WO2014007123A1 - Implant caps with sterilizing function - Google Patents

Implant caps with sterilizing function Download PDF

Info

Publication number
WO2014007123A1
WO2014007123A1 PCT/JP2013/067509 JP2013067509W WO2014007123A1 WO 2014007123 A1 WO2014007123 A1 WO 2014007123A1 JP 2013067509 W JP2013067509 W JP 2013067509W WO 2014007123 A1 WO2014007123 A1 WO 2014007123A1
Authority
WO
WIPO (PCT)
Prior art keywords
implant
cap
implant cap
following
titanium oxide
Prior art date
Application number
PCT/JP2013/067509
Other languages
French (fr)
Japanese (ja)
Inventor
河原 優一郎
Original Assignee
Kawahara Yuichiro
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawahara Yuichiro filed Critical Kawahara Yuichiro
Publication of WO2014007123A1 publication Critical patent/WO2014007123A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/008Healing caps or the like

Definitions

  • the present invention relates to a cover cap that is attached to an implant in order to cope with infections such as peri-implantitis that occur during the period when the fixture and bone tissue of a dental implant achieve osseointegration and the maintenance period after the end of treatment. And a healing cap.
  • oral implant treatment is performed as one of the advanced treatment methods.
  • Oral implant treatment is a means of implanting a titanium artificial tooth root in the jawbone at the site of the lost tooth.
  • Osseointegration is a phenomenon in which bone and metal are directly bonded, and the function that acts on the contact surface between the oxide film on the titanium surface and the bone binds biological molecules to the oxide film and causes bone adhesion.
  • the success of the implant is important in how to obtain osseointegration, and there are various proposals for the surface properties of the fixture part of the implant.
  • Metal implants having a hydrophilic surface for at least partial insertion into bone in particular dental implants and methods for producing the implants, in weak alkaline solutions in at least some areas for improved osseointegration properties
  • This osseointegration property is the result of chemical treatment in alkaline solution at least part of the surface that is exposed to bone or soft tissue, either after pretreatment, mechanical surface modification by material removal, after chemical surface modification, or without treatment. It can be obtained by a modification method (see Patent Document 1).
  • the bone is suitable for implantation into the bone as a hydrophilic surface, as the surface is roughened and the implant is hydroxylated and treated with high energy UV radiation. It can be set as an affinity implant (refer patent document 2).
  • Ultraviolet irradiation of the implant fixture part is performed for various purposes, and typically there are those for the purpose of bactericidal action. Furthermore, in order to improve the osseointegration function of the implant, for example, the following I have a suggestion.
  • a titanium oxide film is formed on the surface of the substrate by heat treatment, and then the titanium oxide film is irradiated with ultraviolet rays.
  • the titanium oxide film is formed on the surface of the substrate by heat treatment, and does not peel off.
  • the temperature of the heat treatment is preferably 250 to 500 ° C. When the heating temperature is less than 250 ° C., the titanium oxide film is not sufficiently formed, and there is a possibility that the apatite forming ability is not improved even when irradiated with ultraviolet rays (see Patent Document 3).
  • the surface of the implant material is provided with a metal oxide layer having photocatalytic activity and biocompatibility, and when it is implanted in the living body, it is possible to increase the adhesion area with osteoblasts. As a result, the cell adhesion and cell proliferation of the implant can be improved. Thereby, it becomes possible to more reliably join the bone tissue and the implant in a short period of time.
  • the photocatalytic activity makes it possible to sterilize bacteria and the like attached to the implant surface, thereby completely removing the infection foci and detoxifying (see Patent Document 4).
  • the completed implant uses a dental implant to attach the prosthetic crown, so that the abutment crosses the gingival margin and covers the top of the abutment exposed from the gingival margin A dental prosthesis is attached.
  • a dental prosthesis there is a gap between the dental prosthesis and the gingival margin, and a part of the abutment may be exposed, and plaque is accumulated most in the exposed part of the abutment. It becomes easy.
  • the outer surface of the abutment located between the gingival margin and the dental prosthetic crown is provided with a coating part in which a film containing titanium oxide powder coated with hydroxyapatite or fluorinated hydroxyapatite is formed. (See Patent Document 5).
  • Osseointegrated implants based on osseointegration are prosthetic treatments to restore oral function resulting from tooth defects, and the establishment and maintenance of osseointegration is essential for long-term success.
  • the present invention focuses on a cover cap and a healing cap used during the period of promoting osseointegration of an implant treatment, makes it difficult for the sutured portion to tear and exhibits an antibacterial activity.
  • An object of the present invention is to provide a cover cap and a healing cap that can prevent bacteria from entering the fixture portion.
  • the present invention is provided with a bactericidal layer on the surface of an implant cap used during the treatment period of an implant, improves biocompatibility by utilizing superhydrophilicity and bactericidal effect due to photocatalytic activity, and contamination due to invasion of bacteria. This is characterized in that it has a function that prevents the sutured portion from tearing.
  • Implant caps used during the treatment period of the implant are a cover cap and a healing cap.
  • the sterilization layer provided on the surface of the cap for implants is formed in a layer shape on the surface of the cap for implants using a photocatalyst material that exhibits a sterilization function when irradiated with light.
  • a photocatalyst material a photocatalyst coating agent or titanium oxide that exhibits a photocatalytic function when irradiated with light is used.
  • titanium oxide exhibits a photocatalytic function by ultraviolet light, but by doping nitrogen in the titanium oxide crystal, an energy gap is narrowed and a photocatalytic function is exhibited by visible light.
  • the photocatalytic action can be maintained for a long time even in a dark place after the photocatalytic function is exhibited. For this reason, when using a titanium oxide as a sterilizing layer for the cap for implants, the titanium oxide crystal may be doped with nitrogen.
  • Titanium oxide generally exhibits a photocatalytic function with respect to ultraviolet light.
  • the titanium oxide layer formed on the implant cap is irradiated with laser light, ultraviolet light, or X-rays, and the energy of titanium oxide is changed by photoexcitation structure change. By narrowing the gap, it is possible to develop the photocatalytic function with visible light.
  • a titanium oxide coating agent for a photocatalyst can be applied as a sterilizing layer and heated and fired.
  • the implant cap in which the titanium oxide layer is formed in this way is irradiated with light having a wavelength shorter than the wavelength for exciting the electrons of the titanium oxide immediately before being attached to the implant, and exhibits a bactericidal action due to photocatalytic activity.
  • the irradiation light is gamma rays, X-rays, or ultraviolet rays, and natural light or illuminating lamp light may be used in an implant cap in which the energy gap of titanium oxide is narrowed to enable photocatalytic activity in the visible light region.
  • the photocatalytic activity of the implant cap in which the titanium oxide layer is formed can also be performed by irradiating the implant cap with ultrasonic waves in water.
  • the sterilizing layer may be formed of a non-photocatalytic material that is photocatalytically active without irradiating light.
  • a non-photocatalytic material for example, there is a titanium phosphate compound. If there is oxygen and moisture, negative ions are generated to maintain the active effect.
  • a CT catalyst may be used for the sterilizing layer.
  • a CT catalyst is composed of an electron donor and an electron acceptor, and has a function of decomposing bacteria by simultaneous oxidation and reduction reactions.
  • the present invention by providing a bactericidal layer on the implant cap, it is possible to prevent bacteria from entering the fixture portion of the implant that binds to the living body during the implant treatment period.
  • the sterilization layer utilizes the sterilization effect by the photocatalytic function, and the sterilization action is generated by irradiating light immediately before mounting on the implant.
  • the photocatalyst material can be formed of a photocatalyst coating agent or titanium oxide.
  • titanium oxide photocatalytic activity in the visible light region is manifested by nitrogen doping or photoexcitation structure change, and a bactericidal effect is obtained.
  • the use of the non-photocatalytic material can exhibit a photocatalytic function in the presence of oxygen and water, and has an effect of bactericidal action due to the ingress of air from the sutured portion even when the implant cap is covered with the epithelium.
  • a bactericidal effect that does not require light irradiation can be obtained by using a CT catalyst in the bactericidal layer.
  • the contamination of the fixture part generated by the osseointegration can be suppressed, so that the success rate of the implant can be increased.
  • Fig. 3 shows a cover abutment and a healing abutment for an implant according to the invention.
  • a dental implant as a substitute tooth is embedded in a bone and combined with a living tissue.
  • the fixture part which is in direct contact with the alveolar bone has been subjected to various trials such as surface properties, and has obtained the effect of promoting osseointegration.
  • contamination due to the invasion of bacteria present in the mouth reaches the fixture area, which is a major problem in inhibiting osseointegration.
  • the expression is an important issue for successful implant treatment.
  • the present invention has devised a structure in which biocompatibility and bactericidal action are expressed in the cover cap and the healing cap by paying attention to the cover cap and the healing cap used during the implant treatment period.
  • FIG. 1 shows a cover attachment 2 and a healing abutment 4 according to the present invention.
  • the cover cap 10 and the healing cap 16 are cross-sectional views.
  • FIG. 1A shows a cover abutment 2.
  • the cover abutment 2 is a whole, and a disc-shaped portion at the top is a cover cap 10 and a portion including a screw portion which is a connecting portion with an implant is an abutment.
  • the cover abutment of FIG. 1 (B) the healing abutment 4 is the whole, and the cylindrical portion at the top is the healing cap 10 and the portion including the screw portion which is the connecting portion with the implant.
  • Abutment 18 The cover cap 10 and the healing cap 16 are collectively referred to as an implant cap or simply a cap.
  • the cover abutment 2 includes a sterilizing layer 14 on the surface of the cover cap 10.
  • the sterilization layer 14 prevents bacteria from entering from the mouth.
  • the healing abutment 4 is provided with a sterilizing layer 14 on the surface of the healing cap 16 and suppresses invasion of bacteria from the mouth.
  • FIG. 2 shows a state in which the cover abutment 2 and the healing abutment 4 are attached to the implant 20.
  • the implant 20 includes a collar portion 22 and a fixture portion 24.
  • the fixture portion 24 is embedded in the alveolar bone, and the bond with the living tissue, that is, osseointegration is promoted, and the implant is fixed to the alveolar bone. .
  • the cover abutment 2 is attached with screws from the upper part of the implant 20, and when the osseointegration is advanced, the cover abutment 2 is removed and the healing abutment 4 is attached.
  • implant surgery methods There are two types of implant surgery methods, the first method and the cover abutment 2 and the healing abutment 4 are used.
  • FIG. 3 is a flowchart 26 of the twice-implant method.
  • step S1 an alveolar bone in a portion where an implant is to be implanted is anesthetized, and an implant hole is formed with a drill in accordance with the length of the implant to be implanted.
  • step 2 the implant is placed in the formed planting hole up to the intended placement position.
  • the upper surface of the collar portion is open.
  • step S3 a cover abutment is attached to the opening, and in step S4, the gums are sutured and sealed.
  • step S5 the gingival is sutured and left for 2 to 6 months until osseointegration is promoted.
  • the period of cleaning varies slightly depending on the case, but is about 3 to 6 months for the upper jaw and about 2 to 4 months for the lower jaw.
