WO2019087798A1 - Solar cell module and mobile body - Google Patents

Solar cell module and mobile body Download PDF

Info

Publication number
WO2019087798A1
WO2019087798A1 PCT/JP2018/038841 JP2018038841W WO2019087798A1 WO 2019087798 A1 WO2019087798 A1 WO 2019087798A1 JP 2018038841 W JP2018038841 W JP 2018038841W WO 2019087798 A1 WO2019087798 A1 WO 2019087798A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
solar cell
cell module
surface protective
protective layer
Prior art date
Application number
PCT/JP2018/038841
Other languages
French (fr)
Japanese (ja)
Inventor
剛士 植田
直樹 栗副
元彦 杉山
善光 生駒
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2019087798A1 publication Critical patent/WO2019087798A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell module and a mobile unit.
  • the present invention relates to a solar cell module and a mobile using a surface protection layer made of resin.
  • a solar cell module is generally formed of a plurality of solar cells, a sealing layer sealing the plurality of solar cells, and a surface layer and a back layer respectively disposed on both sides of the sealing layer. .
  • glass has been used as a surface protective layer of a solar cell module, but in recent years, a resin such as polycarbonate has come to be used instead of glass in order to reduce the weight of the solar cell module.
  • the solar cell module described in Patent Document 1 is disposed on the sealing layer formed by sealing the solar cell with a sealing material, and the side of the sealing layer on which sunlight is incident, and the resin is It is disclosed to have a structured surface layer. Moreover, it is disclosed that the solar cell module of patent document 1 has a back layer arrange
  • the solar cell module can be made lightweight, but the sealing layer is easily yellowed by using the solar cell module for a long time There is a fear. Therefore, it is desired to improve the design of the solar cell module and improve the light energy absorption efficiency by improving the yellowing of the sealing layer.
  • the present invention has been made in view of the problems of the prior art. And the object of the present invention is to provide a solar cell module and a movable body in which yellowing of the sealing layer is less likely to occur even when a resin surface protection layer is used.
  • a solar cell module concerning a first aspect of the present invention is provided with a surface protection layer formed of resin.
  • the solar cell module includes a barrier layer disposed on at least one surface of the surface protective layer and having an oxygen permeability of 1.0 ⁇ 10 ⁇ 5 mol / (m 2 ⁇ s ⁇ Pa) or less.
  • the solar cell module includes a sealing layer disposed below the surface protective layer and the barrier layer and sealing the photoelectric conversion unit, and a back surface protective layer disposed below the sealing layer.
  • a mobile according to a second aspect of the present invention comprises a solar cell module.
  • FIG. 1 is a plan view showing an example of a solar cell module according to the present embodiment.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 3 is a cross-sectional view showing another example of the solar cell module according to the present embodiment.
  • FIG. 4 is a cross-sectional view showing another example of the solar cell module according to the present embodiment.
  • FIG. 5 is a cross-sectional view showing another example of the solar cell module according to the present embodiment.
  • FIG. 6 is a cross-sectional view showing another example of the solar cell module according to the present embodiment.
  • FIG. 7 is a cross-sectional view showing another example of the solar cell module according to the present embodiment.
  • FIG. 8 is a cross-sectional view showing another example of the solar cell module according to the present embodiment.
  • FIG. 9 is a cross-sectional view showing another example of the solar cell module according to the present embodiment.
  • a light source side such as sunlight is referred to as a light receiving surface side and a surface side
  • a side opposite to the light receiving surface is referred to as a back surface side.
  • FIG. 1 is a plan view showing an example of a solar cell module 100 according to the present embodiment.
  • five solar battery cells 42 arranged in parallel in the y-axis direction are electrically connected in series by the interconnector 44 to form one solar battery cell string 46.
  • the interconnector 44 can electrically connect two adjacent solar cell strings 46.
  • four solar battery cell strings 46 arranged in parallel in the x-axis direction are electrically connected in series by the interconnector 44.
  • positioned at the photovoltaic module 100, and the photovoltaic cell string 46 are not specifically limited.
  • FIG. 2 is a cross-sectional view showing an example of a solar cell module 100 according to the present embodiment.
  • the solar cell module 100 according to the present embodiment includes a surface protection layer 10, a barrier layer 20, a sealing layer 30, and a back surface protection layer 50.
  • the barrier layer 20 is disposed on at least one surface of the surface protective layer 10
  • the sealing layer 30 is disposed below the surface protective layer 10 and the barrier layer 20, and the back protective layer 50 is disposed below the sealing layer 30. Be placed.
  • the sealing layer 30 seals the photoelectric conversion unit 40.
  • the surface protective layer 10 is disposed on the light receiving surface side with respect to the photoelectric conversion unit 40.
  • the surface protective layer 10 has a role of protecting the surface of the solar cell module 100 from foreign matter and the like.
  • the shape of the surface protective layer 10 is not particularly limited, and may be a polygon such as a circle, an ellipse, or a rectangle depending on the application.
  • the cross-sectional shape of the surface protective layer 10 may be rectangular or may be curved in the stacking direction (z-axis direction) of each layer of the solar cell module 100.
  • the surface protective layer 10 is formed of a resin.
  • the weight of the solar cell module 100 can be reduced. Therefore, the load applied to the installation portion such as the roof to which the solar cell module 100 is attached can be reduced, and the application range of the solar cell module 100 can be broadened.
  • the resin that forms the surface protective layer 10 examples include polyesters such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT) and polyethylene naphthalate (PEN), polycarbonate (PC), amorphous polyarylate, polyacetal (POM) Polyether ketone (PEK), polyether ether ketone (PEEK), polyether sulfone, modified polyphenylene ether and the like can be used.
  • the material for forming the surface protective layer 10 is preferably polycarbonate (PC) from the viewpoint of impact resistance and light transmission.
  • the surface protective layer 10 preferably has a light transmitting property.
  • the total light transmittance of the surface protective layer 10 is preferably 80% to 100%, and more preferably 85% to 100%. By setting the total light transmittance of the surface protective layer 10 in such a range, light can efficiently reach the photoelectric conversion unit 40.
  • the total light transmittance can be determined, for example, by the method of Japanese Industrial Standard JIS K7361-1: 1997 (ISO 13468-1: 1996) (Plastic-Test method of total light transmittance of transparent materials-Part 1: Single beam method) It can be measured.
  • the thickness of the surface protective layer 10 is not particularly limited as long as it plays a role of protecting the surface of the solar cell module 100, but is preferably 0.1 mm to 100 mm, and more preferably 0.5 mm to 50 mm. By setting the thickness of the surface protective layer 10 in such a range, the solar cell module 100 can be appropriately protected, and light can efficiently reach the photoelectric conversion unit 40.
  • the surface protective layer 10 preferably contains a UV absorber.
  • a UV absorber can absorb ultraviolet rays that cause deterioration of the resin. Therefore, the oxygen barrier function of the barrier layer 20 can be maintained for a long time.
  • a resin having a hydroxyl group in the molecule as described later tends to be easily deteriorated as compared with other resins. Therefore, in order to suppress degradation of resin, it is preferable that the surface protection layer 10 contains the ultraviolet absorber.
  • the UV absorber is not particularly limited, and examples thereof include benzophenone-based UV absorbers, benzotriazole-based UV absorbers, and triazine-based UV absorbers.
  • a ultraviolet absorber may be used individually by 1 type, and may be used in combination of multiple types.
  • benzophenone-based UV absorbers examples include 2-hydroxy-4-n-octyloxybenzophenone, 2-hydroxy-4-methoxybenzophenone, and 2,2'-dihydroxy-4,4'-dimethoxybenzophenone.
  • benzotriazole-based UV absorbers examples include 2- (2H-benzotriazol-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol and 2,2'-methylenebis [6- ( 2H-benzotriazol-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol], 2- (2H-benzotriazol-2-yl) -p-cresol, 2- (5-) Chloro-2H-benzotriazol-2-yl) -6-tert-butyl-4-methylphenol and the like.
  • triazine-based UV absorbers examples include 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5- [2- (2-ethylhexanoyloxy) ethoxy) phenol, 4,6-tris (2-hydroxy-4-hexyloxy-3-methylphenyl) -1,3,5-triazine and the like.
  • the content of the ultraviolet absorber is not particularly limited, but is preferably 0.1% by mass to 10% by mass with respect to the entire surface protective layer 10.
  • content of a ultraviolet absorber By making content of a ultraviolet absorber into 0.1 mass% or more, the ultraviolet-ray absorption effect of the surface protective layer 10 can be heightened. Moreover, the fall of the mechanical strength of the surface protective layer 10 can be suppressed by content of a ultraviolet absorber being 10 mass% or less.
  • the content of the ultraviolet absorber is more preferably 1% by mass to 5% by mass with respect to the entire surface protective layer 10.
  • the surface protective layer 10 according to the present embodiment may further include a light stabilizer in addition to the above-described ultraviolet light absorber.
  • a light stabilizer for example, a hindered amine light stabilizer (HALS) can be used.
  • HALS hindered amine light stabilizer
  • hindered amine light stabilizers include tetrakis (2,2,6,6-tetramethyl-4-piperidyl) butane-1,2,3,4-tetracarboxylate, bis (2,2,6,6) -Tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) butane- 1,2,3,4-tetracarboxylate, bis (1-undecanoxy-2,2,6,6-tetramethylpiperidin-4-yl) carbonate and the like.
  • One of these light stabilizers may be used alone, or two or more thereof may be used in combination.
  • the content of the light stabilizer is not particularly limited, but is preferably 0.01% by mass to 3% by mass, and more preferably 0.1% by mass to 1% by mass with respect to the entire surface protective layer 10 preferable.
  • the solar cell module 100 further includes a light resistant layer 60 containing an ultraviolet absorber on the surface of the surface protective layer 10 opposite to the sealing layer 30.
  • the light-resistant layer 60 may be formed by laminating a resin layer containing an ultraviolet absorber, but from the viewpoint of reduction of manufacturing cost, a coating composition containing an ultraviolet absorber is applied to the surface on the light receiving surface side of the surface protective layer 10 It may be formed by curing. That is, the light-resistant layer 60 is preferably a coating layer formed by curing the coating composition.
  • the ultraviolet absorber contained in the light resistant layer 60 is not particularly limited, and the above-mentioned ultraviolet absorber can be used.
  • the content of the ultraviolet absorber is also the same as above, and is preferably 0.1% by mass to 10% by mass, and more preferably 1% by mass to 5% by mass, with respect to the entire light-resistant layer 60.
  • the light resistant layer 60 may further contain the light stabilizer mentioned above.
  • the content of the light stabilizer is also the same as above, and is preferably 0.01% by mass to 3% by mass, and more preferably 0.1% by mass to 1% by mass, with respect to the whole of the light resistant layer 60. preferable.
  • the coating composition used for the light-resistant layer 60 is not particularly limited, and includes, for example, monomers such as styrenic monomers, olefin monomers, vinyl monomers, and acrylic monomers.
  • monomers such as styrenic monomers, olefin monomers, vinyl monomers, and acrylic monomers.
  • styrene-type monomer styrene etc. are mentioned, for example.
  • olefin monomers include ethylene and propylene.
  • vinyl monomers include vinyl chloride and vinylidene chloride.
  • acryl-type monomer a methacrylate, an acrylate, etc. are mentioned, for example.
  • the above monomer components may be used alone or in combination of two or more.
  • the paint composition used for the light resistant layer 60 can contain a polymerization initiator for promoting the polymerization reaction of the monomer having a carbon-carbon unsaturated bond.
  • the content of the polymerization initiator is not particularly limited, but is preferably 1% by mass to 10% by mass with respect to the entire light resistant layer 60.
  • the polymerization initiator although at least one of a photopolymerization initiator and a thermal polymerization initiator can be used, it is preferable to use a photopolymerization initiator. By using the photopolymerization initiator, the monomer is instantaneously cured by irradiating the active energy ray, so that the manufacturing process can be shortened.
  • the photopolymerization initiator used to form the coating layer is a compound having a function of initiating the polymerization reaction of the monomer, absorbs light of a specific wavelength from the active energy ray to be in an excited state, and generates radicals and ions. It is a substance.
  • a photopolymerization initiator for example, at least one selected from the group consisting of benzoin ether type, ketal type, acetophenone type, benzophenone type, and thioxanthone type can be used.
  • the thermal polymerization initiator used for the light resistant layer 60 is a compound having a function of initiating a polymerization reaction of monomers, and is a substance which generates active species such as radicals and ions by heating.
  • the thermal polymerization initiator at least one selected from the group consisting of azo compounds such as 2,2'-azobis (isobutyronitrile), peroxides such as benzoyl peroxide, benzenesulfonic acid ester and alkyl sulfonium salt It can be used.
  • the method of applying the coating composition used for the light-resistant layer 60 is not particularly limited, and methods such as spray coating, dip coating, flow coating, spin coating, roll coating, brush coating, and sponge coating may be used. Can. Then, the light resistant layer 60 can be formed by curing the applied coating composition.
  • the solar cell module 100 includes a barrier layer 20 disposed on at least one surface of the surface protective layer 10.
  • a barrier layer 20 can suppress oxygen from the side of the surface protective layer 10 in the solar cell module 100. Therefore, yellowing of the sealing layer 30 can be suppressed.
  • the solar cell module 100 preferably includes a barrier layer 20 disposed below the surface protective layer 10. More specifically, the solar cell module 100 preferably includes a barrier layer 20 disposed between the surface protective layer 10 and the sealing layer 30. More specifically, the solar cell module 100 preferably includes the barrier layer 20 disposed between the surface protective layer 10 and the surface sealing layer 32.
  • the solar cell module 100 preferably includes a barrier layer 20 disposed on the surface protective layer 10.
  • the solar cell module 100 preferably includes the barrier layer 20 disposed on the side opposite to the sealing layer 30 with respect to the surface protective layer 10.
  • the solar cell module 100 preferably includes barrier layers 20 disposed on both sides of the surface protective layer 10. Arranging the barrier layer 20 on both sides of the surface protective layer 10 is preferable because the oxygen barrier property of the solar cell module 100 can be further improved.
  • the barrier layer 20 is preferably disposed on at least one surface of the surface protective layer 10 and at least one surface of the back surface protective layer 50.
  • the barrier layer 20 is disposed not only on the side of the surface protective layer 10 with respect to the sealing layer 30 but also on the side of the back surface protective layer 50 with respect to the sealing layer 30. Because the amount of oxygen can be reduced, yellowing of the sealing layer 30 can be suppressed. In particular, in the case where a material through which oxygen is easily transmitted is used for the back surface protective layer 50, it is effective if the barrier layer 20 is disposed also on the back surface protective layer 50 side with respect to the sealing layer 30.
  • the solar cell module 100 preferably includes the barrier layer 20 disposed on the back surface protective layer 50.
  • the solar cell module 100 preferably includes the barrier layer 20 disposed between the sealing layer 30 and the back surface protective layer 50. More specifically, the solar cell module 100 preferably includes the barrier layer 20 disposed between the back surface sealing layer 34 and the back surface protective layer 50.
  • the solar cell module 100 includes a barrier layer 20 disposed below the back surface protective layer 50.
  • the solar cell module preferably includes the barrier layer 20 disposed on the side opposite to the sealing layer 30 with respect to the back surface protective layer 50.
  • the solar cell module 100 according to the present embodiment also includes barrier layers 20 disposed on both sides of the back surface protective layer 50. Arranging the barrier layer 20 on both sides of the back surface protective layer 50 is preferable because the oxygen barrier property of the solar cell module 100 can be further improved.
  • barrier layer 20 is disposed between the surface protective layer 10 and the sealing layer 30.
  • the present embodiment is not limited to the illustrated mode, and the barrier layer 20 may be disposed on at least one of the surface of the surface protective layer 10 and at least one of the back surface protective layer 50.
  • the materials forming the plurality of barrier layers 20 may be the same as or different from one another.
  • the solar cell module 100 includes the barrier layer 20 having an oxygen permeability of 1.0 ⁇ 10 ⁇ 5 mol / (m 2 ⁇ s ⁇ Pa) or less.
  • the surface protective layer 10 is formed of resin, the weight of the solar cell module 100 is reduced.
  • the resin has a lower oxygen permeability than glass, the sealing layer 30 easily yellows due to metal ions forming the interconnector 44 in the photoelectric conversion unit 40.
  • yellowing of the sealing layer 30 can be suppressed by setting the oxygen permeability to the above numerical value or less.
  • the oxygen permeability of the barrier layer 20 is preferably 1.0 ⁇ 10 ⁇ 9 mol / (m 2 ⁇ s ⁇ Pa) or less, and 1.0 ⁇ 10 ⁇ 12 mol / (m 2 ⁇ s ⁇ Pa) or less is more preferable. Further, the oxygen permeability can be measured in accordance with JIS K 7126-2 (Plastics-Films and Sheets-Gas Permeability Test Method-Part 2: Equal Pressure Method). The oxygen permeability can be measured at a measurement temperature of 23 ° C. and a measurement humidity of 90% RH.
  • the barrier layer 20 is an inorganic deposition layer formed by depositing an inorganic material, a resin composed of an organic polymer, a layered clay mineral-containing layer in which a layered clay mineral is dispersed in a resin composed of an organic polymer Etc.
  • an inorganic material which forms an inorganic vapor deposition layer metals, such as silicon, aluminum, magnesium, nickel, tin, and titanium, and the oxide of the said metal, nitride, and carbide etc. are mentioned.
  • the material for forming the inorganic deposition layer is preferably at least one of silicon oxide and aluminum oxide, and more preferably silicon oxide.
  • the inorganic vapor deposition layer can be formed on at least one surface of the surface protective layer 10 by, for example, physical vapor deposition (PVD) or chemical vapor deposition (CVD).
  • resin composed of organic polymer acrylic polymer, vinyl alcohol polymer, polyamide polymer, polyether polymer, polyester polymer, polyvinylidene chloride polymer, polymer modified with epoxy group, etc. may be used it can.
  • acrylic polymer for example, polyacrylamide, polyacrylic acid and the like can be used.
  • vinyl alcohol polymer for example, polyvinyl alcohol (PVA), partially saponified polyvinyl alcohol, ethylene-vinyl alcohol copolymer (EVOH), etc. can be used.
  • polyamide polymer for example, 6-nylon, 6,6-nylon and the like can be used.
  • polyether type polymer polyalkylene ether etc. can be used, for example.
  • polyester-based polymer for example, a polymer containing a dicarboxylic acid component and a glycol component as constituent components, and a polymer containing an aliphatic hydroxycarboxylic acid component as constituent components can be used.
  • polyvinylidene chloride-based polymer a polymer whose component contains a vinylidene chloride component can be used.
  • polymer modified with an epoxy group for example, polymers obtained by modifying the above-mentioned various polymers with glycidyl group, such as polyglycidyl (meth) acrylate and polyalkylene ether glycidyl ether, can be used.
  • glycidyl group such as polyglycidyl (meth) acrylate and polyalkylene ether glycidyl ether
  • Various vinyl alcohol polymers, various polyamide polymers, and various polyether polymers are preferable from the viewpoint of barrier property, availability, and affinity with layered clay minerals etc.
  • Various vinyl alcohol polymers, various polyether polymers Is more preferred. The above polymers can be used alone or in combination of two or more.
  • polyvinyl alcohol and partially saponified polyvinyl alcohol are marketed in various grades as, for example, Kuraray Co., Ltd. and Nippon Kayaku Bi. Poval Co., Ltd. as “Poval” and Nippon Synthetic Chemical Industry Co., Ltd. as "Gosenol (registered trademark)". And any of them can be preferably used.
  • various grades of ethylene-vinyl alcohol copolymer are marketed by Kuraray Co., Ltd. as "EVAL (registered trademark)” and Nippon Synthetic Chemical Industry Co., Ltd. as "Soranol (registered trademark)”. It can be used preferably.
  • the layered clay mineral-containing layer preferably contains a resin composed of the organic polymer and a layered clay mineral dispersed in the resin composed of the organic polymer.
  • the layered clay mineral when the layered clay mineral is contained in the resin, the layered clay mineral blocks part of the oxygen passage in the resin, so the oxygen permeability of the barrier layer 20 is reduced. can do.
  • the layered clay mineral-containing layer generally tends to have a large tensile breaking strain. Therefore, even when the solar cell module 100 is processed into a curved surface shape or the like, in the manufacturing process of the solar cell module 100, a crack which is a cause of the decrease in the barrier property does not easily occur in the inorganic vapor deposition layer. Therefore, the barrier layer 20 is preferably a layered clay mineral-containing layer in which a layered clay mineral is dispersed in a resin.
  • the resin forming the barrier layer 20 preferably contains at least one of polyvinyl alcohol (PVA) and ethylene-vinyl alcohol copolymer (EVOH). These resins have high oxygen barrier properties. Also, these resins have hydroxyl groups in the molecule. Moreover, since a layered clay mineral generally has a chemical structure which chemically bonds a hydroxyl group such as a hydrogen bond, a resin and a layered clay mineral can be obtained by using a resin having a hydroxyl group in the molecule. Chemical bond with can be strengthened. Therefore, the oxygen barrier property of the barrier layer 20 can be further improved.
  • PVA polyvinyl alcohol
  • EVOH ethylene-vinyl alcohol copolymer
  • Layered clay minerals include sheet structures such as tetrahedral sheets and octahedral sheets formed by atoms such as oxygen, silicon and aluminum. And layered clay minerals generally have a layered structure in which a sheet structure is layered. Therefore, the path through which oxygen in the resin passes is narrowed and lengthened by this layered clay mineral, so that the oxygen permeability of the barrier layer 20 can be reduced.
  • the thickness (size in the minor axis direction) of the sheet structure is generally about 0.1 nm to 5 nm, and the size in the planar direction (size in the major axis direction) perpendicular to the thickness direction of the sheet structure It is about 10 nm to 5 ⁇ m, and the sheet structure has a high aspect ratio.
  • the aspect ratio of the sheet structure is generally 20 to 10000.
  • the thickness of the sheet structure and the size in the plane direction can be observed by an electron microscope or the like.
  • the aspect ratio is the ratio of the size in the major axis direction to the size in the minor axis direction of the sheet structure.
  • Layered clay minerals are not particularly limited. For example, layers such as saponite, hectorite, smectite such as montmorillonite, beidellite and Stephenite, kaolin minerals such as kaolinite, mica such as muscovite and illite, talc, and vermiculite It is preferable that it is a silicate.
  • the content of the layered clay mineral in the barrier layer 20 is not particularly limited, but is preferably 30% by mass to 80% by mass.
  • the content of the layered clay mineral in the barrier layer 20 is more preferably 30% by mass to 50% by mass.
  • the layered clay mineral-containing layer may further contain inorganic particles.
  • the mechanical strength of the barrier layer 20 is improved, so that the rigidity of the barrier layer 20 can be improved.
  • the thermal contraction of the barrier layer 20 can be suppressed by the barrier layer 20 containing inorganic particles.
  • the material for forming the inorganic particles is not particularly limited, but an inorganic material having high affinity to the resin is preferable.
  • the material forming the inorganic particles is preferably an inorganic material having a high affinity for the hydroxyl group.
  • the inorganic material having high affinity to the hydroxyl group is preferably silicon oxide, aluminum oxide, titanium oxide, zirconium oxide or the like. Since these oxides easily hydrogen bond with hydroxyl groups, they have high affinity with the resin, and the rigidity can be improved while suppressing the decrease in the oxygen permeability of the barrier layer 20.
  • the average particle size of the inorganic particles is not particularly limited, but preferably 0.01 ⁇ m to 200 ⁇ m.
  • the rigidity of the barrier layer 20 can be further improved.
  • the fall of the light transmittance of the barrier layer 20 can be suppressed by the average particle diameter of an inorganic particle being 200 micrometers or less.
  • the average particle diameter of the inorganic particles is more preferably 0.01 ⁇ m to 100 ⁇ m.
  • the average particle size represents the particle size when the cumulative value of the particle size distribution on a volume basis is 50%, and can be measured by, for example, a laser diffraction / scattering method.
  • the content of the inorganic particles in the barrier layer 20 is not particularly limited, but is preferably 30% by mass to 80% by mass. By setting the content of the inorganic particles to 30% by mass or more, the rigidity of the barrier layer 20 can be further improved. Moreover, the fall of the light transmittance of the barrier layer 20 can be suppressed by content of an inorganic particle being 80 mass% or less.
  • the content of the inorganic particles in the barrier layer 20 is more preferably 30% by mass to 70% by mass.
  • the thickness of the barrier layer 20 is not particularly limited, but is preferably 5 nm or more and 100 ⁇ m or less. By setting the thickness of the barrier layer 20 to 5 nm or more, the oxygen barrier function can be improved. In addition, by setting the thickness of the barrier layer 20 to 100 ⁇ m or less, light can efficiently reach the photoelectric conversion unit 40. In addition, when the barrier layer 20 is an inorganic vapor deposition layer, it is preferable that the thickness of the barrier layer 20 is 5 nm or more and 800 nm or less. When the barrier layer 20 is a layered clay mineral-containing layer, the thickness of the barrier layer 20 is preferably 100 nm or more and 100 ⁇ m or less, and more preferably 1 ⁇ m or more and 30 ⁇ m or less.
  • the barrier layer 20 preferably has translucency.
  • the total light transmittance of the barrier layer 20 is preferably 60% to 100%, and more preferably 70% to 100%.
  • the total light transmittance of the barrier layer 20 is more preferably 80% to 100%.
  • the layered clay mineral-containing layer can be formed, for example, as follows.
  • the resin, layered clay mineral and inorganic particles can be dispersed in a solvent or the like to prepare a coating composition.
