模块、 伤害性刺激数据接受子模块、 神经肌肉阻 滞深度数据接收子模块, 分别用于接收脑电双频指数、 伤害性刺激数据和神经肌肉阻滞深度 数据;
数据分析模块包括脑电双频指数分析子模块、 伤害性刺激数据分析子模块、 神经肌肉阻 滞深度数据分析子模块, 经过三个子模块的分析以及横向对比, 确定脑电双频指数波动的产 生原因;
控制输出模块包括靶控运算子模块、 注射控制子模块; 靶控运算子模块根据脑电双频指 数波动及其原因, 计算靶控给药参数; 注射控制子模块根据给药参数, 控制镇痛药物、 肌松 药物和镇静药物的给药量。
本发明所述的麻醉深度控制装置, 数据分析模块中的脑电双频指数分析子模块、 伤害性 刺激数据分析子模块、 神经肌肉阻滞深度数据分析子模块分别设定上下限阈值;
伤害性刺激数据分析子模块, 若伤害性刺激数据低于下限阈值, 传输数据至靶控运算子 模块, 计算出需要降低的镇痛药物给药量, 通过注射控制子模块控制镇痛药物的减少; 若伤 害性刺激数据高于上限阈值, 传输数据至靶控运算子模块, 计算出需要增加的镇痛药物给药 量, 通过注射控制子模块控制镇痛药物的增加;
神经肌肉阻滞深度数据分析子模块, 若神经肌肉阻滞深度数据低于下限阈值, 传输数据 至靶控运算子模块, 计算出需要降低的肌松药物给药量, 通过注射控制子模块控制肌松药物 的减少; 若神经肌肉阻滞深度数据高于上限阈值, 传输数据至靶控运算子模块, 计算出需要 增加的肌松药物给药量, 通过注射控制子模块控制肌松药物的增加;
脑电双频指数分析子模块, 若伤害性刺激数据和神经肌肉阻滞深度数据均未超出预设的 上下限阈值, 对脑电双频指数进行判断; 若脑电双频指数低于低于下限阈值, 传输数据至靶 控运算子模块, 计算出需要降低的镇静药物给药量, 通过注射控制子模块控制镇静药物的减 少; 若脑电双频指数据高于上限阈值, 传输数据至靶控运算子模块, 计算出需要增加的镇静 药物给药量, 通过注射控制子模块控制镇静药物的增加。
所述的注射控制子模块通过步进电机和注射器推动传动装置来实现对给药量的调控。 所述的步进电机和注射器推动传动装置一共有三套, 分别组成 、 B、 C三个通道, 通道
A输送的为镇静药物, 通道 B输送的为镇痛药物, 通道 C输送的为肌松药物。
本发明所述的麻醉深度控制装置, 包括麻醉监护仪, 麻醉监护仪为现有技术, 比如美国 GE公司的 Datex-ohmeda麻醉监护仪, 通过麻醉监护仪监测获得脑电双频指数和伤害性刺激 数据, 传输至数据接收模块。
本发明所护的麻醉深度控制装置,还包括肌松监测装置,如名称为"闭环肌松注射装置", 专利号为 "201020152817.8 " 的中国实用新型专利中记载的技术; 肌松监测装置由肌松监测 刺激单元和肌松监测传感器组成; 肌松监测刺激单元刺激腕部尺神经监测拇内收肌, 通过肌 松监测传感器实时监测神经肌肉阻滞程度获得神经肌肉阻滞深度数据,传输至数据接收模块。
GE公司已上市的 S/5麻醉监护仪, 也能够监测神经肌肉阻滞程度, 获得神经肌肉阻滞深 度数据, 也可以结合本发明的技术方案, 作为神经肌肉阻滞深度数据的来源。
本发明所述的麻醉深度控制方法, 运用了本发明所述的麻醉深度控制装置; 利用外联设 备监测出脑电双频指数、 伤害性刺激数据和神经肌肉阻滞深度数据; 通过所述的麻醉深度控 制装置接收脑电双频指数、 伤害性刺激数据、 神经肌肉阻滞深度数据, 并对脑电双频指数、 伤害性刺激数据、 神经肌肉阻滞深度数据进行分析以及横向对比, 确定脑电双频指数波动的 产生原因; 然后由所述的麻醉深度控制装置控制镇痛药物、 肌松药物和镇静药物的给药。
