WO2014007436A1 - 핸드오버 수행 방법, 이를 지원하는 디지털 신호 처리 장치 및 신호 처리 시스템 - Google Patents

핸드오버 수행 방법, 이를 지원하는 디지털 신호 처리 장치 및 신호 처리 시스템 Download PDF

Info

Publication number
WO2014007436A1
WO2014007436A1 PCT/KR2012/009115 KR2012009115W WO2014007436A1 WO 2014007436 A1 WO2014007436 A1 WO 2014007436A1 KR 2012009115 W KR2012009115 W KR 2012009115W WO 2014007436 A1 WO2014007436 A1 WO 2014007436A1
Authority
WO
WIPO (PCT)
Prior art keywords
handover
signal processing
digital signal
type
processing device
Prior art date
Application number
PCT/KR2012/009115
Other languages
English (en)
French (fr)
Inventor
최우진
김현표
정성한
홍성표
Original Assignee
주식회사 케이티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 케이티 filed Critical 주식회사 케이티
Publication of WO2014007436A1 publication Critical patent/WO2014007436A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/06Reselecting a communication resource in the serving access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point

Definitions

  • the present invention relates to a method for performing handover, a digital signal processing apparatus and a signal processing system supporting the same.
  • a single base station equipment is divided into a radio unit (RU) and a digital signal processor (Digital Unit, DU), and a wireless system that bundles the DUs of several base stations into a single cloud system.
  • RU radio unit
  • DU digital signal processor
  • the size of the RU which must be distributed locally in order to secure wireless coverage, is significantly smaller than that of the existing base station, so that it is easy to install and reduce operating costs such as the upper lease cost.
  • DUs of several base stations are bundled together to form a single system, inter-cell cooperative communication for inter-cell interference signal processing is easy.
  • the technical problem to be solved by the present invention is handover signaling applied to these core network devices without modifying existing wireless core network devices (MME, S-GW, P-GW, etc.) involved in the handover signal processing
  • the present invention provides a new method of performing handover that can significantly reduce overload, a digital signal processing device, and a signal processing system supporting the same.
  • Method for performing a handover of a digital signal processing device installed in a service area according to an embodiment of the present invention and physically separated from at least one wireless signal processing device processing a wireless signal, and connected to a core system to process a digital signal Determining whether the first handover type is a handover between cells managed by the same digital signal processing apparatus, the second handover type is a handover between cells managed by different digital signal processing apparatuses, and And performing a handover procedure differently according to whether it is a first handover type or the second handover type.
  • the mobile station shares tunnel endpoint ID information used by the computing processor managing each cell to communicate with the S-GW, and includes a mobility management entity (MME).
  • MME mobility management entity
  • the transmission path between the digital signal processing device and a serving gateway may be changed only in the case of the second handover type.
  • Whether it is the first handover type or the second handover type depends on whether the computing processor that has transmitted the handover request message in the handover preparation procedure is managed by the digital signal processing apparatus. Can be determined.
  • the handover request message may include tunnel endpoint ID information used by the computing processor managing each cell to communicate with the S-GW.
  • the digital signal processing apparatus may include a memory that stores tunnel endpoint ID information used by a computing processor managing each cell to communicate with the S-GW.
  • a digital signal processing device installed in a service area according to an embodiment of the present invention and physically separated from at least one wireless signal processing device for processing a wireless signal, and connected to a core system to process a digital signal, includes a transmission / reception unit, and And a processor, wherein the processor is a first handover type that is a handover between cells managed by the same digital signal processing device or a second handover type that is a handover between cells managed by different digital signal processing devices. Is determined, and a handover procedure is differently performed according to the first handover type or the second handover type.
  • the handover completion procedure may be set to change a transmission path between the digital signal processing device and a serving gateway (S-GW) only in the case of the second handover type.
  • S-GW serving gateway
  • the handover completion procedure may include tunnel endpoint ID information necessary for a computing process managing each cell to communicate with an S-GW in the case of the first handover type, and transmit the information to a mobility management entity (MME).
  • MME mobility management entity
  • the signal processing system is a first handover type which is a handover between cells managed by the same digital signal processing apparatus, or a second handover between cells managed by different digital signal processing apparatuses.
  • a handover method suitable for a network environment in which a wireless signal processing device and a digital signal processing device of a base station are separated and operated can be obtained. Accordingly, the signaling load during handover can be reduced.
  • 1 is a general network environment.
  • FIG. 2 is a flowchart illustrating an example of a handover procedure.
  • 3 is a network environment according to an embodiment of the present invention.
  • FIG. 4 is a flowchart illustrating a method for performing a handover by a digital signal processing apparatus according to an embodiment of the present invention.
  • FIG. 5 is a flowchart illustrating a handover procedure according to an embodiment of the present invention.
  • FIG. 6 illustrates a digital signal processing apparatus that can be applied to an embodiment of the present invention.
  • ... unit described in the specification means a unit for processing at least one function or operation, which may be implemented in hardware or software or a combination of hardware and software.
  • a terminal is a mobile station (MS), a mobile terminal (MT), a subscriber station (SS), a portable subscriber station (PSS), a user equipment (User Equipment). It may also refer to a user equipment (UE), an access terminal (AT), and the like, and may include all or some functions of a terminal, a mobile station, a mobile terminal, a subscriber station, a portable subscriber station, a user device, an access terminal, and the like.
  • a base station is an access node (AP), a radio access station (RAS), a radio access station (RAS), a node B (Node B), an advanced node B (evolved NodeB, eNodeB), a base transceiver station (Base Transceiver Station, BTS), MMR (Mobile Multihop Relay) -BS, etc.
  • AP access node
  • RAS radio access station
  • RAS radio access station
  • Node B node B
  • an advanced node B evolved NodeB, eNodeB
  • BTS Base Transceiver Station
  • MMR Mobile Multihop Relay
  • FIG. 1 is a general network environment
  • FIG. 2 is a flowchart illustrating an example of a handover procedure.
  • the base station 100 is wirelessly connected to the terminal 10.
  • the base station 100 assigns a frequency to the terminal 10 and is in charge of all radio related functions including radio bearer control, admission control, mobility control, scheduling, and security.
  • the base station 100 is provided for each cell, for example.
  • the base station 100 connects to a core network including a mobility management entity (MME, 200), a serving gateway (Serving GateWay, S-GW, 300), and a packet gateway (Packet GateWay, P-GW, 400). do.
  • MME mobility management entity
  • S-GW Serving Gateway
  • Packet GateWay Packet GateWay, P-GW, 400
  • the MME 200 is connected to the base station 100 through a wireless channel, manages an idle mode terminal, and selects the S-GW 300 and the P-GW 400.
  • the MME 200 performs roaming and authentication-related functions and processes a bearer signal generated by the terminal 10.
  • the S-GW 300 serves as a mobility anchor when the terminal 10 moves.
  • the P-GW 400 assigns an IP (Internet Protocol) address to the terminal 10, performs packet data related functions of the core network, and the terminal 10 moves between the 3GPP wireless network and the non-3GPP wireless network. If yes, it serves as a mobility anchor.
  • IP Internet Protocol
  • the source base station transmits a handover request message to the target base station (S200), and the target base station responds to the source base station with a handover response.
  • a handover preparation step of transmitting a handover response message is performed (S210).
  • the handover request message transmitted from the source base station to the target base station includes various information required for handover.
  • the various information required for handover may include, for example, information necessary for exchanging signaling between the terminal and the core network, channel information for data forwarding between the source base station and the target base station, information for wireless encryption between the terminal and the base station, and a target. ID of the cell, radio resource management information including a temporary ID for identifying the terminal in the radio section.
  • a handover execution step is performed in which the source base station forwards data to the target base station (S220).
  • the target base station receiving the data forwarded from the source base station transmits a path switch request message to the MME (S230).
  • the MME sends a bearer change request (Modify Bearer Request) message to the P-GW via the S-GW (S240, S250), and receives a bearer change response (Modify Bearer Response) message from the P-GW via the S-GW. (S260, S270).
  • the MME transmits a path switch response message to the target base station (S280).
  • the S-GW may disconnect the transmission path from the existing base station serving the terminal before the handover and switch the transmission path to the new base station serving the terminal after the handover.
  • the target base station requests resource release from the source base station (S290).
  • Steps S230 to S290 may be included in the handover completion step.
  • the handover procedure needs to be changed in a network environment in which the base station is physically separated into a radio signal processing unit (RU) and a digital signal processing unit (Digital Unit, DU).
  • RU radio signal processing unit
  • DU Digital Unit
  • 3 is a network environment according to an embodiment of the present invention.
  • the network environment includes at least one radio unit (RU) 1100, at least one digital unit (DU) 1200, and an MME, S-GW, P.
  • RU radio unit
  • DU digital unit
  • MME MME
  • S-GW Packet Control Function
  • P Packet Control Function
  • a core network 1300 comprising a GW.
  • the RU 1100 processes a radio signal, and converts and amplifies a digital signal received from the DU 1200 into a radio frequency (RF) signal according to a frequency band.
  • RF radio frequency
  • the DU 1200 encrypts or decrypts a wireless digital signal and is connected to the core network 1300.
  • a plurality of RUs 1100 may be connected to the DU 1200.
  • the DU 1200 may be installed at a national office, and the RU 1100 may be installed at a remote location, that is, at a service target area.
  • a plurality of (eg, seven) RUs 1100 are installed in each cell, and one DU 1200 manages RUs 1100 installed in at least one cell.
  • the core network 1300 handles the connection between the DU 1200 and the external network. Since the core network 1300 is similar to the content described with reference to FIG. 1, the redundant description is omitted.
  • DU # 1 manages RUs in cells # 1 and # 2
  • DU # 2 manages RUs in cells # 3 and # 4.
  • a handover procedure particularly a handover completion procedure, varies according to the handover type of the terminal.
  • handover type I In case of handover between cells managed by the same DU (eg, when the UE moves from cell # 1 to cell # 2, it may be referred to as handover type I) and is managed by different DUs
  • handover type II In the case of handover between cells (for example, when the UE moves from cell # 2 to cell # 3, it may be referred to as handover type II), different handover completion procedures may be performed. .
  • FIG. 4 is a flowchart illustrating a method for performing a handover by a digital signal processing apparatus according to an embodiment of the present invention.
  • the DU determines a handover type for handover between cells managed by the same DU or handover between cells managed by different DUs (S400).
  • the DU may determine the handover type through a handover preparation procedure or a handover execution procedure.
  • the handover type may be determined according to whether the RU which transmitted the Handover Request message in the Handover Preparation procedure is managed by the corresponding DU.
  • the DU In case of a handover between cells managed by the same DU (S410), the DU does not transmit a path switch request message to the MME and performs a resource release procedure for the previous cell (S410). S420).
  • the DU changes the transmission path between the DU and the S-GW (S430). That is, as in the handover procedure described with reference to FIG. 2, after performing the handover preparation step and the handover execution step, the DU requests the MME to change the transmission path in the handover completion step. (Path Switch request) message, the MME exchanges the Bearer change request / response message with the P-GW via the S-GW, and the path switch response message from the MME Receive
  • the DU performs a resource release procedure for the previous cell (S420).
  • cell # 1 is a cell managed by a virtual source base station in a DU
  • cell # 2 is a cell managed by a virtual target base station in a same DU
  • the virtual source base station and the virtual target base station may be regarded as a computing processor or a computing instance managing each cell existing in the physical DU.
  • the virtual source base station may be mixed with the source base station processor
  • the virtual target base station may be mixed with the target base station processor.
  • the source base station processor transmits a handover request message to the target base station processor (S500), and the target base station processor transmits a handover response message to the source base station processor (S510).
  • the Handover Preparation step is performed. Through the handover preparation step, it may be determined that the handover between cells managed by the same DU.
  • a handover execution step may be performed in which the source base station processor forwards data to the target base station processor (S520).
  • the target base station processor does not transmit a path switch request message to the MME, and requests release of radio resources from the source base station processor (S530).
  • the signaling load between the MME, the S-GW, and the P-GW can be reduced by omitting the procedure of changing the physical transmission path between the DU and the S-GW during handover between cells managed by the same DU.
  • the target base station process uses the same tunnel end point ID (TEID: Tunneling End-point ID) that the source base station processor and the S-GW used to transmit and receive user traffic through the GPRS Tunneling Protocol (GTP) tunnel. Should also be available.
  • TEID Tunneling End-point ID
  • GTP GPRS Tunneling Protocol
  • the handover request message S500 may include a tunnel endpoint ID assigned by the source base station processor for downlink traffic and a tunnel endpoint ID assigned by S-GW for uplink traffic.
  • the target base station processor receiving the tunnel endpoint ID for uplink / downlink traffic may receive the downlink traffic from the S-GW using the tunnel endpoint ID, and when the terminal transmits uplink traffic to the target base station processor, the tunnel endpoint The ID can be used to transmit uplink traffic to the S-GW.
  • a shared memory area may be used in the DU. That is, tunnel endpoint ID information of all base station processors may be stored and managed in the shared memory area of the DU.
  • the handover procedure at the time of handover between cells managed by different DUs (eg, handover between cell # 2 and cell # 3, handover type II) is the same as described with reference to FIG. do.
  • FIG. 6 illustrates a digital signal processing apparatus that can be applied to an embodiment of the present invention.
  • the digital signal processing apparatus 600 includes a processor 610, a memory 620, and a transmission / reception unit 630.
  • the processor 610 may be configured to implement the procedures and / or methods proposed in the present invention.
  • the memory 620 is connected to the processor 610 and stores various information related to the operation of the processor 610.
  • the transmit / receive unit 630 is connected to the processor 610 and transmits and / or receives a signal.
  • the digital signal processing apparatus 600 may have a single antenna or multiple antennas.
  • the embodiments of the present invention described above are not only implemented through the apparatus and the method, but may be implemented through a program for realizing a function corresponding to the configuration of the embodiments of the present invention or a recording medium on which the program is recorded.

Abstract

본 발명의 한 실시예에 따른 서비스 영역에 설치되어 무선 신호를 처리하는 적어도 하나의 무선 신호 처리 장치와 물리적으로 분리되고, 코어 시스템과 연결되어 디지털 신호를 처리하는 디지털 신호 처리 장치의 핸드오버 수행 방법은 동일한 디지털 신호 처리 장치에 의하여 관리되는 셀 간의 핸드오버인 제1 핸드오버 유형인지, 서로 다른 디지털 신호 처리 장치에 의하여 관리되는 셀 간의 핸드오버인 제2 핸드오버 유형인지를 결정하는 단계, 그리고 상기 제1 핸드오버 유형인지, 상기 제2 핸드오버 유형인지에 따라 핸드오버 절차를 다르게 수행하는 단계를 포함한다.

Description

핸드오버 수행 방법, 이를 지원하는 디지털 신호 처리 장치 및 신호 처리 시스템
본 발명은 핸드오버 수행 방법, 이를 지원하는 디지털 신호 처리 장치 및 신호 처리 시스템에 관한 것이다.
최근 스마트폰, 테블릿 PC의 확산에 따라, 데이터 트래픽의 양이 급격히 늘어나고 있다. 이에 따라, 제한된 무선자원(예, 주파수 대역)을 사용해서 늘어나는 데이터 트래픽을 수용할 필요가 있다. 이를 위하여, 송신 출력이 작고 커버리지가 작은 기지국을 촘촘하게 설치하는 셀분할 기술을 이용할 수 있다.
그러나, 작은 기지국을 촘촘하게 설치하기 위하여, 통신 사업자는 기지국 장비 비용, 기지국 설치를 위한 임대 비용 등을 과도하게 지출하여야 한다.
이러한 문제를 해결하기 위해, 하나의 기지국 장비를 무선 신호 처리 장치(Radio Unit, RU)와 디지털 신호 처리 장치(Digital Unit, DU)로 분리하고 여러 기지국의 DU를 묶어서 하나의 클라우드 시스템으로 구성하는 무선 네트워크 구조가 제안되고 있다,
RU-DU가 분리된 무선 네트워크 구조에 따르면, 무선 커버리지 확보를 위해 지역적으로 분산 설치되어야 하는 RU의 크기가 기존의 기지국에 비해 현격히 작아져서 설치가 용이하고, 상면 임대비용 등 운용비를 절감할 수 있을 뿐만 아니라, 여러 기지국의 DU를 묶어 하나의 시스템으로 구성하기 때문에 셀간의 간섭신호 처리를 위한 셀간 협력통신이 용이하다.
그러나, 하나의 RU가 담당하는 커버리지가 작아지고, RU의 수가 많아지게 되면, 소형 셀간 핸드오버의 횟수가 급격히 늘어나게 된다. 그리고, 핸드오버 횟수의 증가는 코어망 장비들의 시그널링 과부하로 이어지게 되는 문제가 있다.
따라서, RU-DU가 분리된 무선 네트워크 구조에 적용할 수 있는 새로운 핸드오버 절차가 필요하다.
본 발명이 해결하고자 하는 기술적 과제는 핸드오버 신호처리에 관여하는 기존 무선 코어망 장치들(MME, S-GW, P-GW 등)을 수정하지 않으면서 이들 코어망 장치들에게 가해지는 핸드오버 시그널링 과부하를 현격히 줄일 수 있는 새로운 핸드오버 수행 방법, 이를 지원하는 디지털 신호 처리 장치 및 신호 처리 시스템을 제공하는 것이다.
본 발명의 한 실시예에 따른 서비스 영역에 설치되어 무선 신호를 처리하는 적어도 하나의 무선 신호 처리 장치와 물리적으로 분리되고, 코어 시스템과 연결되어 디지털 신호를 처리하는 디지털 신호 처리 장치의 핸드오버 수행 방법은 동일한 디지털 신호 처리 장치에 의하여 관리되는 셀 간의 핸드오버인 제1 핸드오버 유형인지, 서로 다른 디지털 신호 처리 장치에 의하여 관리되는 셀 간의 핸드오버인 제2 핸드오버 유형인지를 결정하는 단계, 그리고 상기 제1 핸드오버 유형인지, 상기 제2 핸드오버 유형인지에 따라 핸드오버 절차를 다르게 수행하는 단계를 포함한다.
상기 수행하는 단계에서는, 상기 제1 핸드오버 유형인 경우 각 셀을 관리하는 컴퓨팅 프로세서가 상기 S-GW와 통신하기 위하여 사용하는 터널종단점 ID 정보를 공유하며, 이동성 관리 객체(Mobility Management Entity, MME)에게 전송 경로 변경 요청(Path Switch Request) 메시지를 전송하지 않고, 핸드오버할 수 있다.
상기 수행하는 단계에서는, 상기 제2 핸드오버 유형인 경우에만 상기 디지털 신호 처리 장치와 서빙 게이트웨이(Serving Gateway, S-GW) 간의 전송 경로를 변경할 수 있다.
상기 제1 핸드오버 유형인지, 상기 제2 핸드오버 유형인지는 핸드오버 준비(Handover Preparation) 절차에서 핸드오버 요청(Handover Request) 메시지를 전송한 컴퓨팅 프로세서가 상기 디지털 신호 처리 장치에 의하여 관리되는지에 따라 결정될 수 있다.
상기 핸드오버 요청 메시지는 각 셀을 관리하는 컴퓨팅 프로세서가 상기 S-GW와 통신하기 위하여 사용하는 터널종단점 ID 정보를 포함할 수 있다.
상기 디지털 신호 처리 장치는 각 셀을 관리하는 컴퓨팅 프로세서가 상기 S-GW와 통신하기 위하여 사용하는 터널종단점 ID 정보를 저장하는 메모리를 포함할 수 있다.
본 발명의 한 실시예에 따른 서비스 영역에 설치되어 무선 신호를 처리하는 적어도 하나의 무선 신호 처리 장치와 물리적으로 분리되고, 코어 시스템과 연결되어 디지털 신호를 처리하는 디지털 신호 처리 장치는 송수신 유닛, 그리고 프로세서를 포함하고, 상기 프로세서는 동일한 디지털 신호 처리 장치에 의하여 관리되는 셀 간의 핸드오버인 제1 핸드오버 유형인지, 서로 다른 디지털 신호 처리 장치에 의하여 관리되는 셀 간의 핸드오버인 제2 핸드오버 유형인지를 결정하고, 상기 제1 핸드오버 유형인지, 상기 제2 핸드오버 유형인지에 따라 핸드오버 절차를 다르게 수행하도록 설정된다.
상기 핸드오버 완료 절차는, 상기 제2 핸드오버 유형인 경우에만 상기 디지털 신호 처리 장치와 서빙 게이트웨이(Serving Gateway, S-GW) 간의 전송 경로를 변경하도록 설정될 수 있다.
상기 핸드오버 완료 절차는, 상기 제1 핸드오버 유형인 경우 각 셀을 관리하는 컴퓨팅 프로세스가 S-GW와 통신하기 위해 필요한 터널종단점 ID 정보를 공유하며, 이동성 관리 객체(Mobility Management Entity, MME)에게 전송 경로 변경 요청(Path Switch Request) 메시지를 전송하지 않고, 핸드오버를 할 수 있다.
본 발명의 한 실시예에 따른 신호 처리 시스템은 동일한 디지털 신호 처리 장치에 의하여 관리되는 셀 간의 핸드오버인 제1 핸드오버 유형인지, 서로 다른 디지털 신호 처리 장치에 의하여 관리되는 셀 간의 핸드오버인 제2 핸드오버 유형인지를 결정하고, 상기 제1 핸드오버 유형인지, 상기 제2 핸드오버 유형인지에 따라 핸드오버 절차를 다르게 수행하는 디지털 신호 처리 장치, 그리고 상기 디지털 신호 처리 장치와 물리적으로 분리되고, 셀의 서비스 영역에 설치되어 무선 신호를 처리하는 무선 신호 처리 장치를 포함한다.
본 발명의 한 실시예에 따르면, 기지국의 무선 신호 처리 장치와 디지털 신호 처리 장치가 분리되어 운영되는 네트워크 환경에 적합한 핸드오버 방법을 얻을 수 있다. 이에 따라, 핸드오버 시의 시그널링 부하를 줄일 수 있다.
도 1은 일반적인 네트워크 환경이다.
도 2는 핸드오버 절차의 일 예를 나타내는 흐름도이다.
도 3은 본 발명의 한 실시예에 따른 네트워크 환경이다.
도 4는 본 발명의 한 실시예에 따른 디지털 신호 처리 장치가 핸드오버를 수행하는 방법을 나타내는 순서도이다.
도 5는 본 발명의 한 실시예에 따른 핸드오버 절차를 나타내는 흐름도이다.
도 6은 본 발명의 실시예에 적용될 수 있는 디지털 신호 처리 장치를 예시한다.
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
또한, 명세서에 기재된 "…부"의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.
본 명세서에서 단말(terminal)은 이동국(Mobile Station, MS), 이동 단말(Mobile Terminal, MT), 가입자국(Subscriber Station, SS), 휴대 가입자국(Portable Subscriber Station, PSS), 사용자 장치(User Equipment, UE), 접근 단말(Access Terminal, AT) 등을 지칭할 수도 있고, 단말, 이동국, 이동 단말, 가입자국, 휴대 가입자 국, 사용자 장치, 접근 단말 등의 전부 또는 일부의 기능을 포함할 수도 있다.
본 명세서에서 기지국(Base Station, BS)은 접속 노드(Access Point, AP), 무선 접근국(Radio Access Station, RAS), 노드B(Node B), 고도화 노드B(evolved NodeB, eNodeB), 송수신 기지국(Base Transceiver Station, BTS), MMR(Mobile Multihop Relay)-BS 등을 지칭할 수도 있고, 접속 노드, 기지국, 무선 접근국, 노드B, eNodeB, 송수신 기지국, MMR-BS 등의 전부 또는 일부의 기능을 포함할 수도 있다.
도 1은 일반적인 네트워크 환경이고, 도 2는 핸드오버 절차의 일 예를 나타내는 흐름도이다.
도 1을 참고하면, 기지국(100)은 단말(10)과 무선으로 연결된다. 기지국(100)은 단말(10)에게 주파수를 할당하고, 무선 베어러(bearer) 제어, 승인 제어, 이동성 제어, 스케줄링, 보안성을 포함하는 모든 무선 관련 기능들을 담당한다. 기지국(100)은, 예를 들면 셀 마다 설치된다.
기지국(100)은 이동성 관리 객체(Mobility Management Entity, MME, 200), 서빙 게이트웨이(Serving GateWay, S-GW, 300) 및 패킷 게이트웨이(Packet GateWay, P-GW, 400)를 포함하는 코어 네트워크에 연결된다.
MME(200)는 기지국(100)과 무선 채널을 통해 연결되고, 아이들 모드의 단말을 관리하며, S-GW(300), P-GW(400)을 선정한다. 그리고, MME(200)는 로밍(roaming) 및 인증(authentication) 관련 기능을 수행하고, 단말(10)에서 발생되는 베어러 시그널(bearer signal)을 처리한다.
S-GW(300)는 단말(10)의 이동 시에 이동성 앵커 역할을 수행한다.
P-GW(400)는 단말(10)에게 IP(Internet Protocol) 주소를 할당하고, 코어 네트워크의 패킷 데이터 관련 기능을 수행하며, 단말(10)이 3GPP 무선망과 non-3GPP 무선망 사이를 이동하는 경우, 이동성 앵커 역할을 수행한다.
이하에서는 단말이 셀 #1(500)에서 셀 #2(600)로 이동하는 경우, 핸드오버 절차를 설명한다.
