WO2014007212A1 - Protective film for solar cell modules, and solar cell module using same - Google Patents

Protective film for solar cell modules, and solar cell module using same Download PDF

Info

Publication number
WO2014007212A1
WO2014007212A1 PCT/JP2013/068037 JP2013068037W WO2014007212A1 WO 2014007212 A1 WO2014007212 A1 WO 2014007212A1 JP 2013068037 W JP2013068037 W JP 2013068037W WO 2014007212 A1 WO2014007212 A1 WO 2014007212A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
cell module
protective film
layer
heat
Prior art date
Application number
PCT/JP2013/068037
Other languages
French (fr)
Japanese (ja)
Inventor
康司 川島
Original Assignee
恵和株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 恵和株式会社 filed Critical 恵和株式会社
Publication of WO2014007212A1 publication Critical patent/WO2014007212A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/04Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B23/08Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/283Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/285Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/286Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysulphones; polysulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/325Layered products comprising a layer of synthetic resin comprising polyolefins comprising polycycloolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/31Heat sealable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/402Coloured
    • B32B2307/4026Coloured within the layer by addition of a colorant, e.g. pigments, dyes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/712Weather resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7244Oxygen barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7246Water vapor barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2310/00Treatment by energy or chemical effects
    • B32B2310/08Treatment by energy or chemical effects by wave energy or particle radiation
    • B32B2310/0875Treatment by energy or chemical effects by wave energy or particle radiation using particle radiation
    • B32B2310/0887Treatment by energy or chemical effects by wave energy or particle radiation using particle radiation using electron radiation, e.g. beta-rays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2571/00Protective equipment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/322Applications of adhesives in processes or use of adhesives in the form of films or foils for the production of solar panels
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/416Additional features of adhesives in the form of films or foils characterized by the presence of essential components use of irradiation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2423/00Presence of polyolefin
    • C09J2423/10Presence of homo or copolymers of propene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a protective film suitably used for a solar cell module and a solar cell module using the protective film.
  • This solar battery is generally composed of a plurality of solar battery modules that are packaged by a plurality of solar battery cells wired in series or in parallel.
  • the solar cell module is required to have sufficient durability and weather resistance that can be used outdoors for a long time.
  • a transparent substrate 32 made of glass or the like As a specific structure of the general solar cell module 31, as shown in FIG. 5, a transparent substrate 32 made of glass or the like, a surface side filler layer 33 made of a thermoplastic resin, and a photovoltaic element
  • the solar battery cell 34, the back side filler layer 35 made of a thermoplastic resin, and a solar cell module backsheet 40 (hereinafter simply referred to as a backsheet) are laminated in this order and integrally formed. (See, for example, JP 2009-302361 A).
  • the back-side filler layer 35 is formed of, for example, ethylene-vinyl acetate copolymer resin (EVA), and the back sheet 40 has a heat melting layer formed of a thermoplastic polyethylene resin.
  • a resin layer 36 is provided. And in the said integral molding, generally the laminated body laminated
  • the heat-sealing resin layer 36 heat-fuses the back side filler layer 35 and the back sheet 40 by melting by heating and solidification by subsequent cooling. At this time, if the heat-sealing resin layer 35 flows excessively, problems such as leakage from the sheets, generation of wrinkles, thickness non-uniformity, and the like occur, leading to deterioration in quality. However, if the heating temperature is lowered to prevent these problems, sufficient fusion strength cannot be obtained. Therefore, a means for preventing such a problem is required.
  • This invention is made
  • the invention made to solve the above problems is It has a heat-sealing resin layer, This is a protective film for a solar cell module in which the synthetic resin, which is the main component of the heat-sealing resin layer, is crosslinked by electron beam irradiation.
  • the solar cell module protective film is bonded to the front surface side or the back surface side of the solar cell module by thermally fusing the heat sealing resin layer, and can protect the components of the solar cell module. And since the synthetic resin which is a main component of a heat-fusion resin layer has high heat resistance by being bridge
  • the heat-sealing resin layer may contain a crosslinking agent.
  • a crosslinking agent to the heat-sealing resin layer.
  • the addition of a cross-linking agent makes the cross-linking reaction of the polypropylene electron irradiation superior to the molecular cutting reaction, and heat resistance is maintained while maintaining the strength of the polypropylene. Can be raised.
  • the synthetic resin may be polypropylene.
  • strength of the said protective film for solar cell modules, heat resistance, etc. can be improved by making the main component of a heat-fusion resin layer into a polypropylene.
  • a pigment is dispersed and contained in the heat-sealing resin layer.
  • the dispersion of the pigment in the heat-sealing resin layer can improve the heat resistance, thermal dimensional stability, weather resistance, strength, aging resistance, etc. of the protective film for solar cell module. it can.
  • the irradiation dose of the electron beam is preferably 5 kGy or more and 300 kGy or less.
  • heat resistance can be raised, suppressing deterioration of a heat sealing
  • the said protective film for solar cell modules is good to consist only of the said heat sealing
  • the average thickness of the heat-sealing resin layer is preferably 40 ⁇ m or more and 500 ⁇ m or less.
  • the solar cell module can be reduced in weight, while providing sufficient strength, weather resistance, etc. to the protective film for the solar cell module, and withstand voltage. Therefore, it is possible to easily and reliably cope with the high voltage of the solar cell module.
  • the solar cell module protective film may be composed of only the heat-sealing resin layer, but may further include a hydrolysis-resistant layer on one surface side of the heat-sealing resin layer.
  • a hydrolysis-resistant layer on one surface side of the heat-sealing resin layer
  • the durability, weather resistance, and the like of the protective film for solar cell module can be dramatically improved.
  • the solar cell module which can be used suitably for a long time use outdoors is obtained by using the said protective film for solar cell modules excellent in durability, a weather resistance, etc. in this way.
  • a gas barrier layer on one surface side of the heat sealing resin layer.
  • gas barrier properties against oxygen, water vapor, and the like can be imparted to the protective film for a solar cell module.
  • the solar cell module which can be used suitably for a long time use outdoors is obtained by using the said protective film for solar cell modules which has gas barrier property in this way.
  • the solar cell module protective film may be used as a back sheet of the solar cell module.
  • a photovoltaic cell can be protected easily and reliably by using the said protective film for solar cell modules as a solar cell module backsheet.
  • Another invention made to solve the above problems is as follows: The protective film for the solar cell module; A filler layer thermally fused to the surface of the protective film for the solar cell module; Solar cells disposed in the filler layer; A translucent substrate disposed on the surface of the filling layer.
  • the synthetic resin constituting the heat-sealing resin layer of the protective film for solar cell modules is cross-linked by electron beam irradiation, between the sheets of the heat-sealing resin layer at the time of heat-sealing the protective film Problems such as leakage, wrinkles, and uneven thickness are prevented. Therefore, the solar cell module is excellent in productivity and quality.
  • the “back surface” means the surface opposite to the light receiving surface of the solar cell module.
  • the solar cell module protective film of the present invention can prevent problems during heat fusion, and can improve the productivity and quality of the solar cell module.
  • a back sheet for a solar cell module (hereinafter sometimes referred to as a back sheet) shown in FIG. 1 and FIG.
  • the solar cell module protective film 1 of the first embodiment is composed of only the heat-sealing resin layer 3 formed in a sheet shape.
  • the heat-sealing resin layer 3 is a synthetic resin layer that melts when the solar cell module protective film 1 is heat-sealed to the back surface of the solar cell module.
  • the synthetic resin used for the heat-sealing resin layer 3 is not particularly limited, and for example, a synthetic resin mainly composed of an ethylene-based polymer or polypropylene can be used.
  • the ethylene polymer include polyethylene such as low density polyethylene, medium density polyethylene and high density polyethylene, ethylene- ⁇ olefin copolymer, ethylene- (meth) acrylic acid alkyl ester copolymer, ethylene- (meta ) Acrylic acid copolymer, an ionic cross-linked product of ethylene- (meth) acrylic acid copolymer, ethylene-vinyl ester copolymer, and the like can be used.
  • the polypropylene excellent in intensity
  • the molecular cleavage reaction at the time of electron irradiation is dominant over the crosslinking reaction, so the strength etc. deteriorates if electron irradiation is performed as it is, but the strength etc. is maintained by adding a crosslinking agent and performing electron irradiation.
  • the heat resistance can be increased as it is.
  • the said synthetic resin can also be used individually by 1 type, and can also use 2 or more types together.
  • a polymer obtained by copolymerizing a compound having a reactive functional group such as a glycidyl group, a silanol group, or an amino group with the ethylene polymer can be used for the heat-sealing resin layer 3.
  • a photopolymerization initiator can be added to the ethylene polymer to impart photopolymerizability.
  • this photopolymerization initiator for example, a hydrogen abstraction type or an internal cleavage type can be used.
  • the hydrogen abstraction type (bimolecular reaction type) photopolymerization initiator for example, benzophenone, methyl orthobenzoylbenzoate, 4-benzoyl-4'-methyldiphenyl sulfide, isopropylthioxanthone and the like can be used.
  • the internal cleavage type photopolymerization initiator for example, benzoin alkyl ether, benzyl dimethyl ketal or the like can be used.
  • ⁇ -hydroxyalkylphenone type polymerization initiators such as 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, alkylphenylglyoxylate, diethoxyacetophenone, 2-methyl ⁇ -aminoalkylphenone type such as -1- [4- (methylthio) phenyl] -2-morpholinopropane-1,2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1
  • a polymerization initiator, an acyl phosphine oxide, etc. can be used.
  • the synthetic resin constituting the heat-sealing resin layer 3 is cross-linked by electron beam irradiation.
  • the molecules of the synthetic resin are cross-linked, and heat resistance and the like are increased.
  • a well-known thing can be used as an apparatus which irradiates an electron beam.
  • the lower limit of the electron beam irradiation dose is preferably 5 Gy, more preferably 10 Gy.
  • the upper limit of the electron beam irradiation dose is preferably 300 Gy, more preferably 200 Gy.
  • the lower limit of the acceleration voltage of the electron beam is preferably 10 kV, more preferably 50 kV.
  • the upper limit of the acceleration voltage of the electron beam is preferably 500 kV, more preferably 400 kV.
  • the acceleration voltage is less than the above lower limit, the synthetic resin is not sufficiently cross-linked, and the effect of increasing the heat resistance may not be obtained.
  • the acceleration voltage exceeds the above upper limit, the penetrating power of the electron beam becomes strong, which may cause damage to other members and the manufacturing apparatus.
  • a cross-linking agent is added to the heat-sealing resin layer 3 in order to enhance the cross-linking reaction during electron beam irradiation.
  • the cross-linking agent is not particularly limited as long as it can exhibit a cross-linking reaction between molecules by electron beam irradiation, and a known polyfunctional monomer generally used as a cross-linking agent can be used. It is preferable to use a functional monomer.
  • the allyl polyfunctional monomer include triallyl isocyanurate (TAIC), triallyl cyanurate, and trimethallyl isocyanurate. Among these, TAIC is particularly preferable. Two or more kinds of the allylic polyfunctional monomers may be used.
  • a minimum of content of a crosslinking agent 1 mass% is preferable and 1.5 mass% is more preferable.
  • an upper limit of content of a crosslinking agent 30 mass% is preferable and 20 mass% is more preferable.
  • the content of the crosslinking agent is less than the above range, a sufficient crosslinking effect may not be obtained.
  • the content of the crosslinking agent exceeds the above range, the quality of the synthetic resin may be deteriorated or molding may be difficult.
  • the heat-sealing resin layer 3 may contain a pigment in a dispersed manner. Although it does not specifically limit as this pigment, The white pigment which can provide light diffusibility is preferable.
  • the white pigment for example, calcium carbonate, titanium oxide, zinc oxide, lead carbonate, barium sulfate and the like can be used.
  • titanium oxide is preferable because it is excellent in dispersibility in the resin material forming the synthetic resin layer and has a relatively large effect of improving whiteness and solar reflectance.
  • Non-white pigments include black pigments such as carbon black and black iron oxide, blue pigments such as ultramarine and bitumen, red pigments such as red bean (iron oxide red), cadmium red, and molybdenum orange, and metals that give metallic luster.
  • black pigments such as carbon black and black iron oxide
  • blue pigments such as ultramarine and bitumen
  • red pigments such as red bean (iron oxide red), cadmium red, and molybdenum orange
  • a powder pigment etc. are mentioned, The designability of a solar cell module can be improved by carrying out dispersion
  • the lower limit of the average particle diameter of the pigment is preferably 100 nm, and more preferably 300 nm.
  • an upper limit 30 micrometers is preferable and 3 micrometers is more preferable.
  • the average particle diameter of the pigment is less than the above lower limit, uniform dispersion in the heat-sealing resin layer 3 may be difficult due to aggregation or the like.
  • the average particle diameter exceeds the above upper limit, the effect of improving various properties such as heat resistance to the heat-sealing resin layer 3 may be reduced.
  • the lower limit of the pigment content is preferably 3% by mass, and more preferably 5% by mass.
  • an upper limit 30 mass% is preferable and 20 mass% is more preferable.
  • the pigment content is less than the above lower limit, the effect of improving the durability, heat resistance, strength, etc. of the heat sealing resin layer 3 may be reduced.
  • the pigment content exceeds the above upper limit, the dispersibility of the pigment in the heat-sealing resin layer 3 is lowered, and the strength of the heat-sealing resin layer 3 may be lowered.
  • the heat-sealing resin layer 3 is provided with, for example, a heat-resistant agent, an antioxidant, and an ultraviolet ray inhibitor.
  • a heat-resistant agent for example, an antioxidant, and an ultraviolet ray inhibitor.
  • additives such as an antistatic agent, a solvent, a lubricant, a filler, a reinforcing fiber, a reinforcing agent, a flame retardant, a flame retardant, a foaming agent, and an antifungal agent can be appropriately mixed.
  • heat-resistant agent examples include aromatic amine-based antioxidants, hindered phenol-based antioxidants, sulfur-based antioxidants, phosphorus-based antioxidants, and the like. The above can be used.
  • the molding method of the heat-sealing resin layer 3 is not particularly limited, and a known method such as an extrusion method such as a T-die method or an inflation method, a cast molding method, or a cutting method is employed.
  • the lower limit of the thickness (average thickness) of the heat sealing resin layer 3 is preferably 40 ⁇ m, and more preferably 50 ⁇ m.
  • the upper limit of the thickness of the heat-sealing resin layer 3 is preferably 500 ⁇ m, and more preferably 300 ⁇ m.
  • the protective film 1 for the solar cell module When the protective film 1 for the solar cell module is bonded to the front surface side or the back surface side of the solar cell module by heating lamination, the synthetic resin that is the main component of the heat-sealing resin layer 3 is crosslinked by electron beam irradiation. Therefore, excessive flow is suppressed. As a result, the protective film 1 for the solar cell module prevents problems such as leakage from the sheet of the heat sealing resin layer 3 during heat sealing, generation of wrinkles, thickness non-uniformity, and the like easily and reliably. It can be adhered to the filler layer.
  • the solar cell module 21 in FIG. 4 (a) includes a protective film 1 for the solar cell module, filler layers 22 and 24 thermally fused to the surface of the protective film 1 for the solar cell module, and the filler layer.
  • the translucent substrate 25 is laminated on the outermost surface, and has (a) transparency to sunlight and electrical insulation, (b) mechanical, chemical and physical strength, specifically Is excellent in weather resistance, heat resistance, durability, water resistance, gas barrier against water vapor, wind pressure resistance, chemical resistance, fastness, etc., and (c) high surface hardness and surface dirt, dust, etc. It is required to have excellent antifouling properties for preventing accumulation.
  • Synthetic resins used for the translucent substrate 25 include, for example, polyethylene resins, polypropylene resins, cyclic polyolefin resins, fluorine resins, polystyrene resins, acrylonitrile-styrene copolymers (AS resins), and acrylonitrile.
  • ABS resin butadiene-styrene copolymer
  • polyvinyl chloride resin fluorine resin
  • fluorine resin poly (meth) acrylic resin
  • polycarbonate resin polyester resins such as polyethylene terephthalate and polyethylene naphthalate, various nylons, etc.
  • Polyamide resin Polyimide resin, polyamideimide resin, polyaryl phthalate resin, silicone resin, polyphenylene sulfide resin, polysulfone resin, acetal resin, polyethersulfone resin, polyurethane resin Fat, and cellulosic resins.
  • resins fluorine resins, cyclic polyolefin resins, polycarbonate resins, poly (meth) acrylic resins, or polyester resins are particularly preferable.
  • a transparent vapor deposition film of an inorganic oxide such as silicon oxide or aluminum oxide is laminated on one surface by the PVD method or the CVD method for the purpose of improving gas barrier properties.
  • an inorganic oxide such as silicon oxide or aluminum oxide
  • heat resistance, weather resistance, mechanical properties, dimensional stability, etc. for example, lubricants, crosslinking agents, antioxidants, ultraviolet absorbers, antistatic agents, light stabilizers
  • various additives such as fillers, reinforcing fibers, reinforcing agents, flame retardants, flame retardants, foaming agents, fungicides, and pigments.
  • the thickness (average thickness) of the translucent substrate 25 is not particularly limited, and is appropriately selected depending on the material to be used so as to have required strength, gas barrier properties, and the like.
  • the thickness of the synthetic resin translucent substrate 25 is preferably, for example, 6 ⁇ m to 300 ⁇ m, and more preferably 9 ⁇ m to 150 ⁇ m. Further, the thickness of the glass translucent substrate 25 is generally about 3 mm.
  • the filler layer 22 and the filler layer 24 are filled around the solar battery cell 23, and have scratch resistance, shock absorption, and the like for protecting the solar battery cell 23.
  • stacked on the surface of the photovoltaic cell 23 has transparency which permeate
  • Examples of the material for forming the filler layer 22 and the filler layer 24 include fluorine resin, ethylene vinyl acetate copolymer resin (EVA), ionomer resin, ethylene-acrylic acid or methacrylic acid copolymer, polyethylene resin, polypropylene resin, Examples include acid-modified polyorene fin-based resins obtained by modifying polyolefin-based resins such as polyethylene with unsaturated carboxylic acids such as acrylic acid, polyvinyl butyral resins, silicone-based resins, epoxy-based resins, and (meth) acrylic resins.
  • fluorine resins, ethylene vinyl acetate copolymer resins (EVA), or silicone resins that are excellent in weather resistance, heat resistance, gas barrier properties, and the like are preferable.
  • Examples of the material for forming the filler layer 22 and the filler layer 24 include a thermoreversible crosslinkable olefin polymer composition disclosed in JP-A No. 2000-34376, specifically, (a) an unsaturated carboxylic acid anhydride.
  • those having a ratio of the number of hydroxyl groups of component (b) to the number of carboxylic anhydride groups of component (a) of 0.1 to 5 are used.
  • the forming material of the filler layer 22 and the filler layer 24 is, for example, a crosslinking agent, a thermal antioxidant, a light stabilizer, an ultraviolet absorber, a light absorber, and the like.
  • Various additives such as an antioxidant can be appropriately contained.
  • the thickness (average thickness) of the filler layer 22 and the filler layer 24 is not particularly limited, but is preferably 200 ⁇ m or more and 1000 ⁇ m or less, and more preferably 350 ⁇ m or more and 600 ⁇ m or less.
  • the solar battery cell 23 is a photovoltaic element that converts light energy into electrical energy, and is disposed between the filler layer 22 and the filler layer 24.
  • the plurality of solar cells 23 are laid in substantially the same plane, and are wired in series or in parallel although not shown.
  • Examples of the solar battery cell 23 include a crystalline silicon solar electronic element such as a single crystal silicon type solar cell element and a polycrystalline silicon type solar cell element, an amorphous silicon solar cell element having a single junction type or a tandem structure type, and gallium arsenide.
  • Group 3 to 5 compound semiconductor solar electronic devices such as (GaAs) and indium phosphorus (InP)
  • Group 2 to 6 compound semiconductor solar electronic devices such as cadmium tellurium (CdTe) and copper indium selenide (CuInSe 2 ) Etc., and those hybrid elements can also be used.
  • the filler layer 22 and the filler layer 24 are also filled between the plurality of solar battery cells 23 without any gap.
  • the lower limit of the heating temperature in the vacuum heating lamination method is preferably 100 ° C, more preferably 120 ° C.
  • an upper limit of heating temperature 200 degreeC is preferable and 180 degreeC is more preferable.
  • the heating temperature is less than the above lower limit, the heat-sealing resin layer 3 is not sufficiently melted, and there is a possibility that adhesion to the filler layer 22 is not sufficiently performed.
  • the heating temperature exceeds the above upper limit, the heat-sealing resin layer 3 and other layers of the solar cell module 21 may be deteriorated.
  • a hot melt adhesive for example, a solvent type adhesive, Apply photo-curing adhesive, etc., or apply corona discharge treatment, ozone treatment, low temperature plasma treatment, glow discharge treatment, oxidation treatment, primer coating treatment, undercoat treatment, anchor coating treatment, etc. Is possible.
  • the solar cell module 21 has high heat resistance when the heat-sealing resin layer 3 of the protective film 1 for solar cell module is irradiated with an electron beam to the synthetic resin as a main component. Thereby, the solar cell module 21 prevents inconveniences such as leakage from the sheets of the heat-sealing resin layer 3, generation of wrinkles, thickness non-uniformity, etc. during vacuum heating lamination in the above manufacturing method, It can be easily and reliably bonded to the filler layer 22. As a result, the solar cell module 21 has high productivity and quality.
  • a solar cell module backsheet according to a different embodiment from that shown in FIG. 1 and FIG.
  • the heat-sealing resin layer 3 and the hydrolysis-resistant layer 13 are laminated in this order from the surface side (light receiving side).
  • the heat-sealing resin layer 3 is the same as the solar cell module protective film 1 of FIG. 1 described above, the same reference numerals are given and description thereof is omitted.
  • the thickness (average thickness) of the heat-sealing resin layer 3 can be made thinner than that used for the protective film 1 for solar cell modules in FIG.