  • step S6 the gum is cut open and the cover abutment attached to the implant is removed.
  • step S7 a healing abutment is attached to the implant.
  • the healing abutment sews the gum with the upper part of the healing cap protruding from the gum, and forms a gum when the superstructure (denture) is attached.
  • step S8 the mixture is allowed to stand for 2 to 4 weeks until a gum is formed. After the gums are formed, the healing abutment is removed in step 9.
  • step 10 an impression coping is attached to the implant, and an impression is taken with a silicon impression material.
  • the impression coping is removed from the fixture, and the analog is attached to the removed impression coping and returned to the impression. Furthermore, silicon for gum model is poured into the impression, and an analog model is made by pouring gypsum over it. Remove the impression coping after setting the plaster. Further, an upper structure (denture) is produced, and the upper structure is attached to the implant via an abutment, thereby completing the implant.
  • FIG. 4 is a flowchart of the single implant method.
  • a healing abutment is attached to the implant from the beginning without using a cover abutment.
  • Anesthesia is performed on the alveolar bone of the portion where the implant of Step S1 is to be implanted, and an implant hole is formed with a drill according to the length of the implant to be implanted. It is the same as the double implant method up to the place where it is to be placed.
  • a healing abutment is attached to the implant in Step 3 and left to stand for 2 to 6 months in Step 4 to promote osseointegration. Since the healing cap protrudes from the gums, gums are formed at the same time.
  • the subsequent steps 5 to 7 are the same as in the twice-implant method.
  • treatment can be performed by a single operation, but if bone augmentation is required, such as when the height or thickness of the bone is insufficient, the risk of infection by bacteria increases.
  • the cause of tooth loss is mainly due to infection, i.e. periodontal disease, dental caries, apical lesions, or when the root is broken. Peripheral tissue is also lost, and bone augmentation is often required to place the implant in the ideal location. For this reason, in many cases, the implant treatment is performed twice.
  • the state of contamination by bacteria will be described by taking the twice method as an example.
  • FIG. 5 shows an ideal state before the secondary operation with the cover abutment embedded.
  • the fixture portion 24 of the implant 20 embedded in the alveolar bone 30 is coupled to a living body by osseointegration.
  • the incised portion of the gum is sutured, but the epithelial tissue proliferates to block traffic with the outside world, and the bone is absorbed while avoiding the downgrowth of the epithelial tissue.
  • the periosteum 32, connective tissue 34, and epithelial tissue 36 cover the upper portion of the collar portion 22 and the cover cap 10 in a layered manner.
  • the sutured portion 38 incised at the time of implant placement is healed by tissue bonding.
  • FIG. 6 shows a general state of healing prior to the secondary operation.
  • FIG. 7 shows a tearing state of the sutured portion 38 that occurs relatively early.
  • the stitching portion 38 is cleaved, and bacteria enter the cleaved portion, resulting in contamination 40. Even if the stitching portion 38 is torn, it is ideal that the contamination 40 stays only in the cleavage portion, which is a desirable contamination state.
  • FIG. 8 shows that the connective tissue adhesion is lost due to the contamination 40 at the cleaved portion, and the epithelial tissue 36 grows down along the cover cap 10 and reaches the cover portion 24. As the epithelial tissue 36 is down-growth, the connective tissue 34 and the periosteum 32 are also down-growth. For this reason, the cover cap 10 and the upper part of the collar portion 12 are contaminated in a pocket shape. Contamination of the stitched portion occurs more or less, and such a state is a general state of contamination.
  • FIG. 9 shows a state in which the contamination has progressed due to the tearing of the suture part 38 and has reached the fixture part 24 of the implant 20. Contamination has occurred in the fixture unit 24 where osseointegration is to be obtained, and in such a case, it is difficult to shift to secondary surgery.
  • FIG. 10 shows a contamination state at the end of the unloading period when the healing cap 16 is attached to the implant 20 in the secondary operation. Since the healing cap 16 communicates with the outside, the incision is not covered with gums, and the periphery of the healing cap 16 is simply in contact with epithelial tissue or connective tissue. For this reason, contamination 40 due to the ingress of bacteria is unavoidable, and at the end of the unloading period, the downgrowth of the epithelial tissue 36 is in the region of the healing cap 16, and the pocket-like contamination 40 remains only around the healing cap 16. Ideally.
  • FIG. 11 shows a general contamination state at the end of the unloading period when the healing cap 16 is attached to the implant 20 in the secondary operation.
  • the downgrowth of the epithelial tissue 36 extends beyond the area of the healing cap 16 and reaches a part of the collar part, and the periphery of the healing cap 16 and the part of the collar part 22 are contaminated in a pocket shape.
  • FIG. 12 shows a contamination state in the case where excessive contamination occurs at the end of the unloading period when the healing cap 16 is attached to the implant 20 in the secondary operation.
  • the downgrowth of the epithelial tissue 36 proceeds to the fixture portion of the implant 20, and the periphery of the healing cap 16, the collar portion 22 and the fixture portion 24 is contaminated in a pocket shape.
  • the cover cap 10 and the healing cap 16 according to the present invention are provided with a sterilizing layer 14 on the surface of the cover cap 10 and the healing cap 16 as shown in FIG.
  • the bacteria are sterilized by the sterilizing layer 14 and the contamination 40 does not further spread and remains in the contamination state shown in FIG. .
  • the bacteria are sterilized with the sterilization layer 14 and the contamination 40 does not spread, and at least the contamination state shown in FIG. Stay in.
  • Examples of the sterilizing layer of the present invention include cases where a sterilizing effect is exhibited using light and cases where a sterilizing effect is exhibited even without light, which will be described in detail below. In either case, the standard type of POI EX manufactured by Nippon Medical Material Co., Ltd. was used for the cover abutment and the healing abutment. (Example 1)
  • Titanium oxide composed of anatase type crystals has an energy band of 3.2 eV, and is activated by excitation of electrons with respect to light having a wavelength of 380 nm or less, thereby exhibiting a photocatalytic function. Because of its photocatalytic activity, it exhibits superhydrophilicity and oxidative decomposition reaction, so it has a bactericidal effect.
  • the titanium oxide thin film which is a layer of a photocatalyst material was formed in the cover abutment and the healing abutment.
  • the titanium oxide thin film was produced by sputtering. Titanium having a purity of 99% or more was used as the target of the sputtering apparatus, and a cover abutment or a healing abutment was attached to the anode.
  • the inside of the chamber of the sputtering apparatus was evacuated to 5 ⁇ 10 ⁇ 4 Pa, and a film was formed using a mixed gas obtained by adding 40% oxygen to argon gas.
  • the film thickness of titanium oxide is 0.5 to 1 ⁇ m.
  • Photocatalytic activation of titanium oxide requires irradiation with light having a wavelength of 380 nm or less, and is light in the ultraviolet region. For this reason, in order to perform photocatalytic activation even in the visible light region, doping titanium oxide with nitrogen is effective.
  • a mixed gas in the above sputtering apparatus was formed by adding 20% nitrogen in addition to 20% oxygen to argon gas.
  • the nitrogen-doped titanium oxide thin film has a thickness of 0.5 to 1 ⁇ m.
  • a sterilization layer can be formed by coating a photocatalyst coating agent on the cover cap and the healing cap.
  • a photocatalyst coating agent for example, trade names TKC-303 and TKC304, which are coating agents manufactured by Teika Co., Ltd., and trade names TPX-VB and TPK-HL, which are photocatalytic sagan coat coating agents, can be used.
  • the cover abutment and healing abutment provided with a sterilization layer using a photocatalytic function are irradiated with light immediately before being attached to the implant.
  • the light in order to perform photocatalytic activation of titanium oxide, ultraviolet rays having a wavelength of 380 nm or less, X-rays or gamma rays can be used.
  • Nitrogen-doped titanium oxide capable of light-explant activation in the visible light region may be natural light or fluorescent light. All of the trial sterilized layers obtained photocatalytic activity.
  • the photocatalytic layer produced as a sterilizing layer was also able to obtain photocatalytic activity by ultrasonic irradiation in water. For this reason, the cleaning effect and the photocatalytic activity effect can be obtained simultaneously by performing ultrasonic cleaning immediately before attaching the cover abutment and the healing abutment to the implant. (Example 2)
  • Cover abutment and healing abutment formed by sputtering a titanium oxide thin film that is a layer of photocatalyst material uses the photoexcited structural change phenomenon of titanium oxide to enable photocatalytic activation of titanium oxide even in the visible light region. did.
  • the photocatalytic activation in the visible light region due to the change in the photoexcitation structure is thought to be because the potential of the light in the visible light region with a long wavelength is excited by narrowing the band gap of titanium oxide.
  • the covalent semiconductor surface of titanium oxide forms a surface-specific structure (surface structure) limited to an atomic layer near the surface including the surface atomic layer.
  • the main cause of the formation of this surface structure is the existence of unshared electron pairs (dangling bonds).
  • atoms in the surface layer cause surface relaxation and reconfiguration. As a result, it takes various forms depending on the crystal plane, the composition of surface constituent atoms, temperature, and the like.
  • a surface-specific electronic state characteristic of each structure is formed.
  • the semiconductor surface forms a new “pseudo two-dimensional condensed phase” that is composed of the same atoms as the crystal but is no longer characterized by the properties of the crystal alone. This is a photoexcitation structure change.
  • the photoexcitation structural change is based on the principle of electronic excitation, and the light energy to be irradiated may be light of a short wavelength or an electromagnetic wave necessary for the electron to exceed the band gap of titanium oxide, such as laser light, ultraviolet rays or X-rays. . More precisely, the light energy to be irradiated is light containing a short wavelength necessary for electrons to exceed the band gap of titanium oxide, or electromagnetic waves. Further, the photoexcitation structure change may be promoted by heating at a temperature of 200 ° C. to 500 ° C.
  • the sterilizing layer using a photocatalyst is effective in the initial stage of cap embedding, but the effect is gradually diminished because the mouth is not directly irradiated with light. For this reason, the non-photocatalytic material which does not require light irradiation was used.
  • a titania phosphate compound is used as the non-catalytic catalyst material. Phosphoric titania compound reacts phosphoric acid with photocatalytic titanium oxide to obtain photocatalytic activity in the dark. If oxygen and moisture are present, negative ions are generated to maintain the active effect and antibacterial effect is obtained. .
  • Non-photocatalyst of the titania phosphate compound includes, for example, non-photocatalytic ecochimera (registered trademark) of YOO Corporation.
  • the antibacterial ecochimera S series product number: SW-50 was used to coat the cover cap and the healing cap to form a sterilization layer.
  • the CT catalyst developed by Phylak International Co., Ltd. is a catalyst that does not use light and can be used for the sterilization layer.
  • a CT (Change Transfer) catalyst is composed of an electron donor and an electron acceptor, and decomposes malodorous components and bacteria by simultaneous oxidation and reduction reactions.
  • the sterilizing layer using this oxidation and reduction reaction was prepared by coating the cover cap and the healing cap.
  • the implantable implant can be irradiated with ultrasonic waves to maintain the biocompatibility and bactericidal effect during the treatment period, as well as the maintenance period. Even when the peri-implantitis of this occurs, the denture can be removed and returned to the healing abutment to develop a bactericidal effect and be cured.