  • the layered clay mineral-containing layer can be formed by applying the prepared coating composition on at least one surface of the surface protective layer 10 and drying the solvent.
  • the method for preparing the coating composition is not particularly limited.
  • a layered clay mineral and inorganic particles can be uniformly stirred with a stirrer or the like in a solution in which a resin is dissolved in a solvent to prepare a coating composition.
  • the solvent is not particularly limited as long as it can dissolve the resin, and at least one of water and an organic solvent can be used.
  • the organic solvent include aromatic hydrocarbons (such as toluene and xylene), alcohols (such as methanol, ethanol and isopropyl alcohol), ketones (such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone), aliphatic hydrocarbons Examples include (such as hexane and heptane), ethers (such as tetrahydrofuran), amide solvents (such as N, N-dimethylformamide (DMF) and dimethylacetamide (DMAc)), methyl acetate, butyl acetate and the like.
  • One of these solvents may be used alone, or two or more thereof may be used in combination.
  • the addition amount of the solvent is not particularly limited, it can be, for example, 0.1 part by mass to 500 parts by mass with respect to
  • polyvinyl alcohol PVA
  • water and alcohol as a solvent from an affinity viewpoint, for example.
  • EVOH ethylene-vinyl alcohol copolymer
  • organic solvent such as aromatic hydrocarbon
  • the method of applying the coating composition used to form the barrier layer 20 is not particularly limited, and spray coating, dip coating, flow coating, spin coating, roll coating, brush coating, sponge coating, etc. Methods can be used. Then, the barrier layer 20 can be formed by removing the solvent by heating or the like.
  • the barrier layer 20 can be formed by applying and drying the coating composition as described above, whereby the interlayer distance of the layered clay mineral can be reduced and the barrier property of the barrier layer 20 can be further enhanced.
  • the barrier property of the barrier layer 20 is high, the film thickness of the barrier layer 20 can be reduced.
  • the surface protection layer 10 can easily follow the surface protection layer 10 without wrinkles when processing the curved surface of the solar cell module 100.
  • the surface protective layer 10 contains a resin, even when the surface protective layer 10 is processed into a curved surface, since the resin itself has elasticity, cracking is unlikely to occur. Therefore, it is preferable to make the barrier layer 20 a layered clay mineral-containing layer, since the solar cell module 100 suitable for curved surface processing can be produced.
  • the sealing layer 30 is disposed under the surface protective layer 10 and the barrier layer 20 and seals the photoelectric conversion unit 40.
  • the shape of the sealing layer 30 is not particularly limited as in the case of the surface protective layer 10, and may be a polygon such as a circle, an ellipse, or a rectangle depending on the application. Further, similarly to the surface protective layer 10, the cross-sectional shape of the sealing layer 30 may be rectangular or may be curved in the stacking direction (z-axis direction) of each layer of the solar cell module 100.
  • the thickness of the sealing layer 30 is not particularly limited, but is preferably 0.1 mm or more and 10 mm or less, and more preferably 0.2 mm or more and 1.0 mm or less. By setting the thickness of the sealing layer 30 in such a range, the photoelectric conversion portion 40 can be appropriately protected, and light can efficiently reach the photoelectric conversion portion 40.
  • the photoelectric conversion unit 40 may be disposed in contact with the surface protective layer 10 or the barrier layer 20, and may be disposed in contact with the back surface protective layer 50 or the barrier layer 20 described later.
  • the sealing layer 30 is disposed on the surface protection layer 10 side with respect to the photoelectric conversion unit 40 and the back surface protection layer 50 side with respect to the photoelectric conversion unit 40.
  • positioned at may be provided.
  • the surface sealing layer 32 is disposed between the surface protective layer 10 and the photoelectric conversion unit 40, and can protect the photoelectric conversion unit 40 from external impact or the like.
  • the shape of the surface sealing layer 32 is not particularly limited as in the case of the surface protective layer 10, and may be a polygon such as a circle, an ellipse, or a rectangle depending on the application. Further, similarly to the surface protective layer 10, the cross-sectional shape of the surface sealing layer 32 may be rectangular or may be curved in the stacking direction (z-axis direction) of each layer of the solar cell module 100.
  • the material which forms the surface sealing layer 32 is not specifically limited, For example, ethylene-vinyl acetate copolymer (EVA), polyvinyl butyral (PVB), polyethylene terephthalate (PET), polyolefin (PO), polyimide (PI) etc. And at least one selected from the group consisting of thermosetting resins such as epoxy resins, urethane resins, and polyimide resins. These resins may be modified resins or may be used in combination. Among these, the material forming the surface sealing layer 32 is preferably at least one of ethylene-vinyl acetate copolymer (EVA) and polyolefin (PO).
  • EVA ethylene-vinyl acetate copolymer
  • PVB polyvinyl butyral
  • PET polyethylene terephthalate
  • PO polyolefin
  • PI polyimide
  • thermosetting resins such as epoxy resins, urethane resins, and polyimide resins. These resins may be modified resin
  • the surface sealing layer 32 preferably has a light transmitting property.
  • the total light transmittance of the surface sealing layer 32 is preferably 60% to 100%, and more preferably 70% to 100%. Further, the total light transmittance of the surface sealing layer 32 is more preferably 80% to 100%. By setting the total light transmittance of the surface sealing layer 32 in such a range, light can efficiently reach the photoelectric conversion unit 40.
  • the total light transmittance can be measured, for example, by a method such as JIS K7361-1: 1997.
  • the thickness of the surface sealing layer 32 is not particularly limited, but is preferably 0.1 mm or more and 10 mm or less, and more preferably 0.2 mm or more and 1.0 mm or less. By setting the thickness of the surface sealing layer 32 in such a range, the photoelectric conversion unit 40 can be appropriately protected, and light can efficiently reach the photoelectric conversion unit 40.
  • the back surface sealing layer 34 can be disposed between the photoelectric conversion unit 40 and the back surface protective layer 50. That is, the back surface sealing layer 34 is disposed under the front surface sealing layer 32 and the photoelectric conversion unit 40, and protects the photoelectric conversion unit 40 from external impact and the like on the light receiving surface side.
  • the material for forming the back surface sealing layer 34 is not particularly limited.
  • at least one selected from the group consisting of thermosetting resins such as epoxy resins, urethane resins, and polyimide resins. These resins may be modified resins or may be used in combination.
  • the material forming the back surface sealing layer 34 is preferably at least one of ethylene-vinyl acetate copolymer (EVA) and polyolefin (PO).
  • a material similar to that of the surface sealing layer 32 may be used as a material for forming the back surface sealing layer 34, and the material may be formed of a material different from that of the surface sealing layer 32.
  • the thickness of the back surface sealing layer 34 is not particularly limited, but is preferably 0.1 mm or more and 10 mm or less, and more preferably 0.2 mm or more and 1.0 mm or less. By setting the thickness of the back surface sealing layer 34 in such a range, the photoelectric conversion unit 40 can be appropriately protected from impact or the like.
  • the photoelectric conversion unit 40 converts light energy into electrical energy.
  • the photoelectric conversion unit 40 may include the solar battery cell 42, and may include the solar battery cell string 46 in which the solar battery cells 42 are connected by the interconnector 44.
  • Examples of the solar battery cell 42 include a silicon solar cell, a compound solar cell, and an organic solar cell.
  • a silicon system solar cell a monocrystal silicon system solar cell, a polycrystalline silicon system solar cell, a microcrystalline silicon system solar cell, an amorphous silicon system solar cell etc. are mentioned.
  • compound solar cells include GaAs solar cells, CIS solar cells, CIGS solar cells, and CdTe solar cells.
  • an organic type solar cell a dye-sensitized solar cell, an organic thin film solar cell, etc. are mentioned.
  • a heterojunction solar cell or a multijunction solar cell can also be used.
  • Finger electrodes can be disposed on the light receiving surface side and the back surface side of the solar battery cell 42.
  • the finger electrode is formed by arranging a plurality of metal wires substantially in parallel.
  • the finger electrodes can have, for example, a height of 10 ⁇ m to 30 ⁇ m and a width of 100 ⁇ m to 500 ⁇ m.
  • the finger electrodes collect a current generated by light such as sunlight and supply the current to bus bar electrodes (not shown).
  • the bus bar electrodes are generally formed by two to three metal wires, and are disposed to intersect the finger electrodes substantially perpendicularly. Although the bus bar electrodes are not particularly limited, the height can be 10 ⁇ m to 30 ⁇ m, and the width can be 100 ⁇ m to 500 ⁇ m. The bus bar electrodes supply the current collected from the finger electrodes to the interconnector 44.
  • the solar cell string 46 includes a plurality of solar cells 42 and an interconnector 44 electrically connecting the plurality of solar cells 42.
  • the interconnector 44 electrically connects the bus bar electrode provided on the light receiving surface side of one solar battery cell 42 and the bus bar electrode provided on the back surface side of the other solar battery cell 42. It can be formed by connecting to
  • Resin or solder can be used to connect the interconnector 44 and the bus bar electrode.
  • This resin may be either conductive or nonconductive. In the case of the nonconductive resin, the interconnector 44 and the bus bar electrode are electrically connected by being directly connected.
  • the interconnector 44 is not particularly limited as long as it can electrically connect the solar cells 42 to each other, and can be, for example, an interconnector 44 formed of an elongated foil-like metal substrate.
  • the material for forming the metal base is not particularly limited, and metals such as gold, silver, copper, platinum, aluminum and nickel can be used. Among these, from the viewpoint of processability, durability and economy, the material forming the metal base is preferably copper.
  • the width of the metal substrate is preferably 0.5 mm to 10 mm, and more preferably 1 mm to 3 mm.
  • the thickness of the metal base is preferably 0.01 mm to 3.0 mm, and more preferably 0.05 mm to 1.0 mm.
  • the solar cell module 100 includes a back surface protection layer 50 disposed below the sealing layer 30.
  • the back surface protective layer 50 can be disposed on the opposite side to the light receiving surface side of the photoelectric conversion unit 40. That is, the back surface protective layer 50 is disposed on the back surface side with respect to the photoelectric conversion unit 40. In the present embodiment, the back surface protective layer 50 is disposed below the back surface sealing layer 34. The back surface protective layer 50 can protect the back surface side of the solar cell module 100.
  • the material for forming the back surface protective layer 50 is not particularly limited.
  • inorganic materials such as glass, metal materials such as aluminum, and polyimide (PI), cyclic polyolefin, polycarbonate (PC), polymethyl methacrylate (PMMA), Using at least one material selected from the group consisting of resin materials such as polyetheretherketone (PEEK), polystyrene (PS), polyethylene terephthalate (PET), polyethylene naphthalate (PEN) and fiber reinforced plastic (FRP) Can.
  • resin materials such as polyetheretherketone (PEEK), polystyrene (PS), polyethylene terephthalate (PET), polyethylene naphthalate (PEN) and fiber reinforced plastic (FRP) Can.
  • fiber reinforced plastic (FRP) include glass fiber reinforced plastic (GFRP), carbon fiber reinforced plastic (CFRP), aramid fiber reinforced plastic (AFRP), and cellulose fiber reinforced plastic. Glass epoxy etc. are mentioned as a glass fiber reinforced plastic (GFRP).
  • the fiber reinforced plastic may be a UD (UniDirection) material in which fibers are aligned in one direction, or may be a woven material woven by intersecting fibers.
  • a UD material is used for the back surface protective layer 50, it is difficult to expand and shrink in the fiber direction, and therefore, depending on the direction in which the UD material is disposed, breakage of the solar battery cell 42 or cutting of the interconnector 44 can be suppressed.
  • the back surface protective layer 50 is preferably made of carbon fiber reinforced plastic because it is not easily deformed and is lightweight.
  • the back surface protective layer 50 is more preferably at least one selected from the group consisting of a honeycomb structure, a foam and a porous body.
  • a honeycomb structure can reduce the weight of the solar cell module 100 while maintaining rigidity.
  • the materials for forming the honeycomb structure, the foam and the porous body are not particularly limited, and the above-mentioned materials can be used.
  • the honeycomb structure is preferably formed of a material containing at least one of aluminum and cellulose.
  • at least one of the foam and the porous body is formed of a resin material such as polyurethane, polyolefin, polyester, polyamide, or polyether.
  • the thickness of the back surface protective layer 50 is not particularly limited, but is preferably 0.01 mm or more and 10 mm or less, more preferably 0.05 mm or more and 5.0 mm or less, and is 0.07 mm or more and 1.0 mm or less Is more preferred.
  • the diameter of one fiber is preferably the lower limit value of the thickness.
  • the thickness of the back surface protective layer 50 is thin (for example, 0.2 mm or less), the following effects can be expected in addition to the reduction in weight and thickness. That is, it is possible to reduce the warpage of the entire solar cell module 100 due to the reduction in the influence of thermal contraction when the temperature difference occurs in the back surface protective layer 50 and the decrease in the rigidity of the back surface protective layer 50. .
  • the back surface protective layer 50 is made of fiber reinforced plastic of UD material and the thickness of the back surface protective layer 50 is reduced, the UD material is partially overlapped as needed to reinforce a desired portion, etc. It is possible to make the characteristics of the back surface protective layer 50 strong and weak.
  • fibers of the UD material may be overlapped in the same direction or fibers of the UD material may be overlapped in different directions such as perpendicular, depending on desired characteristics.
  • the back surface protective layer 50 when the thickness of the back surface protective layer 50 becomes thin, the back surface protective layer 50 can be bonded together while following the shape of the sealing layer 30 (surface to be bonded), and between the sealing layer 30 and the back surface protective layer 50 Air bubbles can be difficult to mix.
  • the surface protective layer 10 has a curved surface, for example, the back surface protective layer 50 can be bonded to fit the shape of the surface protective layer 10 through the sealing layer 30. Therefore, it is possible to easily manufacture the solar cell module 100 having a curved surface shape while suppressing the mixture of air bubbles. In this case, if the film module is manufactured in a state where the back surface protective layer 50, the sealing layer 30, and the barrier layer 20 are attached to each other, the film module itself has flexibility.
  • Bonding can be facilitated.
  • the followability of the back surface protective layer 50 is high, for example, when manufacturing the solar cell module 100 having a curved surface shape by laminating the respective layers, it is difficult for a local load to be applied to the solar cells 42 etc. Damage to the cell 42 can be suppressed. This suppression of breakage of the solar battery cell 42 is particularly effective when the solar battery module 100 further includes a gel layer 70 described later.
  • the sealing layer 30 can be quickly heated and crosslinked when the thickness of the back surface protective layer 50 becomes thin, not only the manufacturing time of the solar cell module 100 is shortened but also the surface protective layer 10 is thermally deformed. Can be suppressed.
  • a gel layer 70 be disposed between the surface protective layer 10 and the sealing layer 30.
  • the surface protective layer 10 is formed of a resin, and the surface protective layer 10 easily undergoes thermal expansion and contraction due to temperature change.
  • the thermal expansion and contraction of the surface protective layer 10 becomes difficult to be transmitted to the solar cell string 46. Therefore, the thermal expansion and contraction due to the temperature change of the surface protective layer 10 can suppress the breakage of the solar battery cell 42 and the disconnection of the interconnector 44.
  • the tensile elastic modulus of the gel layer 70 is not particularly limited as long as breakage of the solar battery cell 42 and cutting of the interconnector 44 can be suppressed, but it is preferably 0.1 kPa or more and less than 5 MPa. By setting the tensile elastic modulus of the gel layer 70 to 0.1 kPa or more, the rigidity of the solar cell module 100 can be improved. Further, by setting the tensile elastic modulus of the gel layer 70 to less than 5 MPa, breakage of the solar battery cell 42 and cutting of the interconnector 44 can be further suppressed.
  • the tensile modulus of elasticity of the gel layer 70 is more preferably 1 kPa or more and 1 MPa or less.
  • the material for forming the gel layer 70 is not particularly limited, and various gels can be used. Although the gel is not particularly limited, it is classified into a gel containing a solvent and a gel not containing a solvent.
  • the gel containing a solvent include a hydrogel whose dispersion medium is a water gel, and an organogel whose dispersion medium is a gel of an organic solvent.
  • the gel containing a solvent any of a polymer gel having a number average molecular weight of 10000 or more, an oligomer gel having a number average molecular weight of 1000 to less than 10000, and a low molecular gel having a number average molecular weight of less than 1000 can be used.
  • the gel layer 70 more preferably contains at least one selected from the group consisting of silicone gel, acrylic gel and urethane gel.
  • the thickness of the gel layer 70 is not particularly limited, but is preferably 0.1 mm or more and 10 mm or less. By setting the thickness of the gel layer 70 to 0.1 mm or more, breakage of the solar battery cell 42 and disconnection of the interconnector 44 can be further suppressed. In addition, by setting the thickness of the gel layer 70 to 10 mm or less, light can efficiently reach the photoelectric conversion unit 40.
  • the thickness of the gel layer 70 is more preferably 0.2 mm or more and 1.0 mm or less.
  • the gel layer 70 preferably has a light transmitting property.
  • the total light transmittance of the gel layer 70 is preferably 60% to 100%, and more preferably 70% to 100%.
  • the total light transmittance of the gel layer 70 is more preferably 80% to 100%. By setting the total light transmittance of the gel layer 70 to such a range, light can efficiently reach the photoelectric conversion unit 40.
  • the total light transmittance can be measured, for example, by a method such as JIS K7361-1: 1997.
  • the solar cell module 100 may include a frame (not shown).
  • the frame supports the peripheral edge of the solar cell module 100 and is used when installing the solar cell module 100 on a roof or the like.
  • the material for forming the frame is not particularly limited, but is preferably made of aluminum from the viewpoint of strength and weight reduction.
  • the solar cell module 100 can be mounted on the roof or the like of a vehicle including a building or an automobile. At this time, the shape of the solar cell module 100 may have a curved surface so as to conform to the shape of the roof.
  • the solar cell module 100 includes the surface protection layer 10 formed of resin.
  • the solar cell module 100 is disposed on at least one surface of the surface protective layer 10, and the barrier layer 20 has an oxygen permeability of 1.0 ⁇ 10 ⁇ 5 mol / (m 2 ⁇ s ⁇ Pa) or less. Equipped with Furthermore, the solar cell module 100 is disposed under the surface protective layer 10 and the barrier layer 20, and the sealing layer 30 that seals the photoelectric conversion unit 40, and the back surface protective layer 50 disposed under the sealing layer 30.
  • the solar cell module 100 according to the present embodiment includes the barrier layer 20 having a high oxygen barrier property, and thus can suppress the entry of oxygen into the sealing layer 30. Therefore, according to the present embodiment, it is possible to provide the solar cell module 100 in which the yellowing of the sealing layer 30 is unlikely to occur even when the resin surface protection layer 10 is used.
  • the mobile unit of the present embodiment includes a solar cell module 100.
  • a solar cell module 100 As the said moving body, vehicles, such as a motor vehicle, a train, or a ship etc. are mentioned, for example.
  • the solar cell module 100 When the solar cell module 100 is mounted in a car, it is preferable that the solar cell module 100 be installed on an upper surface portion of the car body such as a bonnet or a roof.
  • the current obtained by the power generation by the solar cell module 100 is supplied to an electric device such as a fan or a motor and used for driving and controlling the electric device.
  • the solar cell module 100 sequentially heats the surface protection layer 10, the barrier layer 20, the surface sealing layer 32, the solar cell string 46, the back surface sealing layer 34, the back surface protection layer 50, etc. It can be formed by compression. However, the detailed steps are not particularly limited, for example, compression molding in which each layer is divided into several steps, and molding can be performed according to the purpose.
  • heating conditions are not particularly limited, for example, heating to about 150 ° C. may be performed in a vacuum state. Heating under vacuum conditions is preferable because the defoaming property is further improved. Moreover, a frame etc. can also be attached to the laminated body obtained by heating.
  • the manufacturing method of the solar cell module 100 which concerns on this embodiment is provided with the process of apply
  • the step of applying the barrier layer 20 on the surface protective layer 10 is preferably a step of applying and curing the barrier layer 20 on the surface of the surface protective layer 10.
  • the barrier layer 20 is preferably the above-described layered clay mineral-containing layer. Materials and contents for forming the layered clay mineral-containing layer are as described above. Specifically, a coating composition for forming a layered clay mineral-containing layer can be applied to, for example, a substantially flat surface protective layer 10 and cured. The step of applying and drying the layered clay mineral-containing layer is also as described above.
  • a layered clay mineral-containing layer as the barrier layer 20
  • the layered clay mineral-containing layer contains a resin, it is difficult to be broken even if it is bent so as to have a curved surface shape, and the barrier properties of the barrier layer 20 are easily maintained.
  • the light resistant layer 60 described above may be formed on the surface of the surface protective layer 10 opposite to the side on which the barrier layer 20 is applied.
  • the order of applying the barrier layer 20 and the light resistant layer 60 is not particularly limited.
  • a laminate in which the barrier layer 20 formed by curing as described above is laminated on the surface of the surface protection layer 10 is deformed to have a curved shape. It can be set as the process of forming by bending. By such bending, the solar cell module 100 can be formed into a desired shape.
  • Example 1 A paint composition for forming a barrier layer was prepared. The coating composition was mixed until the resin was fully dissolved in the solvent. At this time, the materials used for the coating composition are as follows.
  • the above coating composition is applied by a bar coater to a surface protective layer of 1 mm thickness which has been subjected to a hydrophilization treatment by corona discharge so that the film thickness after drying becomes 10 ⁇ m, and heated at 120 ° C. for 60 minutes. A barrier layer was formed.
  • a surface protection layer on which a barrier layer is formed, a surface sealing layer with a thickness of 1 mm, solar cell cell strings, a back surface sealing layer with a thickness of 1 mm, and a back surface protection layer with a thickness of 2 mm are stacked sequentially from the top and compressed at 145 ° C.
  • the solar cell module was produced by heating.
  • the barrier layer was disposed between the surface protective layer and the surface sealing layer.
  • the bus bar electrode provided on the light receiving surface side of one solar cell and the bus bar electrode provided on the back side of the other solar cell are interconnected by an interconnect made of copper. It formed by connecting.
  • each layer which comprises a solar cell module is as follows.
  • PET Surface sealing layer
  • CFRP Carbon fiber reinforced plastic
  • Example 2 As a resin used for the barrier layer, ethylene-vinyl alcohol copolymer (EVOH) (Soarol (registered trademark) manufactured by Japan Synthetic Chemical Industry Co., Ltd.) was used instead of polyvinyl alcohol (PVA).
  • EVOH ethylene-vinyl alcohol copolymer
  • Soarol registered trademark
  • PVA polyvinyl alcohol
  • Example 3 As a resin used for the barrier layer, a vinylidene chloride copolymer (Saran latex (registered trademark) manufactured by Asahi Kasei Corporation) was used in place of polyvinyl alcohol (PVA). A solar cell module was produced in the same manner as in Example 1 except for the above.
  • a vinylidene chloride copolymer Saran latex (registered trademark) manufactured by Asahi Kasei Corporation) was used in place of polyvinyl alcohol (PVA).
  • PVA polyvinyl alcohol
  • Example 4 The coating composition was prepared by dispersing the resin, layered clay mineral and inorganic particles in a solvent and mixing until the resin was sufficiently dissolved in the solvent.
  • a solar cell module was produced in the same manner as in Example 1 except for the above.
  • the materials used for the coating composition at this time are as follows.
  • Ethylene-vinyl alcohol copolymer (Soanol (registered trademark) manufactured by Japan Synthetic Chemical Industry Co., Ltd.) 100 parts by mass (solid content)
  • Layered clay mineral Smectite (Kunimine Kogyo Co., Ltd. Smecton (registered trademark)) 100 parts by mass
  • Inorganic particles silicon dioxide 0.2 parts by mass
  • Solvent toluene
  • Comparative Example 1 No barrier layer was formed on the surface protective layer. A solar cell module was produced in the same manner as in Example 1 except for the above.
  • the oxygen permeability is measured according to JIS K 7126-2 (Plastics-Films and sheets-Gas Permeability Test Method-Part 2: Equal Pressure Method) using an oxygen permeability measuring device at a temperature of 23 ° C and a humidity of 90%. It measured by RH.
  • the oxygen permeability measurement apparatus used was OX-TRAN 10 / 50A manufactured by MOCON.
  • the degree of yellowing was evaluated by the following procedure. First, the solar cell module of each example was heated at 85 ° C. for 1000 hours according to the heat resistance test in JIS C8917: 1998 (environmental test method and durability test method for crystalline solar cell module). Next, before and after the heat resistance test, the b * value was determined from the surface of the surface protective layer using a spectrocolorimeter by measuring the area where the interconnector was disposed in plan view. And the yellowing degree was evaluated by calculating the difference of b ⁇ * > value before and behind a heat resistance test, and calculating
  • Spectrophotometer Konica Minolta Japan Co., Ltd.
  • Spectrophotometer CM-600d Illumination / receiving optical system SCI (including regular reflection light) method Observation condition: 2 ° field of view light source: D65 light source
  • Color system L * a * b *
  • the present invention it is possible to provide a solar cell module and a movable body in which yellowing of the sealing layer is less likely to occur even when the resin surface protective layer is used.