  • fusion resin layer 3 10 micrometers is preferable and 50 micrometers is more preferable.
  • the upper limit of the thickness of the heat-sealing resin layer 3 is preferably 400 ⁇ m, and more preferably 300 ⁇ m.
  • the hydrolysis-resistant layer 13 is formed with a synthetic resin as a main component.
  • the synthetic resin as the main component of the hydrolysis-resistant layer 13 include hydrolysis-resistant polyethylene terephthalate, polyethylene naphthalate (PEN), vinyl fluoride resin (PVF), and vinylidene fluoride resin that are excellent in hydrolysis resistance and heat resistance.
  • Fluorine resin such as (PVDF) or a copolymer of tetrafluoroethylene and ethylene or propylene (ETFE) can be used.
  • the hydrolysis-resistant polyethylene terephthalate is polyethylene terephthalate whose hydrolysis resistance is improved by, for example, reducing the content of low-molecular impurities (oligomers).
  • the polyethylene naphthalate is a polyester resin having ethylene naphthalate as a main repeating unit, and is synthesized with naphthalenedicarboxylic acid as a main dicarboxylic acid component and ethylene glycol as a main glycol component.
  • the ethylene naphthalate unit is preferably 80 mol% or more of all repeating units of the polyester. If the proportion of ethylene naphthalate units is less than 80 mol%, the hydrolysis resistance, strength, and barrier properties of polyethylene naphthalate may be reduced.
  • naphthalenedicarboxylic acid examples include 2,6-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 1,3-naphthalenedicarboxylic acid, and the like. In view of surface, 2,6-naphthalenedicarboxylic acid is particularly preferred.
  • the terminal carboxyl group amount of polyethylene naphthalate is preferably 10 eq / T (equivalent / 106 g) or more and 40 eq / T or less, more preferably 10 eq / T or more and 30 eq / T or less, and further preferably 10 eq / T or more and 25 eq / T or less.
  • the productivity may decrease.
  • the amount of the terminal carboxyl group exceeds the above upper limit, the effect of improving the hydrolysis resistance by the carbodiimide compound may be decreased.
  • the manufacturing method of polyethylene naphthalate is not particularly limited, and various known methods such as a transesterification method and a direct esterification method can be employed.
  • the hydrolysis-resistant layer 13 may contain a carbodiimide compound in the main component synthetic resin. Thus, by containing a carbodiimide compound, the hydrolysis resistance of the hydrolysis-resistant layer 13 is remarkably improved.
  • As content of this carbodiimide compound 0.1 mass% or more and 10 mass% or less are preferable, and 0.5 mass% or more and 3 mass% or less are more preferable.
  • content of a carbodiimide compound into the said range, the hydrolysis resistance of the hydrolysis-resistant layer 13 can be improved effectively.
  • carbodiimide compound for example, (a) N, N′-diphenylcarbodiimide, N, N′-diisopropylphenylcarbodiimide, N, N′-dicyclohexylcarbodiimide, 1,3-diisopropylcarbodiimide, 1- (3-dimethylaminopropyl) And monocarbodiimides such as 3-ethylcarbodiimide, and (b) polycarbodiimide compounds such as poly (1,3,5-triisopropylphenylene-2,4-carbodiimide).
  • the molecular weight of the carbodiimide compound is preferably in the range of 200 to 1000, particularly in the range of 200 to 600.
  • the scattering property of the carbodiimide compound may increase, and when the molecular weight exceeds the upper limit, the dispersibility of the carbodiimide compound in the resin may decrease.
  • the hydrolysis-resistant layer 13 may contain an antioxidant in addition to the carbodiimide compound in the synthetic resin that is the main component.
  • an antioxidant in addition to the carbodiimide compound in the synthetic resin that is the main component.
  • the said hydrolysis resistance improves markedly, Furthermore, decomposition
  • content of this antioxidant 0.05 mass% or more and 1 mass% or less are preferable, and 0.1 mass% or more and 0.5 mass% or less are more preferable.
  • the content of the antioxidant is less than the above lower limit, the carbodiimide degradation inhibiting function and the hydrolysis resistance may be reduced.
  • the mass ratio of the antioxidant content to the carbodiimide compound content is preferably 0.1 or more and 1.0 or less, and more preferably 0.15 or more and 0.8 or less. If this mass ratio is less than the above lower limit, the effect of suppressing hydrolysis of carbodiimide itself may be insufficient. On the other hand, if this mass ratio exceeds the above upper limit, the effect of suppressing hydrolysis of carbodiimide will peak. become.
  • the addition method of a carbodiimide compound and antioxidant may be a method of kneading to a synthetic resin or a method of adding to a polycondensation reaction of a synthetic resin.
  • the hydrolysis-resistant layer 13 may contain an aromatic polyester in addition to the main component synthetic resin.
  • the aromatic polyester in addition to the main component synthetic resin.
  • the knot strength, the delamination resistance, the mechanical strength, and the like can be improved while maintaining the hydrolysis resistance of the hydrolysis-resistant layer 13. it can.
  • content of this aromatic polyester 1 to 10 mass% is preferable. By setting the content of the aromatic polyester within the above range, knot strength, delamination resistance, mechanical strength, and the like can be effectively improved.
  • the aromatic polyester is preferably a polyester obtained by copolymerizing a terephthalic acid component and 4,4'-diphenyldicarboxylic acid as a main dicarboxylic acid component and ethylene glycol as a main glycol component.
  • the hydrolysis-resistant layer 13 may contain a pigment in a dispersed manner. Although it does not specifically limit as this pigment, The white pigment which can provide light diffusibility is preferable. The type, content, etc. of the white pigment can be the same as those of the heat-sealing resin layer 3.
  • the forming method of the hydrolysis-resistant layer 13 and the additives in the forming material of the hydrolysis-resistant layer 13 can be the same as those of the heat-sealing resin layer 3.
  • the lower limit of the thickness (average thickness) of the hydrolysis-resistant layer 13 is preferably 12 ⁇ m, and more preferably 20 ⁇ m.
  • the upper limit of the thickness of the hydrolysis-resistant layer 13 is preferably 300 ⁇ m, and more preferably 200 ⁇ m.
  • the thickness of the hydrolysis-resistant layer 13 is less than the above lower limit, the durability improving effect of the hydrolysis-resistant layer 13 may not be sufficiently exhibited and handling may be difficult.
  • the thickness of the hydrolysis-resistant layer 13 exceeds the above upper limit, it is contrary to the demand for thinning and lightening the solar cell module.
  • the heat-fusion resin layer 3 and the hydrolysis-resistant layer 13 are 200 ⁇ m or more, and the thickness of the hydrolysis-resistant layer 13 is 100 ⁇ m or less. You may enlarge the ratio for 3 to the said protective film 11 for solar cell modules. Conversely, for example, the thickness of the hydrolysis-resistant layer 13 is set to 180 ⁇ m or more, and the thickness of the heat-sealing resin layer 3 is set to 100 ⁇ m or less, so that the proportion of the hydrolysis-resistant layer 13 in the protective film 11 for solar cell modules is increased. May be.
  • the hydrolysis-resistant layer 13 can be provided by directly laminating the heat-sealing resin layer 3 by a T-die method using a coextrusion method or the like.
  • the hydrolysis-resistant layer 13 may be separately formed into a film and then bonded and laminated on the surface of the heat-sealing resin layer 3 with an adhesive.
  • attaches via an adhesive agent attaches via an adhesive agent, with the adhesive bond layer formed between the heat-fusion resin layer 3 and the hydrolysis-resistant layer 13, the impact resistance of the said protective film 11 for solar cell modules, durability Property, fastness, etc. can be improved.
  • a laminating adhesive or a melt-extruded resin is used as an adhesive for adhering the heat-sealing resin layer 3 and the hydrolysis-resistant layer 13.
  • the laminating adhesive include dry laminating adhesive, wet laminating adhesive, hot melt laminating adhesive, non-solvent laminating adhesive, and the like.
  • these laminating adhesives a dry laminate having excellent adhesive strength, durability, weather resistance, etc., and a function of sealing and protecting defects (such as scratches, pinholes, recesses, etc.) such as the hydrolysis-resistant layer 13.
  • adhesives are especially preferred.
  • Examples of the adhesive for dry laminate include, for example, polyvinyl acetate adhesive, homopolymers such as ethyl acrylate, butyl, 2-ethylhexyl ester, and copolymers thereof with methyl methacrylate, acrylonitrile, styrene, etc.
  • Polyacrylate adhesives cyanoacrylate adhesives, ethylene copolymer adhesives made of copolymers of ethylene and monomers such as vinyl acetate, ethyl acrylate, acrylic acid, methacrylic acid, etc., cellulose Adhesive, polyester adhesive, polyamide adhesive, polyimide adhesive, urea resin, melamine resin, amino resin adhesive, phenol resin adhesive, epoxy adhesive, polyurethane adhesive, reactive type (Meth) acrylic adhesive, chloroprene rubber, nitrile rubber , Styrene - butadiene made of rubber or the like rubber adhesive, a silicone-based adhesive, an alkali metal silicate, inorganic adhesive or the like made of a low-melting glass.
  • cellulose Adhesive polyester adhesive, polyamide adhesive, polyimide adhesive, urea resin, melamine resin, amino resin adhesive, phenol resin adhesive, epoxy adhesive, polyurethane adhesive, reactive type (Meth) acrylic adhesive, chloroprene rubber, nitrile rubber , St
  • Adhesives particularly polyester urethane adhesives are preferred.
  • the curing agent is preferably an aliphatic polyisocyanate with little thermal yellowing.
  • melt-extruded resin examples include a polyethylene resin, a polypropylene resin, an acid-modified polyethylene resin, an acid-modified polypropylene resin, an ethylene-acrylic acid or methacrylic acid copolymer, a Surlyn resin, and an ethylene-vinyl acetate copolymer.
  • thermoplastic resins such as a polymer, a polyvinyl acetate resin, an ethylene-acrylic acid ester or a methacrylic acid ester copolymer, a polystyrene resin, and a polyvinyl chloride resin can be used.
  • the above-described anchor coat treatment is performed on the lamination facing surface of the film (or layer) laminated via the adhesive.
  • a surface treatment such as the above may be performed.
  • the amount of lamination of the above-mentioned adhesive solid content conversion
  • 1 g / m 2 is preferred and 3 g / m 2 is especially preferred.
  • an upper limit of the lamination amount of the adhesive 20 g / m 2 is preferable, and 15 g / m 2 is particularly preferable.
  • the amount of the adhesive layered is less than the above lower limit, the adhesive strength and the defect sealing function may not be obtained.
  • the lamination amount of the adhesive exceeds the above upper limit, the lamination strength and durability may be lowered.
  • a solvent for example, a solvent, a lubricant, a crosslinking agent, an antioxidant, Various additives such as an antistatic agent, a filler, a reinforcing fiber, a reinforcing agent, a flame retardant, a flame retardant, a foaming agent, an antifungal agent, and a pigment can be appropriately mixed.
  • the solar cell module protective film 11 can be heat-sealed to the filler layer of the solar cell module easily and reliably as in the solar cell module protective film 1 of FIG. Moreover, since the said protective film 11 for solar cell modules is equipped with the hydrolysis-resistant layer 13, it exhibits high durability and a weather resistance.
  • the back sheet for a solar cell module according to the embodiment shown in FIGS. 1 and 4A and FIG. 2 shown in FIGS. 3 and 4B will be described.
  • the protective film 111 for solar cell module shown in FIG. 3 the heat sealing resin layer 3, the gas barrier layer 12, and the hydrolysis resistant layer 13 are laminated in this order from the surface side (light receiving side).
  • the gas barrier layer 12 is a layer having a function of reducing permeation of gas such as hydrogen gas and oxygen gas.
  • the gas barrier layer 12 includes a base film and an inorganic oxide layer laminated on the base film.
  • the base film of the gas barrier layer 12 is formed with a synthetic resin as a main component.
  • the main component synthetic resin of the base film include polyethylene resin, polypropylene resin, cyclic polyolefin resin, polystyrene resin, acrylonitrile-styrene copolymer (AS resin), and acrylonitrile-butadiene-styrene copolymer.
  • ABS resin polyvinyl chloride resin, fluorine resin, poly (meth) acrylic resin, polycarbonate resin, polyester resin, polyamide resin, polyimide resin, polyamideimide resin, polyarylphthalate resin
  • examples include silicone resins, polysulfone resins, polyphenylene sulfide resins, polyether sulfone resins, polyurethane resins, acetal resins, and cellulose resins.
  • polyethylene terephthalate having a good balance between various functions such as heat resistance and weather resistance and price is particularly preferable.
  • the method for forming the base film, the additive in the base film forming material, and the like can be the same as those of the heat-sealing resin layer 3.
  • the lower limit of the thickness (average thickness) of the base film is preferably 7 ⁇ m and more preferably 10 ⁇ m.
  • an upper limit of the thickness of a base film 20 micrometers is preferable and 15 micrometers is more preferable.
  • the thickness of the base film is less than the above lower limit, there is a possibility that inconveniences such as curling easily occur during vapor deposition for forming the inorganic oxide layer, and handling becomes difficult.
  • the thickness of the base film exceeds the above upper limit, it is contrary to the demand for thinning and lightening of the solar cell module.
  • the inorganic oxide layer is a layer for expressing gas barrier properties against oxygen, water vapor, and the like, and is formed by depositing an inorganic oxide on the back surface of the base film.
  • the vapor deposition means for forming this inorganic oxide layer is not particularly limited as long as the inorganic oxide can be vapor deposited on the synthetic resin base film without causing deterioration such as shrinkage and yellowing.
  • A Physical vapor deposition methods (Physical Vapor Deposition method; PVD method) such as vacuum deposition method, sputtering method, ion plating method, ion cluster beam method, (b) Plasma chemical vapor deposition method, thermal chemical vapor deposition method, A chemical vapor deposition method (Chemical Vapor Deposition method; CVD method) such as a photochemical vapor deposition method is employed.
  • PVD method Physical Vapor Deposition method
  • CVD method Chemical Vapor Deposition method
  • a vacuum vapor deposition method and an ion plating method that can form a high-quality inorganic oxide layer with high productivity are preferable.
  • the inorganic oxide constituting the inorganic oxide layer is not particularly limited as long as it has gas barrier properties.
  • aluminum oxide, silica oxide, titanium oxide, zirconium oxide, zinc oxide, tin oxide, magnesium oxide Among them, aluminum oxide or silica oxide having a good balance between gas barrier properties and price is particularly preferable.
  • the lower limit of the thickness (average thickness) of the inorganic oxide layer is preferably 3 mm, more preferably 400 mm.
  • the upper limit of the thickness of the inorganic oxide layer is preferably 3000 mm, more preferably 800 mm.
  • the thickness of the inorganic oxide layer is less than the above lower limit, the gas barrier property may be lowered.
  • the thickness of the inorganic oxide layer exceeds the above upper limit, the flexibility of the inorganic oxide layer is reduced, and defects such as cracks are likely to occur.
  • the inorganic oxide layer may have a single layer structure or a multilayer structure of two or more layers.
  • the vapor deposition conditions in the physical vapor deposition method and the chemical vapor deposition method are appropriately designed according to the resin type of the base film, the thickness of the inorganic oxide layer, and the like.
  • the surface of the base film is preferably subjected to a surface treatment.
  • adhesion improving surface treatment include (a) corona discharge treatment, ozone treatment, low temperature plasma treatment using oxygen gas or nitrogen gas, glow discharge treatment, oxidation treatment using chemicals, and the like ( b) Primer coat treatment, undercoat treatment, anchor coat treatment, vapor deposition anchor coat treatment and the like.
  • corona discharge treatment and anchor coat treatment that improve adhesion strength with the inorganic oxide layer and contribute to the formation of a dense and uniform inorganic oxide layer are preferable.
  • the anchor coating agent used for the anchor coating treatment examples include a polyester anchor coating agent, a polyamide anchor coating agent, a polyurethane anchor coating agent, an epoxy anchor coating agent, a phenol anchor coating agent, and a (meth) acrylic anchor coating.
  • polyester anchor coating agents that can further improve the adhesive strength between the base film and the inorganic oxide layer are particularly preferable.
  • the lower limit of the coating amount of the anchor coating agent (in terms of solid content), preferably from 0.1g / m 2, 1g / m 2 is more preferable.
  • the upper limit of the amount of coating of the anchor coating agent is preferably 5g / m 2, 3g / m 2 is more preferable.
  • the coating amount of the anchor coating agent is less than the above lower limit, the effect of improving the adhesion between the base film and the inorganic oxide layer may be reduced.
  • the coating amount of the anchor coating agent exceeds the above upper limit, the strength, durability, etc. of the gas barrier layer 12 may be lowered.
  • the above-mentioned anchor coating agent there are various silane coupling agents for improving adhesion, anti-blocking agents for preventing blocking with a base film, ultraviolet absorbers for improving weather resistance, etc.
  • Additives can be mixed as appropriate.
  • the mixing amount of the additive is preferably 0.1% by weight or more and 10% by weight or less from the balance between the effect expression of the additive and the function inhibition of the anchor coat agent.
  • the said protective film 111 for solar cell modules can be obtained by forming each layer which comprises the said protective film 111 for said solar cell modules, and adhere
  • the protective film 111 for solar cell modules can also be manufactured using the method of apply
  • the solar cell module protective film 111 can be easily and reliably heat-sealed to the solar cell module filler layer in the same manner as the solar cell module protective film 1 shown in FIG. Moreover, since the said protective film 111 for solar cell modules is provided with the gas barrier layer 12, it has high gas barrier property with respect to oxygen, water vapor
  • the solar cell module 121 of FIG. 4 (b) includes the solar cell module protective film 111, the filler layers 22 and 24 thermally bonded to the surface of the solar cell module protective film 111, and the filler layer.
  • the solar cell module 121 can easily and reliably heat-fuse the heat-sealing resin layer 3 of the solar cell module protective film 111 to the filler layer 22 as described above. Since the solar cell module 121 includes the gas barrier layer 12, the gas barrier property against oxygen, water vapor, and the like is improved, and the solar cell module 121 can be suitably used for outdoor use for a long time. In addition, since the solar cell module 121 includes the hydrolysis-resistant layer 13 and durability and weather resistance are improved, the solar cell module 121 can be suitably used for a roof-standing solar cell module.
  • the protective film for solar cell modules and the solar cell module of the present invention are not limited to the above embodiment.
  • the protective film for the solar cell module is formed by laminating other layers (synthetic resin layer, metal layer, inorganic oxide layer, etc.) and film in addition to the heat fusion resin layer, the gas barrier layer, and the hydrolysis resistant layer. Also good.
  • stacking another layer or film various characteristics, such as the voltage resistance of the said solar cell module protective film, gas-barrier property, a weather resistance, and durability, can be improved significantly.
  • an organic peroxide, a silane coupling agent or the like may be added to the forming material.
  • the organic peroxide it is preferable to employ one having a decomposition temperature of 145 ° C. or less with a half-life of 10 hours from the viewpoint of reactivity.
  • dilauroyl peroxide 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, Benzoyl peroxide, t-amylperoxy-2-ethylhexanoate, t-butylperoxy-2-ethylhexanoate, t-butylperoxyisobutyrate, t-butylperoxymaleic acid, 1,1 -Di (t-amylperoxy) -3,3,5-trimethylcyclohexane, 1,1-di (t-amylperoxy) cyclohexane, t-amylperoxyisononanoate, t-amylperoxynormal octoate 1,1-di (t-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-di (t-butyl) Peroxy) cyclohexane, t-butylperoxy
  • the compounding amount of the organic peroxide is preferably 0.05 parts by mass or more and 5 parts by mass or less, and more preferably 0.1 parts by mass or more and 2.0 parts by mass or less with respect to 100 parts by mass of the synthetic resin. If the amount of the organic peroxide is less than the above lower limit, the formation of a crosslinked structure may be insufficient. On the other hand, when the compounding amount of the organic peroxide exceeds the above upper limit, the synthetic resin may be deteriorated due to decomposition due to excessive reaction or the like.
  • silane coupling agent examples include vinyltriethoxysilane, vinyltris ( ⁇ -methoxyethoxy) silane, ⁇ -methacryloxypropyltrimethoxysilane, vinyltriacetoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ - Glycidoxypropyltriethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ -chloropropylmethoxysilane, vinyltrichlorosilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, N- ⁇ (aminoethyl) - ⁇ -aminopropyltrimethoxysilane or the like can be used.
  • the blending amount of the silane coupling agent is preferably 0.1 parts by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the synthetic resin. If the blending amount of the silane coupling agent is smaller than the above lower limit, the adhesiveness may be lowered. On the other hand, if the amount of the silane coupling agent exceeds the upper limit, sufficient heat resistance and weather resistance may not be obtained.
  • an inorganic oxide layer is deposited on a base film to form a gas barrier film, and this gas barrier film is laminated with other layers.
  • the vapor deposition method the PVD method or the CVD method described above can be used.
  • a metal foil such as an aluminum foil can be used as the gas barrier layer.
  • the material of the aluminum foil include aluminum or an aluminum alloy, and an aluminum-iron alloy (soft material) is preferable.
  • the iron content in the aluminum-iron alloy is preferably 0.3% or more and 9.0% or less, and particularly preferably 0.7% or more and 2.0% or less. When this iron content is less than the above lower limit, the effect of preventing the generation of pinholes may be insufficient. On the other hand, when the iron content exceeds the above upper limit, flexibility is hindered and workability may be reduced.
  • a material of the aluminum foil flexible aluminum subjected to annealing treatment is preferable from the viewpoint of preventing wrinkles and pinholes.
  • the lower limit of the thickness (average thickness) of the aluminum foil is preferably 6 ⁇ m, and particularly preferably 15 ⁇ m. Moreover, as an upper limit of the thickness of aluminum foil, 30 micrometers is preferable and 20 micrometers is especially preferable.
  • the thickness of the aluminum foil is less than the above lower limit, the aluminum foil is liable to break during processing, and the gas barrier property may be lowered due to pinholes or the like.
  • the thickness of the aluminum foil exceeds the above upper limit, cracks or the like may occur during processing, and the thickness and weight of the solar cell module protective film increase, resulting in a request for thin and light weight. It will be contrary.
  • the surface of the aluminum foil may be subjected to surface treatment such as chromate treatment, phosphate treatment, and lubricating resin coating treatment from the viewpoint of preventing dissolution and corrosion, and from the viewpoint of promoting adhesion.
  • surface treatment such as chromate treatment, phosphate treatment, and lubricating resin coating treatment from the viewpoint of preventing dissolution and corrosion, and from the viewpoint of promoting adhesion.
  • a coupling treatment or the like may be performed.
  • a film made of cycloolefin polymer (COC) that is particularly excellent in optical isotropy and water vapor blocking property may be used.
  • the said protective film for solar cell modules can be used as a back sheet laminated
  • the protective film for a solar cell module of the present invention can be easily and reliably heat-sealed with the solar cell module, and the productivity and quality of the solar cell module can be improved. Therefore, the protective film for solar cell modules of the present invention and the solar cell module using the same are useful as a constituent element of the solar cell and can be suitably used.