Landscapes

  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Dentistry (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Materials For Medical Uses (AREA)
  • Dental Prosthetics (AREA)

Abstract

The purpose of the present invention is to make a cover cap and a healing cap to have an antibacterial activity to thereby inhibit bacteria from intruding from above the implant into the fixture part. The cover cap (10) and the healing cap (16) both for implants are used during the period of implantation treatment, and are characterized in that the surface of each cap is equipped with a sterilizing layer (14). The sterilizing layer (14) is formed by forming, on the surface of the implant cap, a layer of a photocatalytic material which exhibits a sterilizing function upon irradiation with light. As the photocatalytic material is used a photocatalytic coating material or titanium oxide that exhibits a photocatalytic function upon irradiation with light. For a sterilizing layer in which the photocatalyst can be activated in the visible-light region, use may be made of titanium oxide which has been rendered a non-photocatalytic material that needs no light irradiation, by nitrogen doping or by a change in photoexcitation structure.

Description

殺菌機能を備えたインプラント用キャップCap for implant with sterilization function
 本発明は、歯科用インプラントのフィクスチャーと骨組織がオッセオインテグレーションを達成する期間、および、治療終了後のメンテナンス期間に発現するインプラント周囲炎等の感染症に対処するため、インプラントに取り付けるカバーキャップおよびヒーリングキャップに関する。
 
The present invention relates to a cover cap that is attached to an implant in order to cope with infections such as peri-implantitis that occur during the period when the fixture and bone tissue of a dental implant achieve osseointegration and the maintenance period after the end of treatment. And a healing cap.
 喪失した歯の機能再獲得のために、金属やセラミックス等の人工材料により置換して喪失した口腔機能を補う手段としては、義歯を歯根に埋めたり、完全に歯根まで喪失した場合は、健康な歯にブリッジをかけ義歯を置いたり等の治療手段の他、先端的治療法の一つとして、口腔インプラント治療が実施されている。口腔インプラント治療とは、喪失歯部位の顎骨にチタン製人工歯根を植立する手段である。 In order to regain the function of the lost tooth, as a means of supplementing the lost oral function by replacing with artificial materials such as metal and ceramics, if the denture is buried in the root or completely lost, it is healthy. In addition to treatment means such as placing a denture by bridging a tooth, oral implant treatment is performed as one of the advanced treatment methods. Oral implant treatment is a means of implanting a titanium artificial tooth root in the jawbone at the site of the lost tooth.
 1952年スウェーデンのペル・イングヴァール・ブローネマルクが、チタンと骨が完全に結合する事を偶然発見し、その後、チタンがある一定の条件で骨に埋入された場合、チタンに対する骨の拒否反応は全くといってよいほど起こらず、そればかりかチタンの表面を覆う酸素の膜を通して強い結合が生まれることを明らかにした。そして1965年、初めて人工歯根としての臨床応用をスタートした。以来、口腔インプラント治療は飛躍的な進歩を遂げることとなった。結合組織を介在することなくチタンと骨が直接結合する骨結合方式は、骨を表すラテン語のオス(os)と結合を表す英語のインテグレーション(integration)が組み合わされ、オッセオインテグレーション(osseointegration)と呼ばれている。 In 1952, Sweden's Per Ingvar Brönemark accidentally discovered that titanium and bone were completely combined, and when titanium was implanted in the bone under certain conditions, bone rejection to titanium Did not occur at all, and it was revealed that a strong bond was born through the oxygen film covering the titanium surface. In 1965, the first clinical application as an artificial tooth root was started. Since then, oral implant treatment has made tremendous progress. The bone connection method, in which titanium and bone are directly connected without intervening connective tissue, is called osseointegration, which is a combination of Latin male (os) for bone and English integration for bone. It is.
 オッセオインテグレーションは、骨と金属が直接結合する現象であり、チタン表面の酸化膜と骨との接触面に働く機能が生体の分子を酸化膜へと結合させ、骨性癒着を生じさせる。 Osseointegration is a phenomenon in which bone and metal are directly bonded, and the function that acts on the contact surface between the oxide film on the titanium surface and the bone binds biological molecules to the oxide film and causes bone adhesion.
 インプラントの成功は、いかにオッセオインテグレーションを獲得するかが重要であり、インプラントのフィクスチャー部に関する表面性状についてはさまざまな提案がある。 The success of the implant is important in how to obtain osseointegration, and there are various proposals for the surface properties of the fixture part of the implant.
 骨に少なくとも部分的に挿入するための親水性表面を有する金属インプラント、特に歯科インプラント及びこのインプラントの製造方法であり、オッセオインテグレーション特性の改良のため、少なくともいくつかの領域において、弱アルカリ溶液中で短時間処理することで、優れた親水性表面が得られる。このオッセオインテグレーション特性は、前処理である、材料除去による機械的表面変性、化学的表面変性後、又は処理無しで、少なくとも骨又は軟組織にさらされる表面の部分を、アルカリ溶液中で化学的に変性する方法により得ることができる(特許文献1参照)。 Metal implants having a hydrophilic surface for at least partial insertion into bone, in particular dental implants and methods for producing the implants, in weak alkaline solutions in at least some areas for improved osseointegration properties By treating for a short time, an excellent hydrophilic surface can be obtained. This osseointegration property is the result of chemical treatment in alkaline solution at least part of the surface that is exposed to bone or soft tissue, either after pretreatment, mechanical surface modification by material removal, after chemical surface modification, or without treatment. It can be obtained by a modification method (see Patent Document 1).
 チタンまたはチタン合金から作製されたインプラントに関し、表面が粗面化され、インプラントが水酸化状態において、高エネルギー紫外線で処理されていることにより、親水性表面として、骨中への移植に適した骨親和性インプラントとすることができる(特許文献2参照)。 For implants made from titanium or titanium alloys, the bone is suitable for implantation into the bone as a hydrophilic surface, as the surface is roughened and the implant is hydroxylated and treated with high energy UV radiation. It can be set as an affinity implant (refer patent document 2).
 インプラントフィクスチャー部への紫外線照射は、さまざまな目的で行われており、代表的には殺菌作用を目的としたものがあり、さらにはインプラントのオッセオインテグレーション機能を向上させるために、例えば次の提案がある。 Ultraviolet irradiation of the implant fixture part is performed for various purposes, and typically there are those for the purpose of bactericidal action. Furthermore, in order to improve the osseointegration function of the implant, for example, the following I have a suggestion.
 インプラントの製造方法は、基材を熱処理することによってその表面に酸化チタン皮膜を形成してから、該酸化チタン皮膜に紫外線を照射する。これによって、酸化チタン皮膜の表面にヒドロキシアパタイトが形成しやすくなり、生体親和性に優れたインプラントを提供することができる。通常のチタン製インプラントに紫外線を照射しただけでは十分でなく、表面に酸化チタン皮膜を形成した場合に、紫外線照射によるアパタイト形成能が大幅に改善される。酸化チタン皮膜が、基材を熱処理することによってその表面に形成されたものであり、剥離することが無い。熱処理の温度は250~500℃であることが好ましい。加熱温度が250℃未満では酸化チタン皮膜が十分に形成されないし、紫外線を照射してもアパタイト形成能が改善されないおそれがある(特許文献3参照)。 In the manufacturing method of the implant, a titanium oxide film is formed on the surface of the substrate by heat treatment, and then the titanium oxide film is irradiated with ultraviolet rays. Thereby, it becomes easy to form hydroxyapatite on the surface of the titanium oxide film, and an implant excellent in biocompatibility can be provided. It is not sufficient to irradiate ordinary titanium implants with ultraviolet rays, and when a titanium oxide film is formed on the surface, the apatite forming ability by ultraviolet irradiation is greatly improved. The titanium oxide film is formed on the surface of the substrate by heat treatment, and does not peel off. The temperature of the heat treatment is preferably 250 to 500 ° C. When the heating temperature is less than 250 ° C., the titanium oxide film is not sufficiently formed, and there is a possibility that the apatite forming ability is not improved even when irradiated with ultraviolet rays (see Patent Document 3).
 インプラント材の表面に光触媒活性及び生体親和性を有する金属酸化物層を備え、生体内に埋入した場合に骨芽細胞との接着面積を増大させることを可能とする。その結果インプラントの細胞接着及び細胞増殖を改善することができる。これにより、骨組織とインプラントを短期間でより確実に結合することが可能になる。また、光触媒活性により、インプラント表面に付着した細菌等を殺菌して感染巣の完全除去や無毒化が可能になる(特許文献4参照)。 The surface of the implant material is provided with a metal oxide layer having photocatalytic activity and biocompatibility, and when it is implanted in the living body, it is possible to increase the adhesion area with osteoblasts. As a result, the cell adhesion and cell proliferation of the implant can be improved. Thereby, it becomes possible to more reliably join the bone tissue and the implant in a short period of time. In addition, the photocatalytic activity makes it possible to sterilize bacteria and the like attached to the implant surface, thereby completely removing the infection foci and detoxifying (see Patent Document 4).
 このように、主にインプラントのフィックスチャー部について、オッセオインテグレーションの促進と殺菌作用を目的とした技術開発が進められているが、インプラント手術過程で使用されているカバーキャップやヒーリングキャップに関しての報告例はない。 In this way, technology development is being promoted mainly for the fixture part of implants with the aim of promoting osseointegration and sterilization, but reports on cover caps and healing caps used in the implant surgery process. There is no example.
 完成後のインプラントは、歯科インプラントを使用して補綴冠を装着しているため、歯肉縁と交差しているのはアバットメントであり、歯肉縁から露出しているアバットメントの上部を覆うように歯科補綴物が装着されている。このような歯科補綴物は、歯科補綴物と歯肉縁との間には隙間が生じ、アバットメントの一部が露出している場合もあり、アバットメントの上記露出部に最も歯垢が蓄積しやすくなる。このために、歯肉縁及び歯科補綴冠の間に位置するアバットメントの外面にハイドロキシアパタイト又はフッ化ハイドロキシアパタイトによって被覆された酸化チタンの粉末を含む被膜が形成されたコーティング部を備えることが提案されている(特許文献5参照)。
 