Abstract

A solar cell module (100) is provided with a front surface protection layer (10) formed from a resin. Furthermore, the solar cell module (100) is provided with a barrier layer (20) which is disposed on at least one of the surfaces of the front surface protection layer (10) and which has an oxygen permeability of 1.0 × 10-5 mol/(m2·s·Pa) or less. Moreover, the solar cell module (100) is provided with: a sealing layer (30) which is disposed under the front surface protection layer (10) and the barrier layer (20) and which seals a photoelectric conversion unit (40); and a rear surface protection layer (50) disposed under the sealing layer (30).

Description

太陽電池モジュール及び移動体Solar cell module and moving body
 本発明は、太陽電池モジュール及び移動体に関する。詳細には、本発明は、樹脂製の表面保護層を使用した太陽電池モジュール及び移動体に関する。 The present invention relates to a solar cell module and a mobile unit. In particular, the present invention relates to a solar cell module and a mobile using a surface protection layer made of resin.
 近年、環境保護の観点から、光エネルギーを電気エネルギーに変換する太陽電池モジュールが注目されている。太陽電池モジュールは、一般的に、複数の太陽電池セルと、複数の太陽電池セルを封止する封止層と、封止層の両面にそれぞれ配置された表面層と背面層とにより形成される。 BACKGROUND ART In recent years, solar cell modules that convert light energy into electrical energy have attracted attention from the viewpoint of environmental protection. A solar cell module is generally formed of a plurality of solar cells, a sealing layer sealing the plurality of solar cells, and a surface layer and a back layer respectively disposed on both sides of the sealing layer. .
 太陽電池モジュールの表面保護層としては、従来ガラスが用いられていたが、近年、太陽電池モジュールの軽量化のために、ガラスに代えてポリカーボネートなどの樹脂が用いられるようになってきている。 Conventionally, glass has been used as a surface protective layer of a solar cell module, but in recent years, a resin such as polycarbonate has come to be used instead of glass in order to reduce the weight of the solar cell module.
 例えば、特許文献1に記載の太陽電池モジュールは、太陽電池セルが封止材によって封止されて形成されている封止層と、封止層の太陽光が入射する側に配置され、樹脂で構成される表面層と、を有することが開示されている。また、特許文献1に記載の太陽電池モジュールは、封止層の表面層の配置される側とは反対側に配置される背面層を有することが開示されている。 For example, the solar cell module described in Patent Document 1 is disposed on the sealing layer formed by sealing the solar cell with a sealing material, and the side of the sealing layer on which sunlight is incident, and the resin is It is disclosed to have a structured surface layer. Moreover, it is disclosed that the solar cell module of patent document 1 has a back layer arrange | positioned on the opposite side to the side by which the surface layer of a sealing layer is arrange | positioned.
特開2017-073903号公報JP, 2017-073903, A
 しかしながら、ガラスに代えて樹脂を用いて表面保護層を形成した場合、太陽電池モジュールを軽量にすることができるものの、太陽電池モジュールを長期間使用することにより、封止層が黄変しやすくなるおそれがある。したがって、このような封止層の黄変を改善することにより、太陽電池モジュールの意匠性の向上や、光エネルギーの吸収効率を向上させることが望まれている。 However, when the surface protective layer is formed using a resin instead of glass, the solar cell module can be made lightweight, but the sealing layer is easily yellowed by using the solar cell module for a long time There is a fear. Therefore, it is desired to improve the design of the solar cell module and improve the light energy absorption efficiency by improving the yellowing of the sealing layer.
 本発明は、このような従来技術の有する課題に鑑みてなされたものである。そして、本発明の目的は、樹脂製の表面保護層を用いた場合であっても封止層の黄変が生じにくい太陽電池モジュール及び移動体を提供することにある。 The present invention has been made in view of the problems of the prior art. And the object of the present invention is to provide a solar cell module and a movable body in which yellowing of the sealing layer is less likely to occur even when a resin surface protection layer is used.
 上記課題を解決するために、本発明の第一の態様に係る太陽電池モジュールは、樹脂により形成された表面保護層を備える。また、太陽電池モジュールは、表面保護層の少なくともいずれか一方の面に配置され、酸素透過度が1.0×10-5mol/(m・s・Pa)以下であるバリア層を備える。さらに、太陽電池モジュールは、表面保護層及びバリア層の下に配置され、光電変換部を封止する封止層と、封止層の下に配置された裏面保護層と、を備える。 In order to solve the above-mentioned subject, a solar cell module concerning a first aspect of the present invention is provided with a surface protection layer formed of resin. In addition, the solar cell module includes a barrier layer disposed on at least one surface of the surface protective layer and having an oxygen permeability of 1.0 × 10 −5 mol / (m 2 · s · Pa) or less. Furthermore, the solar cell module includes a sealing layer disposed below the surface protective layer and the barrier layer and sealing the photoelectric conversion unit, and a back surface protective layer disposed below the sealing layer.
 また、本発明の第二の態様に係る移動体は、太陽電池モジュールを具備する。 A mobile according to a second aspect of the present invention comprises a solar cell module.
図1は、本実施形態に係る太陽電池モジュールの一例を示す平面図である。FIG. 1 is a plan view showing an example of a solar cell module according to the present embodiment. 図2は、図1中のA-A線に沿った断面図である。FIG. 2 is a cross-sectional view taken along the line AA in FIG. 図3は、本実施形態に係る太陽電池モジュールの別の例を示す断面図である。FIG. 3 is a cross-sectional view showing another example of the solar cell module according to the present embodiment. 図4は、本実施形態に係る太陽電池モジュールの別の例を示す断面図である。FIG. 4 is a cross-sectional view showing another example of the solar cell module according to the present embodiment. 図5は、本実施形態に係る太陽電池モジュールの別の例を示す断面図である。FIG. 5 is a cross-sectional view showing another example of the solar cell module according to the present embodiment. 図6は、本実施形態に係る太陽電池モジュールの別の例を示す断面図である。FIG. 6 is a cross-sectional view showing another example of the solar cell module according to the present embodiment. 図7は、本実施形態に係る太陽電池モジュールの別の例を示す断面図である。FIG. 7 is a cross-sectional view showing another example of the solar cell module according to the present embodiment. 図8は、本実施形態に係る太陽電池モジュールの別の例を示す断面図である。FIG. 8 is a cross-sectional view showing another example of the solar cell module according to the present embodiment. 図9は、本実施形態に係る太陽電池モジュールの別の例を示す断面図である。FIG. 9 is a cross-sectional view showing another example of the solar cell module according to the present embodiment.
 以下、図面を用いて本実施形態に係る太陽電池モジュール及び移動体について詳細に説明する。なお、図面の寸法比率は説明の都合上誇張されており、実際の比率と異なる場合がある。また、本実施形態では、太陽電池モジュールに対し、太陽光などの光源側を受光面側及び表面側、受光面と反対側を裏面側という。 Hereinafter, the solar cell module and the mobile unit according to the present embodiment will be described in detail using the drawings. The dimensional ratios in the drawings are exaggerated for the sake of explanation, and may differ from the actual ratios. Further, in the present embodiment, with respect to the solar cell module, a light source side such as sunlight is referred to as a light receiving surface side and a surface side, and a side opposite to the light receiving surface is referred to as a back surface side.
[太陽電池モジュール100]
 図1は、本実施形態に係る太陽電池モジュール100の一例を示す平面図である。本実施形態では、y軸方向に並んで配置される5つの太陽電池セル42が、インターコネクタ44によって電気的に直列に接続され、1つの太陽電池セルストリング46が形成されている。また、インターコネクタ44は、隣接した2つの太陽電池セルストリング46を電気的に接続することができる。本実施形態では、x軸方向に平行に並んで配置される4つの太陽電池セルストリング46が、インターコネクタ44によって電気的に直列に接続されている。なお、図1では本実施形態の一例を示したが、太陽電池モジュール100に配置される太陽電池セル42及び太陽電池セルストリング46の数や配置などは特に限定されない。
[Solar cell module 100]
FIG. 1 is a plan view showing an example of a solar cell module 100 according to the present embodiment. In the present embodiment, five solar battery cells 42 arranged in parallel in the y-axis direction are electrically connected in series by the interconnector 44 to form one solar battery cell string 46. Further, the interconnector 44 can electrically connect two adjacent solar cell strings 46. In this embodiment, four solar battery cell strings 46 arranged in parallel in the x-axis direction are electrically connected in series by the interconnector 44. In addition, although an example of this embodiment was shown in FIG. 1, the number, arrangement | positioning, etc. of the photovoltaic cell 42 arrange | positioned at the photovoltaic module 100, and the photovoltaic cell string 46 are not specifically limited.
 図2は、本実施形態に係る太陽電池モジュール100の一例を示す断面図である。図2に示すように、本実施形態に係る太陽電池モジュール100は、表面保護層10と、バリア層20と、封止層30と、裏面保護層50と、を備える。バリア層20は表面保護層10の少なくともいずれか一方の面に配置され、封止層30は表面保護層10及びバリア層20の下に配置され、裏面保護層50は封止層30の下に配置される。そして、封止層30は、光電変換部40を封止している。以下、各構成について詳細に説明する。 FIG. 2 is a cross-sectional view showing an example of a solar cell module 100 according to the present embodiment. As shown in FIG. 2, the solar cell module 100 according to the present embodiment includes a surface protection layer 10, a barrier layer 20, a sealing layer 30, and a back surface protection layer 50. The barrier layer 20 is disposed on at least one surface of the surface protective layer 10, the sealing layer 30 is disposed below the surface protective layer 10 and the barrier layer 20, and the back protective layer 50 is disposed below the sealing layer 30. Be placed. The sealing layer 30 seals the photoelectric conversion unit 40. Each component will be described in detail below.
 (表面保護層10)
 表面保護層10は、光電変換部40に対して受光面側に配置される。そして、表面保護層10は、太陽電池モジュール100の表面を異物などから保護する役割を有する。表面保護層10の形状は特に限定されず、用途に応じて円形、楕円形、矩形などの多角形とすることができる。また、表面保護層10の断面形状は矩形であっても、太陽電池モジュール100の各層の積層方向(z軸方向)に湾曲していてもよい。
(Surface protection layer 10)
The surface protective layer 10 is disposed on the light receiving surface side with respect to the photoelectric conversion unit 40. The surface protective layer 10 has a role of protecting the surface of the solar cell module 100 from foreign matter and the like. The shape of the surface protective layer 10 is not particularly limited, and may be a polygon such as a circle, an ellipse, or a rectangle depending on the application. The cross-sectional shape of the surface protective layer 10 may be rectangular or may be curved in the stacking direction (z-axis direction) of each layer of the solar cell module 100.
 表面保護層10は樹脂により形成される。表面保護層10が、従来用いられていたガラスに代えて樹脂により形成されることにより、太陽電池モジュール100を軽量化することができる。そのため、太陽電池モジュール100を取り付ける屋根などの設置部にかかる負荷を軽減することができ、太陽電池モジュール100の適用範囲を広くすることができる。 The surface protective layer 10 is formed of a resin. By forming the surface protective layer 10 with a resin instead of the glass conventionally used, the weight of the solar cell module 100 can be reduced. Therefore, the load applied to the installation portion such as the roof to which the solar cell module 100 is attached can be reduced, and the application range of the solar cell module 100 can be broadened.
 表面保護層10を形成する樹脂としては、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)及びポリエチレンナフタレート(PEN)などのポリエステル、ポリカーボネート(PC)、非晶ポリアリレート、ポリアセタール(POM)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルサルフォン、並びに変性ポリフェニレンエーテルなどを用いることができる。これらの中でも、耐衝撃性及び透光性の観点より、表面保護層10を形成する材料はポリカーボネート(PC)であることが好ましい。 Examples of the resin that forms the surface protective layer 10 include polyesters such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT) and polyethylene naphthalate (PEN), polycarbonate (PC), amorphous polyarylate, polyacetal (POM) Polyether ketone (PEK), polyether ether ketone (PEEK), polyether sulfone, modified polyphenylene ether and the like can be used. Among these, the material for forming the surface protective layer 10 is preferably polycarbonate (PC) from the viewpoint of impact resistance and light transmission.
 表面保護層10は透光性を有することが好ましい。特に限定されないが、表面保護層10の全光線透過率は80%~100%であることが好ましく、85%~100%であることがより好ましい。表面保護層10の全光線透過率をこのような範囲とすることにより、光を効率よく光電変換部40へ到達させることができる。全光線透過率は、例えば日本工業規格JIS K7361-1:1997(ISO 13468-1:1996)(プラスチック-透明材料の全光線透過率の試験方法-第1部:シングルビーム法)などの方法により測定することができる。 The surface protective layer 10 preferably has a light transmitting property. Although not particularly limited, the total light transmittance of the surface protective layer 10 is preferably 80% to 100%, and more preferably 85% to 100%. By setting the total light transmittance of the surface protective layer 10 in such a range, light can efficiently reach the photoelectric conversion unit 40. The total light transmittance can be determined, for example, by the method of Japanese Industrial Standard JIS K7361-1: 1997 (ISO 13468-1: 1996) (Plastic-Test method of total light transmittance of transparent materials-Part 1: Single beam method) It can be measured.
 表面保護層10の厚みは、太陽電池モジュール100の表面を保護する役割を果たす限り特に限定されないが、0.1mm~100mmであることが好ましく、0.5mm~50mmであることがより好ましい。表面保護層10の厚みをこのような範囲とすることにより、太陽電池モジュール100を適切に保護し、光を光電変換部40に効率よく到達させることができる。 The thickness of the surface protective layer 10 is not particularly limited as long as it plays a role of protecting the surface of the solar cell module 100, but is preferably 0.1 mm to 100 mm, and more preferably 0.5 mm to 50 mm. By setting the thickness of the surface protective layer 10 in such a range, the solar cell module 100 can be appropriately protected, and light can efficiently reach the photoelectric conversion unit 40.
 表面保護層10は、紫外線吸収剤を含有していることが好ましい。このような紫外線吸収剤により、樹脂の劣化の原因となる紫外線を吸収することができる。そのため、バリア層20の酸素バリア機能を長期間維持することができる。特に、後述するような、分子中にヒドロキシル基を有する樹脂は、他の樹脂と比較して劣化しやすい傾向にある。そのため、樹脂の劣化を抑制するため、表面保護層10が紫外線吸収剤を含有していることが好ましい。 The surface protective layer 10 preferably contains a UV absorber. Such an ultraviolet absorber can absorb ultraviolet rays that cause deterioration of the resin. Therefore, the oxygen barrier function of the barrier layer 20 can be maintained for a long time. In particular, a resin having a hydroxyl group in the molecule as described later tends to be easily deteriorated as compared with other resins. Therefore, in order to suppress degradation of resin, it is preferable that the surface protection layer 10 contains the ultraviolet absorber.
 紫外線吸収剤としては、特に限定されないが、例えばベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、トリアジン系紫外線吸収剤などが挙げられる。紫外線吸収剤は、1種を単独で用いてもよく、複数種を組み合わせて用いてもよい。 The UV absorber is not particularly limited, and examples thereof include benzophenone-based UV absorbers, benzotriazole-based UV absorbers, and triazine-based UV absorbers. A ultraviolet absorber may be used individually by 1 type, and may be used in combination of multiple types.
 ベンゾフェノン系紫外線吸収剤としては、例えば2-ヒドロキシ-4-n-オクチルオキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノンなどが挙げられる。 Examples of benzophenone-based UV absorbers include 2-hydroxy-4-n-octyloxybenzophenone, 2-hydroxy-4-methoxybenzophenone, and 2,2'-dihydroxy-4,4'-dimethoxybenzophenone.
 ベンゾトリアゾール系紫外線吸収剤としては、例えば2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル) フェノール、2,2’-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール]、2-(2H-ベンゾトリアゾール-2-イル)-p-クレゾール、2-(5-クロロ-2H-ベンゾトリアゾール-2-イル)-6-tert-ブチル-4-メチルフェノールなどが挙げられる。 Examples of benzotriazole-based UV absorbers include 2- (2H-benzotriazol-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol and 2,2'-methylenebis [6- ( 2H-benzotriazol-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol], 2- (2H-benzotriazol-2-yl) -p-cresol, 2- (5-) Chloro-2H-benzotriazol-2-yl) -6-tert-butyl-4-methylphenol and the like.
 トリアジン系紫外線吸収剤としては、例えば2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[2-(2-エチルヘキサノイルオキシ)エトキシ) フェノール、2,4,6-トリス(2-ヒドロキシ-4-ヘキシルオキシ-3-メチルフェニル)-1,3,5-トリアジンなどが挙げられる。 Examples of triazine-based UV absorbers include 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5- [2- (2-ethylhexanoyloxy) ethoxy) phenol, 4,6-tris (2-hydroxy-4-hexyloxy-3-methylphenyl) -1,3,5-triazine and the like.
 紫外線吸収剤の含有量は、特に限定されないが、表面保護層10全体に対して0.1質量%~10質量%であることが好ましい。紫外線吸収剤の含有量を0.1質量%以上とすることにより、表面保護層10の紫外線吸収効果を高くすることができる。また、紫外線吸収剤の含有量を10質量%以下とすることにより、表面保護層10の機械的強度の低下を抑制することができる。なお、紫外線吸収剤の含有量は、表面保護層10全体に対して1質量%~5質量%であることがより好ましい。 The content of the ultraviolet absorber is not particularly limited, but is preferably 0.1% by mass to 10% by mass with respect to the entire surface protective layer 10. By making content of a ultraviolet absorber into 0.1 mass% or more, the ultraviolet-ray absorption effect of the surface protective layer 10 can be heightened. Moreover, the fall of the mechanical strength of the surface protective layer 10 can be suppressed by content of a ultraviolet absorber being 10 mass% or less. The content of the ultraviolet absorber is more preferably 1% by mass to 5% by mass with respect to the entire surface protective layer 10.
 本実施形態に係る表面保護層10は、上記の紫外線吸収剤に加え、光安定剤をさらに含んでいてもよい。光安定剤は、例えばヒンダードアミン系光安定剤(HALS)などを用いることができる。ヒンダードアミン系光安定剤としては、例えば、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)ブタン-1,2,3,4-テトラカルボキシレート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)ブタン-1,2,3,4-テトラカルボキシレート、ビス(1-ウンデカンオキシ-2,2,6,6-テトラメチルピペリジン-4-イル)カルボネートなどが挙げられる。これらの光安定剤は、1種を単独で用いてもよく、複数種を組み合わせて用いてもよい。光安定剤の含有量は、特に限定されないが、表面保護層10全体に対して0.01質量%~3質量%であることが好ましく、0.1質量%~1質量%であることがより好ましい。 The surface protective layer 10 according to the present embodiment may further include a light stabilizer in addition to the above-described ultraviolet light absorber. As the light stabilizer, for example, a hindered amine light stabilizer (HALS) can be used. Examples of hindered amine light stabilizers include tetrakis (2,2,6,6-tetramethyl-4-piperidyl) butane-1,2,3,4-tetracarboxylate, bis (2,2,6,6) -Tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) butane- 1,2,3,4-tetracarboxylate, bis (1-undecanoxy-2,2,6,6-tetramethylpiperidin-4-yl) carbonate and the like. One of these light stabilizers may be used alone, or two or more thereof may be used in combination. The content of the light stabilizer is not particularly limited, but is preferably 0.01% by mass to 3% by mass, and more preferably 0.1% by mass to 1% by mass with respect to the entire surface protective layer 10 preferable.
 また、図3に示すように、本実施形態に係る太陽電池モジュール100は、表面保護層10における封止層30とは反対側の表面に、紫外線吸収剤を含有する耐光層60をさらに備えることも好ましい。耐光層60は、紫外線吸収剤を含む樹脂層を積層してもよいが、製造コスト低減の観点から、表面保護層10の受光面側の表面に紫外線吸収剤を含む塗料組成物を塗布して硬化させることにより形成してもよい。すなわち、耐光層60は、塗料組成物を硬化して形成されたコーティング層であることが好ましい。 In addition, as shown in FIG. 3, the solar cell module 100 according to the present embodiment further includes a light resistant layer 60 containing an ultraviolet absorber on the surface of the surface protective layer 10 opposite to the sealing layer 30. Is also preferred. The light-resistant layer 60 may be formed by laminating a resin layer containing an ultraviolet absorber, but from the viewpoint of reduction of manufacturing cost, a coating composition containing an ultraviolet absorber is applied to the surface on the light receiving surface side of the surface protective layer 10 It may be formed by curing. That is, the light-resistant layer 60 is preferably a coating layer formed by curing the coating composition.