Abstract

The purpose of the present invention is to provide: a protective film for solar cell modules, which is capable of preventing defects during thermal fusion bonding; and a solar cell module which uses the protective film for solar cell modules. A protective film for solar cell modules of the present invention is provided with a thermally fusion bonding resin layer; and a synthetic resin that is a main component of the thermally fusion bonding resin layer is crosslinked by irradiation of an electron beam. The thermally fusion bonding resin layer preferably contains a crosslinking agent. The synthetic resin is preferably a polypropylene. The thermally fusion bonding resin layer preferably contains a pigment in a dispersed state. The irradiation dose of the electron beam is preferably from 5 kGy to 300 kGy (inclusive). This protective film for solar cell modules is preferably formed only of the thermally fusion bonding resin layer. The thermally fusion bonding resin layer preferably has an average thickness of from 40 μm to 500 μm (inclusive).

Description

太陽電池モジュール用保護フィルム及びこれを用いた太陽電池モジュールProtective film for solar cell module and solar cell module using the same
 本発明は、太陽電池モジュールに好適に使用される保護フィルム及びそれを用いた太陽電池モジュールに関する。 The present invention relates to a protective film suitably used for a solar cell module and a solar cell module using the protective film.
 近年、地球温暖化等の環境問題に対する意識の高まりから、クリーンエネルギー源としての太陽光発電が注目され、種々の形態からなる太陽電池が開発されている。この太陽電池は、一般的には直列又は並列に配線された複数枚の太陽電池セルをパッケージングし、ユニット化した複数の太陽電池モジュールから構成されている。 In recent years, solar power generation as a clean energy source has attracted attention due to increasing awareness of environmental problems such as global warming, and solar cells having various forms have been developed. This solar battery is generally composed of a plurality of solar battery modules that are packaged by a plurality of solar battery cells wired in series or in parallel.
 上記太陽電池モジュールは、屋外で長期間使用し得る十分な耐久性、耐候性等が要求される。一般的な太陽電池モジュール31の具体的な構造としては、図5に示すように、ガラス等からなる透光性基板32と、熱可塑性樹脂からなる表面側充填剤層33と、光起電力素子としての太陽電池セル34と、熱可塑性樹脂からなる裏面側充填剤層35と、太陽電池モジュール用バックシート40(以下、単にバックシートということがある)とが、この順に積層されて一体成形されている(例えば特開2009-302361号公報参照)。上記裏面側充填材層35は、例えばエチレン-酢酸ビニル共重合樹脂(ethylene vinyl acetate copolymer:EVA)によって形成され、また上記バックシート40の表面には熱可塑性のポリエチレン系樹脂によって形成された熱融着樹脂層36が設けられている。そして、上記一体成形は、一般的には上述のように積層された積層体を加熱ラミネーション法によって接着している。 The solar cell module is required to have sufficient durability and weather resistance that can be used outdoors for a long time. As a specific structure of the general solar cell module 31, as shown in FIG. 5, a transparent substrate 32 made of glass or the like, a surface side filler layer 33 made of a thermoplastic resin, and a photovoltaic element The solar battery cell 34, the back side filler layer 35 made of a thermoplastic resin, and a solar cell module backsheet 40 (hereinafter simply referred to as a backsheet) are laminated in this order and integrally formed. (See, for example, JP 2009-302361 A). The back-side filler layer 35 is formed of, for example, ethylene-vinyl acetate copolymer resin (EVA), and the back sheet 40 has a heat melting layer formed of a thermoplastic polyethylene resin. A resin layer 36 is provided. And in the said integral molding, generally the laminated body laminated | stacked as mentioned above is adhere | attached by the heating lamination method.
 上記熱融着樹脂層36は、加熱による溶融とその後の冷却による凝固によって裏面側充填剤層35とバックシート40とを熱融着する。このとき、熱融着樹脂層35が過度に流動すると、シート間からの漏出、シワの発生、厚みの不均一性等の不具合が発生し、品質の低下を招く。しかしながら、これらの不具合を防止するために加熱温度を低下させたのでは、十分な融着強度が得られない。そのため、このような不具合を防止する手段が必要とされている。 The heat-sealing resin layer 36 heat-fuses the back side filler layer 35 and the back sheet 40 by melting by heating and solidification by subsequent cooling. At this time, if the heat-sealing resin layer 35 flows excessively, problems such as leakage from the sheets, generation of wrinkles, thickness non-uniformity, and the like occur, leading to deterioration in quality. However, if the heating temperature is lowered to prevent these problems, sufficient fusion strength cannot be obtained. Therefore, a means for preventing such a problem is required.
特開2009-302361号公報JP 2009-302361 A
 本発明は、このような事情に鑑みてなされたものであり、熱融着時の不具合を防止可能な太陽電池モジュール用保護フィルム及びこれを用いた太陽電池モジュールの提供を目的とするものである。 This invention is made | formed in view of such a situation, and aims at provision of the protective film for solar cell modules which can prevent the malfunction at the time of heat sealing | fusion, and a solar cell module using the same. .
 上記課題を解決するためになされた発明は、
 熱融着樹脂層を備え、
 この熱融着樹脂層の主成分である合成樹脂が電子線照射により架橋されている太陽電池モジュール用保護フィルムである。
The invention made to solve the above problems is
It has a heat-sealing resin layer,
This is a protective film for a solar cell module in which the synthetic resin, which is the main component of the heat-sealing resin layer, is crosslinked by electron beam irradiation.
 当該太陽電池モジュール用保護フィルムは、熱融着樹脂層が熱融着されることによって太陽電池モジュールの表面側又は裏面側に接着され、太陽電池モジュールの構成部品を保護することができる。そして、熱融着樹脂層の主成分である合成樹脂が、電子線照射によって架橋されることで高い耐熱性を有するため、熱融着時に過度に流動することが抑制される。その結果、当該太陽電池モジュール用保護フィルムは、熱融着時の熱融着樹脂層のシート間からの漏出、シワの発生、厚みの不均一性等の不具合を防止し、容易かつ確実に充填剤層と接着できる。 The solar cell module protective film is bonded to the front surface side or the back surface side of the solar cell module by thermally fusing the heat sealing resin layer, and can protect the components of the solar cell module. And since the synthetic resin which is a main component of a heat-fusion resin layer has high heat resistance by being bridge | crosslinked by electron beam irradiation, it is suppressed that it flows too much at the time of heat-fusion. As a result, the solar cell module protective film can be easily and reliably filled, preventing problems such as leakage from the sheet of the heat-fusion resin layer during heat-fusion, generation of wrinkles, and uneven thickness. Can adhere to the agent layer.
 上記熱融着樹脂層が架橋剤を含有するとよい。このように熱融着樹脂層に架橋剤を添加することで、電子線照射時の架橋反応を増強させることができる。特に、熱融着樹脂層にポリプロピレンを用いた場合、架橋剤を添加することでポリプロピレンの電子照射時の架橋反応が分子切断反応に対して優勢になり、ポリプロピレンの強度を維持したまま耐熱性を上昇させることができる。 The heat-sealing resin layer may contain a crosslinking agent. Thus, the crosslinking reaction at the time of electron beam irradiation can be enhanced by adding a crosslinking agent to the heat-sealing resin layer. In particular, when polypropylene is used for the heat-sealable resin layer, the addition of a cross-linking agent makes the cross-linking reaction of the polypropylene electron irradiation superior to the molecular cutting reaction, and heat resistance is maintained while maintaining the strength of the polypropylene. Can be raised.
 上記熱融着樹脂層が架橋剤を含有する場合、上記合成樹脂がポリプロピレンであるとよい。このように熱融着樹脂層の主成分をポリプロピレンとすることで、当該太陽電池モジュール用保護フィルムの強度、耐熱性等を向上させることができる。 When the heat sealing resin layer contains a crosslinking agent, the synthetic resin may be polypropylene. Thus, the intensity | strength of the said protective film for solar cell modules, heat resistance, etc. can be improved by making the main component of a heat-fusion resin layer into a polypropylene.
 上記熱融着樹脂層中に顔料が分散含有されているとよい。このように熱融着樹脂層中が顔料を分散含有することで、当該太陽電池モジュール用保護フィルムの耐熱性、熱的寸法安定性、耐候性、強度、経年劣化防止性等を向上させることができる。 It is preferable that a pigment is dispersed and contained in the heat-sealing resin layer. Thus, the dispersion of the pigment in the heat-sealing resin layer can improve the heat resistance, thermal dimensional stability, weather resistance, strength, aging resistance, etc. of the protective film for solar cell module. it can.
 上記電子線の照射線量としては、5kGy以上300kGy以下が好ましい。このように電子線の照射線量を上記範囲とすることで、熱融着樹脂層の劣化を抑えつつ、耐熱性を上昇させることができる。 The irradiation dose of the electron beam is preferably 5 kGy or more and 300 kGy or less. Thus, heat resistance can be raised, suppressing deterioration of a heat sealing | fusion resin layer by making irradiation dose of an electron beam into the said range.
 当該太陽電池モジュール用保護フィルムは、上記熱融着樹脂層のみからなるとよい。上記熱融着樹脂層は、強度や耐候性の高いポリエチレンやポリプロピレン等の合成樹脂で形成されるため、当該太陽電池モジュール用保護フィルムは熱融着樹脂層のみで構成しても十分な耐久性を発揮することができる。このように単層構造とすることで、当該太陽電池モジュール用保護フィルムは、製造が容易となり、生産コストを低減することができる。 The said protective film for solar cell modules is good to consist only of the said heat sealing | fusion resin layer. Since the heat-sealing resin layer is formed of a synthetic resin such as polyethylene or polypropylene having high strength and weather resistance, the solar cell module protective film has sufficient durability even if it is composed only of the heat-sealing resin layer. Can be demonstrated. Thus, by making it a single layer structure, manufacture of the said protective film for solar cell modules becomes easy, and it can reduce production cost.
 当該太陽電池モジュール用保護フィルムが熱融着樹脂層のみからなる場合、上記熱融着樹脂層の平均厚さが40μm以上500μm以下であるとよい。このように熱融着樹脂層の平均厚さを上記範囲とすることで、太陽電池モジュールを軽量化しつつ、当該太陽電池モジュール用保護フィルムに十分な強度、耐候性等を付与できるとともに、耐電圧性等を向上させ、太陽電池モジュールの高電圧化に容易かつ確実に対応させることができる。 When the protective film for a solar cell module is composed only of a heat-sealing resin layer, the average thickness of the heat-sealing resin layer is preferably 40 μm or more and 500 μm or less. Thus, by making the average thickness of the heat-sealing resin layer in the above range, the solar cell module can be reduced in weight, while providing sufficient strength, weather resistance, etc. to the protective film for the solar cell module, and withstand voltage. Therefore, it is possible to easily and reliably cope with the high voltage of the solar cell module.
 当該太陽電池モジュール用保護フィルムは熱融着樹脂層のみからなる構成とすることもできるが、上記熱融着樹脂層の一方の面側に耐加水分解層をさらに備えてもよい。このように、熱融着樹脂層の一方の面側に耐加水分解層を備えることで、当該太陽電池モジュール用保護フィルムの耐久性、耐候性等を飛躍的に高めることができる。また、このように耐久性、耐候性等に優れた当該太陽電池モジュール用保護フィルムを用いることで、屋外での長時間の使用に好適に用いることができる太陽電池モジュールが得られる。 The solar cell module protective film may be composed of only the heat-sealing resin layer, but may further include a hydrolysis-resistant layer on one surface side of the heat-sealing resin layer. Thus, by providing a hydrolysis-resistant layer on one surface side of the heat-sealing resin layer, the durability, weather resistance, and the like of the protective film for solar cell module can be dramatically improved. Moreover, the solar cell module which can be used suitably for a long time use outdoors is obtained by using the said protective film for solar cell modules excellent in durability, a weather resistance, etc. in this way.
 上記熱融着樹脂層の一方の面側にガスバリア層をさらに備えるとよい。このように熱融着樹脂層の一方の面側にガスバリア層を備えることで、当該太陽電池モジュール用保護フィルムに、酸素、水蒸気等に対するガスバリア性を付与することができる。また、このようにガスバリア性を有する当該太陽電池モジュール用保護フィルムを用いることで、屋外での長時間の使用に好適に用いることができる太陽電池モジュールが得られる。 It is preferable to further provide a gas barrier layer on one surface side of the heat sealing resin layer. Thus, by providing a gas barrier layer on the one surface side of the heat-sealing resin layer, gas barrier properties against oxygen, water vapor, and the like can be imparted to the protective film for a solar cell module. Moreover, the solar cell module which can be used suitably for a long time use outdoors is obtained by using the said protective film for solar cell modules which has gas barrier property in this way.
 当該太陽電池モジュール用保護フィルムは、太陽電池モジュールのバックシートとして用いられるとよい。このように当該太陽電池モジュール用保護フィルムを太陽電池モジュール用バックシートとして用いることで、太陽電池セルを容易かつ確実に保護することができる。 The solar cell module protective film may be used as a back sheet of the solar cell module. Thus, a photovoltaic cell can be protected easily and reliably by using the said protective film for solar cell modules as a solar cell module backsheet.
 上記課題を解決するためになされた別の発明は、
 当該太陽電池モジュール用保護フィルムと、
 この太陽電池モジュール用保護フィルムの表面に熱融着された充填材層と、
 この充填材層内に配設される太陽電池セルと、
 充填層の表面に配設される透光性基板と
 を備える太陽電池モジュールである。
Another invention made to solve the above problems is as follows:
The protective film for the solar cell module;
A filler layer thermally fused to the surface of the protective film for the solar cell module;
Solar cells disposed in the filler layer;
A translucent substrate disposed on the surface of the filling layer.
 当該太陽電池モジュールは、太陽電池モジュール用保護フィルムの熱融着樹脂層を構成する合成樹脂が電子線照射により架橋されているため、保護フィルムの熱融着時における熱融着樹脂層のシート間からの漏出、シワの発生、厚みの不均一性等の不具合が防止される。そのため、当該太陽電池モジュールは、生産性及び品質に優れる。 In the solar cell module, since the synthetic resin constituting the heat-sealing resin layer of the protective film for solar cell modules is cross-linked by electron beam irradiation, between the sheets of the heat-sealing resin layer at the time of heat-sealing the protective film Problems such as leakage, wrinkles, and uneven thickness are prevented. Therefore, the solar cell module is excellent in productivity and quality.
 ここで、「裏面」とは、太陽電池モジュールの受光面と反対側の面を意味する。 Here, the “back surface” means the surface opposite to the light receiving surface of the solar cell module.
 以上説明したように、本発明の太陽電池モジュール用保護フィルムは、熱融着時の不具合を防止することができ、太陽電池モジュールの生産性及び品質を改善できる。 As described above, the solar cell module protective film of the present invention can prevent problems during heat fusion, and can improve the productivity and quality of the solar cell module.
本発明の一実施形態に係る太陽電池モジュール用保護フィルムを示す模式的断面図である。It is typical sectional drawing which shows the protective film for solar cell modules which concerns on one Embodiment of this invention. 図1の太陽電池モジュール用保護フィルムとは異なる形態に係る太陽電池モジュール用保護フィルムを示す模式的断面図である。It is typical sectional drawing which shows the protective film for solar cell modules which concerns on the form different from the protective film for solar cell modules of FIG. 図1及び図2の太陽電池モジュール用保護フィルムとは異なる形態に係る太陽電池モジュール用保護フィルムを示す模式的断面図である。It is typical sectional drawing which shows the protective film for solar cell modules which concerns on the form different from the protective film for solar cell modules of FIG.1 and FIG.2. (イ)は図1の太陽電池モジュール用保護フィルムを用いた太陽電池モジュールを示す模式的断面図であり、(ロ)は図3の太陽電池モジュール用保護フィルムを用いた太陽電池モジュールを示す模式的断面図である。(A) is typical sectional drawing which shows the solar cell module using the protective film for solar cell modules of FIG. 1, (b) is a schematic diagram which shows the solar cell module using the protective film for solar cell modules of FIG. FIG. 従来の一般的な太陽電池モジュールを示す模式的断面図である。It is typical sectional drawing which shows the conventional common solar cell module.
 以下、適宜図面を参照しつつ、本発明に係る太陽電池モジュール用保護フィルムの実施の形態を詳説する。まず、本発明の第一実施形態として、図1及び図4(イ)に示す太陽電池モジュール用バックシート(以下、バックシートということがある)について説明する。 Hereinafter, embodiments of the protective film for a solar cell module according to the present invention will be described in detail with reference to the drawings as appropriate. First, as a first embodiment of the present invention, a back sheet for a solar cell module (hereinafter sometimes referred to as a back sheet) shown in FIG. 1 and FIG.
[第一実施形態]
 第一実施形態の太陽電池モジュール用保護フィルム1は、シート状に形成された熱融着樹脂層3のみから構成される。
[First embodiment]
The solar cell module protective film 1 of the first embodiment is composed of only the heat-sealing resin layer 3 formed in a sheet shape.
<熱融着樹脂層>
 熱融着樹脂層3は、当該太陽電池モジュール用保護フィルム1を太陽電池モジュールの裏面に熱融着する際に溶融する合成樹脂層である。
<Heat-fusion resin layer>
The heat-sealing resin layer 3 is a synthetic resin layer that melts when the solar cell module protective film 1 is heat-sealed to the back surface of the solar cell module.
 この熱融着樹脂層3に用いられる合成樹脂としては、特に限定されず、例えばエチレン系重合体やポリプロピレン等を主成分とする合成樹脂を用いることができる。このエチレン系重合体としては、例えば、低密度ポリエチレン、中密度ポリエチレン及び高密度ポリエチレン等のポリエチレン、エチレン-αオレフィン共重合体、エチレン-(メタ)アクリル酸アルキルエステル共重合体、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸共重合体のイオン架橋物、エチレン-ビニルエステル共重合体等を使用することができる。これらの中でも、太陽電池モジュールの充填剤層に通常使用されるエチレン酢酸ビニル共重合体(EVA)との接着性に優れ、かつ良好な耐加水分解性を有し、さらに電子線照射によって架橋が支配的に進行するポリエチレンが好ましい。また、後述の架橋剤を熱融着樹脂層に添加する場合には、強度、耐熱性等に優れるポリプロピレンが好ましい。ポリプロピレンは、電子照射時の分子切断反応が架橋反応に対して優勢であるため、そのまま電子照射を行うと強度等が劣化するが、架橋剤を添加して電子照射を行うことで強度等を維持したまま耐熱性を上昇させることができる。なお、上記合成樹脂は1種単独で使用することも可能であり、また2種以上を併用することも可能である。 The synthetic resin used for the heat-sealing resin layer 3 is not particularly limited, and for example, a synthetic resin mainly composed of an ethylene-based polymer or polypropylene can be used. Examples of the ethylene polymer include polyethylene such as low density polyethylene, medium density polyethylene and high density polyethylene, ethylene-α olefin copolymer, ethylene- (meth) acrylic acid alkyl ester copolymer, ethylene- (meta ) Acrylic acid copolymer, an ionic cross-linked product of ethylene- (meth) acrylic acid copolymer, ethylene-vinyl ester copolymer, and the like can be used. Among these, it has excellent adhesion to an ethylene vinyl acetate copolymer (EVA) usually used for a filler layer of a solar cell module, has good hydrolysis resistance, and is crosslinked by electron beam irradiation. Polyethylene which proceeds predominantly is preferred. Moreover, when adding the below-mentioned crosslinking agent to a heat sealing | fusion resin layer, the polypropylene excellent in intensity | strength, heat resistance, etc. is preferable. In polypropylene, the molecular cleavage reaction at the time of electron irradiation is dominant over the crosslinking reaction, so the strength etc. deteriorates if electron irradiation is performed as it is, but the strength etc. is maintained by adding a crosslinking agent and performing electron irradiation. The heat resistance can be increased as it is. In addition, the said synthetic resin can also be used individually by 1 type, and can also use 2 or more types together.
 上記エチレン系重合体に、グリシジル基、シラノール基、アミノ基等の反応性官能基を有する化合物が共重合されたものも熱融着樹脂層3に用いることができる。また、上記エチレン系重合体に光重合開始剤を添加して、光重合性を付与することもできる。この光重合開始剤としては、例えば、水素引き抜き型や内部開裂型のものを用いることができる。 A polymer obtained by copolymerizing a compound having a reactive functional group such as a glycidyl group, a silanol group, or an amino group with the ethylene polymer can be used for the heat-sealing resin layer 3. Moreover, a photopolymerization initiator can be added to the ethylene polymer to impart photopolymerizability. As this photopolymerization initiator, for example, a hydrogen abstraction type or an internal cleavage type can be used.
 上記水素引き抜き型(二分子反応型)の光重合開始剤としては、例えば、ベンゾフェノン、オルソベンゾイル安息香酸メチル、4-ベンゾイル-4’-メチルジフェニルサルファイド、イソプロピルチオキサントン等を用いることができる。 As the hydrogen abstraction type (bimolecular reaction type) photopolymerization initiator, for example, benzophenone, methyl orthobenzoylbenzoate, 4-benzoyl-4'-methyldiphenyl sulfide, isopropylthioxanthone and the like can be used.
 上記内部開裂型の光重合開始剤としては、例えば、ベンゾインアルキルエーテル、ベンジルジメチルケタール等を用いることができる。また、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、アルキルフェニルグリオキシレート、ジエトキシアセトフェノン等のα-ヒドロキシアルキルフェノン型重合開始剤、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1等のα-アミノアルキルフェノン型重合開始剤、アシルフォスフィンオキサイド等を用いることができる。 As the internal cleavage type photopolymerization initiator, for example, benzoin alkyl ether, benzyl dimethyl ketal or the like can be used. Further, α-hydroxyalkylphenone type polymerization initiators such as 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, alkylphenylglyoxylate, diethoxyacetophenone, 2-methyl Α-aminoalkylphenone type such as -1- [4- (methylthio) phenyl] -2-morpholinopropane-1,2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1 A polymerization initiator, an acyl phosphine oxide, etc. can be used.
 熱融着樹脂層3を構成する合成樹脂は、電子線の照射によって架橋されている。電子線を照射することで、合成樹脂の分子間が架橋され、耐熱性等が上昇する。なお、電子線を照射する装置としては、公知のものを使用することができる。 The synthetic resin constituting the heat-sealing resin layer 3 is cross-linked by electron beam irradiation. By irradiation with an electron beam, the molecules of the synthetic resin are cross-linked, and heat resistance and the like are increased. In addition, a well-known thing can be used as an apparatus which irradiates an electron beam.
 上記電子線の照射線量の下限としては、5Gyが好ましく、10Gyがより好ましい。一方、電子線の照射線量の上限としては、300Gyが好ましく、200Gyがより好ましい。照射線量が上記下限未満の場合、合成樹脂の架橋が十分に行われず、耐熱性の上昇効果が得られないおそれがある。逆に、照射線量が上記上限を超える場合、合成樹脂が劣化し、熱融着樹脂層3の強度、寿命等が低下するおそれがある。 The lower limit of the electron beam irradiation dose is preferably 5 Gy, more preferably 10 Gy. On the other hand, the upper limit of the electron beam irradiation dose is preferably 300 Gy, more preferably 200 Gy. When the irradiation dose is less than the above lower limit, the synthetic resin is not sufficiently cross-linked, and the effect of increasing the heat resistance may not be obtained. Conversely, when the irradiation dose exceeds the above upper limit, the synthetic resin is deteriorated, and the strength, life, etc. of the heat-sealing resin layer 3 may be reduced.
 また、上記電子線の加速電圧の下限としては、10kVが好ましく、50kVがより好ましい。一方、電子線の加速電圧の上限としては、500kVが好ましく、400kVがより好ましい。加速電圧が上記下限未満の場合、合成樹脂の架橋が十分に行われず、耐熱性の上昇効果が得られないおそれがある。逆に、加速電圧が上記上限を超える場合、電子線の浸透力が強くなり、他の部材や製造装置にダメージを与えるおそれがある。 The lower limit of the acceleration voltage of the electron beam is preferably 10 kV, more preferably 50 kV. On the other hand, the upper limit of the acceleration voltage of the electron beam is preferably 500 kV, more preferably 400 kV. When the acceleration voltage is less than the above lower limit, the synthetic resin is not sufficiently cross-linked, and the effect of increasing the heat resistance may not be obtained. On the other hand, when the acceleration voltage exceeds the above upper limit, the penetrating power of the electron beam becomes strong, which may cause damage to other members and the manufacturing apparatus.
 熱融着樹脂層3には、電子線照射時の架橋反応を増強させるために架橋剤が添加されていることが好ましい。 It is preferable that a cross-linking agent is added to the heat-sealing resin layer 3 in order to enhance the cross-linking reaction during electron beam irradiation.