The completed implant uses a dental implant to attach the prosthetic crown, so that the abutment crosses the gingival margin and covers the top of the abutment exposed from the gingival margin A dental prosthesis is attached. In such a dental prosthesis, there is a gap between the dental prosthesis and the gingival margin, and a part of the abutment may be exposed, and plaque is accumulated most in the exposed part of the abutment. It becomes easy. For this purpose, it is proposed that the outer surface of the abutment located between the gingival margin and the dental prosthetic crown is provided with a coating part in which a film containing titanium oxide powder coated with hydroxyapatite or fluorinated hydroxyapatite is formed. (See Patent Document 5).
特表2010-501212号文献Special table 2010-501212 特表2005-505352号文献Reference 2005-505352 WO2008/143219号文献WO2008 / 143219 特開2008-80102号文献Japanese Patent Laid-Open No. 2008-80102 特開2007-98054号文献Japanese Unexamined Patent Publication No. 2007-98054
 オッセオインテグレーションを原理としたオッセオインテグレーティドインプラントは、歯の欠損から生ずる口腔機能を回復するための補綴治療であり、オッセオインテグレーションの成立と維持が長期的な成功に必須である。 Osseointegrated implants based on osseointegration are prosthetic treatments to restore oral function resulting from tooth defects, and the establishment and maintenance of osseointegration is essential for long-term success.
 しかしながら、このオッセオインテグレーションの促進のために従来から提案されているのは、インプラントの表面性状に関するものが多く、その対象となるのは歯槽骨と直接接触するフィクスチャー部であった。わずかに、アバットメントに関しては、インプラント完成後の歯垢除去機能を備えることが提案されているが、インプラント治療中に使用するカバーキャップとヒーリングキャップについては、付加機能が考慮された例はなかった。 However, in order to promote this osseointegration, many proposals have been made on the surface properties of the implant, and the target is the fixture part that is in direct contact with the alveolar bone. Slightly, with regard to abutments, it has been proposed to have a plaque removal function after completion of the implant, but there were no examples in which additional functions were considered for the cover cap and healing cap used during implant treatment. .
 本発明は、インプラント治療のオッセオインテグレーションの促進期間中に使用されるカバーキャップとヒーリングキャップに着目し、縫合部の裂開がしにくく、抗菌活性作用を発現させ、インプラント入り口、即ちインプラント上部からフィクスチャー部への細菌進入を抑止することができるカバーキャップとヒーリングキャップを提供することを目的としている。
 
The present invention focuses on a cover cap and a healing cap used during the period of promoting osseointegration of an implant treatment, makes it difficult for the sutured portion to tear and exhibits an antibacterial activity. An object of the present invention is to provide a cover cap and a healing cap that can prevent bacteria from entering the fixture portion.
 本発明は、インプラントの治療期間中に使用されるインプラント用キャップの表面に、殺菌層を備え、光触媒活性による超親水性と殺菌効果を利用して、生体親和性を高め、細菌の侵入による汚染を抑止し、縫合部が裂開しづらい機能を備えたことを特徴とする。インプラントの治療期間中に使用されるインプラント用キャップは、カバーキャップ及びヒーリングキャップである。 The present invention is provided with a bactericidal layer on the surface of an implant cap used during the treatment period of an implant, improves biocompatibility by utilizing superhydrophilicity and bactericidal effect due to photocatalytic activity, and contamination due to invasion of bacteria. This is characterized in that it has a function that prevents the sutured portion from tearing. Implant caps used during the treatment period of the implant are a cover cap and a healing cap.
 インプラント用キャップ表面に備えた殺菌層は、光の照射により殺菌機能を発現する光触媒材を用いて、インプラント用キャップ表面に層状に形成される。光触媒材は、光触媒コーティング剤や、光の照射により光触媒機能を発現する酸化チタンを使用する。 The sterilization layer provided on the surface of the cap for implants is formed in a layer shape on the surface of the cap for implants using a photocatalyst material that exhibits a sterilization function when irradiated with light. As the photocatalyst material, a photocatalyst coating agent or titanium oxide that exhibits a photocatalytic function when irradiated with light is used.
 一般に、酸化チタンは紫外光により光触媒機能を発現するが、酸化チタン結晶中に窒素をドープすることで、エネルギーギャプが狭くなり、可視光により光触媒機能が発現する。また、酸化チタン結晶中に銀をドープすることで、光触媒機能発現後に暗所においた場合にも光触媒作用を長時間維持することができる。このため、インプラント用キャップに殺菌層として酸化チタンを使用する場合においては、酸化チタン結晶中に、窒素をドープしてもよい。 Generally, titanium oxide exhibits a photocatalytic function by ultraviolet light, but by doping nitrogen in the titanium oxide crystal, an energy gap is narrowed and a photocatalytic function is exhibited by visible light. In addition, by doping silver in the titanium oxide crystal, the photocatalytic action can be maintained for a long time even in a dark place after the photocatalytic function is exhibited. For this reason, when using a titanium oxide as a sterilizing layer for the cap for implants, the titanium oxide crystal may be doped with nitrogen.
 酸化チタンは、一般に紫外光に対して光触媒機能を発現するが、インプラント用キャップに形成された酸化チタンの層に、レーザ光、紫外線又はX線を照射して、光励起構造変化により酸化チタンのエネルギーギャプを狭くして、可視光での光触媒機能の発現を可能とすることができる。 Titanium oxide generally exhibits a photocatalytic function with respect to ultraviolet light. However, the titanium oxide layer formed on the implant cap is irradiated with laser light, ultraviolet light, or X-rays, and the energy of titanium oxide is changed by photoexcitation structure change. By narrowing the gap, it is possible to develop the photocatalytic function with visible light.
 また、殺菌層として光触媒用の酸化チタンコーティング剤を塗布して加熱焼成して形成することもできる。 Also, a titanium oxide coating agent for a photocatalyst can be applied as a sterilizing layer and heated and fired.
 このようにして酸化チタンの層が形成されたインプラント用キャップは、インプラントに装着する直前に、酸化チタンの電子を励起させる波長以下の光が照射され、光触媒活性による殺菌作用が発現する。照射する光は、ガンマ線、X線又は紫外線であり、酸化チタンのエネルギーギャプを狭くして、可視光領域での光触媒活性を可能にしたインプラント用キャップでは、自然光又は照明灯の光でもよい。 The implant cap in which the titanium oxide layer is formed in this way is irradiated with light having a wavelength shorter than the wavelength for exciting the electrons of the titanium oxide immediately before being attached to the implant, and exhibits a bactericidal action due to photocatalytic activity. The irradiation light is gamma rays, X-rays, or ultraviolet rays, and natural light or illuminating lamp light may be used in an implant cap in which the energy gap of titanium oxide is narrowed to enable photocatalytic activity in the visible light region.
 さらに酸化チタンの層が形成されたインプラント用キャップでの光触媒活性は、インプラント用キャップを水中で超音波を照射することにより行うこともできる。 Further, the photocatalytic activity of the implant cap in which the titanium oxide layer is formed can also be performed by irradiating the implant cap with ultrasonic waves in water.
 また、殺菌層は光を照射しないで光触媒活性する無光触媒材で形成してもよい。無光触媒材としては、例えばリン酸チタニウム化合物があり、酸素と水分があれば、マイナスイオンを発生させて活性効果を持続する。 Further, the sterilizing layer may be formed of a non-photocatalytic material that is photocatalytically active without irradiating light. As the non-photocatalytic material, for example, there is a titanium phosphate compound. If there is oxygen and moisture, negative ions are generated to maintain the active effect.
 この他、殺菌層には、CT触媒を使用してもよい。CT触媒は、電子供与体と電子受容体から構成され、同時進行する酸化、還元反応によりや細菌を分解する機能を有している。
 
In addition, a CT catalyst may be used for the sterilizing layer. A CT catalyst is composed of an electron donor and an electron acceptor, and has a function of decomposing bacteria by simultaneous oxidation and reduction reactions.
 本発明は、インプラント用キャップに殺菌層を設けることによって、インプラント治療期間中に、生体と結合するインプラントのフィクスチャー部への細菌の侵入を抑止することができる。殺菌層は、光触媒機能による殺菌効果を利用しており、インプラントに装着する直前に光を照射することで殺菌作用が発生する。 In the present invention, by providing a bactericidal layer on the implant cap, it is possible to prevent bacteria from entering the fixture portion of the implant that binds to the living body during the implant treatment period. The sterilization layer utilizes the sterilization effect by the photocatalytic function, and the sterilization action is generated by irradiating light immediately before mounting on the implant.
 光触媒材は、光触媒コーティング剤や酸化チタンにより形成でき、酸化チタンの場合は、窒素のドーピングや光励起構造変化により可視光領域での光触媒活性が発現し、殺菌効果が得られる。また、無光触媒材の使用により、酸素と水の存在で光触媒機能を発現でき、インプラント用キャップが上皮に覆われていても縫合部からの空気の進入による殺菌作用の効果がある。 The photocatalyst material can be formed of a photocatalyst coating agent or titanium oxide. In the case of titanium oxide, photocatalytic activity in the visible light region is manifested by nitrogen doping or photoexcitation structure change, and a bactericidal effect is obtained. Further, the use of the non-photocatalytic material can exhibit a photocatalytic function in the presence of oxygen and water, and has an effect of bactericidal action due to the ingress of air from the sutured portion even when the implant cap is covered with the epithelium.
 さらに、CT触媒を殺菌層に使用することで、光の照射を必要としない殺菌効果が得られる。 Furthermore, a bactericidal effect that does not require light irradiation can be obtained by using a CT catalyst in the bactericidal layer.
 このように、インプラント用キャップに殺菌層を設けることによって、オッセオインテグレーションが生成するフィクスチャー部の汚染が抑止できるため、インプラントの成功率を高くすることができる効果がある。
 