 耐光層60に含まれる紫外線吸収剤は特に限定されず、上述した紫外線吸収剤を用いることができる。紫外線吸収剤の含有量も、上記と同様であり、耐光層60全体に対して0.1質量%~10質量%であることが好ましく、1質量%~5質量%がより好ましい。また、耐光層60は、上述した光安定剤をさらに含んでいてもよい。光安定剤の含有量も、上記と同様であり、耐光層60全体に対して0.01質量%~3質量%であることが好ましく、0.1質量%~1質量%であることがより好ましい。 The ultraviolet absorber contained in the light resistant layer 60 is not particularly limited, and the above-mentioned ultraviolet absorber can be used. The content of the ultraviolet absorber is also the same as above, and is preferably 0.1% by mass to 10% by mass, and more preferably 1% by mass to 5% by mass, with respect to the entire light-resistant layer 60. Moreover, the light resistant layer 60 may further contain the light stabilizer mentioned above. The content of the light stabilizer is also the same as above, and is preferably 0.01% by mass to 3% by mass, and more preferably 0.1% by mass to 1% by mass, with respect to the whole of the light resistant layer 60. preferable.
 耐光層60に用いられる塗料組成物は、特に限定されないが、例えばスチレン系モノマー、オレフィン系モノマー、ビニル系モノマー、及びアクリル系モノマーなどのモノマーが含まれる。スチレン系モノマーとしては、例えば、スチレンなどが挙げられる。オレフィン系モノマーとしては、例えば、エチレン及びプロピレンなどが挙げられる。ビニル系モノマーとしては、例えば、塩化ビニル及び塩化ビニリデンなどが挙げられる。アクリル系モノマーとしては、例えば、メタクリレート、アクリレートなどが挙げられる。上記のモノマー成分は、一種を単独で用いてもよく、二種以上を混合して用いてもよい。 The coating composition used for the light-resistant layer 60 is not particularly limited, and includes, for example, monomers such as styrenic monomers, olefin monomers, vinyl monomers, and acrylic monomers. As a styrene-type monomer, styrene etc. are mentioned, for example. Examples of olefin monomers include ethylene and propylene. Examples of vinyl monomers include vinyl chloride and vinylidene chloride. As an acryl-type monomer, a methacrylate, an acrylate, etc. are mentioned, for example. The above monomer components may be used alone or in combination of two or more.
 耐光層60に用いられる塗料組成物は、炭素-炭素不飽和結合を備えるモノマーの重合反応を促進するための重合開始剤を含有することができる。重合開始剤の含有量は特に限定されないが、耐光層60全体に対し、1質量%~10質量%とすることが好ましい。重合開始剤としては、光重合開始剤及び熱重合開始剤の少なくとも一方を用いることができるが、光重合開始剤を用いることが好ましい。光重合開始剤を用いることにより、活性エネルギー線を照射することでモノマーが瞬時に硬化するため、製造工程を短縮することが可能となる。 The paint composition used for the light resistant layer 60 can contain a polymerization initiator for promoting the polymerization reaction of the monomer having a carbon-carbon unsaturated bond. The content of the polymerization initiator is not particularly limited, but is preferably 1% by mass to 10% by mass with respect to the entire light resistant layer 60. As the polymerization initiator, although at least one of a photopolymerization initiator and a thermal polymerization initiator can be used, it is preferable to use a photopolymerization initiator. By using the photopolymerization initiator, the monomer is instantaneously cured by irradiating the active energy ray, so that the manufacturing process can be shortened.
 コーティング層を形成するのに用いられる光重合開始剤は、モノマーの重合反応を開始させる働きを持つ化合物で、活性エネルギー線から特定波長の光を吸収して励起状態となり、ラジカルやイオンを発生する物質である。このような光重合開始剤としては、例えばベンゾインエーテル系、ケタール系、アセトフェノン系、ベンゾフェノン系、及びチオキサントン系からなる群より選ばれる少なくとも一種を用いることができる。 The photopolymerization initiator used to form the coating layer is a compound having a function of initiating the polymerization reaction of the monomer, absorbs light of a specific wavelength from the active energy ray to be in an excited state, and generates radicals and ions. It is a substance. As such a photopolymerization initiator, for example, at least one selected from the group consisting of benzoin ether type, ketal type, acetophenone type, benzophenone type, and thioxanthone type can be used.
 耐光層60に用いられる熱重合開始剤は、モノマーの重合反応を開始させる働きを持つ化合物で、加熱によってラジカルやイオンなどの活性種を発生する物質である。熱重合開始剤としては、2,2’-アゾビス(イソブチロニトリル)などのアゾ化合物,過酸化ベンゾイルなどの過酸化物、ベンゼンスルホン酸エステル及びアルキルスルホニウム塩からなる群より選ばれる少なくとも一種を用いることができる。 The thermal polymerization initiator used for the light resistant layer 60 is a compound having a function of initiating a polymerization reaction of monomers, and is a substance which generates active species such as radicals and ions by heating. As the thermal polymerization initiator, at least one selected from the group consisting of azo compounds such as 2,2'-azobis (isobutyronitrile), peroxides such as benzoyl peroxide, benzenesulfonic acid ester and alkyl sulfonium salt It can be used.
 耐光層60に用いられる塗料組成物を塗布する方法は特に限定されず、スプレーコーティング法、ディップコーティング法、フローコーティング法、スピンコーティング法、ロールコーティング法、刷毛塗り、スポンジ塗りなどの方法を用いることができる。そして、塗布した塗料組成物を硬化させることにより、耐光層60を形成することができる。 The method of applying the coating composition used for the light-resistant layer 60 is not particularly limited, and methods such as spray coating, dip coating, flow coating, spin coating, roll coating, brush coating, and sponge coating may be used. Can. Then, the light resistant layer 60 can be formed by curing the applied coating composition.
 (バリア層20)
 本実施形態に係る太陽電池モジュール100は、表面保護層10の少なくともいずれか一方の面に配置されるバリア層20を備える。このようなバリア層20により、太陽電池モジュール100における表面保護層10側から、酸素が進入するのを抑制することができる。そのため、封止層30が黄変するのを抑制することができる。
(Barrier layer 20)
The solar cell module 100 according to the present embodiment includes a barrier layer 20 disposed on at least one surface of the surface protective layer 10. Such a barrier layer 20 can suppress oxygen from the side of the surface protective layer 10 in the solar cell module 100. Therefore, yellowing of the sealing layer 30 can be suppressed.
 例えば、図2及び図3に示すように、本実施形態に係る太陽電池モジュール100は、表面保護層10の下に配置されたバリア層20を備えることが好ましい。より具体的には、太陽電池モジュール100は、表面保護層10と封止層30の間に配置されたバリア層20を備えることが好ましい。さらに具体的には、太陽電池モジュール100は、表面保護層10と表面封止層32の間に配置されたバリア層20を備えることが好ましい。 For example, as shown in FIGS. 2 and 3, the solar cell module 100 according to the present embodiment preferably includes a barrier layer 20 disposed below the surface protective layer 10. More specifically, the solar cell module 100 preferably includes a barrier layer 20 disposed between the surface protective layer 10 and the sealing layer 30. More specifically, the solar cell module 100 preferably includes the barrier layer 20 disposed between the surface protective layer 10 and the surface sealing layer 32.
 また、図4に示すように、本実施形態に係る太陽電池モジュール100は、表面保護層10の上に配置されたバリア層20を備えることも好ましい。具体的には、太陽電池モジュール100は、表面保護層10に対して封止層30とは反対側に配置されたバリア層20を備えることが好ましい。 In addition, as shown in FIG. 4, the solar cell module 100 according to the present embodiment preferably includes a barrier layer 20 disposed on the surface protective layer 10. Specifically, the solar cell module 100 preferably includes the barrier layer 20 disposed on the side opposite to the sealing layer 30 with respect to the surface protective layer 10.
 さらに、図5に示すように、本実施形態に係る太陽電池モジュール100は、表面保護層10の両面に配置されたバリア層20を備えることも好ましい。バリア層20を表面保護層10の両面に配置することにより、太陽電池モジュール100の酸素バリア性をより向上させることができるため好ましい。 Furthermore, as shown in FIG. 5, the solar cell module 100 according to the present embodiment preferably includes barrier layers 20 disposed on both sides of the surface protective layer 10. Arranging the barrier layer 20 on both sides of the surface protective layer 10 is preferable because the oxygen barrier property of the solar cell module 100 can be further improved.
 バリア層20は、表面保護層10の少なくともいずれか一方の面及び裏面保護層50の少なくともいずれか一方の面に配置されることが好ましい。本実施形態では、封止層30に対して表面保護層10側だけでなく、封止層30に対して裏面保護層50側にもバリア層20を配置することにより、封止層30に進入する酸素の量を低減することができるため、封止層30の黄変を抑制することができる。特に、裏面保護層50に酸素が透過しやすい材料を用いた場合、封止層30に対して裏面保護層50側にもバリア層20が配置されていると効果的である。 The barrier layer 20 is preferably disposed on at least one surface of the surface protective layer 10 and at least one surface of the back surface protective layer 50. In the present embodiment, the barrier layer 20 is disposed not only on the side of the surface protective layer 10 with respect to the sealing layer 30 but also on the side of the back surface protective layer 50 with respect to the sealing layer 30. Because the amount of oxygen can be reduced, yellowing of the sealing layer 30 can be suppressed. In particular, in the case where a material through which oxygen is easily transmitted is used for the back surface protective layer 50, it is effective if the barrier layer 20 is disposed also on the back surface protective layer 50 side with respect to the sealing layer 30.
 例えば、図6に示すように、本実施形態に係る太陽電池モジュール100は、裏面保護層50の上に配置されたバリア層20を備えることが好ましい。具体的には、太陽電池モジュール100は、封止層30と裏面保護層50の間に配置されたバリア層20を備えることが好ましい。より具体的には、太陽電池モジュール100は、裏面封止層34と裏面保護層50の間に配置されたバリア層20を備えることが好ましい。 For example, as shown in FIG. 6, the solar cell module 100 according to the present embodiment preferably includes the barrier layer 20 disposed on the back surface protective layer 50. Specifically, the solar cell module 100 preferably includes the barrier layer 20 disposed between the sealing layer 30 and the back surface protective layer 50. More specifically, the solar cell module 100 preferably includes the barrier layer 20 disposed between the back surface sealing layer 34 and the back surface protective layer 50.
 また、図7に示すように、本実施形態に係る太陽電池モジュール100は、裏面保護層50の下に配置されたバリア層20を備えることも好ましい。具体的には、太陽電池モジュールは、裏面保護層50に対して封止層30とは反対側に配置されたバリア層20を備えることが好ましい。 Moreover, as shown in FIG. 7, it is also preferable that the solar cell module 100 according to the present embodiment includes a barrier layer 20 disposed below the back surface protective layer 50. Specifically, the solar cell module preferably includes the barrier layer 20 disposed on the side opposite to the sealing layer 30 with respect to the back surface protective layer 50.
 さらに、図8に示すように、本実施形態に係る太陽電池モジュール100は、裏面保護層50の両面に配置されたバリア層20を備えることも好ましい。バリア層20を裏面保護層50の両面に配置することにより、太陽電池モジュール100の酸素バリア性をより向上させることができるため好ましい。 Furthermore, as shown in FIG. 8, it is preferable that the solar cell module 100 according to the present embodiment also includes barrier layers 20 disposed on both sides of the back surface protective layer 50. Arranging the barrier layer 20 on both sides of the back surface protective layer 50 is preferable because the oxygen barrier property of the solar cell module 100 can be further improved.
 なお、図6~図8に示す実施形態では、一方のバリア層20が、表面保護層10と封止層30の間に配置された例を示している。ただし、本実施形態は、図示した態様に限定されず、表面保護層10の少なくともいずれか一方の面及び裏面保護層50の少なくともいずれか一方の面にバリア層20が配置されていればよい。また、複数のバリア層20を形成する材料は、それぞれ互いに同じであってもよく、異なっていてもよい。 In the embodiment shown in FIGS. 6 to 8, an example is shown in which one barrier layer 20 is disposed between the surface protective layer 10 and the sealing layer 30. However, the present embodiment is not limited to the illustrated mode, and the barrier layer 20 may be disposed on at least one of the surface of the surface protective layer 10 and at least one of the back surface protective layer 50. The materials forming the plurality of barrier layers 20 may be the same as or different from one another.
 本実施形態に係る太陽電池モジュール100は、酸素透過度が1.0×10-5mol/(m・s・Pa)以下であるバリア層20を備える。本実施形態では、上記のように、表面保護層10が樹脂により形成されているため、太陽電池モジュール100が軽量化されている。しかしながら、樹脂は、ガラスと比較して酸素透過度が低いため、光電変換部40におけるインターコネクタ44を形成する金属イオンに起因して封止層30が黄変しやすい。しかしながら、本実施形態では、酸素透過度を上記数値以下とすることにより、封止層30の黄変を抑制することができる。なお、バリア層20の酸素透過度は、1.0×10-9mol/(m・s・Pa)以下であることが好ましく、1.0×10-12mol/(m・s・Pa)以下であることがより好ましい。また、酸素透過度は、JIS K7126-2(プラスチック-フィルム及びシート-ガス透過度試験方法-第2部:等圧法)の規定に従って測定することができる。酸素透過度は、測定温度23℃、測定湿度90%RHで測定することができる。 The solar cell module 100 according to the present embodiment includes the barrier layer 20 having an oxygen permeability of 1.0 × 10 −5 mol / (m 2 · s · Pa) or less. In the present embodiment, as described above, since the surface protective layer 10 is formed of resin, the weight of the solar cell module 100 is reduced. However, since the resin has a lower oxygen permeability than glass, the sealing layer 30 easily yellows due to metal ions forming the interconnector 44 in the photoelectric conversion unit 40. However, in the present embodiment, yellowing of the sealing layer 30 can be suppressed by setting the oxygen permeability to the above numerical value or less. The oxygen permeability of the barrier layer 20 is preferably 1.0 × 10 −9 mol / (m 2 · s · Pa) or less, and 1.0 × 10 −12 mol / (m 2 · s ···· Pa) or less is more preferable. Further, the oxygen permeability can be measured in accordance with JIS K 7126-2 (Plastics-Films and Sheets-Gas Permeability Test Method-Part 2: Equal Pressure Method). The oxygen permeability can be measured at a measurement temperature of 23 ° C. and a measurement humidity of 90% RH.
 バリア層20は、無機材料を蒸着して形成された無機蒸着層、有機高分子にて構成された樹脂、有機高分子にて構成された樹脂に層状粘土鉱物が分散された層状粘土鉱物含有層などが挙げられる。 The barrier layer 20 is an inorganic deposition layer formed by depositing an inorganic material, a resin composed of an organic polymer, a layered clay mineral-containing layer in which a layered clay mineral is dispersed in a resin composed of an organic polymer Etc.
 無機蒸着層を形成する無機材料としては、ケイ素、アルミニウム、マグネシウム、ニッケル、スズ、チタンなどの金属、並びに、上記金属の酸化物、窒化物及び炭化物などが挙げられる。これらのなかでも、無機蒸着層を形成する材料は、酸化ケイ素及び酸化アルミニウムの少なくともいずれか一方であることが好ましく、酸化ケイ素であることがより好ましい。無機蒸着層は、例えば物理蒸着(PVD)又は化学蒸着(CVD)などにより、表面保護層10の少なくとも一方の面に形成することができる。 As an inorganic material which forms an inorganic vapor deposition layer, metals, such as silicon, aluminum, magnesium, nickel, tin, and titanium, and the oxide of the said metal, nitride, and carbide etc. are mentioned. Among these, the material for forming the inorganic deposition layer is preferably at least one of silicon oxide and aluminum oxide, and more preferably silicon oxide. The inorganic vapor deposition layer can be formed on at least one surface of the surface protective layer 10 by, for example, physical vapor deposition (PVD) or chemical vapor deposition (CVD).
 有機高分子で構成された樹脂としては、アクリル系ポリマー、ビニルアルコール系ポリマー、ポリアミド系ポリマー、ポリエーテル系ポリマー、ポリエステル系ポリマー、ポリ塩化ビニリデン系ポリマー、エポキシ基で変性したポリマーなどを用いることができる。 As resin composed of organic polymer, acrylic polymer, vinyl alcohol polymer, polyamide polymer, polyether polymer, polyester polymer, polyvinylidene chloride polymer, polymer modified with epoxy group, etc. may be used it can.
 アクリル系ポリマーとしては、例えば、ポリアクリルアミド、ポリアクリル酸などを用いることができる。また、ビニルアルコール系ポリマーとしては、例えば、ポリビニルアルコール(PVA)、部分けん化ポリビニルアルコール、エチレン-ビニルアルコール共重合体(EVOH)などを用いることができる。ポリアミド系ポリマーとしては、例えば、6-ナイロン、6,6-ナイロンなどを用いることができる。ポリエーテル系ポリマーとしては、例えば、ポリアルキレンエーテルなどを用いることができる。ポリエステル系ポリマーとしては、例えば、構成成分としてジカルボン酸成分とグリコール成分を含むポリマー、構成成分として脂肪族ヒドロキシカルボン酸成分を含むポリマーを用いることができる。ポリ塩化ビニリデン系ポリマーとしては、構成成分が塩化ビニリデン成分を含むポリマーを用いることができる。エポキシ基で変性したポリマーとしては、例えば、ポリグリシジル(メタ)アクリレート、ポリアルキレンエーテルグリシジルエーテルなど、上記各種ポリマーをグリシジル基で変性したポリマーなどを用いることができる。バリア性、入手の容易性、層状粘土鉱物などとの親和性の観点から、各種ビニルアルコール系ポリマー、各種ポリアミド系ポリマー、各種ポリエーテル系ポリマーが好ましく、各種ビニルアルコール系ポリマー、各種ポリエーテル系ポリマーがより好ましい。上記ポリマーは単独でも用いることができるし、2種以上を併用することもできる。 As the acrylic polymer, for example, polyacrylamide, polyacrylic acid and the like can be used. Also, as the vinyl alcohol polymer, for example, polyvinyl alcohol (PVA), partially saponified polyvinyl alcohol, ethylene-vinyl alcohol copolymer (EVOH), etc. can be used. As the polyamide polymer, for example, 6-nylon, 6,6-nylon and the like can be used. As a polyether type polymer, polyalkylene ether etc. can be used, for example. As the polyester-based polymer, for example, a polymer containing a dicarboxylic acid component and a glycol component as constituent components, and a polymer containing an aliphatic hydroxycarboxylic acid component as constituent components can be used. As the polyvinylidene chloride-based polymer, a polymer whose component contains a vinylidene chloride component can be used. As the polymer modified with an epoxy group, for example, polymers obtained by modifying the above-mentioned various polymers with glycidyl group, such as polyglycidyl (meth) acrylate and polyalkylene ether glycidyl ether, can be used. Various vinyl alcohol polymers, various polyamide polymers, and various polyether polymers are preferable from the viewpoint of barrier property, availability, and affinity with layered clay minerals etc. Various vinyl alcohol polymers, various polyether polymers Is more preferred. The above polymers can be used alone or in combination of two or more.
 なお、ポリビニルアルコール及び部分けん化ポリビニルアルコールは、例えば、株式会社クラレ及び日本酢ビ・ポバール株式会社から“ポバール”として、日本合成化学工業株式会社から“ゴーセノール(登録商標)”として、各種グレードが上市されており、いずれも好ましく用いることができる。また、エチレン-ビニルアルコール共重合体は、株式会社クラレから“エバール(登録商標)”として、日本合成化学工業株式会社から“ソアノール(登録商標)”として、各種グレードが上市されており、いずれも好ましく用いることができる。 In addition, polyvinyl alcohol and partially saponified polyvinyl alcohol are marketed in various grades as, for example, Kuraray Co., Ltd. and Nippon Kayaku Bi. Poval Co., Ltd. as "Poval" and Nippon Synthetic Chemical Industry Co., Ltd. as "Gosenol (registered trademark)". And any of them can be preferably used. In addition, various grades of ethylene-vinyl alcohol copolymer are marketed by Kuraray Co., Ltd. as "EVAL (registered trademark)" and Nippon Synthetic Chemical Industry Co., Ltd. as "Soranol (registered trademark)". It can be used preferably.
 層状粘土鉱物含有層は、上記有機高分子にて構成された樹脂と、上記有機高分子にて構成された樹脂に分散された層状粘土鉱物とを含んでいることが好ましい。本実施形態では、このような層状粘土鉱物が樹脂に含有されていることにより、層状粘土鉱物によって樹脂内における酸素の通過経路の一部が遮断されるため、バリア層20の酸素透過度を低減することができる。 The layered clay mineral-containing layer preferably contains a resin composed of the organic polymer and a layered clay mineral dispersed in the resin composed of the organic polymer. In the present embodiment, when the layered clay mineral is contained in the resin, the layered clay mineral blocks part of the oxygen passage in the resin, so the oxygen permeability of the barrier layer 20 is reduced. can do.
 また、層状粘土鉱物含有層は、一般的に引張破壊ひずみが大きい傾向にある。そのため、太陽電池モジュール100を曲面形状などに加工する場合であっても、太陽電池モジュール100の製造工程において、無機蒸着層にバリア性低下の原因となるクラックが生じにくい。したがって、バリア層20は、樹脂に層状粘土鉱物が分散された層状粘土鉱物含有層であることが好ましい。 In addition, the layered clay mineral-containing layer generally tends to have a large tensile breaking strain. Therefore, even when the solar cell module 100 is processed into a curved surface shape or the like, in the manufacturing process of the solar cell module 100, a crack which is a cause of the decrease in the barrier property does not easily occur in the inorganic vapor deposition layer. Therefore, the barrier layer 20 is preferably a layered clay mineral-containing layer in which a layered clay mineral is dispersed in a resin.
 層状粘土鉱物含有層を形成する樹脂は、上記有機高分子にて構成された樹脂を用いることができるが、分子中にヒドロキシル基を有することが好ましい。具体的には、バリア層20を形成する樹脂は、ポリビニルアルコール(PVA)及びエチレン-ビニルアルコール共重合体(EVOH)の少なくともいずれか一方を含むことが好ましい。これらの樹脂は、酸素バリア性が高い。また、これらの樹脂は、分子中にヒドロキシル基を有する。また、層状粘土鉱物は、一般的にヒドロキシル基を水素結合などの化学結合する化学構造を有しているため、分子中にヒドロキシル基を有している樹脂を用いることで、樹脂と層状粘土鉱物との化学的結合を強くすることができる。そのため、バリア層20の酸素バリア性をより向上させることができる。 Although resin which comprised the said organic polymer can be used for resin which forms a layered clay mineral containing layer, it is preferable to have a hydroxyl group in a molecule | numerator. Specifically, the resin forming the barrier layer 20 preferably contains at least one of polyvinyl alcohol (PVA) and ethylene-vinyl alcohol copolymer (EVOH). These resins have high oxygen barrier properties. Also, these resins have hydroxyl groups in the molecule. Moreover, since a layered clay mineral generally has a chemical structure which chemically bonds a hydroxyl group such as a hydrogen bond, a resin and a layered clay mineral can be obtained by using a resin having a hydroxyl group in the molecule. Chemical bond with can be strengthened. Therefore, the oxygen barrier property of the barrier layer 20 can be further improved.