本发明所述的麻醉深度控制方法, 包括以下的优选步骤:
1、通过麻醉监护仪监测获得脑电双频指数和伤害性刺激数据, 传输至数据接收模块, 通 过肌松监测装置获得神经肌肉阻滞深度数据, 传输至数据接收模块;
2、数据数据接收模块包括脑电双频指数接受子模块、伤害性刺激数据接受子模块、神经 肌肉阻滞深度数据接收子模块, 分别用于接收脑电双频指数、 伤害性刺激数据和神经肌肉阻 滞深度数据, 传输至数据分析模块;
3、数据分析模块包括数据脑电双频指数分析子模块、伤害性刺激数据分析子模块、神经 肌肉阻滞深度数据分析子模块; 三个子模块对接收到的脑电双频指数、 伤害性刺激数据和神 经肌肉阻滞深度数据进行分析以及横向对比, 确定脑电双频指数波动的产生原因, 传输至控 制输出模块; 4、控制输出模块包括靶控运算子模块、注射控制子模块; 靶控运算子模块根据脑电双频 指数波动及其原因, 计算靶控给药参数; 注射控制子模块根据给药参数, 控制镇痛药物、 肌 松药物和镇静药物的给药量。
本发明所述的麻醉深度控制方法, 包括以下的进一步优选步骤:
所述的注射控制子模块通过控制步进电机和注射器推动传动装置来实现对给药量的调 控, 步进电机和注射器推动传动装置一共有三套, 分别组成 、 B、 C三个通道, 通道 A输送 的为镇静药物, 通道 B输送的为镇痛药物, 通道 C输送的为肌松药物;
伤害性刺激数据分析子模块, 若伤害性刺激数据低于下限阈值, 传输数据至靶控运算子 模块, 计算出需要降低的镇痛药物给药量, 通过注射控制子模块控制通道 B减少镇痛药物的 给药量; 若伤害性刺激数据高于上限阈值, 传输数据至靶控运算子模块, 计算出需要增加的 镇痛药物给药量, 通过注射控制子模块控制通道 B增加镇痛药物的给药量;
神经肌肉阻滞深度数据分析子模块, 若神经肌肉阻滞深度数据低于下限阈值, 传输数据 至靶控运算子模块, 计算出需要降低的肌松药物给药量, 通过注射控制子模块控制通道 C减 少肌松药物的给药量; 若神经肌肉阻滞深度数据高于上限阈值, 传输数据至靶控运算子模块, 计算出需要增加的肌松药物给药量,通过注射控制子模块控制通道 C增加肌松药物的给药量; 脑电双频指数分析子模块, 若伤害性刺激数据和神经肌肉阻滞深度数据均未超出预设的 上下限阈值, 对脑电双频指数进行判断; 若脑电双频指数低于低于下限阈值, 传输数据至靶 控运算子模块, 计算出需要降低的镇静药物给药量, 通过注射控制子模块控制通道 A减少镇 静药物的给药量; 若脑电双频指数据高于上限阈值, 传输数据至靶控运算子模块, 计算出需 要增加的镇静药物给药量, 通过注射控制子模块控制通道 A增加镇静药物的给药量。
本发明所述的麻醉深度控制方法, 通过同步曲线模块, 建立脑电双频指数、 伤害性刺激 数据和神经肌肉阻滞深度数据及其相对应的给药参数同步曲线图。
本发明所述的伤害性刺激数据包括伤害性刺激血压数据、心率变异性数据 HRV或者其他 临床应用的数据。
本发明所述的神经肌肉阻滞深度数据包括四次成串刺激数据 TOF、 四次成串刺激数据中 第一次颤搐反应高度数据 T1或者其他临床应用的数据。