Thus, by providing the sterilizing layer on the implant cap, the contamination of the fixture part generated by the osseointegration can be suppressed, so that the success rate of the implant can be increased.
本発明によるインプラント用のカバーアバットメントとヒーリングアバットメントを示す図Fig. 3 shows a cover abutment and a healing abutment for an implant according to the invention. 本発明によるインプラント用のカバーアバットメントとヒーリングアバットメントのインプラント装着を説明する図。The figure explaining the implant mounting | wearing of the cover abutment and healing abutment for implants by this invention. インプラント手術の2回法のフローチャート。The flowchart of the twice method of an implant operation. インプラント手術の1回法のフローチャート。The flowchart of the once method of an implant operation. カバーアバットメント埋込み状態での理想的治癒状態。Ideal healing state with cover abutment embedded. カバーアバットメント埋込み状態での一般的治癒状態。General healing state with cover abutment embedded. カバーアバットメント埋込み後の縫合部裂開時の一般的汚染状態を説明する図。The figure explaining the general contamination state at the time of the suture part tearing after cover abutment embedding. オッセオインテグレーションを十分に獲得できずに2次オペへ移行する一般的状態を説明する図。The figure explaining the general state which transfers to a secondary operation without fully acquiring osseointegration. オッセオインテグレーションを獲得すべきフィクスチャー部まで汚染が進行した状態。Contamination has progressed to the fixture section where osseointegration should be obtained. 免荷期間終了時の理想的治癒状態を説明する図。The figure explaining the ideal healing state at the end of the unloading period. 免荷期間終了時の一般的治癒状態を説明する図。The figure explaining the general healing state at the time of the end of an unloading period. オッセオインテグレーションを十分に獲得できずに免荷期間が終了した状態を説明する図Diagram explaining the state where the unloading period has ended due to insufficient osseointegration
 代用歯としての歯科用インプラントは、骨に埋入し、生体組織と結合させる。このため、歯槽骨と直接接触するフィクスチャー部は、表面性状等様々な試みがされ、オッセオインテグレーションの促進効果を得ている。ところが、実際の臨床現場では口内に存在する細菌の進入による汚染がフィクスチャー部まで達し、オッセオインテグレーションの阻害要因となっていることが大きな問題であり、いかに生体親和性を高め、殺菌効果を発現させるかがインプラント治療を成功させるための重要な課題となっている。 A dental implant as a substitute tooth is embedded in a bone and combined with a living tissue. For this reason, the fixture part which is in direct contact with the alveolar bone has been subjected to various trials such as surface properties, and has obtained the effect of promoting osseointegration. However, in actual clinical settings, contamination due to the invasion of bacteria present in the mouth reaches the fixture area, which is a major problem in inhibiting osseointegration. The expression is an important issue for successful implant treatment.
 従来は、インプラント治療を成功させることを目的とした、歯科用インプラントのカバーアパットメントやヒーリングアバットメントに対する表面性状等の改質は試みられておらず、生体親和性が不足しているため、縫合部が裂開しやすくなっている。 Conventionally, there has been no attempt to modify the surface properties of dental implant covers and healing abutments for the purpose of successful implant treatment, and the biocompatibility is insufficient. The part is easy to tear apart.
 このような背景から、本発明はインプラント治療期間に使用されるカバーキャップとヒーリングキャップに着目して、カバーキャップとヒーリングキャップに生体親和性と殺菌作用を発現させる構造を考案した。 From such a background, the present invention has devised a structure in which biocompatibility and bactericidal action are expressed in the cover cap and the healing cap by paying attention to the cover cap and the healing cap used during the implant treatment period.
 図1は、本発明によるカバーアパットメント2とヒーリングアバットメント4である。カバーキャップ10とヒーリングキャップ16は、断面図を示している。図1(A)はカバーアバットメント2であり、カバーアバットメント2は全体を言い、上部にある円盤状の部分をカバーキャップ10、インプラントとの連結部であるネジ部を含んだ部分をアバットメント12と言う。同様に、図1(B)のカバーアバットメントであり、ヒーリングアバットメント4は全体を言い、上部にある円筒状の部分をヒーリングキャップ10、インプラントとの連結部であるネジ部を含んだ部分をアバットメント18と言う。なお、カバーキャップ10とヒーリングキャップ16を総称して言う場合は、インプラント用キャップまたは単にキャップと言う。 FIG. 1 shows a cover attachment 2 and a healing abutment 4 according to the present invention. The cover cap 10 and the healing cap 16 are cross-sectional views. FIG. 1A shows a cover abutment 2. The cover abutment 2 is a whole, and a disc-shaped portion at the top is a cover cap 10 and a portion including a screw portion which is a connecting portion with an implant is an abutment. Say twelve. Similarly, it is the cover abutment of FIG. 1 (B), the healing abutment 4 is the whole, and the cylindrical portion at the top is the healing cap 10 and the portion including the screw portion which is the connecting portion with the implant. Say Abutment 18. The cover cap 10 and the healing cap 16 are collectively referred to as an implant cap or simply a cap.
 カバーアバットメント2は、カバーキャップ10の表面に殺菌層14を備えている。この殺菌層14により、口内からの細菌の侵入を抑止する。同様にヒーリングアバットメント4は、ヒーリングキャップ16の表面に殺菌層14を備え、口内からの細菌の侵入を抑止する。 The cover abutment 2 includes a sterilizing layer 14 on the surface of the cover cap 10. The sterilization layer 14 prevents bacteria from entering from the mouth. Similarly, the healing abutment 4 is provided with a sterilizing layer 14 on the surface of the healing cap 16 and suppresses invasion of bacteria from the mouth.
 図2は、インプラント20に、カバーアバットメント2とヒーリングアバットメント4が装着される状態を示している。インプラント20は、カラー部22とフィクスチャー部24から成り、フィクスチャー部24は歯槽骨に埋入され、生体組織との結合、即ちオッセオインテグレーションが促進されて、インプラントは歯槽骨に固定される。 FIG. 2 shows a state in which the cover abutment 2 and the healing abutment 4 are attached to the implant 20. The implant 20 includes a collar portion 22 and a fixture portion 24. The fixture portion 24 is embedded in the alveolar bone, and the bond with the living tissue, that is, osseointegration is promoted, and the implant is fixed to the alveolar bone. .
 インプラント治療期間中は、まず、カバーアバットメント2が、インプラント20の上部からネジにより装着され、オッセオインテグレーションが進んだところで、カバーアバットメント2が取り外され、ヒーリングアバットメント4が取り付けられる。インプラント手術の術式は2回法と1回法がありカバーアバットメント2とヒーリングアバットメント4がどの様に使用されているかを次に説明する。 During the implant treatment period, first, the cover abutment 2 is attached with screws from the upper part of the implant 20, and when the osseointegration is advanced, the cover abutment 2 is removed and the healing abutment 4 is attached. There are two types of implant surgery methods, the first method and the cover abutment 2 and the healing abutment 4 are used.
 図3は、インプラント2回法のフローチャート26である。まずステップS1では、インプラントを埋入する部分の歯槽骨に麻酔をして、埋入するインプラントの長さにあわせてドリルでインプラントの植立孔を形成する。次に、ステップ2では形成した植立孔にインプラントを埋入予定位置まで埋入する。埋入したインプラントは、カラー部の上面が開口している。ステップS3ではこの開口部にカバーアバットメントを装着し、ステップS4で歯茎を縫合して封印する。ステップS5は、歯茎が縫合された状態で、オッセオインテグレーションが促進されるまで2~6ヶ月静置する。清置する期間は、症例により若干異なるが、上顎で約3~6月、下顎で約2~4ヶ月程度である。 FIG. 3 is a flowchart 26 of the twice-implant method. First, in step S1, an alveolar bone in a portion where an implant is to be implanted is anesthetized, and an implant hole is formed with a drill in accordance with the length of the implant to be implanted. Next, in step 2, the implant is placed in the formed planting hole up to the intended placement position. In the implanted implant, the upper surface of the collar portion is open. In step S3, a cover abutment is attached to the opening, and in step S4, the gums are sutured and sealed. In step S5, the gingival is sutured and left for 2 to 6 months until osseointegration is promoted. The period of cleaning varies slightly depending on the case, but is about 3 to 6 months for the upper jaw and about 2 to 4 months for the lower jaw.
 オッセオインテグレーションが促進された後に、2次手術に移る。ステップS6では、歯茎を切開して、インプラントに装着していたカバーアバットメントを取り外す。次に、ステップS7ではヒーリングアバットメントをインプラントに装着する。ヒーリングアバットメントは、ヒーリングキャップ上部が歯茎から出た状態で歯茎を縫合し、上部構造(義歯)装着時の歯茎を形成する。ステップS8で、歯茎が形成されるまで2~4週間静置する。歯茎が形成された後に、ステップ9ではヒーリングアバットメントを取り外す。 後 に After osseointegration is promoted, move on to secondary surgery. In step S6, the gum is cut open and the cover abutment attached to the implant is removed. Next, in step S7, a healing abutment is attached to the implant. The healing abutment sews the gum with the upper part of the healing cap protruding from the gum, and forms a gum when the superstructure (denture) is attached. In step S8, the mixture is allowed to stand for 2 to 4 weeks until a gum is formed. After the gums are formed, the healing abutment is removed in step 9.
 次に、ステップ10でインプラントに印象コーピングを取り付け、シリコン印象材で印象採得を行う。 Next, in step 10, an impression coping is attached to the implant, and an impression is taken with a silicon impression material.
 そして、最後のステップ11では、フィクスチャーから印象コーピングを取り外し、取り外した印象コーピングにアナログを取り付け印象内に戻す。さらに、印象内にガム模型用シリコンを流し込み、その上から石膏を流してアナログ模型を作製する。石膏硬化後は、印象コーピングを取り外す。さらに上部構造(義歯)を作製して、インプラントにはアバットメントを介して上部構造を取り付け、インプラントが完成する。 In the final step 11, the impression coping is removed from the fixture, and the analog is attached to the removed impression coping and returned to the impression. Furthermore, silicon for gum model is poured into the impression, and an analog model is made by pouring gypsum over it. Remove the impression coping after setting the plaster. Further, an upper structure (denture) is produced, and the upper structure is attached to the implant via an abutment, thereby completing the implant.
 図4は、インプラント1回法のフローチャートである。インプラント1回法に対して、カバーアバットメントを使用せずに、最初からヒーリングアバットメントをインプラントに装着する。ステップS1のインプラントを埋入する部分の歯槽骨に麻酔をして、埋入するインプラントの長さにあわせてドリルでインプラントの植立孔を形成し、ステップ2で形成した植立孔にインプラントを埋入予定位置まで埋入するところまでは、インプラント2回法と同じである。 FIG. 4 is a flowchart of the single implant method. For a single implant procedure, a healing abutment is attached to the implant from the beginning without using a cover abutment. Anesthesia is performed on the alveolar bone of the portion where the implant of Step S1 is to be implanted, and an implant hole is formed with a drill according to the length of the implant to be implanted. It is the same as the double implant method up to the place where it is to be placed.
 インプラント1回法は、ステップ3でインプラントにヒーリングアバットメントを装着して、ステップ4でオッセオインテグレーション促進のため2~6ヶ月静置する。ヒーリングキャップは歯茎から外部に出ているため、歯茎の形成も同時に行われる。その後の、ステップ5~7については、インプラント2回法と同様である。 In the one-time implant method, a healing abutment is attached to the implant in Step 3 and left to stand for 2 to 6 months in Step 4 to promote osseointegration. Since the healing cap protrudes from the gums, gums are formed at the same time. The subsequent steps 5 to 7 are the same as in the twice-implant method.
 1回法の場合は、一回の手術で治療することができるが、骨の高さや厚さが不足している場合などの骨増生が必要な場合は細菌による感染のリスクが高くなる。インプラント治療を受ける患者は、歯の喪失原因が主に感染によるもの、つまり、歯周病、虫歯、根尖病巣、また歯根が折れた場合などであり、歯を喪失してしまうと、当然歯周組織も失っており、理想的な位置にインプラントを埋入するためには、多くの場合骨増生が必要になる。このため、多くの場合は2回法によるインプラント治療が行われている。以下、2回法を例に、細菌による汚染状態について説明する。 In the case of the one-time method, treatment can be performed by a single operation, but if bone augmentation is required, such as when the height or thickness of the bone is insufficient, the risk of infection by bacteria increases. In patients who receive implant treatment, the cause of tooth loss is mainly due to infection, i.e. periodontal disease, dental caries, apical lesions, or when the root is broken. Peripheral tissue is also lost, and bone augmentation is often required to place the implant in the ideal location. For this reason, in many cases, the implant treatment is performed twice. Hereinafter, the state of contamination by bacteria will be described by taking the twice method as an example.
 図5は、カバーアバットメント埋込み状態で、2次手術前の理想的な状態を示している。歯槽骨30に埋入しているインプラント20のフィクスチャー部24は、オッセオインテグレーションにより生体との結合している。カバーアバットメント2の装着後に歯茎の切開部を縫合するが、外界との交通を遮断するため上皮組織が増殖し、上皮組織のダウングロースを避けて、骨が吸収する。骨膜32、結合組織34と上皮組織36は層状にカラー部22の上部とカバーキャップ10を覆っている。インプラント埋入時に切開した縫合部38は組織結合して治癒している。
図6は、一般的な2次手術前の治癒状態であり、図5の理想的な状態に対して、骨膜32が、カバーキャップ10まで成長せず、インプラント24のカラー部22までしか覆われていない。このため、縫合部が裂開しやすい状態になる。
 図7は、比較的早期に起きる縫合部38の裂開状態を示している。縫合部38が裂開して、裂開した部分に細菌が侵入して汚染40が生じている。縫合部38が裂開しても、汚染40が裂開部だけに留まっているのが理想的で、望ましい汚染状態である
FIG. 5 shows an ideal state before the secondary operation with the cover abutment embedded. The fixture portion 24 of the implant 20 embedded in the alveolar bone 30 is coupled to a living body by osseointegration. After the cover abutment 2 is mounted, the incised portion of the gum is sutured, but the epithelial tissue proliferates to block traffic with the outside world, and the bone is absorbed while avoiding the downgrowth of the epithelial tissue. The periosteum 32, connective tissue 34, and epithelial tissue 36 cover the upper portion of the collar portion 22 and the cover cap 10 in a layered manner. The sutured portion 38 incised at the time of implant placement is healed by tissue bonding.
FIG. 6 shows a general state of healing prior to the secondary operation. In contrast to the ideal state of FIG. 5, the periosteum 32 does not grow up to the cover cap 10 but covers only the collar portion 22 of the implant 24. Not. For this reason, it will be in the state which a suture part is easy to tear.
FIG. 7 shows a tearing state of the sutured portion 38 that occurs relatively early. The stitching portion 38 is cleaved, and bacteria enter the cleaved portion, resulting in contamination 40. Even if the stitching portion 38 is torn, it is ideal that the contamination 40 stays only in the cleavage portion, which is a desirable contamination state.
 図8は、裂開部の汚染40により、結合組織性付着が失われ、上皮組織36がカバーキャップ10に沿ってダウングロースを起こし、カバー部24に達している。上皮組織36のダウングロースに伴い、結合組織34及び骨膜32もダウングロースを起こしている。このために、カバーキャップ10とカラー部12の上部はポケット状に汚染されている。縫合部の汚染は多かれ少なかれ発生し、このような状態が汚染の一般的な状態である。 FIG. 8 shows that the connective tissue adhesion is lost due to the contamination 40 at the cleaved portion, and the epithelial tissue 36 grows down along the cover cap 10 and reaches the cover portion 24. As the epithelial tissue 36 is down-growth, the connective tissue 34 and the periosteum 32 are also down-growth. For this reason, the cover cap 10 and the upper part of the collar portion 12 are contaminated in a pocket shape. Contamination of the stitched portion occurs more or less, and such a state is a general state of contamination.
 図9は、縫合部38の裂開により汚染が進んで、インプラント20のフィクスチャー部24まで達した状態である。オッセオインテグレーションを獲得すべきフィクスチャー部24で汚染が生じており、このような場合では2次手術への移行は困難である。 FIG. 9 shows a state in which the contamination has progressed due to the tearing of the suture part 38 and has reached the fixture part 24 of the implant 20. Contamination has occurred in the fixture unit 24 where osseointegration is to be obtained, and in such a case, it is difficult to shift to secondary surgery.
 図10は、2次手術でヒーリングキャップ16をインプラント20に取り付けたときの、免荷期間終了時における汚染状態である。ヒーリングキャップ16は外部と交通しているために、切開部が歯茎で覆われることはなく、ヒーリングキャップ16の周囲は、単に上皮組織や結合組織と接しているだけの状態となる。このため、細菌の進入による汚染40は避けられず、免荷期間終了時に、上皮組織36のダウングロースがヒーリングキャップ16の領域にあり、ヒーリングキャップ16周囲だけに、ポケット状の汚染40が留まっているのが理想的である。 FIG. 10 shows a contamination state at the end of the unloading period when the healing cap 16 is attached to the implant 20 in the secondary operation. Since the healing cap 16 communicates with the outside, the incision is not covered with gums, and the periphery of the healing cap 16 is simply in contact with epithelial tissue or connective tissue. For this reason, contamination 40 due to the ingress of bacteria is unavoidable, and at the end of the unloading period, the downgrowth of the epithelial tissue 36 is in the region of the healing cap 16, and the pocket-like contamination 40 remains only around the healing cap 16. Ideally.
 図11は、2次手術でヒーリングキャップ16をインプラント20に取り付けたときの、免荷期間終了時における一般的な汚染状態である。上皮組織36のダウングロースがヒーリングキャップ16の領域を超えて、カラー部の一部に達しており、ヒーリングキャップ16の周囲部とカラー部22の一部の周囲がポケット状に汚染されている。 FIG. 11 shows a general contamination state at the end of the unloading period when the healing cap 16 is attached to the implant 20 in the secondary operation. The downgrowth of the epithelial tissue 36 extends beyond the area of the healing cap 16 and reaches a part of the collar part, and the periphery of the healing cap 16 and the part of the collar part 22 are contaminated in a pocket shape.
 図12は、2次手術でヒーリングキャップ16をインプラント20に取り付けたときの、免荷期間終了時に、過度に汚染が生じた場合の汚染状態である。上皮組織36のダウングロースがインプラント20のフィクスチャー部まで進行し、ヒーリングキャップ16、カラー部22とフィックスチャー部24の一部までその周囲がポケット状に汚染されている。 FIG. 12 shows a contamination state in the case where excessive contamination occurs at the end of the unloading period when the healing cap 16 is attached to the implant 20 in the secondary operation. The downgrowth of the epithelial tissue 36 proceeds to the fixture portion of the implant 20, and the periphery of the healing cap 16, the collar portion 22 and the fixture portion 24 is contaminated in a pocket shape.
 これまで、インプラント手術の治療期間中の汚染状態を説明したが、汚染は完全には防止できず、裂開の場合は裂開部に留まり、ヒーリングキャップ16取り付け時はヒーリングキャップ16周囲に留まっているのが望ましい。このために、本発明によるカバーキャップ10及びヒーリングキャップ16は、図1に示したように、カバーキャップ10及びヒーリングキャップ16の表面に殺菌層14を設けている。 So far, the contamination state during the treatment period of the implant operation has been described. However, the contamination cannot be completely prevented, and in the case of dehiscence, it stays at the dehiscence part, and when the healing cap 16 is attached, it remains around the healing cap 16. It is desirable. For this purpose, the cover cap 10 and the healing cap 16 according to the present invention are provided with a sterilizing layer 14 on the surface of the cover cap 10 and the healing cap 16 as shown in FIG.
 カバーキャップ10の表面が殺菌層14で覆われて、殺菌作用を発現していると、細菌は殺菌層14で殺菌され、汚染40がさらに広がることがなく、図7に示した汚染状態で留まる。また、ヒーリングキャップ16の表面が殺菌層14で覆われて、抗菌作用を発現していると、細菌は殺菌層14で殺菌され、汚染40が広がることがなく、少なくとも図10に示した汚染状態で留まる。 When the surface of the cover cap 10 is covered with the sterilizing layer 14 and exhibits a sterilizing action, the bacteria are sterilized by the sterilizing layer 14 and the contamination 40 does not further spread and remains in the contamination state shown in FIG. . When the surface of the healing cap 16 is covered with the sterilization layer 14 and exhibits antibacterial action, the bacteria are sterilized with the sterilization layer 14 and the contamination 40 does not spread, and at least the contamination state shown in FIG. Stay in.
 本発明の殺菌層の実施例は、光を利用して殺菌効果を発現する場合と、光がなくても殺菌効果を発現する場合とがあり、以下に具体的に説明する。なお、いずれの場合も、カバーアバットメントとヒーリングアバットメントは、日本メディカルマテリアル株式会社のPOI EXのスタンダードタイプを使用した。
(実施例1)
Examples of the sterilizing layer of the present invention include cases where a sterilizing effect is exhibited using light and cases where a sterilizing effect is exhibited even without light, which will be described in detail below. In either case, the standard type of POI EX manufactured by Nippon Medical Material Co., Ltd. was used for the cover abutment and the healing abutment.
(Example 1)
 アナターゼ型結晶で構成される酸化チタンは、エネルギーバンドが3.2eVであり、波長が380nm以下の光に対して電子が励起して活性化し、光触媒機能を発現する。光触媒活性により、超親水性や酸化分解反応を示すため、殺菌効果を有する。 Titanium oxide composed of anatase type crystals has an energy band of 3.2 eV, and is activated by excitation of electrons with respect to light having a wavelength of 380 nm or less, thereby exhibiting a photocatalytic function. Because of its photocatalytic activity, it exhibits superhydrophilicity and oxidative decomposition reaction, so it has a bactericidal effect.