 上記架橋剤としては、電子線の照射により分子間の架橋反応を発現できるものであれば特に限定されず、一般に架橋剤として用いられる公知の多官能モノマーを使用することができるが、アリル系多官能モノマーを用いることが好ましい。このアリル系多官能モノマーとしては、例えばトリアリルイソシアヌレート(TAIC)、トリアリルシアヌレート、トリメタアリルイソシアヌレート等を挙げることができ、これらの中でもTAICが特に好ましい。また、上記アリル系多官能モノマーは、2種以上を用いてもよい。 The cross-linking agent is not particularly limited as long as it can exhibit a cross-linking reaction between molecules by electron beam irradiation, and a known polyfunctional monomer generally used as a cross-linking agent can be used. It is preferable to use a functional monomer. Examples of the allyl polyfunctional monomer include triallyl isocyanurate (TAIC), triallyl cyanurate, and trimethallyl isocyanurate. Among these, TAIC is particularly preferable. Two or more kinds of the allylic polyfunctional monomers may be used.
 架橋剤の含有量の下限としては、1質量%が好ましく、1.5質量%がより好ましい。一方、架橋剤の含有量の上限としては、30質量%が好ましく、20質量%がより好ましい。架橋剤の含有量が上記範囲未満の場合、十分な架橋効果が得られないおそれがある。逆に、架橋剤の含有量が上記範囲を超える場合、合成樹脂の品質が低下するおそれや、成形が困難になるおそれがある。 As a minimum of content of a crosslinking agent, 1 mass% is preferable and 1.5 mass% is more preferable. On the other hand, as an upper limit of content of a crosslinking agent, 30 mass% is preferable and 20 mass% is more preferable. When the content of the crosslinking agent is less than the above range, a sufficient crosslinking effect may not be obtained. On the other hand, when the content of the crosslinking agent exceeds the above range, the quality of the synthetic resin may be deteriorated or molding may be difficult.
 上記熱融着樹脂層3は、顔料を分散含有するとよい。この顔料としては、特に限定されないが、光拡散性を付与できる白色顔料が好ましい。 The heat-sealing resin layer 3 may contain a pigment in a dispersed manner. Although it does not specifically limit as this pigment, The white pigment which can provide light diffusibility is preferable.
 白色顔料としては、例えば炭酸カルシウム、酸化チタン、酸化亜鉛、炭酸鉛、硫酸バリウム等を使用することができる。中でも、合成樹脂層を形成する樹脂材料中への分散性に優れ、白色度及び日射反射率の向上効果が比較的大きい酸化チタンが好ましい。 As the white pigment, for example, calcium carbonate, titanium oxide, zinc oxide, lead carbonate, barium sulfate and the like can be used. Among these, titanium oxide is preferable because it is excellent in dispersibility in the resin material forming the synthetic resin layer and has a relatively large effect of improving whiteness and solar reflectance.
 白色顔料以外の顔料としては、カーボンブラック、黒色酸化鉄等の黒色顔料、ウルトラマリン、紺青等の青色顔料、べんがら(酸化鉄赤)、カドミウムレッド、モリブデンオレンジ等の赤色顔料、メタリック光沢を与える金属粉顔料などが挙げられ、これらの顔料を熱融着樹脂層3に分散含有させることで、太陽電池モジュールの意匠性を向上させることができる。 Non-white pigments include black pigments such as carbon black and black iron oxide, blue pigments such as ultramarine and bitumen, red pigments such as red bean (iron oxide red), cadmium red, and molybdenum orange, and metals that give metallic luster. A powder pigment etc. are mentioned, The designability of a solar cell module can be improved by carrying out dispersion | distribution containing of these pigments in the heat-fusion resin layer 3. FIG.
 上記顔料の平均粒子径の下限としては、100nmが好ましく、300nmがより好ましい。一方、上限としては、30μmが好ましく、3μmがより好ましい。顔料の平均粒子径が上記下限未満の場合、凝集等により熱融着樹脂層3中への均一な分散が困難になるおそれがある。逆に、平均粒子径が上記上限を超える場合、熱融着樹脂層3に対する耐熱性等の諸特性向上効果が低下するおそれがある。 The lower limit of the average particle diameter of the pigment is preferably 100 nm, and more preferably 300 nm. On the other hand, as an upper limit, 30 micrometers is preferable and 3 micrometers is more preferable. When the average particle diameter of the pigment is less than the above lower limit, uniform dispersion in the heat-sealing resin layer 3 may be difficult due to aggregation or the like. On the contrary, when the average particle diameter exceeds the above upper limit, the effect of improving various properties such as heat resistance to the heat-sealing resin layer 3 may be reduced.
 上記顔料の含有量の下限としては、3質量%が好ましく、5質量%がより好ましい。一方、上限としては、30質量%が好ましく、20質量%がより好ましい。顔料の含有量が上記下限未満の場合、熱融着樹脂層3の耐久性、耐熱性、強度等の向上効果が小さくなるおそれがある。逆に、顔料の含有量が上記上限を超える場合、熱融着樹脂層3中での顔料の分散性が低下し、熱融着樹脂層3の強度の低下を招来するおそれがある。 The lower limit of the pigment content is preferably 3% by mass, and more preferably 5% by mass. On the other hand, as an upper limit, 30 mass% is preferable and 20 mass% is more preferable. When the pigment content is less than the above lower limit, the effect of improving the durability, heat resistance, strength, etc. of the heat sealing resin layer 3 may be reduced. On the contrary, when the pigment content exceeds the above upper limit, the dispersibility of the pigment in the heat-sealing resin layer 3 is lowered, and the strength of the heat-sealing resin layer 3 may be lowered.
 さらに、熱融着樹脂層3には、取扱性、耐熱性、耐候性、熱的寸法安定性、機械的性質等を改良、改質する目的で、例えば耐熱剤、酸化防止剤、紫外線防止剤、帯電防止剤、溶媒、滑剤、充填剤、強化繊維、補強剤、難燃剤、耐炎剤、発泡剤、防カビ剤等の種々の添加剤を適宜混合することができる。 Furthermore, for the purpose of improving and modifying the handling property, heat resistance, weather resistance, thermal dimensional stability, mechanical properties, etc., the heat-sealing resin layer 3 is provided with, for example, a heat-resistant agent, an antioxidant, and an ultraviolet ray inhibitor. Various additives such as an antistatic agent, a solvent, a lubricant, a filler, a reinforcing fiber, a reinforcing agent, a flame retardant, a flame retardant, a foaming agent, and an antifungal agent can be appropriately mixed.
 上記耐熱剤としては、例えば芳香族アミン系酸化防止剤、ヒンダードフェノール系酸化防止剤、イオウ系酸化防止剤、リン系酸化防止剤等を挙げることができ、これらの中から1種又は2種以上を用いることができる。 Examples of the heat-resistant agent include aromatic amine-based antioxidants, hindered phenol-based antioxidants, sulfur-based antioxidants, phosphorus-based antioxidants, and the like. The above can be used.
 熱融着樹脂層3の成形方法としては、特に限定されず、例えばTダイ法やインフレーション法等の押出し法、キャスト成形法又は切削法等の公知の方法が採用される。 The molding method of the heat-sealing resin layer 3 is not particularly limited, and a known method such as an extrusion method such as a T-die method or an inflation method, a cast molding method, or a cutting method is employed.
 熱融着樹脂層3の厚さ(平均厚さ)の下限としては、40μmが好ましく、50μmがより好ましい。一方、熱融着樹脂層3の厚さの上限としては、500μmが好ましく、300μmがより好ましい。熱融着樹脂層3の厚さが上記下限未満の場合、当該太陽電池モジュール用保護フィルム1と太陽電池モジュールの充填剤層との接合が不十分となるおそれのほか、太陽電子モジュールを保護するための強度、耐候性、耐電圧性等が十分発揮されないおそれがある。逆に、熱融着樹脂層3の厚さが上記上限を超える場合、当該太陽電池モジュール用保護フィルム1の可撓性が低下し、さらに、太陽電池モジュールの薄型化及び軽量化の要請にも反することになる。 The lower limit of the thickness (average thickness) of the heat sealing resin layer 3 is preferably 40 μm, and more preferably 50 μm. On the other hand, the upper limit of the thickness of the heat-sealing resin layer 3 is preferably 500 μm, and more preferably 300 μm. When the thickness of the heat-sealing resin layer 3 is less than the above lower limit, the solar electronic module is protected in addition to the possibility of insufficient bonding between the solar cell module protective film 1 and the solar cell module filler layer. Therefore, the strength, weather resistance, voltage resistance, etc. may not be sufficiently exhibited. On the contrary, when the thickness of the heat-sealing resin layer 3 exceeds the upper limit, the flexibility of the protective film 1 for the solar cell module is reduced, and further, the solar cell module is required to be thin and light. It will be contrary.
 当該太陽電池モジュール用保護フィルム1は、加熱ラミネートによって太陽電池モジュールの表面側又は裏面側に接着される際に、熱融着樹脂層3の主成分である合成樹脂が電子線照射で架橋されているため過度の流動が抑制される。その結果、当該太陽電池モジュール用保護フィルム1は、熱融着時の熱融着樹脂層3のシート間からの漏出、シワの発生、厚みの不均一性等の不具合を防止し、容易かつ確実に充填剤層と接着できる。 When the protective film 1 for the solar cell module is bonded to the front surface side or the back surface side of the solar cell module by heating lamination, the synthetic resin that is the main component of the heat-sealing resin layer 3 is crosslinked by electron beam irradiation. Therefore, excessive flow is suppressed. As a result, the protective film 1 for the solar cell module prevents problems such as leakage from the sheet of the heat sealing resin layer 3 during heat sealing, generation of wrinkles, thickness non-uniformity, and the like easily and reliably. It can be adhered to the filler layer.
<太陽電池モジュール21>
 図4(イ)の太陽電池モジュール21は、当該太陽電池モジュール用保護フィルム1と、当該太陽電池モジュール用保護フィルム1の表面に熱融着された充填剤層22及び24と、この充填剤層22及び24の間に配設される太陽電池セル23と、充填剤層24の表面に配設される透光性基板25とを備える。
<Solar cell module 21>
The solar cell module 21 in FIG. 4 (a) includes a protective film 1 for the solar cell module, filler layers 22 and 24 thermally fused to the surface of the protective film 1 for the solar cell module, and the filler layer. Solar cell 23 disposed between 22 and 24, and translucent substrate 25 disposed on the surface of filler layer 24.
 上記透光性基板25は、最表面に積層されるものであり、(a)太陽光に対する透過性及び電気絶縁性を有すること、(b)機械的、化学的及び物理的強度、具体的には耐候性、耐熱性、耐久性、耐水性、水蒸気等に対するガスバリア性、耐風圧性、耐薬品性、堅牢性等に優れること、並びに(c)表面硬度が高く、かつ表面の汚れ、ゴミ等の蓄積を防止する防汚性に優れることが要求される。 The translucent substrate 25 is laminated on the outermost surface, and has (a) transparency to sunlight and electrical insulation, (b) mechanical, chemical and physical strength, specifically Is excellent in weather resistance, heat resistance, durability, water resistance, gas barrier against water vapor, wind pressure resistance, chemical resistance, fastness, etc., and (c) high surface hardness and surface dirt, dust, etc. It is required to have excellent antifouling properties for preventing accumulation.
 透光性基板25の形成材料としては、ガラス又は合成樹脂が使用される。透光性基板25に使用される合成樹脂としては、例えばポリエチレン系樹脂、ポリプロピレン系樹脂、環状ポリオレフィン系樹脂、フッ素系樹脂、ポリスチレン系樹脂、アクリロニトリル-スチレン共重合体(AS樹脂)、アクリロニトリルル-ブタジエン-スチレン共重合体(ABS樹脂)、ポリ塩化ビニル系樹脂、フッ素系樹脂、ポリ(メタ)アクリル系樹脂、ポリカーボネート系樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂、各種のナイロン等のポリアミド系樹脂、ポリイミド系樹脂、ポリアミドイミド系樹脂、ポリアリールフタレート系樹脂、シリコーン系樹脂、ポリフェニレンスルフィド系樹脂、ポリスルホン系樹脂、アセタール系樹脂、ポリエーテルスルホン系樹脂、ポリウレタン系樹脂、セルロース系樹脂等が挙げられる。これらの樹脂の中でも、フッ素系樹脂、環状ポリオレフィン系樹脂、ポリカーボネート系樹脂、ポリ(メタ)アクリル系樹脂又はポリエステル系樹脂が特に好ましい。 As the material for forming the translucent substrate 25, glass or synthetic resin is used. Synthetic resins used for the translucent substrate 25 include, for example, polyethylene resins, polypropylene resins, cyclic polyolefin resins, fluorine resins, polystyrene resins, acrylonitrile-styrene copolymers (AS resins), and acrylonitrile. Butadiene-styrene copolymer (ABS resin), polyvinyl chloride resin, fluorine resin, poly (meth) acrylic resin, polycarbonate resin, polyester resins such as polyethylene terephthalate and polyethylene naphthalate, various nylons, etc. Polyamide resin, polyimide resin, polyamideimide resin, polyaryl phthalate resin, silicone resin, polyphenylene sulfide resin, polysulfone resin, acetal resin, polyethersulfone resin, polyurethane resin Fat, and cellulosic resins. Among these resins, fluorine resins, cyclic polyolefin resins, polycarbonate resins, poly (meth) acrylic resins, or polyester resins are particularly preferable.
 なお、透光性基板25に合成樹脂を用いる場合、ガスバリア性等を向上させる目的でPVD法又はCVD法によりその一方の面に酸化珪素、酸化アルミニウム等の無機酸化物の透明蒸着膜を積層することや、加工性、耐熱性、耐候性、機械的性質、寸法安定性等を改良、改質する目的で、例えば滑剤、架橋剤、酸化防止剤、紫外線吸収剤、帯電防止剤、光安定剤、充填剤、強化繊維、補強剤、難燃剤、耐炎剤、発泡剤、防カビ剤、顔料等の各種添加剤を含有することも可能である。 When a synthetic resin is used for the light-transmitting substrate 25, a transparent vapor deposition film of an inorganic oxide such as silicon oxide or aluminum oxide is laminated on one surface by the PVD method or the CVD method for the purpose of improving gas barrier properties. For the purpose of improving and improving processability, heat resistance, weather resistance, mechanical properties, dimensional stability, etc., for example, lubricants, crosslinking agents, antioxidants, ultraviolet absorbers, antistatic agents, light stabilizers It is also possible to contain various additives such as fillers, reinforcing fibers, reinforcing agents, flame retardants, flame retardants, foaming agents, fungicides, and pigments.
 透光性基板25の厚さ(平均厚さ)としては、特に限定されず、使用する材料に応じて所要の強度、ガスバリア性等を具備するよう適宜選択される。合成樹脂製の透光性基板25の厚さとしては、例えば6μm以上300μm以下が好ましく、9μm以上150μm以下がより好ましい。また、ガラス製の透光性基板25の厚さとしては、一般的には3mm程度とされている。 The thickness (average thickness) of the translucent substrate 25 is not particularly limited, and is appropriately selected depending on the material to be used so as to have required strength, gas barrier properties, and the like. The thickness of the synthetic resin translucent substrate 25 is preferably, for example, 6 μm to 300 μm, and more preferably 9 μm to 150 μm. Further, the thickness of the glass translucent substrate 25 is generally about 3 mm.
 上記充填剤層22及び充填剤層24は、太陽電池セル23の周囲に充填されており、太陽電池セル23を保護するための耐スクラッチ性、衝撃吸収性等を有している。なお、太陽電池セル23の表面に積層される充填剤層24は、上記諸機能に加え、太陽光を透過する透明性を有している。 The filler layer 22 and the filler layer 24 are filled around the solar battery cell 23, and have scratch resistance, shock absorption, and the like for protecting the solar battery cell 23. In addition, the filler layer 24 laminated | stacked on the surface of the photovoltaic cell 23 has transparency which permeate | transmits sunlight in addition to the said various functions.
 充填剤層22及び充填剤層24の形成材料としては、例えばフッ素系樹脂、エチレン酢酸ビニル共重合樹脂(EVA)、アイオノマー樹脂、エチレン-アクリル酸又はメタクリル酸共重合体、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエチレン等のポリオレフィン系樹脂をアクリル酸等の不飽和カルボン酸で変性した酸変性ポリオレンフィン系樹脂、ポリビニルブチラール樹脂、シリコーン系樹脂、エポキシ系樹脂、(メタ)アクリル系樹脂などが挙げられる。これらの合成樹脂の中でも、耐候性、耐熱性、ガスバリア性等に優れるフッ素系樹脂、エチレン酢酸ビニル共重合樹脂(EVA)又はシリコーン系樹脂が好ましい。 Examples of the material for forming the filler layer 22 and the filler layer 24 include fluorine resin, ethylene vinyl acetate copolymer resin (EVA), ionomer resin, ethylene-acrylic acid or methacrylic acid copolymer, polyethylene resin, polypropylene resin, Examples include acid-modified polyorene fin-based resins obtained by modifying polyolefin-based resins such as polyethylene with unsaturated carboxylic acids such as acrylic acid, polyvinyl butyral resins, silicone-based resins, epoxy-based resins, and (meth) acrylic resins. Among these synthetic resins, fluorine resins, ethylene vinyl acetate copolymer resins (EVA), or silicone resins that are excellent in weather resistance, heat resistance, gas barrier properties, and the like are preferable.
 また、充填剤層22及び充填剤層24の形成材料としては、特開2000-34376号公報に示される熱可逆架橋性オレフィン系重合体組成物、具体的には(a)不飽和カルボン酸無水物と不飽和カルボン酸エステルとによって変性された変性オレフィン系重合体であって、1分子当たりのカルボン酸無水物基の平均結合数が1個以上で、かつ該変性オレフィン系重合体中のカルボン酸無水物基数に対するカルボン酸エステル基数の比が0.5~20である変性オレフィン系重合体と、(b)1分子当たりの水酸基の平均結合数が1個以上の水酸基含有重合体とを含み、(a)成分のカルボン酸無水物基数に対する(b)成分の水酸基数の比が0.1~5のものなども使用される。 Examples of the material for forming the filler layer 22 and the filler layer 24 include a thermoreversible crosslinkable olefin polymer composition disclosed in JP-A No. 2000-34376, specifically, (a) an unsaturated carboxylic acid anhydride. Modified olefin polymer modified with a product and an unsaturated carboxylic acid ester, wherein the average number of carboxylic anhydride groups per molecule is one or more, and the carboxylic acid in the modified olefin polymer A modified olefin polymer in which the ratio of the number of carboxylic acid ester groups to the number of acid anhydride groups is 0.5 to 20, and (b) a hydroxyl group-containing polymer having an average number of hydroxyl groups per molecule of 1 or more. Also, those having a ratio of the number of hydroxyl groups of component (b) to the number of carboxylic anhydride groups of component (a) of 0.1 to 5 are used.
 なお、充填剤層22及び充填剤層24の形成材料には、耐候性、耐熱性、ガスバリア性等の向上を目的として、例えば架橋剤、熱酸化防止剤、光安定剤、紫外線吸収剤、光酸化防止剤等の各種添加剤を適宜含有することができる。また充填剤層22及び充填剤層24の厚さ(平均厚さ)としては、特に限定されるものではないが、200μm以上1000μm以下が好ましく、350μm以上600μm以下がより好ましい。 For the purpose of improving the weather resistance, heat resistance, gas barrier properties, etc., the forming material of the filler layer 22 and the filler layer 24 is, for example, a crosslinking agent, a thermal antioxidant, a light stabilizer, an ultraviolet absorber, a light absorber, and the like. Various additives such as an antioxidant can be appropriately contained. In addition, the thickness (average thickness) of the filler layer 22 and the filler layer 24 is not particularly limited, but is preferably 200 μm or more and 1000 μm or less, and more preferably 350 μm or more and 600 μm or less.
 上記太陽電池セル23は、光エネルギーを電気エネルギーに変換する光起電力素子であり、充填剤層22及び充填剤層24間に配設されている。複数枚の太陽電池セル23は、略同一平面内に敷設され、図示していないが直列又は並列に配線されている。この太陽電池セル23としては、例えば単結晶シリコン型太陽電池素子、多結晶シリコン型太陽電池素子等の結晶シリコン太陽電子素子、シングル接合型やタンデム構造型等からなるアモルファスシリコン太陽電池素子、ガリウムヒ素(GaAs)やインジウム燐(InP)等の第3~第5族化合物半導体太陽電子素子、カドミウムテルル(CdTe)や銅インジウムセレナイド(CuInSe)等の第2~第6族化合物半導体太陽電子素子等を使用することができ、それらのハイブリット素子も使用することができる。なお、複数枚の太陽電池セル23間にも充填剤層22及び充填剤層24が隙間なく充填されている。 The solar battery cell 23 is a photovoltaic element that converts light energy into electrical energy, and is disposed between the filler layer 22 and the filler layer 24. The plurality of solar cells 23 are laid in substantially the same plane, and are wired in series or in parallel although not shown. Examples of the solar battery cell 23 include a crystalline silicon solar electronic element such as a single crystal silicon type solar cell element and a polycrystalline silicon type solar cell element, an amorphous silicon solar cell element having a single junction type or a tandem structure type, and gallium arsenide. Group 3 to 5 compound semiconductor solar electronic devices such as (GaAs) and indium phosphorus (InP), and Group 2 to 6 compound semiconductor solar electronic devices such as cadmium tellurium (CdTe) and copper indium selenide (CuInSe 2 ) Etc., and those hybrid elements can also be used. Note that the filler layer 22 and the filler layer 24 are also filled between the plurality of solar battery cells 23 without any gap.
<太陽電池モジュール21の製造方法>
 当該太陽電池モジュール21の製造方法としては、特に限定されるものではないが、一般的には以下の工程を有する。
 (A)充填剤層24と、太陽電池セル23と、充填剤層22と、当該太陽電池モジュール用保護フィルム1とをこの順に積層する工程
 (B)上記積層体を真空吸引により一体化して加熱圧着する真空加熱ラミネーション法等により一体成形する工程
<Method for Manufacturing Solar Cell Module 21>
Although it does not specifically limit as a manufacturing method of the said solar cell module 21, Generally, it has the following processes.
(A) The process of laminating | stacking the filler layer 24, the photovoltaic cell 23, the filler layer 22, and the said protective film 1 for said solar cell modules in this order (B) The said laminated body is integrated and heated by vacuum suction Integrated molding process by vacuum heating lamination method etc.
 上記真空加熱ラミネーション法における加熱温度の下限としては、100℃が好ましく、120℃がより好ましい。一方、加熱温度の上限としては、200℃が好ましく、180℃がより好ましい。加熱温度が上記下限未満の場合、熱融着樹脂層3が十分に溶融せず、充填剤層22との接着が十分行われないおそれがある。逆に、加熱温度が上記上限を超える場合、熱融着樹脂層3や太陽電池モジュール21の他の層が劣化するおそれがある。 The lower limit of the heating temperature in the vacuum heating lamination method is preferably 100 ° C, more preferably 120 ° C. On the other hand, as an upper limit of heating temperature, 200 degreeC is preferable and 180 degreeC is more preferable. When the heating temperature is less than the above lower limit, the heat-sealing resin layer 3 is not sufficiently melted, and there is a possibility that adhesion to the filler layer 22 is not sufficiently performed. On the other hand, when the heating temperature exceeds the above upper limit, the heat-sealing resin layer 3 and other layers of the solar cell module 21 may be deteriorated.
 また、上記太陽電池モジュール21の製造方法において、太陽電池セル23と充填剤層22及び充填剤層24との間の接着性等を目的として、例えば、加熱溶融型接着剤、溶剤型接着剤、光硬化型接着剤等を塗工したり、各積層対向面にコロナ放電処理、オゾン処理、低温プラズマ処理、グロー放電処理、酸化処理、プライマーコート処理、アンダーコート処理、アンカーコート処理等を施すことが可能である。 Moreover, in the manufacturing method of the said solar cell module 21, for the purpose of the adhesiveness etc. between the photovoltaic cell 23, the filler layer 22, and the filler layer 24, for example, a hot melt adhesive, a solvent type adhesive, Apply photo-curing adhesive, etc., or apply corona discharge treatment, ozone treatment, low temperature plasma treatment, glow discharge treatment, oxidation treatment, primer coating treatment, undercoat treatment, anchor coating treatment, etc. Is possible.
 当該太陽電池モジュール21は、上述のように太陽電池モジュール用保護フィルム1の熱融着樹脂層3が、主成分である合成樹脂への電子線の照射によって、高い耐熱性を有する。これにより、当該太陽電池モジュール21は、上記製造方法における真空加熱ラミネート時等に、熱融着樹脂層3のシート間からの漏出、シワの発生、厚みの不均一性等の不具合を防止し、容易かつ確実に充填剤層22と接着できる。その結果、当該太陽電池モジュール21は、高い生産性及び品質を有する。 As described above, the solar cell module 21 has high heat resistance when the heat-sealing resin layer 3 of the protective film 1 for solar cell module is irradiated with an electron beam to the synthetic resin as a main component. Thereby, the solar cell module 21 prevents inconveniences such as leakage from the sheets of the heat-sealing resin layer 3, generation of wrinkles, thickness non-uniformity, etc. during vacuum heating lamination in the above manufacturing method, It can be easily and reliably bonded to the filler layer 22. As a result, the solar cell module 21 has high productivity and quality.
[第二実施形態]
 次に、図2に示す上記図1及び図4(イ)とは異なる形態に係る太陽電池モジュール用バックシートについて説明する。図2に示す当該太陽電池モジュール用保護フィルム11は、熱融着樹脂層3及び耐加水分解層13が表面側(受光側)からこの順に積層されている。
[Second Embodiment]
Next, a solar cell module backsheet according to a different embodiment from that shown in FIG. 1 and FIG. In the protective film 11 for solar cell module shown in FIG. 2, the heat-sealing resin layer 3 and the hydrolysis-resistant layer 13 are laminated in this order from the surface side (light receiving side).
 熱融着樹脂層3は上記図1の太陽電池モジュール用保護フィルム1と同様であるため、同一符号を付して説明を省略する。 Since the heat-sealing resin layer 3 is the same as the solar cell module protective film 1 of FIG. 1 described above, the same reference numerals are given and description thereof is omitted.
 ただし、熱融着樹脂層3の厚さ(平均厚さ)は、図1の太陽電池モジュール用保護フィルム1に用いる場合よりも薄くすることができる。熱融着樹脂層3の厚さの下限としては、10μmが好ましく、50μmがより好ましい。一方、熱融着樹脂層3の厚さの上限としては、400μmが好ましく、300μmがより好ましい。 However, the thickness (average thickness) of the heat-sealing resin layer 3 can be made thinner than that used for the protective film 1 for solar cell modules in FIG. As a minimum of the thickness of the heat sealing | fusion resin layer 3, 10 micrometers is preferable and 50 micrometers is more preferable. On the other hand, the upper limit of the thickness of the heat-sealing resin layer 3 is preferably 400 μm, and more preferably 300 μm.