本发明所述的麻醉深度控制装置, 通过分析神经肌肉活动干扰及手术伤害性刺激这两大 数据信息, 进行分析对比运算, 分别控制注射药物, 实现将神经肌肉活动干扰及伤害性刺激 影响干扰因素降到最小。 脑电麻醉深度监测经过消除干扰后再经过优化后的麻醉控制, 可使 麻醉深度控制像一条直线一般稳定, 实现麻醉全过程的机器控制, 改变了麻醉过程主要依靠 医师麻醉经验判断这一状况, 克服了病人个体差异的影响, 最大限度的保证了麻醉过程的安 全, 具有非常好的社会价值及应用前景。
附图说明
图 1是本发明实施例提供的麻醉深度控制装置的结构示意图
图 2是本发明实施例提供的麻醉深度控制装置搭配各硬件模块的示意图
图 3是本发明实施例提供的监测数据及其相对应的给药参数的同步曲线图
图 4是本发明实施例提供的另一种监测数据及其相对应的给药参数同步曲线图 具体实施方式
以下结合附图与具体实施方式对本发明做进一步详细说明:
如图 1所示, 麻醉监护仪监测获得脑电双频指数和伤害性刺激血压数据, 传输至数据接 收模块, 肌松监测装置获得神经肌肉阻滞深度数据, 传输至数据接收模块;
数据数据接收模块包括脑电双频指数接受子模块、 伤害性刺激数据接受子模块、 神经肌 肉阻滞深度数据接收子模块, 分别用于接收脑电双频指数、 伤害性刺激数据和神经肌肉阻滞 深度数据, 传输至数据分析模块;
数据分析模块包括数据脑电双频指数分析子模块、 伤害性刺激数据分析子模块、 神经肌 肉阻滞深度数据分析子模块; 三个子模块对接收到的脑电双频指数、 伤害性刺激数据和神经 肌肉阻滞深度数据进行分析以及横向对比, 确定脑电双频指数波动的产生原因, 传输至控制 输出模块;
控制输出模块包括靶控运算子模块、 注射控制子模块; 靶控运算子模块根据脑电双频指 数波动及其原因, 计算靶控给药参数; 注射控制子模块根据给药参数, 控制镇痛药物、 肌松 药物和镇静药物的给药量。
伤害性刺激血压数据分析子模块, 若伤害性刺激血压数据 MAP低于下限阈值 70, 传输数 据至靶控运算子模块, 计算出需要降低的镇痛药物给药量, 通过注射控制子模块控制通道 B 减少镇痛药物的给药量; 若伤害性刺激血压数据 MAP高于上限阈值 105, 传输数据至靶控运 算子模块, 计算出需要增加的镇痛药物给药量, 通过注射控制子模块控制通道 B增加镇痛药 物的给药量;
神经肌肉阻滞深度数据分析子模块,若神经肌肉阻滞深度数据低于用户设定阈值(如 TOF 10%), 传输数据至靶控运算子模块, 降低的肌松药物给药速度, 通过注射控制子模块控制通 道 C减少肌松药物的给药量; 若神经肌肉阻滞深度数据高于用户设定阈值 (如 T0F 10%), 传 输数据至靶控运算子模块, 提高肌松药物给药速度, 通过注射控制子模块控制通道 C增加肌 松药物的给药量;
脑电双频指数分析子模块, 若伤害性刺激血压数据和神经肌肉阻滞深度数据均未超出预 设的上下限阙值, 对脑电双频指数进行判断; 若脑电双频指数 BIS低于 40, 传输数据至靶控 运算子模块, 降低的镇静药物给药量, 通过注射控制子模块控制通道 A减少镇静药物的给药 量; 若脑电双频指数据 BIS高于 60, 传输数据至靶控运算子模块, 增加的镇静药物给药量, 通过注射控制子模块控制通道 A增加镇静药物的给药量。
如图 3所示, 同步曲线模块建立出脑电双频指数、 伤害性刺激血压数据和神经肌肉阻滞 深度数据及其相对应的给药参数同步曲线图。 由上至下, 分别是: A通道为脑电双频指数靶 控曲线图, B通道伤害性刺激血压数据靶控曲线图, C通道为反映神经肌肉阻滞深度的四次成 串刺激数据中第一次颤搐反应高度数据 T1靶控曲线图。各曲线图的 X轴都为时间, 时间坐标 宽度一致, 为同步数据。