 このため、カバーアバットメントとヒーリングアバットメントに光触媒材の層である酸化チタン薄膜を形成した。酸化チタン薄膜の作製は、スパッタリングにより行った。スパッタリング装置のターゲットには、純度99%以上のチタンを用い、アノードにはカバーアバットメント又はヒーリングアバットメントを取り付けた。スパッタリング装置のチャンバー内は真空度を5×10-4Paまで排気し、アルゴンガスに酸素を40%加えた混合ガスを用いて成膜した。酸化チタンの膜厚は、0.5~1μmである。 For this reason, the titanium oxide thin film which is a layer of a photocatalyst material was formed in the cover abutment and the healing abutment. The titanium oxide thin film was produced by sputtering. Titanium having a purity of 99% or more was used as the target of the sputtering apparatus, and a cover abutment or a healing abutment was attached to the anode. The inside of the chamber of the sputtering apparatus was evacuated to 5 × 10 −4 Pa, and a film was formed using a mixed gas obtained by adding 40% oxygen to argon gas. The film thickness of titanium oxide is 0.5 to 1 μm.
 酸化チタンの光触媒活性化は、波長が380nm以下の光の照射が必要であり、紫外線領域の光である。このため、可視光領域でも光触媒活性化を行わせるために、酸化チタンに窒素をドーピングすることが有効である。このために、上記スパッタリング装置での混合ガスを、アルゴンガスに酸素20%の他、さらに窒素20%を加えて成膜した。窒素ドープ型酸化チタン薄膜は、0.5~1μmである。 Photocatalytic activation of titanium oxide requires irradiation with light having a wavelength of 380 nm or less, and is light in the ultraviolet region. For this reason, in order to perform photocatalytic activation even in the visible light region, doping titanium oxide with nitrogen is effective. For this purpose, a mixed gas in the above sputtering apparatus was formed by adding 20% nitrogen in addition to 20% oxygen to argon gas. The nitrogen-doped titanium oxide thin film has a thickness of 0.5 to 1 μm.
 また、光触媒コーティング剤をカバーキャップとヒーリングキャップにコーティングすることにより、殺菌層を形成することもできる。例えば、テイカ株式会社製のコーティング剤である商品名TKC-303やTKC304、光触媒サガンコートコーティング剤の商品名TPX-VBやTPK-HL等が利用できる。 Also, a sterilization layer can be formed by coating a photocatalyst coating agent on the cover cap and the healing cap. For example, trade names TKC-303 and TKC304, which are coating agents manufactured by Teika Co., Ltd., and trade names TPX-VB and TPK-HL, which are photocatalytic sagan coat coating agents, can be used.
 光触媒機能を利用した殺菌層を備えたカバーアバットメントとヒーリングアバットメントは、インプラントに取り付ける直前に光の照射が行われる。光は、酸化チタンの光触媒活性化を行うために、波長が380nm以下の紫外線、X線あるいはガンマ線が使用できる。可視光領域での光植外活性化が可能な窒素ドープ酸化チタンでは、自然光や蛍光灯の光でもよい。上記試作した殺菌層は、いずれも光触媒活性が得られた。 The cover abutment and healing abutment provided with a sterilization layer using a photocatalytic function are irradiated with light immediately before being attached to the implant. As the light, in order to perform photocatalytic activation of titanium oxide, ultraviolet rays having a wavelength of 380 nm or less, X-rays or gamma rays can be used. Nitrogen-doped titanium oxide capable of light-explant activation in the visible light region may be natural light or fluorescent light. All of the trial sterilized layers obtained photocatalytic activity.
 また、殺菌層として試作した光触媒層は、水中での超音波照射によっても光触媒活性が得られた。このため、カバーアバットメントやヒーリングアバットメントをインプラントに取り付ける直前に、超音波洗浄を行うことにより、洗浄効果と光触媒活性効果が同時に得られる。
(実施例2)
In addition, the photocatalytic layer produced as a sterilizing layer was also able to obtain photocatalytic activity by ultrasonic irradiation in water. For this reason, the cleaning effect and the photocatalytic activity effect can be obtained simultaneously by performing ultrasonic cleaning immediately before attaching the cover abutment and the healing abutment to the implant.
(Example 2)
 光触媒材の層である酸化チタン薄膜を、スパッタリングにより形成したカバーアバットメントとヒーリングアバットメントは、酸化チタンの光触媒活性化を可視光領域でも可能とするために、酸化チタンの光励起構造変化現象を利用した。 Cover abutment and healing abutment formed by sputtering a titanium oxide thin film that is a layer of photocatalyst material uses the photoexcited structural change phenomenon of titanium oxide to enable photocatalytic activation of titanium oxide even in the visible light region. did.
 光励起構造変化による、可視光領域での光触媒活性化は、酸化チタンのバンドギャップを狭くして、波長の長い可視光領域での光に対しても電位が励起するためと考えられる。 The photocatalytic activation in the visible light region due to the change in the photoexcitation structure is thought to be because the potential of the light in the visible light region with a long wavelength is excited by narrowing the band gap of titanium oxide.
 酸化チタンの共有性半導体表面は、表面原子層を含む表面近傍の原子層に限局された表面固有の構造(表面構造)を形成する。この表面構造形成の主要因は非共有電子対(ダングリングボンド)の存在であるが、この存在による電子系のエネルギー増加を減少さすべく、表面層の原子は表面緩和・再構成を起こし、その結果として、結晶の面や表面構成原子の組成、温度などに依存した多様な形態をとる。その各々の構造に特徴的な表面固有の電子状態が形成される。従って、半導体表面は、結晶と同一原子から構成されつつも、もはや結晶のみの諸性質では特徴づけられない、新たな「擬2次元的凝縮相」を形成している。これが、光励起構造変化である。 The covalent semiconductor surface of titanium oxide forms a surface-specific structure (surface structure) limited to an atomic layer near the surface including the surface atomic layer. The main cause of the formation of this surface structure is the existence of unshared electron pairs (dangling bonds). In order to reduce the energy increase of the electron system due to this existence, atoms in the surface layer cause surface relaxation and reconfiguration. As a result, it takes various forms depending on the crystal plane, the composition of surface constituent atoms, temperature, and the like. A surface-specific electronic state characteristic of each structure is formed. Thus, the semiconductor surface forms a new “pseudo two-dimensional condensed phase” that is composed of the same atoms as the crystal but is no longer characterized by the properties of the crystal alone. This is a photoexcitation structure change.
 光励起構造変化は電子励起を原理としており、照射する光エネルギーは、レーザ光、紫外線やX線のように、電子が酸化チタンのバンドギャップを超えるために必要な短い波長の光、あるいは電磁波でよい。より正確には、照射する光エネルギーは、電子が酸化チタンのバンドギャップを超えるために必要な短い波長を含んだ光、あるいは電磁波である。さらに、温度を200℃~500℃として加熱することで、光励起構造変化を促進させてもよい。 The photoexcitation structural change is based on the principle of electronic excitation, and the light energy to be irradiated may be light of a short wavelength or an electromagnetic wave necessary for the electron to exceed the band gap of titanium oxide, such as laser light, ultraviolet rays or X-rays. . More precisely, the light energy to be irradiated is light containing a short wavelength necessary for electrons to exceed the band gap of titanium oxide, or electromagnetic waves. Further, the photoexcitation structure change may be promoted by heating at a temperature of 200 ° C. to 500 ° C.
 光励起構造変化させた酸化チタン層は、エネルギーギャプが2.5eV程度となったため、自然光や蛍光灯等の光照射によっても十分な光触媒活性効果が得られた。
(実施例3)
Since the titanium oxide layer with the photoexcited structure changed has an energy gap of about 2.5 eV, a sufficient photocatalytic activity effect was obtained even by irradiation with natural light or fluorescent light.
(Example 3)
 光触媒を利用した殺菌層は、キャップ埋入初期には効果を発揮するが、口内は光が直接照射されることがないために、徐々に効果が薄れていく。このため、光照射を必要としない無光触媒材を使用した。無光触媒材としては、リン酸チタニア化合物を使用する。リン酸チタニア化合物は、光触媒酸化チタンにリン酸を反応させて、暗所において光触媒活性が得られ、酸素と水分があれば、マイナスイオンを発生させて活性効果を持続し、抗菌効果が得られる。リン酸チタニア化合物の無光触媒は、例えばYOOコーポレーションの無光触媒エコキメラ(登録商標)がある。抗菌タイプのエコキメラSシリーズ(品番:SW-50)を使用して、カバーキャップとヒーリングキャップにコーティングして殺菌層とした。 The sterilizing layer using a photocatalyst is effective in the initial stage of cap embedding, but the effect is gradually diminished because the mouth is not directly irradiated with light. For this reason, the non-photocatalytic material which does not require light irradiation was used. As the non-catalytic catalyst material, a titania phosphate compound is used. Phosphoric titania compound reacts phosphoric acid with photocatalytic titanium oxide to obtain photocatalytic activity in the dark. If oxygen and moisture are present, negative ions are generated to maintain the active effect and antibacterial effect is obtained. . Non-photocatalyst of the titania phosphate compound includes, for example, non-photocatalytic ecochimera (registered trademark) of YOO Corporation. The antibacterial ecochimera S series (product number: SW-50) was used to coat the cover cap and the healing cap to form a sterilization layer.
 また、ファイラック・インターナショナル株式会社により開発されたCT触媒も光を利用しない触媒であり、殺菌層に利用できる。CT(Change Transfer)触媒は、電子供与体と電子受容体から構成され、同時進行の酸化、還元反応により、悪臭成分や細菌を分解する。この酸化、還元反応を利用した殺菌層を、カバーキャップとヒーリングキャップにコーティングすることにより作製した。 Also, the CT catalyst developed by Phylak International Co., Ltd. is a catalyst that does not use light and can be used for the sterilization layer. A CT (Change Transfer) catalyst is composed of an electron donor and an electron acceptor, and decomposes malodorous components and bacteria by simultaneous oxidation and reduction reactions. The sterilizing layer using this oxidation and reduction reaction was prepared by coating the cover cap and the healing cap.
 本発明によるカバーアバットメント及びヒーリングアバットメントを使用することにより、埋入インプラントへ超音波を照射して、治療期間中の、生体親和性と殺菌効果を持続させることができるばかりでなく、メンテナンス期間のインプラント周囲炎が生じた場合でも、義歯を外してヒーリングアバットメントに戻し、殺菌効果を発現させて治癒させることができる。 By using the cover abutment and healing abutment according to the present invention, the implantable implant can be irradiated with ultrasonic waves to maintain the biocompatibility and bactericidal effect during the treatment period, as well as the maintenance period. Even when the peri-implantitis of this occurs, the denture can be removed and returned to the healing abutment to develop a bactericidal effect and be cured.
 以上、本発明の実施例を説明したが、本発明はその目的と利点を損なうことのない適宜の変形を含み、更に、上記の実施形態よる限定は受けない。
 
As mentioned above, although the Example of this invention was described, this invention contains the appropriate deformation | transformation which does not impair the objective and advantage, Furthermore, the limitation by said embodiment is not received.
 2 カバーアバットメント
 4 ヒーリングアバットメント
 10 カバーキャップ
 12,18 アバットメント
 14 殺菌層
 16 ヒーリングキャップ
 18 ガイド突起
 20 インプラント
 22 カラー部
 24 フィクスチャー部
 26 インプラント2回法のフローチャート
 28 インプラント1回法のフローチャート
 30 歯槽骨
 32 骨膜
 34 結合組織
 36 上皮組織
 38 縫合部
 40 汚染部
 
DESCRIPTION OF SYMBOLS 2 Cover abutment 4 Healing abutment 10 Cover cap 12, 18 Abutment 14 Bactericidal layer 16 Healing cap 18 Guide protrusion 20 Implant 22 Collar part 24 Fixture part 26 Flow chart of twice-implant method 28 Flow chart of once-implant method 30 Alveolar Bone 32 Periosteum 34 Connective tissue 36 Epithelial tissue 38 Suture 40 Contamination

Claims (15)

  1.  インプラント治療中に使用し、表面に殺菌機能を発現する殺菌層を備えたことを特徴とするインプラント用キャップ。
     
    An implant cap characterized by having a sterilization layer that is used during implant treatment and that exhibits a sterilization function on the surface.
  2.  請求項1に記載のインプラント用キャップにおいて、
     前記インプラント用キャップは、カバーキャップ又はヒーリングキャップであること、
    を特徴とするインプラント用キャップ。
     
    The implant cap according to claim 1,
    The implant cap is a cover cap or a healing cap;
    An implant cap characterized by the following.
  3.  請求項1に記載のインプラント用キャップにおいて、
     前記殺菌層は、光の照射により殺菌機能を発現する光触媒材の層であること、
    を特徴とするインプラント用キャップ。
     
    The implant cap according to claim 1,
    The sterilization layer is a layer of a photocatalyst material that exhibits a sterilization function by light irradiation,
    An implant cap characterized by the following.
  4.  請求項3に記載のインプラント用キャップにおいて、
     前記光触媒材は、光触媒コーティング剤であること、
    を特徴とするインプラント用キャップ。
     
    The implant cap according to claim 3, wherein
    The photocatalyst material is a photocatalyst coating agent;
    An implant cap characterized by the following.
  5.  請求項3に記載のインプラント用キャップにおいて、
     前記光触媒材は、酸化チタンであること、
    を特徴とするインプラント用キャップ。
     
    The implant cap according to claim 3, wherein
    The photocatalytic material is titanium oxide;
    An implant cap characterized by the following.
  6.  請求項5に記載のインプラント用キャップにおいて、
     前記酸化チタンに、窒素がドーピングされていること、
    を特徴とするインプラント用キャップ。
     
    The implant cap according to claim 5, wherein
    The titanium oxide is doped with nitrogen,
    An implant cap characterized by the following.
  7.  請求項5に記載のインプラント用キャップにおいて、
     インプラント用キャップに形成された酸化チタンの層にレーザ光、紫外線又はX線を照射して、光励起構造変化により酸化チタンのエネルギーギャプを狭くして、可視光での光触媒活性を可能としたこと、
    を特徴とするインプラント用キャップ。
     
    The implant cap according to claim 5, wherein
    The titanium oxide layer formed on the implant cap is irradiated with laser light, ultraviolet rays or X-rays, and the energy gap of the titanium oxide is narrowed by the photoexcitation structure change, enabling photocatalytic activity with visible light,
    An implant cap characterized by the following.
  8.  請求項5に記載のインプラント用キャップにおいて、
     前記酸化チタンの層は、前記インプラントに、酸化チタンコーティング剤を塗布し、加熱焼成して形成すること、
    を特徴とするインプラント用キャップ。
     
    The implant cap according to claim 5, wherein
    The titanium oxide layer is formed by applying a titanium oxide coating agent to the implant and baking it.
    An implant cap characterized by the following.
  9.  請求項5に記載のインプラント用キャップは、
     インプラントに装着する直前に、酸化チタンの電子を励起させる波長以下の光が照射されること、
    を特徴とするインプラント用キャップ。
     
    The implant cap according to claim 5,
    Immediately before mounting on the implant, irradiation with light of a wavelength that excites the electrons of titanium oxide,
    An implant cap characterized by the following.
  10.  請求項9に記載のインプラント用キャップは、
     インプラントに装着する直前に照射される光は、ガンマ線、X線又は紫外線であること、
    を特徴とするインプラント用キャップ。
     
    The implant cap according to claim 9,
    The light irradiated immediately before mounting on the implant is gamma rays, X-rays or ultraviolet rays,
    An implant cap characterized by the following.
  11.  請求項6又は7に記載のインプラント用キャップは、
     インプラントに装着する直前に照射される光は、自然光又は照明灯の光であること、
    を特徴とするインプラント用キャップ。
     
    The implant cap according to claim 6 or 7,
    The light emitted immediately before mounting on the implant is natural light or light of an illumination lamp,
    An implant cap characterized by the following.
  12.  請求項5に記載のインプラント用キャップは、
     インプラントに装着する直前に、水中で超音波が照射されること、
    を特徴とするインプラント用キャップ。
     
    The implant cap according to claim 5,
    Ultrasonic irradiation in water immediately before mounting on the implant,
    An implant cap characterized by the following.
  13.  請求項1に記載のインプラント用キャップにおいて、
     前記殺菌層は、無光触媒材の層であること、
    を特徴とするインプラント用キャップ。
     
    The implant cap according to claim 1,
    The sterilizing layer is a layer of a non-photocatalytic material;
    An implant cap characterized by the following.
  14.  請求項12に記載のインプラント用キャップにおいて、
     前記無光触媒材はリン酸チタニア化合物であること、
    を特徴とするインプラント用キャップ。
     
    The implant cap according to claim 12, wherein
    The non-photocatalytic material is a titania phosphate compound;
    An implant cap characterized by the following.
  15.  請求項1に記載のインプラント用キャップにおいて、
     前記殺菌層は、CT触媒材の層であること、
    を特徴とするインプラント用キャップ。
     
     
    The implant cap according to claim 1,
    The sterilizing layer is a layer of CT catalyst material;
    An implant cap characterized by the following.

PCT/JP2013/067509 2012-07-05 2013-06-26 Implant caps with sterilizing function WO2014007123A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012151449A JP2014012105A (en) 2012-07-05 2012-07-05 Implant cap provided with sterilizing function
JP2012-151449 2012-07-05

Publications (1)

Publication Number Publication Date
WO2014007123A1 true WO2014007123A1 (en) 2014-01-09

Family

ID=49881880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067509 WO2014007123A1 (en) 2012-07-05 2013-06-26 Implant caps with sterilizing function

Country Status (2)

Country Link
JP (1) JP2014012105A (en)
WO (1) WO2014007123A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5553293B1 (en) * 2014-01-21 2014-07-16 優一郎 河原 Dental implant
CN108309478A (en) * 2018-02-12 2018-07-24 北京大学口腔医学院 A kind of light-emitting oral implant
CN109431636A (en) * 2018-12-21 2019-03-08 刘向臻 A kind of dental implant device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002001121A (en) * 2000-06-23 2002-01-08 Fuairatsuku Internatl Kk Charge transfer type catalyst, oxidation reduction functional material using the catalyst and material containing charge transfer type catalyst
JP2007098054A (en) * 2005-10-07 2007-04-19 Rihei Kamatani Dental implant and abutment for dental implant
JP2008023337A (en) * 2006-07-17 2008-02-07 Heraeus Kulzer Gmbh Dental implant system material having coating
JP2008080102A (en) * 2006-08-29 2008-04-10 Nagasaki Univ Implant
JP2009539532A (en) * 2006-06-12 2009-11-19 アクセンタス ピーエルシー Metal implant
JP2010125067A (en) * 2008-11-27 2010-06-10 Fujitsu Ltd Oral instrument and method of washing the oral instrument

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002001121A (en) * 2000-06-23 2002-01-08 Fuairatsuku Internatl Kk Charge transfer type catalyst, oxidation reduction functional material using the catalyst and material containing charge transfer type catalyst
JP2007098054A (en) * 2005-10-07 2007-04-19 Rihei Kamatani Dental implant and abutment for dental implant
JP2009539532A (en) * 2006-06-12 2009-11-19 アクセンタス ピーエルシー Metal implant
JP2008023337A (en) * 2006-07-17 2008-02-07 Heraeus Kulzer Gmbh Dental implant system material having coating
JP2008080102A (en) * 2006-08-29 2008-04-10 Nagasaki Univ Implant
JP2010125067A (en) * 2008-11-27 2010-06-10 Fujitsu Ltd Oral instrument and method of washing the oral instrument

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5553293B1 (en) * 2014-01-21 2014-07-16 優一郎 河原 Dental implant
CN108309478A (en) * 2018-02-12 2018-07-24 北京大学口腔医学院 A kind of light-emitting oral implant
WO2019153577A1 (en) * 2018-02-12 2019-08-15 北京大学口腔医学院 Light-emitting dental implant
CN109431636A (en) * 2018-12-21 2019-03-08 刘向臻 A kind of dental implant device

Also Published As

Publication number Publication date
JP2014012105A (en) 2014-01-23

Similar Documents

Publication Publication Date Title
Abraham Suppl 1: A brief historical perspective on dental implants, their surface coatings and treatments
Wang et al. Ridge preservation after tooth extraction
RU180562U1 (en) PLATE DENTAL IMPLANT
KR101445819B1 (en) UV irradiation system for the recovery of surface activity of aged dental implants
Zhao et al. Preservation and augmentation of molar extraction sites affected by severe bone defect due to advanced periodontitis: A prospective clinical trial
EP2160999B1 (en) One-part implant with a hydroxylated soft tissue contact surface
JP2008080102A (en) Implant
WO2014007123A1 (en) Implant caps with sterilizing function
JP3203603U (en) UV irradiation equipment
Zablotsky The surgical management of osseous defects associated with endosteal hydroxyapatite-coated and titanium dental implants
KR101477066B1 (en) Dental implant including antibiotic coating layer and surface treatment method thereof
JP6026517B2 (en) Method for regenerating alveolar bone and method for producing calcium-containing fine particles used for regenerating alveolar bone
JP2014204867A (en) Biological implant and production method thereof
JP2013221023A (en) Functional implant exhibiting photocatalytic effect
WO2010050401A1 (en) Antibacterial product and method for producing same
WO2019153577A1 (en) Light-emitting dental implant
Trombelli et al. Sub-periosteal peri-implant augmented layer technique for horizontal bone augmentation at implant placement
JP3178956U (en) Dental implant with bactericidal function in the collar
JP2014193249A (en) Living body implant
KR101296591B1 (en) Post treatment device for ha coating layer of dental implant surface
US20100331978A1 (en) Antipathogenic Biomedical Implants, Methods and Kits Employing Photocatalytically Active Material
JP7436966B2 (en) 2-piece dental implant
JP6606188B2 (en) Implant for covering maxillary bone defect and method for manufacturing the implant
Roncati et al. Nonsurgical periodontal management of iatrogenic peri-implantitis: A clinical report
JPH0532516A (en) Sterilizable curing composition for dental use

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13812536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13812536

Country of ref document: EP

Kind code of ref document: A1