<耐加水分解層>
 耐加水分解層13は、合成樹脂を主成分として形成されている。この耐加水分解層13の主成分の合成樹脂としては、耐加水分解性及び耐熱性に優れる耐加水分解ポリエチレンテレフタレート、ポリエチレンナフタレート(PEN)、フッ化ビニル系樹脂(PVF)フッ化ビニリデン系樹脂(PVDF)やテトラフルオロエチレンとエチレン又はプロピレンとのコポリマー(ETFE)などのフッ素系樹脂等を用いることができる。
<Hydrolysis resistant layer>
The hydrolysis-resistant layer 13 is formed with a synthetic resin as a main component. Examples of the synthetic resin as the main component of the hydrolysis-resistant layer 13 include hydrolysis-resistant polyethylene terephthalate, polyethylene naphthalate (PEN), vinyl fluoride resin (PVF), and vinylidene fluoride resin that are excellent in hydrolysis resistance and heat resistance. Fluorine resin such as (PVDF) or a copolymer of tetrafluoroethylene and ethylene or propylene (ETFE) can be used.
 上記耐加水分解ポリエチレンテレフタレートとは、例えば低分子不純物(オリゴマー)の含有量を減少させる等により耐加水分解性を向上させたポリエチレンテレフタレートである。 The hydrolysis-resistant polyethylene terephthalate is polyethylene terephthalate whose hydrolysis resistance is improved by, for example, reducing the content of low-molecular impurities (oligomers).
 上記ポリエチレンナフタレートとは、エチレンナフタレートを主たる繰り返し単位とするポリエステル樹脂で、ナフタレンジカルボン酸を主たるジカルボン酸成分とし、エチレングリコールを主たるグリコール成分として合成される。 The polyethylene naphthalate is a polyester resin having ethylene naphthalate as a main repeating unit, and is synthesized with naphthalenedicarboxylic acid as a main dicarboxylic acid component and ethylene glycol as a main glycol component.
 このエチレンナフタレート単位は、ポリエステルの全繰り返し単位の80モル%以上が好ましい。エチレンナフタレート単位の割合が80モル%未満となるとポリエチレンナフタレートの耐加水分解性、強度、バリア性が低下するおそれがある。 The ethylene naphthalate unit is preferably 80 mol% or more of all repeating units of the polyester. If the proportion of ethylene naphthalate units is less than 80 mol%, the hydrolysis resistance, strength, and barrier properties of polyethylene naphthalate may be reduced.
 上記ナフタレンジカルボン酸としては、2,6-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、1,3-ナフタレンジカルボン酸などが挙げられ、上記耐加水分解性等の面からは2,6-ナフタレンジカルボン酸が特に好ましい。 Examples of the naphthalenedicarboxylic acid include 2,6-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 1,3-naphthalenedicarboxylic acid, and the like. In view of surface, 2,6-naphthalenedicarboxylic acid is particularly preferred.
 ポリエチレンナフタレートの末端カルボキシル基量としては、10eq/T(当量/106g)以上40eq/T以下、特に10eq/T以上30eq/T以下、さらに10eq/T以上25eq/T以下が好ましい。末端カルボキシル基量が上記下限未満の場合、生産性が低下するおそれがあり、一方、末端カルボキシル基量が上記上限を超えるとカルボジイミド化合物による耐加水分解性の向上効果が低下するおそれがある。 The terminal carboxyl group amount of polyethylene naphthalate is preferably 10 eq / T (equivalent / 106 g) or more and 40 eq / T or less, more preferably 10 eq / T or more and 30 eq / T or less, and further preferably 10 eq / T or more and 25 eq / T or less. When the amount of the terminal carboxyl group is less than the above lower limit, the productivity may decrease. On the other hand, when the amount of the terminal carboxyl group exceeds the above upper limit, the effect of improving the hydrolysis resistance by the carbodiimide compound may be decreased.
 なお、ポリエチレンナフタレートの製造方法は、特に限定されるものではなく、エステル交換法、直接エステル化法等の公知の種々の方法を採用することができる。 In addition, the manufacturing method of polyethylene naphthalate is not particularly limited, and various known methods such as a transesterification method and a direct esterification method can be employed.
 耐加水分解層13は、主成分の合成樹脂中に、カルボジイミド化合物を含有するとよい。このようにガルボジイミド化合物を含有することで、耐加水分解層13の耐加水分解性が格段に向上する。このカルボジイミド化合物の含有量としては、0.1質量%以上10質量%以下が好ましく、0.5質量%以上3質量%以下がより好ましい。このようにカルボジイミド化合物の含有量を上記範囲とすることで、耐加水分解層13の耐加水分解性を効果的に向上させることができる。 The hydrolysis-resistant layer 13 may contain a carbodiimide compound in the main component synthetic resin. Thus, by containing a carbodiimide compound, the hydrolysis resistance of the hydrolysis-resistant layer 13 is remarkably improved. As content of this carbodiimide compound, 0.1 mass% or more and 10 mass% or less are preferable, and 0.5 mass% or more and 3 mass% or less are more preferable. Thus, by making content of a carbodiimide compound into the said range, the hydrolysis resistance of the hydrolysis-resistant layer 13 can be improved effectively.
 このカルボジイミド化合物としては、例えば(a)N,N’-ジフェニルカルボジイミド、N,N’-ジイソプロピルフェニルカルボジイミド、N、N’-ジシクロヘキシルカルボジイミド、1,3-ジイソプロピルカルボジイミド、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド等のモノカルボジイミド、及び(b)ポリ(1,3,5-トリイソプロピルフェニレン-2,4-カルボジイミド)等のポリカルボジイミド化合物が挙げられる。これらの中でも、N,N’-ジフェニルカルボジイミド及びN,N’-ジイソプロピルフェニルカルボジイミドが好ましく、耐加水分解層13の耐加水分解性をより向上させることができる。また、カルボジイミド化合物の分子量としては、200~1000の範囲、特に200~600の範囲が好ましい。分子量が上記下限未満の場合、カルボジイミド化合物の飛散性が上昇するおそれがあり、分子量が上記上限を超え場合、樹脂中でのカルボジイミド化合物の分散性が低下するおそれがある。 As this carbodiimide compound, for example, (a) N, N′-diphenylcarbodiimide, N, N′-diisopropylphenylcarbodiimide, N, N′-dicyclohexylcarbodiimide, 1,3-diisopropylcarbodiimide, 1- (3-dimethylaminopropyl) And monocarbodiimides such as 3-ethylcarbodiimide, and (b) polycarbodiimide compounds such as poly (1,3,5-triisopropylphenylene-2,4-carbodiimide). Among these, N, N′-diphenylcarbodiimide and N, N′-diisopropylphenylcarbodiimide are preferable, and the hydrolysis resistance of the hydrolysis-resistant layer 13 can be further improved. Further, the molecular weight of the carbodiimide compound is preferably in the range of 200 to 1000, particularly in the range of 200 to 600. When the molecular weight is less than the above lower limit, the scattering property of the carbodiimide compound may increase, and when the molecular weight exceeds the upper limit, the dispersibility of the carbodiimide compound in the resin may decrease.
 また、耐加水分解層13は、主成分である合成樹脂中に、上記カルボジイミド化合物に加えて酸化防止剤を含有するとよい。このように合成樹脂中にカルボジイミド化合物及び酸化防止剤を共に含有することで、上記耐加水分解性が格段に向上し、さらにカルボジイミド化合物の分解も抑制することができる。この酸化防止剤の含有量としては、0.05質量%以上1質量%以下が好ましく、0.1質量%以上0.5質量%以下がより好ましい。酸化防止剤の含有量が上記下限未満の場合、カルボジイミドの分解抑制機能及び耐加水分解性の向上効果が低下するおそれがあり、酸化防止剤の含有量が上記上限を超える場合、耐加水分解層13の色調が損なわれるおそれがある。この酸化防止剤としては、具体的には、ヒンダードフェノール系化合物及びチオエーテル系化合物、特にヒンダードフェノール系化合物が好ましく、耐加水分解層13の耐加水分解性を効果的に向上させることができる。カルボジイミド化合物の含有量に対する酸化防止剤の含有量の質量比としては、0.1以上1.0以下が好ましく、0.15以上0.8以下がより好ましい。この質量比が上記下限未満の場合、カルボジイミド自体の加水分解を抑制する効果が不十分となるおそれがあり、一方、この質量比が上記上限を超える場合、カルボジイミドの加水分解を抑制する効果が頭打ちになる。なお、カルボジイミド化合物及び酸化防止剤の添加方法は、合成樹脂に混練する方法でも、合成樹脂の重縮合反応に添加する方法でもよい。 Further, the hydrolysis-resistant layer 13 may contain an antioxidant in addition to the carbodiimide compound in the synthetic resin that is the main component. Thus, by including both a carbodiimide compound and antioxidant in a synthetic resin, the said hydrolysis resistance improves markedly, Furthermore, decomposition | disassembly of a carbodiimide compound can also be suppressed. As content of this antioxidant, 0.05 mass% or more and 1 mass% or less are preferable, and 0.1 mass% or more and 0.5 mass% or less are more preferable. When the content of the antioxidant is less than the above lower limit, the carbodiimide degradation inhibiting function and the hydrolysis resistance may be reduced. When the content of the antioxidant exceeds the above upper limit, the hydrolysis resistant layer There is a possibility that the color tone of 13 is impaired. Specifically, as the antioxidant, hindered phenol compounds and thioether compounds, particularly hindered phenol compounds, are preferable, and the hydrolysis resistance of the hydrolysis resistant layer 13 can be effectively improved. . The mass ratio of the antioxidant content to the carbodiimide compound content is preferably 0.1 or more and 1.0 or less, and more preferably 0.15 or more and 0.8 or less. If this mass ratio is less than the above lower limit, the effect of suppressing hydrolysis of carbodiimide itself may be insufficient. On the other hand, if this mass ratio exceeds the above upper limit, the effect of suppressing hydrolysis of carbodiimide will peak. become. In addition, the addition method of a carbodiimide compound and antioxidant may be a method of kneading to a synthetic resin or a method of adding to a polycondensation reaction of a synthetic resin.
 また、耐加水分解層13は、主成分の合成樹脂に加えて、芳香族ポリエステルを含有するとよい。このように耐加水分解層13中に芳香族ポリエステルを含有することで、耐加水分解層13の耐加水分解性を保持しつつ結節強度、耐デラミネーション性、機械的強度等を向上させることができる。この芳香族ポリエステルの含有量としては1質量%以上10質量%以下が好ましい。芳香族ポリエステルの含有量を上記範囲とすることで、結節強度、耐デラミネーション性、機械的強度等を効果的に向上させることができる。この芳香族ポリエステルとしては、具体的にはテレフタル酸成分及び4,4’-ジフェニルジカルボン酸を主たるジカルボン酸成分とし、エチレングリコールを主たるグリコール成分として共重合してなるポリエステルが好ましい。 Further, the hydrolysis-resistant layer 13 may contain an aromatic polyester in addition to the main component synthetic resin. By containing the aromatic polyester in the hydrolysis-resistant layer 13 as described above, the knot strength, the delamination resistance, the mechanical strength, and the like can be improved while maintaining the hydrolysis resistance of the hydrolysis-resistant layer 13. it can. As content of this aromatic polyester, 1 to 10 mass% is preferable. By setting the content of the aromatic polyester within the above range, knot strength, delamination resistance, mechanical strength, and the like can be effectively improved. Specifically, the aromatic polyester is preferably a polyester obtained by copolymerizing a terephthalic acid component and 4,4'-diphenyldicarboxylic acid as a main dicarboxylic acid component and ethylene glycol as a main glycol component.
 耐加水分解層13は、顔料を分散含有するとよい。この顔料としては、特に限定されないが、光拡散性を付与できる白色顔料が好ましい。この白色顔料の種類、含有量等については、熱融着樹脂層3と同様とすることができる。 The hydrolysis-resistant layer 13 may contain a pigment in a dispersed manner. Although it does not specifically limit as this pigment, The white pigment which can provide light diffusibility is preferable. The type, content, etc. of the white pigment can be the same as those of the heat-sealing resin layer 3.
 また、耐加水分解層13の成形方法や耐加水分解層13の形成材料中の添加剤等に関しては上記熱融着樹脂層3と同様とできる。 Further, the forming method of the hydrolysis-resistant layer 13 and the additives in the forming material of the hydrolysis-resistant layer 13 can be the same as those of the heat-sealing resin layer 3.
 耐加水分解層13の厚さ(平均厚さ)の下限としては、12μmが好ましく、20μmがより好ましい。一方、耐加水分解層13の厚さの上限としては、300μmが好ましく、200μmがより好ましい。耐加水分解層13の厚さが上記下限未満の場合、耐加水分解層13の耐久性向上効果が十分に発揮されないおそれや、取扱いが困難になるおそれがある。一方、耐加水分解層13の厚さが上記上限を超える場合、太陽電池モジュールの薄型化及び軽量化の要請に反することになる。 The lower limit of the thickness (average thickness) of the hydrolysis-resistant layer 13 is preferably 12 μm, and more preferably 20 μm. On the other hand, the upper limit of the thickness of the hydrolysis-resistant layer 13 is preferably 300 μm, and more preferably 200 μm. When the thickness of the hydrolysis-resistant layer 13 is less than the above lower limit, the durability improving effect of the hydrolysis-resistant layer 13 may not be sufficiently exhibited and handling may be difficult. On the other hand, when the thickness of the hydrolysis-resistant layer 13 exceeds the above upper limit, it is contrary to the demand for thinning and lightening the solar cell module.
 なお、熱融着樹脂層3と耐加水分解層13との厚さについては、例えば熱融着樹脂層3を200μm以上とし、耐加水分解層13の厚さを100μm以下として熱融着樹脂層3の当該太陽電池モジュール用保護フィルム11に占める割合を大きくしてもよい。また逆に、例えば耐加水分解層13の厚さを180μm以上とし、熱融着樹脂層3の厚さを100μm以下として耐加水分解層13の当該太陽電池モジュール用保護フィルム11に占める割合を大きくしてもよい。 In addition, about the thickness of the heat-fusion resin layer 3 and the hydrolysis-resistant layer 13, for example, the heat-fusion resin layer 3 is 200 μm or more, and the thickness of the hydrolysis-resistant layer 13 is 100 μm or less. You may enlarge the ratio for 3 to the said protective film 11 for solar cell modules. Conversely, for example, the thickness of the hydrolysis-resistant layer 13 is set to 180 μm or more, and the thickness of the heat-sealing resin layer 3 is set to 100 μm or less, so that the proportion of the hydrolysis-resistant layer 13 in the protective film 11 for solar cell modules is increased. May be.
 耐加水分解層13の上記熱融着樹脂層3への積層方法としては、公知の方法を適宜採用することができる。例えば、共押出法によるTダイ法等により熱融着樹脂層3に直接積層することで耐加水分解層13を設けることができる。また、耐加水分解層13を別途フィルム状に形成した後、熱融着樹脂層3の表面に接着剤を介して接着して積層してもよい。このように接着剤を介して接着を行うと、熱融着樹脂層3及び耐加水分解層13の間に形成される接着剤層によって、当該太陽電池モジュール用保護フィルム11の耐衝撃性、耐久性、堅牢性等を向上させることができる。 As a method for laminating the hydrolysis-resistant layer 13 to the heat fusion resin layer 3, a known method can be appropriately employed. For example, the hydrolysis-resistant layer 13 can be provided by directly laminating the heat-sealing resin layer 3 by a T-die method using a coextrusion method or the like. Alternatively, the hydrolysis-resistant layer 13 may be separately formed into a film and then bonded and laminated on the surface of the heat-sealing resin layer 3 with an adhesive. Thus, when it adhere | attaches via an adhesive agent, with the adhesive bond layer formed between the heat-fusion resin layer 3 and the hydrolysis-resistant layer 13, the impact resistance of the said protective film 11 for solar cell modules, durability Property, fastness, etc. can be improved.
 熱融着樹脂層3及び耐加水分解層13を接着する接着剤としては、ラミネート用接着剤又は溶融押出樹脂が用いられる。このラミネート用接着剤としては、例えばドライラミネート用接着剤、ウェットラミネート用接着剤、ホットメルトラミネート用接着剤、ノンソルベントラミネート用接着剤等が挙げられる。これらのラミネート用接着剤の中でも、接着強度、耐久性、耐候性等に優れ、耐加水分解層13等の欠陥(例えばキズ、ピンホール、凹部等)を封止及び保護する機能を有するドライラミネート用接着剤が特に好ましい。 As an adhesive for adhering the heat-sealing resin layer 3 and the hydrolysis-resistant layer 13, a laminating adhesive or a melt-extruded resin is used. Examples of the laminating adhesive include dry laminating adhesive, wet laminating adhesive, hot melt laminating adhesive, non-solvent laminating adhesive, and the like. Among these laminating adhesives, a dry laminate having excellent adhesive strength, durability, weather resistance, etc., and a function of sealing and protecting defects (such as scratches, pinholes, recesses, etc.) such as the hydrolysis-resistant layer 13. Especially preferred are adhesives.
 上記ドライラミネート用接着剤としては、例えば、ポリ酢酸ビニル系接着剤、アクリル酸のエチル,ブチル,2-エチルヘキシルエステル等のホモポリマー又はこれらとメタクリル酸メチル,アクリロニトリル,スチレン等との共重合体等からなるポリアクリル酸エステル系接着剤、シアノアクリレート系接着剤、エチレンと酢酸ビニル,アクリル酸エチル,アクリル酸,メタクリル酸等のモノマーとの共重合体等からなるエチレン共重合体系接着剤、セルロース系接着剤、ポリエステル系接着剤、ポリアミド系接着剤、ポリイミド系接着剤、尿素樹脂,メラミン樹脂等からなるアミノ樹脂系接着剤、フェノール樹脂系接着剤、エポキシ系接着剤、ポリウレタン系接着剤、反応型(メタ)アクリル系接着剤、クロロプレンゴム,ニトリルゴム,スチレン-ブタジエンゴム等からなるゴム系接着剤、シリコーン系接着剤、アルカリ金属シリケート,低融点ガラス等からなる無機系接着剤等が挙げられる。これらのドライラミネート用接着剤の中でも、当該太陽電池モジュール用保護フィルム11の屋外での長期間使用に起因する接着強度低下やデラミネーションが防止され、さらに黄変等の劣化が低減されるポリウレタン系接着剤、特にポリエステルウレタン系接着剤が好ましい。また硬化剤としては、熱黄変が少ない脂肪族系ポリイソシアネートが好ましい。 Examples of the adhesive for dry laminate include, for example, polyvinyl acetate adhesive, homopolymers such as ethyl acrylate, butyl, 2-ethylhexyl ester, and copolymers thereof with methyl methacrylate, acrylonitrile, styrene, etc. Polyacrylate adhesives, cyanoacrylate adhesives, ethylene copolymer adhesives made of copolymers of ethylene and monomers such as vinyl acetate, ethyl acrylate, acrylic acid, methacrylic acid, etc., cellulose Adhesive, polyester adhesive, polyamide adhesive, polyimide adhesive, urea resin, melamine resin, amino resin adhesive, phenol resin adhesive, epoxy adhesive, polyurethane adhesive, reactive type (Meth) acrylic adhesive, chloroprene rubber, nitrile rubber , Styrene - butadiene made of rubber or the like rubber adhesive, a silicone-based adhesive, an alkali metal silicate, inorganic adhesive or the like made of a low-melting glass. Among these adhesives for dry laminating, a polyurethane system in which a decrease in adhesion strength and delamination due to long-term outdoor use of the protective film 11 for solar cell modules is prevented, and deterioration such as yellowing is further reduced. Adhesives, particularly polyester urethane adhesives are preferred. The curing agent is preferably an aliphatic polyisocyanate with little thermal yellowing.
 上記溶融押出樹脂としては、例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂、酸変性ポリエチレン系樹脂、酸変性ポリプロピレン系樹脂、エチレン-アクリル酸又はメタクリル酸共重合体、サーリン系樹脂、エチレン-酢酸ビニル共重合体、ポリ酢酸ビニル系樹脂、エチレン-アクリル酸エステル又はメタクリル酸エステル共重合体、ポリスチレン系樹脂、ポリ塩化ビニル系樹脂等の熱可塑性樹脂の1種又は2種以上を使用することができる。なお、上記溶融押出樹脂を用いた押出ラミネート法を採用する場合、より強固な接着強度を得るために、接着剤を介して積層されるフィルム(又は層)の積層対向面に上述のアンカーコート処理等の表面処理を施すとよい。 Examples of the melt-extruded resin include a polyethylene resin, a polypropylene resin, an acid-modified polyethylene resin, an acid-modified polypropylene resin, an ethylene-acrylic acid or methacrylic acid copolymer, a Surlyn resin, and an ethylene-vinyl acetate copolymer. One type or two or more types of thermoplastic resins such as a polymer, a polyvinyl acetate resin, an ethylene-acrylic acid ester or a methacrylic acid ester copolymer, a polystyrene resin, and a polyvinyl chloride resin can be used. In addition, when adopting the extrusion laminating method using the above melt-extruded resin, in order to obtain stronger adhesive strength, the above-described anchor coat treatment is performed on the lamination facing surface of the film (or layer) laminated via the adhesive. A surface treatment such as the above may be performed.
 上記接着剤の積層量(固形分換算)の下限としては、1g/mが好ましく、3g/mが特に好ましい。一方、接着剤の積層量の上限としては、20g/mが好ましく、15g/mが特に好ましい。接着剤の積層量が上記下限未満の場合、接着強度や欠陥封止機能が得られないおそれがある。逆に、接着剤の積層量が上記上限を超える場合、積層強度や耐久性が低下するおそれがある。 As a minimum of the amount of lamination of the above-mentioned adhesive (solid content conversion), 1 g / m 2 is preferred and 3 g / m 2 is especially preferred. On the other hand, as an upper limit of the lamination amount of the adhesive, 20 g / m 2 is preferable, and 15 g / m 2 is particularly preferable. When the amount of the adhesive layered is less than the above lower limit, the adhesive strength and the defect sealing function may not be obtained. On the other hand, when the lamination amount of the adhesive exceeds the above upper limit, the lamination strength and durability may be lowered.
 なお、上記ラミネート用接着剤又は溶融押出樹脂中には、取扱性、耐熱性、耐候性、機械的性質等を改良、改質する目的で、例えば、溶媒、滑剤、架橋剤、酸化防止剤、帯電防止剤、充填剤、強化繊維、補強剤、難燃剤、耐炎剤、発泡剤、防カビ剤、顔料の種々の添加剤を適宜混合することができる。 In addition, in the adhesive for laminating or the melt-extruded resin, for the purpose of improving and modifying handling properties, heat resistance, weather resistance, mechanical properties, etc., for example, a solvent, a lubricant, a crosslinking agent, an antioxidant, Various additives such as an antistatic agent, a filler, a reinforcing fiber, a reinforcing agent, a flame retardant, a flame retardant, a foaming agent, an antifungal agent, and a pigment can be appropriately mixed.
 当該太陽電池モジュール用保護フィルム11は、上記図1の太陽電池モジュール用保護フィルム1と同様に、容易かつ確実に太陽電池モジュールの充填剤層に熱融着できる。また、当該太陽電池モジュール用保護フィルム11は、耐加水分解層13を備えるため、高い耐久性及び耐候性を発揮する。 The solar cell module protective film 11 can be heat-sealed to the filler layer of the solar cell module easily and reliably as in the solar cell module protective film 1 of FIG. Moreover, since the said protective film 11 for solar cell modules is equipped with the hydrolysis-resistant layer 13, it exhibits high durability and a weather resistance.
[第三実施形態]
 次に、図3及び図4(ロ)に示す上記図1及び図4(イ)並びに図2とは異なる形態に係る太陽電池モジュール用バックシートについて説明する。図3に示す当該太陽電池モジュール用保護フィルム111は、熱融着樹脂層3、ガスバリア層12、及び耐加水分解層13が表面側(受光側)からこの順に積層されている。
[Third embodiment]
Next, the back sheet for a solar cell module according to the embodiment shown in FIGS. 1 and 4A and FIG. 2 shown in FIGS. 3 and 4B will be described. In the protective film 111 for solar cell module shown in FIG. 3, the heat sealing resin layer 3, the gas barrier layer 12, and the hydrolysis resistant layer 13 are laminated in this order from the surface side (light receiving side).
 熱融着樹脂層3及び耐加水分解層13は上記図2の太陽電池モジュール用保護フィルム11と同様であるため、同一符号を付して説明を省略する。 Since the heat-sealing resin layer 3 and the hydrolysis-resistant layer 13 are the same as the solar cell module protective film 11 shown in FIG. 2, the same reference numerals are given and description thereof is omitted.
<ガスバリア層>
 ガスバリア層12は、水素ガス、酸素ガス等のガスの透過を低減する機能を有する層である。このガスバリア層12は、基材フィルムと、この基材フィルムに積層された無機酸化層とを備えている。
<Gas barrier layer>
The gas barrier layer 12 is a layer having a function of reducing permeation of gas such as hydrogen gas and oxygen gas. The gas barrier layer 12 includes a base film and an inorganic oxide layer laminated on the base film.
 このガスバリア層12の基材フィルムは合成樹脂を主成分として形成されている。この基材フィルムの主成分の合成樹脂としては、例えばポリエチレン系樹脂、ポリプロピレン系樹脂、環状ポリオレフィン系樹脂、ポリスチレン系樹脂、アクリロニトリル-スチレン共重合体(AS樹脂)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、ポリ塩化ビニル系樹脂、フッ素系樹脂、ポリ(メタ)アクリル系樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリアミドイミド系樹脂、ポリアリールフタレート系樹脂、シリコーン系樹脂、ポリスルホン系樹脂、ポリフェニレンスルフィド系樹脂、ポリエーテルスルホン系樹脂、ポリウレタン系樹脂、アセタール系樹脂、セルロース系樹脂等が挙げられる。これらの中でも耐熱性、耐候性等の諸機能面及び価格面のバランスが良好なポリエチレンテレフタレートが特に好ましい。また基材フィルムの成形方法や基材フィルムの形成材料中の添加剤等に関しては上記熱融着樹脂層3と同様とすることができる。 The base film of the gas barrier layer 12 is formed with a synthetic resin as a main component. Examples of the main component synthetic resin of the base film include polyethylene resin, polypropylene resin, cyclic polyolefin resin, polystyrene resin, acrylonitrile-styrene copolymer (AS resin), and acrylonitrile-butadiene-styrene copolymer. (ABS resin), polyvinyl chloride resin, fluorine resin, poly (meth) acrylic resin, polycarbonate resin, polyester resin, polyamide resin, polyimide resin, polyamideimide resin, polyarylphthalate resin, Examples include silicone resins, polysulfone resins, polyphenylene sulfide resins, polyether sulfone resins, polyurethane resins, acetal resins, and cellulose resins. Among these, polyethylene terephthalate having a good balance between various functions such as heat resistance and weather resistance and price is particularly preferable. In addition, the method for forming the base film, the additive in the base film forming material, and the like can be the same as those of the heat-sealing resin layer 3.