 層状粘土鉱物は、酸素、ケイ素及びアルミニウムなどの原子により形成された四面体シート及び八面体シートなどのシート構造を含む。そして、層状粘土鉱物は、一般的に、シート構造が層状に積層された層状構造を有している。したがって、樹脂内の酸素が通過する経路は、この層状粘土鉱物によって、狭くかつ長くなるため、バリア層20の酸素透過度を低減することができる。 Layered clay minerals include sheet structures such as tetrahedral sheets and octahedral sheets formed by atoms such as oxygen, silicon and aluminum. And layered clay minerals generally have a layered structure in which a sheet structure is layered. Therefore, the path through which oxygen in the resin passes is narrowed and lengthened by this layered clay mineral, so that the oxygen permeability of the barrier layer 20 can be reduced.
 シート構造の厚さ(短軸方向の大きさ)は一般的には約0.1nm~5nmであり、シート構造の厚さ方向に垂直な平面方向の大きさ(長軸方向の大きさ)は約10nm~5μmであり、シート構造は高いアスペクト比を有する。シート構造のアスペクト比は、一般的には20~10000である。シート構造の厚さ及び平面方向の大きさは電子顕微鏡などにより観察することができる。また、アスペクト比は、シート構造の短軸方向の大きさに対する長軸方向の大きさの比である。 The thickness (size in the minor axis direction) of the sheet structure is generally about 0.1 nm to 5 nm, and the size in the planar direction (size in the major axis direction) perpendicular to the thickness direction of the sheet structure It is about 10 nm to 5 μm, and the sheet structure has a high aspect ratio. The aspect ratio of the sheet structure is generally 20 to 10000. The thickness of the sheet structure and the size in the plane direction can be observed by an electron microscope or the like. The aspect ratio is the ratio of the size in the major axis direction to the size in the minor axis direction of the sheet structure.
 層状粘土鉱物は、特に限定されないが、例えば、サポナイト、ヘクトライト、モンモリロナイト、バイデライト及びスチーブンサイトなどのスメクタイト、カオリナイトなどのカオリン鉱物、白雲母及びイライトなどの雲母、タルク、並びに、バーミキュライトなどの層状ケイ酸塩であることが好ましい。 Layered clay minerals are not particularly limited. For example, layers such as saponite, hectorite, smectite such as montmorillonite, beidellite and Stephenite, kaolin minerals such as kaolinite, mica such as muscovite and illite, talc, and vermiculite It is preferable that it is a silicate.
 バリア層20における層状粘土鉱物の含有量は特に限定されないが、30質量%~80質量%であることが好ましい。層状粘土鉱物の含有量を30質量%以上とすることにより、樹脂内を通過する酸素の経路がより狭くかつ長くなるため、酸素透過度をより低減することができる。また、層状粘土鉱物の含有量を80質量%以下とすることにより、バリア層20の柔軟性が向上するため、バリア層20の破断などを抑制することができる。なお、バリア層20における層状粘土鉱物の含有量は、30質量%~50質量%であることがより好ましい。 The content of the layered clay mineral in the barrier layer 20 is not particularly limited, but is preferably 30% by mass to 80% by mass. By setting the content of the layered clay mineral to 30% by mass or more, the path of oxygen passing through the inside of the resin becomes narrower and longer, so that the oxygen permeability can be further reduced. Further, by setting the content of the layered clay mineral to 80% by mass or less, the flexibility of the barrier layer 20 is improved, so that breakage or the like of the barrier layer 20 can be suppressed. The content of the layered clay mineral in the barrier layer 20 is more preferably 30% by mass to 50% by mass.
 層状粘土鉱物含有層は、無機粒子をさらに含有していてもよい。バリア層20が無機粒子を含有することにより、バリア層20の機械的強度が向上するため、バリア層20の剛性を向上させることができる。また、バリア層20が無機粒子を含有することにより、バリア層20の熱収縮を抑制することができる。 The layered clay mineral-containing layer may further contain inorganic particles. When the barrier layer 20 contains inorganic particles, the mechanical strength of the barrier layer 20 is improved, so that the rigidity of the barrier layer 20 can be improved. Moreover, the thermal contraction of the barrier layer 20 can be suppressed by the barrier layer 20 containing inorganic particles.
 無機粒子を形成する材料は特に限定されないが、樹脂と親和性が高い無機材料が好ましい。具体的には、樹脂を形成する分子中にヒドロキシル基が含まれる場合、無機粒子を形成する材料は当該ヒドロキシル基と親和性の高い無機材料が好ましい。ヒドロキシル基と親和性の高い無機材料は、酸化ケイ素、酸化アルミニウム、酸化チタン、酸化ジルコニウムなどであることが好ましい。これらの酸化物は、ヒドロキシル基と水素結合しやすいため、樹脂との親和性が高く、バリア層20の酸素透過度の低下を抑えつつ、剛性を向上させることができる。 The material for forming the inorganic particles is not particularly limited, but an inorganic material having high affinity to the resin is preferable. Specifically, when a hydroxyl group is contained in the molecule forming the resin, the material forming the inorganic particles is preferably an inorganic material having a high affinity for the hydroxyl group. The inorganic material having high affinity to the hydroxyl group is preferably silicon oxide, aluminum oxide, titanium oxide, zirconium oxide or the like. Since these oxides easily hydrogen bond with hydroxyl groups, they have high affinity with the resin, and the rigidity can be improved while suppressing the decrease in the oxygen permeability of the barrier layer 20.
 無機粒子の平均粒子径は特に限定されないが、0.01μm~200μmであることが好ましい。無機粒子の平均粒子径を0.01μm以上とすることにより、バリア層20の剛性をより向上させることができる。また、無機粒子の平均粒子径を200μm以下とすることにより、バリア層20の光透過性の低下を抑制することができる。なお、無機粒子の平均粒子径は、0.01μm~100μmであることがより好ましい。また、本明細書において、平均粒子径は、体積基準における粒度分布の累積値が50%の時の粒子径を表し、例えば、レーザー回折・散乱法により測定することができる。 The average particle size of the inorganic particles is not particularly limited, but preferably 0.01 μm to 200 μm. By setting the average particle size of the inorganic particles to 0.01 μm or more, the rigidity of the barrier layer 20 can be further improved. Moreover, the fall of the light transmittance of the barrier layer 20 can be suppressed by the average particle diameter of an inorganic particle being 200 micrometers or less. The average particle diameter of the inorganic particles is more preferably 0.01 μm to 100 μm. Furthermore, in the present specification, the average particle size represents the particle size when the cumulative value of the particle size distribution on a volume basis is 50%, and can be measured by, for example, a laser diffraction / scattering method.
 バリア層20における無機粒子の含有量は特に限定されないが、30質量%~80質量%であることが好ましい。無機粒子の含有量を30質量%以上とすることにより、バリア層20の剛性をより向上させることができる。また、無機粒子の含有量を80質量%以下とすることにより、バリア層20の光透過性の低下を抑制することができる。なお、バリア層20における無機粒子の含有量は、30質量%~70質量%であることがより好ましい。 The content of the inorganic particles in the barrier layer 20 is not particularly limited, but is preferably 30% by mass to 80% by mass. By setting the content of the inorganic particles to 30% by mass or more, the rigidity of the barrier layer 20 can be further improved. Moreover, the fall of the light transmittance of the barrier layer 20 can be suppressed by content of an inorganic particle being 80 mass% or less. The content of the inorganic particles in the barrier layer 20 is more preferably 30% by mass to 70% by mass.
 バリア層20の厚みは、特に限定されないが、5nm以上100μm以下であることが好ましい。バリア層20の厚みを5nm以上とすることにより、酸素バリア機能を向上させることができる。また、バリア層20の厚みを100μm以下とすることにより、光を光電変換部40に効率よく到達させることができる。なお、バリア層20が無機蒸着層である場合、バリア層20の厚みは5nm以上800nm以下であることが好ましい。また、バリア層20が層状粘土鉱物含有層である場合、バリア層20の厚みは100nm以上100μm以下であることが好ましく、1μm以上30μm以下であることが好ましい。 The thickness of the barrier layer 20 is not particularly limited, but is preferably 5 nm or more and 100 μm or less. By setting the thickness of the barrier layer 20 to 5 nm or more, the oxygen barrier function can be improved. In addition, by setting the thickness of the barrier layer 20 to 100 μm or less, light can efficiently reach the photoelectric conversion unit 40. In addition, when the barrier layer 20 is an inorganic vapor deposition layer, it is preferable that the thickness of the barrier layer 20 is 5 nm or more and 800 nm or less. When the barrier layer 20 is a layered clay mineral-containing layer, the thickness of the barrier layer 20 is preferably 100 nm or more and 100 μm or less, and more preferably 1 μm or more and 30 μm or less.
 バリア層20は透光性を有することが好ましい。特に限定されないが、バリア層20の全光線透過率は60%~100%であることが好ましく、70%~100%であることがより好ましい。また、バリア層20の全光線透過率は80%~100%であることがさらに好ましい。バリア層20の全光線透過率をこのような範囲とすることにより、光を効率よく光電変換部40へ到達させることができる。全光線透過率は、例えば、JIS K7361-1:1997などの方法により測定することができる。 The barrier layer 20 preferably has translucency. Although not particularly limited, the total light transmittance of the barrier layer 20 is preferably 60% to 100%, and more preferably 70% to 100%. The total light transmittance of the barrier layer 20 is more preferably 80% to 100%. By setting the total light transmittance of the barrier layer 20 in such a range, light can efficiently reach the photoelectric conversion unit 40. The total light transmittance can be measured, for example, by a method such as JIS K7361-1: 1997.
 層状粘土鉱物含有層は、例えば、以下のようにして形成することができる。樹脂、層状粘土鉱物及び無機粒子を、溶媒などに分散させて塗料組成物を調製することができる。次に、調製した塗料組成物を表面保護層10の少なくとも一方の面に塗布して溶媒を乾燥させることにより層状粘土鉱物含有層を形成することができる。 The layered clay mineral-containing layer can be formed, for example, as follows. The resin, layered clay mineral and inorganic particles can be dispersed in a solvent or the like to prepare a coating composition. Next, the layered clay mineral-containing layer can be formed by applying the prepared coating composition on at least one surface of the surface protective layer 10 and drying the solvent.
 塗料組成物を調製する方法は特に限定されない。例えば、溶媒に樹脂を溶解させた溶液に層状粘土鉱物及び無機粒子を攪拌機などで均一に攪拌して塗料組成物を調製することができる。 The method for preparing the coating composition is not particularly limited. For example, a layered clay mineral and inorganic particles can be uniformly stirred with a stirrer or the like in a solution in which a resin is dissolved in a solvent to prepare a coating composition.
 溶媒は、樹脂を溶解させることができれば特に限定されず、水及び有機溶剤の少なくとも一方を使用することができる。有機溶剤としては、例えば芳香族炭化水素類(トルエン及びキシレンなど)、アルコール類(メタノール、エタノール及びイソプロピルアルコールなど)、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン及びシクロヘキサノンなど)、脂肪族炭化水素類(ヘキサン及びヘプタンなど)、エーテル類(テトラヒドロフランなど)、アミド系溶剤(N,N-ジメチルホルムアミド(DMF)及びジメチルアセトアミド(DMAc)など)、酢酸メチル、酢酸ブチルなどが挙げられる。これらの溶媒は、一種を単独で使用してもよく、二種以上を組み合わせて使用してもよい。溶媒の添加量は特に限定されないが、例えば、100質量部の塗料組成物に対して、0.1質量部~500質量部とすることができる。 The solvent is not particularly limited as long as it can dissolve the resin, and at least one of water and an organic solvent can be used. Examples of the organic solvent include aromatic hydrocarbons (such as toluene and xylene), alcohols (such as methanol, ethanol and isopropyl alcohol), ketones (such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone), aliphatic hydrocarbons Examples include (such as hexane and heptane), ethers (such as tetrahydrofuran), amide solvents (such as N, N-dimethylformamide (DMF) and dimethylacetamide (DMAc)), methyl acetate, butyl acetate and the like. One of these solvents may be used alone, or two or more thereof may be used in combination. Although the addition amount of the solvent is not particularly limited, it can be, for example, 0.1 part by mass to 500 parts by mass with respect to 100 parts by mass of the coating composition.
 なお、樹脂としてポリビニルアルコール(PVA)を用いる場合は、親和性の観点から、溶媒として例えば水及びアルコール類を用いることが好ましい。また、樹脂としてエチレン-ビニルアルコール共重合体(EVOH)を用いる場合は、親和性の観点から、溶媒として例えば芳香族炭化水素などの有機溶剤を用いることが好ましい。 In addition, when using polyvinyl alcohol (PVA) as resin, it is preferable to use water and alcohol as a solvent from an affinity viewpoint, for example. When ethylene-vinyl alcohol copolymer (EVOH) is used as the resin, it is preferable to use an organic solvent such as aromatic hydrocarbon as the solvent from the viewpoint of affinity.
 バリア層20を形成するのに用いられる塗料組成物を塗布する方法は特に限定されず、スプレーコーティング法、ディップコーティング法、フローコーティング法、スピンコーティング法、ロールコーティング法、刷毛塗り、スポンジ塗りなどの方法を用いることができる。そして、加熱等により溶媒を除去することにより、バリア層20を形成することができる。 The method of applying the coating composition used to form the barrier layer 20 is not particularly limited, and spray coating, dip coating, flow coating, spin coating, roll coating, brush coating, sponge coating, etc. Methods can be used. Then, the barrier layer 20 can be formed by removing the solvent by heating or the like.
 バリア層20は、上記のように塗料組成物を塗布及び乾燥して形成することにより、層状粘土鉱物の層間距離を小さくしてバリア層20のバリア性をより高くすることができる。バリア層20のバリア性が高い場合、バリア層20の膜厚を薄くすることができる。バリア層20の膜厚を薄くすることにより、太陽電池モジュール100を曲面加工する場合、表面保護層10にバリア層20がシワにならずに追従しやすい。また、本実施形態では、表面保護層10は樹脂を含有しているため、表面保護層10を曲面加工した場合であっても、樹脂自体が伸縮性を有するため、クラックの破断が生じにくい。したがって、バリア層20を層状粘土鉱物含有層とすることにより、曲面加工に適した太陽電池モジュール100を作製することができるため好ましい。 The barrier layer 20 can be formed by applying and drying the coating composition as described above, whereby the interlayer distance of the layered clay mineral can be reduced and the barrier property of the barrier layer 20 can be further enhanced. When the barrier property of the barrier layer 20 is high, the film thickness of the barrier layer 20 can be reduced. When the film thickness of the barrier layer 20 is reduced, the surface protection layer 10 can easily follow the surface protection layer 10 without wrinkles when processing the curved surface of the solar cell module 100. Further, in the present embodiment, since the surface protective layer 10 contains a resin, even when the surface protective layer 10 is processed into a curved surface, since the resin itself has elasticity, cracking is unlikely to occur. Therefore, it is preferable to make the barrier layer 20 a layered clay mineral-containing layer, since the solar cell module 100 suitable for curved surface processing can be produced.
 (封止層30)
 封止層30は、表面保護層10及びバリア層20の下に配置され、光電変換部40を封止する。太陽電池モジュール100がこのような封止層30を備えることにより、外部の衝撃などから光電変換部40を保護することができる。封止層30の形状は、表面保護層10と同様に、特に限定されず、用途に応じて円形、楕円形、矩形などの多角形とすることができる。また、表面保護層10と同様に、封止層30の断面形状は矩形であっても、太陽電池モジュール100の各層の積層方向(z軸方向)に湾曲していてもよい。
(Sealing layer 30)
The sealing layer 30 is disposed under the surface protective layer 10 and the barrier layer 20 and seals the photoelectric conversion unit 40. By providing the sealing layer 30 as described above, the solar cell module 100 can protect the photoelectric conversion unit 40 from external impact and the like. The shape of the sealing layer 30 is not particularly limited as in the case of the surface protective layer 10, and may be a polygon such as a circle, an ellipse, or a rectangle depending on the application. Further, similarly to the surface protective layer 10, the cross-sectional shape of the sealing layer 30 may be rectangular or may be curved in the stacking direction (z-axis direction) of each layer of the solar cell module 100.
 封止層30の厚みは、特に限定されないが、0.1mm以上10mm以下であることが好ましく、0.2mm以上1.0mm以下であることがより好ましい。封止層30の厚みをこのような範囲とすることによって、光電変換部40を適切に保護し、光を光電変換部40に効率よく到達させることができる。 The thickness of the sealing layer 30 is not particularly limited, but is preferably 0.1 mm or more and 10 mm or less, and more preferably 0.2 mm or more and 1.0 mm or less. By setting the thickness of the sealing layer 30 in such a range, the photoelectric conversion portion 40 can be appropriately protected, and light can efficiently reach the photoelectric conversion portion 40.
 光電変換部40は、表面保護層10又はバリア層20と接するように配置されていてもよく、後述する裏面保護層50又はバリア層20と接するように配置されていてもよい。ただし、衝撃吸収性の観点から、封止層30は、光電変換部40に対して表面保護層10側に配置される表面封止層32と、光電変換部40に対して裏面保護層50側に配置される裏面封止層34を備えていてもよい。 The photoelectric conversion unit 40 may be disposed in contact with the surface protective layer 10 or the barrier layer 20, and may be disposed in contact with the back surface protective layer 50 or the barrier layer 20 described later. However, from the viewpoint of impact absorption, the sealing layer 30 is disposed on the surface protection layer 10 side with respect to the photoelectric conversion unit 40 and the back surface protection layer 50 side with respect to the photoelectric conversion unit 40. The back surface sealing layer 34 arrange | positioned at may be provided.
 表面封止層32は、表面保護層10と光電変換部40との間に配置され、外部の衝撃などから光電変換部40を保護することができる。表面封止層32の形状は、表面保護層10と同様に、特に限定されず、用途に応じて円形、楕円形、矩形などの多角形とすることができる。また、表面保護層10と同様に、表面封止層32の断面形状は矩形であっても、太陽電池モジュール100の各層の積層方向(z軸方向)に湾曲していてもよい。 The surface sealing layer 32 is disposed between the surface protective layer 10 and the photoelectric conversion unit 40, and can protect the photoelectric conversion unit 40 from external impact or the like. The shape of the surface sealing layer 32 is not particularly limited as in the case of the surface protective layer 10, and may be a polygon such as a circle, an ellipse, or a rectangle depending on the application. Further, similarly to the surface protective layer 10, the cross-sectional shape of the surface sealing layer 32 may be rectangular or may be curved in the stacking direction (z-axis direction) of each layer of the solar cell module 100.
 表面封止層32を形成する材料は特に限定されず、例えば、エチレン-酢酸ビニル共重合体(EVA)、ポリビニルブチラール(PVB)、ポリエチレンテレフタレート(PET)、ポリオレフィン(PO)、ポリイミド(PI)などの熱可塑性樹脂、エポキシ、ウレタン及びポリイミドなどの熱硬化性樹脂からなる群より選択される少なくとも1つを用いることができる。これらの樹脂は変性樹脂を用いることもでき、それぞれの組合せとして用いることもできる。これらのなかでも、表面封止層32を形成する材料はエチレン-酢酸ビニル共重合体(EVA)及びポリオレフィン(PO)の少なくともいずれか一方であることが好ましい。 The material which forms the surface sealing layer 32 is not specifically limited, For example, ethylene-vinyl acetate copolymer (EVA), polyvinyl butyral (PVB), polyethylene terephthalate (PET), polyolefin (PO), polyimide (PI) etc. And at least one selected from the group consisting of thermosetting resins such as epoxy resins, urethane resins, and polyimide resins. These resins may be modified resins or may be used in combination. Among these, the material forming the surface sealing layer 32 is preferably at least one of ethylene-vinyl acetate copolymer (EVA) and polyolefin (PO).
 表面封止層32は透光性を有することが好ましい。特に限定されないが、表面封止層32の全光線透過率は60%~100%であることが好ましく、70%~100%であることがより好ましい。また、表面封止層32の全光線透過率は80%~100%であることがさらに好ましい。表面封止層32の全光線透過率をこのような範囲とすることにより、光を効率よく光電変換部40へ到達させることができる。全光線透過率は、例えば、JIS K7361-1:1997などの方法により測定することができる。 The surface sealing layer 32 preferably has a light transmitting property. Although not particularly limited, the total light transmittance of the surface sealing layer 32 is preferably 60% to 100%, and more preferably 70% to 100%. Further, the total light transmittance of the surface sealing layer 32 is more preferably 80% to 100%. By setting the total light transmittance of the surface sealing layer 32 in such a range, light can efficiently reach the photoelectric conversion unit 40. The total light transmittance can be measured, for example, by a method such as JIS K7361-1: 1997.
 表面封止層32の厚みは、特に限定されないが、0.1mm以上10mm以下であることが好ましく、0.2mm以上1.0mm以下であることがより好ましい。表面封止層32の厚みをこのような範囲とすることによって、光電変換部40を適切に保護し、光を光電変換部40に効率よく到達させることができる。 The thickness of the surface sealing layer 32 is not particularly limited, but is preferably 0.1 mm or more and 10 mm or less, and more preferably 0.2 mm or more and 1.0 mm or less. By setting the thickness of the surface sealing layer 32 in such a range, the photoelectric conversion unit 40 can be appropriately protected, and light can efficiently reach the photoelectric conversion unit 40.
 裏面封止層34は、光電変換部40と裏面保護層50との間に配置することができる。すなわち、裏面封止層34は、表面封止層32及び光電変換部40の下に配置され、受光面側の外部の衝撃などから光電変換部40を保護する。 The back surface sealing layer 34 can be disposed between the photoelectric conversion unit 40 and the back surface protective layer 50. That is, the back surface sealing layer 34 is disposed under the front surface sealing layer 32 and the photoelectric conversion unit 40, and protects the photoelectric conversion unit 40 from external impact and the like on the light receiving surface side.