曲线图的 Y轴为双坐标, A通道-锯齿形波浪线表示脑电双频指数检测数据, 对应坐标在 左边; 梯形曲线表示镇静药物靶控浓度, 对应坐标在右边。
B 通道-锯齿形波浪线表示血压数据, 反映伤害性刺激数据, 对应坐标在左边; 梯形曲线 表示镇痛药物靶控浓度, 对应坐标在右边。
C通道 -锯齿形波浪线表示四次成串刺激数据中第一次颤搐反应高度数据,对应坐标在左 边; 梯形曲线表示肌松药物反馈注射数据, 对应坐标在右边。
曲线图通过纵向对比, 可以反映脑电双频指数、 伤害性刺激数据和神经肌肉阻滞深度数 据分析及横向对比的原理, 实施例曲线图显示的工作过程如下:
1、 7 分钟时, 监测伤害性刺激血压数据和四次成串刺激数据中第一次颤搐反应高度数 据正常, 脑电双频指数大于预设上限值, 控制 A通道控制加大镇静药物注射;
2、 25 分钟时, 监测四次成串刺激数据中第一次颤搐反应高度数据大于预设上限值, 加 大肌松药物注射, 控制 c通道加大肌松药物注射, 防止干扰脑电双频指数监测;
3、 40 分钟时, 监测伤害性刺激血压数据和四次成串刺激数据中第一次颤搐反应高度数 据正常, 脑电双频指数仍然大于预设值, 控制 A通道加大镇静药物注射;
4、 44分钟和 60分钟 时, 监测伤害性刺激血压数据大于预设上限值, 控制 B通道加大 镇痛药物注射;
5、 1小时 50分时, 手术结束, 停止注射 A通道镇静药物。
如图 4所示, 同步曲线模块建立出脑电双频指数、 心率变异性数据和神经肌肉阻滞深度 数据及其相对应的给药参数同步曲线图。 由上至下, 分别是: A通道为脑电双频指数靶控曲线图, B通道为反映伤害性刺激状况的 心率变异性数据靶控曲线图, C 通道为反映神经肌肉阻滞深度的的四次成串刺激数据中第一 次颤搐反应高度数据 T1靶控曲线图。各曲线图的 X轴都为时间, 时间坐标宽度一致, 为同步 数据。
伤害性刺激心率变异性数据下限阈值为 100, 上限阈值为 200。
曲线图的 Y轴为双坐标, A通道-锯齿形波浪线表示脑电双频指数检测数据, 对应坐标在 左边; 梯形曲线表示镇静药物靶控浓度, 对应坐标在右边。
B通道-锯齿形波浪线表示心率变异性数据, 反映伤害性刺激数据, 对应坐标在左边; 梯 形曲线表示镇痛药物靶控浓度, 对应坐标在右边。
c 通道-锯齿形波浪线表示四次成串刺激数据中第一次颤搐反应高度数据数据,对应坐标 在左边; 梯形曲线表示肌松药物反馈注射数据, 对应坐标在右边。
曲线图通过纵向对比, 可以反映脑电双频指数、 伤害性刺激数据和神经肌肉阻滞深度数 据分析及横向对比的原理, 实施例曲线图显示的工作过程如下:
1、 7 分钟时, 监测心率变异性数据和四次成串刺激数据中第一次颤搐反应高度数据正 常, 脑电双频指数大于预设上限值, 控制 A通道控制加大镇静药物注射;
2、 25 分钟时, 监测四次成串刺激数据中第一次颤搐反应高度数据大于预设上限值, 加 大肌松药物注射, 控制 c通道加大肌松药物注射, 防止干扰脑电双频指数监测;
3、 40 分钟时, 监测心率变异性数据和四次成串刺激数据中第一次颤搐反应高度数据正 常, 脑电双频指数仍然大于预设值, 控制 A通道加大镇静药物注射;
4、 44分钟和 60分钟 时, 监测心率变异性数据大于预设上限值, 控制 B通道加大镇痛 药物注射;
5、 1小时 50分时, 手术结束, 停止注射 A通道镇静药物。