 上記基材フィルムの厚さ(平均厚さ)の下限としては、7μmが好ましく、10μmがより好ましい。一方、基材フィルムの厚さの上限としては、20μmが好ましく、15μmがより好ましい。基材フィルムの厚さが上記下限未満の場合、無機酸化物層を形成するための蒸着加工の際にカールが発生しやすくなってしまう、取扱いが困難になる等の不都合が発生するおそれがある。逆に、基材フィルムの厚さが上記上限を超える場合、太陽電池モジュールの薄型化及び軽量化の要請に反することになる。 The lower limit of the thickness (average thickness) of the base film is preferably 7 μm and more preferably 10 μm. On the other hand, as an upper limit of the thickness of a base film, 20 micrometers is preferable and 15 micrometers is more preferable. When the thickness of the base film is less than the above lower limit, there is a possibility that inconveniences such as curling easily occur during vapor deposition for forming the inorganic oxide layer, and handling becomes difficult. . On the other hand, when the thickness of the base film exceeds the above upper limit, it is contrary to the demand for thinning and lightening of the solar cell module.
 無機酸化物層は、酸素、水蒸気等に対するガスバリア性を発現するための層であり、基材フィルムの裏面に無機酸化物を蒸着することで形成される。この無機酸化物層を形成する蒸着手段としては、合成樹脂製の基材フィルムに収縮、黄変等の劣化を招来することなく無機酸化物が蒸着できれば特に限定されるものではなく、(a)真空蒸着法、スパッタリング法、イオンプレーティング法、イオンクラスタービーム法等の物理気相成長法(Physical Vapor Deposition法;PVD法)、(b)プラズマ化学気相成長法、熱化学気相成長法、光化学気相成長法等の化学気相成長法(Chemical Vapor Deposition法;CVD法)等が採用される。これらの蒸着法の中でも、生産性が高く良質な無機酸化物層が形成できる真空蒸着法やイオンプレーティング法が好ましい。 The inorganic oxide layer is a layer for expressing gas barrier properties against oxygen, water vapor, and the like, and is formed by depositing an inorganic oxide on the back surface of the base film. The vapor deposition means for forming this inorganic oxide layer is not particularly limited as long as the inorganic oxide can be vapor deposited on the synthetic resin base film without causing deterioration such as shrinkage and yellowing. (A) Physical vapor deposition methods (Physical Vapor Deposition method; PVD method) such as vacuum deposition method, sputtering method, ion plating method, ion cluster beam method, (b) Plasma chemical vapor deposition method, thermal chemical vapor deposition method, A chemical vapor deposition method (Chemical Vapor Deposition method; CVD method) such as a photochemical vapor deposition method is employed. Among these vapor deposition methods, a vacuum vapor deposition method and an ion plating method that can form a high-quality inorganic oxide layer with high productivity are preferable.
 無機酸化物層を構成する無機酸化物としては、ガスバリア性を有するものであれば特に限定されるものではなく、例えば酸化アルミニウム、酸化シリカ、酸化チタン、酸化ジルコニウム、酸化亜鉛、酸化スズ、酸化マグネシウム等が用いられ、中でもガスバリア性及び価格面のバランスが良好な酸化アルミニウム又は酸化シリカが特に好ましい。 The inorganic oxide constituting the inorganic oxide layer is not particularly limited as long as it has gas barrier properties. For example, aluminum oxide, silica oxide, titanium oxide, zirconium oxide, zinc oxide, tin oxide, magnesium oxide Among them, aluminum oxide or silica oxide having a good balance between gas barrier properties and price is particularly preferable.
 無機酸化物層の厚さ(平均厚さ)の下限としては、3Åが好ましく、400Åがより好ましい。一方、無機酸化物層の厚さの上限としては、3000Åが好ましく、800Åがより好ましい。無機酸化物層の厚さが上記下限未満の場合、ガスバリア性が低下するおそれがある。一方、無機酸化物層の厚さが上記上限を超える場合、無機酸化物層のフレキシビリティーが低下し、クラック等の欠陥が発生しやすくなる。 The lower limit of the thickness (average thickness) of the inorganic oxide layer is preferably 3 mm, more preferably 400 mm. On the other hand, the upper limit of the thickness of the inorganic oxide layer is preferably 3000 mm, more preferably 800 mm. When the thickness of the inorganic oxide layer is less than the above lower limit, the gas barrier property may be lowered. On the other hand, when the thickness of the inorganic oxide layer exceeds the above upper limit, the flexibility of the inorganic oxide layer is reduced, and defects such as cracks are likely to occur.
 無機酸化物層は、単層構造でもよく、2層以上の多層構造でもよい。このように無機酸化物層を多層構造とすることで、蒸着の際に懸かる熱負担の軽減によって基材フィルムの劣化が低減され、さらに基材フィルムと無機酸化物層との密着性等を改善することができる。また、上記物理気相成長法及び化学気相成長法における蒸着条件は、基材フィルムの樹脂種類、無機酸化物層の厚さ等に応じて適宜設計される。 The inorganic oxide layer may have a single layer structure or a multilayer structure of two or more layers. By making the inorganic oxide layer into a multilayer structure in this way, the deterioration of the base film is reduced by reducing the thermal burden applied during vapor deposition, and the adhesion between the base film and the inorganic oxide layer is further improved. can do. The vapor deposition conditions in the physical vapor deposition method and the chemical vapor deposition method are appropriately designed according to the resin type of the base film, the thickness of the inorganic oxide layer, and the like.
 また、基材フィルムと無機酸化物層との密接着性等を向上させるため、基材フィルムの蒸着面に表面処理を施すとよい。このような密着性向上表面処理としては、例えば(a)コロナ放電処理、オゾン処理、酸素ガス若しくは窒素ガス等を用いた低温プラズマ処理、グロー放電処理、化学薬品等を用いた酸化処理や、(b)プライマーコート処理、アンダーコート処理、アンカーコート処理、蒸着アンカーコート処理等が挙げられる。これらの表面処理の中でも、無機酸化物層との接着強度が向上し、緻密かつ均一な無機酸化物層の形成に寄与するコロナ放電処理及びアンカーコート処理が好ましい。 Also, in order to improve the close adhesion between the base film and the inorganic oxide layer, the surface of the base film is preferably subjected to a surface treatment. Examples of such adhesion improving surface treatment include (a) corona discharge treatment, ozone treatment, low temperature plasma treatment using oxygen gas or nitrogen gas, glow discharge treatment, oxidation treatment using chemicals, and the like ( b) Primer coat treatment, undercoat treatment, anchor coat treatment, vapor deposition anchor coat treatment and the like. Among these surface treatments, corona discharge treatment and anchor coat treatment that improve adhesion strength with the inorganic oxide layer and contribute to the formation of a dense and uniform inorganic oxide layer are preferable.
 上記アンカーコート処理に用いるアンカーコート剤としては、例えばポリエステル系アンカーコート剤、ポリアミド系アンカーコート剤、ポリウレタン系アンカーコート剤、エポキシ系アンカーコート剤、フェノール系アンカーコート剤、(メタ)アクリル系アンカーコート剤、ポリ酢酸ビニル系アンカーコート剤、ポリエチレンアルイハポリプロピレン等のポリオレフィン系アンカーコート剤、セルロース系アンカーコート剤等が挙げられる。これらのアンカーコート剤の中でも、基材フィルムと無機酸化物層との接着強度をより向上させることができるポリエステル系アンカーコート剤が特に好ましい。 Examples of the anchor coating agent used for the anchor coating treatment include a polyester anchor coating agent, a polyamide anchor coating agent, a polyurethane anchor coating agent, an epoxy anchor coating agent, a phenol anchor coating agent, and a (meth) acrylic anchor coating. Agents, polyvinyl acetate anchor coating agents, polyolefin anchor coating agents such as polyethylene aly polypropylene, and cellulose anchor coating agents. Among these anchor coating agents, polyester anchor coating agents that can further improve the adhesive strength between the base film and the inorganic oxide layer are particularly preferable.
 上記アンカーコート剤のコーティング量(固形分換算)の下限としては、0.1g/mが好ましく、1g/mがより好ましい。一方、当該アンカーコート剤のコーティング量の上限としては、5g/mが好ましく、3g/mがより好ましい。アンカーコート剤のコーティング量が上記下限未満の場合、基材フィルムと無機酸化物層との密着性向上効果が小さくなるおそれがある。一方、当該アンカーコート剤のコーティング量が上記上限を超える場合、ガスバリア層12の強度、耐久性等が低下するおそれがある。 The lower limit of the coating amount of the anchor coating agent (in terms of solid content), preferably from 0.1g / m 2, 1g / m 2 is more preferable. In contrast, the upper limit of the amount of coating of the anchor coating agent is preferably 5g / m 2, 3g / m 2 is more preferable. When the coating amount of the anchor coating agent is less than the above lower limit, the effect of improving the adhesion between the base film and the inorganic oxide layer may be reduced. On the other hand, when the coating amount of the anchor coating agent exceeds the above upper limit, the strength, durability, etc. of the gas barrier layer 12 may be lowered.
 なお、上記アンカーコート剤中には、密着性向上のためのシランカップリング剤、基材フィルムとのブロッキングを防止するためのブロッキング防止剤、耐候性等を向上させるための紫外線吸収剤等の各種添加剤を適宜混合することができる。この添加剤の混合量としては、添加剤の効果発現とアンカーコート剤の機能阻害とのバランスから0.1重量%以上10重量%以下が好ましい。 In addition, in the above-mentioned anchor coating agent, there are various silane coupling agents for improving adhesion, anti-blocking agents for preventing blocking with a base film, ultraviolet absorbers for improving weather resistance, etc. Additives can be mixed as appropriate. The mixing amount of the additive is preferably 0.1% by weight or more and 10% by weight or less from the balance between the effect expression of the additive and the function inhibition of the anchor coat agent.
 当該太陽電池モジュール用保護フィルム111は、例えば、当該太陽電池モジュール用保護フィルム111を構成する各層を形成し、上述の接着剤を用いてこれらの層を接着し積層していくことで得ることができる。また、接着剤を用いずに、ある層の裏面に他の層の組成物を塗工して積層する方法を用いて太陽電池モジュール用保護フィルム111を製造することもできる。 The said protective film 111 for solar cell modules can be obtained by forming each layer which comprises the said protective film 111 for said solar cell modules, and adhere | attaching and laminating | stacking these layers using the above-mentioned adhesive agent, for example. it can. Moreover, the protective film 111 for solar cell modules can also be manufactured using the method of apply | coating and laminating | stacking the composition of another layer on the back surface of a certain layer, without using an adhesive agent.
 当該太陽電池モジュール用保護フィルム111は、上記図1の太陽電池モジュール用保護フィルム1と同様に、容易かつ確実に太陽電池モジュールの充填剤層に熱融着できる。また、当該太陽電池モジュール用保護フィルム111は、ガスバリア層12を備えるため、酸素、水蒸気等に対する高いガスバリア性を有する。 The solar cell module protective film 111 can be easily and reliably heat-sealed to the solar cell module filler layer in the same manner as the solar cell module protective film 1 shown in FIG. Moreover, since the said protective film 111 for solar cell modules is provided with the gas barrier layer 12, it has high gas barrier property with respect to oxygen, water vapor | steam, etc.
<太陽電池モジュール121>
 図4(ロ)の太陽電池モジュール121は、当該太陽電池モジュール用保護フィルム111と、当該太陽電池モジュール用保護フィルム111の表面に熱融着された充填剤層22及び24と、この充填剤層22及び24の間に配設される太陽電池セル23と、充填剤層24の表面に配設される透光性基板25とを備える。
<Solar cell module 121>
The solar cell module 121 of FIG. 4 (b) includes the solar cell module protective film 111, the filler layers 22 and 24 thermally bonded to the surface of the solar cell module protective film 111, and the filler layer. Solar cell 23 disposed between 22 and 24, and translucent substrate 25 disposed on the surface of filler layer 24.
 当該太陽電池モジュール121は、上述のように太陽電池モジュール用保護フィルム111の熱融着樹脂層3を容易かつ確実に充填剤層22に熱融着させることができる。当該太陽電池モジュール121は、ガスバリア層12を備えることで、酸素、水蒸気等に対するガスバリア性等が向上され、屋外の長時間の使用に好適に用いることができる。加えて、当該太陽電池モジュール121は、耐加水分解層13を備えることで、耐久性、耐候性等が向上されるため、屋根据え置き型の太陽電池モジュールなどに好適に使用することができる。 The solar cell module 121 can easily and reliably heat-fuse the heat-sealing resin layer 3 of the solar cell module protective film 111 to the filler layer 22 as described above. Since the solar cell module 121 includes the gas barrier layer 12, the gas barrier property against oxygen, water vapor, and the like is improved, and the solar cell module 121 can be suitably used for outdoor use for a long time. In addition, since the solar cell module 121 includes the hydrolysis-resistant layer 13 and durability and weather resistance are improved, the solar cell module 121 can be suitably used for a roof-standing solar cell module.
[その他の実施形態]
 本発明の太陽電池モジュール用保護フィルム及び太陽電池モジュールは上記実施形態に限定されるものではない。例えば、当該太陽電池モジュール用保護フィルムは、熱融着樹脂層、ガスバリア層及び耐加水分解層に加えて他の層(合成樹脂層、金属層、無機酸化物層等)やフィルムが積層されてもよい。このように他の層又はフィルムを積層することで、当該太陽電池モジュール用保護フィルムの耐電圧性、ガスバリア性、耐候性、耐久性等の諸特性を格段に向上させることができる。
[Other Embodiments]
The protective film for solar cell modules and the solar cell module of the present invention are not limited to the above embodiment. For example, the protective film for the solar cell module is formed by laminating other layers (synthetic resin layer, metal layer, inorganic oxide layer, etc.) and film in addition to the heat fusion resin layer, the gas barrier layer, and the hydrolysis resistant layer. Also good. Thus, by laminating | stacking another layer or film, various characteristics, such as the voltage resistance of the said solar cell module protective film, gas-barrier property, a weather resistance, and durability, can be improved significantly.
 また、熱融着樹脂層の架橋度を向上させるため、形成材料中に、例えば有機過酸化物、シランカップリング剤等を添加してもよい。 Further, in order to improve the degree of crosslinking of the heat-sealing resin layer, for example, an organic peroxide, a silane coupling agent or the like may be added to the forming material.
 上記有機過酸化物としては、反応性の観点から、半減期10時間の分解温度が145℃以下のものを採用することが好ましい。この半減期10時間の分解温度が145℃以下の有機過酸化物としては、例えば、ジラウロイルパーオキサイド、1,1,3,3,-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、ジベンゾイルパーオキサイド、t-アミルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシマレイン酸、1,1-ジ(t-アミルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ジ(t-アミルパーオキシ)シクロヘキサン、t-アミルパーオキシイソノナノエート、t-アミルパーオキシノルマルオクトエート、1,1-ジ(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ジ(t-ブチルパーオキシ)シクロヘキサン、t-ブチルパーオキシイソプロピルカーボネート、t-ブチルパーオキシ-2-エチルヘキシルカーボネート、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、t-アミル-パーオキシベンゾエート、t-ブチルパーオキシアセテート、t-ブチルパーオキシイソノナノエート、t-ブチルパーオキシベンゾエート、n-ブチル-4,4-ジ-(t-ブチルパーオキシ)バレレート、ジ(2-t-ブチルパーオキシプロピル)ベンゼン、ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3等を用いることができる。これら有機過酸化物は、1種単独で用いることも可能であり、また2種以上を併用することも可能である。 As the organic peroxide, it is preferable to employ one having a decomposition temperature of 145 ° C. or less with a half-life of 10 hours from the viewpoint of reactivity. Examples of the organic peroxide having a half-life decomposition time of 10 hours and a temperature of 145 ° C. or less include dilauroyl peroxide, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, Benzoyl peroxide, t-amylperoxy-2-ethylhexanoate, t-butylperoxy-2-ethylhexanoate, t-butylperoxyisobutyrate, t-butylperoxymaleic acid, 1,1 -Di (t-amylperoxy) -3,3,5-trimethylcyclohexane, 1,1-di (t-amylperoxy) cyclohexane, t-amylperoxyisononanoate, t-amylperoxynormal octoate 1,1-di (t-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-di (t-butyl) Peroxy) cyclohexane, t-butylperoxyisopropyl carbonate, t-butylperoxy-2-ethylhexyl carbonate, 2,5-dimethyl-2,5-di (benzoylperoxy) hexane, t-amyl-peroxybenzoate, t -Butylperoxyacetate, t-butylperoxyisononanoate, t-butylperoxybenzoate, n-butyl-4,4-di- (t-butylperoxy) valerate, di (2-t-butylperoxy) Propyl) benzene, dicumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, t-butylcumyl peroxide, di-t-butyl peroxide, 2,5-dimethyl- Use 2,5-di (t-butylperoxy) hexyne-3, etc. It can be. These organic peroxides can be used alone or in combination of two or more.
 上記有機過酸化物の配合量は、合成樹脂100質量部に対して0.05質量部以上5質量部以下が好ましく、0.1質量部以上2.0質量部以下がより好ましい。有機過酸化物の配合量が上記下限より小さいと、架橋構造の形成が不十分となる可能性がある。一方で、有機過酸化物の配合量が上記上限を超えると、過度の反応による分解等によって合成樹脂の劣化が生ずるおそれがある。 The compounding amount of the organic peroxide is preferably 0.05 parts by mass or more and 5 parts by mass or less, and more preferably 0.1 parts by mass or more and 2.0 parts by mass or less with respect to 100 parts by mass of the synthetic resin. If the amount of the organic peroxide is less than the above lower limit, the formation of a crosslinked structure may be insufficient. On the other hand, when the compounding amount of the organic peroxide exceeds the above upper limit, the synthetic resin may be deteriorated due to decomposition due to excessive reaction or the like.
 上記シランカップリング剤としては、例えば、ビニルトリエトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、γ-メタクリロキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-クロロプロピルメトキシシラン、ビニルトリクロロシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-β(アミノエチル)-γ-アミノプロピルトリメトキシシラン等を用いることが可能である。 Examples of the silane coupling agent include vinyltriethoxysilane, vinyltris (β-methoxyethoxy) silane, γ-methacryloxypropyltrimethoxysilane, vinyltriacetoxysilane, γ-glycidoxypropyltrimethoxysilane, γ- Glycidoxypropyltriethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-chloropropylmethoxysilane, vinyltrichlorosilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-β (aminoethyl) -γ-aminopropyltrimethoxysilane or the like can be used.
 上記シランカップリング剤の配合量は、合成樹脂100質量部に対して0.1質量部以上5質量部以下であることが好ましい。シランカップリング剤の配合量が上記下限より小さいと、接着性が低下するおそれがある。一方で、シランカップリング剤の配合量が上記上限を超えると、充分な耐熱性、耐候性が得られないおそれがある。 The blending amount of the silane coupling agent is preferably 0.1 parts by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the synthetic resin. If the blending amount of the silane coupling agent is smaller than the above lower limit, the adhesiveness may be lowered. On the other hand, if the amount of the silane coupling agent exceeds the upper limit, sufficient heat resistance and weather resistance may not be obtained.
 また、上記実施形態では、無機酸化物層を基材フィルムに蒸着させてガスバリアフィルムを形成し、このガスバリアフィルムを他の層と積層したが、無機酸化物層を熱融着樹脂層の裏面や耐加水分解層の表面等に直接蒸着することでガスバリア層を形成してもよい。なお、この蒸着方法としては上述のPVD法やCVD法を利用することができる。 In the above embodiment, an inorganic oxide layer is deposited on a base film to form a gas barrier film, and this gas barrier film is laminated with other layers. You may form a gas barrier layer by vapor-depositing directly on the surface etc. of a hydrolysis-resistant layer. As the vapor deposition method, the PVD method or the CVD method described above can be used.
 さらに、ガスバリア層として、アルミニウム箔等の金属箔を用いることもできる。このアルミニウム箔の材質としては、アルミニウム又はアルミニウム合金が挙げられ、アルミニウム-鉄系合金(軟質材)が好ましい。このアルミニウム-鉄系合金における鉄含有量としては、0.3%以上9.0%以下が好ましく、0.7%以上2.0%以下が特に好ましい。この鉄含有量が上記下限未満の場合、ピンホールの発生の防止の効果が不十分になるおそれがある。逆に、鉄含有量が上記上限を超える場合、柔軟性が阻害され、加工性が低下するおそれがある。また、アルミニウム箔の材料としては、シワやピンホールを防止する観点から焼きなまし処理を行った柔軟性アルミニウムが好ましい。 Furthermore, a metal foil such as an aluminum foil can be used as the gas barrier layer. Examples of the material of the aluminum foil include aluminum or an aluminum alloy, and an aluminum-iron alloy (soft material) is preferable. The iron content in the aluminum-iron alloy is preferably 0.3% or more and 9.0% or less, and particularly preferably 0.7% or more and 2.0% or less. When this iron content is less than the above lower limit, the effect of preventing the generation of pinholes may be insufficient. On the other hand, when the iron content exceeds the above upper limit, flexibility is hindered and workability may be reduced. Moreover, as a material of the aluminum foil, flexible aluminum subjected to annealing treatment is preferable from the viewpoint of preventing wrinkles and pinholes.
 このアルミニウム箔の厚さ(平均厚さ)の下限としては、6μmが好ましく、15μmが特に好ましい。また、アルミニウム箔の厚さの上限としては、30μmが好ましく、20μmが特に好ましい。アルミニウム箔の厚さが上記下限未満の場合、加工の際にアルミニウム箔の破断が起きやすくなり、またピンホール等に起因してガスバリア性が低下するおそれがある。逆に、アルミニウム箔の厚さが上記上限を超える場合、加工の際にクラック等が発生するおそれがあり、また当該太陽電池モジュール用保護フィルムの厚さや重量が増大して薄型軽量化の要請に反することとなる。 The lower limit of the thickness (average thickness) of the aluminum foil is preferably 6 μm, and particularly preferably 15 μm. Moreover, as an upper limit of the thickness of aluminum foil, 30 micrometers is preferable and 20 micrometers is especially preferable. When the thickness of the aluminum foil is less than the above lower limit, the aluminum foil is liable to break during processing, and the gas barrier property may be lowered due to pinholes or the like. On the contrary, if the thickness of the aluminum foil exceeds the above upper limit, cracks or the like may occur during processing, and the thickness and weight of the solar cell module protective film increase, resulting in a request for thin and light weight. It will be contrary.
 また、上記アルミニウム箔の表面には、溶解、腐食を防止する観点から例えばクロメート処理、リン酸塩処理、潤滑性樹脂被覆処理等の表面処理が施されてもよく、接着性を促進する観点からカップリング処理等が施されてもよい。 In addition, the surface of the aluminum foil may be subjected to surface treatment such as chromate treatment, phosphate treatment, and lubricating resin coating treatment from the viewpoint of preventing dissolution and corrosion, and from the viewpoint of promoting adhesion. A coupling treatment or the like may be performed.
 さらに、ガスバリア層として、光学等方性と水蒸気遮断性に特に優れているシクロオレフィンポリマー(COC)製のフィルムを用いてもよい。 Furthermore, as the gas barrier layer, a film made of cycloolefin polymer (COC) that is particularly excellent in optical isotropy and water vapor blocking property may be used.
 なお、当該太陽電池モジュール用保護フィルムは、上記実施形態のように太陽電池モジュールの裏面側に積層されるバックシートとして用いることができるが、太陽電池モジュールの表面側に積層されるいわゆるフロントシートとしても用いることができる。また、太陽電池モジュールの表面側及び裏面側の両方に積層することもできる。 In addition, although the said protective film for solar cell modules can be used as a back sheet laminated | stacked on the back surface side of a solar cell module like the said embodiment, as what is called a front sheet laminated | stacked on the surface side of a solar cell module. Can also be used. Moreover, it can also laminate | stack on both the surface side and back surface side of a solar cell module.
 以上のように、本発明の太陽電池モジュール用保護フィルムは太陽電池モジュールと容易かつ確実に熱融着でき、太陽電池モジュールの生産性及び品質を改善できる。そのため、本発明の太陽電池モジュール用保護フィルム及びこれを用いた太陽電池モジュールは、太陽電池の構成要素として有用であり、好適に使用できる。 As described above, the protective film for a solar cell module of the present invention can be easily and reliably heat-sealed with the solar cell module, and the productivity and quality of the solar cell module can be improved. Therefore, the protective film for solar cell modules of the present invention and the solar cell module using the same are useful as a constituent element of the solar cell and can be suitably used.
 1 太陽電池モジュール用保護フィルム
 3 熱融着樹脂層
 11、111 太陽電池モジュール用保護フィルム
 12 ガスバリア層
 13 耐加水分解層
 21、121 太陽電池モジュール
 22 充填剤層
 23 太陽電池セル
 24 充填剤層
 25 透光性基板
 31 太陽電池モジュール
 32 透光性基板
 33 充填剤層
 34 太陽電池セル
 35 充填剤層
 36 熱融着層
 37 基材層
 38 ガスバリア層
 39 耐加水分解層
 40 バックシート
 A 表面方向
DESCRIPTION OF SYMBOLS 1 Protective film for solar cell modules 3 Thermal fusion resin layer 11, 111 Protective film for solar cell modules 12 Gas barrier layer 13 Hydrolysis resistant layer 21, 121 Solar cell module 22 Filler layer 23 Solar cell 24 Filler layer 25 Permeability Photoelectric substrate 31 Solar cell module 32 Translucent substrate 33 Filler layer 34 Solar cell 35 Filler layer 36 Thermal fusion layer 37 Base layer 38 Gas barrier layer 39 Hydrolysis resistant layer 40 Back sheet A Surface direction

Claims (11)

  1.  熱融着樹脂層を備え、
     この熱融着樹脂層の主成分である合成樹脂が電子線照射により架橋されている太陽電池モジュール用保護フィルム。
    It has a heat-sealing resin layer,
    A protective film for a solar cell module, in which a synthetic resin as a main component of the heat-sealing resin layer is crosslinked by electron beam irradiation.
  2.  上記熱融着樹脂層が架橋剤を含有する請求項1に記載の太陽電池モジュール用保護フィルム。 The solar cell module protective film according to claim 1, wherein the heat-sealing resin layer contains a crosslinking agent.
  3.  上記合成樹脂が、ポリプロピレンである請求項2に記載の太陽電池モジュール用保護フィルム。 The protective film for a solar cell module according to claim 2, wherein the synthetic resin is polypropylene.
  4.  上記熱融着樹脂層中に顔料が分散含有されている請求項1、請求項2又は請求項3に記載の太陽電池モジュール用保護フィルム。 4. The protective film for a solar cell module according to claim 1, wherein a pigment is dispersed and contained in the heat sealing resin layer.
  5.  上記電子線の照射線量が5kGy以上300kGy以下である請求項1から請求項4のいずれか1項に記載の太陽電池モジュール用保護フィルム。 The protective film for a solar cell module according to any one of claims 1 to 4, wherein an irradiation dose of the electron beam is 5 kGy or more and 300 kGy or less.
  6.  上記熱融着樹脂層のみからなる請求項1から請求項5のいずれか1項に記載の太陽電池モジュール用保護フィルム。 The protective film for a solar cell module according to any one of claims 1 to 5, comprising only the heat-sealing resin layer.
  7.  上記熱融着樹脂層の平均厚さが40μm以上500μm以下である請求項6に記載の太陽電池モジュール用保護フィルム。 The protective film for a solar cell module according to claim 6, wherein the average thickness of the heat-sealing resin layer is 40 µm or more and 500 µm or less.
  8.  上記熱融着樹脂層の一方の面側に耐加水分解層をさらに備える請求項1から請求項5のいずれか1項に記載の太陽電池モジュール用保護フィルム。 The solar cell module protective film according to any one of claims 1 to 5, further comprising a hydrolysis-resistant layer on one surface side of the heat-sealing resin layer.
  9.  上記熱融着樹脂層の一方の面側にガスバリア層をさらに備える請求項1から請求項5のいずれか1項に記載の太陽電池モジュール用保護フィルム。 The solar cell module protective film according to any one of claims 1 to 5, further comprising a gas barrier layer on one surface side of the heat-sealing resin layer.
  10.  太陽電池モジュールのバックシートとして用いられる請求項1から請求項9のいずれか1項に記載の太陽電池モジュール用保護フィルム。 The protective film for a solar cell module according to any one of claims 1 to 9, which is used as a back sheet of a solar cell module.
  11.  請求項1から請求項10のいずれか1項に記載の太陽電池モジュール用保護フィルムと、
     この太陽電池モジュール用保護フィルムの表面に熱融着された充填材層と、
     この充填材層内に配設される太陽電池セルと、
     充填層の表面に配設される透光性基板と
     を備える太陽電池モジュール。
    A protective film for a solar cell module according to any one of claims 1 to 10,
    A filler layer thermally fused to the surface of the protective film for the solar cell module;
    Solar cells disposed in the filler layer;
    A solar cell module comprising: a translucent substrate disposed on a surface of the filling layer.
PCT/JP2013/068037 2012-07-03 2013-07-01 Protective film for solar cell modules, and solar cell module using same WO2014007212A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012149727A JP2014013791A (en) 2012-07-03 2012-07-03 Protection film for solar battery module, and solar battery module using the same
JP2012-149727 2012-07-03

Publications (1)

Publication Number Publication Date
WO2014007212A1 true WO2014007212A1 (en) 2014-01-09

Family

ID=49881968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068037 WO2014007212A1 (en) 2012-07-03 2013-07-01 Protective film for solar cell modules, and solar cell module using same

Country Status (2)

Country Link
JP (1) JP2014013791A (en)
WO (1) WO2014007212A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021137125A1 (en) * 2019-12-30 2021-07-08 3M Innovative Properties Company Ultraviolet-c radiation-protective films and methods of making the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019087798A1 (en) * 2017-10-30 2019-05-09 パナソニックIpマネジメント株式会社 Solar cell module and mobile body

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1025357A (en) * 1996-07-12 1998-01-27 Dainippon Printing Co Ltd Transparent and composite film
JP2001111077A (en) * 1999-10-12 2001-04-20 Dainippon Printing Co Ltd Backside protecting sheet for solar cell module and solar cell module using the same
JP2007266382A (en) * 2006-03-29 2007-10-11 Toppan Printing Co Ltd Backseat for solar cell module and solar cell module using same
JP2009249556A (en) * 2008-04-09 2009-10-29 Asahi Kasei E-Materials Corp Resin sealing sheet
JP2010212357A (en) * 2009-03-09 2010-09-24 Toppan Printing Co Ltd Rear surface protecting sheet for solar cell module and solar cell module
JP2010226044A (en) * 2009-03-25 2010-10-07 Asahi Kasei E-Materials Corp Method for manufacturing resin sealing sheet
JP2013051364A (en) * 2011-08-31 2013-03-14 Fujikura Ltd Back sheet for solar cell
JP2013080737A (en) * 2011-09-30 2013-05-02 Dainippon Printing Co Ltd Rear surface protective sheet for solar cell module and method for manufacturing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1025357A (en) * 1996-07-12 1998-01-27 Dainippon Printing Co Ltd Transparent and composite film
JP2001111077A (en) * 1999-10-12 2001-04-20 Dainippon Printing Co Ltd Backside protecting sheet for solar cell module and solar cell module using the same
JP2007266382A (en) * 2006-03-29 2007-10-11 Toppan Printing Co Ltd Backseat for solar cell module and solar cell module using same
JP2009249556A (en) * 2008-04-09 2009-10-29 Asahi Kasei E-Materials Corp Resin sealing sheet
JP2010212357A (en) * 2009-03-09 2010-09-24 Toppan Printing Co Ltd Rear surface protecting sheet for solar cell module and solar cell module
JP2010226044A (en) * 2009-03-25 2010-10-07 Asahi Kasei E-Materials Corp Method for manufacturing resin sealing sheet
JP2013051364A (en) * 2011-08-31 2013-03-14 Fujikura Ltd Back sheet for solar cell
JP2013080737A (en) * 2011-09-30 2013-05-02 Dainippon Printing Co Ltd Rear surface protective sheet for solar cell module and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021137125A1 (en) * 2019-12-30 2021-07-08 3M Innovative Properties Company Ultraviolet-c radiation-protective films and methods of making the same

Also Published As

Publication number Publication date
JP2014013791A (en) 2014-01-23

Similar Documents

Publication Publication Date Title
JP5945552B2 (en) Back sheet for solar cell module and solar cell module
JP5301107B2 (en) Back sheet for solar cell module and solar cell module using the same
EP1898470B1 (en) Use of a back sheet for photovoltaic modules and resulting photovoltaic module
JP5214087B2 (en) Back sheet for solar cell module and solar cell module using the same
JP2013145807A (en) Front sheet for solar cell module, and solar cell module including the same
JP2008085293A (en) Back sheet for photovoltaic cell module and photovoltaic cell module employing the same
JP2011096988A (en) Adhesive sheet for protecting back of solar cell module, and solar cell module using the same
JP2013065708A (en) Solar cell module, back sheet for solar cell module, spacer for arrangement between solar cells, and manufacturing method of solar cell module
JP5156172B2 (en) Back sheet for solar cell module and solar cell module using the same
JP5359393B2 (en) Solar cell module sealing sheet and solar cell module
WO2014007211A1 (en) Protective film for solar cell modules, and solar cell module using same
WO2014007212A1 (en) Protective film for solar cell modules, and solar cell module using same
JP5763021B2 (en) SOLAR CELL POLYMER SHEET, PROCESS FOR PRODUCING THE SAME, AND SOLAR CELL MODULE
WO2013121838A1 (en) Protective sheet for solar cell, method for manufacturing same, and solar cell module
JP2016195190A (en) Encapsulation material sheet for solar battery module and encapsulation material built-in back surface protection using the same
JP2013080880A (en) Solar cell module back sheet and solar cell module
JP6305082B2 (en) Protective sheet for solar cell, back sheet for solar cell, solar cell module and method for reworking solar cell module
JP2013016748A (en) Solar battery module back sheet and solar battery module
JP2013145801A (en) Protection film for solar battery module, and solar battery module using the same
JP6547463B2 (en) Sealing material sheet for solar cell module and sealing material integrated back surface protection sheet using the same
JP2014082337A (en) Solar cell module, solar cell protective sheet, and method of manufacturing solar cell module
JP2014082335A (en) Solar cell module and method of manufacturing solar cell module
WO2017006695A1 (en) Sealing material sheet for solar cell modules and sealing material-integrated backside protective sheet using same
ES2369521T3 (en) USE OF A REAR SHEET FOR PHOTOVOLTAIC MODULES AND RESULTING PHOTOVOLTAIC MODULE.
JP6686431B2 (en) Encapsulant sheet for solar cell module and solar cell module using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13813427

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13813427

Country of ref document: EP

Kind code of ref document: A1