 裏面封止層34を形成する材料は特に限定されず、例えば、エチレン-酢酸ビニル共重合体(EVA)、ポリビニルブチラール(PVB)、ポリエチレンテレフタレート(PET)、ポリオレフィン(PO)、ポリイミド(PI)などの熱可塑性樹脂、エポキシ、ウレタン及びポリイミドなどの熱硬化性樹脂からなる群より選択される少なくとも1つを用いることができる。これらの樹脂は変性樹脂を用いることもでき、それぞれの組合せとして用いることもできる。これらのなかでも、裏面封止層34を形成する材料はエチレン-酢酸ビニル共重合体(EVA)及びポリオレフィン(PO)の少なくともいずれか一方であることが好ましい。なお、裏面封止層34を形成する材料は、表面封止層32と同様の材料が用いられていてもよく、表面封止層32と異なる材料により形成されていてもよい。 The material for forming the back surface sealing layer 34 is not particularly limited. For example, ethylene-vinyl acetate copolymer (EVA), polyvinyl butyral (PVB), polyethylene terephthalate (PET), polyolefin (PO), polyimide (PI), etc. And at least one selected from the group consisting of thermosetting resins such as epoxy resins, urethane resins, and polyimide resins. These resins may be modified resins or may be used in combination. Among these, the material forming the back surface sealing layer 34 is preferably at least one of ethylene-vinyl acetate copolymer (EVA) and polyolefin (PO). A material similar to that of the surface sealing layer 32 may be used as a material for forming the back surface sealing layer 34, and the material may be formed of a material different from that of the surface sealing layer 32.
 裏面封止層34の厚みは、特に限定されないが、0.1mm以上10mm以下であることが好ましく、0.2mm以上1.0mm以下であることがより好ましい。裏面封止層34の厚みをこのような範囲とすることにより、光電変換部40を衝撃などから適切に保護することができる。 The thickness of the back surface sealing layer 34 is not particularly limited, but is preferably 0.1 mm or more and 10 mm or less, and more preferably 0.2 mm or more and 1.0 mm or less. By setting the thickness of the back surface sealing layer 34 in such a range, the photoelectric conversion unit 40 can be appropriately protected from impact or the like.
 (光電変換部40)
 光電変換部40は、光エネルギーを電気エネルギーに変換する。光電変換部40は太陽電池セル42を含んでいてもよく、太陽電池セル42をインターコネクタ44で接続した太陽電池セルストリング46を含んでいてもよい。
(Photoelectric conversion unit 40)
The photoelectric conversion unit 40 converts light energy into electrical energy. The photoelectric conversion unit 40 may include the solar battery cell 42, and may include the solar battery cell string 46 in which the solar battery cells 42 are connected by the interconnector 44.
 太陽電池セル42としては、例えば、シリコン系太陽電池、化合物系太陽電池、有機系太陽電池などが挙げられる。シリコン系太陽電池としては、単結晶シリコン系太陽電池、多結晶シリコン系太陽電池、微結晶シリコン系太陽電池、アモルファスシリコン系太陽電池などが挙げられる。化合物系太陽電池としては、GaAs系太陽電池、CIS系太陽電池、CIGS系太陽電池、CdTe系太陽電池などが挙げられる。有機系太陽電池としては、色素増感太陽電池、有機薄膜太陽電池などが挙げられる。また、太陽電池セル42として、ヘテロ接合型太陽電池や多接合型太陽電池を用いることもできる。 Examples of the solar battery cell 42 include a silicon solar cell, a compound solar cell, and an organic solar cell. As a silicon system solar cell, a monocrystal silicon system solar cell, a polycrystalline silicon system solar cell, a microcrystalline silicon system solar cell, an amorphous silicon system solar cell etc. are mentioned. Examples of compound solar cells include GaAs solar cells, CIS solar cells, CIGS solar cells, and CdTe solar cells. As an organic type solar cell, a dye-sensitized solar cell, an organic thin film solar cell, etc. are mentioned. Further, as the solar battery cell 42, a heterojunction solar cell or a multijunction solar cell can also be used.
 太陽電池セル42の受光面側及び裏面側には、図示しないフィンガー電極を配置することができる。フィンガー電極は、複数の金属線が略平行に配置されることにより形成される。フィンガー電極は、例えば、高さを10μm~30μm、幅を100μm~500μmとすることができる。フィンガー電極は、太陽光などの光により生じた電流を集電し、図示しないバスバー電極に供給する。 Finger electrodes (not shown) can be disposed on the light receiving surface side and the back surface side of the solar battery cell 42. The finger electrode is formed by arranging a plurality of metal wires substantially in parallel. The finger electrodes can have, for example, a height of 10 μm to 30 μm and a width of 100 μm to 500 μm. The finger electrodes collect a current generated by light such as sunlight and supply the current to bus bar electrodes (not shown).
 バスバー電極は、通常、2~3本の金属線により形成され、フィンガー電極と略垂直に交差するように配置される。バスバー電極は、特に限定されないが、高さを10μm~30μm、幅を100μm~500μmとすることができる。バスバー電極は、フィンガー電極から集められた電流を、インターコネクタ44へ供給する。 The bus bar electrodes are generally formed by two to three metal wires, and are disposed to intersect the finger electrodes substantially perpendicularly. Although the bus bar electrodes are not particularly limited, the height can be 10 μm to 30 μm, and the width can be 100 μm to 500 μm. The bus bar electrodes supply the current collected from the finger electrodes to the interconnector 44.
 本実施形態において、太陽電池セルストリング46は、複数の太陽電池セル42と、複数の太陽電池セル42の間を電気的に接続するインターコネクタ44と、を備える。太陽電池セルストリング46は、一方の太陽電池セル42の受光面側に設けられたバスバー電極と、もう一方の太陽電池セル42の裏面側に設けられたバスバー電極とを、インターコネクタ44で電気的に接続することにより形成することができる。 In the present embodiment, the solar cell string 46 includes a plurality of solar cells 42 and an interconnector 44 electrically connecting the plurality of solar cells 42. In the solar battery cell string 46, the interconnector 44 electrically connects the bus bar electrode provided on the light receiving surface side of one solar battery cell 42 and the bus bar electrode provided on the back surface side of the other solar battery cell 42. It can be formed by connecting to
 インターコネクタ44とバスバー電極との接続には樹脂やハンダを使用することができる。この樹脂は導電性、非導電性いずれでもよい。非導電性樹脂の場合はインターコネクタ44とバスバー電極とが直接接続されることで電気的に接続される。 Resin or solder can be used to connect the interconnector 44 and the bus bar electrode. This resin may be either conductive or nonconductive. In the case of the nonconductive resin, the interconnector 44 and the bus bar electrode are electrically connected by being directly connected.
 インターコネクタ44は、太陽電池セル42を互いに電気的に接続できるものであれば特に限定されず、例えば、細長い箔状の金属基材により形成されたインターコネクタ44とすることができる。 The interconnector 44 is not particularly limited as long as it can electrically connect the solar cells 42 to each other, and can be, for example, an interconnector 44 formed of an elongated foil-like metal substrate.
 金属基材を形成する材料としては、特に限定されず、金、銀、銅、白金、アルミニウム、ニッケルなどの金属を用いることができる。これらのなかでも、加工性、耐久性及び経済性などの観点から、金属基材を形成する材料は銅であることが好ましい。 The material for forming the metal base is not particularly limited, and metals such as gold, silver, copper, platinum, aluminum and nickel can be used. Among these, from the viewpoint of processability, durability and economy, the material forming the metal base is preferably copper.
 金属基材の幅は、0.5mm~10mmであることが好ましく、1mm~3mmであることがより好ましい。また、金属基材の厚みは、0.01mm~3.0mmであることが好ましく、0.05mm~1.0mmであることがより好ましい。 The width of the metal substrate is preferably 0.5 mm to 10 mm, and more preferably 1 mm to 3 mm. The thickness of the metal base is preferably 0.01 mm to 3.0 mm, and more preferably 0.05 mm to 1.0 mm.
 (裏面保護層50)
 本実施形態に係る太陽電池モジュール100は、封止層30の下に配置された裏面保護層50を備える。裏面保護層50は、光電変換部40の受光面側とは反対側に配置することができる。すなわち、裏面保護層50は、光電変換部40に対して裏面側に配置される。本実施形態では、裏面保護層50は裏面封止層34の下に配置されている。裏面保護層50は、太陽電池モジュール100の裏面側を保護することができる。
(Back surface protection layer 50)
The solar cell module 100 according to the present embodiment includes a back surface protection layer 50 disposed below the sealing layer 30. The back surface protective layer 50 can be disposed on the opposite side to the light receiving surface side of the photoelectric conversion unit 40. That is, the back surface protective layer 50 is disposed on the back surface side with respect to the photoelectric conversion unit 40. In the present embodiment, the back surface protective layer 50 is disposed below the back surface sealing layer 34. The back surface protective layer 50 can protect the back surface side of the solar cell module 100.
 裏面保護層50を形成する材料は特に限定されず、例えば、ガラスなどの無機材料、アルミニウムなどの金属材料、並びに、ポリイミド(PI)、環状ポリオレフィン、ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)、ポリエーテルエーテルケトン(PEEK)、ポリスチレン(PS)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)及び繊維強化プラスチック(FRP)などの樹脂材料からなる群より選択される少なくとも1つの材料を用いることができる。繊維強化プラスチック(FRP)としては、ガラス繊維強化プラスチック(GFRP)、炭素繊維強化プラスチック(CFRP)、アラミド繊維強化プラスチック(AFRP)、セルロース繊維強化プラスチックなどが挙げられる。ガラス繊維強化プラスチック(GFRP)としては、ガラスエポキシなどが挙げられる。また、繊維強化プラスチックは、繊維が一方向に並んだUD(UniDirection)材であってもよく、それぞれ交差する繊維によって織られた織物材であってもよい。裏面保護層50にUD材を用いる場合、繊維方向に膨張収縮しにくいため、UD材を配置する方向によっては太陽電池セル42の破損やインターコネクタ44の切断を抑制することができる。なお、たわみが生じにくく、軽量であるため、裏面保護層50は炭素繊維強化プラスチックにより形成されていることが好ましい。 The material for forming the back surface protective layer 50 is not particularly limited. For example, inorganic materials such as glass, metal materials such as aluminum, and polyimide (PI), cyclic polyolefin, polycarbonate (PC), polymethyl methacrylate (PMMA), Using at least one material selected from the group consisting of resin materials such as polyetheretherketone (PEEK), polystyrene (PS), polyethylene terephthalate (PET), polyethylene naphthalate (PEN) and fiber reinforced plastic (FRP) Can. Examples of fiber reinforced plastic (FRP) include glass fiber reinforced plastic (GFRP), carbon fiber reinforced plastic (CFRP), aramid fiber reinforced plastic (AFRP), and cellulose fiber reinforced plastic. Glass epoxy etc. are mentioned as a glass fiber reinforced plastic (GFRP). The fiber reinforced plastic may be a UD (UniDirection) material in which fibers are aligned in one direction, or may be a woven material woven by intersecting fibers. When a UD material is used for the back surface protective layer 50, it is difficult to expand and shrink in the fiber direction, and therefore, depending on the direction in which the UD material is disposed, breakage of the solar battery cell 42 or cutting of the interconnector 44 can be suppressed. The back surface protective layer 50 is preferably made of carbon fiber reinforced plastic because it is not easily deformed and is lightweight.
 また、裏面保護層50は、ハニカム構造体、発泡体及び多孔質体からなる群より選択される少なくとも1つであることがより好ましい。このような構造体は、剛性を維持しつつ、太陽電池モジュール100を軽量化することができる。ハニカム構造体、発泡体及び多孔質体を形成する材料は特に限定されず、上述のような材料を用いることができる。なお、剛性及び軽量化の観点より、ハニカム構造体は、アルミニウム及びセルロースの少なくともいずれか一方を含む材料により形成されていることが好ましい。また、発泡体及び多孔質体の少なくともいずれか一方は、ポリウレタン、ポリオレフィン、ポリエステル、ポリアミド、ポリエーテルなどの樹脂材料により形成されていることが好ましい。 Furthermore, the back surface protective layer 50 is more preferably at least one selected from the group consisting of a honeycomb structure, a foam and a porous body. Such a structure can reduce the weight of the solar cell module 100 while maintaining rigidity. The materials for forming the honeycomb structure, the foam and the porous body are not particularly limited, and the above-mentioned materials can be used. From the viewpoint of rigidity and weight reduction, the honeycomb structure is preferably formed of a material containing at least one of aluminum and cellulose. Preferably, at least one of the foam and the porous body is formed of a resin material such as polyurethane, polyolefin, polyester, polyamide, or polyether.
 裏面保護層50の厚みは、特に限定されないが、0.01mm以上10mm以下であることが好ましく、0.05mm以上5.0mm以下であることがより好ましく、0.07mm以上1.0mm以下であることがさらに好ましい。特に、裏面保護層50が繊維強化プラスチックの場合は、繊維1本の直径が厚みの下限値であることが好ましい。裏面保護層50の厚みをこのような範囲とすることによって、裏面保護層50のたわみを抑制し、太陽電池モジュール100をより軽量化することができる。 The thickness of the back surface protective layer 50 is not particularly limited, but is preferably 0.01 mm or more and 10 mm or less, more preferably 0.05 mm or more and 5.0 mm or less, and is 0.07 mm or more and 1.0 mm or less Is more preferred. In particular, when the back surface protective layer 50 is a fiber reinforced plastic, the diameter of one fiber is preferably the lower limit value of the thickness. By setting the thickness of the back surface protective layer 50 in such a range, the deflection of the back surface protective layer 50 can be suppressed, and the weight of the solar cell module 100 can be further reduced.
 なお、裏面保護層50の厚みが薄い場合(例えば、0.2mm以下)、軽量化や薄肉化に加え、以下のような効果が期待される。すなわち、裏面保護層50に温度差が生じた場合の熱収縮の影響が小さくなること及び裏面保護層50の剛性が低下することに起因し、太陽電池モジュール100全体の反りを低減させることができる。 When the thickness of the back surface protective layer 50 is thin (for example, 0.2 mm or less), the following effects can be expected in addition to the reduction in weight and thickness. That is, it is possible to reduce the warpage of the entire solar cell module 100 due to the reduction in the influence of thermal contraction when the temperature difference occurs in the back surface protective layer 50 and the decrease in the rigidity of the back surface protective layer 50. .
 また、裏面保護層50にUD材の繊維強化プラスチックを用い、裏面保護層50の厚みを薄くした場合、UD材を必要に応じて部分的に重ね合わせることで、所望の箇所を補強するなど、裏面保護層50の中でその特性に強弱をつけることができる。なお、UD材を重ね合わせる場合、所望する特性によって、UD材の繊維をそれぞれ同じ方向に重ね合わせてもよく、UD材の繊維をそれぞれ垂直などの異なる方向に重ね合わせてもよい。 Also, when the back surface protective layer 50 is made of fiber reinforced plastic of UD material and the thickness of the back surface protective layer 50 is reduced, the UD material is partially overlapped as needed to reinforce a desired portion, etc. It is possible to make the characteristics of the back surface protective layer 50 strong and weak. In the case of overlapping the UD material, fibers of the UD material may be overlapped in the same direction or fibers of the UD material may be overlapped in different directions such as perpendicular, depending on desired characteristics.
 また、裏面保護層50の厚みが薄くなると、封止層30(被貼り合わせ面)の形状に追従させながら裏面保護層50を貼り合わせることができ、封止層30と裏面保護層50の間に気泡を混入させにくくすることができる。また、例えば表面保護層10が曲面を有する形状であっても、封止層30を介して表面保護層10の形状に適合するように裏面保護層50を貼り合わせることができる。そのため、気泡の混入を抑制しつつ、曲面形状を有する太陽電池モジュール100を容易に製造することができる。なお、この際、裏面保護層50と封止層30とバリア層20を貼り合わせた状態でフィルムモジュールが作製されていると、このフィルムモジュール自体が柔軟性を有するため、表面保護層10への貼り合わせを容易にすることができる。また、裏面保護層50の追従性が高いため、例えば各層を積層して曲面形状の太陽電池モジュール100を製造する場合などに、局所的な荷重が太陽電池セル42などに加わりにくいため、太陽電池セル42の破損を抑制することができる。この太陽電池セル42の破損の抑制は、太陽電池モジュール100がさらに後述するゲル層70を備える場合に特に効果的である。さらに、裏面保護層50の厚みが薄くなると、封止層30を素早く加熱して架橋などすることができるため、太陽電池モジュール100の製造時間を短縮するだけでなく、表面保護層10が熱変形するのを抑制することができる。 Moreover, when the thickness of the back surface protective layer 50 becomes thin, the back surface protective layer 50 can be bonded together while following the shape of the sealing layer 30 (surface to be bonded), and between the sealing layer 30 and the back surface protective layer 50 Air bubbles can be difficult to mix. In addition, even if the surface protective layer 10 has a curved surface, for example, the back surface protective layer 50 can be bonded to fit the shape of the surface protective layer 10 through the sealing layer 30. Therefore, it is possible to easily manufacture the solar cell module 100 having a curved surface shape while suppressing the mixture of air bubbles. In this case, if the film module is manufactured in a state where the back surface protective layer 50, the sealing layer 30, and the barrier layer 20 are attached to each other, the film module itself has flexibility. Bonding can be facilitated. In addition, since the followability of the back surface protective layer 50 is high, for example, when manufacturing the solar cell module 100 having a curved surface shape by laminating the respective layers, it is difficult for a local load to be applied to the solar cells 42 etc. Damage to the cell 42 can be suppressed. This suppression of breakage of the solar battery cell 42 is particularly effective when the solar battery module 100 further includes a gel layer 70 described later. Furthermore, since the sealing layer 30 can be quickly heated and crosslinked when the thickness of the back surface protective layer 50 becomes thin, not only the manufacturing time of the solar cell module 100 is shortened but also the surface protective layer 10 is thermally deformed. Can be suppressed.
 図9に示すように、本実施形態に係る太陽電池モジュール100は、表面保護層10と封止層30の間にゲル層70が配置されていることが好ましい。表面保護層10と封止層30の間にバリア層20が配置されている場合は、当該バリア層20と封止層30の間にゲル層70が配置されていることが好ましい。本実施形態では、表面保護層10は樹脂により形成されており、表面保護層10は温度変化により熱伸縮しやすい。しかしながら、太陽電池モジュール100がゲル層70を備えることにより、表面保護層10の熱伸縮が太陽電池セルストリング46に伝わりにくくなる。そのため、表面保護層10の温度変化による熱伸縮により、太陽電池セル42の破損及びインターコネクタ44の切断を抑制することができる。 As shown in FIG. 9, in the solar cell module 100 according to the present embodiment, it is preferable that a gel layer 70 be disposed between the surface protective layer 10 and the sealing layer 30. When the barrier layer 20 is disposed between the surface protective layer 10 and the sealing layer 30, it is preferable that the gel layer 70 be disposed between the barrier layer 20 and the sealing layer 30. In the present embodiment, the surface protective layer 10 is formed of a resin, and the surface protective layer 10 easily undergoes thermal expansion and contraction due to temperature change. However, when the solar cell module 100 is provided with the gel layer 70, the thermal expansion and contraction of the surface protective layer 10 becomes difficult to be transmitted to the solar cell string 46. Therefore, the thermal expansion and contraction due to the temperature change of the surface protective layer 10 can suppress the breakage of the solar battery cell 42 and the disconnection of the interconnector 44.
 ゲル層70の引張弾性率は、太陽電池セル42の破損及びインターコネクタ44の切断を抑制することができれば特に限定されないが、0.1kPa以上5MPa未満であることが好ましい。ゲル層70の引張弾性率を0.1kPa以上とすることによって、太陽電池モジュール100の剛性を向上させることができる。また、ゲル層70の引張弾性率を5MPa未満とすることによって、太陽電池セル42の破損及びインターコネクタ44の切断をより抑制することができる。なお、ゲル層70の引張弾性率は1kPa以上1MPa以下であることがより好ましい。 The tensile elastic modulus of the gel layer 70 is not particularly limited as long as breakage of the solar battery cell 42 and cutting of the interconnector 44 can be suppressed, but it is preferably 0.1 kPa or more and less than 5 MPa. By setting the tensile elastic modulus of the gel layer 70 to 0.1 kPa or more, the rigidity of the solar cell module 100 can be improved. Further, by setting the tensile elastic modulus of the gel layer 70 to less than 5 MPa, breakage of the solar battery cell 42 and cutting of the interconnector 44 can be further suppressed. The tensile modulus of elasticity of the gel layer 70 is more preferably 1 kPa or more and 1 MPa or less.
 ゲル層70を形成する材料は、特に限定されず、各種ゲルを用いることができる。ゲルは、特に限定されないが、溶媒を含有したゲルと溶媒を含有しないゲルに分類される。溶媒を含有したゲルとしては、分散媒が水のゲルであるヒドロゲル、分散媒が有機溶媒のゲルであるオルガノゲル、などが挙げられる。また、溶媒を含有したゲルは、数平均分子量が10000以上の高分子ゲル、数平均分子量が1000以上10000未満のオリゴマーゲル、数平均分子量が1000未満の低分子ゲルのいずれを用いることができる。これらのなかでも、太陽電池モジュール100の剛性向上の観点から、ゲル層70は溶媒を含有した高分子ゲル又は溶媒を含有しないゲルを使用することが好ましい。また、太陽電池セル42の破損及びインターコネクタ44の切断を抑制する観点から、ゲル層70はシリコーンゲル、アクリルゲル及びウレタンゲルからなる群より選択される少なくとも1つを含有することがより好ましい。 The material for forming the gel layer 70 is not particularly limited, and various gels can be used. Although the gel is not particularly limited, it is classified into a gel containing a solvent and a gel not containing a solvent. Examples of the gel containing a solvent include a hydrogel whose dispersion medium is a water gel, and an organogel whose dispersion medium is a gel of an organic solvent. Further, as the gel containing a solvent, any of a polymer gel having a number average molecular weight of 10000 or more, an oligomer gel having a number average molecular weight of 1000 to less than 10000, and a low molecular gel having a number average molecular weight of less than 1000 can be used. Among these, from the viewpoint of improving the rigidity of the solar cell module 100, it is preferable to use a polymer gel containing a solvent or a gel containing no solvent. Further, from the viewpoint of suppressing breakage of the solar cell 42 and cutting of the interconnector 44, the gel layer 70 more preferably contains at least one selected from the group consisting of silicone gel, acrylic gel and urethane gel.