Claims

权 利 要 求
1、 一种麻醉深度监控装置, 其特征在于, 包括:
数据接收模块, 包括脑电双频指数接受子模块、 伤害性刺激数据接受子模块、 神经肌肉 阻滞深度数据接收子模块, 分别用于接收脑电双频指数、 伤害性刺激血压数据和神经肌肉阻 滞深度数据;
数据分析模块, 数据分析模块包括脑电双频指数分析子模块、 伤害性刺激数据分析子模 块、 神经肌肉阻滞深度数据分析子模块, 经过三个子模块的分析以及横向对比, 确定脑电双 频指数波动的产生原因;
控制输出模块, 包括靶控运算子模块、 注射控制子模块; 其中靶控运算子模块根据脑电 双频指数波动及其原因, 计算靶控给药参数; 其中注射控制子模块根据靶控给药参数, 控制 镇痛药物、 肌松药物和镇静药物的给药量;
数据接收模块将采集到的数据信号输出到数据分析模块, 而数据分析模块将分析结果信 号输出到控制输出模块。
2、 如权利要求 1所述的麻醉深度监控装置, 其特征在于: 还包括同步曲线模块, 用于建 立脑电双频指数、 伤害性刺激数据和神经肌肉阻滞深度数据及其相对应的给药参数同步曲线 图。
3、 如权利要求 1或 2所述的所述的麻醉深度监控装置, 其特征在于: 所述的注射控制子 模块通过步进电机和注射器推动传动装置来实现对给药量的调控。
4、 如权利要求 4所述的麻醉深度监控装置, 其特征在于: 所述的步进电机和注射器推动 传动装置一共有三套, 分别组成 、 B、 C三个通道, 通道 A输送的为镇静药物, 通道 B输送 的为镇痛药物, 通道 C输送的为肌松药物。
5、 如权利要求 1或 3中任意一项所述的麻醉深度监控装置, 其特征在于: 还包括麻醉监 护仪, 通过麻醉监护仪监测获得脑电双频指数和伤害性刺激数据, 传输至数据接收模块。
6、 如权利要求 1或 3中任意一项所述的麻醉深度监控装置, 其特征在于: 还包括肌松监 测装置, 肌松监测装置由肌松监测刺激单元和肌松监测传感器组成; 肌松监测刺激单元刺激 腕部尺神经监测拇内收肌, 通过肌松监测传感器实时监测神经肌肉阻滞程度获得神经肌肉阻 滞深度数据, 传输至数据接收模块。
7、 一种利用权利要求 1-6之一所述的麻醉深度监控装置实施麻醉深度控制的方法,其特 征在于: ( 1 ) 在数据分析模块的脑电双频指数分析子模块、 伤害性刺激数据分析子模块、 神经 肌肉阻滞深度数据分析子模块分别设定有上、 下限阈值;
( 2 )在伤害性刺激数据分析子模块中, 若伤害性刺激数据低于下限阈值, 传输数据至靶 控运算子模块, 计算出需要降低的镇痛药物给药量, 通过注射控制子模块控制镇痛药物的减 少; 若伤害性刺激数据高于上限阈值, 传输数据至靶控运算子模块, 计算出需要增加的镇痛 药物给药量, 通过注射控制子模块控制镇痛药物的增加;
( 3 ) 在神经肌肉阻滞深度数据分析子模块中, 若神经肌肉阻滞深度数据低于下限阈值, 传输数据至靶控运算子模块, 计算出需要降低的肌松药物给药量, 通过注射控制子模块控制 肌松药物的减少; 若神经肌肉阻滞深度数据高于上限阈值, 传输数据至靶控运算子模块, 计 算出需要增加的肌松药物给药量, 通过注射控制子模块控制肌松药物的增加;
( 4)在脑电双频指数分析子模块中, 若伤害性刺激数据和神经肌肉阻滞深度数据均未超 出预设的上下限阈值, 对脑电双频指数进行判断; 若脑电双频指数低于低于下限阈值, 传输 数据至靶控运算子模块, 计算出需要降低的镇静药物给药量, 通过注射控制子模块控制镇静 药物的减少; 若脑电双频指数据高于上限阈值, 传输数据至靶控运算子模块, 计算出需要增 加的镇静药物给药量, 通过注射控制子模块控制镇静药物的增加。
8、 根据权利要求 7所述的麻醉深度控制的方法, 其特征在于: 所说的伤害性刺激数据为 伤害性刺激血压数据或伤害性刺激心率变异性数据, 其中伤害性刺激血压数据 MAP下限阈值 为 70, 上限阈值为 105; 而伤害性刺激心率变异性数据下限阈值为 100, 上限阈值为 200。
9、 根据权利要求 7所述的麻醉深度控制的方法, 其特征在于: 所说的神经肌肉阻滞深度 数据设定的阈值是以 T0F为参照, 其数值为的 10%。
10、 根据权利要求 7所述的麻醉深度控制的方法,其特征在于:所说的脑电双频指数 BIS 下限阈值为 40, 上限阈值为 60。
11、 根据权利要求 7〜10任一项所述的麻醉深度控制方法, 其特征在于: 通过同步曲线 模块, 建立脑电双频指数、 伤害性刺激数据和神经肌肉阻滞深度数据及其相对应的给药参数 同步曲线图。
PCT/CN2013/078271 2012-07-11 2013-06-28 一种麻醉深度控制装置及方法 WO2014008815A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201210238640 2012-07-11
CN201210238640.7 2012-07-11
CN201210317920.7 2012-08-31
CN2012103179207A CN102793534A (zh) 2012-07-11 2012-08-31 麻醉深度监控装置及方法

Publications (1)

Publication Number Publication Date
WO2014008815A1 true WO2014008815A1 (zh) 2014-01-16

Family

ID=47193027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/078271 WO2014008815A1 (zh) 2012-07-11 2013-06-28 一种麻醉深度控制装置及方法

Country Status (2)

Country Link
CN (1) CN102793534A (zh)
WO (1) WO2014008815A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110267590A (zh) * 2017-12-29 2019-09-20 深圳迈瑞生物医疗电子股份有限公司 基于脑电的麻醉深度监测方法和装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102793534A (zh) * 2012-07-11 2012-11-28 广西威利方舟科技有限公司 麻醉深度监控装置及方法
CN103735261B (zh) * 2013-12-05 2016-08-24 北京思路高医疗科技有限公司 脑电监测镇静深度闭环控制注射泵装置
CN103908249B (zh) * 2014-01-28 2016-02-24 广西威利方舟科技有限公司 麻醉药物平衡控制装置及其控制方法
CN104606746A (zh) * 2015-01-29 2015-05-13 张海青 一种无痛自动麻醉装置
US10342450B2 (en) * 2016-05-11 2019-07-09 Cerenion Oy Apparatus and method for electroencephalographic measurement
CN108721753A (zh) * 2017-04-20 2018-11-02 中国科学院深圳先进技术研究院 用于局部麻醉治疗的辅助诊疗设备及其操作方法
CN107551377B (zh) * 2017-09-20 2021-01-05 王胜钢 肢体麻醉强度检测装置
CN108325020B (zh) * 2018-03-09 2021-01-08 燕山大学 一种静脉麻醉多参数指标闭环监控系统
US11166648B2 (en) * 2018-05-24 2021-11-09 General Electric Company Method and system for estimating patient recovery time utilizing neuromuscular transmission measurements
CN109363637A (zh) * 2018-10-30 2019-02-22 宋兴荣 一种基于体温监测的实时麻醉平面监测方法
CN109394210A (zh) * 2018-12-14 2019-03-01 张维维 一种麻醉科用麻醉深度监测装置
CN109498004A (zh) * 2019-01-04 2019-03-22 深圳市舟洁信息咨询服务有限公司 一种麻醉数据监控系统和方法
CN110236535B (zh) * 2019-05-23 2021-11-23 昌乐县人民医院 一种基于精神监测分析的智能辅助给药装置
CN112754434B (zh) * 2021-01-19 2024-02-27 深圳市奥生科技有限公司 一种信息化麻醉深度监护系统及方法
CN113796829B (zh) * 2021-08-24 2022-09-09 上海交通大学医学院附属第九人民医院 一种麻醉科临床用麻醉深度数据监测设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5458117A (en) * 1991-10-25 1995-10-17 Aspect Medical Systems, Inc. Cerebral biopotential analysis system and method
US6731975B1 (en) * 2000-10-16 2004-05-04 Instrumentarium Corp. Method and apparatus for determining the cerebral state of a patient with fast response
CN200977308Y (zh) * 2005-12-29 2007-11-21 广西威利方舟科技有限公司 组合注射泵
CN101816576A (zh) * 2010-04-08 2010-09-01 广西威利方舟科技有限公司 闭环肌松药效监测及注射方法和闭环肌松注射装置
CN202288276U (zh) * 2011-10-17 2012-07-04 深圳迈瑞生物医疗电子股份有限公司 一种监护仪
CN102793534A (zh) * 2012-07-11 2012-11-28 广西威利方舟科技有限公司 麻醉深度监控装置及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2888922A (en) * 1954-08-17 1959-06-02 Bellville John Weldon Continuous servo-medicator
US5193544A (en) * 1991-01-31 1993-03-16 Board Of Trustees Of The Leland Stanford Junior University System for conveying gases from and to a subject's trachea and for measuring physiological parameters in vivo
CN1311877C (zh) * 1998-06-03 2007-04-25 斯科特实验室公司 为患者缓解与内科或外科处理相关的痛苦的设备和方法
CN2620531Y (zh) * 2003-04-18 2004-06-16 吴一兵 多功能麻醉深度监护仪
CN2891966Y (zh) * 2006-03-29 2007-04-25 徐佩 一种麻醉深度检测装置
CN201643223U (zh) * 2010-04-08 2010-11-24 广西威利方舟科技有限公司 闭环肌松注射装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5458117A (en) * 1991-10-25 1995-10-17 Aspect Medical Systems, Inc. Cerebral biopotential analysis system and method
US6731975B1 (en) * 2000-10-16 2004-05-04 Instrumentarium Corp. Method and apparatus for determining the cerebral state of a patient with fast response
CN200977308Y (zh) * 2005-12-29 2007-11-21 广西威利方舟科技有限公司 组合注射泵
CN101816576A (zh) * 2010-04-08 2010-09-01 广西威利方舟科技有限公司 闭环肌松药效监测及注射方法和闭环肌松注射装置
CN202288276U (zh) * 2011-10-17 2012-07-04 深圳迈瑞生物医疗电子股份有限公司 一种监护仪
CN102793534A (zh) * 2012-07-11 2012-11-28 广西威利方舟科技有限公司 麻醉深度监控装置及方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110267590A (zh) * 2017-12-29 2019-09-20 深圳迈瑞生物医疗电子股份有限公司 基于脑电的麻醉深度监测方法和装置

Also Published As

Publication number Publication date
CN102793534A (zh) 2012-11-28

Similar Documents

Publication Publication Date Title
WO2014008815A1 (zh) 一种麻醉深度控制装置及方法
Mahmoud et al. Susceptibility of transcranial electric motor-evoked potentials to varying targeted blood levels of dexmedetomidine during spine surgery
Bhutada et al. Randomised controlled trial of thiopental for intubation in neonates
Dumont Closed-loop control of anesthesia-a review
CN103908249B (zh) 麻醉药物平衡控制装置及其控制方法
US20120197188A1 (en) Methods and apparatus for drug modeling and displaying drug models
JP2009540890A (ja) 麻酔投与を制御するためのシステム
WO2010093677A2 (en) Method and apparatus for prevention of apnea
Conte et al. Analysis of propofol/remifentanil infusion protocol for tumor surgery with intraoperative brain mapping
CN105769146A (zh) 一种多监测指标的麻醉深度监护仪
Chang et al. Continuous electromyography for monitoring depth of anesthesia
Chen et al. Effects on somatosensory and motor evoked potentials of senile patients using different doses of dexmedetomidine during spine surgery
Caputo et al. Evaluation of the SEDline to improve the safety and efficiency of conscious sedation
KR102099733B1 (ko) 불편의 정도를 조절하기 위한 방법 및 장치
Zelcer et al. Intraoperative patient-controlled analgesia: an alternative to physician administration during outpatient monitored anesthesia care
Ma et al. Transversus abdominis plane block reduces remifentanil and propofol consumption, evaluated by closed‑loop titration guided by bispectral index
Rao et al. Basics of neuromonitoring and anesthetic considerations
Wu et al. Effects of indexes of consciousness (IoC1 and IoC2) monitoring on remifentanil dosage in modified radical mastectomy: a randomized trial
Biricik et al. A comparison of intravenous sugammadex and neostigmine+ atropine reversal on time to consciousness during wake-up tests in spinal surgery
Ko et al. Comparing the effect between continuous infusion and intermittent bolus of rocuronium for intraoperative neurophysiologic monitoring of neurointervention under general anesthesia
CN205697736U (zh) 一种多监测指标的麻醉深度监护仪
Dag et al. Utility of bispectral index monitoring during deep sedation in pediatric dental patients
Gook et al. Awake craniotomy using a high-flow nasal cannula with oxygen reserve index monitoring-A report of two cases
Ma et al. Comparative study: efficacy of closed-loop target controlled infusion of cisatracurium and other administration methods for spinal surgery of elderly patients.
Elbakry et al. A randomized trial with opioid-free versus opioid anesthesia in morbidly obese patients during laparoscopic cholecystectomy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13816916

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13816916

Country of ref document: EP

Kind code of ref document: A1