도 2를 참고하면, 단말이 셀 #1에서 셀 #2로 이동하는 경우, 소스 기지국이 타겟 기지국에게 핸드오버 요청(Handover Request) 메시지를 전송하고(S200), 타겟 기지국이 소스 기지국에게 핸드오버 응답(Handover Response) 메시지를 전송하는(S210) 핸드오버 준비(Handover Preparation) 단계가 이루어진다. 소스 기지국이 타겟 기지국에게 전송하는 핸드오버 요청(Handover Request) 메시지는 핸드오버에 필요한 다양한 정보를 포함한다. 이때, 핸드오버에 필요한 다양한 정보는, 예를 들면 단말과 코어망 간의 시그널링을 주고받기 위해 필요한 정보, 소스 기지국과 타겟 기지국간의 데이터 포워딩을 위한 채널 정보, 단말과 기지국 간의 무선 암호화를 위한 정보, 타겟 셀의 ID, 무선 구간에서 단말을 식별하기 위한 임시 ID를 포함하는 무선자원관리 정보등 이다.
이후, 소스 기지국이 타겟 기지국으로 데이터를 포워딩(Forwarding of Data)하는(S220) 핸드오버 실행(Handover Execution) 단계가 이루어진다.
소스 기지국으로부터 포워딩되는 데이터를 수신한 타겟 기지국은 MME에게 전송 경로 변경 요청(Path Switch Request) 메시지를 전송한다(S230).
MME는 S-GW를 거쳐 P-GW에게 베어러 변경 요청(Modify Bearer Request) 메시지를 전송하고(S240, S250), P-GW로부터 S-GW를 거쳐 베어러 변경 응답(Modify Bearer Response) 메시지를 수신한다(S260, S270).
그리고, MME는 타겟 기지국에게 전송 경로 변경 응답(Path Switch Response) 메시지를 전송한다(S280).
이에 따라, S-GW는 핸드오버 전에 단말을 서비스하던 기존 기지국과의 전송 경로를 끊고, 핸드오버 후에 단말을 서비스할 새로운 기지국으로 전송 경로를 전환할 수 있다.
이후, 타겟 기지국은 소스 기지국에게 자원 해제(Release Resource)를 요청한다(S290).
단계 S230 내지 단계 S290은 핸드오버 완료(Handover Completion) 단계에 포함될 수 있다.
한편, 기지국이 무선 신호 처리 장치(Radio Unit, RU)와 디지털 신호 처리 장치(Digital Unit, DU)로 물리적으로 분리되어 운영되는 네트워크 환경에서는 핸드오버 절차가 변경될 필요가 있다.
이하, 본 발명의 한 실시예에 따른 네트워크 환경에 적합한 핸드오버 절차를 설명한다.
도 3은 본 발명의 한 실시예에 따른 네트워크 환경이다.
도 3을 참조하면, 네트워크 환경은 적어도 하나의 무선 신호 처리 장치(Radio Unit, RU)(1100), 적어도 하나의 디지털 신호 처리 장치(Digital Unit, DU)(1200) 및 MME, S-GW, P-GW를 포함하는 코어 네트워크(1300)를 포함한다.
RU(1100)는 무선 신호를 처리하는 부분으로, DU(1200)로부터 수신한 디지털 신호를 주파수 대역에 따라 무선 주파수(Radio Freqeuncy, RF) 신호로 변환하고 증폭한다.
DU(1200)는 무선 디지털 신호를 암호화 또는 복호화하며, 코어 네트워크(1300)에 연결되어 있다.
DU(1200)에는 복수의 RU(1100)가 연결될 수 있다. DU(1200)는 국사에 설치되고, RU(1100)는 원격, 즉 서비스 대상 지역에 설치될 수 있다.
셀(Cell) 마다 복수(예, 7개)의 RU(1100)가 설치되고, 하나의 DU(1200)는 적어도 하나의 셀에 설치된 RU(1100)들을 관리한다.
코어 네트워크(1300)는 DU(1200)와 외부 망의 접속을 처리하며, 도 1에서 설명하고 있는 내용과 유사하므로, 중복된 설명을 생략한다.
본 명세서에서는 DU #1이 셀 #1 및 셀 #2에 있는 RU들을 관리하고, DU #2가 셀 #3 및 셀 #4에 있는 RU들을 관리하는 것을 예로 들어 설명한다.
본 발명의 한 실시예에 따르면, 단말의 핸드오버 유형에 따라 핸드오버 절차, 특히 핸드오버 완료 절차가 달라진다.
예를 들어, 동일한 DU에 의하여 관리되는 셀 간의 핸드오버인 경우(예, 단말이 셀 #1에서 셀 #2로 이동한 경우, 핸드오버 유형 Ⅰ이라 지칭될 수 있다) 및 서로 다른 DU에 의하여 관리되는 셀 간의 핸드오버인 경우(예, 단말이 셀 #2에서 셀 #3으로 이동한 경우, 핸드오버 유형 Ⅱ라 지칭될 수 있다), 각각 다른 핸드오버 완료(Handover Completion) 절차가 수행될 수 있다.
도 4는 본 발명의 한 실시예에 따른 디지털 신호 처리 장치가 핸드오버를 수행하는 방법을 나타내는 순서도이다.
도 4를 참고하면, DU는 동일한 DU에 의하여 관리되는 셀 간의 핸드오버인지, 서로 다른 DU에 의하여 관리되는 셀 간의 핸드오버인지에 대한 핸드오버 유형을 결정한다(S400). DU는 핸드오버 준비(Handover Preparation) 절차 또는 핸드오버 실행(Handover Execution) 절차를 통하여 핸드오버 유형을 결정할 수 있다. 일 예로, 핸드오버 유형은 핸드오버 준비(Handover Preparation) 절차에서 핸드오버 요청(Handover Request) 메시지를 전송한 RU가 해당 DU에 의하여 관리되는지에 따라 결정될 수 있다.
동일한 DU에 의하여 관리되는 셀 간의 핸드오버인 경우(S410), DU는 MME에게 전송 경로 변경 요청(Path Switch Request) 메시지를 전송하지 않고, 이전 셀에 대한 자원 해제(Release Resource) 절차를 수행한다(S420).
반면, 서로 다른 DU에 의하여 관리되는 셀 간의 핸드오버인 경우, DU는 DU와 S-GW 간의 전송 경로를 변경한다(S430). 즉, 도 2에서 설명한 핸드오버 절차와 같이, 핸드오버 준비(Handover Preparation) 단계 및 핸드오버 실행(Handover Execution) 단계를 수행한 후 핸드오버 완료(Handover Completion) 단계에서 DU는 MME에게 전송 경로 변경 요청(Path Switch request) 메시지를 전송하고, MME는 S-GW를 거쳐 P-GW와 베어러 변경 요청/응답(Modify Bearer request/response) 메시지를 교환하며, MME로부터 전송 경로 변경 응답(Path Switch response) 메시지를 수신한다.
이후, DU는 이전 셀에 대한 자원 해제 절차를 수행한다(S420).
이하에서는 본 발명의 한 실시예에 따른 핸드오버 절차를 더욱 상세하게 설명한다.
도 5는 본 발명의 한 실시예에 따른 핸드오버 절차를 나타내는 흐름도이다. 여기서, 단말은 동일한 DU가 관리하는 셀 #1에서 셀 #2로 이동한 경우(핸드오버 유형 Ⅰ)를 예로 들어 설명한다. 이때 셀 #1은 DU 내에 있는 가상의 소스 기지국에 의해 관리되는 셀이며, 셀 #2은 동일한 DU 내에 있는 가상의 타겟 기지국에 의해 관리되는 셀이다. 여기서, 가상의 소스 기지국과 가상의 타겟 기지국은 물리적인 DU 내에 존재하는 각 셀을 관리하는 컴퓨팅 프로세서 또는 컴퓨팅 인스턴스라고 볼 수 있다. 이하, 가상의 소스 기지국은 소스 기지국 프로세서와 혼용될 수 있고, 가상의 타겟 기지국은 타겟 기지국 프로세서와 혼용될 수 있다.
도 5를 참고하면, 소스 기지국 프로세서가 타겟 기지국 프로세서에게 핸드오버 요청(Handover Request) 메시지를 전송하고(S500), 타겟 기지국 프로세서가 소스 기지국 프로세서에게 핸드오버 응답(Handover Response) 메시지를 전송하는(S510) 핸드오버 준비(Handover Preparation) 단계가 이루어진다. 핸드오버 준비 단계를 통하여, 동일한 DU가 관리하는 셀 간의 핸드오버인 것으로 파악될 수 있다.
이후, 소스 기지국 프로세서가 타겟 기지국 프로세서로 데이터를 포워딩(Forwarding of Data)하는(S520) 핸드오버 실행(Handover Execution) 단계가 진행될 수 있다.
동일한 DU가 관리하는 셀 간의 핸드오버의 경우, 타겟 기지국 프로세서는 MME에게 전송 경로 변경 요청(Path Switch Request) 메시지를 전송하지 않으며, 소스 기지국 프로세서에게 무선자원 해제를 요청한다(S530).
이와 같이, 동일한 DU가 관리하는 셀 간의 핸드오버 시에 DU와 S-GW 간의 물리적인 전송 경로를 변경하는 절차를 생략함으로써, MME, S-GW, P-GW 간의 시그널링 부하를 줄일 수 있다.
다만, 이때에도 소스 기지국 프로세서와 S-GW가 GTP(GPRS Tunneling Protocol) 터널을 통해 사용자 트래픽을 송수신할 때 사용했던 터널종단점 ID(TEID: Tunneling End-point ID)와 동일한 터널종단점 ID를 타겟 기지국 프로세스도 사용할 수 있어야 한다.
이를 위하여, 핸드오버 요청(Handover Request) 메시지(S500)는 하향링크 트래픽을 위해 소스 기지국 프로세서가 할당한 터널종단점 ID와 상향링크 트래픽을 위해 S-GW가 할당한 터널종단점 ID를 포함할 수 있다. 상/하향링크 트래픽을 위한 터널종단점 ID를 수신한 타겟 기지국 프로세서는 터널종단점 ID를 사용해서 S-GW로부터 하향링크 트래픽을 수신할 수 있으며, 단말이 타겟 기지국 프로세서로 상향링크 트래픽을 전송할 경우 터널종단점 ID를 사용해서 상향링크 트래픽을 S-GW로 송신할 수 있다.
동일한 DU 내의 소스 기지국 프로세서와 타겟 기지국 프로세서가 터널종단점ID 정보를 공유하기 위하여, DU 내에 공유 메모리 영역을 사용할 수도 있다. 즉, DU의 공유 메모리 영역 내에 모든 기지국 프로세서들에 관한 터널종단점 ID 정보가 저장되어 관리될 수 있다.
반면, 서로 다른 DU가 관리하는 셀 간의 핸드오버(예, 셀 #2 및 셀 #3 간의 핸드오버, 핸드오버 유형Ⅱ) 시의 핸드오버 절차는 도 2에서 설명한 바와 동일하므로, 중복된 설명을 생략한다.
도 6은 본 발명의 실시예에 적용될 수 있는 디지털 신호 처리 장치를 예시한다.
도 6을 참조하면, 디지털 신호 처리 장치(600)는 프로세서(610), 메모리(620) 및 송수신 유닛(630)을 포함한다. 프로세서(610)는 본 발명에서 제안한 절차 및/또는 방법들을 구현하도록 구성될 수 있다. 메모리(620)는 프로세서(610)와 연결되고 프로세서(610)의 동작과 관련한 다양한 정보를 저장한다. 송수신 유닛(630)은 프로세서(610)와 연결되고 신호를 송신 및/또는 수신한다. 디지털 신호 처리 장치(600)는 단일 안테나 또는 다중 안테나를 가질 수 있다.
이상에서 설명한 본 발명의 실시예는 장치 및 방법을 통해서만 구현이 되는 것은 아니며, 본 발명의 실시예의 구성에 대응하는 기능을 실현하는 프로그램 또는 그 프로그램이 기록된 기록 매체를 통해 구현될 수도 있다.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.

Claims (10)

  1. 서비스 영역에 설치되어 무선 신호를 처리하는 적어도 하나의 무선 신호 처리 장치와 물리적으로 분리되고, 코어 시스템과 연결되어 디지털 신호를 처리하는 디지털 신호 처리 장치의 핸드오버 수행 방법에 있어서,
    동일한 디지털 신호 처리 장치에 의하여 관리되는 셀 간의 핸드오버인 제1 핸드오버 유형인지, 서로 다른 디지털 신호 처리 장치에 의하여 관리되는 셀 간의 핸드오버인 제2 핸드오버 유형인지를 결정하는 단계, 그리고
    상기 제1 핸드오버 유형인지, 상기 제2 핸드오버 유형인지에 따라 핸드오버 절차를 다르게 수행하는 단계
    를 포함하는 핸드오버 수행 방법.
  2. 제1항에 있어서,
    상기 수행하는 단계에서는,
    상기 제1 핸드오버 유형인 경우 각 셀을 관리하는 컴퓨팅 프로세서가 상기 S-GW와 통신하기 위하여 사용하는 터널종단점 ID 정보를 공유하며, 이동성 관리 객체(Mobility Management Entity, MME)에게 전송 경로 변경 요청(Path Switch Request) 메시지를 전송하지 않고, 핸드오버 하는 핸드오버 수행 방법.
  3. 제1항에 있어서,
    상기 수행하는 단계에서는,
    상기 제2 핸드오버 유형인 경우에만 상기 디지털 신호 처리 장치와 서빙 게이트웨이(Serving Gateway, S-GW) 간의 전송 경로를 변경하는 핸드오버 수행 방법.
  4. 제1항에 있어서,
    상기 제1 핸드오버 유형인지, 상기 제2 핸드오버 유형인지는 핸드오버 준비(Handover Preparation) 절차에서 핸드오버 요청(Handover Request) 메시지를 전송한 컴퓨팅 프로세서가 상기 디지털 신호 처리 장치에 의하여 관리되는지에 따라 결정되는 핸드오버 수행 방법.
  5. 제4항에 있어서,
    상기 핸드오버 요청 메시지는 각 셀을 관리하는 컴퓨팅 프로세서가 상기 S-GW와 통신하기 위하여 사용하는 터널종단점 ID 정보를 포함하는 핸드오버 수행 방법.
  6. 제1항에 있어서,
    상기 디지털 신호 처리 장치는 각 셀을 관리하는 컴퓨팅 프로세서가 상기 S-GW와 통신하기 위하여 사용하는 터널종단점 ID 정보를 저장하는 메모리를 포함하는 핸드오버 수행 방법.
  7. 서비스 영역에 설치되어 무선 신호를 처리하는 적어도 하나의 무선 신호 처리 장치와 물리적으로 분리되고, 코어 시스템과 연결되어 디지털 신호를 처리하는 디지털 신호 처리 장치에 있어서,
    송수신 유닛, 그리고
    프로세서를 포함하고,
    상기 프로세서는 동일한 디지털 신호 처리 장치에 의하여 관리되는 셀 간의 핸드오버인 제1 핸드오버 유형인지, 서로 다른 디지털 신호 처리 장치에 의하여 관리되는 셀 간의 핸드오버인 제2 핸드오버 유형인지를 결정하고, 상기 제1 핸드오버 유형인지, 상기 제2 핸드오버 유형인지에 따라 핸드오버 절차를 다르게 수행하도록 설정되는 디지털 신호 처리 장치.
  8. 제7항에 있어서,
    상기 핸드오버 완료 절차는, 상기 제2 핸드오버 유형인 경우에만 상기 디지털 신호 처리 장치와 서빙 게이트웨이(Serving Gateway, S-GW) 간의 전송 경로를 변경하도록 설정되는 디지털 신호 처리 장치.
  9. 제7항에 있어서,
    상기 핸드오버 완료 절차는, 상기 제1 핸드오버 유형인 경우 각 셀을 관리하는 컴퓨팅 프로세스가 S-GW와 통신하기 위해 필요한 터널종단점 ID 정보를 공유하며, 이동성 관리 객체(Mobility Management Entity, MME)에게 전송 경로 변경 요청(Path Switch Request) 메시지를 전송하지 않고, 핸드오버를 하는 디지털 신호 처리 장치.
  10. 동일한 디지털 신호 처리 장치에 의하여 관리되는 셀 간의 핸드오버인 제1 핸드오버 유형인지, 서로 다른 디지털 신호 처리 장치에 의하여 관리되는 셀 간의 핸드오버인 제2 핸드오버 유형인지를 결정하고, 상기 제1 핸드오버 유형인지, 상기 제2 핸드오버 유형인지에 따라 핸드오버 절차를 다르게 수행하는 디지털 신호 처리 장치, 그리고
    상기 디지털 신호 처리 장치와 물리적으로 분리되고, 셀의 서비스 영역에 설치되어 무선 신호를 처리하는 무선 신호 처리 장치
    를 포함하는 신호 처리 시스템.
PCT/KR2012/009115 2012-07-03 2012-11-01 핸드오버 수행 방법, 이를 지원하는 디지털 신호 처리 장치 및 신호 처리 시스템 WO2014007436A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0072485 2012-07-03
KR1020120072485A KR20140006329A (ko) 2012-07-03 2012-07-03 핸드오버 수행 방법, 이를 지원하는 디지털 신호 처리 장치 및 신호 처리 시스템

Publications (1)

Publication Number Publication Date
WO2014007436A1 true WO2014007436A1 (ko) 2014-01-09

Family

ID=49882170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/009115 WO2014007436A1 (ko) 2012-07-03 2012-11-01 핸드오버 수행 방법, 이를 지원하는 디지털 신호 처리 장치 및 신호 처리 시스템

Country Status (2)

Country Link
KR (1) KR20140006329A (ko)
WO (1) WO2014007436A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100810207B1 (ko) * 2005-07-22 2008-03-06 삼성전자주식회사 패킷 교환 기반의 네트워크에서 코어 네트워크 개체들 간의핸드오버 방법 및 장치
KR20090118082A (ko) * 2007-02-12 2009-11-17 인터디지탈 테크날러지 코포레이션 Lte/eutran으로부터 gprs/geran으로의 핸드오버를 지원하기 위한 방법 및 장치
US20110019644A1 (en) * 2009-07-22 2011-01-27 Samsung Electronics Co. Ltd. Method for switching session of user equipment in wireless communication system and system employing the same
US20110069678A1 (en) * 2004-11-05 2011-03-24 Interdigital Technology Corporation Wireless metropolitan area network architecture for managing network resources and mobility
WO2012060655A2 (ko) * 2010-11-05 2012-05-10 엘지전자 주식회사 무선 통신 시스템에서 핸드 오버를 수행하는 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110069678A1 (en) * 2004-11-05 2011-03-24 Interdigital Technology Corporation Wireless metropolitan area network architecture for managing network resources and mobility
KR100810207B1 (ko) * 2005-07-22 2008-03-06 삼성전자주식회사 패킷 교환 기반의 네트워크에서 코어 네트워크 개체들 간의핸드오버 방법 및 장치
KR20090118082A (ko) * 2007-02-12 2009-11-17 인터디지탈 테크날러지 코포레이션 Lte/eutran으로부터 gprs/geran으로의 핸드오버를 지원하기 위한 방법 및 장치
US20110019644A1 (en) * 2009-07-22 2011-01-27 Samsung Electronics Co. Ltd. Method for switching session of user equipment in wireless communication system and system employing the same
WO2012060655A2 (ko) * 2010-11-05 2012-05-10 엘지전자 주식회사 무선 통신 시스템에서 핸드 오버를 수행하는 방법

Also Published As

Publication number Publication date
KR20140006329A (ko) 2014-01-16

Similar Documents

Publication Publication Date Title
WO2016114623A1 (en) Handover method and apparatus
WO2018203716A1 (ko) 단말 자율 핸드오버에서의 측정 리포트 이벤트 운용 및 네트워크 시그널링 방법
JP5492507B2 (ja) 基地局ゲートウェイ、基地局ゲートウェイによる基地局切り替え方法及びデータ処理方法
WO2011055999A2 (ko) 무선 통신 네트워크 시스템에서 데이터 전송 방법 및 장치
WO2016013899A1 (ko) 무선통신 시스템에서 적응적 플로우 제어 방법 및 장치
WO2013141572A1 (ko) 무선 랜 액세스 포인트를 이용한 통신 방법 및 장치
WO2012141419A1 (ko) 펨토 기지국 및 펨토 기지국 관리 시스템
WO2015133837A1 (en) Method for data forwarding in a small cell system
WO2015009131A1 (en) Method of supporting mobility of ue supporting/using d2d communication in wireless mobile communication system
WO2011021754A1 (en) Method for transmitting a packet at a base station in a network using multiple communication schemes
WO2019035638A1 (ko) 제 3자 응용 서버에서 단말의 무선 연결 타입 변경을 확인하는 방법
WO2021118281A1 (ko) 무선 접속 망에서 셀 정보를 포함하는 e2 인터페이스 설정을 위한 장치 및 방법
WO2010098574A2 (en) Method and apparatus for supporting local breakout in wireless communication network including femtocells
WO2014069918A1 (ko) 무선 통신 시스템에서 기지국간 반송파 집적을 통한 데이터 전송 방법 및 장치
WO2013062189A1 (ko) 이종 망의 경계 주변에 위치하는 단말의 망 천이 방법
WO2016003113A1 (ko) 무선 통신 시스템에서 서비스 연속성을 제어하는 방법 및 장치
WO2011021889A2 (en) Method for transmitting and receiving information of relation between home base stations
WO2012157959A2 (ko) 이동통신시스템에서 limonet 지원시 세션 연속 지원을 결정하는 장치 및 방법.
WO2011136555A2 (ko) 무선 통신 시스템에서 통신 시스템 노드와 데이터 서비스 망 노드 간 연결 설정 방법
WO2012020995A2 (en) Apparatus and method for transmitting and receiving signal in a mobile communication system
WO2010064859A2 (ko) 이동하는 단말의 위치에 따라 단말이 등록된 gan 제어기를 변경하기 위한 방법
WO2014054909A1 (ko) 이동통신 시스템에서 컨텐츠 제공 방법 및 장치
WO2012030156A2 (ko) 무선 통신 시스템에서 단말의 접속 제어 정보 설정 방법 및 장치
WO2012144788A2 (ko) 인터넷·인트라넷 서비스를 동시 지원하는 패킷 데이터 네트워크 게이트웨이 장치 및 펨토 기지국
WO2014010787A1 (ko) 트래킹 영역 업데이트 방법, 페이징 방법 및 이를 지원하는 디지털 신호 처리 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12880406

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02.06.2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12880406

Country of ref document: EP

Kind code of ref document: A1