 ゲル層70の厚みは、特に限定されないが、0.1mm以上10mm以下であることが好ましい。ゲル層70の厚みを0.1mm以上とすることによって、太陽電池セル42の破損及びインターコネクタ44の切断をより抑制することができる。また、ゲル層70の厚みを10mm以下とすることにより、光を光電変換部40に効率よく到達させることができる。なお、ゲル層70の厚みは0.2mm以上1.0mm以下であることがより好ましい。 The thickness of the gel layer 70 is not particularly limited, but is preferably 0.1 mm or more and 10 mm or less. By setting the thickness of the gel layer 70 to 0.1 mm or more, breakage of the solar battery cell 42 and disconnection of the interconnector 44 can be further suppressed. In addition, by setting the thickness of the gel layer 70 to 10 mm or less, light can efficiently reach the photoelectric conversion unit 40. The thickness of the gel layer 70 is more preferably 0.2 mm or more and 1.0 mm or less.
 ゲル層70は透光性を有することが好ましい。特に限定されないが、ゲル層70の全光線透過率は60%~100%であることが好ましく、70%~100%であることがより好ましい。また、ゲル層70の全光線透過率は80%~100%であることがさらに好ましい。ゲル層70の全光線透過率をこのような範囲とすることにより、光を効率よく光電変換部40へ到達させることができる。全光線透過率は、例えば、JIS K7361-1:1997などの方法により測定することができる。 The gel layer 70 preferably has a light transmitting property. Although not particularly limited, the total light transmittance of the gel layer 70 is preferably 60% to 100%, and more preferably 70% to 100%. The total light transmittance of the gel layer 70 is more preferably 80% to 100%. By setting the total light transmittance of the gel layer 70 to such a range, light can efficiently reach the photoelectric conversion unit 40. The total light transmittance can be measured, for example, by a method such as JIS K7361-1: 1997.
 (フレーム)
 本実施形態に係る太陽電池モジュール100は図示しないフレームを備えていてもよい。フレームは、太陽電池モジュール100の周囲の端縁部を支持するとともに、太陽電池モジュール100を屋根等に設置する際に利用される。フレームを形成する材料は特に限定されないが、強度及び軽量化の観点から、アルミニウムにより形成されていることが好ましい。
(flame)
The solar cell module 100 according to the present embodiment may include a frame (not shown). The frame supports the peripheral edge of the solar cell module 100 and is used when installing the solar cell module 100 on a roof or the like. The material for forming the frame is not particularly limited, but is preferably made of aluminum from the viewpoint of strength and weight reduction.
 本実施形態に係る太陽電池モジュール100は、建物や自動車を含む車両の屋根などの上に取り付けることができる。このとき、屋根の形状に適合するよう、太陽電池モジュール100の形状は曲面を有していてもよい。 The solar cell module 100 according to the present embodiment can be mounted on the roof or the like of a vehicle including a building or an automobile. At this time, the shape of the solar cell module 100 may have a curved surface so as to conform to the shape of the roof.
 以上の通り、本実施形態に係る太陽電池モジュール100は、樹脂により形成された表面保護層10を備える。また、太陽電池モジュール100は、表面保護層10の少なくともいずれか一方の面に配置され、酸素透過度が1.0×10-5mol/(m・s・Pa)以下であるバリア層20を備える。さらに、太陽電池モジュール100は、表面保護層10及びバリア層20の下に配置され、光電変換部40を封止する封止層30と、封止層30の下に配置された裏面保護層50と、を備える。本実施形態に係る太陽電池モジュール100は、酸素バリア性の高いバリア層20を備えているため、封止層30への酸素の進入を抑制することができる。したがって、本実施形態によれば、樹脂製の表面保護層10を用いた場合であっても封止層30の黄変が生じにくい太陽電池モジュール100を提供することができる。 As described above, the solar cell module 100 according to the present embodiment includes the surface protection layer 10 formed of resin. In addition, the solar cell module 100 is disposed on at least one surface of the surface protective layer 10, and the barrier layer 20 has an oxygen permeability of 1.0 × 10 −5 mol / (m 2 · s · Pa) or less. Equipped with Furthermore, the solar cell module 100 is disposed under the surface protective layer 10 and the barrier layer 20, and the sealing layer 30 that seals the photoelectric conversion unit 40, and the back surface protective layer 50 disposed under the sealing layer 30. And. The solar cell module 100 according to the present embodiment includes the barrier layer 20 having a high oxygen barrier property, and thus can suppress the entry of oxygen into the sealing layer 30. Therefore, according to the present embodiment, it is possible to provide the solar cell module 100 in which the yellowing of the sealing layer 30 is unlikely to occur even when the resin surface protection layer 10 is used.
 <移動体>
 本実施形態の移動体は、太陽電池モジュール100を具備する。当該移動体としては、例えば、自動車等の車両、電車、又は船舶等などが挙げられる。太陽電池モジュール100は、自動車に搭載される場合、ボンネットや屋根などの自動車本体の上面部分に設置されることが好ましい。いずれの移動体も、太陽電池モジュール100により発電して得た電流がファン、モーターなどの電気機器に供給され、当該電気機器の駆動・制御に使用される。
<Mobile body>
The mobile unit of the present embodiment includes a solar cell module 100. As the said moving body, vehicles, such as a motor vehicle, a train, or a ship etc. are mentioned, for example. When the solar cell module 100 is mounted in a car, it is preferable that the solar cell module 100 be installed on an upper surface portion of the car body such as a bonnet or a roof. In any moving object, the current obtained by the power generation by the solar cell module 100 is supplied to an electric device such as a fan or a motor and used for driving and controlling the electric device.
[太陽電池モジュールの製造方法]
 太陽電池モジュール100は、表面保護層10、バリア層20、表面封止層32、太陽電池セルストリング46、裏面封止層34及び裏面保護層50などを上から順番に積層して、加熱しながら圧縮することで形成することができる。ただし、各層を数工程に分けて圧縮成形するなど、詳細な工程については特に限定されず、目的に応じた成形をすることができる。
[Method of manufacturing a solar cell module]
The solar cell module 100 sequentially heats the surface protection layer 10, the barrier layer 20, the surface sealing layer 32, the solar cell string 46, the back surface sealing layer 34, the back surface protection layer 50, etc. It can be formed by compression. However, the detailed steps are not particularly limited, for example, compression molding in which each layer is divided into several steps, and molding can be performed according to the purpose.
 加熱条件は特に限定されないが、例えば、真空状態で150℃程度に加熱すればよい。真空条件で加熱した場合は、泡抜け性がさらに向上するため好ましい。また、加熱により得られた積層体には、フレームなどを取り付けることもできる。 Although the heating conditions are not particularly limited, for example, heating to about 150 ° C. may be performed in a vacuum state. Heating under vacuum conditions is preferable because the defoaming property is further improved. Moreover, a frame etc. can also be attached to the laminated body obtained by heating.
 本実施形態に係る太陽電池モジュール100の製造方法は、表面保護層10の上にバリア層20を塗布する工程と、表面保護層10を曲面に成形加工する工程と、を備えることが好ましい。バリア層20を塗布して形成することにより、バリア層20をラミネートにより形成する場合と比較して、バリア層20のシワの発生を抑制することができる。 It is preferable that the manufacturing method of the solar cell module 100 which concerns on this embodiment is provided with the process of apply | coating the barrier layer 20 on the surface protection layer 10, and the process of shape-processing the surface protection layer 10 in a curved surface. By applying and forming the barrier layer 20, generation of wrinkles in the barrier layer 20 can be suppressed as compared to the case where the barrier layer 20 is formed by lamination.
 表面保護層10の上にバリア層20を塗布する工程は、表面保護層10の表面上にバリア層20を塗布して硬化する工程であることが好ましい。バリア層20としては、上述した層状粘土鉱物含有層とすることが好ましい。層状粘土鉱物含有層を形成する材料及び含有量は上述の通りである。具体的には、層状粘土鉱物含有層を形成する塗料組成物を例えば略平板状の表面保護層10に塗布して硬化することができる。なお、層状粘土鉱物含有層を塗布及び乾燥する工程も上述した通りである。このような層状粘土鉱物含有層をバリア層20として用いることにより、バリア層20の酸素バリア性を維持しつつ、膜厚を薄くすることができるため、バリア層20のシワの発生をより抑制することができる。また、層状粘土鉱物含有層は樹脂を含むため、曲面形状となるように曲げ加工しても破断しにくく、バリア層20のバリア性が維持されやすい。 The step of applying the barrier layer 20 on the surface protective layer 10 is preferably a step of applying and curing the barrier layer 20 on the surface of the surface protective layer 10. The barrier layer 20 is preferably the above-described layered clay mineral-containing layer. Materials and contents for forming the layered clay mineral-containing layer are as described above. Specifically, a coating composition for forming a layered clay mineral-containing layer can be applied to, for example, a substantially flat surface protective layer 10 and cured. The step of applying and drying the layered clay mineral-containing layer is also as described above. By using such a layered clay mineral-containing layer as the barrier layer 20, it is possible to reduce the film thickness while maintaining the oxygen barrier properties of the barrier layer 20, thereby further suppressing the occurrence of wrinkles in the barrier layer 20. be able to. Further, since the layered clay mineral-containing layer contains a resin, it is difficult to be broken even if it is bent so as to have a curved surface shape, and the barrier properties of the barrier layer 20 are easily maintained.
 表面保護層10におけるバリア層20が塗布される側とは反対側の表面上に、上述した耐光層60が形成されていてもよい。この場合、バリア層20と耐光層60を塗布する順番は特に限定されない。 The light resistant layer 60 described above may be formed on the surface of the surface protective layer 10 opposite to the side on which the barrier layer 20 is applied. In this case, the order of applying the barrier layer 20 and the light resistant layer 60 is not particularly limited.
 表面保護層10を曲面形状に成形加工する工程は、上述のように硬化して形成したバリア層20が表面保護層10の表面上に積層された積層体を、曲面形状となるように変形して曲げ加工により成形加工する工程とすることができる。このような曲げ加工により、所望の形状に太陽電池モジュール100を成形することができる。 In the step of forming the surface protection layer 10 into a curved shape, a laminate in which the barrier layer 20 formed by curing as described above is laminated on the surface of the surface protection layer 10 is deformed to have a curved shape. It can be set as the process of forming by bending. By such bending, the solar cell module 100 can be formed into a desired shape.
 以下、本実施形態を実施例及び比較例により更に詳細に説明するが、本実施形態はこれら実施例に限定されるものではない。 Hereinafter, the present embodiment will be described in more detail by way of examples and comparative examples, but the present embodiment is not limited to these examples.
 [実施例1]
 バリア層を形成するための塗料組成物を調製した。塗料組成物を、樹脂が十分に溶媒に溶解するまで混合した。この時、塗料組成物に使用した材料は以下の通りである。
Example 1
A paint composition for forming a barrier layer was prepared. The coating composition was mixed until the resin was fully dissolved in the solvent. At this time, the materials used for the coating composition are as follows.
 樹脂:ポリビニルアルコール(PVA)(日本合成化学工業株式会社製 ゴーセノール(登録商標))
 溶媒:水
Resin: Polyvinyl alcohol (PVA) (Gorecenol (registered trademark) manufactured by Nippon Synthetic Chemical Industry Co., Ltd.)
Solvent: water
 次に、コロナ放電によって親水化処理した1mm厚の表面保護層の表面に、乾燥後の膜厚が10μmとなるように上記塗料組成物をバーコーターで塗布し、120℃で60分間加熱してバリア層を形成した。 Next, the above coating composition is applied by a bar coater to a surface protective layer of 1 mm thickness which has been subjected to a hydrophilization treatment by corona discharge so that the film thickness after drying becomes 10 μm, and heated at 120 ° C. for 60 minutes. A barrier layer was formed.
 次に、バリア層を形成した表面保護層、1mm厚の表面封止層、太陽電池セルストリング、1mm厚の裏面封止層、2mm厚の裏面保護層を上から順に積層して145℃で圧縮加熱することにより太陽電池モジュールを作製した。なお、バリア層は、表面保護層と表面封止層との間に配置させた。 Next, a surface protection layer on which a barrier layer is formed, a surface sealing layer with a thickness of 1 mm, solar cell cell strings, a back surface sealing layer with a thickness of 1 mm, and a back surface protection layer with a thickness of 2 mm are stacked sequentially from the top and compressed at 145 ° C. The solar cell module was produced by heating. The barrier layer was disposed between the surface protective layer and the surface sealing layer.
 太陽電池セルストリングは、一方の太陽電池セルの受光面側に設けられたバスバー電極と、もう一方の太陽電池セルの裏面側に設けられたバスバー電極とを、銅により形成されたインターコネクタで電気的に接続することにより形成した。 In a solar cell string, the bus bar electrode provided on the light receiving surface side of one solar cell and the bus bar electrode provided on the back side of the other solar cell are interconnected by an interconnect made of copper. It formed by connecting.
 太陽電池モジュールを構成する各層の材料は以下の通りである。
 表面保護層  ポリエチレンテレフタレート(PET)
 表面封止層  エチレン-酢酸ビニル共重合体(EVA)
 裏面封止層  エチレン-酢酸ビニル共重合体(EVA)
 裏面保護層  炭素繊維強化プラスチック(CFRP)
The material of each layer which comprises a solar cell module is as follows.
Surface Protective Layer Polyethylene terephthalate (PET)
Surface sealing layer Ethylene-vinyl acetate copolymer (EVA)
Back side sealing layer ethylene-vinyl acetate copolymer (EVA)
Back surface protection layer Carbon fiber reinforced plastic (CFRP)
 [実施例2]
 バリア層に用いた樹脂として、ポリビニルアルコール(PVA)に代えてエチレン-ビニルアルコール共重合体(EVOH)(日本合成化学工業株式会社製 ソアノール(登録商標))を用いた。それ以外は実施例1と同様にして太陽電池モジュールを作製した。
Example 2
As a resin used for the barrier layer, ethylene-vinyl alcohol copolymer (EVOH) (Soarol (registered trademark) manufactured by Japan Synthetic Chemical Industry Co., Ltd.) was used instead of polyvinyl alcohol (PVA). A solar cell module was produced in the same manner as in Example 1 except for the above.
 [実施例3]
 バリア層に用いた樹脂として、ポリビニルアルコール(PVA)に代えて塩化ビニリデン共重合体(旭化成株式会社製 サランラテックス(登録商標))を用いた。それ以外は実施例1と同様にして太陽電池モジュールを作製した。
[Example 3]
As a resin used for the barrier layer, a vinylidene chloride copolymer (Saran latex (registered trademark) manufactured by Asahi Kasei Corporation) was used in place of polyvinyl alcohol (PVA). A solar cell module was produced in the same manner as in Example 1 except for the above.
 [実施例4]
 塗料組成物は、溶媒に、樹脂、層状粘土鉱物及び無機粒子を分散し、樹脂が溶媒に十分に溶解するまで混合した。それ以外は実施例1と同様にして太陽電池モジュールを作製した。なお、この時、塗料組成物に使用した材料は以下の通りである。
Example 4
The coating composition was prepared by dispersing the resin, layered clay mineral and inorganic particles in a solvent and mixing until the resin was sufficiently dissolved in the solvent. A solar cell module was produced in the same manner as in Example 1 except for the above. The materials used for the coating composition at this time are as follows.
 樹脂:エチレン-ビニルアルコール共重合体(EVOH)(日本合成化学工業株式会社製 ソアノール(登録商標)) 100質量部(固形分)
 層状粘土鉱物:スメクタイト(クニミネ工業株式会社 スメクトン(登録商標)) 100質量部
 無機粒子:二酸化ケイ素 0.2質量部
 溶媒:トルエン
Resin: Ethylene-vinyl alcohol copolymer (EVOH) (Soanol (registered trademark) manufactured by Japan Synthetic Chemical Industry Co., Ltd.) 100 parts by mass (solid content)
Layered clay mineral: Smectite (Kunimine Kogyo Co., Ltd. Smecton (registered trademark)) 100 parts by mass Inorganic particles: silicon dioxide 0.2 parts by mass Solvent: toluene
 [比較例1]
 表面保護層にバリア層を形成しなかった。それ以外は実施例1と同様にして太陽電池モジュールを作製した。
Comparative Example 1
No barrier layer was formed on the surface protective layer. A solar cell module was produced in the same manner as in Example 1 except for the above.
 [評価]
 各例の太陽電池モジュールについて、以下のように評価した。各例の詳細と評価結果を表1に示す。
[Evaluation]
The solar cell modules of each example were evaluated as follows. Details of each example and evaluation results are shown in Table 1.
(酸素透過度)
 酸素透過度は、JIS K7126-2(プラスチック-フィルム及びシート-ガス透過度試験方法-第2部:等圧法)の規定に準じ、酸素透過度測定装置により、測定温度23℃、測定湿度90%RHで測定した。なお、酸素透過度測定装置は、MOCON社製のOX-TRAN10/50Aを用いた。
(Oxygen permeability)
The oxygen permeability is measured according to JIS K 7126-2 (Plastics-Films and sheets-Gas Permeability Test Method-Part 2: Equal Pressure Method) using an oxygen permeability measuring device at a temperature of 23 ° C and a humidity of 90%. It measured by RH. The oxygen permeability measurement apparatus used was OX-TRAN 10 / 50A manufactured by MOCON.
(黄変度)
 黄変度は以下の手順で実施することにより評価した。まず、各例の太陽電池モジュールを、JIS C8917:1998(結晶系太陽電池モジュールの環境試験方法及び耐久性試験方法)における耐熱性試験に従い、85℃で1000時間加熱した。次に、耐熱性試験の前後において、平面視におけるインターコネクタが配置された部位を、表面保護層の表面から分光測色計を用いて測色してb値を求めた。そして、耐熱性試験前後のb値の差を算出し、Δbの値を求めることで、黄変度を評価した。
(Yellowing degree)
The degree of yellowing was evaluated by the following procedure. First, the solar cell module of each example was heated at 85 ° C. for 1000 hours according to the heat resistance test in JIS C8917: 1998 (environmental test method and durability test method for crystalline solar cell module). Next, before and after the heat resistance test, the b * value was determined from the surface of the surface protective layer using a spectrocolorimeter by measuring the area where the interconnector was disposed in plan view. And the yellowing degree was evaluated by calculating the difference of b < * > value before and behind a heat resistance test, and calculating | requiring the value of (DELTA ) b * .
 測色は、JIS Z8722に準拠し、以下の条件にて実施した。
 分光測色計:コニカミノルタジャパン株式会社製 分光測色計CM-600d
 照明・受光光学系:SCI(正反射光を含める)方式
 観察条件:2°視野
 光源:D65光源
 表色系:L
The color measurement was performed under the following conditions in accordance with JIS Z8722.
Spectrophotometer: Konica Minolta Japan Co., Ltd. Spectrophotometer CM-600d
Illumination / receiving optical system: SCI (including regular reflection light) method Observation condition: 2 ° field of view light source: D65 light source Color system: L * a * b *
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1~実施例3の太陽電池モジュールは、酸素透過度が1.0×10-5mol/(m・s・Pa)以下であるため、Δbの値が3以下となり、試験前後の色の違いを目視にて見分けることは困難であった。一方、比較例1の太陽電池モジュールは、酸素透過度が1.0×10-5mol/(m・s・Pa)を超えているため、Δbの値が3を超えてしまい、試験前後の色差も目視にて確認できた。以上より、バリア層の酸素透過度を所定の値以下とすることにより、目視にて見分けることが困難な程度まで封止層の黄変を抑制することができた。 As shown in Table 1, in the solar cell modules of Examples 1 to 3, since the oxygen permeability is 1.0 × 10 −5 mol / (m 2 · s · Pa) or less, the value of Δb * is Was 3 or less, and it was difficult to visually distinguish the difference in color before and after the test. On the other hand, in the solar cell module of Comparative Example 1, the oxygen permeability exceeds 1.0 × 10 −5 mol / (m 2 · s · Pa), so the value of Δb * exceeds 3, and the test The color difference before and after was also visually confirmed. As described above, by setting the oxygen permeability of the barrier layer to a predetermined value or less, it was possible to suppress yellowing of the sealing layer to such an extent that it is difficult to distinguish visually.
 特願2017-208988号(出願日:2017年10月30日)の全内容は、ここに援用される。 The entire contents of Japanese Patent Application No. 2017-208988 (filing date: October 30, 2017) are incorporated herein by reference.
 以上、本実施形態を説明したが、本実施形態はこれらに限定されるものではなく、本実施形態の要旨の範囲内で種々の変形が可能である。 As mentioned above, although this embodiment was described, this embodiment is not limited to these, A various deformation | transformation is possible within the range of the summary of this embodiment.
 本発明によれば、樹脂製の表面保護層を用いた場合であっても封止層の黄変が生じにくい太陽電池モジュール及び移動体を提供することができる。 According to the present invention, it is possible to provide a solar cell module and a movable body in which yellowing of the sealing layer is less likely to occur even when the resin surface protective layer is used.
 10  表面保護層
 20  バリア層
 30  封止層
 32  表面封止層
 34  裏面封止層
 40  光電変換部
 50  裏面保護層
 60  耐光層
 70  ゲル層
 100 太陽電池モジュール
DESCRIPTION OF SYMBOLS 10 surface protective layer 20 barrier layer 30 sealing layer 32 surface sealing layer 34 back surface sealing layer 40 photoelectric conversion part 50 back surface protective layer 60 light-resistant layer 70 gel layer 100 solar cell module

Claims (5)

  1.  樹脂により形成された表面保護層と、
     前記表面保護層の少なくともいずれか一方の面に配置され、酸素透過度が1.0×10-5mol/(m・s・Pa)以下であるバリア層と、
     前記表面保護層及び前記バリア層の下に配置され、光電変換部を封止する封止層と、
     前記封止層の下に配置された裏面保護層と、
     を備える太陽電池モジュール。
    A surface protection layer formed of a resin,
    A barrier layer disposed on at least one surface of the surface protective layer and having an oxygen permeability of 1.0 × 10 −5 mol / (m 2 · s · Pa) or less;
    A sealing layer disposed under the surface protective layer and the barrier layer and sealing a photoelectric conversion unit;
    A back surface protection layer disposed under the sealing layer,
    A solar cell module comprising:
  2.  前記表面保護層は紫外線吸収剤を含有している請求項1に記載の太陽電池モジュール。 The solar cell module according to claim 1, wherein the surface protective layer contains a UV absorber.
  3.  前記表面保護層における前記封止層とは反対側の表面に、紫外線吸収剤を含有する耐光層をさらに備える請求項1に記載の太陽電池モジュール。 The solar cell module according to claim 1, further comprising a light resistant layer containing an ultraviolet light absorber on the surface of the surface protective layer opposite to the sealing layer.
  4.  前記バリア層は、前記表面保護層の少なくともいずれか一方の面及び前記裏面保護層の少なくともいずれか一方の面に配置される請求項1~3のいずれか1項に記載の太陽電池モジュール。 The solar cell module according to any one of claims 1 to 3, wherein the barrier layer is disposed on at least one of the surface protective layer and at least one of the back surface protective layer.
  5.  請求項1~4のいずれか1項に記載の太陽電池モジュールを具備する移動体。 A mobile comprising the solar cell module according to any one of claims 1 to 4.
PCT/JP2018/038841 2017-10-30 2018-10-18 Solar cell module and mobile body WO2019087798A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-208988 2017-10-30
JP2017208988 2017-10-30

Publications (1)

Publication Number Publication Date
WO2019087798A1 true WO2019087798A1 (en) 2019-05-09

Family

ID=66332928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038841 WO2019087798A1 (en) 2017-10-30 2018-10-18 Solar cell module and mobile body

Country Status (1)

Country Link
WO (1) WO2019087798A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294817A (en) * 1999-04-09 2000-10-20 Dainippon Printing Co Ltd Surface protection sheet for solar cells and solar cell using the same
US20120080065A1 (en) * 2010-09-30 2012-04-05 Miasole Thin Film Photovoltaic Modules with Structural Bonds
JP2013168518A (en) * 2012-02-15 2013-08-29 Mitsubishi Chemicals Corp Solar cell module
JP2014013791A (en) * 2012-07-03 2014-01-23 Keiwa Inc Protection film for solar battery module, and solar battery module using the same
JP2014192455A (en) * 2013-03-28 2014-10-06 Fujifilm Corp Solar cell module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294817A (en) * 1999-04-09 2000-10-20 Dainippon Printing Co Ltd Surface protection sheet for solar cells and solar cell using the same
US20120080065A1 (en) * 2010-09-30 2012-04-05 Miasole Thin Film Photovoltaic Modules with Structural Bonds
JP2013168518A (en) * 2012-02-15 2013-08-29 Mitsubishi Chemicals Corp Solar cell module
JP2014013791A (en) * 2012-07-03 2014-01-23 Keiwa Inc Protection film for solar battery module, and solar battery module using the same
JP2014192455A (en) * 2013-03-28 2014-10-06 Fujifilm Corp Solar cell module

Similar Documents

Publication Publication Date Title
KR101217028B1 (en) Photovoltaic module comprising insulation layer with silane groups
JP4809374B2 (en) Back surface protection substrate for solar cell module, solar cell module and power generator
EP2680317A1 (en) Solar cell module
JP6395020B1 (en) Solar cell module
JP5620271B2 (en) Laminated body
JPWO2007122936A1 (en) Back protection sheet for solar cell module
KR20160150105A (en) Readily adhesive sheet and protective sheet for solar cell
WO2011099390A1 (en) Solar cell backsheet and solar cell module
WO2012088366A1 (en) Fire resistant back-sheet for photovoltaic module
CN109456710B (en) Packaging back plate integrated material and preparation method thereof
JP2009137012A (en) Laminate, sheet for protecting surface of solar battery, and building material sheet
CN107011530B (en) Back sheet for solar cell, method for producing same, and solar cell module
JP6035818B2 (en) Back surface protection sheet for solar cell module and solar cell module
WO2019087798A1 (en) Solar cell module and mobile body
WO2010050343A1 (en) Solar battery rear surface protection sheet and solar battery module
CN110828596B (en) Transparent polyester solar backboard and preparation method thereof
KR101742865B1 (en) Encapsulation for a photovoltaic module
JP6215159B2 (en) Solar cell back surface protection sheet and solar cell module
JP2020161630A (en) Solar cell module and mobile body
KR20160011478A (en) Back sheet for light module, method for manufacturing the same and light module comprising the same
JP5226572B2 (en) Resin sealing sheet for solar cell
WO2014059204A1 (en) Solar cell module with a nanofilled encapsulant layer
JP2019041090A (en) Solar cell module
JP2020057683A (en) Solar cell module
WO2019031378A1 (en) Solar cell module and intermediate product of solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18871982

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18871982

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP