WO2014006913A1 - Benzodiazaborole compound, and material for organic electroluminescent element and organic electroluminescent element each utilizing same - Google Patents

Benzodiazaborole compound, and material for organic electroluminescent element and organic electroluminescent element each utilizing same Download PDF

Info

Publication number
WO2014006913A1
WO2014006913A1 PCT/JP2013/004167 JP2013004167W WO2014006913A1 WO 2014006913 A1 WO2014006913 A1 WO 2014006913A1 JP 2013004167 W JP2013004167 W JP 2013004167W WO 2014006913 A1 WO2014006913 A1 WO 2014006913A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
ring
carbon atoms
Prior art date
Application number
PCT/JP2013/004167
Other languages
French (fr)
Japanese (ja)
Inventor
真樹 沼田
俊裕 岩隈
圭 吉田
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Publication of WO2014006913A1 publication Critical patent/WO2014006913A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/658Organoboranes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1048Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1055Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with other heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • C09K2211/107Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms with other heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/188Metal complexes of other metals not provided for in one of the previous groups
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to a novel benzodiazaborol compound, an organic electroluminescence element material using the same, and an organic electroluminescence element.
  • an organic EL device if the compound constituting the organic compound layer has poor electrochemical stability, particularly oxidation stability, these compounds decompose in a short time when a charge is applied from the anode and the cathode, and the device The lifetime is short.
  • the voltage is reduced when used as a material in a layer where holes are injected or transported, with excellent electrochemical oxidation stability and a shallow ionization potential. There are several things that can be expected.
  • Patent Documents 1 and 2 various organic compounds have been studied as materials for organic EL devices, and compounds having a 1,3,2-diazaborol ring are disclosed as one of them (Patent Documents 1 and 2).
  • Non-Patent Documents 1 to 5 there are research reports on the optoelectronic properties of compounds having a 1,3,2-benzodiazaborol ring (Non-Patent Documents 1 to 5). Non-Patent Documents 4 and 5 also examine the electrochemical properties.
  • Patent Documents 1 and 2 disclose the use of a benzodiazaborol compound as a material for an organic EL device, but the compounds disclosed therein do not have a substituent on the benzene ring.
  • Patent Document 2 discloses the following compound having a 6-membered ring containing two nitrogen atoms and one boron atom, but these compounds have a triplet energy smaller than that of a 5-membered diazaborol.
  • Non-patent Documents 4 and 5 are examining the electrochemical (oxidation) stability of these compounds in addition to the optoelectronic properties, but pointed out that all of these compounds are electrochemically unstable. ing.
  • any of the compounds having a 1,3,2-benzodiazaborol ring reported so far has poor electrochemical stability and is insufficient as an organic material for an organic EL device.
  • An object of the present invention is to provide a benzodiazaborol compound which is excellent in electrochemical stability, particularly oxidation stability, and is suitable as a material for an organic compound layer of an organic EL device.
  • the present inventor has advanced research on compounds having a 1,3,2-benzodiazaborol ring, and the benzene ring constituting the benzodiazaborol skeleton has sp 2 hybrid orbital properties.
  • a benzodiazaborol compound having a specific substituent bonded by an atom or having a condensed ring and having an aromatic ring group or a heteroaromatic ring group at two nitrogen atoms of the diazaborol ring has been found.
  • the 1,3,2-benzodiazaborol ring has a specific substituent or condensed ring at a predetermined position in this manner, electrochemical oxidation stability is improved. It has been found that by using such a compound in an organic compound layer of an organic EL device, the device life can be improved.
  • the inventor has a skeleton in which two benzodiazaborol skeletons are condensed via a boron atom and a nitrogen atom, and an aromatic ring group or a heterocycle is added to two nitrogen atoms that are not used for the condensation of a diazaborol ring. A novel benzodiazaborol compound having an aromatic ring group has been found.
  • a benzodiazaborol compound represented by formula (1) (Where A 1 and A 2 are each independently A substituted or unsubstituted aromatic ring group having 6 to 30 ring carbon atoms, A substituted or unsubstituted heteroaromatic ring group having 5 to 30 ring atoms, A substituted or unsubstituted alkyl group having 3 to 20 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms, A substituted or unsubstituted silyl group, A substituted or unsubstituted phosphino group, A substituted or unsubstituted phosphine oxide group, A substituted or unsubstituted sulfoxide group, A substituted or unsubstituted sulfone group, or a single bond, A 3 is, A
  • a 1 , A 2 , and A 3 are not bonded to each other to form the following ring in which three diazaborol rings are condensed.
  • Ring Q fused with the diazaborol ring is A substituted or unsubstituted benzene ring, A substituted or unsubstituted benzene ring in which at least one substituted or unsubstituted condensed aromatic ring having 10 to 30 carbon atoms or a substituted or unsubstituted heterocyclic aromatic ring having 5 to 24 ring atoms is condensed
  • n is an integer from 1 to 6, When n is 1, L does not exist, when n is 2 to 6, L is a linking group that bridges between any of Q, A 1 , A 2 , and A 3 , or a single bond; When n is 2 to 6, n, Q, A 1 , A 2 , and A 3 may be the same as or different from each other.
  • the benzodiazaborol compound excellent in electrochemical stability, especially oxidation stability can be provided.
  • the material for organic EL elements excellent in electrochemical stability, especially oxidation stability can be provided.
  • ADVANTAGE OF THE INVENTION According to this invention, the organic EL element with improved element lifetime can be provided.
  • the benzodiazaborol compound of the present invention is represented by the formula (1).
  • a 1 and A 2 are each independently A substituted or unsubstituted aromatic ring group having 6 to 30 ring carbon atoms, A substituted or unsubstituted heteroaromatic ring group having 5 to 30 ring atoms, A substituted or unsubstituted alkyl group having 3 to 20 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms, A substituted or unsubstituted silyl group, A substituted or unsubstituted phosphino group, A substituted or unsubstituted phosphine oxide group, A substituted or unsubstituted sulfoxide group, It is a substituted or unsubstituted sulfone group, or a single bond.
  • a 3 is, A substituted or unsubstituted aromatic ring group having 6 to 30 ring carbon atoms, A substituted or unsubstituted heteroaromatic ring group having 5 to 30 ring atoms, A substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms, A substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, A substituted or unsubstituted cycloalkoxy group having 3 to 20 ring carbon atoms, A substituted or unsubstituted aryloxy group having 6 to 30 ring carbon atoms, A substituted or unsubstituted amino group, A substituted or unsubstituted alkyl sulfide group having 1 to 20 carbon atoms, A substituted or unsubstituted arylsulfide group having 6 to 30 ring carbon atoms,
  • a 1 and A 3 , or A 2 and A 3 may be bonded to each other to form a 5- to 7-membered ring including a nitrogen atom and a boron atom of the benzodiazaborol skeleton.
  • a 1 , A 2 , and A 3 are not bonded to each other to form the following ring in which three diazaborol rings are condensed.
  • Ring Q fused with the diazaborol ring is A substituted or unsubstituted benzene ring, A substituted or unsubstituted benzene ring in which at least one substituted or unsubstituted condensed aromatic ring having 10 to 30 carbon atoms or a substituted or unsubstituted heterocyclic aromatic ring having 5 to 24 ring atoms is condensed And n is an integer of 1 to 6, preferably 1 to 3.
  • n When n is 1, L does not exist, when n is 2 to 6, L is a linking group that bridges between any of Q, A 1 , A 2 , and A 3 , or a single bond; When n is 2 to 6, n, Q, A 1 , A 2 , and A 3 may be the same as or different from each other.
  • the benzodiazaborol compound of the present invention is preferably represented by the following formula (I-1).
  • a 1 and A 2 are each independently A substituted or unsubstituted aromatic ring group having 6 to 30 ring carbon atoms, A substituted or unsubstituted heteroaromatic ring group having 5 to 30 ring atoms, A substituted or unsubstituted alkyl group having 3 to 20 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms, A substituted or unsubstituted silyl group, A substituted or unsubstituted phosphino group, A substituted or unsubstituted phosphine oxide group, A substituted or unsubstituted sulfoxide group, A substituted or unsubstituted sulfone group, or a single bond,
  • a 3 is, A substituted or unsubstituted aromatic ring group having 6 to 30 ring carbon atoms, A substituted or unsubstituted heteroaromatic ring group having 5 to 30 ring atoms, A substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms, A substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, A substituted or unsubstituted cycloalkoxy group having 3 to 20 ring carbon atoms, A substituted or unsubstituted aryloxy group having 6 to 30 ring carbon atoms, A substituted or unsubstituted amino group, A substituted or unsubstituted alkyl sulfide group having 1 to 20 carbon atoms, A substituted or unsubstituted arylsulfide group having 6 to 30 ring carbon atoms,
  • a 1 and A 3 , or A 2 and A 3 may be bonded to each other to form a 5- to 7-membered ring including a nitrogen atom and a boron atom of the benzodiazaborol skeleton.
  • a 1 and A 3 , or A 2 and A 3 are not bonded to each other to form the following 5-membered ring.
  • a 1 , A 2 , and A 3 are each independently a substituted or unsubstituted aromatic ring group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted heteroaromatic group having 5 to 30 ring atoms.
  • the ring Q condensed with the diazaborol ring has at least one substituent R, and may further have an optional substituent, a substituted or unsubstituted aromatic ring, or a substituted or unsubstituted ring It is a benzene ring in which at least one heteroaromatic ring is condensed and may further have an arbitrary substituent.
  • Substituent R is A substituted or unsubstituted aromatic ring group having 6 to 30 ring carbon atoms, A substituted or unsubstituted heteroaromatic ring group having 5 to 30 ring atoms, a substituted or unsubstituted unsaturated aliphatic hydrocarbon group having 2 to 20 carbon atoms bonded by an atom having sp 2 hybrid orbital property, a substituted or unsubstituted ring-formed unsaturated aliphatic hydrocarbon ring group having 3 to 20 carbon atoms bonded by an atom having sp 2 hybrid orbital property, A substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, A substituted or unsubstituted cycloalkoxy group having 3 to 20 ring carbon atoms, A substituted or unsubstituted aryloxy group having 6 to 30 ring carbon atoms, A substituted or unsubstituted amino group, Substituted or unsubsti
  • Examples of the “atom having sp 2 hybrid orbital” include, for example, a carbon atom having a trivalent bonding state in an aromatic ring, a carbon atom having a trivalent bonding state in a heteroaromatic ring, or a nitrogen atom.
  • a carbon atom having a carbon atom, a carbon atom having a trivalent bonding state in a heteroaromatic ring, or a nitrogen atom is preferable.
  • Substituent R is a substituted or unsubstituted phenyl group, a substituted or unsubstituted o-biphenyl group, a substituted or unsubstituted m-biphenyl group, a substituted or unsubstituted p-biphenyl group, a substituted or unsubstituted m- Terphenyl group, substituted or unsubstituted p-terphenyl group, substituted or unsubstituted fluorenyl group, substituted or unsubstituted phenanthryl group, substituted or unsubstituted triphenylenine group, substituted or unsubstituted dibenzofuranyl group , A substituted or unsubstituted dibenzothiophenyl group, or a substituted or unsubstituted carbazolyl group is preferable.
  • the condensed ring containing the benzene ring is: A condensed aromatic hydrocarbon ring having 9 to 30 ring carbon atoms formed by condensation of 2 or more, preferably 3 or more, 5- to 7-membered hydrocarbon rings, or 1 or more, preferably 2 or more A condensed heteroaromatic ring having 9 to 30 ring atoms formed by condensation of a 5- to 7-membered hydrocarbon ring and one or more 5- to 7-membered heterocyclic rings, And More preferably, it is substituted or unsubstituted phenanthrene, substituted or unsubstituted triphenylene, substituted or unsubstituted fluorene, substituted or unsubstituted dibenzofuran, substituted or unsubstituted dibenzothiophene, or substituted
  • n is an integer of 1 to 6, preferably an integer of 1 to 4, and more preferably 1 or 2.
  • L does not exist
  • L is a linking group that bridges between Q, A 1 , A 2 , and A 3 , or a single bond.
  • Q, A 1 , A 2 , and A 3 may be the same as or different from each other.
  • L is a linking group
  • L is a linking group
  • examples of the case where L is a linking group include an ether group, a thioether group, a substituted or unsubstituted aromatic ring group having 6 to 30 ring carbon atoms, a substituted or unsubstituted ring atom number of 6 to 30 Heteroaromatic ring groups, and substituted or unsubstituted amino groups, ether groups, substituted or unsubstituted benzene rings, substituted or unsubstituted dibenzofuran rings, dibenzothiophene rings, carbazole rings, substituted or unsubstituted And a n-valent group derived from a substituted or unsubstituted biphenyl.
  • the benzodiazaborol compound represented by the formula (I-1) preferably has a basic skeleton selected from the group consisting of the following structural formulas (I-2) to (I-14).
  • Q is preferably a ring that is condensed with the diazaborol ring in the following structural formulas (I-2) to (I-14).
  • the “basic skeleton” means that the benzene ring of the benzodiazaborol skeleton, the ring condensed to the benzene ring, and the substituent of the benzene ring may have a substituent.
  • a 1 to A 3 , L, and n are as defined in the formula (I-1).
  • X is each independently an oxygen atom, a nitrogen atom, or a sulfur atom.
  • the “basic skeleton” means that the benzene ring condensed to the 6-membered ring formed including the nitrogen atom and boron atom of the benzodiazaborol skeleton may have a substituent. .
  • a 1 , A 2 , Q, L, and n are as defined in the formula (I-1).
  • a substituted or unsubstituted aromatic ring group having 6 to 30 ring carbon atoms A substituted or unsubstituted heteroaromatic ring group having 5 to 30 ring atoms, A substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms, A substituted or unsubstituted unsaturated aliphatic hydrocarbon group having 2 to 20 carbon atoms, A substituted or unsubstituted cyclic aliphatic hydrocarbon group having 3 to 20 carbon atoms, A substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, A substituted or unsubstituted cycloalkoxy group having 3 to 20 ring carbon atoms, A substituted or unsubstituted or unsubstituted
  • the aromatic ring group includes a monocyclic aromatic hydrocarbon ring group, a condensed aromatic hydrocarbon ring group in which a plurality of hydrocarbon rings are condensed, and a group in which a plurality of hydrocarbon rings are connected by a single bond.
  • the heteroaromatic ring group includes a monocyclic heteroaromatic ring group, a heterofused aromatic ring group in which a plurality of heteroaromatic rings are condensed, and an aromatic hydrocarbon ring and a heteroaromatic ring are condensed.
  • Ring-forming carbon means a carbon atom constituting a saturated hydrocarbon ring, an unsaturated hydrocarbon ring or an aromatic ring
  • ring-forming atom means an atom constituting a heteroaromatic ring
  • Examples of the aromatic ring group having 6 to 30 ring carbon atoms include phenyl group, tolyl group, xylyl group, mesityl group, o-biphenyl group, m-biphenyl group, p-biphenyl group, o-terphenyl group, m- Examples thereof include a terphenyl group, a p-terphenyl group, a naphthyl group, a phenanthryl group, a fluorenyl group, an anthryl group, a phenalenyl group, a fluoranthenyl group, a triphenylenyl group, a naphthacenyl group, a chrycenyl group, and a pyrenyl group.
  • phenyl, o-biphenyl, m-biphenyl, p-biphenyl, m-terphenyl, p-terphenyl, naphthyl, phenanthryl, and triphenylenyl are preferred.
  • Heteroaromatic ring groups having 5 to 30 ring atoms include pyrrolyl, pyrazinyl, pyridinyl, pyrimidinyl, pyridazinyl, triazinyl, indolyl, isoindolyl, quinolyl, isoquinolyl, quinoxalinyl, carbazolyl Group, azacarbazolyl group, phenanthridinyl group, acridinyl group, phenanthrolinyl group, pyrrolidinyl group, piperidinyl group, piperazinyl group, triazolyl group, imidazolyl group, benzoimidazolyl group, furyl group, benzofuranyl group, isobenzofuranyl group, Dibenzofuranyl group, dioxanyl group, oxazolyl group, pyranyl group, benzo [c] dibenzofuranyl group dibenzothiophenyl group, thi
  • alkyl group having 1 to 20 carbon atoms examples include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, n-pentyl group, and n-hexyl group.
  • the alkyl group having 3 to 20 carbon atoms is one obtained by removing the methyl group and the ethyl group from the examples of the alkyl group having 1 to 20 carbon atoms.
  • Examples of the cycloalkyl group having 3 to 20 ring carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a norbornyl group, an adamantyl group, and the like. Are preferred.
  • alkoxy group having 1 to 20 carbon atoms examples include methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group and the like, and those having 3 or more carbon atoms are linear, cyclic or branched Among them, those having 1 to 6 carbon atoms are preferable.
  • Examples of the cycloalkoxy group having 3 to 20 carbon atoms include a cyclopropyloxy group, a cyclobutyloxy group, a cyclopentyloxy group, a cyclohexyloxy group, etc. Among them, those having 5 or 6 ring carbon atoms are preferable.
  • Examples of the aryloxy group having 6 to 30 ring carbon atoms include a phenoxy group and a biphenyloxy group, and a phenoxy group is preferable.
  • Examples of the unsaturated aliphatic hydrocarbon group having 2 to 20 carbon atoms include ethylene group, propylene group, 1-butene group, 2-butene group, 1,3-butadiene group, 2-methylpropene group, 1-pentene group, Examples include 2-pentene group, 1-hexene group, 2-hexene group, 3-hexene group and the like.
  • R when it is the substituent R, it is an unsaturated aliphatic hydrocarbon group bonded to the benzene ring of the benzodiazaborol skeleton by an atom having sp 2 hybrid orbital among the above groups.
  • ethylene group 1-propen-1-yl group, 1-propen-2-yl group, 1-buten-1-yl group, 1-buten-2-yl group, 2-buten-2- Yl group, 1,3-butadiene-1-yl group, 1,3-butadiene-2-yl group, 2-methylpropen-1-yl group, 1-penten-1-yl group, 1-penten-2- Yl, 2-penten-2-yl, 2-penten-3-yl, 1-hexen-1-yl, 1-hexen-2-yl, 2-hexen-2-yl, 2- Examples include a hexen-3-yl group, a 3-hexen-3-yl group, and a 3-hexen-4-yl group.
  • Examples of the unsaturated aliphatic hydrocarbon ring group having 3 to 20 ring carbon atoms include a cyclopropene group, a cyclobutene group, a cyclopentene group, a cyclohexene group, a cycloheptene group, and a cyclooctene group.
  • R when it is the substituent R, it is an unsaturated aliphatic hydrocarbon ring group bonded to the benzene ring of the benzodiazaborol skeleton by an atom having sp 2 hybrid orbital among the above groups.
  • a cyclopropen-1-yl group a cyclobuten-1-yl group, a cyclopenten-1-yl group, a cyclohexen-1-yl group, a cyclohepten-1-yl group, a cycloocten-1-yl group, etc.
  • a cyclopropen-1-yl group a cyclobuten-1-yl group, a cyclopenten-1-yl group, a cyclohexen-1-yl group, a cyclohepten-1-yl group, a cycloocten-1-yl group, etc.
  • the alkyl sulfide group having 1 to 20 carbon atoms is represented by —SX, and X is the above alkyl group having 1 to 20 carbon atoms.
  • An aryl sulfide group having 6 to 30 ring carbon atoms is represented by —SY, and Y is an aromatic ring group having 6 to 30 ring carbon atoms.
  • “Unsubstituted” in “substituted or unsubstituted...” Means that a hydrogen atom is substituted.
  • a hydrogen atom is an isotope having a different neutron number, that is, light hydrogen. (Protium), deuterium, tritium.
  • the compound of the present invention represented by the formula (I-1) can be synthesized by the method described in Examples or a method known to those skilled in the art.
  • the compound of the present invention represented by the formula (I-1) is excellent in electrochemical oxidation stability as compared with the conventional benzodiazaborol compound. This is because the compound of the present invention has a specific substituent or condensed ring bonded to the benzene ring constituting the benzodiazaborol skeleton with an atom having sp 2 hybrid orbital, and two nitrogen atoms of the diazabolol ring This is because it has an aromatic ring group or a heteroaromatic ring group.
  • the electrochemical oxidative stability of the compound can be evaluated by the cyclic voltammetric measurement described in the examples. In addition to the method described in the Examples, those skilled in the art can carry out the cyclic voltammetry by appropriately changing the method based on known knowledge according to the properties of the compound.
  • the compound of the present invention not only improves the electrochemical oxidation stability but also reduces the ionization potential, so that it can be used as a material in a layer into which holes of an organic EL element are injected or transported. Further lower voltage can be expected.
  • the triplet energy of the 1,3,2-diazaborol ring itself is a wide gap
  • the compound having a substituent having sp 2 hybrid orbital property at a predetermined position (I-1) Even in the case of having the structure represented by (I-16), even a person skilled in the art cannot predict that the triplet energy is maintained in a wide gap.
  • the benzodiazaborol compound of the present invention is represented by the following formula (II-1).
  • a 11 and A 12 are each independently A substituted or unsubstituted aromatic ring group having 6 to 30 ring carbon atoms, A substituted or unsubstituted heteroaromatic ring group having 5 to 30 ring atoms, A substituted or unsubstituted alkyl group having 3 to 20 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms, A substituted or unsubstituted silyl group, A substituted or unsubstituted phosphino group, A substituted or unsubstituted phosphine oxide group, A substituted or unsubstituted sulfoxide group, or a substituted or unsubstituted sulfone group,
  • a 11 and A 12 may be bonded to each other to form a 5- to 7-membered ring including a nitrogen atom and a boron atom of the benzodiazaborol skeleton. However, A 11 and A 12 are not bonded to each other to form the following 5-membered ring.
  • Rings Q 1 and Q 2 fused with the diazaborol ring are each independently A substituted or unsubstituted benzene ring, A substituted or unsubstituted benzene ring in which at least one substituted or unsubstituted condensed aromatic ring having 10 to 30 carbon atoms or a substituted or unsubstituted heterocyclic aromatic ring having 5 to 24 ring atoms is condensed It is.
  • n 2 is an integer of 1 to 6, preferably 1 to 3. When n 2 is 1, L 2 is not present, When n 2 is 2 to 6, L 2 is a linking group that bridges between any of Q 1 , Q 2 , A 11 , and A 12 , or a single bond, When n 2 is 2 to 6, n 2 Q 1 , Q 2 , A 11 , and A 12 may be the same as or different from each other.
  • L 2 is a linking group
  • L 2 is a linking group
  • examples of the case where L 2 is a linking group include, for example, an ether group, a thioether group, a substituted or unsubstituted aromatic ring group having 6 to 30 ring carbon atoms, a substituted or unsubstituted ring atom number of 6 to 30 heteroaromatic ring groups, and substituted or unsubstituted amino groups, ether groups, substituted or unsubstituted benzene rings, substituted or unsubstituted dibenzofuran rings, dibenzothiophene rings, carbazole rings, substituted or unsubstituted substituted fluorene ring, and a substituted or n 2 divalent group derived from an unsubstituted biphenyl is preferred.
  • Q 1 and Q 2 are fused with at least one substituted or unsubstituted condensed aromatic ring having 10 to 30 ring carbon atoms, or substituted or unsubstituted heteroaromatic ring having 5 to 24 ring atoms.
  • condensed ring containing the benzene ring in the case of a substituted or unsubstituted benzene ring include, for example, substituted or unsubstituted phenanthrene, substituted or unsubstituted triphenylene, substituted or unsubstituted fluorene, substituted or unsubstituted Examples thereof include substituted dibenzofuran, substituted or unsubstituted dibenzothiophene, or substituted or unsubstituted carbazole.
  • Q 1 and Q 2 are preferably substituted or unsubstituted benzene rings.
  • the benzodiazaborol compound represented by the above formula (II-1) is preferably a compound represented by the following formula (II-2).
  • R 1 to R 8 are each independently Hydrogen atom, A substituted or unsubstituted aromatic ring group having 6 to 30 ring carbon atoms, A substituted or unsubstituted heteroaromatic ring group having 5 to 30 ring atoms, a substituted or unsubstituted unsaturated aliphatic hydrocarbon group having 2 to 20 carbon atoms bonded by an atom having sp 2 hybrid orbital property, a substituted or unsubstituted ring-formed unsaturated aliphatic hydrocarbon ring group having 3 to 20 carbon atoms bonded by an atom having sp 2 hybrid orbital property, A substituted or unsubstituted alkyl group having 3 to 20 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms, A substituted or unsubstituted silyl group, A substituted or unsubstituted phosphino group, A substituted or unsubstituted
  • atoms having sp 2 hybrid orbital properties for example, carbon atoms having a trivalent bonding states in the aromatic ring, carbon atom or a nitrogen atom having a trivalent bonding states in the heteroaromatic ring , Carbon atom of ethylene group, oxygen atom of ether group, nitrogen atom of amino group, boron atom of boryl group, phosphorus atom of phosphino group, sulfur atom of sulfide group, trivalent bonding state in aromatic ring A carbon atom having a carbon atom, a carbon atom having a trivalent bonding state in a heteroaromatic ring, or a nitrogen atom is preferable.
  • a substituted or unsubstituted aromatic ring group having 6 to 30 ring carbon atoms A substituted or unsubstituted heteroaromatic ring group having 5 to 30 ring atoms, A substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms, A substituted or unsubstituted unsaturated aliphatic hydrocarbon group having 2 to 20 carbon atoms, A substituted or unsubstituted cyclic aliphatic hydrocarbon group having 3 to 20 carbon atoms, A substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, A substituted or unsubstituted cycloalkoxy group having 3 to 20 ring carbon atoms, A substituted or unsubstituted aryloxy group having 6 to 30 ring carbon atoms, A substituted or
  • a substituted or unsubstituted aromatic ring group having 6 to 30 ring carbon atoms A substituted or unsubstituted heteroaromatic ring group having 5 to 30 ring atoms, A substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms, A substituted or unsubstituted unsaturated aliphatic hydrocarbon group having 2 to 20 carbon atoms, A substituted or unsubstituted cyclic aliphatic hydrocarbon group having 3 to 20 carbon atoms, A substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, A substituted or unsubstituted cycloalkoxy group having 3 to 20 ring carbon atoms, A substituted or unsubstituted or unsubstituted
  • the aromatic ring group includes a monocyclic aromatic hydrocarbon ring group, a condensed aromatic hydrocarbon ring group in which a plurality of hydrocarbon rings are condensed, and a group in which a plurality of hydrocarbon rings are connected by a single bond.
  • the aromatic heterocyclic group includes a monocyclic heteroaromatic ring group, a hetero-fused aromatic ring group in which a plurality of heteroaromatic rings are condensed, and an aromatic hydrocarbon ring and a heteroaromatic ring are condensed.
  • Ring-forming carbon means a carbon atom constituting a saturated hydrocarbon ring, an unsaturated hydrocarbon ring or an aromatic ring
  • ring-forming atom means an atom constituting a heteroaromatic ring
  • Examples of the aromatic ring group having 6 to 30 ring carbon atoms include phenyl group, tolyl group, xylyl group, mesityl group, o-biphenyl group, m-biphenyl group, p-biphenyl group, o-terphenyl group, m- Examples thereof include a terphenyl group, a p-terphenyl group, a naphthyl group, a phenanthryl group, a fluorenyl group, an anthryl group, a phenalenyl group, a fluoranthenyl group, a triphenylenyl group, a naphthacenyl group, a chrycenyl group, and a pyrenyl group.
  • phenyl, o-biphenyl, m-biphenyl, p-biphenyl, m-terphenyl, p-terphenyl, naphthyl, phenanthryl, and triphenylenyl are preferred.
  • Heteroaromatic ring groups having 5 to 30 ring atoms include pyrrolyl, pyrazinyl, pyridinyl, pyrimidinyl, pyridazinyl, triazinyl, indolyl, isoindolyl, quinolyl, isoquinolyl, quinoxalinyl, carbazolyl Group, azacarbazolyl group, phenanthridinyl group, acridinyl group, phenanthrolinyl group, pyrrolidinyl group, piperidinyl group, piperazinyl group, triazolyl group, imidazolyl group, benzoimidazolyl group, furyl group, benzofuranyl group, isobenzofuranyl group, Dibenzofuranyl, dioxanyl, oxazolyl, pyranyl, benzo [c] dibenzofuranyl, dibenzothiophenyl, thienyl,
  • alkyl group having 1 to 20 carbon atoms examples include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, n-pentyl group, and n-hexyl group.
  • the alkyl group having 3 to 20 carbon atoms is one obtained by removing the methyl group and the ethyl group from the examples of the alkyl group having 1 to 20 carbon atoms.
  • Examples of the cycloalkyl group having 3 to 20 ring carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a norbornyl group, an adamantyl group, and the like. Are preferred.
  • alkoxy group having 1 to 20 carbon atoms examples include methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group and the like, and those having 3 or more carbon atoms are linear, cyclic or branched Among them, those having 1 to 6 carbon atoms are preferable.
  • Examples of the cycloalkoxy group having 3 to 20 carbon atoms include a cyclopropyloxy group, a cyclobutyloxy group, a cyclopentyloxy group, a cyclohexyloxy group, etc. Among them, those having 5 or 6 ring carbon atoms are preferable.
  • Examples of the aryloxy group having 6 to 30 ring carbon atoms include a phenoxy group and a biphenyloxy group, and a phenoxy group is preferable.
  • Examples of the unsaturated aliphatic hydrocarbon group having 2 to 20 carbon atoms include ethylene group, propylene group, 1-butene group, 2-butene group, 1,3-butadiene group, 2-methylpropene group, 1-pentene group, Examples include 2-pentene group, 1-hexene group, 2-hexene group, 3-hexene group and the like.
  • Examples of the unsaturated aliphatic hydrocarbon ring group having 3 to 20 ring carbon atoms include a cyclopropene group, a cyclobutene group, a cyclopentene group, a cyclohexene group, a cycloheptene group, and a cyclooctene group.
  • the alkyl sulfide group having 1 to 20 carbon atoms is represented by —SX, and X is the above alkyl group having 1 to 20 carbon atoms.
  • An aryl sulfide group having 6 to 30 ring carbon atoms is represented by —SY, and Y is an aromatic ring group having 6 to 30 ring carbon atoms.
  • a 11 and A 12 are each independently It is preferably a substituted or unsubstituted aromatic ring group having 6 to 30 ring carbon atoms or a substituted or unsubstituted heteroaromatic ring group having 5 to 30 ring atoms.
  • a 11 and A 12 are each independently A substituted or unsubstituted phenyl group, A substituted or unsubstituted biphenyl group, A substituted or unsubstituted terphenyl group, A substituted or unsubstituted fluorenyl group, A substituted or unsubstituted pyridinyl group, A substituted or unsubstituted pyrimidinyl group, A substituted or unsubstituted triazinyl group, A substituted or unsubstituted dibenzofuranyl group, A substituted or unsubstituted carbazolyl group, A substituted or unsubstituted dibenzothiophenyl group, A substituted or unsubstituted carbazolyl group, A substituted or unsubstituted azadibenzofuranyl group, A substituted or unsubstituted azadibenzothiophenyl group, A substituted or unsubstituted azacar
  • At least one of R 1 to R 8 is preferably a substituent bonded by an atom having sp 2 property that is not a hydrogen atom.
  • R 1 to R 8 are each independently A substituted or unsubstituted phenyl group, A substituted or unsubstituted biphenyl group, A substituted or unsubstituted terphenyl group, A substituted or unsubstituted fluorenyl group, A substituted or unsubstituted pyridinyl group, A substituted or unsubstituted pyrimidinyl group, A substituted or unsubstituted triazinyl group, A substituted or unsubstituted dibenzofuranyl group, A substituted or unsubstituted carbazolyl group, A substituted or unsubstituted dibenzothiophenyl group, A substituted or unsubstituted carbazolyl group, A substituted or unsubstituted azadibenzofuranyl group, A substituted or unsubstituted azadibenzothiophenyl group, A substituted or unsubstituted
  • “Unsubstituted” in “substituted or unsubstituted...” Means that a hydrogen atom is substituted.
  • a hydrogen atom is an isotope having a different neutron number, that is, light hydrogen. (Protium), deuterium, tritium.
  • Any substituents of Q 1 , Q 2 , A 11 , A 12 , and R 1 to R 8 may further have a substituent.
  • the compound of the present invention represented by the formula (II-1) can be synthesized by the method described in Examples or a method known to those skilled in the art.
  • the compound of the present invention represented by the formula (II-1) is excellent in electrochemical oxidative stability as compared with conventional benzodiazaborol compounds. This effect is obtained when each of the benzene rings constituting the two benzodiazaborol skeletons further has an aromatic ring group or a heteroaromatic ring group at the nitrogen atom of the two diazaborol rings condensed with the compound of the present invention. In particular, it is more prominent when it has a specific substituent or fused ring bonded by an atom having sp 2 hybrid orbital properties.
  • the compound of the present invention represented by the formula (II-1) not only improves the electrochemical oxidation stability, but also has a shallow ionization potential, so that holes of the organic EL element are injected or transported. When used as a material in a layer, a further lower voltage can be expected. Furthermore, although it is known that the triplet energy of the 1,3,2-diazaborol ring itself is a wide gap, it has a skeleton in which two benzodiazaborol skeletons are condensed via a boron atom and a nitrogen atom.
  • the triplet energy has a wide gap even when it has a structure represented by the formula (II-1) having an aromatic ring group or a heteroaromatic ring group at two nitrogen atoms that are not used for the condensation of the diazaborol ring. It will not be anticipated by those skilled in the art that it will be maintained.
  • the material for an organic electroluminescence element (organic EL element) of the present invention includes the compound of the present invention represented by the above formula (1).
  • the material for an organic EL device of the present invention can be suitably used as a material for an organic thin film layer constituting the organic EL device.
  • the organic EL device of the present invention has one or more organic thin film layers including a light emitting layer between an anode and a cathode. And at least 1 layer of an organic thin film layer contains the organic EL element material of this invention.
  • the organic EL device of the present invention has an organic thin film layer containing a light emitting layer between a cathode and an anode, and at least one of the organic thin film layers contains the above-described organic EL device material of the present invention.
  • the life of the organic EL element can be extended.
  • the organic thin film layer containing the organic EL device material of the present invention include a hole transport layer, a light emitting layer, an electron transport layer, a space layer, and a barrier layer, but are not limited thereto. Absent.
  • the material for an organic EL device of the present invention is preferably contained in the light emitting layer, and particularly preferably used as a host material for the light emitting layer. Further, the light emitting layer preferably contains a fluorescent light emitting material or a phosphorescent light emitting material, and particularly preferably contains a phosphorescent light emitting material. Furthermore, the organic EL device material of the present invention is also suitable as an organic layer used in a hole transport zone, It is also suitable as a material added to the hole transport zone.
  • the organic EL element of the present invention may be a fluorescent or phosphorescent monochromatic light emitting element, a fluorescent / phosphorescent hybrid white light emitting element, or a simple type having a single light emitting unit.
  • a tandem type having a plurality of light emitting units may be used, and among them, a phosphorescent type is preferable.
  • the “light emitting unit” refers to a minimum unit that includes one or more organic layers, one of which is a light emitting layer, and can emit light by recombination of injected holes and electrons.
  • typical element configurations of simple organic EL elements include the following element configurations.
  • Anode / light emitting unit / cathode The above light emitting unit may be a laminated type having a plurality of phosphorescent light emitting layers and fluorescent light emitting layers. In that case, the light emitting unit is generated by a phosphorescent light emitting layer between the light emitting layers. In order to prevent the excitons from diffusing into the fluorescent light emitting layer, a space layer may be provided. A typical layer structure of the light emitting unit is shown below.
  • A Hole transport layer / light emitting layer (/ electron transport layer)
  • B Hole transport layer / first phosphorescent light emitting layer / second phosphorescent light emitting layer (/ electron transport layer)
  • C Hole transport layer / phosphorescent layer / space layer / fluorescent layer (/ electron transport layer)
  • D Hole transport layer / first phosphorescent light emitting layer / second phosphorescent light emitting layer / space layer / fluorescent light emitting layer (/ electron transport layer)
  • E Hole transport layer / first phosphorescent light emitting layer / space layer / second phosphorescent light emitting layer / space layer / fluorescent light emitting layer (/ electron transport layer)
  • F Hole transport layer / phosphorescent layer / space layer / first fluorescent layer / second fluorescent layer (/ electron transport layer)
  • G Hole transport layer / electron barrier layer / light emitting layer (/ electron transport layer)
  • H Hole transport layer / light emitting layer / hole barrier layer (
  • Each phosphorescent or fluorescent light-emitting layer may have a different emission color.
  • hole transport layer / first phosphorescent light emitting layer (red light emitting) / second phosphorescent light emitting layer (green light emitting) / space layer / fluorescent light emitting layer (blue light emitting) / Examples include a layer configuration such as an electron transport layer.
  • An electron barrier layer may be appropriately provided between each light emitting layer and the hole transport layer or space layer.
  • a hole blocking layer may be appropriately provided between each light emitting layer and the electron transport layer.
  • the following element structure can be mentioned as a typical element structure of a tandem type organic EL element.
  • the intermediate layer is generally called an intermediate electrode, an intermediate conductive layer, a charge generation layer, an electron extraction layer, a connection layer, or an intermediate insulating layer, and has electrons in the first light emitting unit and holes in the second light emitting unit.
  • a known material structure to be supplied can be used.
  • FIG. 1 is a schematic view showing a layer structure of an embodiment of the organic EL device of the present invention.
  • the organic EL element 1 has a configuration in which an anode 20, a hole transport zone 30, a light emitting layer 40, an electron transport zone 50, and a cathode 60 are laminated on a substrate 10 in this order.
  • the hole transport zone 30 refers to an organic layer sandwiched between the anode 20 and the light emitting layer 40, and means, for example, a hole transport layer, a hole injection layer, an electron barrier layer, or the like.
  • the electron transport zone 50 refers to an organic layer sandwiched between the cathode 60 and the light emitting layer 40, and means, for example, an electron transport layer, an electron injection layer, a hole barrier layer, or the like.
  • the barrier layer can confine electrons and holes in the light emitting layer 40 and increase the probability of exciton generation in the light emitting layer 40. These need not be formed, but preferably one or more layers are formed.
  • the organic thin film layer is each organic layer provided in the hole transport zone 30, each light emitting layer 40, and each organic layer provided in the electron transport zone 50.
  • at least one layer contains the organic EL element material of the present invention.
  • the content of this material with respect to one organic thin film layer containing the organic EL element material of the present invention is preferably 1 to 100% by weight.
  • a host combined with a fluorescent dopant is referred to as a fluorescent host
  • a host combined with a phosphorescent dopant is referred to as a phosphorescent host.
  • the fluorescent host and the phosphorescent host are not distinguished only by the molecular structure. That is, the phosphorescent host means a material constituting a phosphorescent light emitting layer containing a phosphorescent dopant, and does not mean that it cannot be used as a material constituting a fluorescent light emitting layer. The same applies to the fluorescent host.
  • the organic EL element of the present invention is produced on a translucent substrate.
  • the light-transmitting substrate is a substrate that supports the organic EL element, and is preferably a smooth substrate having a light transmittance in the visible region of 400 nm to 700 nm of 50% or more.
  • a glass plate, a polymer plate, etc. are mentioned.
  • the glass plate include those using soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, quartz and the like as raw materials.
  • the polymer plate include those using polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, polysulfone and the like as raw materials.
  • the anode of the organic EL element plays a role of injecting holes into the hole transport layer or the light emitting layer, and it is effective to use a material having a work function of 4.5 eV or more.
  • Specific examples of the anode material include indium tin oxide alloy (ITO), tin oxide (NESA), indium zinc oxide, gold, silver, platinum, copper, and the like.
  • the anode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. When light emitted from the light emitting layer is extracted from the anode, it is preferable that the transmittance of light in the visible region of the anode is greater than 10%.
  • the sheet resistance of the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness of the anode depends on the material, but is usually selected in the range of 10 nm to 1 ⁇ m, preferably 10 nm to 200 nm.
  • the cathode plays a role of injecting electrons into the electron injection layer, the electron transport layer or the light emitting layer, and is preferably formed of a material having a small work function.
  • the cathode material is not particularly limited, and specifically, indium, aluminum, magnesium, magnesium-indium alloy, magnesium-aluminum alloy, aluminum-lithium alloy, aluminum-scandium-lithium alloy, magnesium-silver alloy and the like can be used.
  • the cathode can be produced by forming a thin film by a method such as vapor deposition or sputtering. Moreover, you may take out light emission from the cathode side as needed.
  • An organic layer having a light emitting function includes a host material and a dopant material.
  • the host material mainly has a function of encouraging recombination of electrons and holes and confining excitons in the light emitting layer, and the dopant material efficiently emits excitons obtained by recombination. It has a function.
  • the host material mainly has a function of confining excitons generated by the dopant in the light emitting layer.
  • the light emitting layer employs, for example, a double host (also referred to as host / cohost) that adjusts the carrier balance in the light emitting layer by combining an electron transporting host and a hole transporting host.
  • the light emitting layer preferably contains a first host material and a second host material, and the first host material is preferably the organic EL device material of the present invention.
  • you may employ adopt the double dopant from which each dopant light-emits by putting in 2 or more types of dopant materials with a high quantum yield. Specifically, a mode in which yellow emission is realized by co-evaporating a host, a red dopant, and a green dopant to make the light emitting layer common is used.
  • the above light-emitting layer is a laminate in which a plurality of light-emitting layers are stacked, so that electrons and holes are accumulated at the light-emitting layer interface, and the recombination region is concentrated at the light-emitting layer interface to improve quantum efficiency. Can do.
  • the ease of injecting holes into the light emitting layer may be different from the ease of injecting electrons, and the hole transport ability and electron transport ability expressed by the mobility of holes and electrons in the light emitting layer may be different. May be different.
  • the light emitting layer can be formed by a known method such as a vapor deposition method, a spin coating method, or an LB method (Langmuir Broadgett method).
  • the light emitting layer can also be formed by thinning a solution obtained by dissolving a binder such as a resin and a material compound in a solvent by a spin coating method or the like.
  • the light emitting layer is preferably a molecular deposited film.
  • the molecular deposited film is a thin film formed by deposition from a material compound in a gas phase state or a film formed by solidifying from a material compound in a solution state or a liquid phase state.
  • the thin film (molecular accumulation film) formed by the LB method can be classified by the difference in the aggregation structure and the higher-order structure, and the functional difference resulting therefrom.
  • the dopant material is selected from known fluorescent dopants exhibiting fluorescent emission or phosphorescent dopants exhibiting phosphorescent emission.
  • the fluorescent dopant is selected from fluoranthene derivatives, pyrene derivatives, arylacetylene derivatives, fluorene derivatives, boron complexes, perylene derivatives, oxadiazole derivatives, anthracene derivatives, chrysene derivatives, and the like.
  • a fluoranthene derivative, a pyrene derivative, and a boron complex are used.
  • the phosphorescent dopant (phosphorescent material) that forms the light emitting layer is a compound that can emit light from the triplet excited state, and is not particularly limited as long as it emits light from the triplet excited state, but Ir, Pt, Os, Au, Cu, An organometallic complex containing at least one metal selected from Re and Ru and a ligand is preferable.
  • the ligand preferably has an ortho metal bond.
  • a metal complex containing a metal atom selected from Ir, Os and Pt is preferred in that the phosphorescent quantum yield is high and the external quantum efficiency of the light emitting device can be further improved, and an iridium complex, an osmium complex, or a platinum complex.
  • iridium complexes and platinum complexes are more preferable, and orthometalated iridium complexes are particularly preferable.
  • the content of the phosphorescent dopant in the light emitting layer is not particularly limited and may be appropriately selected depending on the intended purpose. For example, it is preferably 0.1 to 70% by mass, more preferably 1 to 30% by mass. If the phosphorescent dopant content is 0.1% by mass or more, sufficient light emission can be obtained, and if it is 70% by mass or less, concentration quenching can be avoided.
  • the phosphorescent host is a compound having a function of efficiently emitting the phosphorescent dopant by efficiently confining the triplet energy of the phosphorescent dopant in the light emitting layer.
  • the organic EL device material of the present invention is suitable as a phosphorescent host.
  • the light emitting layer may contain 1 type of organic EL element material of this invention, and may contain 2 or more types of organic EL element material of this invention.
  • the emission wavelength of the phosphorescent dopant material contained in the light emitting layer is not particularly limited.
  • at least one of the phosphorescent dopant materials contained in the light emitting layer preferably has an emission wavelength peak of 430 nm to 700 nm, and more preferably 440 nm to 650 nm.
  • a compound other than the material for the organic EL device of the present invention can be appropriately selected as the phosphorescent host according to the purpose.
  • the organic EL device material of the present invention and other compounds may be used in combination as a phosphorescent host material in the same light emitting layer, and when there are a plurality of light emitting layers, the phosphorescent host of one of the light emitting layers.
  • the material for an organic EL device of the present invention may be used as a material, and a compound other than the material for an organic EL device of the present invention may be used as a phosphorescent host material for another light emitting layer.
  • the organic EL device material of the present invention can be used for organic layers other than the light emitting layer. In that case, a compound other than the organic EL device material of the present invention is used as the phosphorescent host of the light emitting layer. May be.
  • compounds other than the organic EL device material of the present invention and suitable as a phosphorescent host include carbazole derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, Pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, aromatic dimethylidene compounds, porphyrins Compounds, anthraquinodimethane derivatives, anthrone derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimide derivatives, fluorenylidene derivatives And metal complexes of heterocycl
  • the organic EL element material of the present invention is used as the first host material
  • the organic EL element material other than the organic EL element material of the present invention is used as the second host material.
  • a compound may be used.
  • the terms “first host material” and “second host material” mean that the plurality of host materials contained in the light emitting layer have different structures from each other. It is not specified by the material content. It does not specifically limit as said 2nd host material, It is a compound other than the organic EL element material of this invention, and the same thing as the above-mentioned compound as a compound suitable as a phosphorescent host is mentioned.
  • the second host material a compound having no cyano group is preferable.
  • the second host is preferably a carbazole derivative, arylamine derivative, fluorenone derivative, or aromatic tertiary amine compound.
  • the thickness of the light emitting layer is preferably 5 to 50 nm, more preferably 7 to 50 nm, and still more preferably 10 to 50 nm.
  • the thickness is 5 nm or more, it is easy to form a light emitting layer, and when the thickness is 50 nm or less, an increase in driving voltage can be avoided.
  • the organic EL device of the present invention preferably has an electron donating dopant in the interface region between the cathode and the light emitting unit. According to such a configuration, it is possible to improve the light emission luminance and extend the life of the organic EL element.
  • the electron donating dopant means a material containing a metal having a work function of 3.8 eV or less, and specific examples thereof include alkali metals, alkali metal complexes, alkali metal compounds, alkaline earth metals, alkaline earths. Examples thereof include at least one selected from metal complexes, alkaline earth metal compounds, rare earth metals, rare earth metal complexes, rare earth metal compounds, and the like.
  • alkali metal examples include Na (work function: 2.36 eV), K (work function: 2.28 eV), Rb (work function: 2.16 eV), Cs (work function: 1.95 eV), and the like.
  • a function of 2.9 eV or less is particularly preferable. Of these, K, Rb, and Cs are preferred, Rb and Cs are more preferred, and Cs is most preferred.
  • alkaline earth metals include Ca (work function: 2.9 eV), Sr (work function: 2.0 eV to 2.5 eV), Ba (work function: 2.52 eV), and the like. The thing below 9 eV is especially preferable.
  • rare earth metals examples include Sc, Y, Ce, Tb, Yb, and the like, and those having a work function of 2.9 eV or less are particularly preferable.
  • alkali metal compound examples include alkali oxides such as Li 2 O, Cs 2 O, and K 2 O, and alkali halides such as LiF, NaF, CsF, and KF, and LiF, Li 2 O, and NaF are preferable.
  • alkaline earth metal compound examples include BaO, SrO, CaO, and Ba x Sr 1-x O (0 ⁇ x ⁇ 1), Ba x Ca 1-x O (0 ⁇ x ⁇ 1) mixed with these. BaO, SrO, and CaO are preferable.
  • the rare earth metal compound, YbF 3, ScF 3, ScO 3, Y 2 O 3, Ce 2 O 3, GdF 3, TbF 3 and the like, YbF 3, ScF 3, TbF 3 are preferable.
  • the alkali metal complex, alkaline earth metal complex, and rare earth metal complex are not particularly limited as long as each metal ion contains at least one of an alkali metal ion, an alkaline earth metal ion, and a rare earth metal ion.
  • the ligands include quinolinol, benzoquinolinol, acridinol, phenanthridinol, hydroxyphenyl oxazole, hydroxyphenyl thiazole, hydroxydiaryl thiadiazole, hydroxydiaryl thiadiazole, hydroxyphenylpyridine, hydroxyphenylbenzimidazole, hydroxybenzotriazole, Hydroxyfulborane, bipyridyl, phenanthroline, phthalocyanine, porphyrin, cyclopentadiene, ⁇ -diketones, azomethines, and derivatives thereof are preferred, but are not limited thereto.
  • the electron donating dopant it is preferable to form a layered or island shape in the interface region.
  • a forming method while depositing an electron donating dopant by resistance heating vapor deposition, an organic compound (light emitting material or electron injecting material) that forms an interface region is simultaneously deposited, and the electron donating dopant is dispersed in the organic compound.
  • the electron donating dopant is formed in a layered form
  • the reducing dopant is vapor-deposited by a resistance heating vapor deposition method. .1 nm to 15 nm.
  • the electron donating dopant is formed in an island shape
  • the electron donating dopant is deposited by resistance heating vapor deposition alone, preferably The island is formed with a thickness of 0.05 nm to 1 nm.
  • the electron transport layer is an organic layer formed between the light emitting layer and the cathode, and has a function of transporting electrons from the cathode to the light emitting layer.
  • an organic layer close to the cathode may be defined as an electron injection layer.
  • the electron injection layer has a function of efficiently injecting electrons from the cathode into the organic layer unit.
  • an aromatic heterocyclic compound containing one or more heteroatoms in the molecule is preferably used, and a nitrogen-containing ring derivative is particularly preferable.
  • the nitrogen-containing ring derivative is preferably an aromatic ring having a nitrogen-containing 6-membered ring or 5-membered ring skeleton, or a condensed aromatic ring compound having a nitrogen-containing 6-membered ring or 5-membered ring skeleton.
  • the thickness of the electron transport layer is not particularly limited, but is preferably 1 nm to 100 nm. Moreover, it is preferable to use an insulator or a semiconductor as an inorganic compound in addition to the nitrogen-containing ring derivative as a component of the electron injection layer that can be provided adjacent to the electron transport layer. If the electron injection layer is made of an insulator or a semiconductor, current leakage can be effectively prevented and the electron injection property can be improved.
  • an insulator it is preferable to use at least one metal compound selected from the group consisting of alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides and alkaline earth metal halides. If the electron injection layer is composed of these alkali metal chalcogenides or the like, it is preferable in that the electron injection property can be further improved.
  • preferable alkali metal chalcogenides include, for example, Li 2 O, K 2 O, Na 2 S, Na 2 Se, and Na 2 O
  • preferable alkaline earth metal chalcogenides include, for example, CaO, BaO. , SrO, BeO, BaS and CaSe.
  • preferable alkali metal halides include, for example, LiF, NaF, KF, LiCl, KCl, and NaCl.
  • preferable alkaline earth metal halides include fluorides such as CaF 2 , BaF 2 , SrF 2 , MgF 2 and BeF 2 , and halides other than fluorides.
  • the inorganic compound constituting the electron injection layer is preferably a microcrystalline or amorphous insulating thin film. If the electron injection layer is composed of these insulating thin films, a more uniform thin film is formed, and pixel defects such as dark spots can be reduced. Examples of such inorganic compounds include alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides and alkaline earth metal halides.
  • the preferred thickness of the layer is about 0.1 nm to 15 nm.
  • the electron injection layer in the present invention is preferable even if it contains the above-mentioned electron donating dopant.
  • an organic layer close to the anode may be defined as a hole injection layer.
  • the hole injection layer has a function of efficiently injecting holes from the anode into the organic layer unit.
  • the organic EL device material of the present invention is also suitable as a hole injection layer and a hole transport layer.
  • an aromatic amine compound for example, an aromatic amine derivative represented by the following formula (H) is preferably used.
  • Ar 1 ⁇ Ar 4 is a substituted or an aromatic hydrocarbon group or fused aromatic hydrocarbon group unsubstituted ring carbon atoms 6 to 50, a substituted or unsubstituted ring atoms of 5 to 50 aromatic heterocyclic groups or condensed aromatic heterocyclic groups, or a group in which these aromatic hydrocarbon groups or condensed aromatic hydrocarbon groups and aromatic heterocyclic groups or condensed aromatic heterocyclic groups are bonded.
  • L represents a substituted or unsubstituted aromatic hydrocarbon group or condensed aromatic hydrocarbon group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted ring forming atom number of 5 to 50. Represents an aromatic heterocyclic group or a condensed aromatic heterocyclic group.
  • An aromatic amine represented by the following formula (J) is also preferably used for forming the hole transport layer.
  • the hole transport layer of the organic EL device of the present invention may have a two-layer structure of a first hole transport layer (anode side) and a second hole transport layer (cathode side).
  • the thickness of the hole transport layer is not particularly limited, but is preferably 10 to 200 nm.
  • a layer containing an acceptor material may be bonded to the anode side of the hole transport layer or the first hole transport layer. This is expected to reduce drive voltage and manufacturing costs.
  • the acceptor material a compound represented by the following formula (K) is preferable.
  • R 21 to R 26 may be the same as or different from each other, and each independently represents a cyano group, —CONH 2 , a carboxyl group, or —COOR 27 (R 27 is a group having 1 to 20 carbon atoms) Represents an alkyl group or a cycloalkyl group having 3 to 20 carbon atoms, provided that one or more pairs of R 21 and R 22 , R 23 and R 24 , and R 25 and R 26 are combined together.
  • a group represented by —CO—O—CO— may be formed.
  • R 27 examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, a cyclopentyl group, and a cyclohexyl group.
  • the thickness of the layer containing the acceptor material is not particularly limited, but is preferably 5 to 20 nm.
  • n doping is a method of doping a metal such as Li or Cs into an electron transport material
  • p doping is F 4 TCNQ (2, 3, 5, 6) as a hole transport material.
  • the space layer is a fluorescent layer for the purpose of adjusting the carrier balance so that excitons generated in the phosphorescent layer are not diffused into the fluorescent layer. It is a layer provided between the layer and the phosphorescent light emitting layer.
  • the space layer can be provided between the plurality of phosphorescent light emitting layers. Since the space layer is provided between the light emitting layers, a material having both electron transport properties and hole transport properties is preferable. In order to prevent diffusion of triplet energy in the adjacent phosphorescent light emitting layer, the triplet energy is preferably 2.6 eV or more. Examples of the material used for the space layer include the same materials as those used for the above-described hole transport layer.
  • the organic EL device of the present invention preferably has a barrier layer such as an electron barrier layer, a hole barrier layer, or a triplet barrier layer in a portion adjacent to the light emitting layer.
  • the electron barrier layer is a layer that prevents electrons from leaking from the light emitting layer to the hole transport layer
  • the hole barrier layer is a layer that prevents holes from leaking from the light emitting layer to the electron transport layer. is there.
  • the triplet barrier layer prevents the triplet excitons generated in the light emitting layer from diffusing into the surrounding layers, and confins the triplet excitons in the light emitting layer, thereby transporting electrons other than the light emitting dopant of the triplet excitons. It has a function of suppressing energy deactivation on the molecules of the layer.
  • the phosphorescent devices When providing the triplet barrier layer, the phosphorescent devices, triplet energy E T d of the phosphorescent dopant in the light emitting layer and the triplet energy of the compound used as a triplet barrier layer and E T TB, E T d ⁇ If the energy magnitude relationship of E T TB is satisfied, the triplet exciton of the phosphorescent dopant is confined (cannot move to other molecules) and the energy deactivation path other than light emission on the dopant is interrupted. It is assumed that light can be emitted with high efficiency.
  • the organic EL element material of the present invention can be used as a triplet barrier layer having a TTF element structure described in International Publication WO2010 / 134350A1.
  • the electron mobility of the material constituting the triplet barrier layer is desirably 10 ⁇ 6 cm 2 / Vs or more in the range of electric field strength of 0.04 to 0.5 MV / cm.
  • the electron mobility is determined by impedance spectroscopy.
  • the electron injection layer is desirably 10 ⁇ 6 cm 2 / Vs or more in the range of electric field strength of 0.04 to 0.5 MV / cm. This facilitates the injection of electrons from the cathode into the electron transport layer, and also promotes the injection of electrons into the adjacent barrier layer and the light emitting layer, thereby enabling driving at a lower voltage.
  • Cyclic voltammetry was measured using an Electrochemical Analyzer 630B manufactured by ALS as an apparatus under the following conditions and measurement procedures.
  • Electrochemical Analyzer 630B manufactured by ALS as an apparatus under the following conditions and measurement procedures.
  • electrode Working electrode: Glassy carbon Reference electrode: Ag / Ag + Counter electrode: Pt Electrolyte: Tetrabutylammonium perchlorate Measurement solvent: N, N-dimethylformamide Measurement atmosphere: Nitrogen potential Scan rate: Range of 0.005 V / sec to 0.1 V / sec
  • the cyclic voltammetry measurement data of Compound 7 is shown in FIG. From FIG. 2, it can be read that reversible oxidation waves are shown, and it can be seen that Compound 7 has high electrochemical oxidation stability.
  • the cyclic voltammetry measurement data of Comparative Example Compound E1 is shown in FIG. From FIG. 3, it can be seen that an irreversible oxidation wave is shown, and it can be seen that Compound E1 has low electrochemical oxidation stability.
  • Ionization potential A thin film of the measurement compound was formed on the ITO substrate by a vacuum deposition method or a coating method, and the measurement was performed using a commercially available atmospheric photoelectron spectrometer AC-3 (manufactured by Riken Keiki Co., Ltd.).
  • Example 3 A glass substrate with a 130 nm-thick ITO electrode line (manufactured by Geomatec) was ultrasonically cleaned in isopropyl alcohol for 5 minutes, and then UV ozone cleaning was performed for 30 minutes.
  • the glass substrate with the ITO electrode line after the cleaning is mounted on the substrate holder of the vacuum evaporation apparatus, and first, the compound HI1 is formed with a thickness of 20 nm on the surface on which the ITO electrode line is formed so as to cover the ITO electrode line. Subsequently, compound HT1 was deposited by resistance heating with a thickness of 60 nm, and thin films were sequentially formed. The film formation rate was 1 ⁇ / s. These thin films function as a hole injection layer and a hole transport layer, respectively.
  • Compound 7 and Compound BD1 were simultaneously deposited by resistance heating to form a thin film having a thickness of 50 nm.
  • the compound BD1 was vapor-deposited so that the mass ratio was 20% with respect to the total mass of the compound 7 and the compound BD1.
  • the film formation rates were 1.2 ⁇ / s and 0.3 ⁇ / s, respectively.
  • This thin film functions as a phosphorescent light emitting layer, in which the compound 7 functions as a host and the compound BD1 functions as a light emitting dopant.
  • a thin film having a thickness of 10 nm was formed on the phosphorescent light emitting layer by resistance heating vapor deposition of Compound B1. This thin film functions as a hole blocking layer.
  • the film formation rate was 1.2 liter / s.
  • a thin film having a thickness of 10 nm was formed on the hole barrier layer by resistance heating vapor deposition of the compound ET1.
  • the film formation rate was 1 ⁇ / s.
  • This film functions as an electron injection layer.
  • LiF having a film thickness of 1.0 nm was deposited on the electron injection layer at a film formation rate of 0.1 ⁇ / s.
  • metallic aluminum was vapor-deposited on the LiF film at a deposition rate of 8.0 ⁇ / s to form a metal cathode with a film thickness of 80 nm to obtain an organic EL element.
  • the element performance (half life (time until a brightness
  • Comparative Example 4 An organic EL device was prepared and evaluated in the same manner as in Example 3 except that Compound E3 was used as the host of the phosphorescent light emitting layer instead of Compound 7. The results are shown in Table 2. The “half life (relative%)” is a relative ratio when the half life of the element of Example 3 is 100%.
  • Example 4 A glass substrate with a 130 nm-thick ITO electrode line (manufactured by Geomatec) was ultrasonically cleaned in isopropyl alcohol for 5 minutes, and then UV ozone cleaning was performed for 30 minutes.
  • the glass substrate with the ITO electrode line after the cleaning is mounted on the substrate holder of the vacuum evaporation apparatus, and first, the compound HI1 is formed with a thickness of 20 nm on the surface on which the ITO electrode line is formed so as to cover the ITO electrode line. Subsequently, compound HT1 was deposited by resistance heating with a thickness of 60 nm, and thin films were sequentially formed. The film formation rate was 1 ⁇ / s. These thin films function as a hole injection layer and a hole transport layer, respectively.
  • the compound (20) and the compound BD1 were simultaneously deposited by resistance heating to form a thin film having a thickness of 50 nm.
  • the compound BD1 was vapor-deposited so that the mass ratio was 20% with respect to the total mass of the compound (20) and the compound BD1.
  • the film formation rates were 1.2 ⁇ / s and 0.3 ⁇ / s, respectively.
  • This thin film functions as a phosphorescent light emitting layer, in which the compound (20) functions as a host and the compound BD1 functions as a light emitting dopant.
  • a thin film having a thickness of 10 nm was formed on the phosphorescent light emitting layer by resistance heating vapor deposition of Compound B1. This thin film functions as a hole blocking layer.
  • the film formation rate was 1.2 liter / s.
  • a thin film having a thickness of 10 nm was formed on the hole barrier layer by resistance heating vapor deposition of the compound ET1.
  • the film formation rate was 1 ⁇ / s.
  • This film functions as an electron injection layer.
  • LiF having a film thickness of 1.0 nm was deposited on the electron injection layer at a film formation rate of 0.1 ⁇ / s.
  • metallic aluminum was vapor-deposited on the LiF film at a deposition rate of 8.0 ⁇ / s to form a metal cathode with a film thickness of 80 nm to obtain an organic EL element.
  • the element performance (half life (time until a brightness
  • Comparative Example 5 An organic EL device was prepared and evaluated in the same manner as in Example 4 except that compound E3 was used as the host of the phosphorescent light emitting layer instead of compound (20). The results are shown in Table 3. The “half life (relative%)” is a relative ratio when the half life of the element of Example 4 is 100%.
  • Example 8 A glass substrate with a 130 nm-thick ITO electrode line (manufactured by Geomatec) was ultrasonically cleaned in isopropyl alcohol for 5 minutes, and then UV ozone cleaning was performed for 30 minutes.
  • the glass substrate with the ITO electrode line after the cleaning is mounted on the substrate holder of the vacuum evaporation apparatus, and first, the compound HI1 is formed with a thickness of 20 nm on the surface on which the ITO electrode line is formed so as to cover the ITO electrode line. Subsequently, compound HT1 was deposited by resistance heating with a thickness of 60 nm, and thin films were sequentially formed. The film formation rate was 1 ⁇ / s. These thin films function as a hole injection layer and a hole transport layer, respectively.
  • Compound 7 and Compound BD1 were simultaneously deposited by resistance heating to form a thin film having a thickness of 40 nm.
  • the compound BD1 was vapor-deposited so that the mass ratio was 20% with respect to the total mass of the compound 7 and the compound BD1.
  • the film formation rates were 1.2 ⁇ / s and 0.3 ⁇ / s, respectively.
  • This thin film functions as a phosphorescent light emitting layer, in which the compound 7 functions as a host and the compound BD1 functions as a light emitting dopant.
  • a thin film having a thickness of 5 nm was formed on the phosphorescent light emitting layer by resistance heating vapor deposition of Compound 7. This thin film functions as a hole blocking layer.
  • the film formation rate was 1.2 liter / s.
  • a compound having a thickness of 25 nm was formed on the hole barrier layer by resistance heating vapor deposition of the compound ET1.
  • the film formation rate was 1 ⁇ / s.
  • This film functions as an electron injection layer.
  • LiF having a film thickness of 1.0 nm was deposited on the electron injection layer at a film formation rate of 0.1 ⁇ / s.
  • metallic aluminum was vapor-deposited on the LiF film at a deposition rate of 8.0 ⁇ / s to form a metal cathode with a film thickness of 80 nm to obtain an organic EL element.
  • Example 9 An organic EL device was obtained in the same manner as in Example 8, except that Compound 12 was used instead of Compound 7.
  • Example 10 An organic EL device was obtained in the same manner as in Example 8 except that Compound 15 was used instead of Compound 7.
  • Example 11 An organic EL device was obtained in the same manner as in Example 8 except that Compound 73 was used instead of Compound 7.
  • Comparative Example 6 An organic EL device was produced in the same manner as in Example 8 except that Compound E2 was used instead of Compound 7, but E2 had a very low vapor deposition temperature and could not form a uniform thin film. It was not possible to produce an organic EL device capable of measuring Comparative Example 7 An organic EL device was obtained in the same manner as in Example 8 except that Compound E3 was used instead of Compound 7.
  • the obtained organic EL element it was made to light-emit by constant current drive, the brightness
  • Example 12 A glass substrate with a 130 nm-thick ITO electrode line (manufactured by Geomatec) was ultrasonically cleaned in isopropyl alcohol for 5 minutes, and then UV ozone cleaning was performed for 30 minutes.
  • the glass substrate with the ITO electrode line after the cleaning is mounted on the substrate holder of the vacuum evaporation apparatus, and first, the compound HI1 is formed with a thickness of 20 nm on the surface on which the ITO electrode line is formed so as to cover the ITO electrode line. Then, compound HT1 was deposited by resistance heating with a thickness of 50 nm, and a thin film was sequentially formed. The film formation rate was 1 ⁇ / s. These thin films function as a hole injection layer and a first hole transport layer, respectively.
  • a thin film having a thickness of 10 nm was formed on the hole transport layer by resistance heating vapor deposition of compound 73.
  • This thin film functions as a second hole transport layer.
  • Compound B1 and Compound BD1 were simultaneously deposited by resistance heating to form a thin film having a thickness of 40 nm.
  • the compound BD1 was vapor-deposited so that the mass ratio was 20% with respect to the total mass of the compound 7 and the compound BD1.
  • the film formation rates were 1.2 ⁇ / s and 0.3 ⁇ / s, respectively.
  • This thin film functions as a phosphorescent light emitting layer, in which the compound 7 functions as a host and the compound BD1 functions as a light emitting dopant.
  • a thin film having a thickness of 5 nm was formed on the phosphorescent light emitting layer by resistance heating vapor deposition of Compound 7. This thin film functions as a hole blocking layer.
  • the film formation rate was 1.2 liter / s.
  • a compound having a thickness of 25 nm was formed on the hole barrier layer by resistance heating vapor deposition of the compound ET1.
  • the film formation rate was 1 ⁇ / s.
  • This film functions as an electron injection layer.
  • LiF having a film thickness of 1.0 nm was deposited on the electron injection layer at a film formation rate of 0.1 ⁇ / s.
  • metallic aluminum was vapor-deposited on the LiF film at a deposition rate of 8.0 ⁇ / s to form a metal cathode with a film thickness of 80 nm to obtain an organic EL element.
  • Comparative Example 8 An organic EL device was obtained in the same manner as in Example 12 except that the compound E3 was used instead of the compound 73. About the obtained organic EL element, it was made to light-emit by constant current drive, the brightness
  • the compound of the present invention Since the compound of the present invention has high electrochemical oxidation stability, it is extremely useful as a material for organic electronics elements.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

A benzodiazaborole compound represented by formula (1) (wherein ring Q that is condensed with a diazaborole ring is a substituted or unsubstituted benzene ring, a substituted or unsubstituted condensed aromatic ring, or a substituted or unsubstituted benzene ring with which at least one substituted or unsubstituted heteroaromatic ring is condensed).

Description

ベンゾジアザボロール化合物及びそれを用いた有機エレクトロルミネッセンス素子用材料と有機エレクトロルミネッセンス素子Benzodiazaborol compound, organic electroluminescent element material and organic electroluminescent element using the same
 本発明は、新規なベンゾジアザボロール化合物及びそれを用いた有機エレクトロルミネッセンス素子用材料と有機エレクトロルミネッセンス素子に関する。 The present invention relates to a novel benzodiazaborol compound, an organic electroluminescence element material using the same, and an organic electroluminescence element.
 有機EL素子では、有機化合物層を構成する化合物の電気化学的安定性、特に酸化安定性が劣っていると、陽極及び陰極から電荷を印加した際にこれらの化合物が短時間で分解し、素子寿命は短いものとなる。
 公知の有機EL素子用の有機材料の中には、電気化学的酸化安定性に優れ、かつイオン化ポテンシャルが浅く、正孔が注入又は輸送される層内の材料として用いた場合に、低電圧化が期待できるものは幾つか見出されている。
In an organic EL device, if the compound constituting the organic compound layer has poor electrochemical stability, particularly oxidation stability, these compounds decompose in a short time when a charge is applied from the anode and the cathode, and the device The lifetime is short.
Among known organic materials for organic EL devices, the voltage is reduced when used as a material in a layer where holes are injected or transported, with excellent electrochemical oxidation stability and a shallow ionization potential. There are several things that can be expected.
 一方、有機EL素子用の材料として、種々の有機化合物が検討されており、その1つとして1,3,2-ジアザボロール環を有する化合物が開示されている(特許文献1、2)。 On the other hand, various organic compounds have been studied as materials for organic EL devices, and compounds having a 1,3,2-diazaborol ring are disclosed as one of them (Patent Documents 1 and 2).
 また、1,3,2-ベンゾジアザボロール環を有する化合物の光電子物性等に関する研究報告がある(非特許文献1~5)。非特許文献4、5では、電気化学物性についても検討している。 In addition, there are research reports on the optoelectronic properties of compounds having a 1,3,2-benzodiazaborol ring (Non-Patent Documents 1 to 5). Non-Patent Documents 4 and 5 also examine the electrochemical properties.
WO2010/108579WO2010 / 108579 WO2006/117052WO2006 / 117052
 特許文献1、2には、ベンゾジアザボロール化合物を有機EL素子用材料として用いることが開示されているが、これらに開示されている化合物は、ベンゼン環に置換基を有していない。また、特許文献2には同様に2つの窒素原子と1つのホウ素原子を含む6員環を有する下記化合物も開示されているが、これらは5員環のジアザボロールに比べ3重項エネルギーは小さい。
Figure JPOXMLDOC01-appb-C000001
Patent Documents 1 and 2 disclose the use of a benzodiazaborol compound as a material for an organic EL device, but the compounds disclosed therein do not have a substituent on the benzene ring. Similarly, Patent Document 2 discloses the following compound having a 6-membered ring containing two nitrogen atoms and one boron atom, but these compounds have a triplet energy smaller than that of a 5-membered diazaborol.
Figure JPOXMLDOC01-appb-C000001
 従来のベンゾジアザボロール化合物は、殆どがその骨格を構成するベンゼン環に置換基を有していない。ベンゼン環にメトキシ基又はシアノ基が置換した化合物もあるが、ジアザボロール環の2つの窒素原子の置換基が水素原子である(非特許文献4、5)。また、ベンゼン環に芳香族環が縮合した化合物もあるが、ジアザボロール環の2つの窒素原子の置換基は、水素原子又はエチル基である(非特許文献5)。
 非特許文献4,5では、これらの化合物について、光電子物性の他、電気化学的(酸化)安定性についても検討しているが、上記化合物はいずれも電気化学的に不安定であると指摘している。
Most conventional benzodiazaborol compounds have no substituent on the benzene ring constituting the skeleton. Although there are compounds in which a methoxy ring or a cyano group is substituted on the benzene ring, the two nitrogen atom substituents of the diazaborol ring are hydrogen atoms (Non-patent Documents 4 and 5). In addition, although there are compounds in which an aromatic ring is condensed to a benzene ring, the substituents of the two nitrogen atoms of the diazabolol ring are a hydrogen atom or an ethyl group (Non-patent Document 5).
Non-Patent Documents 4 and 5 are examining the electrochemical (oxidation) stability of these compounds in addition to the optoelectronic properties, but pointed out that all of these compounds are electrochemically unstable. ing.
 従って、これまでに報告されている1,3,2-ベンゾジアザボロール環を有する化合物は、いずれも電気化学的安定性が劣り、有機EL素子用の有機材料としては不十分であった。 Therefore, any of the compounds having a 1,3,2-benzodiazaborol ring reported so far has poor electrochemical stability and is insufficient as an organic material for an organic EL device.
 本発明の目的は、電気化学的安定性、特に酸化安定性に優れ、有機EL素子の有機化合物層の材料として好適なベンゾジアザボロール化合物を提供することである。
 上記目的を達成するため、本発明者は、1,3,2-ベンゾジアザボロール環を有する化合物について研究を進め、ベンゾジアザボロール骨格を構成するベンゼン環に、sp混成軌道性を有する原子で結合する特定の置換基を有するか又は縮合環を有し、かつジアザボロール環の2つの窒素原子に芳香族環基又は複素芳香族環基を有するベンゾジアザボロール化合物を見出した。1,3,2-ベンゾジアザボロール環がこのように特定の置換基又は縮合環を所定の位置に有することで、電気化学的酸化安定性が向上する。このような化合物を有機EL素子の有機化合物層に用いることにより、素子寿命を向上させることができることを見出した。
 また、本発明者は、2個のベンゾジアザボロール骨格がホウ素原子及び窒素原子を介して縮合した骨格を有し、かつジアザボロール環の縮合に使用されない2つの窒素原子に芳香族環基又は複素芳香族環基を有する新規なベンゾジアザボロール化合物を見出した。2個の1,3,2-ベンゾジアザボロール環が縮合した骨格を有し、かつ特定の置換基又は縮合環を所定の位置に有することで、電気化学的酸化安定性が向上する。このような化合物を有機EL素子の有機化合物層に用いることにより、素子寿命を向上させることができることを見出した。
 本発明は、これらの知見に基づき完成された。
An object of the present invention is to provide a benzodiazaborol compound which is excellent in electrochemical stability, particularly oxidation stability, and is suitable as a material for an organic compound layer of an organic EL device.
In order to achieve the above object, the present inventor has advanced research on compounds having a 1,3,2-benzodiazaborol ring, and the benzene ring constituting the benzodiazaborol skeleton has sp 2 hybrid orbital properties. A benzodiazaborol compound having a specific substituent bonded by an atom or having a condensed ring and having an aromatic ring group or a heteroaromatic ring group at two nitrogen atoms of the diazaborol ring has been found. When the 1,3,2-benzodiazaborol ring has a specific substituent or condensed ring at a predetermined position in this manner, electrochemical oxidation stability is improved. It has been found that by using such a compound in an organic compound layer of an organic EL device, the device life can be improved.
In addition, the inventor has a skeleton in which two benzodiazaborol skeletons are condensed via a boron atom and a nitrogen atom, and an aromatic ring group or a heterocycle is added to two nitrogen atoms that are not used for the condensation of a diazaborol ring. A novel benzodiazaborol compound having an aromatic ring group has been found. By having a skeleton in which two 1,3,2-benzodiazaborol rings are condensed and having a specific substituent or condensed ring at a predetermined position, electrochemical oxidation stability is improved. It has been found that by using such a compound in an organic compound layer of an organic EL device, the device life can be improved.
The present invention has been completed based on these findings.
 本発明によれば、以下のベンゾジアザボロール化合物、有機エレクトロルミネッセンス素子用材料、及び有機EL素子が提供される。
1.式(1)で表されるベンゾジアザボロール化合物。
Figure JPOXMLDOC01-appb-C000002
(式中、
 A及びAは、それぞれ独立して、
置換若しくは無置換の環形成炭素数6~30の芳香族環基、
置換若しくは無置換の環形成原子数5~30の複素芳香族環基、
置換若しくは無置換の炭素数3~20のアルキル基、
置換若しくは無置換の環形成炭素数3~20のシクロアルキル基、
置換若しくは無置換のシリル基、
置換若しくは無置換のホスフィノ基、
置換若しくは無置換のホスフィンオキシド基、
置換若しくは無置換のスルホキシド基、
置換若しくは無置換のスルホン基、又は
単結合であり、
 Aは、
置換若しくは無置換の環形成炭素数6~30の芳香族環基、
置換若しくは無置換の環形成原子数5~30の複素芳香族環基、
置換若しくは無置換の炭素数1~20のアルキル基、
置換若しくは無置換の環形成炭素数3~20のシクロアルキル基、
置換若しくは無置換の炭素数1~20のアルコキシ基、
置換若しくは無置換の環形成炭素数3~20のシクロアルコキシ基、
置換若しくは無置換の環形成炭素数6~30のアリールオキシ基、
置換若しくは無置換のアミノ基、
置換若しくは無置換の炭素数1~20のアルキルスルフィド基、
置換若しくは無置換の環形成炭素数6~30のアリールスルフィド基、
フルオロ基、
シアノ基、又は
単結合であり、
 AとA、又はAとAは、互いに結合して、ベンゾジアザボロール骨格の窒素原子及びホウ素原子を含めて5~7員環を形成してもよい。
 ただし、A、A、及びAが互いに結合して、ジアザボロール環が3個縮合した下記の環を形成することはない。
Figure JPOXMLDOC01-appb-C000003
 ジアザボロール環と縮合する環Qは、
置換若しくは無置換のベンゼン環、
置換若しくは無置換の環形成炭素数10~30の縮合芳香族環、又は
置換若しくは無置換の環形成原子数5~24の複素芳香族環が少なくとも1つ縮合した、置換若しくは無置換のベンゼン環であり、
 nは、1~6の整数であり、
 nが1の場合、Lは存在せず、
 nが2~6の場合、Lは、Q、A、A、及びAのいずれか同士の間を架橋する連結基、又は単結合であり、
 nが2~6の場合、n個あるQ、A、A、及びAは、互いに同一でも異なっていてもよい。
 ただし、
(i)nが1のときに、Qが無置換のベンゼン環となる場合、
(ii)nが2~6であり、Qが無置換のベンゼン環であり、Lが単結合であるときに、無置換のベンゼン環であるQ同士が単結合であるLで結合する場合、及び
(iii)nが2~6であり、Qが無置換のベンゼン環であるときに、A、A又はAのいずれか同士がLによって結合する場合
を除く。)
According to the present invention, the following benzodiazaborol compounds, materials for organic electroluminescence elements, and organic EL elements are provided.
1. A benzodiazaborol compound represented by formula (1).
Figure JPOXMLDOC01-appb-C000002
(Where
A 1 and A 2 are each independently
A substituted or unsubstituted aromatic ring group having 6 to 30 ring carbon atoms,
A substituted or unsubstituted heteroaromatic ring group having 5 to 30 ring atoms,
A substituted or unsubstituted alkyl group having 3 to 20 carbon atoms,
A substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms,
A substituted or unsubstituted silyl group,
A substituted or unsubstituted phosphino group,
A substituted or unsubstituted phosphine oxide group,
A substituted or unsubstituted sulfoxide group,
A substituted or unsubstituted sulfone group, or a single bond,
A 3 is,
A substituted or unsubstituted aromatic ring group having 6 to 30 ring carbon atoms,
A substituted or unsubstituted heteroaromatic ring group having 5 to 30 ring atoms,
A substituted or unsubstituted alkyl group having 1 to 20 carbon atoms,
A substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms,
A substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms,
A substituted or unsubstituted cycloalkoxy group having 3 to 20 ring carbon atoms,
A substituted or unsubstituted aryloxy group having 6 to 30 ring carbon atoms,
A substituted or unsubstituted amino group,
A substituted or unsubstituted alkyl sulfide group having 1 to 20 carbon atoms,
A substituted or unsubstituted arylsulfide group having 6 to 30 ring carbon atoms,
A fluoro group,
A cyano group or a single bond,
A 1 and A 3 , or A 2 and A 3 may be bonded to each other to form a 5- to 7-membered ring including a nitrogen atom and a boron atom of the benzodiazaborol skeleton.
However, A 1 , A 2 , and A 3 are not bonded to each other to form the following ring in which three diazaborol rings are condensed.
Figure JPOXMLDOC01-appb-C000003
Ring Q fused with the diazaborol ring is
A substituted or unsubstituted benzene ring,
A substituted or unsubstituted benzene ring in which at least one substituted or unsubstituted condensed aromatic ring having 10 to 30 carbon atoms or a substituted or unsubstituted heterocyclic aromatic ring having 5 to 24 ring atoms is condensed And
n is an integer from 1 to 6,
When n is 1, L does not exist,
when n is 2 to 6, L is a linking group that bridges between any of Q, A 1 , A 2 , and A 3 , or a single bond;
When n is 2 to 6, n, Q, A 1 , A 2 , and A 3 may be the same as or different from each other.
However,
(I) When n is 1 and Q is an unsubstituted benzene ring,
(Ii) when n is 2 to 6, Q is an unsubstituted benzene ring, and L is a single bond, when the unsubstituted benzene rings Q are bonded to each other by a single bond L, And (iii) When n is 2 to 6 and Q is an unsubstituted benzene ring, any of A 1 , A 2 or A 3 is bonded by L. )
 本発明によれば、電気化学的安定性、特に酸化安定性に優れたベンゾジアザボロール化合物が提供できる。
 本発明によれば、電気化学的安定性、特に酸化安定性に優れた有機EL素子用材料が提供できる。
 本発明によれば、素子寿命が改善された有機EL素子が提供できる。
ADVANTAGE OF THE INVENTION According to this invention, the benzodiazaborol compound excellent in electrochemical stability, especially oxidation stability can be provided.
ADVANTAGE OF THE INVENTION According to this invention, the material for organic EL elements excellent in electrochemical stability, especially oxidation stability can be provided.
ADVANTAGE OF THE INVENTION According to this invention, the organic EL element with improved element lifetime can be provided.
本発明の有機EL素子の一実施形態の層構成を示す概略図である。フである。It is the schematic which shows the layer structure of one Embodiment of the organic EL element of this invention. It is fu. 化合物7のサイクリックボルタンメトリーの測定結果を示すグラフである。4 is a graph showing the results of cyclic voltammetry measurement of Compound 7. 比較例化合物E1のサイクリックボルタンメトリーの測定結果を示すグラフである。It is a graph which shows the measurement result of the cyclic voltammetry of the comparative example compound E1.
 本発明のベンゾジアザボロール化合物は、式(1)で表されることを特徴とする。
Figure JPOXMLDOC01-appb-C000004
The benzodiazaborol compound of the present invention is represented by the formula (1).
Figure JPOXMLDOC01-appb-C000004
 式中、
 A及びAは、それぞれ独立して、
置換若しくは無置換の環形成炭素数6~30の芳香族環基、
置換若しくは無置換の環形成原子数5~30の複素芳香族環基、
置換若しくは無置換の炭素数3~20のアルキル基、
置換若しくは無置換の環形成炭素数3~20のシクロアルキル基、
置換若しくは無置換のシリル基、
置換若しくは無置換のホスフィノ基、
置換若しくは無置換のホスフィンオキシド基、
置換若しくは無置換のスルホキシド基、
置換若しくは無置換のスルホン基、又は
単結合である。
Where
A 1 and A 2 are each independently
A substituted or unsubstituted aromatic ring group having 6 to 30 ring carbon atoms,
A substituted or unsubstituted heteroaromatic ring group having 5 to 30 ring atoms,
A substituted or unsubstituted alkyl group having 3 to 20 carbon atoms,
A substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms,
A substituted or unsubstituted silyl group,
A substituted or unsubstituted phosphino group,
A substituted or unsubstituted phosphine oxide group,
A substituted or unsubstituted sulfoxide group,
It is a substituted or unsubstituted sulfone group, or a single bond.
 Aは、
置換若しくは無置換の環形成炭素数6~30の芳香族環基、
置換若しくは無置換の環形成原子数5~30の複素芳香族環基、
置換若しくは無置換の炭素数1~20のアルキル基、
置換若しくは無置換の環形成炭素数3~20のシクロアルキル基、
置換若しくは無置換の炭素数1~20のアルコキシ基、
置換若しくは無置換の環形成炭素数3~20のシクロアルコキシ基、
置換若しくは無置換の環形成炭素数6~30のアリールオキシ基、
置換若しくは無置換のアミノ基、
置換若しくは無置換の炭素数1~20のアルキルスルフィド基、
置換若しくは無置換の環形成炭素数6~30のアリールスルフィド基、
フルオロ基、
シアノ基、又は
単結合である。
A 3 is,
A substituted or unsubstituted aromatic ring group having 6 to 30 ring carbon atoms,
A substituted or unsubstituted heteroaromatic ring group having 5 to 30 ring atoms,
A substituted or unsubstituted alkyl group having 1 to 20 carbon atoms,
A substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms,
A substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms,
A substituted or unsubstituted cycloalkoxy group having 3 to 20 ring carbon atoms,
A substituted or unsubstituted aryloxy group having 6 to 30 ring carbon atoms,
A substituted or unsubstituted amino group,
A substituted or unsubstituted alkyl sulfide group having 1 to 20 carbon atoms,
A substituted or unsubstituted arylsulfide group having 6 to 30 ring carbon atoms,
A fluoro group,
It is a cyano group or a single bond.
 AとA、又はAとAは、互いに結合して、ベンゾジアザボロール骨格の窒素原子及びホウ素原子を含めて5~7員環を形成してもよい。
 ただし、A、A、及びAが互いに結合して、ジアザボロール環が3個縮合した下記の環を形成することはない。
Figure JPOXMLDOC01-appb-C000005
A 1 and A 3 , or A 2 and A 3 may be bonded to each other to form a 5- to 7-membered ring including a nitrogen atom and a boron atom of the benzodiazaborol skeleton.
However, A 1 , A 2 , and A 3 are not bonded to each other to form the following ring in which three diazaborol rings are condensed.
Figure JPOXMLDOC01-appb-C000005
 ジアザボロール環と縮合する環Qは、
置換若しくは無置換のベンゼン環、
置換若しくは無置換の環形成炭素数10~30の縮合芳香族環、又は
置換若しくは無置換の環形成原子数5~24の複素芳香族環が少なくとも1つ縮合した、置換若しくは無置換のベンゼン環であり、
 nは、1~6の整数であり、好ましくは1~3である。
 nが1の場合、Lは存在せず、
 nが2~6の場合、Lは、Q、A、A、及びAのいずれか同士の間を架橋する連結基、又は単結合であり、
 nが2~6の場合、n個あるQ、A、A、及びAは、互いに同一でも異なっていてもよい。
 ただし、
(i)nが1のときに、Qが無置換のベンゼン環となる場合、
(ii)nが2~6であり、Qが無置換のベンゼン環であり、Lが単結合であるときに、無置換のベンゼン環であるQ同士が単結合であるLで結合する場合、及び
(iii)nが2~6であり、Qが無置換のベンゼン環であるときに、A、A又はAのいずれか同士がLによって結合する場合
を除く。
Ring Q fused with the diazaborol ring is
A substituted or unsubstituted benzene ring,
A substituted or unsubstituted benzene ring in which at least one substituted or unsubstituted condensed aromatic ring having 10 to 30 carbon atoms or a substituted or unsubstituted heterocyclic aromatic ring having 5 to 24 ring atoms is condensed And
n is an integer of 1 to 6, preferably 1 to 3.
When n is 1, L does not exist,
when n is 2 to 6, L is a linking group that bridges between any of Q, A 1 , A 2 , and A 3 , or a single bond;
When n is 2 to 6, n, Q, A 1 , A 2 , and A 3 may be the same as or different from each other.
However,
(I) When n is 1 and Q is an unsubstituted benzene ring,
(Ii) when n is 2 to 6, Q is an unsubstituted benzene ring, and L is a single bond, when the unsubstituted benzene rings Q are bonded to each other by a single bond L, And (iii) When n is 2 to 6 and Q is an unsubstituted benzene ring, any of A 1 , A 2 or A 3 is bonded by L.
 本発明の好ましい第1の態様について説明する。
 本発明のベンゾジアザボロール化合物は、下記式(I-1)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000006
A preferred first aspect of the present invention will be described.
The benzodiazaborol compound of the present invention is preferably represented by the following formula (I-1).
Figure JPOXMLDOC01-appb-C000006
 式中、
 A及びAは、それぞれ独立して、
置換若しくは無置換の環形成炭素数6~30の芳香族環基、
置換若しくは無置換の環形成原子数5~30の複素芳香族環基、
置換若しくは無置換の炭素数3~20のアルキル基、
置換若しくは無置換の環形成炭素数3~20のシクロアルキル基、
置換若しくは無置換のシリル基、
置換若しくは無置換のホスフィノ基、
置換若しくは無置換のホスフィンオキシド基、
置換若しくは無置換のスルホキシド基、
置換若しくは無置換のスルホン基、又は
単結合であり、
Where
A 1 and A 2 are each independently
A substituted or unsubstituted aromatic ring group having 6 to 30 ring carbon atoms,
A substituted or unsubstituted heteroaromatic ring group having 5 to 30 ring atoms,
A substituted or unsubstituted alkyl group having 3 to 20 carbon atoms,
A substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms,
A substituted or unsubstituted silyl group,
A substituted or unsubstituted phosphino group,
A substituted or unsubstituted phosphine oxide group,
A substituted or unsubstituted sulfoxide group,
A substituted or unsubstituted sulfone group, or a single bond,
 Aは、
置換若しくは無置換の環形成炭素数6~30の芳香族環基、
置換若しくは無置換の環形成原子数5~30の複素芳香族環基、
置換若しくは無置換の炭素数1~20のアルキル基、
置換若しくは無置換の環形成炭素数3~20のシクロアルキル基、
置換若しくは無置換の炭素数1~20のアルコキシ基、
置換若しくは無置換の環形成炭素数3~20のシクロアルコキシ基、
置換若しくは無置換の環形成炭素数6~30のアリールオキシ基、
置換若しくは無置換のアミノ基、
置換若しくは無置換の炭素数1~20のアルキルスルフィド基、
置換若しくは無置換の環形成炭素数6~30のアリールスルフィド基、
フルオロ基、
シアノ基、又は
単結合である。
A 3 is,
A substituted or unsubstituted aromatic ring group having 6 to 30 ring carbon atoms,
A substituted or unsubstituted heteroaromatic ring group having 5 to 30 ring atoms,
A substituted or unsubstituted alkyl group having 1 to 20 carbon atoms,
A substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms,
A substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms,
A substituted or unsubstituted cycloalkoxy group having 3 to 20 ring carbon atoms,
A substituted or unsubstituted aryloxy group having 6 to 30 ring carbon atoms,
A substituted or unsubstituted amino group,
A substituted or unsubstituted alkyl sulfide group having 1 to 20 carbon atoms,
A substituted or unsubstituted arylsulfide group having 6 to 30 ring carbon atoms,
A fluoro group,
It is a cyano group or a single bond.
 AとA、又はAとAは、互いに結合して、ベンゾジアザボロール骨格の窒素原子及びホウ素原子を含めて5~7員環を形成してもよい。
 ただし、AとA、又はAとAは、互いに結合して、下記の5員環を形成することはない。
Figure JPOXMLDOC01-appb-C000007
A 1 and A 3 , or A 2 and A 3 may be bonded to each other to form a 5- to 7-membered ring including a nitrogen atom and a boron atom of the benzodiazaborol skeleton.
However, A 1 and A 3 , or A 2 and A 3 are not bonded to each other to form the following 5-membered ring.
Figure JPOXMLDOC01-appb-C000007
 A、A、及びAは、それぞれ独立して、置換若しくは無置換の環形成炭素数6~30の芳香族環基、又は置換若しくは無置換の環形成原子数5~30の複素芳香族環基であることが好ましく、置換若しくは無置換のフェニル基、置換若しくは無置換のトリル基、置換若しくは無置換のキシリル基、置換若しくは無置換のメシチル基、置換若しくは無置換のビフェニル基、置換若しくは無置換のフルオレニル基、置換若しくは無置換のフェナントリル基、置換若しくは無置換のトリフェニレニン基、置換若しくは無置換のm-ターフェニル基、置換若しくは無置換のジベンゾフラニル基、置換若しくは無置換のジベンゾチオフェニル基、又は置換若しくは無置換のカルバゾリル基であることがより好ましい。 A 1 , A 2 , and A 3 are each independently a substituted or unsubstituted aromatic ring group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted heteroaromatic group having 5 to 30 ring atoms. It is preferably an aromatic ring group, substituted or unsubstituted phenyl group, substituted or unsubstituted tolyl group, substituted or unsubstituted xylyl group, substituted or unsubstituted mesityl group, substituted or unsubstituted biphenyl group, substituted Or an unsubstituted fluorenyl group, a substituted or unsubstituted phenanthryl group, a substituted or unsubstituted triphenylenine group, a substituted or unsubstituted m-terphenyl group, a substituted or unsubstituted dibenzofuranyl group, substituted or unsubstituted Of these, a dibenzothiophenyl group or a substituted or unsubstituted carbazolyl group is more preferable.
 ジアザボロール環と縮合する環Qは、少なくとも1つの置換基Rを有し、さらに任意の置換基を有していてもよいベンゼン環、又は置換若しくは無置換の芳香族環、若しくは置換若しくは無置換の複素芳香族環が少なくとも1つ縮合し、さらに任意の置換基を有していてもよいベンゼン環である。 The ring Q condensed with the diazaborol ring has at least one substituent R, and may further have an optional substituent, a substituted or unsubstituted aromatic ring, or a substituted or unsubstituted ring It is a benzene ring in which at least one heteroaromatic ring is condensed and may further have an arbitrary substituent.
 置換基Rは、
置換若しくは無置換の環形成炭素数6~30の芳香族環基、
置換若しくは無置換の環形成原子数5~30の複素芳香族環基、
sp混成軌道性を有する原子で結合する置換若しくは無置換の炭素数2~20の不飽和脂肪族炭化水素基、
sp混成軌道性を有する原子で結合する置換若しくは無置換の環形成炭素数3~20の不飽和脂肪族炭化水素環基、
置換若しくは無置換の炭素数1~20のアルコキシ基、
置換若しくは無置換の環形成炭素数3~20のシクロアルコキシ基、
置換若しくは無置換の環形成炭素数6~30のアリールオキシ基、
置換若しくは無置換のアミノ基、
置換若しくは無置換のボリル基、
置換若しくは無置換のホスフィノ基、
置換若しくは無置換の炭素数1~20のアルキルスルフィド基、又は
置換若しくは無置換の環形成炭素数6~30のアリールスルフィド基
である。
Substituent R is
A substituted or unsubstituted aromatic ring group having 6 to 30 ring carbon atoms,
A substituted or unsubstituted heteroaromatic ring group having 5 to 30 ring atoms,
a substituted or unsubstituted unsaturated aliphatic hydrocarbon group having 2 to 20 carbon atoms bonded by an atom having sp 2 hybrid orbital property,
a substituted or unsubstituted ring-formed unsaturated aliphatic hydrocarbon ring group having 3 to 20 carbon atoms bonded by an atom having sp 2 hybrid orbital property,
A substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms,
A substituted or unsubstituted cycloalkoxy group having 3 to 20 ring carbon atoms,
A substituted or unsubstituted aryloxy group having 6 to 30 ring carbon atoms,
A substituted or unsubstituted amino group,
Substituted or unsubstituted boryl group,
A substituted or unsubstituted phosphino group,
A substituted or unsubstituted alkyl sulfide group having 1 to 20 carbon atoms, or a substituted or unsubstituted aryl sulfide group having 6 to 30 ring carbon atoms.
 置換基Rの各基の具体例は、Qの任意の置換基及び「置換若しくは無置換の」の置換基の具体例と合わせて後述する。 Specific examples of each group of the substituent R will be described later together with specific examples of the optional substituent of Q and the substituent of “substituted or unsubstituted”.
 尚、「sp混成軌道性を有する原子」としては、例えば、芳香族環内で3価の結合状態を持つ炭素原子、複素芳香族環内で3価の結合状態を持つ炭素原子もしくは窒素原子、エチレン基の炭素原子、エーテル基の酸素原子、アミノ基の窒素原子、ボリル基のホウ素原子、ホスフィノ基のリン原子、スルフィド基の硫黄原子が挙げられ、芳香族環内で3価の結合状態を持つ炭素原子、複素芳香族環内で3価の結合状態を持つ炭素原子もしくは窒素原子が好ましい。 Examples of the “atom having sp 2 hybrid orbital” include, for example, a carbon atom having a trivalent bonding state in an aromatic ring, a carbon atom having a trivalent bonding state in a heteroaromatic ring, or a nitrogen atom. , Carbon atom of ethylene group, oxygen atom of ether group, nitrogen atom of amino group, boron atom of boryl group, phosphorus atom of phosphino group, sulfur atom of sulfide group, trivalent bonding state in aromatic ring A carbon atom having a carbon atom, a carbon atom having a trivalent bonding state in a heteroaromatic ring, or a nitrogen atom is preferable.
 置換基Rは、置換若しくは無置換のフェニル基、置換若しくは無置換のo-ビフェニル基、置換若しくは無置換のm-ビフェニル基、置換若しくは無置換のp-ビフェニル基、置換若しくは無置換のm-ターフェニル基、置換若しくは無置換のp-ターフェニル基、置換若しくは無置換のフルオレニル基、置換若しくは無置換のフェナントリル基、置換若しくは無置換のトリフェニレニン基、置換若しくは無置換のジベンゾフラニル基、置換若しくは無置換のジベンゾチオフェニル基、又は置換若しくは無置換のカルバゾリル基であることが好ましい。 Substituent R is a substituted or unsubstituted phenyl group, a substituted or unsubstituted o-biphenyl group, a substituted or unsubstituted m-biphenyl group, a substituted or unsubstituted p-biphenyl group, a substituted or unsubstituted m- Terphenyl group, substituted or unsubstituted p-terphenyl group, substituted or unsubstituted fluorenyl group, substituted or unsubstituted phenanthryl group, substituted or unsubstituted triphenylenine group, substituted or unsubstituted dibenzofuranyl group , A substituted or unsubstituted dibenzothiophenyl group, or a substituted or unsubstituted carbazolyl group is preferable.
 Qが置換若しくは無置換の芳香族環、又は置換若しくは無置換の複素芳香族環が縮合したベンゼン環である場合の該ベンゼン環を含む縮合環は、
5~7員環の炭化水素環が2つ以上、好ましくは3つ以上縮合して形成される環形成炭素数9~30の縮合芳香族炭化水素環、又は
1つ以上、好ましくは2つ以上の5~7員環の炭化水素環と1つ以上の5~7員環の複素環とが縮合して形成される環形成原子数9~30の縮合複素芳香族環、
であり、
 置換若しくは無置換のフェナントレン、置換若しくは無置換のトリフェニレン、置換若しくは無置換のフルオレン、置換若しくは無置換のジベンゾフラン、置換若しくは無置換のジベンゾチオフェン、又は置換若しくは無置換のカルバゾールであることがより好ましい。
When Q is a substituted or unsubstituted aromatic ring or a benzene ring fused with a substituted or unsubstituted heteroaromatic ring, the condensed ring containing the benzene ring is:
A condensed aromatic hydrocarbon ring having 9 to 30 ring carbon atoms formed by condensation of 2 or more, preferably 3 or more, 5- to 7-membered hydrocarbon rings, or 1 or more, preferably 2 or more A condensed heteroaromatic ring having 9 to 30 ring atoms formed by condensation of a 5- to 7-membered hydrocarbon ring and one or more 5- to 7-membered heterocyclic rings,
And
More preferably, it is substituted or unsubstituted phenanthrene, substituted or unsubstituted triphenylene, substituted or unsubstituted fluorene, substituted or unsubstituted dibenzofuran, substituted or unsubstituted dibenzothiophene, or substituted or unsubstituted carbazole.
 Qの任意の置換基としては、
置換若しくは無置換の環形成炭素数6~30の芳香族環基、
置換若しくは無置換の環形成原子数5~30の複素芳香族環基、
置換若しくは無置換の炭素数1~20のアルキル基、
置換若しくは無置換の環形成炭素数3~20のシクロアルキル基、
置換若しくは無置換の炭素数2~20の不飽和脂肪族炭化水素基、
置換若しくは無置換の環形成炭素数3~20の不飽和脂肪族炭化水素環基、
置換若しくは無置換の炭素数1~20のアルコキシ基、
置換若しくは無置換の環形成炭素数3~20のシクロアルコキシ基、
置換若しくは無置換の環形成炭素数6~30のアリールオキシ基、
置換若しくは無置換のアミノ基、
置換若しくは無置換のボリル基、
置換若しくは無置換のシリル基、
置換若しくは無置換のホスフィノ基、
置換若しくは無置換のホスフィンオキシド基、
置換若しくは無置換の炭素数1~20のアルキルスルフィド基、
置換若しくは無置換の環形成炭素数6~30のアリールスルフィド基
置換若しくは無置換のスルホキシド基、
置換若しくは無置換のスルホン基、
フルオロ基、及び
シアノ基
が挙げられる。
As an optional substituent of Q,
A substituted or unsubstituted aromatic ring group having 6 to 30 ring carbon atoms,
A substituted or unsubstituted heteroaromatic ring group having 5 to 30 ring atoms,
A substituted or unsubstituted alkyl group having 1 to 20 carbon atoms,
A substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms,
A substituted or unsubstituted unsaturated aliphatic hydrocarbon group having 2 to 20 carbon atoms,
A substituted or unsubstituted cyclic aliphatic hydrocarbon group having 3 to 20 carbon atoms,
A substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms,
A substituted or unsubstituted cycloalkoxy group having 3 to 20 ring carbon atoms,
A substituted or unsubstituted aryloxy group having 6 to 30 ring carbon atoms,
A substituted or unsubstituted amino group,
Substituted or unsubstituted boryl group,
A substituted or unsubstituted silyl group,
A substituted or unsubstituted phosphino group,
A substituted or unsubstituted phosphine oxide group,
A substituted or unsubstituted alkyl sulfide group having 1 to 20 carbon atoms,
A substituted or unsubstituted arylsulfide group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted sulfoxide group,
Substituted or unsubstituted sulfone group,
Examples include a fluoro group and a cyano group.
 Qの任意の置換基の各基の具体例は、置換基R及び「置換若しくは無置換の」の置換基の具体例と合わせて後述する。 Specific examples of each of the arbitrary substituents of Q will be described later together with specific examples of the substituent R and the substituent of “substituted or unsubstituted”.
 nは、1~6の整数であり、好ましくは1~4の整数であり、より好ましくは1又は2である。
 nが1の場合、Lは存在せず、
 nが2~6の場合、Lは、Q、A、A、及びAのいずれか同士の間を架橋する連結基、又は単結合である。
 nが2~6の場合、n個あるQ、A、A、及びAは、互いに同一でも異なっていてもよい。
n is an integer of 1 to 6, preferably an integer of 1 to 4, and more preferably 1 or 2.
When n is 1, L does not exist,
When n is 2 to 6, L is a linking group that bridges between Q, A 1 , A 2 , and A 3 , or a single bond.
When n is 2 to 6, n, Q, A 1 , A 2 , and A 3 may be the same as or different from each other.
 Lが連結基である場合の例としては、例えば、エーテル基、チオエーテル基、置換若しくは無置換の環形成炭素数6~30の芳香族環基、置換若しくは無置換の環形成原子数6~30の複素芳香族環基、及び置換若しくは無置換のアミノ基が挙げられ、エーテル基、並びに置換若しくは無置換のベンゼン環、置換若しくは無置換のジベンゾフラン環、ジベンゾチオフェン環、カルバゾール環、置換若しくは無置換のフルオレン環、及び置換若しくは無置換のビフェニルから誘導されるn価の基が好ましい。 Examples of the case where L is a linking group include an ether group, a thioether group, a substituted or unsubstituted aromatic ring group having 6 to 30 ring carbon atoms, a substituted or unsubstituted ring atom number of 6 to 30 Heteroaromatic ring groups, and substituted or unsubstituted amino groups, ether groups, substituted or unsubstituted benzene rings, substituted or unsubstituted dibenzofuran rings, dibenzothiophene rings, carbazole rings, substituted or unsubstituted And a n-valent group derived from a substituted or unsubstituted biphenyl.
 式(I-1)で表されるベンゾジアザボロール化合物は、下記構造式(I-2)~(I-14)からなる群から選択される基本骨格を有することが好ましい。Qは、下記構造式(I-2)~(I-14)中の当該ジアザボロール環と縮合する環であることが好ましい。
 ここで、「基本骨格」とは、ベンゾジアザボロール骨格のベンゼン環、当該ベンゼン環に縮合した環、及び当該ベンゼン環の置換基が、置換基を有していてもよいことを意味する。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-I000001
The benzodiazaborol compound represented by the formula (I-1) preferably has a basic skeleton selected from the group consisting of the following structural formulas (I-2) to (I-14). Q is preferably a ring that is condensed with the diazaborol ring in the following structural formulas (I-2) to (I-14).
Here, the “basic skeleton” means that the benzene ring of the benzodiazaborol skeleton, the ring condensed to the benzene ring, and the substituent of the benzene ring may have a substituent.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-I000001
 式中、A~A、L、及びnは、前記式(I-1)で定義した通りである。
 Xは、それぞれ独立して、酸素原子、窒素原子、又は硫黄原子である。
In the formula, A 1 to A 3 , L, and n are as defined in the formula (I-1).
X is each independently an oxygen atom, a nitrogen atom, or a sulfur atom.
 AとA、又はAとAが互いに結合して、ジアザボロール骨格の窒素原子及びホウ素原子を含めて5~7員環を形成する場合、下記構造式(I-15)及び(I-16)からなる群から選択される基本骨格を有することが好ましい。
 ここで、「基本骨格」とは、ベンゾジアザボロール骨格の窒素原子及びホウ素原子を含めて形成された6員環に縮合したベンゼン環が、置換基を有していてもよいことを意味する。
In the case where A 1 and A 3 or A 2 and A 3 are bonded to each other to form a 5- to 7-membered ring including a nitrogen atom and a boron atom of the diazaborol skeleton, the following structural formulas (I-15) and (I It preferably has a basic skeleton selected from the group consisting of -16).
Here, the “basic skeleton” means that the benzene ring condensed to the 6-membered ring formed including the nitrogen atom and boron atom of the benzodiazaborol skeleton may have a substituent. .
Figure JPOXMLDOC01-appb-C000009
 式中、A、A、Q、L、及びnは、前記式(I-1)で定義した通りである。
Figure JPOXMLDOC01-appb-C000009
In the formula, A 1 , A 2 , Q, L, and n are as defined in the formula (I-1).
 前記式(I-1)~(I-16)中の各基における「置換若しくは無置換の」置換基としては、
置換若しくは無置換の環形成炭素数6~30の芳香族環基、
置換若しくは無置換の環形成原子数5~30の複素芳香族環基、
置換若しくは無置換の炭素数1~20のアルキル基、
置換若しくは無置換の環形成炭素数3~20のシクロアルキル基、
置換若しくは無置換の炭素数2~20の不飽和脂肪族炭化水素基、
置換若しくは無置換の環形成炭素数3~20の不飽和脂肪族炭化水素環基、
置換若しくは無置換の炭素数1~20のアルコキシ基、
置換若しくは無置換の環形成炭素数3~20のシクロアルコキシ基、
置換若しくは無置換の環形成炭素数6~30のアリールオキシ基、
置換若しくは無置換のアミノ基、
置換若しくは無置換のボリル基、
置換若しくは無置換のシリル基、
置換若しくは無置換のホスフィノ基、
置換若しくは無置換のホスフィンオキシド基、
置換若しくは無置換の炭素数1~20のアルキルスルフィド基、及び
置換若しくは無置換の環形成炭素数6~30のアリールスルフィド基
置換若しくは無置換のスルホキシド基、
置換若しくは無置換のスルホン基、
フルオロ基、及び
シアノ基
が挙げられる。
As the “substituted or unsubstituted” substituent in each group in the formulas (I-1) to (I-16),
A substituted or unsubstituted aromatic ring group having 6 to 30 ring carbon atoms,
A substituted or unsubstituted heteroaromatic ring group having 5 to 30 ring atoms,
A substituted or unsubstituted alkyl group having 1 to 20 carbon atoms,
A substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms,
A substituted or unsubstituted unsaturated aliphatic hydrocarbon group having 2 to 20 carbon atoms,
A substituted or unsubstituted cyclic aliphatic hydrocarbon group having 3 to 20 carbon atoms,
A substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms,
A substituted or unsubstituted cycloalkoxy group having 3 to 20 ring carbon atoms,
A substituted or unsubstituted aryloxy group having 6 to 30 ring carbon atoms,
A substituted or unsubstituted amino group,
Substituted or unsubstituted boryl group,
A substituted or unsubstituted silyl group,
A substituted or unsubstituted phosphino group,
A substituted or unsubstituted phosphine oxide group,
A substituted or unsubstituted alkylsulfide group having 1 to 20 carbon atoms, and a substituted or unsubstituted arylsulfide group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted sulfoxide group,
Substituted or unsubstituted sulfone group,
Examples include a fluoro group and a cyano group.
 以下、Qの置換基R、Qの任意の置換基、及び「置換若しくは無置換の」置換基の各基について具体的に説明する。
 本明細書において、芳香族環基は、単環の芳香族炭化水素環基、複数の炭化水素環が縮合した縮合芳香族炭化水素環基、及び複数の炭化水素環が単結合で連結した基を含み、複素芳香族環基は、単環のヘテロ芳香族環基、複数のヘテロ芳香族環が縮合したヘテロ縮合芳香族環基、及び芳香族炭化水素環とヘテロ芳香族環とが縮合したヘテロ縮合芳香族環基を含む。
 「環形成炭素」とは飽和炭化水素環、不飽和炭化水素環、又は芳香族環を構成する炭素原子を意味し、「環形成原子」とは複素芳香族環を構成する原子を意味する。
Hereinafter, each of the substituent R of Q, the arbitrary substituent of Q, and the “substituted or unsubstituted” substituent will be described in detail.
In the present specification, the aromatic ring group includes a monocyclic aromatic hydrocarbon ring group, a condensed aromatic hydrocarbon ring group in which a plurality of hydrocarbon rings are condensed, and a group in which a plurality of hydrocarbon rings are connected by a single bond. And the heteroaromatic ring group includes a monocyclic heteroaromatic ring group, a heterofused aromatic ring group in which a plurality of heteroaromatic rings are condensed, and an aromatic hydrocarbon ring and a heteroaromatic ring are condensed. Contains a hetero-fused aromatic ring group.
“Ring-forming carbon” means a carbon atom constituting a saturated hydrocarbon ring, an unsaturated hydrocarbon ring or an aromatic ring, and “ring-forming atom” means an atom constituting a heteroaromatic ring.
 環形成炭素数6~30の芳香族環基としては、フェニル基、トリル基、キシリル基、メシチル基、o-ビフェニル基、m-ビフェニル基、p-ビフェニル基、o-ターフェニル基、m-ターフェニル基、p-ターフェニル基、ナフチル基、フェナントリル基、フルオレニル基、アントリル基、フェナレニル基、フルオランテニル基、トリフェニレニル基、ナフタセニル基、クリセニル基、ピレニル基等が挙げられる。中でもフェニル基、o-ビフェニル基、m-ビフェニル基、p-ビフェニル基、m-ターフェニル基、p-ターフェニル基、ナフチル基、フェナントリル基、トリフェニレニル基が好ましい。 Examples of the aromatic ring group having 6 to 30 ring carbon atoms include phenyl group, tolyl group, xylyl group, mesityl group, o-biphenyl group, m-biphenyl group, p-biphenyl group, o-terphenyl group, m- Examples thereof include a terphenyl group, a p-terphenyl group, a naphthyl group, a phenanthryl group, a fluorenyl group, an anthryl group, a phenalenyl group, a fluoranthenyl group, a triphenylenyl group, a naphthacenyl group, a chrycenyl group, and a pyrenyl group. Of these, phenyl, o-biphenyl, m-biphenyl, p-biphenyl, m-terphenyl, p-terphenyl, naphthyl, phenanthryl, and triphenylenyl are preferred.
 環形成原子数5~30の複素芳香族環基としては、ピロリル基、ピラジニル基、ピリジニル基、ピリミジニル基、ピリダジニル基、トリアジニル基、インドリル基、イソインドリル基、キノリル基、イソキノリル基、キノキサリニル基、カルバゾリル基、アザカルバゾリル基、フェナントリジニル基、アクリジニル基、フェナントロリニル基、ピロリジニル基、ピペリジニル基、ピペラジニル基、トリアゾリル基、イミダゾリル基、ベンゾイミダゾリル基、フリル基、ベンゾフラニル基、イソベンゾフラニル基、ジベンゾフラニル基、ジオキサニル基、オキサゾリル基、ピラニル基、ベンゾ[c]ジベンゾフラニル基ジベンゾチオフェニル基、チエニル基、チオフェニル基、アザジベンゾフラニル基、モルフォリニル基、オキサジアゾリル基、ベンゾオキサゾリル基、アザジベンゾチオフェニル基、チアゾリル基、チアジアゾリル基、ベンゾチアゾリル基、ベンゾジアザボロール環基等が挙げられ、このうち環形成原子数6~14のものが好ましい。 Heteroaromatic ring groups having 5 to 30 ring atoms include pyrrolyl, pyrazinyl, pyridinyl, pyrimidinyl, pyridazinyl, triazinyl, indolyl, isoindolyl, quinolyl, isoquinolyl, quinoxalinyl, carbazolyl Group, azacarbazolyl group, phenanthridinyl group, acridinyl group, phenanthrolinyl group, pyrrolidinyl group, piperidinyl group, piperazinyl group, triazolyl group, imidazolyl group, benzoimidazolyl group, furyl group, benzofuranyl group, isobenzofuranyl group, Dibenzofuranyl group, dioxanyl group, oxazolyl group, pyranyl group, benzo [c] dibenzofuranyl group dibenzothiophenyl group, thienyl group, thiophenyl group, azadibenzofuranyl group, morpholinyl group, oxadiazolyl , Benzoxazolyl group, aza dibenzothiophenyl group, thiazolyl group, thiadiazolyl group, benzothiazolyl group, Zia Szabo roll ring group, and the like, are preferred for these ring atoms 6 to 14.
 炭素数1~20のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、ネオペンチル基、1-メチルペンチル基、2-メチルペンチル基、1-ペンチルヘキシル基、1-ブチルペンチル基、1-ヘプチルオクチル基、3-メチルペンチル基等が挙げられ、このうち炭素数1~6のものが好ましい。
 また、炭素数3~20のアルキル基としては、上記炭素数1~20のアルキル基の例からメチル基及びエチル基を除いたものである。
Examples of the alkyl group having 1 to 20 carbon atoms include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, n-pentyl group, and n-hexyl group. N-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group N-heptadecyl group, n-octadecyl group, neopentyl group, 1-methylpentyl group, 2-methylpentyl group, 1-pentylhexyl group, 1-butylpentyl group, 1-heptyloctyl group, 3-methylpentyl group, etc. Of these, those having 1 to 6 carbon atoms are preferred.
Further, the alkyl group having 3 to 20 carbon atoms is one obtained by removing the methyl group and the ethyl group from the examples of the alkyl group having 1 to 20 carbon atoms.
 環形成炭素数3~20のシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、ノルボルニル基、アダマンチル基等が挙げられ、このうち環形成炭素数5又は6のものが好ましい。 Examples of the cycloalkyl group having 3 to 20 ring carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a norbornyl group, an adamantyl group, and the like. Are preferred.
 炭素数1~20のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基等が挙げられ、炭素数が3以上のものは直鎖状、環状又は分岐を有するものでもよく、このうち炭素数1~6のものが好ましい。 Examples of the alkoxy group having 1 to 20 carbon atoms include methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group and the like, and those having 3 or more carbon atoms are linear, cyclic or branched Among them, those having 1 to 6 carbon atoms are preferable.
 炭素数3~20のシクロアルコキシ基としては、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基等が挙げられ、このうち環形成炭素数5又は6のものが好ましい。 Examples of the cycloalkoxy group having 3 to 20 carbon atoms include a cyclopropyloxy group, a cyclobutyloxy group, a cyclopentyloxy group, a cyclohexyloxy group, etc. Among them, those having 5 or 6 ring carbon atoms are preferable.
 環形成炭素数6~30のアリールオキシ基としては、フェノキシ基、ビフェニルオキシ基等が挙げられ、フェノキシ基が好ましい。 Examples of the aryloxy group having 6 to 30 ring carbon atoms include a phenoxy group and a biphenyloxy group, and a phenoxy group is preferable.
 炭素数2~20の不飽和脂肪族炭化水素基としては、エチレン基、プロピレン基、1-ブテン基、2-ブテン基、1,3-ブタジエン基、2-メチルプロペン基、1-ペンテン基、2-ペンテン基、1-ヘキセン基、2-ヘキセン基、3-ヘキセン基等が挙げられる。
 尚、置換基Rである場合には、上記の基のうち、sp混成軌道性を有する原子で、ベンゾジアザボロール骨格のベンゼン環に結合する不飽和脂肪族炭化水素基である。具体的には、エチレン基、1-プロペン-1-イル基、1-プロペン-2-イル基、1-ブテン-1-イル基、1-ブテン-2-イル基、2-ブテン-2-イル基、1,3-ブタジエン-1-イル基、1,3-ブタジエン-2-イル基、2-メチルプロペン-1-イル基、1-ペンテン-1-イル基、1-ペンテン-2-イル基、2-ペンテン-2-イル基、2-ペンテン-3-イル基、1-ヘキセン-1-イル基、1-ヘキセン-2-イル基、2-ヘキセン-2-イル基、2-ヘキセン-3-イル基、3-ヘキセン-3-イル基、3-ヘキセン-4-イル基等が挙げられる。
Examples of the unsaturated aliphatic hydrocarbon group having 2 to 20 carbon atoms include ethylene group, propylene group, 1-butene group, 2-butene group, 1,3-butadiene group, 2-methylpropene group, 1-pentene group, Examples include 2-pentene group, 1-hexene group, 2-hexene group, 3-hexene group and the like.
In addition, when it is the substituent R, it is an unsaturated aliphatic hydrocarbon group bonded to the benzene ring of the benzodiazaborol skeleton by an atom having sp 2 hybrid orbital among the above groups. Specifically, ethylene group, 1-propen-1-yl group, 1-propen-2-yl group, 1-buten-1-yl group, 1-buten-2-yl group, 2-buten-2- Yl group, 1,3-butadiene-1-yl group, 1,3-butadiene-2-yl group, 2-methylpropen-1-yl group, 1-penten-1-yl group, 1-penten-2- Yl, 2-penten-2-yl, 2-penten-3-yl, 1-hexen-1-yl, 1-hexen-2-yl, 2-hexen-2-yl, 2- Examples include a hexen-3-yl group, a 3-hexen-3-yl group, and a 3-hexen-4-yl group.
 環形成炭素数3~20の不飽和脂肪族炭化水素環基としては、シクロプロペン基、シクロブテン基、シクロペンテン基、シクロヘキセン基、シクロヘプテン基、シクロオクテン基等が挙げられる。
 尚、置換基Rである場合には、上記の基のうち、sp混成軌道性を有する原子で、ベンゾジアザボロール骨格のベンゼン環に結合する不飽和脂肪族炭化水素環基である。具体的には、シクロプロペン-1-イル基、シクロブテン-1-イル基、シクロペンテン-1-イル基、シクロヘキセン-1-イル基、シクロヘプテン-1-イル基、シクロオクテン-1-イル基等が挙げられる。
Examples of the unsaturated aliphatic hydrocarbon ring group having 3 to 20 ring carbon atoms include a cyclopropene group, a cyclobutene group, a cyclopentene group, a cyclohexene group, a cycloheptene group, and a cyclooctene group.
In addition, when it is the substituent R, it is an unsaturated aliphatic hydrocarbon ring group bonded to the benzene ring of the benzodiazaborol skeleton by an atom having sp 2 hybrid orbital among the above groups. Specifically, a cyclopropen-1-yl group, a cyclobuten-1-yl group, a cyclopenten-1-yl group, a cyclohexen-1-yl group, a cyclohepten-1-yl group, a cycloocten-1-yl group, etc. Can be mentioned.
 炭素数1~20のアルキルスルフィド基は、-SXと表され、Xは上記炭素数1~20のアルキル基であるものが挙げられる。 The alkyl sulfide group having 1 to 20 carbon atoms is represented by —SX, and X is the above alkyl group having 1 to 20 carbon atoms.
 環形成炭素数6~30のアリールスルフィド基は、-SYと表され、Yは上記環形成炭素数6~30の芳香族環基であるものが挙げられる、 An aryl sulfide group having 6 to 30 ring carbon atoms is represented by —SY, and Y is an aromatic ring group having 6 to 30 ring carbon atoms.
 「置換もしくは無置換の・・・」の「無置換」とは、水素原子が置換していることを意味し、 本発明において、水素原子とは、中性子数が異なる同位体、即ち、軽水素(protium)、重水素(deuterium)、三重水素(tritium)を包含する。 “Unsubstituted” in “substituted or unsubstituted...” Means that a hydrogen atom is substituted. In the present invention, a hydrogen atom is an isotope having a different neutron number, that is, light hydrogen. (Protium), deuterium, tritium.
 以下に、本発明の式(I-1)~(I-16)で表されるベンゾジアザボロール化合物の具体例を記載するが、本発明は下記の化合物に限定されない。 Specific examples of the benzodiazaborol compounds represented by the formulas (I-1) to (I-16) of the present invention are described below, but the present invention is not limited to the following compounds.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式(I-1)で表される本発明の化合物は実施例に記載の方法、又は当業者に公知の方法により合成できる。 The compound of the present invention represented by the formula (I-1) can be synthesized by the method described in Examples or a method known to those skilled in the art.
 式(I-1)で表される本発明の化合物は、従来のベンゾジアザボロール化合物に比べて、電気化学的酸化安定性に優れる。これは、本発明の化合物がベンゾジアザボロール骨格を構成するベンゼン環に、sp混成軌道性を有する原子で結合する特定の置換基又は縮合環を有し、かつジアザボロール環の2つの窒素原子に芳香族環基又は複素芳香族環基を有するからである。化合物の電気化学的酸化安定性は、実施例において記載するサイクリックボルタンメトリー測定によって評価することができる。
 尚、サイクリックボルタンメトリーの測定方法は実施例に記載した以外にも、当業者であれば化合物の性状等に応じて既知の知見に基づいて適宜変更して実施することができる。
The compound of the present invention represented by the formula (I-1) is excellent in electrochemical oxidation stability as compared with the conventional benzodiazaborol compound. This is because the compound of the present invention has a specific substituent or condensed ring bonded to the benzene ring constituting the benzodiazaborol skeleton with an atom having sp 2 hybrid orbital, and two nitrogen atoms of the diazabolol ring This is because it has an aromatic ring group or a heteroaromatic ring group. The electrochemical oxidative stability of the compound can be evaluated by the cyclic voltammetric measurement described in the examples.
In addition to the method described in the Examples, those skilled in the art can carry out the cyclic voltammetry by appropriately changing the method based on known knowledge according to the properties of the compound.
 また、本発明の化合物は、電気化学的酸化安定性が向上するのみならず、イオン化ポテンシャルが小さくなることで、有機EL素子の正孔が注入又は輸送される層内の材料として用いた場合に、さらなる低電圧化が期待できる。
 さらに、1,3,2-ジアザボロール環自体の三重項エネルギーがワイドギャップであることは知られているが、所定の位置にsp混成軌道性を有する置換基を有する式(I-1)~(I-16)で表される構造を有する場合にも三重項エネルギーがワイドギャップのまま維持されることは当業者であっても予測できない。
Further, the compound of the present invention not only improves the electrochemical oxidation stability but also reduces the ionization potential, so that it can be used as a material in a layer into which holes of an organic EL element are injected or transported. Further lower voltage can be expected.
Further, although it is known that the triplet energy of the 1,3,2-diazaborol ring itself is a wide gap, the compound having a substituent having sp 2 hybrid orbital property at a predetermined position (I-1) to Even in the case of having the structure represented by (I-16), even a person skilled in the art cannot predict that the triplet energy is maintained in a wide gap.
 次に、本発明の好ましい第2の態様について説明する。
 本発明のベンゾジアザボロール化合物は、下記式(II-1)で表される。
Figure JPOXMLDOC01-appb-C000014
Next, a preferred second aspect of the present invention will be described.
The benzodiazaborol compound of the present invention is represented by the following formula (II-1).
Figure JPOXMLDOC01-appb-C000014
 式中、
 A11及びA12は、それぞれ独立して、
置換若しくは無置換の環形成炭素数6~30の芳香族環基、
置換若しくは無置換の環形成原子数5~30の複素芳香族環基、
置換若しくは無置換の炭素数3~20のアルキル基、
置換若しくは無置換の環形成炭素数3~20のシクロアルキル基、
置換若しくは無置換のシリル基、
置換若しくは無置換のホスフィノ基、
置換若しくは無置換のホスフィンオキシド基、
置換若しくは無置換のスルホキシド基、又は
置換若しくは無置換のスルホン基であり、
Where
A 11 and A 12 are each independently
A substituted or unsubstituted aromatic ring group having 6 to 30 ring carbon atoms,
A substituted or unsubstituted heteroaromatic ring group having 5 to 30 ring atoms,
A substituted or unsubstituted alkyl group having 3 to 20 carbon atoms,
A substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms,
A substituted or unsubstituted silyl group,
A substituted or unsubstituted phosphino group,
A substituted or unsubstituted phosphine oxide group,
A substituted or unsubstituted sulfoxide group, or a substituted or unsubstituted sulfone group,
 A11とA12は、互いに結合して、ベンゾジアザボロール骨格の窒素原子及びホウ素原子を含めて5~7員環を形成してもよい。
 ただし、A11とA12とが互いに結合して、下記の5員環を形成することはない。
Figure JPOXMLDOC01-appb-C000015
A 11 and A 12 may be bonded to each other to form a 5- to 7-membered ring including a nitrogen atom and a boron atom of the benzodiazaborol skeleton.
However, A 11 and A 12 are not bonded to each other to form the following 5-membered ring.
Figure JPOXMLDOC01-appb-C000015
 即ち、A11とA12とが互いに結合して、下記骨格を有する化合物は前記式(II-1)から除かれる。
Figure JPOXMLDOC01-appb-C000016
That is, A 11 and A 12 are bonded to each other, and the compound having the following skeleton is excluded from the formula (II-1).
Figure JPOXMLDOC01-appb-C000016
 ジアザボロール環と縮合する環Q及びQは、それぞれ独立して、
置換若しくは無置換のベンゼン環、
置換若しくは無置換の環形成炭素数10~30の縮合芳香族環、又は
置換若しくは無置換の環形成原子数5~24の複素芳香族環が少なくとも1つ縮合した、置換若しくは無置換のベンゼン環である。
Rings Q 1 and Q 2 fused with the diazaborol ring are each independently
A substituted or unsubstituted benzene ring,
A substituted or unsubstituted benzene ring in which at least one substituted or unsubstituted condensed aromatic ring having 10 to 30 carbon atoms or a substituted or unsubstituted heterocyclic aromatic ring having 5 to 24 ring atoms is condensed It is.
 nは、1~6の整数であり、好ましくは1~3である。
 nが1の場合、Lは存在せず、
 nが2~6の場合、Lは、Q、Q、A11、及びA12のいずれか同士の間を架橋する連結基、又は単結合であり、
 nが2~6の場合、n個あるQ、Q、A11、及びA12は、互いに同一でも異なっていてもよい。
n 2 is an integer of 1 to 6, preferably 1 to 3.
When n 2 is 1, L 2 is not present,
When n 2 is 2 to 6, L 2 is a linking group that bridges between any of Q 1 , Q 2 , A 11 , and A 12 , or a single bond,
When n 2 is 2 to 6, n 2 Q 1 , Q 2 , A 11 , and A 12 may be the same as or different from each other.
 Lが連結基である場合の例としては、例えば、エーテル基、チオエーテル基、置換若しくは無置換の環形成炭素数6~30の芳香族環基、置換若しくは無置換の環形成原子数6~30の複素芳香族環基、及び置換若しくは無置換のアミノ基が挙げられ、エーテル基、並びに置換若しくは無置換のベンゼン環、置換若しくは無置換のジベンゾフラン環、ジベンゾチオフェン環、カルバゾール環、置換若しくは無置換のフルオレン環、及び置換若しくは無置換のビフェニルから誘導されるn価の基が好ましい。 Examples of the case where L 2 is a linking group include, for example, an ether group, a thioether group, a substituted or unsubstituted aromatic ring group having 6 to 30 ring carbon atoms, a substituted or unsubstituted ring atom number of 6 to 30 heteroaromatic ring groups, and substituted or unsubstituted amino groups, ether groups, substituted or unsubstituted benzene rings, substituted or unsubstituted dibenzofuran rings, dibenzothiophene rings, carbazole rings, substituted or unsubstituted substituted fluorene ring, and a substituted or n 2 divalent group derived from an unsubstituted biphenyl is preferred.
 Q及びQが、置換若しくは無置換の環形成炭素数10~30の縮合芳香族環、又は置換若しくは無置換の環形成原子数5~24の複素芳香族環が少なくとも1つ縮合した、置換若しくは無置換のベンゼン環である場合の該ベンゼン環を含む縮合環の具体例としては、例えば、置換若しくは無置換のフェナントレン、置換若しくは無置換のトリフェニレン、置換若しくは無置換のフルオレン、置換若しくは無置換のジベンゾフラン、置換若しくは無置換のジベンゾチオフェン、又は置換若しくは無置換のカルバゾール等が挙げられる。
 Q及びQとしては、置換若しくは無置換のベンゼン環が好ましい。
Q 1 and Q 2 are fused with at least one substituted or unsubstituted condensed aromatic ring having 10 to 30 ring carbon atoms, or substituted or unsubstituted heteroaromatic ring having 5 to 24 ring atoms. Specific examples of the condensed ring containing the benzene ring in the case of a substituted or unsubstituted benzene ring include, for example, substituted or unsubstituted phenanthrene, substituted or unsubstituted triphenylene, substituted or unsubstituted fluorene, substituted or unsubstituted Examples thereof include substituted dibenzofuran, substituted or unsubstituted dibenzothiophene, or substituted or unsubstituted carbazole.
Q 1 and Q 2 are preferably substituted or unsubstituted benzene rings.
 置換基A11及びA12の具体例については後述する。 Specific examples of the substituents A 11 and A 12 will be described later.
 上記式(II-1)で表されるベンゾジアザボロール化合物は、下記式(II-2)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000017
The benzodiazaborol compound represented by the above formula (II-1) is preferably a compound represented by the following formula (II-2).
Figure JPOXMLDOC01-appb-C000017
 式中、
 A11及びA12は前記式(II-1)で定義した通りであり、
Where
A 11 and A 12 are as defined in Formula (II-1),
 R~Rは、それぞれ独立して、
水素原子、
置換若しくは無置換の環形成炭素数6~30の芳香族環基、
置換若しくは無置換の環形成原子数5~30の複素芳香族環基、
sp混成軌道性を有する原子で結合する置換若しくは無置換の炭素数2~20の不飽和脂肪族炭化水素基、
sp混成軌道性を有する原子で結合する置換若しくは無置換の環形成炭素数3~20の不飽和脂肪族炭化水素環基、
置換若しくは無置換の炭素数3~20のアルキル基、
置換若しくは無置換の環形成炭素数3~20のシクロアルキル基、
置換若しくは無置換のシリル基、
置換若しくは無置換のホスフィノ基、
置換若しくは無置換のホスフィンオキシド基、
置換若しくは無置換のスルホキシド基、又は
置換若しくは無置換のスルホン基であり、
 R~Rのうちの隣接する基同士が結合して環を形成してもよい。
R 1 to R 8 are each independently
Hydrogen atom,
A substituted or unsubstituted aromatic ring group having 6 to 30 ring carbon atoms,
A substituted or unsubstituted heteroaromatic ring group having 5 to 30 ring atoms,
a substituted or unsubstituted unsaturated aliphatic hydrocarbon group having 2 to 20 carbon atoms bonded by an atom having sp 2 hybrid orbital property,
a substituted or unsubstituted ring-formed unsaturated aliphatic hydrocarbon ring group having 3 to 20 carbon atoms bonded by an atom having sp 2 hybrid orbital property,
A substituted or unsubstituted alkyl group having 3 to 20 carbon atoms,
A substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms,
A substituted or unsubstituted silyl group,
A substituted or unsubstituted phosphino group,
A substituted or unsubstituted phosphine oxide group,
A substituted or unsubstituted sulfoxide group, or a substituted or unsubstituted sulfone group,
Adjacent groups of R 1 to R 8 may be bonded to form a ring.
 尚、「sp混成軌道性を有する原子」としては、例えば、芳香族環内で3価の結合状態を持つ炭素原子、複素芳香族環内で3価の結合状態を持つ炭素原子もしくは窒素原子、エチレン基の炭素原子、エーテル基の酸素原子、アミノ基の窒素原子、ボリル基のホウ素原子、ホスフィノ基のリン原子、スルフィド基の硫黄原子が挙げられ、芳香族環内で3価の結合状態を持つ炭素原子、複素芳香族環内で3価の結合状態を持つ炭素原子もしくは窒素原子が好ましい。 As the "atoms having sp 2 hybrid orbital properties", for example, carbon atoms having a trivalent bonding states in the aromatic ring, carbon atom or a nitrogen atom having a trivalent bonding states in the heteroaromatic ring , Carbon atom of ethylene group, oxygen atom of ether group, nitrogen atom of amino group, boron atom of boryl group, phosphorus atom of phosphino group, sulfur atom of sulfide group, trivalent bonding state in aromatic ring A carbon atom having a carbon atom, a carbon atom having a trivalent bonding state in a heteroaromatic ring, or a nitrogen atom is preferable.
 A11、A12、及びR~Rの各基の具体例を、Q及びQの任意の置換基及び「置換若しくは無置換の」の置換基の具体例と合わせて説明する。 Specific examples of each group of A 11 , A 12 , and R 1 to R 8 will be described together with specific examples of the optional substituent of Q 1 and Q 2 and the substituent of “substituted or unsubstituted”.
 Q及びQの任意の置換基としては、
置換若しくは無置換の環形成炭素数6~30の芳香族環基、
置換若しくは無置換の環形成原子数5~30の複素芳香族環基、
置換若しくは無置換の炭素数1~20のアルキル基、
置換若しくは無置換の環形成炭素数3~20のシクロアルキル基、
置換若しくは無置換の炭素数2~20の不飽和脂肪族炭化水素基、
置換若しくは無置換の環形成炭素数3~20の不飽和脂肪族炭化水素環基、
置換若しくは無置換の炭素数1~20のアルコキシ基、
置換若しくは無置換の環形成炭素数3~20のシクロアルコキシ基、
置換若しくは無置換の環形成炭素数6~30のアリールオキシ基、
置換若しくは無置換のアミノ基、
置換若しくは無置換のボリル基、
置換若しくは無置換のシリル基、
置換若しくは無置換のホスフィノ基、
置換若しくは無置換のホスフィンオキシド基、
置換若しくは無置換の炭素数1~20のアルキルスルフィド基、
置換若しくは無置換の環形成炭素数6~30のアリールスルフィド基
置換若しくは無置換のスルホキシド基、
置換若しくは無置換のスルホン基、
フルオロ基、及び
シアノ基
が挙げられる。
As an optional substituent of Q 1 and Q 2 ,
A substituted or unsubstituted aromatic ring group having 6 to 30 ring carbon atoms,
A substituted or unsubstituted heteroaromatic ring group having 5 to 30 ring atoms,
A substituted or unsubstituted alkyl group having 1 to 20 carbon atoms,
A substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms,
A substituted or unsubstituted unsaturated aliphatic hydrocarbon group having 2 to 20 carbon atoms,
A substituted or unsubstituted cyclic aliphatic hydrocarbon group having 3 to 20 carbon atoms,
A substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms,
A substituted or unsubstituted cycloalkoxy group having 3 to 20 ring carbon atoms,
A substituted or unsubstituted aryloxy group having 6 to 30 ring carbon atoms,
A substituted or unsubstituted amino group,
Substituted or unsubstituted boryl group,
A substituted or unsubstituted silyl group,
A substituted or unsubstituted phosphino group,
A substituted or unsubstituted phosphine oxide group,
A substituted or unsubstituted alkyl sulfide group having 1 to 20 carbon atoms,
A substituted or unsubstituted arylsulfide group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted sulfoxide group,
Substituted or unsubstituted sulfone group,
Examples include a fluoro group and a cyano group.
 前記式(II-1)及び(II-2)中の各基における「置換若しくは無置換の」置換基としては、
置換若しくは無置換の環形成炭素数6~30の芳香族環基、
置換若しくは無置換の環形成原子数5~30の複素芳香族環基、
置換若しくは無置換の炭素数1~20のアルキル基、
置換若しくは無置換の環形成炭素数3~20のシクロアルキル基、
置換若しくは無置換の炭素数2~20の不飽和脂肪族炭化水素基、
置換若しくは無置換の環形成炭素数3~20の不飽和脂肪族炭化水素環基、
置換若しくは無置換の炭素数1~20のアルコキシ基、
置換若しくは無置換の環形成炭素数3~20のシクロアルコキシ基、
置換若しくは無置換の環形成炭素数6~30のアリールオキシ基、
置換若しくは無置換のアミノ基、
置換若しくは無置換のボリル基、
置換若しくは無置換のシリル基、
置換若しくは無置換のホスフィノ基、
置換若しくは無置換のホスフィンオキシド基、
置換若しくは無置換の炭素数1~20のアルキルスルフィド基、及び
置換若しくは無置換の環形成炭素数6~30のアリールスルフィド基
置換若しくは無置換のスルホキシド基、
置換若しくは無置換のスルホン基、
フルオロ基、及び
シアノ基
が挙げられる。
As the “substituted or unsubstituted” substituent in each group in the formulas (II-1) and (II-2),
A substituted or unsubstituted aromatic ring group having 6 to 30 ring carbon atoms,
A substituted or unsubstituted heteroaromatic ring group having 5 to 30 ring atoms,
A substituted or unsubstituted alkyl group having 1 to 20 carbon atoms,
A substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms,
A substituted or unsubstituted unsaturated aliphatic hydrocarbon group having 2 to 20 carbon atoms,
A substituted or unsubstituted cyclic aliphatic hydrocarbon group having 3 to 20 carbon atoms,
A substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms,
A substituted or unsubstituted cycloalkoxy group having 3 to 20 ring carbon atoms,
A substituted or unsubstituted aryloxy group having 6 to 30 ring carbon atoms,
A substituted or unsubstituted amino group,
Substituted or unsubstituted boryl group,
A substituted or unsubstituted silyl group,
A substituted or unsubstituted phosphino group,
A substituted or unsubstituted phosphine oxide group,
A substituted or unsubstituted alkylsulfide group having 1 to 20 carbon atoms, and a substituted or unsubstituted arylsulfide group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted sulfoxide group,
Substituted or unsubstituted sulfone group,
Examples include a fluoro group and a cyano group.
 以下、Q及びQの任意の置換基、及び「置換若しくは無置換の」置換基の各基について具体的に説明する。
 本明細書において、芳香族環基は、単環の芳香族炭化水素環基、複数の炭化水素環が縮合した縮合芳香族炭化水素環基、及び複数の炭化水素環が単結合で連結した基を含み、芳香族複素環基は、単環のヘテロ芳香族環基、複数のヘテロ芳香族環が縮合したヘテロ縮合芳香族環基、及び芳香族炭化水素環とヘテロ芳香族環とが縮合したヘテロ縮合芳香族環基を含む。
 「環形成炭素」とは飽和炭化水素環、不飽和炭化水素環、又は芳香族環を構成する炭素原子を意味し、「環形成原子」とは複素芳香族環を構成する原子を意味する。
Hereinafter, the arbitrary substituents of Q 1 and Q 2 and each group of the “substituted or unsubstituted” substituent will be specifically described.
In the present specification, the aromatic ring group includes a monocyclic aromatic hydrocarbon ring group, a condensed aromatic hydrocarbon ring group in which a plurality of hydrocarbon rings are condensed, and a group in which a plurality of hydrocarbon rings are connected by a single bond. The aromatic heterocyclic group includes a monocyclic heteroaromatic ring group, a hetero-fused aromatic ring group in which a plurality of heteroaromatic rings are condensed, and an aromatic hydrocarbon ring and a heteroaromatic ring are condensed. Contains a hetero-fused aromatic ring group.
“Ring-forming carbon” means a carbon atom constituting a saturated hydrocarbon ring, an unsaturated hydrocarbon ring or an aromatic ring, and “ring-forming atom” means an atom constituting a heteroaromatic ring.
 環形成炭素数6~30の芳香族環基としては、フェニル基、トリル基、キシリル基、メシチル基、o-ビフェニル基、m-ビフェニル基、p-ビフェニル基、o-ターフェニル基、m-ターフェニル基、p-ターフェニル基、ナフチル基、フェナントリル基、フルオレニル基、アントリル基、フェナレニル基、フルオランテニル基、トリフェニレニル基、ナフタセニル基、クリセニル基、ピレニル基等が挙げられる。中でもフェニル基、o-ビフェニル基、m-ビフェニル基、p-ビフェニル基、m-ターフェニル基、p-ターフェニル基、ナフチル基、フェナントリル基、トリフェニレニル基が好ましい。 Examples of the aromatic ring group having 6 to 30 ring carbon atoms include phenyl group, tolyl group, xylyl group, mesityl group, o-biphenyl group, m-biphenyl group, p-biphenyl group, o-terphenyl group, m- Examples thereof include a terphenyl group, a p-terphenyl group, a naphthyl group, a phenanthryl group, a fluorenyl group, an anthryl group, a phenalenyl group, a fluoranthenyl group, a triphenylenyl group, a naphthacenyl group, a chrycenyl group, and a pyrenyl group. Of these, phenyl, o-biphenyl, m-biphenyl, p-biphenyl, m-terphenyl, p-terphenyl, naphthyl, phenanthryl, and triphenylenyl are preferred.
 環形成原子数5~30の複素芳香族環基としては、ピロリル基、ピラジニル基、ピリジニル基、ピリミジニル基、ピリダジニル基、トリアジニル基、インドリル基、イソインドリル基、キノリル基、イソキノリル基、キノキサリニル基、カルバゾリル基、アザカルバゾリル基、フェナントリジニル基、アクリジニル基、フェナントロリニル基、ピロリジニル基、ピペリジニル基、ピペラジニル基、トリアゾリル基、イミダゾリル基、ベンゾイミダゾリル基、フリル基、ベンゾフラニル基、イソベンゾフラニル基、ジベンゾフラニル基、ジオキサニル基、オキサゾリル基、ピラニル基、ベンゾ[c]ジベンゾフラニル基、ジベンゾチオフェニル基、チエニル基、チオフェニル基、アザジベンゾフラニル基、モルフォリニル基、オキサジアゾリル基、ベンゾオキサゾリル基、アザジベンゾチオフェニル基、チアゾリル基、チアジアゾリル基、ベンゾチアゾリル基、ベンゾジアザボロール環基等が挙げられ、このうち環形成原子数6~14のものが好ましい。 Heteroaromatic ring groups having 5 to 30 ring atoms include pyrrolyl, pyrazinyl, pyridinyl, pyrimidinyl, pyridazinyl, triazinyl, indolyl, isoindolyl, quinolyl, isoquinolyl, quinoxalinyl, carbazolyl Group, azacarbazolyl group, phenanthridinyl group, acridinyl group, phenanthrolinyl group, pyrrolidinyl group, piperidinyl group, piperazinyl group, triazolyl group, imidazolyl group, benzoimidazolyl group, furyl group, benzofuranyl group, isobenzofuranyl group, Dibenzofuranyl, dioxanyl, oxazolyl, pyranyl, benzo [c] dibenzofuranyl, dibenzothiophenyl, thienyl, thiophenyl, azadibenzofuranyl, morpholinyl, oxadiazoli Group, benzoxazolyl group, aza dibenzothiophenyl group, thiazolyl group, thiadiazolyl group, benzothiazolyl group, Zia Szabo roll ring group, and the like, are preferred for these ring atoms 6 to 14.
 炭素数1~20のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、ネオペンチル基、1-メチルペンチル基、2-メチルペンチル基、1-ペンチルヘキシル基、1-ブチルペンチル基、1-ヘプチルオクチル基、3-メチルペンチル基等が挙げられ、このうち炭素数1~6のものが好ましい。
 また、炭素数3~20のアルキル基としては、上記炭素数1~20のアルキル基の例からメチル基及びエチル基を除いたものである。
Examples of the alkyl group having 1 to 20 carbon atoms include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, n-pentyl group, and n-hexyl group. N-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group N-heptadecyl group, n-octadecyl group, neopentyl group, 1-methylpentyl group, 2-methylpentyl group, 1-pentylhexyl group, 1-butylpentyl group, 1-heptyloctyl group, 3-methylpentyl group, etc. Of these, those having 1 to 6 carbon atoms are preferred.
Further, the alkyl group having 3 to 20 carbon atoms is one obtained by removing the methyl group and the ethyl group from the examples of the alkyl group having 1 to 20 carbon atoms.
 環形成炭素数3~20のシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、ノルボルニル基、アダマンチル基等が挙げられ、このうち環形成炭素数5又は6のものが好ましい。 Examples of the cycloalkyl group having 3 to 20 ring carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a norbornyl group, an adamantyl group, and the like. Are preferred.
 炭素数1~20のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基等が挙げられ、炭素数が3以上のものは直鎖状、環状又は分岐を有するものでもよく、このうち炭素数1~6のものが好ましい。 Examples of the alkoxy group having 1 to 20 carbon atoms include methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group and the like, and those having 3 or more carbon atoms are linear, cyclic or branched Among them, those having 1 to 6 carbon atoms are preferable.
 炭素数3~20のシクロアルコキシ基としては、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基等が挙げられ、このうち環形成炭素数5又は6のものが好ましい。 Examples of the cycloalkoxy group having 3 to 20 carbon atoms include a cyclopropyloxy group, a cyclobutyloxy group, a cyclopentyloxy group, a cyclohexyloxy group, etc. Among them, those having 5 or 6 ring carbon atoms are preferable.
 環形成炭素数6~30のアリールオキシ基としては、フェノキシ基、ビフェニルオキシ基等が挙げられ、フェノキシ基が好ましい。 Examples of the aryloxy group having 6 to 30 ring carbon atoms include a phenoxy group and a biphenyloxy group, and a phenoxy group is preferable.
 炭素数2~20の不飽和脂肪族炭化水素基としては、エチレン基、プロピレン基、1-ブテン基、2-ブテン基、1,3-ブタジエン基、2-メチルプロペン基、1-ペンテン基、2-ペンテン基、1-ヘキセン基、2-ヘキセン基、3-ヘキセン基等が挙げられる。 Examples of the unsaturated aliphatic hydrocarbon group having 2 to 20 carbon atoms include ethylene group, propylene group, 1-butene group, 2-butene group, 1,3-butadiene group, 2-methylpropene group, 1-pentene group, Examples include 2-pentene group, 1-hexene group, 2-hexene group, 3-hexene group and the like.
 環形成炭素数3~20の不飽和脂肪族炭化水素環基としては、シクロプロペン基、シクロブテン基、シクロペンテン基、シクロヘキセン基、シクロヘプテン基、シクロオクテン基等が挙げられる。 Examples of the unsaturated aliphatic hydrocarbon ring group having 3 to 20 ring carbon atoms include a cyclopropene group, a cyclobutene group, a cyclopentene group, a cyclohexene group, a cycloheptene group, and a cyclooctene group.
 炭素数1~20のアルキルスルフィド基は、-SXと表され、Xは上記炭素数1~20のアルキル基であるものが挙げられる。 The alkyl sulfide group having 1 to 20 carbon atoms is represented by —SX, and X is the above alkyl group having 1 to 20 carbon atoms.
 環形成炭素数6~30のアリールスルフィド基は、-SYと表され、Yは上記環形成炭素数6~30の芳香族環基であるものが挙げられる、 An aryl sulfide group having 6 to 30 ring carbon atoms is represented by —SY, and Y is an aromatic ring group having 6 to 30 ring carbon atoms.
 前記A11及びA12は、それぞれ独立して、
置換若しくは無置換の環形成炭素数6~30の芳香族環基、又は
置換若しくは無置換の環形成原子数5~30の複素芳香族環基
であることが好ましい。
A 11 and A 12 are each independently
It is preferably a substituted or unsubstituted aromatic ring group having 6 to 30 ring carbon atoms or a substituted or unsubstituted heteroaromatic ring group having 5 to 30 ring atoms.
 前記A11及びA12は、それぞれ独立して、
置換若しくは無置換のフェニル基、
置換若しくは無置換のビフェニル基、
置換若しくは無置換のターフェニル基、
置換若しくは無置換のフルオレニル基、
置換若しくは無置換のピリジニル基、
置換若しくは無置換のピリミジニル基、
置換若しくは無置換のトリアジニル基、
置換若しくは無置換のジベンゾフラニル基、
置換若しくは無置換のカルバゾリル基、
置換若しくは無置換のジベンゾチオフェニル基、
置換若しくは無置換のカルバゾリル基、
置換若しくは無置換のアザジベンゾフラニル基、
置換若しくは無置換のアザジベンゾチオフェニル基、
置換若しくは無置換のアザカルバゾリル基、
置換若しくは無置換のベンゾイミダゾリル基、及び
置換若しくは無置換のイミダゾリル基
からなる群から選択されることがより好ましい。
A 11 and A 12 are each independently
A substituted or unsubstituted phenyl group,
A substituted or unsubstituted biphenyl group,
A substituted or unsubstituted terphenyl group,
A substituted or unsubstituted fluorenyl group,
A substituted or unsubstituted pyridinyl group,
A substituted or unsubstituted pyrimidinyl group,
A substituted or unsubstituted triazinyl group,
A substituted or unsubstituted dibenzofuranyl group,
A substituted or unsubstituted carbazolyl group,
A substituted or unsubstituted dibenzothiophenyl group,
A substituted or unsubstituted carbazolyl group,
A substituted or unsubstituted azadibenzofuranyl group,
A substituted or unsubstituted azadibenzothiophenyl group,
A substituted or unsubstituted azacarbazolyl group,
More preferably, it is selected from the group consisting of a substituted or unsubstituted benzimidazolyl group and a substituted or unsubstituted imidazolyl group.
 前記R~Rのうち少なくとも1つは水素原子ではないsp性を有する原子で結合する置換基であることが好ましい。 At least one of R 1 to R 8 is preferably a substituent bonded by an atom having sp 2 property that is not a hydrogen atom.
 前記R~Rのうちの1又は2個は、それぞれ独立して、
置換若しくは無置換のフェニル基、
置換若しくは無置換のビフェニル基、
置換若しくは無置換のターフェニル基、
置換若しくは無置換のフルオレニル基、
置換若しくは無置換のピリジニル基、
置換若しくは無置換のピリミジニル基、
置換若しくは無置換のトリアジニル基、
置換若しくは無置換のジベンゾフラニル基、
置換若しくは無置換のカルバゾリル基、
置換若しくは無置換のジベンゾチオフェニル基、
置換若しくは無置換のカルバゾリル基、
置換若しくは無置換のアザジベンゾフラニル基、
置換若しくは無置換のアザジベンゾチオフェニル基、
置換若しくは無置換のアザカルバゾリル基、
置換若しくは無置換のベンゾイミダゾリル基、及び
置換若しくは無置換のイミダゾリル基
からなる群から選択される基であり、
 それ以外のR~Rが水素原子であることが好ましい。
One or two of R 1 to R 8 are each independently
A substituted or unsubstituted phenyl group,
A substituted or unsubstituted biphenyl group,
A substituted or unsubstituted terphenyl group,
A substituted or unsubstituted fluorenyl group,
A substituted or unsubstituted pyridinyl group,
A substituted or unsubstituted pyrimidinyl group,
A substituted or unsubstituted triazinyl group,
A substituted or unsubstituted dibenzofuranyl group,
A substituted or unsubstituted carbazolyl group,
A substituted or unsubstituted dibenzothiophenyl group,
A substituted or unsubstituted carbazolyl group,
A substituted or unsubstituted azadibenzofuranyl group,
A substituted or unsubstituted azadibenzothiophenyl group,
A substituted or unsubstituted azacarbazolyl group,
A group selected from the group consisting of a substituted or unsubstituted benzimidazolyl group and a substituted or unsubstituted imidazolyl group,
The other R 1 to R 8 are preferably hydrogen atoms.
 「置換もしくは無置換の・・・」の「無置換」とは、水素原子が置換していることを意味し、本発明において、水素原子とは、中性子数が異なる同位体、即ち、軽水素(protium)、重水素(deuterium)、三重水素(tritium)を包含する。 “Unsubstituted” in “substituted or unsubstituted...” Means that a hydrogen atom is substituted. In the present invention, a hydrogen atom is an isotope having a different neutron number, that is, light hydrogen. (Protium), deuterium, tritium.
 Q、Q、A11、A12、及びR~Rの任意の置換基はさらに置換基を有していてもよい。 Any substituents of Q 1 , Q 2 , A 11 , A 12 , and R 1 to R 8 may further have a substituent.
 以下に、本発明の式(II-1)及び(II-2)で表されるベンゾジアザボロール化合物の具体例を記載するが、本発明は下記の化合物に限定されない。 Specific examples of the benzodiazaborol compounds represented by the formulas (II-1) and (II-2) of the present invention are described below, but the present invention is not limited to the following compounds.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 式(II-1)で表される本発明の化合物は実施例に記載の方法、又は当業者に公知の方法により合成できる。 The compound of the present invention represented by the formula (II-1) can be synthesized by the method described in Examples or a method known to those skilled in the art.
 式(II-1)で表される本発明の化合物は、従来のベンゾジアザボロール化合物に比べて、電気化学的酸化安定性に優れる。
 この効果は、本発明の化合物が縮合した2つのジアザボロール環の窒素原子に芳香族環基又は複素芳香族環基を有している場合、さらに2つのベンゾジアザボロール骨格を構成する各ベンゼン環に、sp混成軌道性を有する原子で結合する特定の置換基又は縮合環を有する場合により顕著である。
The compound of the present invention represented by the formula (II-1) is excellent in electrochemical oxidative stability as compared with conventional benzodiazaborol compounds.
This effect is obtained when each of the benzene rings constituting the two benzodiazaborol skeletons further has an aromatic ring group or a heteroaromatic ring group at the nitrogen atom of the two diazaborol rings condensed with the compound of the present invention. In particular, it is more prominent when it has a specific substituent or fused ring bonded by an atom having sp 2 hybrid orbital properties.
 また、式(II-1)で表される本発明の化合物は、電気化学的酸化安定性が向上するのみならず、イオン化ポテンシャルが浅くなることで、有機EL素子の正孔が注入又は輸送される層内の材料として用いた場合に、さらなる低電圧化が期待できる。
 さらに、1,3,2-ジアザボロール環自体の三重項エネルギーがワイドギャップであることは知られているが、2個のベンゾジアザボロール骨格がホウ素原子及び窒素原子を介して縮合した骨格を有し、かつジアザボロール環の縮合に使用されない2つの窒素原子に芳香族環基又は複素芳香族環基を有する式(II-1)で表される構造を有する場合にも三重項エネルギーがワイドギャップのまま維持されることは当業者であっても予測できない。
Further, the compound of the present invention represented by the formula (II-1) not only improves the electrochemical oxidation stability, but also has a shallow ionization potential, so that holes of the organic EL element are injected or transported. When used as a material in a layer, a further lower voltage can be expected.
Furthermore, although it is known that the triplet energy of the 1,3,2-diazaborol ring itself is a wide gap, it has a skeleton in which two benzodiazaborol skeletons are condensed via a boron atom and a nitrogen atom. However, the triplet energy has a wide gap even when it has a structure represented by the formula (II-1) having an aromatic ring group or a heteroaromatic ring group at two nitrogen atoms that are not used for the condensation of the diazaborol ring. It will not be anticipated by those skilled in the art that it will be maintained.
(有機エレクトロルミネッセンス素子用材料)
 本発明の有機エレクトロルミネッセンス素子(有機EL素子)用材料(以下、本発明の材料ということがある)は、上記式(1)で表される本発明の化合物を含むことを特徴とする。
 本発明の有機EL素子用材料は、有機EL素子を構成する有機薄膜層の材料として好適に使用できる。
(Materials for organic electroluminescence elements)
The material for an organic electroluminescence element (organic EL element) of the present invention (hereinafter sometimes referred to as the material of the present invention) includes the compound of the present invention represented by the above formula (1).
The material for an organic EL device of the present invention can be suitably used as a material for an organic thin film layer constituting the organic EL device.
 続いて、本発明の有機EL素子について説明する。
 本発明の有機EL素子は、陽極と陰極の間に、発光層を含む1層以上の有機薄膜層を有する。そして、有機薄膜層の少なくとも1層が、本発明の有機EL素子用材料を含有する。
Next, the organic EL element of the present invention will be described.
The organic EL device of the present invention has one or more organic thin film layers including a light emitting layer between an anode and a cathode. And at least 1 layer of an organic thin film layer contains the organic EL element material of this invention.
(有機エレクトロルミネッセンス素子)
 次に、本発明の有機EL素子の実施の形態について説明する。
 本発明の有機EL素子は、陰極と陽極の間に発光層を含有する有機薄膜層を有し、この有機薄膜層のうちの少なくとも1層が前述した本発明の有機EL素子用材料を含むことにより、有機EL素子を長寿命化できる。
 本発明の有機EL素子用材料が含まれる有機薄膜層の例としては、正孔輸送層、発光層、電子輸送層、スペース層、及び障壁層等が挙げられるが、これらに限定されるものではない。本発明の有機EL素子用材料は、発光層に含まれることが好ましく、特に、発光層のホスト材料として用いられることが好ましい。また、発光層は蛍光発光材料や燐光発光材料を含有することが好ましく、特に燐光発光材料を含有することが好ましい。さらにまた、本発明の有機EL素子用材料は、正孔輸送帯域に用いられる有機層としても好適であり、
また、正孔輸送帯域に添加される材料としても好適である。
(Organic electroluminescence device)
Next, an embodiment of the organic EL element of the present invention will be described.
The organic EL device of the present invention has an organic thin film layer containing a light emitting layer between a cathode and an anode, and at least one of the organic thin film layers contains the above-described organic EL device material of the present invention. Thus, the life of the organic EL element can be extended.
Examples of the organic thin film layer containing the organic EL device material of the present invention include a hole transport layer, a light emitting layer, an electron transport layer, a space layer, and a barrier layer, but are not limited thereto. Absent. The material for an organic EL device of the present invention is preferably contained in the light emitting layer, and particularly preferably used as a host material for the light emitting layer. Further, the light emitting layer preferably contains a fluorescent light emitting material or a phosphorescent light emitting material, and particularly preferably contains a phosphorescent light emitting material. Furthermore, the organic EL device material of the present invention is also suitable as an organic layer used in a hole transport zone,
It is also suitable as a material added to the hole transport zone.
 本発明の有機EL素子は、蛍光又は燐光発光型の単色発光素子であっても、蛍光/燐光ハイブリッド型の白色発光素子であってもよいし、単独の発光ユニットを有するシンプル型であっても、複数の発光ユニットを有するタンデム型であってもよく、中でも、燐光発光型であることが好ましい。ここで、「発光ユニット」とは、一層以上の有機層を含み、そのうちの一層が発光層であり、注入された正孔と電子が再結合することにより発光することができる最小単位をいう。 The organic EL element of the present invention may be a fluorescent or phosphorescent monochromatic light emitting element, a fluorescent / phosphorescent hybrid white light emitting element, or a simple type having a single light emitting unit. A tandem type having a plurality of light emitting units may be used, and among them, a phosphorescent type is preferable. Here, the “light emitting unit” refers to a minimum unit that includes one or more organic layers, one of which is a light emitting layer, and can emit light by recombination of injected holes and electrons.
 従って、シンプル型有機EL素子の代表的な素子構成としては、以下の素子構成を挙げることができる。
(1)陽極/発光ユニット/陰極
 また、上記発光ユニットは、燐光発光層や蛍光発光層を複数有する積層型であってもよく、その場合、各発光層の間に、燐光発光層で生成された励起子が蛍光発光層に拡散することを防ぐ目的で、スペース層を有していてもよい。発光ユニットの代表的な層構成を以下に示す。
(a)正孔輸送層/発光層(/電子輸送層)
(b)正孔輸送層/第一燐光発光層/第二燐光発光層(/電子輸送層)
(c)正孔輸送層/燐光発光層/スペース層/蛍光発光層(/電子輸送層)
(d)正孔輸送層/第一燐光発光層/第二燐光発光層/スペース層/蛍光発光層(/電子輸送層)
(e)正孔輸送層/第一燐光発光層/スペース層/第二燐光発光層/スペース層/蛍光発光層(/電子輸送層)
(f)正孔輸送層/燐光発光層/スペース層/第一蛍光発光層/第二蛍光発光層(/電子輸送層)
(g)正孔輸送層/電子障壁層/発光層(/電子輸送層)
(h)正孔輸送層/発光層/正孔障壁層(/電子輸送層)
(i)正孔輸送層/蛍光発光層/トリプレット障壁層(/電子輸送層)
Accordingly, typical element configurations of simple organic EL elements include the following element configurations.
(1) Anode / light emitting unit / cathode The above light emitting unit may be a laminated type having a plurality of phosphorescent light emitting layers and fluorescent light emitting layers. In that case, the light emitting unit is generated by a phosphorescent light emitting layer between the light emitting layers. In order to prevent the excitons from diffusing into the fluorescent light emitting layer, a space layer may be provided. A typical layer structure of the light emitting unit is shown below.
(A) Hole transport layer / light emitting layer (/ electron transport layer)
(B) Hole transport layer / first phosphorescent light emitting layer / second phosphorescent light emitting layer (/ electron transport layer)
(C) Hole transport layer / phosphorescent layer / space layer / fluorescent layer (/ electron transport layer)
(D) Hole transport layer / first phosphorescent light emitting layer / second phosphorescent light emitting layer / space layer / fluorescent light emitting layer (/ electron transport layer)
(E) Hole transport layer / first phosphorescent light emitting layer / space layer / second phosphorescent light emitting layer / space layer / fluorescent light emitting layer (/ electron transport layer)
(F) Hole transport layer / phosphorescent layer / space layer / first fluorescent layer / second fluorescent layer (/ electron transport layer)
(G) Hole transport layer / electron barrier layer / light emitting layer (/ electron transport layer)
(H) Hole transport layer / light emitting layer / hole barrier layer (/ electron transport layer)
(I) Hole transport layer / fluorescent light emitting layer / triplet barrier layer (/ electron transport layer)
 上記各燐光又は蛍光発光層は、それぞれ互いに異なる発光色を示すものとすることができる。具体的には、上記積層発光層(d)において、正孔輸送層/第一燐光発光層(赤色発光)/第二燐光発光層(緑色発光)/スペース層/蛍光発光層(青色発光)/電子輸送層といった層構成等が挙げられる。
 尚、各発光層と正孔輸送層あるいはスペース層との間には、適宜、電子障壁層を設けてもよい。また、各発光層と電子輸送層との間には、適宜、正孔障壁層を設けてもよい。電子障壁層や正孔障壁層を設けることで、電子又は正孔を発光層内に閉じ込めて、発光層における電荷の再結合確率を高め、寿命を向上させることができる。
Each phosphorescent or fluorescent light-emitting layer may have a different emission color. Specifically, in the laminated light emitting layer (d), hole transport layer / first phosphorescent light emitting layer (red light emitting) / second phosphorescent light emitting layer (green light emitting) / space layer / fluorescent light emitting layer (blue light emitting) / Examples include a layer configuration such as an electron transport layer.
An electron barrier layer may be appropriately provided between each light emitting layer and the hole transport layer or space layer. Further, a hole blocking layer may be appropriately provided between each light emitting layer and the electron transport layer. By providing an electron barrier layer or a hole barrier layer, electrons or holes can be confined in the light emitting layer, the recombination probability of charges in the light emitting layer can be increased, and the lifetime can be improved.
 タンデム型有機EL素子の代表的な素子構成としては、以下の素子構成を挙げることができる。
(2)陽極/第一発光ユニット/中間層/第二発光ユニット/陰極
 ここで、上記第一発光ユニット及び第二発光ユニットとしては、例えば、それぞれ独立に上述の発光ユニットと同様のものを選択することができる。
 上記中間層は、一般的に、中間電極、中間導電層、電荷発生層、電子引抜層、接続層、中間絶縁層とも呼ばれ、第一発光ユニットに電子を、第二発光ユニットに正孔を供給する、公知の材料構成を用いることができる。
The following element structure can be mentioned as a typical element structure of a tandem type organic EL element.
(2) Anode / first light emitting unit / intermediate layer / second light emitting unit / cathode Here, as the first light emitting unit and the second light emitting unit, for example, the same light emitting unit as that described above is selected independently. can do.
The intermediate layer is generally called an intermediate electrode, an intermediate conductive layer, a charge generation layer, an electron extraction layer, a connection layer, or an intermediate insulating layer, and has electrons in the first light emitting unit and holes in the second light emitting unit. A known material structure to be supplied can be used.
 図1は、本発明の有機EL素子の一実施形態の層構成を示す概略図である。
 有機EL素子1は、基板10上に、陽極20、正孔輸送帯域30、発光層40、電子輸送帯域50及び陰極60を、この順で積層した構成を有する。正孔輸送帯域30は、陽極20と発光層40に挟まれた有機層をいい、例えば正孔輸送層、正孔注入層、電子障壁層等を意味する。同様に、電子輸送帯域50は、陰極60と発光層40に挟まれた有機層をいい、例えば電子輸送層、電子注入層、正孔障壁層等を意味する。障壁層は、電子や正孔を発光層40に閉じ込めて、発光層40における励起子の生成確率を高めることができる。これらは形成しなくともよいが、好ましくは1層以上形成する。この素子において有機薄膜層は、正孔輸送帯域30に設けられる各有機層、発光層40及び電子輸送帯域50に設けられる各有機層である。これら有機薄膜層のうち、少なくとも1層が本発明の有機EL素子用材料を含有する。
 尚、本発明の有機EL素子用材料を含有する有機薄膜層1層に対するこの材料の含有量は、好ましくは1~100重量%である。
FIG. 1 is a schematic view showing a layer structure of an embodiment of the organic EL device of the present invention.
The organic EL element 1 has a configuration in which an anode 20, a hole transport zone 30, a light emitting layer 40, an electron transport zone 50, and a cathode 60 are laminated on a substrate 10 in this order. The hole transport zone 30 refers to an organic layer sandwiched between the anode 20 and the light emitting layer 40, and means, for example, a hole transport layer, a hole injection layer, an electron barrier layer, or the like. Similarly, the electron transport zone 50 refers to an organic layer sandwiched between the cathode 60 and the light emitting layer 40, and means, for example, an electron transport layer, an electron injection layer, a hole barrier layer, or the like. The barrier layer can confine electrons and holes in the light emitting layer 40 and increase the probability of exciton generation in the light emitting layer 40. These need not be formed, but preferably one or more layers are formed. In this element, the organic thin film layer is each organic layer provided in the hole transport zone 30, each light emitting layer 40, and each organic layer provided in the electron transport zone 50. Among these organic thin film layers, at least one layer contains the organic EL element material of the present invention.
The content of this material with respect to one organic thin film layer containing the organic EL element material of the present invention is preferably 1 to 100% by weight.
 尚、本明細書において、蛍光ドーパントと組み合わされたホストを蛍光ホストと称し、燐光ドーパントと組み合わされたホストを燐光ホストと称する。蛍光ホストと燐光ホストは分子構造のみにより区分されるものではない。即ち、燐光ホストとは、燐光ドーパントを含有する燐光発光層を構成する材料を意味し、蛍光発光層を構成する材料として利用できないことを意味しているわけではない。蛍光ホストについても同様である。 In this specification, a host combined with a fluorescent dopant is referred to as a fluorescent host, and a host combined with a phosphorescent dopant is referred to as a phosphorescent host. The fluorescent host and the phosphorescent host are not distinguished only by the molecular structure. That is, the phosphorescent host means a material constituting a phosphorescent light emitting layer containing a phosphorescent dopant, and does not mean that it cannot be used as a material constituting a fluorescent light emitting layer. The same applies to the fluorescent host.
(基板)
 本発明の有機EL素子は、透光性基板上に作製する。透光性基板は有機EL素子を支持する基板であり、400nm~700nmの可視領域の光の透過率が50%以上で平滑な基板が好ましい。具体的には、ガラス板、ポリマー板等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を原料として用いてなるものを挙げられる。またポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を原料として用いてなるものを挙げることができる。
(substrate)
The organic EL element of the present invention is produced on a translucent substrate. The light-transmitting substrate is a substrate that supports the organic EL element, and is preferably a smooth substrate having a light transmittance in the visible region of 400 nm to 700 nm of 50% or more. Specifically, a glass plate, a polymer plate, etc. are mentioned. Examples of the glass plate include those using soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, quartz and the like as raw materials. Examples of the polymer plate include those using polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, polysulfone and the like as raw materials.
(陽極)
 有機EL素子の陽極は、正孔を正孔輸送層又は発光層に注入する役割を担うものであり、4.5eV以上の仕事関数を有するものを用いることが効果的である。陽極材料の具体例としては、酸化インジウム錫合金(ITO)、酸化錫(NESA)、酸化インジウム亜鉛酸化物、金、銀、白金、銅等が挙げられる。陽極はこれらの電極物質を蒸着法やスパッタリング法等の方法で薄膜を形成させることにより作製することができる。発光層からの発光を陽極から取り出す場合、陽極の可視領域の光の透過率を10%より大きくすることが好ましい。また、陽極のシート抵抗は、数百Ω/□以下が好ましい。陽極の膜厚は、材料にもよるが、通常10nm~1μm、好ましくは10nm~200nmの範囲で選択される。
(anode)
The anode of the organic EL element plays a role of injecting holes into the hole transport layer or the light emitting layer, and it is effective to use a material having a work function of 4.5 eV or more. Specific examples of the anode material include indium tin oxide alloy (ITO), tin oxide (NESA), indium zinc oxide, gold, silver, platinum, copper, and the like. The anode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. When light emitted from the light emitting layer is extracted from the anode, it is preferable that the transmittance of light in the visible region of the anode is greater than 10%. The sheet resistance of the anode is preferably several hundred Ω / □ or less. The film thickness of the anode depends on the material, but is usually selected in the range of 10 nm to 1 μm, preferably 10 nm to 200 nm.
(陰極)
 陰極は電子注入層、電子輸送層又は発光層に電子を注入する役割を担うものであり、仕事関数の小さい材料により形成するのが好ましい。陰極材料は特に限定されないが、具体的にはインジウム、アルミニウム、マグネシウム、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、アルミニウム-リチウム合金、アルミニウム-スカンジウム-リチウム合金、マグネシウム-銀合金等が使用できる。陰極も、陽極と同様に、蒸着法やスパッタリング法等の方法で薄膜を形成させることにより作製することができる。また、必要に応じて、陰極側から発光を取り出してもよい。
(cathode)
The cathode plays a role of injecting electrons into the electron injection layer, the electron transport layer or the light emitting layer, and is preferably formed of a material having a small work function. The cathode material is not particularly limited, and specifically, indium, aluminum, magnesium, magnesium-indium alloy, magnesium-aluminum alloy, aluminum-lithium alloy, aluminum-scandium-lithium alloy, magnesium-silver alloy and the like can be used. Similarly to the anode, the cathode can be produced by forming a thin film by a method such as vapor deposition or sputtering. Moreover, you may take out light emission from the cathode side as needed.
(発光層)
 発光機能を有する有機層であって、ドーピングシステムを採用する場合、ホスト材料とドーパント材料を含んでいる。このとき、ホスト材料は、主に電子と正孔の再結合を促し、励起子を発光層内に閉じ込める機能を有し、ドーパント材料は、再結合で得られた励起子を効率的に発光させる機能を有する。
 燐光素子の場合、ホスト材料は主にドーパントで生成された励起子を発光層内に閉じ込める機能を有する。
(Light emitting layer)
An organic layer having a light emitting function, and when a doping system is employed, includes a host material and a dopant material. At this time, the host material mainly has a function of encouraging recombination of electrons and holes and confining excitons in the light emitting layer, and the dopant material efficiently emits excitons obtained by recombination. It has a function.
In the case of a phosphorescent element, the host material mainly has a function of confining excitons generated by the dopant in the light emitting layer.
 ここで、上記発光層は、例えば、電子輸送性のホストと正孔輸送性のホストを組み合わせる等して、発光層内のキャリアバランスを調整するダブルホスト(ホスト・コホストともいう)を採用してもよく、発光層が第1ホスト材料と第2ホスト材料とを含有し、前記第1ホスト材料が本発明の有機EL素子用材料であると好ましい。
 また、量子収率の高いドーパント材料を二種類以上入れることによって、それぞれのドーパントが発光するダブルドーパントを採用してもよい。具体的には、ホスト、赤色ドーパント及び緑色ドーパントを共蒸着することによって、発光層を共通化して黄色発光を実現する態様が挙げられる。
Here, the light emitting layer employs, for example, a double host (also referred to as host / cohost) that adjusts the carrier balance in the light emitting layer by combining an electron transporting host and a hole transporting host. The light emitting layer preferably contains a first host material and a second host material, and the first host material is preferably the organic EL device material of the present invention.
Moreover, you may employ | adopt the double dopant from which each dopant light-emits by putting in 2 or more types of dopant materials with a high quantum yield. Specifically, a mode in which yellow emission is realized by co-evaporating a host, a red dopant, and a green dopant to make the light emitting layer common is used.
 上記発光層は、複数の発光層を積層した積層体とすることで、発光層界面に電子と正孔を蓄積させて、再結合領域を発光層界面に集中させて、量子効率を向上させることができる。
 発光層への正孔の注入し易さと電子の注入し易さは異なっていてもよく、また、発光層中での正孔と電子の移動度で表される正孔輸送能と電子輸送能が異なっていてもよい。
The above light-emitting layer is a laminate in which a plurality of light-emitting layers are stacked, so that electrons and holes are accumulated at the light-emitting layer interface, and the recombination region is concentrated at the light-emitting layer interface to improve quantum efficiency. Can do.
The ease of injecting holes into the light emitting layer may be different from the ease of injecting electrons, and the hole transport ability and electron transport ability expressed by the mobility of holes and electrons in the light emitting layer may be different. May be different.
 発光層は、例えば蒸着法、スピンコート法、LB法(Langmuir Blodgett法)等の公知の方法により形成することができる。また、樹脂等の結着剤と材料化合物とを溶剤に溶かした溶液をスピンコート法等により薄膜化することによっても、発光層を形成することができる。
 発光層は、分子堆積膜であることが好ましい。分子堆積膜とは、気相状態の材料化合物から沈着され形成された薄膜や、溶液状態又は液相状態の材料化合物から固体化され形成された膜のことであり、通常この分子堆積膜は、LB法により形成された薄膜(分子累積膜)とは凝集構造、高次構造の相違や、それに起因する機能的な相違により区分することができる。
The light emitting layer can be formed by a known method such as a vapor deposition method, a spin coating method, or an LB method (Langmuir Broadgett method). The light emitting layer can also be formed by thinning a solution obtained by dissolving a binder such as a resin and a material compound in a solvent by a spin coating method or the like.
The light emitting layer is preferably a molecular deposited film. The molecular deposited film is a thin film formed by deposition from a material compound in a gas phase state or a film formed by solidifying from a material compound in a solution state or a liquid phase state. The thin film (molecular accumulation film) formed by the LB method can be classified by the difference in the aggregation structure and the higher-order structure, and the functional difference resulting therefrom.
 ドーパント材料としては、公知の蛍光型発光を示す蛍光ドーパント又は燐光型発光を示す燐光ドーパントから選ばれる。
 蛍光ドーパントとしては、フルオランテン誘導体、ピレン誘導体、アリールアセチレン誘導体、フルオレン誘導体、硼素錯体、ペリレン誘導体、オキサジアゾール誘導体、アントラセン誘導体、クリセン誘導体等から選ばれる。好ましくは、フルオランテン誘導体、ピレン誘導体、硼素錯体が挙げられる。
The dopant material is selected from known fluorescent dopants exhibiting fluorescent emission or phosphorescent dopants exhibiting phosphorescent emission.
The fluorescent dopant is selected from fluoranthene derivatives, pyrene derivatives, arylacetylene derivatives, fluorene derivatives, boron complexes, perylene derivatives, oxadiazole derivatives, anthracene derivatives, chrysene derivatives, and the like. Preferably, a fluoranthene derivative, a pyrene derivative, and a boron complex are used.
 発光層を形成する燐光ドーパント(燐光発光材料)は三重項励状態から発光することのできる化合物であり、三重項励状態から発光する限り特に限定されないが、Ir,Pt,Os,Au,Cu,Re及びRuから選択される少なくとも一つの金属と配位子とを含む有機金属錯体であることが好ましい。前記配位子は、オルトメタル結合を有することが好ましい。燐光量子収率が高く、発光素子の外部量子効率をより向上させることができるという点で、Ir,Os及びPtから選ばれる金属原子を含有する金属錯体が好ましく、イリジウム錯体、オスミウム錯体、白金錯体等の金属錯体、特にオルトメタル化錯体がより好ましく、イリジウム錯体及び白金錯体がさらに好ましく、オルトメタル化イリジウム錯体が特に好ましい。 The phosphorescent dopant (phosphorescent material) that forms the light emitting layer is a compound that can emit light from the triplet excited state, and is not particularly limited as long as it emits light from the triplet excited state, but Ir, Pt, Os, Au, Cu, An organometallic complex containing at least one metal selected from Re and Ru and a ligand is preferable. The ligand preferably has an ortho metal bond. A metal complex containing a metal atom selected from Ir, Os and Pt is preferred in that the phosphorescent quantum yield is high and the external quantum efficiency of the light emitting device can be further improved, and an iridium complex, an osmium complex, or a platinum complex. Are more preferable, iridium complexes and platinum complexes are more preferable, and orthometalated iridium complexes are particularly preferable.
 燐光ドーパントの発光層における含有量は特に制限はなく目的に応じて適宜選択することができるが、例えば、0.1~70質量%が好ましく、1~30質量%がより好ましい。燐光ドーパントの含有量が0.1質量%以上であると十分な発光が得られ、70質量%以下であると濃度消光を避けることができる。 The content of the phosphorescent dopant in the light emitting layer is not particularly limited and may be appropriately selected depending on the intended purpose. For example, it is preferably 0.1 to 70% by mass, more preferably 1 to 30% by mass. If the phosphorescent dopant content is 0.1% by mass or more, sufficient light emission can be obtained, and if it is 70% by mass or less, concentration quenching can be avoided.
 燐光ホストは、燐光ドーパントの三重項エネルギーを効率的に発光層内に閉じ込めることにより、燐光ドーパントを効率的に発光させる機能を有する化合物である。本発明の有機EL素子用材料は燐光ホストとして好適である。発光層は、本発明の有機EL素子用材料を1種含有していてもよく、本発明の有機EL素子用材料を2種以上含有していてもよい。 The phosphorescent host is a compound having a function of efficiently emitting the phosphorescent dopant by efficiently confining the triplet energy of the phosphorescent dopant in the light emitting layer. The organic EL device material of the present invention is suitable as a phosphorescent host. The light emitting layer may contain 1 type of organic EL element material of this invention, and may contain 2 or more types of organic EL element material of this invention.
 本発明の有機EL素子用材料を発光層のホスト材料として用いる場合、発光層に含まれる燐光ドーパント材料の発光波長は特に限定されない。なかでも、発光層に含まれる前記燐光ドーパント材料のうち少なくとも1種は、発光波長のピークが430nm以上700nm以下であることが好ましく、440nm以上650nm以下であることがより好ましい。ホスト材料として本発明の化合物を用い、このような発光波長の燐光ドーパント材料をドープして発光層を構成することにより、長寿命な有機EL素子とすることができる。 When the organic EL device material of the present invention is used as the host material of the light emitting layer, the emission wavelength of the phosphorescent dopant material contained in the light emitting layer is not particularly limited. Among these, at least one of the phosphorescent dopant materials contained in the light emitting layer preferably has an emission wavelength peak of 430 nm to 700 nm, and more preferably 440 nm to 650 nm. By using the compound of the present invention as a host material and doping a phosphorescent dopant material having such an emission wavelength to form a light emitting layer, a long-life organic EL device can be obtained.
 本発明の有機EL素子において、本発明の有機EL素子用材料以外の化合物も、燐光ホストとして、上記目的に応じて適宜選択することができる。
 本発明の有機EL素子用材料とそれ以外の化合物を同一の発光層内の燐光ホスト材料として併用してもよいし、複数の発光層がある場合には、そのうちの一つの発光層の燐光ホスト材料として本発明の有機EL素子用材料を用い、別の一つの発光層の燐光ホスト材料として本発明の有機EL素子用材料以外の化合物を用いてもよい。また、本発明の有機EL素子用材料は発光層以外の有機層にも使用しうるものであり、その場合には発光層の燐光ホストとして、本発明の有機EL素子用材料以外の化合物を用いてもよい。
In the organic EL device of the present invention, a compound other than the material for the organic EL device of the present invention can be appropriately selected as the phosphorescent host according to the purpose.
The organic EL device material of the present invention and other compounds may be used in combination as a phosphorescent host material in the same light emitting layer, and when there are a plurality of light emitting layers, the phosphorescent host of one of the light emitting layers. The material for an organic EL device of the present invention may be used as a material, and a compound other than the material for an organic EL device of the present invention may be used as a phosphorescent host material for another light emitting layer. Moreover, the organic EL device material of the present invention can be used for organic layers other than the light emitting layer. In that case, a compound other than the organic EL device material of the present invention is used as the phosphorescent host of the light emitting layer. May be.
 本発明の有機EL素子用材料以外の化合物で、燐光ホストとして好適な化合物の具体例としては、カルバゾール誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三アミン化合物、スチリルアミン化合物、芳香族ジメチリデン系化合物、ポルフィリン系化合物、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド誘導体、フルオレニリデンメタン誘導体、ジスチリルピラジン誘導体、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン誘導体、8-キノリノール誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾールを配位子とする金属錯体に代表される各種金属錯体ポリシラン系化合物、ポリ(N-ビニルカルバゾール)誘導体、アニリン系共重合体、チオフェンオリゴマー、ポリチオフェン等の導電性高分子オリゴマー、ポリチオフェン誘導体、ポリフェニレン誘導体、ポリフェニレンビニレン誘導体、ポリフルオレン誘導体等の高分子化合物等が挙げられる。燐光ホストは単独で使用してもよいし、2種以上を併用してもよい。具体例としては、以下のような化合物が挙げられる。 Specific examples of compounds other than the organic EL device material of the present invention and suitable as a phosphorescent host include carbazole derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, Pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, aromatic dimethylidene compounds, porphyrins Compounds, anthraquinodimethane derivatives, anthrone derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimide derivatives, fluorenylidene derivatives And metal complexes of heterocyclic tetracarboxylic anhydrides, phthalocyanine derivatives, 8-quinolinol derivatives, metal phthalocyanines, benzoxazoles and benzothiazoles as ligands Various metal complexes such as polysilane compounds, poly (N-vinylcarbazole) derivatives, aniline copolymers, thiophene oligomers, conductive polymer oligomers such as polythiophene, polythiophene derivatives, polyphenylene derivatives, polyphenylene vinylene derivatives, polyfluorene derivatives, etc. Examples thereof include polymer compounds. A phosphorescent host may be used independently and may use 2 or more types together. Specific examples include the following compounds.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 発光層が、第1ホスト材料と第2ホスト材料とを含有する場合、第1ホスト材料として本発明の有機EL素子用材料を用い、第2ホスト材料として本発明の有機EL素子用材料以外の化合物を用いてもよい。尚、本発明における「第1ホスト材料」及び「第2ホスト材料」という用語は、発光層に含有されている複数のホスト材料が、互いに構造が異なるという意味であり、発光層中の各ホスト材料の含有量で規定されるものではない。
 前記第2ホスト材料としては、特に限定されず、本発明の有機EL素子用材料以外の化合物であり、かつ燐光ホストとして好適な化合物として前記した化合物と同じものが挙げられる。第2ホスト材料としては、シアノ基を有さない化合物が好ましい。また、第2ホストとしては、カルバゾール誘導体、アリールアミン誘導体、フルオレノン誘導体、芳香族第三アミン化合物が好ましい。
When the light emitting layer contains the first host material and the second host material, the organic EL element material of the present invention is used as the first host material, and the organic EL element material other than the organic EL element material of the present invention is used as the second host material. A compound may be used. In the present invention, the terms “first host material” and “second host material” mean that the plurality of host materials contained in the light emitting layer have different structures from each other. It is not specified by the material content.
It does not specifically limit as said 2nd host material, It is a compound other than the organic EL element material of this invention, and the same thing as the above-mentioned compound as a compound suitable as a phosphorescent host is mentioned. As the second host material, a compound having no cyano group is preferable. The second host is preferably a carbazole derivative, arylamine derivative, fluorenone derivative, or aromatic tertiary amine compound.
 発光層の膜厚は、好ましくは5~50nm、より好ましくは7~50nm、さらに好ましくは10~50nmである。5nm以上であると発光層の形成が容易であり、50nm以下であると駆動電圧の上昇が避けられる。 The thickness of the light emitting layer is preferably 5 to 50 nm, more preferably 7 to 50 nm, and still more preferably 10 to 50 nm. When the thickness is 5 nm or more, it is easy to form a light emitting layer, and when the thickness is 50 nm or less, an increase in driving voltage can be avoided.
(電子供与性ドーパント)
 本発明の有機EL素子は、陰極と発光ユニットとの界面領域に電子供与性ドーパントを有することも好ましい。このような構成によれば、有機EL素子における発光輝度の向上や長寿命化が図られる。ここで、電子供与性ドーパントとは、仕事関数3.8eV以下の金属を含有するものをいい、その具体例としては、アルカリ金属、アルカリ金属錯体、アルカリ金属化合物、アルカリ土類金属、アルカリ土類金属錯体、アルカリ土類金属化合物、希土類金属、希土類金属錯体、及び希土類金属化合物等から選ばれた少なくとも一種類が挙げられる。
(Electron donating dopant)
The organic EL device of the present invention preferably has an electron donating dopant in the interface region between the cathode and the light emitting unit. According to such a configuration, it is possible to improve the light emission luminance and extend the life of the organic EL element. Here, the electron donating dopant means a material containing a metal having a work function of 3.8 eV or less, and specific examples thereof include alkali metals, alkali metal complexes, alkali metal compounds, alkaline earth metals, alkaline earths. Examples thereof include at least one selected from metal complexes, alkaline earth metal compounds, rare earth metals, rare earth metal complexes, rare earth metal compounds, and the like.
 アルカリ金属としては、Na(仕事関数:2.36eV)、K(仕事関数:2.28eV)、Rb(仕事関数:2.16eV)、Cs(仕事関数:1.95eV)等が挙げられ、仕事関数が2.9eV以下のものが特に好ましい。これらのうち好ましくはK、Rb、Cs、さらに好ましくはRb又はCsであり、最も好ましくはCsである。アルカリ土類金属としては、Ca(仕事関数:2.9eV)、Sr(仕事関数:2.0eV~2.5eV)、Ba(仕事関数:2.52eV)等が挙げられ、仕事関数が2.9eV以下のものが特に好ましい。希土類金属としては、Sc、Y、Ce、Tb、Yb等が挙げられ、仕事関数が2.9eV以下のものが特に好ましい。 Examples of the alkali metal include Na (work function: 2.36 eV), K (work function: 2.28 eV), Rb (work function: 2.16 eV), Cs (work function: 1.95 eV), and the like. A function of 2.9 eV or less is particularly preferable. Of these, K, Rb, and Cs are preferred, Rb and Cs are more preferred, and Cs is most preferred. Examples of alkaline earth metals include Ca (work function: 2.9 eV), Sr (work function: 2.0 eV to 2.5 eV), Ba (work function: 2.52 eV), and the like. The thing below 9 eV is especially preferable. Examples of rare earth metals include Sc, Y, Ce, Tb, Yb, and the like, and those having a work function of 2.9 eV or less are particularly preferable.
 アルカリ金属化合物としては、LiO、CsO、KO等のアルカリ酸化物、LiF、NaF、CsF、KF等のアルカリハロゲン化物等が挙げられ、LiF、LiO、NaFが好ましい。アルカリ土類金属化合物としては、BaO、SrO、CaO及びこれらを混合したBaSr1-xO(0<x<1)、BaCa1-xO(0<x<1)等が挙げられ、BaO、SrO、CaOが好ましい。希土類金属化合物としては、YbF、ScF、ScO、Y、Ce、GdF、TbF等が挙げられ、YbF、ScF、TbFが好ましい。 Examples of the alkali metal compound include alkali oxides such as Li 2 O, Cs 2 O, and K 2 O, and alkali halides such as LiF, NaF, CsF, and KF, and LiF, Li 2 O, and NaF are preferable. Examples of the alkaline earth metal compound include BaO, SrO, CaO, and Ba x Sr 1-x O (0 <x <1), Ba x Ca 1-x O (0 <x <1) mixed with these. BaO, SrO, and CaO are preferable. The rare earth metal compound, YbF 3, ScF 3, ScO 3, Y 2 O 3, Ce 2 O 3, GdF 3, TbF 3 and the like, YbF 3, ScF 3, TbF 3 are preferable.
 アルカリ金属錯体、アルカリ土類金属錯体、希土類金属錯体としては、それぞれ金属イオンとしてアルカリ金属イオン、アルカリ土類金属イオン、希土類金属イオンの少なくとも一つ含有するものであれば特に限定はない。また、配位子にはキノリノール、ベンゾキノリノール、アクリジノール、フェナントリジノール、ヒドロキシフェニルオキサゾール、ヒドロキシフェニルチアゾール、ヒドロキシジアリールオキサジアゾール、ヒドロキシジアリールチアジアゾール、ヒドロキシフェニルピリジン、ヒドロキシフェニルベンゾイミダゾール、ヒドロキシベンゾトリアゾール、ヒドロキシフルボラン、ビピリジル、フェナントロリン、フタロシアニン、ポルフィリン、シクロペンタジエン、β-ジケトン類、アゾメチン類、及びそれらの誘導体等が好ましいが、これらに限定されるものではない。 The alkali metal complex, alkaline earth metal complex, and rare earth metal complex are not particularly limited as long as each metal ion contains at least one of an alkali metal ion, an alkaline earth metal ion, and a rare earth metal ion. The ligands include quinolinol, benzoquinolinol, acridinol, phenanthridinol, hydroxyphenyl oxazole, hydroxyphenyl thiazole, hydroxydiaryl thiadiazole, hydroxydiaryl thiadiazole, hydroxyphenylpyridine, hydroxyphenylbenzimidazole, hydroxybenzotriazole, Hydroxyfulborane, bipyridyl, phenanthroline, phthalocyanine, porphyrin, cyclopentadiene, β-diketones, azomethines, and derivatives thereof are preferred, but are not limited thereto.
 電子供与性ドーパントの添加形態としては、界面領域に層状又は島状に形成すると好ましい。形成方法としては、抵抗加熱蒸着法により電子供与性ドーパントを蒸着しながら、界面領域を形成する有機化合物(発光材料や電子注入材料)を同時に蒸着させ、有機化合物に電子供与性ドーパントを分散する方法が好ましい。分散濃度はモル比で有機化合物:電子供与性ドーパント=100:1~1:100、好ましくは5:1~1:5である。 As an addition form of the electron donating dopant, it is preferable to form a layered or island shape in the interface region. As a forming method, while depositing an electron donating dopant by resistance heating vapor deposition, an organic compound (light emitting material or electron injecting material) that forms an interface region is simultaneously deposited, and the electron donating dopant is dispersed in the organic compound. Is preferred. The dispersion concentration is organic compound: electron donating dopant = 100: 1 to 1: 100, preferably 5: 1 to 1: 5 in molar ratio.
 電子供与性ドーパントを層状に形成する場合は、界面の有機層である発光材料や電子注入材料を層状に形成した後に、還元ドーパントを単独で抵抗加熱蒸着法により蒸着し、好ましくは層の厚み0.1nm~15nmで形成する。電子供与性ドーパントを島状に形成する場合は、界面の有機層である発光材料や電子注入材料を島状に形成した後に、電子供与性ドーパントを単独で抵抗加熱蒸着法により蒸着し、好ましくは島の厚み0.05nm~1nmで形成する。
 本発明の有機EL素子における、主成分と電子供与性ドーパントの割合は、モル比で主成分:電子供与性ドーパント=5:1~1:5であると好ましく、2:1~1:2であるとさらに好ましい。
In the case where the electron donating dopant is formed in a layered form, after forming the light emitting material or the electron injecting material, which is an organic layer at the interface, in a layered form, the reducing dopant is vapor-deposited by a resistance heating vapor deposition method. .1 nm to 15 nm. When the electron donating dopant is formed in an island shape, after forming the light emitting material and the electron injecting material, which are organic layers at the interface, in an island shape, the electron donating dopant is deposited by resistance heating vapor deposition alone, preferably The island is formed with a thickness of 0.05 nm to 1 nm.
In the organic EL device of the present invention, the ratio of the main component to the electron donating dopant is preferably the main component: electron donating dopant = 5: 1 to 1: 5 in a molar ratio of 2: 1 to 1: 2. More preferably.
(電子輸送層)
 電子輸送層は、発光層と陰極との間に形成される有機層であって、電子を陰極から発光層へ輸送する機能を有する。電子輸送層が複数層で構成される場合、陰極に近い有機層を電子注入層と定義することがある。電子注入層は、陰極から電子を効率的に有機層ユニットに注入する機能を有する。
(Electron transport layer)
The electron transport layer is an organic layer formed between the light emitting layer and the cathode, and has a function of transporting electrons from the cathode to the light emitting layer. When the electron transport layer is composed of a plurality of layers, an organic layer close to the cathode may be defined as an electron injection layer. The electron injection layer has a function of efficiently injecting electrons from the cathode into the organic layer unit.
 電子輸送層に用いる電子輸送性材料としては、分子内にヘテロ原子を1個以上含有する芳香族ヘテロ環化合物が好ましく用いられ、特に含窒素環誘導体が好ましい。また、含窒素環誘導体としては、含窒素6員環もしくは5員環骨格を有する芳香族環、又は含窒素6員環もしくは5員環骨格を有する縮合芳香族環化合物が好ましい。 As the electron transporting material used for the electron transporting layer, an aromatic heterocyclic compound containing one or more heteroatoms in the molecule is preferably used, and a nitrogen-containing ring derivative is particularly preferable. The nitrogen-containing ring derivative is preferably an aromatic ring having a nitrogen-containing 6-membered ring or 5-membered ring skeleton, or a condensed aromatic ring compound having a nitrogen-containing 6-membered ring or 5-membered ring skeleton.
 電子輸送層の膜厚は、特に限定されないが、好ましくは1nm~100nmである。
 また、電子輸送層に隣接して設けることができる電子注入層の構成成分として、含窒素環誘導体の他に無機化合物として、絶縁体又は半導体を使用することが好ましい。電子注入層が絶縁体や半導体で構成されていれば、電流のリークを有効に防止して、電子注入性を向上させることができる。
The thickness of the electron transport layer is not particularly limited, but is preferably 1 nm to 100 nm.
Moreover, it is preferable to use an insulator or a semiconductor as an inorganic compound in addition to the nitrogen-containing ring derivative as a component of the electron injection layer that can be provided adjacent to the electron transport layer. If the electron injection layer is made of an insulator or a semiconductor, current leakage can be effectively prevented and the electron injection property can be improved.
 このような絶縁体としては、アルカリ金属カルコゲニド、アルカリ土類金属カルコゲニド、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロゲン化物からなる群から選択される少なくとも一つの金属化合物を使用するのが好ましい。電子注入層がこれらのアルカリ金属カルコゲニド等で構成されていれば、電子注入性をさらに向上させることができる点で好ましい。具体的に、好ましいアルカリ金属カルコゲニドとしては、例えば、LiO、KO、NaS、NaSe及びNaOが挙げられ、好ましいアルカリ土類金属カルコゲニドとしては、例えば、CaO、BaO、SrO、BeO、BaS及びCaSeが挙げられる。また、好ましいアルカリ金属のハロゲン化物としては、例えば、LiF、NaF、KF、LiCl、KCl及びNaCl等が挙げられる。また、好ましいアルカリ土類金属のハロゲン化物としては、例えば、CaF、BaF、SrF、MgF及びBeF等のフッ化物や、フッ化物以外のハロゲン化物が挙げられる。 As such an insulator, it is preferable to use at least one metal compound selected from the group consisting of alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides and alkaline earth metal halides. If the electron injection layer is composed of these alkali metal chalcogenides or the like, it is preferable in that the electron injection property can be further improved. Specifically, preferable alkali metal chalcogenides include, for example, Li 2 O, K 2 O, Na 2 S, Na 2 Se, and Na 2 O, and preferable alkaline earth metal chalcogenides include, for example, CaO, BaO. , SrO, BeO, BaS and CaSe. Further, preferable alkali metal halides include, for example, LiF, NaF, KF, LiCl, KCl, and NaCl. Examples of preferable alkaline earth metal halides include fluorides such as CaF 2 , BaF 2 , SrF 2 , MgF 2 and BeF 2 , and halides other than fluorides.
 また、半導体としては、Ba、Ca、Sr、Yb、Al、Ga、In、Li、Na、Cd、Mg、Si、Ta、Sb及びZnの少なくとも一つの元素を含む酸化物、窒化物又は酸化窒化物等の一種単独又は二種以上の組み合わせが挙げられる。また、電子注入層を構成する無機化合物が、微結晶又は非晶質の絶縁性薄膜であることが好ましい。電子注入層がこれらの絶縁性薄膜で構成されていれば、より均質な薄膜が形成されるために、ダークスポット等の画素欠陥を減少させることができる。尚、このような無機化合物としては、アルカリ金属カルコゲニド、アルカリ土類金属カルコゲニド、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロゲン化物等が挙げられる。 Further, as a semiconductor, an oxide, nitride, or oxynitride containing at least one element of Ba, Ca, Sr, Yb, Al, Ga, In, Li, Na, Cd, Mg, Si, Ta, Sb, and Zn. One kind alone or a combination of two or more kinds of products may be mentioned. In addition, the inorganic compound constituting the electron injection layer is preferably a microcrystalline or amorphous insulating thin film. If the electron injection layer is composed of these insulating thin films, a more uniform thin film is formed, and pixel defects such as dark spots can be reduced. Examples of such inorganic compounds include alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides and alkaline earth metal halides.
 このような絶縁体又は半導体を使用する場合、その層の好ましい厚みは、0.1nm~15nm程度である。また、本発明における電子注入層は、前述の電子供与性ドーパントを含有していても好ましい。 When such an insulator or semiconductor is used, the preferred thickness of the layer is about 0.1 nm to 15 nm. Further, the electron injection layer in the present invention is preferable even if it contains the above-mentioned electron donating dopant.
(正孔輸送層)
 発光層と陽極との間に形成される有機層であって、正孔を陽極から発光層へ輸送する機能を有する。正孔輸送層が複数層で構成される場合、陽極に近い有機層を正孔注入層と定義することがある。正孔注入層は、陽極から正孔を効率的に有機層ユニットに注入する機能を有する。本発明の有機EL素子用材料は、正孔注入層、正孔輸送層としても好適である。
(Hole transport layer)
An organic layer formed between the light emitting layer and the anode, and has a function of transporting holes from the anode to the light emitting layer. When the hole transport layer is composed of a plurality of layers, an organic layer close to the anode may be defined as a hole injection layer. The hole injection layer has a function of efficiently injecting holes from the anode into the organic layer unit. The organic EL device material of the present invention is also suitable as a hole injection layer and a hole transport layer.
 正孔輸送層を形成する他の材料としては、芳香族アミン化合物、例えば、下記式(H)で表される芳香族アミン誘導体が好適に用いられる。
Figure JPOXMLDOC01-appb-C000023
As another material for forming the hole transport layer, an aromatic amine compound, for example, an aromatic amine derivative represented by the following formula (H) is preferably used.
Figure JPOXMLDOC01-appb-C000023
 前記式(H)において、Ar~Arは置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素基又は縮合芳香族炭化水素基、置換もしくは無置換の環形成原子数5~50の芳香族複素環基又は縮合芳香族複素環基、又は、それら芳香族炭化水素基又は縮合芳香族炭化水素基と芳香族複素環基又は縮合芳香族複素環基が結合した基を表す。
 また、前記式(H)において、Lは置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素基又は縮合芳香族炭化水素基、又は置換もしくは無置換の環形成原子数5~50の芳香族複素環基又は縮合芳香族複素環基を表す。
In the formula (H), Ar 1 ~ Ar 4 is a substituted or an aromatic hydrocarbon group or fused aromatic hydrocarbon group unsubstituted ring carbon atoms 6 to 50, a substituted or unsubstituted ring atoms of 5 to 50 aromatic heterocyclic groups or condensed aromatic heterocyclic groups, or a group in which these aromatic hydrocarbon groups or condensed aromatic hydrocarbon groups and aromatic heterocyclic groups or condensed aromatic heterocyclic groups are bonded.
In the formula (H), L represents a substituted or unsubstituted aromatic hydrocarbon group or condensed aromatic hydrocarbon group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted ring forming atom number of 5 to 50. Represents an aromatic heterocyclic group or a condensed aromatic heterocyclic group.
 式(H)の化合物の具体例を以下に記す。
Figure JPOXMLDOC01-appb-C000024
Specific examples of the compound of formula (H) are shown below.
Figure JPOXMLDOC01-appb-C000024
また、下記式(J)の芳香族アミンも正孔輸送層の形成に好適に用いられる。 An aromatic amine represented by the following formula (J) is also preferably used for forming the hole transport layer.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 前記式(J)において、Ar~Arの定義は前記式(H)のAr~Arの定義と同様である。以下に式(J)の化合物の具体例を記すがこれらに限定されるものではない。 In the formula (J), the definitions of Ar 1 to Ar 3 are the same as the definitions of Ar 1 to Ar 4 in the formula (H). Specific examples of the compound of formula (J) are shown below, but are not limited thereto.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 本発明の有機EL素子の正孔輸送層は第1正孔輸送層(陽極側)と第2正孔輸送層(陰極側)の2層構造にしてもよい。
 正孔輸送層の膜厚は特に限定されないが、10~200nmであるのが好ましい。
The hole transport layer of the organic EL device of the present invention may have a two-layer structure of a first hole transport layer (anode side) and a second hole transport layer (cathode side).
The thickness of the hole transport layer is not particularly limited, but is preferably 10 to 200 nm.
 本発明の有機EL素子では、正孔輸送層又は第1正孔輸送層の陽極側にアクセプター材料を含有する層を接合してもよい。これにより駆動電圧の低下及び製造コストの低減が期待される。
 前記アクセプター材料としては下記式(K)で表される化合物が好ましい。
In the organic EL device of the present invention, a layer containing an acceptor material may be bonded to the anode side of the hole transport layer or the first hole transport layer. This is expected to reduce drive voltage and manufacturing costs.
As the acceptor material, a compound represented by the following formula (K) is preferable.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
(上記式(K)中、R21~R26は互いに同一でも異なっていてもよく、それぞれ独立にシアノ基、-CONH、カルボキシル基、又は-COOR27(R27は炭素数1~20のアルキル基又は炭素数3~20のシクロアルキル基を表す)を表す。ただし、R21及びR22、R23及びR24、並びにR25及びR26の1又は2以上の対が一緒になって-CO-O-CO-で示される基を形成してもよい。)
 R27としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。
 アクセプター材料を含有する層の膜厚は特に限定されないが、5~20nmであるのが好ましい。
(In the formula (K), R 21 to R 26 may be the same as or different from each other, and each independently represents a cyano group, —CONH 2 , a carboxyl group, or —COOR 27 (R 27 is a group having 1 to 20 carbon atoms) Represents an alkyl group or a cycloalkyl group having 3 to 20 carbon atoms, provided that one or more pairs of R 21 and R 22 , R 23 and R 24 , and R 25 and R 26 are combined together. A group represented by —CO—O—CO— may be formed.)
Examples of R 27 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, a cyclopentyl group, and a cyclohexyl group.
The thickness of the layer containing the acceptor material is not particularly limited, but is preferably 5 to 20 nm.
(n/pドーピング)
 上述の正孔輸送層や電子輸送層においては、特許第3695714号明細書に記載されているように、ドナー性材料のドーピング(n)やアクセプター性材料のドーピング(p)により、キャリア注入能を調整することができる。
 nドーピングの代表例としては、電子輸送材料にLiやCs等の金属をドーピングする方法が挙げられ、pドーピングの代表例としては、正孔輸送材料にFTCNQ(2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane)等のアクセプター材料をドーピングする方法が挙げられる。
(N / p doping)
In the hole transport layer and the electron transport layer described above, as described in Japanese Patent No. 3695714, the carrier injection ability is improved by doping the donor material (n) and acceptor material (p). Can be adjusted.
A typical example of n doping is a method of doping a metal such as Li or Cs into an electron transport material, and a typical example of p doping is F 4 TCNQ (2, 3, 5, 6) as a hole transport material. -Tetrafluor-7,7,8,8-tetracyanoquinodimethane) and the like.
(スペース層)
 上記スペース層とは、例えば、蛍光発光層と燐光発光層とを積層する場合に、燐光発光層で生成する励起子を蛍光発光層に拡散させない、あるいは、キャリアバランスを調整する目的で、蛍光発光層と燐光発光層との間に設けられる層である。また、スペース層は、複数の燐光発光層の間に設けることもできる。
 スペース層は発光層間に設けられるため、電子輸送性と正孔輸送性を兼ね備える材料であることが好ましい。また、隣接する燐光発光層内の三重項エネルギーの拡散を防ぐため、三重項エネルギーが2.6eV以上であることが好ましい。スペース層に用いられる材料としては、上述の正孔輸送層に用いられるものと同様のものが挙げられる。
(Space layer)
For example, when the fluorescent layer and the phosphorescent layer are laminated, the space layer is a fluorescent layer for the purpose of adjusting the carrier balance so that excitons generated in the phosphorescent layer are not diffused into the fluorescent layer. It is a layer provided between the layer and the phosphorescent light emitting layer. In addition, the space layer can be provided between the plurality of phosphorescent light emitting layers.
Since the space layer is provided between the light emitting layers, a material having both electron transport properties and hole transport properties is preferable. In order to prevent diffusion of triplet energy in the adjacent phosphorescent light emitting layer, the triplet energy is preferably 2.6 eV or more. Examples of the material used for the space layer include the same materials as those used for the above-described hole transport layer.
(障壁層)
 本発明の有機EL素子は、発光層に隣接する部分に、電子障壁層、正孔障壁層、トリプレット障壁層といった障壁層を有することが好ましい。ここで、電子障壁層とは、発光層から正孔輸送層へ電子が漏れることを防ぐ層であり、正孔障壁層とは、発光層から電子輸送層へ正孔が漏れることを防ぐ層である。
 トリプレット障壁層は、発光層で生成する三重項励起子が、周辺の層へ拡散することを防止し、三重項励起子を発光層内に閉じ込めることによって三重項励起子の発光ドーパント以外の電子輸送層の分子上でのエネルギー失活を抑制する機能を有する。
(Barrier layer)
The organic EL device of the present invention preferably has a barrier layer such as an electron barrier layer, a hole barrier layer, or a triplet barrier layer in a portion adjacent to the light emitting layer. Here, the electron barrier layer is a layer that prevents electrons from leaking from the light emitting layer to the hole transport layer, and the hole barrier layer is a layer that prevents holes from leaking from the light emitting layer to the electron transport layer. is there.
The triplet barrier layer prevents the triplet excitons generated in the light emitting layer from diffusing into the surrounding layers, and confins the triplet excitons in the light emitting layer, thereby transporting electrons other than the light emitting dopant of the triplet excitons. It has a function of suppressing energy deactivation on the molecules of the layer.
 トリプレット障壁層を設ける場合、燐光素子においては、発光層中の燐光発光性ドーパントの三重項エネルギーをE 、トリプレット障壁層として用いる化合物の三重項エネルギーをE TBとすると、E <E TBのエネルギー大小関係であれば、エネルギー関係上、燐光発光性ドーパントの三重項励起子が閉じ込められ(他分子へ移動できなくなり)、該ドーパント上で発光する以外のエネルギー失活経路が断たれ、高効率に発光することができると推測される。ただし、E <E TBの関係が成り立つ場合であってもこのエネルギー差ΔE=E TB-E が小さい場合には、実際の素子駆動環境である室温程度の環境下では、周辺の熱エネルギーにより吸熱的にこのエネルギー差ΔEを乗り越えて三重項励起子が他分子へ移動することが可能であると考えられる。特に燐光発光の場合は蛍光発光に比べて励起子寿命が長いため、相対的に吸熱的励起子移動過程の影響が現れやすくなる。室温の熱エネルギーに対してこのエネルギー差ΔEは大きい程好ましく、0.1eV以上であるとさらに好ましく、0.2eV以上であると特に好ましい。一方、蛍光素子においては、国際公開WO2010/134350A1に記載するTTF素子構成のトリプレット障壁層として、本発明の有機EL素子用材料を用いることもできる。 When providing the triplet barrier layer, the phosphorescent devices, triplet energy E T d of the phosphorescent dopant in the light emitting layer and the triplet energy of the compound used as a triplet barrier layer and E T TB, E T d < If the energy magnitude relationship of E T TB is satisfied, the triplet exciton of the phosphorescent dopant is confined (cannot move to other molecules) and the energy deactivation path other than light emission on the dopant is interrupted. It is assumed that light can be emitted with high efficiency. However, even if the relationship of E T d <E T TB is satisfied, if this energy difference ΔE T = E T TB −E T d is small, under the environment of room temperature, which is the actual element driving environment, , endothermically triplet excitons overcame this energy difference Delta] E T by thermal energy near is considered to be possible to move to another molecule. In particular, in the case of phosphorescence emission, the exciton lifetime is longer than that of fluorescence emission, so that the influence of the endothermic exciton transfer process is likely to appear. The energy difference ΔE T is preferably as large as possible relative to the thermal energy at room temperature, more preferably 0.1 eV or more, and particularly preferably 0.2 eV or more. On the other hand, in the fluorescent element, the organic EL element material of the present invention can be used as a triplet barrier layer having a TTF element structure described in International Publication WO2010 / 134350A1.
 また、トリプレット障壁層を構成する材料の電子移動度は、電界強度0.04~0.5MV/cmの範囲において、10-6cm/Vs以上であることが望ましい。有機材料の電子移動度の測定方法としては、Time of Flight法等幾つかの方法が知られているが、ここではインピーダンス分光法で決定される電子移動度をいう。
 電子注入層は、電界強度0.04~0.5MV/cmの範囲において、10-6cm/Vs以上であることが望ましい。これにより陰極からの電子輸送層への電子注入が促進され、ひいては隣接する障壁層、発光層への電子注入も促進し、より低電圧での駆動を可能にするためである。
In addition, the electron mobility of the material constituting the triplet barrier layer is desirably 10 −6 cm 2 / Vs or more in the range of electric field strength of 0.04 to 0.5 MV / cm. As a method for measuring the electron mobility of an organic material, several methods such as the Time of Flight method are known. Here, the electron mobility is determined by impedance spectroscopy.
The electron injection layer is desirably 10 −6 cm 2 / Vs or more in the range of electric field strength of 0.04 to 0.5 MV / cm. This facilitates the injection of electrons from the cathode into the electron transport layer, and also promotes the injection of electrons into the adjacent barrier layer and the light emitting layer, thereby enabling driving at a lower voltage.
 以下に、実施例を挙げて本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
実施例1:化合物7の合成
(1)中間体1の合成
Figure JPOXMLDOC01-appb-C000028
Example 1 Synthesis of Compound 7 (1) Synthesis of Intermediate 1
Figure JPOXMLDOC01-appb-C000028
 三口フラスコに4-Bromo-1,2-phenylenediamine 5.61g(30mmol)、2-Dibenzofuranyl boronic acid 7.00g(33mmol)、KCO 8.29g(60mmol)、水30mL、Pd(OAc) 135mg(0.6mmol)、Tri(o-tolyl)phosphine 365mg(1.2mmol)、1,2-dimethoxyethane 60mLを入れ、窒素雰囲気下で8時間還流させた。反応終了後、室温まで冷却した。分液ロートを用いてジクロロメタンで抽出し、無水硫酸マグネシウムで乾燥し、濾過した。ろ液を濃縮して得られた粗生成物をシリカゲルカラムクロマトグラフィー(ジクロロメタン:酢酸エチル=8:2)で精製し、中間体1を得た。
 収量 6.75g
 収率 82%
In a three-necked flask, 5.51 g (30 mmol) of 4-Bromo-1,2-phenylenediamine, 7.00 g (33 mmol) of 2-Dibenzofuranyl boronic acid, 8.29 g (60 mmol) of K 2 CO 3 , 30 mL of water, Pd (OAc) 2 135 mg (0.6 mmol), Tri (o-tolyl) phosphine 365 mg (1.2 mmol), and 1,2-dimethyloxyne 60 mL were added and refluxed for 8 hours under a nitrogen atmosphere. After completion of the reaction, it was cooled to room temperature. The mixture was extracted with dichloromethane using a separatory funnel, dried over anhydrous magnesium sulfate, and filtered. The crude product obtained by concentrating the filtrate was purified by silica gel column chromatography (dichloromethane: ethyl acetate = 8: 2) to obtain Intermediate 1.
Yield 6.75g
Yield 82%
(2)中間体2の合成
Figure JPOXMLDOC01-appb-C000029
(2) Synthesis of intermediate 2
Figure JPOXMLDOC01-appb-C000029
 三口フラスコに中間体1 5.00g(18.2mmol)、Iodobenzene 8.92.g(43.7mmol)、ナトリウム tert-ブトキシド 5.25g(54.6mmol)、トリス(ジベンジリデンアセトン)ジパラジウム 165mg(0.18mmol)、1,1’-ビス(ジフェニルホスフィノ)フェロセン 200mg(0.36mmol)、トルエン182mLを入れ、窒素雰囲気下で6時間還流した。反応終了後、室温まで冷却し、セライトを用いて濾過した。ろ液を濃縮し、得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン:ジクロロメタン=1:1)で精製して中間体2を得た。
 収量 2.64g
 収率 34%
In a three-necked flask, 5.00 g (18.2 mmol) of Intermediate 1 and Iodobenzene 8.92. g (43.7 mmol), sodium tert-butoxide 5.25 g (54.6 mmol), tris (dibenzylideneacetone) dipalladium 165 mg (0.18 mmol), 1,1′-bis (diphenylphosphino) ferrocene 200 mg (0 .36 mmol) and 182 mL of toluene were added and refluxed for 6 hours under a nitrogen atmosphere. After completion of the reaction, the reaction mixture was cooled to room temperature and filtered using celite. The filtrate was concentrated, and the resulting crude product was purified by silica gel column chromatography (hexane: dichloromethane = 1: 1) to obtain Intermediate 2.
Yield 2.64 g
Yield 34%
(3)化合物7の合成
Figure JPOXMLDOC01-appb-C000030
(3) Synthesis of compound 7
Figure JPOXMLDOC01-appb-C000030
 Dean-Stark trapを取り付けた三口フラスコに中間体2 1.28g(3mmol)、2-Dibenzofuranyl boronic acid 0.70g(3.3mmol)、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン 91mg(0.6mmol)、トルエン45mLを入れ、窒素雰囲気下でDean-Stark trapを用いて脱水しながら8時間還流した。反応終了後、室温まで冷却し、トルエン200mLを加えて希釈した。この溶液を、シリカゲルショートカラムを通して原点不純物成分を除去した。この溶液を濃縮して得られた粗生成物をトルエン:メタノール混合溶媒で3回再結晶して化合物7を得た。
 収量 1.07g
 収率 59%
In a three-necked flask equipped with a Dean-Stark trap, Intermediate 2. 1.28 g (3 mmol), 2-Dibenzofuranyl boronic acid 0.70 g (3.3 mmol), 1,8-diazabicyclo [5.4.0] -7-undecene 91 mg (0.6 mmol) and 45 mL of toluene were added, and the mixture was refluxed for 8 hours while dehydrating under a nitrogen atmosphere using a Dean-Stark trap. After completion of the reaction, the mixture was cooled to room temperature and diluted by adding 200 mL of toluene. The origin impurity component was removed from this solution through a silica gel short column. The crude product obtained by concentrating this solution was recrystallized three times with a toluene: methanol mixed solvent to obtain Compound 7.
Yield 1.07g
Yield 59%
 化合物の同定はFD-MS及びH-NMRにて行った。
 H-NMR(400MHz,CDCl):δ=7.18(d,1H),7.25-7.54(m,19H),7.55-7.61(m,2H),7.63-7.71(m,2H),7.78(s,1H),8.02(d,1H),8.13(d,1H)
 FD-MS測定データ  理論値:602  実測値:602
The compound was identified by FD-MS and 1 H-NMR.
1 H-NMR (400 MHz, CD 2 Cl 2 ): δ = 7.18 (d, 1H), 7.25-7.54 (m, 19H), 7.55-7.61 (m, 2H), 7.63-7.71 (m, 2H), 7.78 (s, 1H), 8.02 (d, 1H), 8.13 (d, 1H)
FD-MS measurement data Theoretical value: 602 Actual value: 602
比較例1:比較例化合物E1の合成
Figure JPOXMLDOC01-appb-C000031
Comparative Example 1: Synthesis of Comparative Example Compound E1
Figure JPOXMLDOC01-appb-C000031
 出発原料を中間体2の代わりにN,N’-(Diphenyl)-2-phenylenediamine、2-Dibenzofuranyl boronic acidの代わりにPhenyl boronic acidを用いた以外は実施例1の(3)と同様にして化合物E1を合成した。
 収量 0.70g
 収率 67%
A compound similar to (3) of Example 1 except that N, N ′-(Diphenyl) -2-phenylenediamine, 2-Dibenzofuranyl boronic acid was used instead of Intermediate 2 instead of Intermediate 2, and Phenyl boronic acid was used instead of Intermediate 2. E1 was synthesized.
Yield 0.70g
Yield 67%
 化合物の同定はFD-MS及びH-NMRにて行った。
 H-NMR(400MHz,CDCl):δ=6.96-7.06(m,4H),7.09(t,2H),7.13-7.23(m,3H),7.28-7.36(m,6H),7.39-7.46(m,4H)
 FD-MS測定データ  理論値:346  実測値:346
The compound was identified by FD-MS and 1 H-NMR.
1 H-NMR (400MHz, CD 2 Cl 2): δ = 6.96-7.06 (m, 4H), 7.09 (t, 2H), 7.13-7.23 (m, 3H), 7.28-7.36 (m, 6H), 7.39-7.46 (m, 4H)
FD-MS measurement data Theoretical value: 346 Actual value: 346
比較例2:比較例化合物E2の合成
Figure JPOXMLDOC01-appb-C000032
Comparative Example 2: Synthesis of Comparative Example Compound E2
Figure JPOXMLDOC01-appb-C000032
 Journal of the American Chemical Society 1959,vol.81,p.2681-2683に記載の方法に従って比較例化合物E2を合成した。 Journal of the American Chemical Society 1959, vol. 81, p. Comparative Example Compound E2 was synthesized according to the method described in 2681-2683.
比較例3:比較例化合物E3の合成
Figure JPOXMLDOC01-appb-C000033
Comparative Example 3: Synthesis of Comparative Example Compound E3
Figure JPOXMLDOC01-appb-C000033
 出発原料を中間体2の代わりに3,3’-ジアミノベンジジンを用いた以外は実施例1の(3)と同様にして比較例化合物E3を合成した。
 収量 1.72g
 収率 61%
Comparative Example Compound E3 was synthesized in the same manner as (3) of Example 1 except that 3,3′-diaminobenzidine was used as the starting material instead of Intermediate 2.
Yield 1.72g
Yield 61%
 化合物の同定はFD-MS及びH-NMRにて行った。
 H-NMR(400MHz,DMSO-d):δ=7.14(q,4H),7.33(s,2H),7.48(t,2H),7.57(t,2H),7.75(d,2H),7.80(d,2H),8.10(t,4H),8.69(s,2H),9.25(d,4H)
 FD-MS測定データ  理論値:566  実測値:566
The compound was identified by FD-MS and 1 H-NMR.
1 H-NMR (400 MHz, DMSO-d 6 ): δ = 7.14 (q, 4H), 7.33 (s, 2H), 7.48 (t, 2H), 7.57 (t, 2H) , 7.75 (d, 2H), 7.80 (d, 2H), 8.10 (t, 4H), 8.69 (s, 2H), 9.25 (d, 4H)
FD-MS measurement data Theoretical value: 566 Actual value: 566
<サイクリックボルタンメトリー測定>
 実施例1及び比較例1で合成した下記化合物について、サイクリックボルタンメトリー測定を行い、電気化学的酸化特性を評価した。
Figure JPOXMLDOC01-appb-C000034
<Cyclic voltammetry measurement>
The following compounds synthesized in Example 1 and Comparative Example 1 were subjected to cyclic voltammetry measurement to evaluate electrochemical oxidation characteristics.
Figure JPOXMLDOC01-appb-C000034
(サイクリックボルタンメトリー測定方法)
 サイクリックボルタンメトリーは装置としてALS社製 Electrochemical Analyzer 630Bを用いて以下の条件及び測定手順で測定を行った。
[測定条件]
電極:
 作用電極:グラッシーカーボン
 参照電極:Ag/Ag+
 対極:Pt
電解質:過塩素酸テトラブチルアンモニウム
測定溶媒:N,N-ジメチルホルムアミド
測定雰囲気:窒素
電位走査速度:0.005V/sec~0.1V/secの範囲
(Cyclic voltammetry measurement method)
Cyclic voltammetry was measured using an Electrochemical Analyzer 630B manufactured by ALS as an apparatus under the following conditions and measurement procedures.
[Measurement condition]
electrode:
Working electrode: Glassy carbon Reference electrode: Ag / Ag +
Counter electrode: Pt
Electrolyte: Tetrabutylammonium perchlorate Measurement solvent: N, N-dimethylformamide Measurement atmosphere: Nitrogen potential Scan rate: Range of 0.005 V / sec to 0.1 V / sec
[測定手順]
(1)測定用セル(10mL用)に電解質濃度が0.1M程度になるように電解質とジメチルホルムアミド10mLを入れ、溶液中に差し込んだ細管から窒素ガスを5分間バブリングして均一に溶解させる。
(2)電極(作用電極、参照電極、対極)を測定用セルにセットする。作用電極は使用直前にアルミナ粉研磨剤で磨いたうえで使用する。
(3)測定基質10mgを測定溶液に加えて、溶液中に差し込んだ細管から窒素ガスを5分間バブリングして均一に溶解させる。
(4)窒素ガスバブリング用の細管を溶液液面から引き上げ、測定セル内が窒素ガス雰囲気下となるように窒素気流を継続させたうえで、ALS社製 Electrochemical Analyzer 630Bを用いて測定を行う。
[Measurement procedure]
(1) An electrolyte and 10 mL of dimethylformamide are placed in a measurement cell (for 10 mL) so that the electrolyte concentration is about 0.1 M, and nitrogen gas is bubbled from a thin tube inserted into the solution for 5 minutes to uniformly dissolve.
(2) An electrode (working electrode, reference electrode, counter electrode) is set in the measurement cell. The working electrode is used after being polished with an alumina powder abrasive just before use.
(3) 10 mg of the measurement substrate is added to the measurement solution, and nitrogen gas is bubbled through the thin tube inserted into the solution for 5 minutes to uniformly dissolve it.
(4) The nitrogen gas bubbling tubule is pulled up from the solution liquid level, and the nitrogen gas flow is continued so that the inside of the measurement cell is in a nitrogen gas atmosphere, and then measurement is performed using an Electrochemical Analyzer 630B manufactured by ALS.
(サイクリックボルタンメトリー測定データ)
 化合物7のサイクリックボルタンメトリー測定データを図2に示す。図2から、可逆な酸化波を示すことが読み取れ、化合物7は電気化学的酸化安定性が高いことが分かる。
 比較例化合物E1のサイクリックボルタンメトリー測定データを図3に示す。図3から、不可逆な酸化波を示すことが読み取れ、化合物E1は電気化学的酸化安定性が低いことが分かる。
(Cyclic voltammetry measurement data)
The cyclic voltammetry measurement data of Compound 7 is shown in FIG. From FIG. 2, it can be read that reversible oxidation waves are shown, and it can be seen that Compound 7 has high electrochemical oxidation stability.
The cyclic voltammetry measurement data of Comparative Example Compound E1 is shown in FIG. From FIG. 3, it can be seen that an irreversible oxidation wave is shown, and it can be seen that Compound E1 has low electrochemical oxidation stability.
実施例2:化合物(20)の合成
(1)中間体(1)の合成
Figure JPOXMLDOC01-appb-C000035
Example 2: Synthesis of compound (20) (1) Synthesis of intermediate (1)
Figure JPOXMLDOC01-appb-C000035
 三口フラスコにBis(4-bromophenyl)amine 16.35g(50mmol)、2-Dibenzofuranyl boronic acid 22.26.g(105mmol)、KCO 27.64g(200mmol)、水100mL、Pd(OAc) 225mg(1mmol)、Tri(o-tolyl)phosphine 609mg(2mmol)、1,2-dimethoxyethane 100mLを入れ、窒素雰囲気下で8時間還流させた。反応終了後、室温まで冷却した。分液ロートを用いてジクロロメタンで抽出し、無水硫酸マグネシウムで乾燥し、濾過した。濾液をシリカゲルショートカラムに通し、原点不純物を除去した。その後、メタノール100mLを加えて10分間超音波洗浄を行い、試料を濾取した。これを50℃で6時間真空乾燥して中間体(1)を得た。
 収量 20.90g
 収率 83%
In a three-necked flask, 16.35 g (50 mmol) of Bis (4-bromophenyl) amine, 2-Dibenzofuranyl boronic acid 22.26. g (105 mmol), 27.64 g (200 mmol) of K 2 CO 3 , 100 mL of water, 225 mg (1 mmol) of Pd (OAc) 2, 609 mg ( 2 mmol) of Tri (o-tolyl) phosphine, 100 mL of 1,2-dimethylethane, The mixture was refluxed for 8 hours under a nitrogen atmosphere. After completion of the reaction, it was cooled to room temperature. The mixture was extracted with dichloromethane using a separatory funnel, dried over anhydrous magnesium sulfate, and filtered. The filtrate was passed through a silica gel short column to remove the origin impurities. Thereafter, 100 mL of methanol was added and ultrasonic cleaning was performed for 10 minutes, and the sample was collected by filtration. This was vacuum-dried at 50 degreeC for 6 hours, and the intermediate body (1) was obtained.
Yield 20.90g
Yield 83%
(2)中間体(2)の合成
Figure JPOXMLDOC01-appb-C000036
(2) Synthesis of intermediate (2)
Figure JPOXMLDOC01-appb-C000036
 大気下、三口フラスコに中間体(1) 20.90g(41.7mmol)、N,N-ジメチルホルムアミド 250mLを入れ、中間体(1)を溶解させた。そこへN,N-ジメチルホルムアミド 42mLに溶解させたN-ブロモスクシンイミド 15.14g(85.07mmol)の溶液を室温で15分間かけて滴下し、その後、室温で18時間撹拌した。反応終了後、試料溶液を水300mLに注ぎ込み、析出試料を濾取した。これにメタノール200mLを加えて10分間超音波洗浄し、濾取した。これをジオキサン1.5Lに加熱して溶解させ、室温まで冷却後、試料が析出しない内にシリカゲルショートカラムを通して原点不純物を除去した。溶液を濃縮した後、メタノール300mLを加え、3時間還流、撹拌させ、室温に戻した後に濾取した。50℃で8時間真空乾燥して中間体(2)を得た。
 収量 21.10g
 収率 77%
In the atmosphere, 20.90 g (41.7 mmol) of intermediate (1) and 250 mL of N, N-dimethylformamide were placed in a three-necked flask to dissolve intermediate (1). A solution of 15.14 g (85.07 mmol) of N-bromosuccinimide dissolved in 42 mL of N, N-dimethylformamide was added dropwise thereto at room temperature over 15 minutes, and then stirred at room temperature for 18 hours. After completion of the reaction, the sample solution was poured into 300 mL of water, and the deposited sample was collected by filtration. Methanol 200mL was added to this, ultrasonically washed for 10 minutes, and filtered. This was heated and dissolved in 1.5 L of dioxane, and after cooling to room temperature, the origin impurities were removed through a silica gel short column before the sample was precipitated. After the solution was concentrated, 300 mL of methanol was added, and the mixture was refluxed and stirred for 3 hours. After returning to room temperature, the solution was collected by filtration. Intermediate (2) was obtained by vacuum-drying at 50 ° C. for 8 hours.
Yield 21.10 g
Yield 77%
(3)中間体(3)の合成
Figure JPOXMLDOC01-appb-C000037
(3) Synthesis of intermediate (3)
Figure JPOXMLDOC01-appb-C000037
 三口フラスコに中間体(2) 6.59g(10mmol)、2,6-ジメチルアニリン 9.69g(80mmol)、ナトリウムーtertーブトキシド 5.77g(60mmol)、Pd(dba) 366mg(0.4mmol)、Tri-tert-butylphosphonium Tetrafluoroborate 464mg(1.6mmol)、トルエン 100mLを加えて窒素雰囲気下、9時間還流させた。
 反応終了後、室温まで冷却した後、トルエン200mLで希釈し、セライトを用いて濾過した。ろ液をシリカゲルショートカラムに通して原点不純物を除去した後、濃縮した。これをシリカゲルクロマトグラフィー(展開溶媒 トルエン:ヘキサン=8:2)で精製し、濃縮した。析出した試料をトルエン:ヘキサン=1:1混合溶媒150mLで10分間超音波洗浄し、濾取した。これを50℃で6時間真空乾燥し、中間体(3)を得た。
 収量 8.35g
 収率 56%
Intermediate necked flask (2) 6.59g (10mmol), 2,6- dimethylaniline 9.69 g (80 mmol), sodium chromatography tert butoxide 5.77g (60mmol), Pd 2 ( dba) 3 366mg (0.4mmol) , 464 mg (1.6 mmol) of Tri-tert-butylphosphonium Tetrafluoroborate and 100 mL of toluene were added, and the mixture was refluxed for 9 hours under a nitrogen atmosphere.
After completion of the reaction, the reaction mixture was cooled to room temperature, diluted with 200 mL of toluene, and filtered using celite. The filtrate was passed through a silica gel short column to remove the origin impurities, and then concentrated. This was purified by silica gel chromatography (developing solvent toluene: hexane = 8: 2) and concentrated. The precipitated sample was ultrasonically washed with 150 mL of a toluene: hexane = 1: 1 mixed solvent for 10 minutes and collected by filtration. This was vacuum-dried at 50 ° C. for 6 hours to obtain an intermediate (3).
Yield 8.35g
Yield 56%
(4)化合物(20)の合成
Figure JPOXMLDOC01-appb-C000038
(4) Synthesis of compound (20)
Figure JPOXMLDOC01-appb-C000038
 三口フラスコに中間体(3) 6.08g(8.22mmol)、脱水テトラヒドロフラン 164mLを加えて中間体(3)を溶解させた。これを0℃に冷却し、n-ブチルリチウム 1.59Mヘキサン溶液 15.8mL(25.15mmol)、を5分かけて滴下した。この時、溶液が速やかに暗赤色に変色した。0℃で15分撹拌した後、脱水テトラヒドロフラン 16mLに溶解させた三フッ化ホウ素ジエチルエーテル錯体 1.17g(8.22mmol)を10分かけて滴下した。その後、室温で16時間撹拌させた。
 反応終了後、エバポレータで溶媒を除去し、乾固させた。これにトルエン600mLを加えて窒素雰囲気下にて還流させ、試料を溶解させた。室温まで冷却後、試料が析出しない内に溶液をシリカゲルショートカラムに通して原点不純物を除去した。これを濃縮、乾固し、析出した試料を酢酸エチルで5分間、超音波洗浄し、さらにこれを窒素雰囲気下で2時間還流させ、室温まで冷却した後に濾取した。これを50℃で6時間、真空乾燥して化合物(20)を得た。
収量 3.50g
収率 57%
In a three-necked flask, 6.08 g (8.22 mmol) of intermediate (3) and 164 mL of dehydrated tetrahydrofuran were added to dissolve intermediate (3). This was cooled to 0 ° C., and 15.8 mL (25.15 mmol) of n-butyllithium 1.59 M hexane solution was added dropwise over 5 minutes. At this time, the solution quickly turned dark red. After stirring at 0 ° C. for 15 minutes, 1.17 g (8.22 mmol) of boron trifluoride diethyl ether complex dissolved in 16 mL of dehydrated tetrahydrofuran was added dropwise over 10 minutes. Then, it was made to stir at room temperature for 16 hours.
After completion of the reaction, the solvent was removed by an evaporator and dried. To this, 600 mL of toluene was added and refluxed in a nitrogen atmosphere to dissolve the sample. After cooling to room temperature, the sample was not precipitated, but the solution was passed through a silica gel short column to remove the origin impurities. This was concentrated and dried, and the precipitated sample was ultrasonically washed with ethyl acetate for 5 minutes. The sample was refluxed for 2 hours under a nitrogen atmosphere, cooled to room temperature, and collected by filtration. This was vacuum-dried at 50 ° C. for 6 hours to obtain a compound (20).
Yield 3.50g
Yield 57%
 化合物の同定はFD-MS及びH-NMRにて行った。
 H-NMR(400MHz,CDCl):δ=2.05-2.12(s,12H),6.89(d,2H),7.04-7.17(m,6H),7.37(t,2H),7.43-7.62(m,8H),7.62-7.68(m,2H),7.82(d,2H),8.02(d,2H),8.12(d,2H)
 FD-MS測定データ  理論値:747  実測値:747
The compound was identified by FD-MS and 1 H-NMR.
1 H-NMR (400MHz, CD 2 Cl 2): δ = 2.05-2.12 (s, 12H), 6.89 (d, 2H), 7.04-7.17 (m, 6H), 7.37 (t, 2H), 7.43-7.62 (m, 8H), 7.62-7.68 (m, 2H), 7.82 (d, 2H), 8.02 (d, 2H), 8.12 (d, 2H)
FD-MS measurement data Theoretical value: 747 Actual value: 747
 実施例1及び2、及び比較例1~3の化合物の最低励起三重項エネルギー、及びイオン化ポテンシャルを下記方法で測定した。結果を表1に示す。 The lowest excited triplet energy and ionization potential of the compounds of Examples 1 and 2 and Comparative Examples 1 to 3 were measured by the following methods. The results are shown in Table 1.
(1)三重項エネルギー(E
 市販の装置F-4500(日立社製)を用いて測定した。各化合物をEPA溶媒(ジエチルエーテル:イソペンタン:エタノール=5:5:5(容積比)、各溶媒は分光用グレード)に溶解し(試料10μmol/リットル)、燐光測定用試料とした。石英セルへ入れた燐光測定用試料を77(K)に冷却し、励起光を燐光測定用試料に照射し、波長を変えながら燐光強度を測定した。
 三重項エネルギー(E)の換算式は以下の通りである。
 E(eV)=1239.85/λph
 式中、「λph」(単位:nm)は、縦軸に燐光強度、横軸に波長をとって、燐光スペクトルを表したときに、燐光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線とベースラインの交点の波長値を意味する。
(1) Triplet energy (E T )
The measurement was performed using a commercially available apparatus F-4500 (manufactured by Hitachi). Each compound was dissolved in an EPA solvent (diethyl ether: isopentane: ethanol = 5: 5: 5 (volume ratio), each solvent was a spectroscopic grade) (sample 10 μmol / liter) to prepare a sample for phosphorescence measurement. The phosphorescence measurement sample placed in the quartz cell was cooled to 77 (K), and the phosphorescence measurement sample was irradiated with excitation light, and the phosphorescence intensity was measured while changing the wavelength.
The conversion formula of triplet energy (E T ) is as follows.
E T (eV) = 1239.85 / λ ph
In the formula, “λ ph ” (unit: nm) draws a tangent line to the rising edge of the phosphorescence spectrum on the short wavelength side when the phosphorescence spectrum is represented with the phosphorescence intensity on the vertical axis and the wavelength on the horizontal axis. , The wavelength value of the intersection of the tangent and the baseline.
(2)イオン化ポテンシャル
 真空蒸着法又は塗布法により、ITO基板上に測定化合物の薄膜を形成し、市販の装置大気中光電子分光装置AC-3(理研計器社製)を用いて測定した。
(2) Ionization potential A thin film of the measurement compound was formed on the ITO substrate by a vacuum deposition method or a coating method, and the measurement was performed using a commercially available atmospheric photoelectron spectrometer AC-3 (manufactured by Riken Keiki Co., Ltd.).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
実施例3
 膜厚130nmのITO電極ライン付きガラス基板(ジオマテック社製)を、イソプロピルアルコール中で5分間、超音波洗浄した後、UVオゾン洗浄を30分間行なった。
 洗浄後のITO電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まずITO電極ラインが形成されている側の面上に、ITO電極ラインを覆うようにして化合物HI1を厚さ20nmで、次いで化合物HT1を厚さ60nmで抵抗加熱蒸着し、順次薄膜を成膜した。成膜レートは1Å/sとした。これらの薄膜は、それぞれ正孔注入層及び正孔輸送層として機能する。
Example 3
A glass substrate with a 130 nm-thick ITO electrode line (manufactured by Geomatec) was ultrasonically cleaned in isopropyl alcohol for 5 minutes, and then UV ozone cleaning was performed for 30 minutes.
The glass substrate with the ITO electrode line after the cleaning is mounted on the substrate holder of the vacuum evaporation apparatus, and first, the compound HI1 is formed with a thickness of 20 nm on the surface on which the ITO electrode line is formed so as to cover the ITO electrode line. Subsequently, compound HT1 was deposited by resistance heating with a thickness of 60 nm, and thin films were sequentially formed. The film formation rate was 1 Å / s. These thin films function as a hole injection layer and a hole transport layer, respectively.
 次に、正孔輸送層上に、化合物7と化合物BD1を同時に抵抗加熱蒸着して膜厚50nmの薄膜を成膜した。このとき、化合物BD1を、化合物7と化合物BD1の総質量に対し質量比で20%になるように蒸着した。成膜レートはそれぞれ1.2Å/s、0.3Å/sとした。この薄膜は燐光発光層として機能し、この薄膜において化合物7はホスト、化合物BD1は発光ドーパントとして機能する。
 次に、この燐光発光層上に、化合物B1を抵抗加熱蒸着して膜厚10nmの薄膜を成膜した。この薄膜は正孔障壁層として機能する。成膜レートは1.2Å/sとした。
Next, on the hole transport layer, Compound 7 and Compound BD1 were simultaneously deposited by resistance heating to form a thin film having a thickness of 50 nm. At this time, the compound BD1 was vapor-deposited so that the mass ratio was 20% with respect to the total mass of the compound 7 and the compound BD1. The film formation rates were 1.2 Å / s and 0.3 Å / s, respectively. This thin film functions as a phosphorescent light emitting layer, in which the compound 7 functions as a host and the compound BD1 functions as a light emitting dopant.
Next, a thin film having a thickness of 10 nm was formed on the phosphorescent light emitting layer by resistance heating vapor deposition of Compound B1. This thin film functions as a hole blocking layer. The film formation rate was 1.2 liter / s.
 次に、この正孔障壁層上に、化合物ET1を抵抗加熱蒸着して膜厚10nmの薄膜を成膜した。成膜レートは1Å/sとした。この膜は電子注入層として機能する。
 次に、この電子注入層上に膜厚1.0nmのLiFを成膜レート0.1Å/sで蒸着した。
 次に、このLiF膜上に金属アルミニウムを成膜レート8.0Å/sにて蒸着し、膜厚80nmの金属陰極を形成して有機EL素子を得た。
Next, a thin film having a thickness of 10 nm was formed on the hole barrier layer by resistance heating vapor deposition of the compound ET1. The film formation rate was 1 Å / s. This film functions as an electron injection layer.
Next, LiF having a film thickness of 1.0 nm was deposited on the electron injection layer at a film formation rate of 0.1 Å / s.
Next, metallic aluminum was vapor-deposited on the LiF film at a deposition rate of 8.0 Å / s to form a metal cathode with a film thickness of 80 nm to obtain an organic EL element.
 得られた有機EL素子について、初期発光輝度1000cd/mとして定電流駆動させたときの素子性能(半減寿命(輝度が初期発光輝度の50%まで低下するまでの時間))を評価した。 About the obtained organic EL element, the element performance (half life (time until a brightness | luminance falls to 50% of initial light emission luminance)) when driving at constant current as initial light emission luminance of 1000 cd / m 2 was evaluated.
比較例4
 化合物7の代わりに化合物E3を燐光発光層のホストとして用いた以外は実施例3と同様にして有機EL素子を作製し、評価した。結果を表2に示す。尚、「半減寿命(相対%)」とは、実施例3の素子の半減寿命を100%とした場合の相対割合である。
Comparative Example 4
An organic EL device was prepared and evaluated in the same manner as in Example 3 except that Compound E3 was used as the host of the phosphorescent light emitting layer instead of Compound 7. The results are shown in Table 2. The “half life (relative%)” is a relative ratio when the half life of the element of Example 3 is 100%.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2より、本発明の化合物を燐光発光層のホストとして用いた場合、長寿命な有機EL素子を提供できることがわかる。 From Table 2, it can be seen that when the compound of the present invention is used as a host of the phosphorescent layer, a long-life organic EL device can be provided.
実施例4
 膜厚130nmのITO電極ライン付きガラス基板(ジオマテック社製)を、イソプロピルアルコール中で5分間、超音波洗浄した後、UVオゾン洗浄を30分間行なった。
 洗浄後のITO電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まずITO電極ラインが形成されている側の面上に、ITO電極ラインを覆うようにして化合物HI1を厚さ20nmで、次いで化合物HT1を厚さ60nmで抵抗加熱蒸着し、順次薄膜を成膜した。成膜レートは1Å/sとした。これらの薄膜は、それぞれ正孔注入層及び正孔輸送層として機能する。
Example 4
A glass substrate with a 130 nm-thick ITO electrode line (manufactured by Geomatec) was ultrasonically cleaned in isopropyl alcohol for 5 minutes, and then UV ozone cleaning was performed for 30 minutes.
The glass substrate with the ITO electrode line after the cleaning is mounted on the substrate holder of the vacuum evaporation apparatus, and first, the compound HI1 is formed with a thickness of 20 nm on the surface on which the ITO electrode line is formed so as to cover the ITO electrode line. Subsequently, compound HT1 was deposited by resistance heating with a thickness of 60 nm, and thin films were sequentially formed. The film formation rate was 1 Å / s. These thin films function as a hole injection layer and a hole transport layer, respectively.
 次に、正孔輸送層上に、化合物(20)と化合物BD1を同時に抵抗加熱蒸着して膜厚50nmの薄膜を成膜した。このとき、化合物BD1を、化合物(20)と化合物BD1の総質量に対し質量比で20%になるように蒸着した。成膜レートはそれぞれ1.2Å/s、0.3Å/sとした。この薄膜は燐光発光層として機能し、この薄膜において化合物(20)はホスト、化合物BD1は発光ドーパントとして機能する。
 次に、この燐光発光層上に、化合物B1を抵抗加熱蒸着して膜厚10nmの薄膜を成膜した。この薄膜は正孔障壁層として機能する。成膜レートは1.2Å/sとした。
Next, on the hole transport layer, the compound (20) and the compound BD1 were simultaneously deposited by resistance heating to form a thin film having a thickness of 50 nm. At this time, the compound BD1 was vapor-deposited so that the mass ratio was 20% with respect to the total mass of the compound (20) and the compound BD1. The film formation rates were 1.2 Å / s and 0.3 Å / s, respectively. This thin film functions as a phosphorescent light emitting layer, in which the compound (20) functions as a host and the compound BD1 functions as a light emitting dopant.
Next, a thin film having a thickness of 10 nm was formed on the phosphorescent light emitting layer by resistance heating vapor deposition of Compound B1. This thin film functions as a hole blocking layer. The film formation rate was 1.2 liter / s.
 次に、この正孔障壁層上に、化合物ET1を抵抗加熱蒸着して膜厚10nmの薄膜を成膜した。成膜レートは1Å/sとした。この膜は電子注入層として機能する。
 次に、この電子注入層上に膜厚1.0nmのLiFを成膜レート0.1Å/sで蒸着した。
 次に、このLiF膜上に金属アルミニウムを成膜レート8.0Å/sにて蒸着し、膜厚80nmの金属陰極を形成して有機EL素子を得た。
Next, a thin film having a thickness of 10 nm was formed on the hole barrier layer by resistance heating vapor deposition of the compound ET1. The film formation rate was 1 Å / s. This film functions as an electron injection layer.
Next, LiF having a film thickness of 1.0 nm was deposited on the electron injection layer at a film formation rate of 0.1 Å / s.
Next, metallic aluminum was vapor-deposited on the LiF film at a deposition rate of 8.0 Å / s to form a metal cathode with a film thickness of 80 nm to obtain an organic EL element.
 得られた有機EL素子について、初期発光輝度1000cd/mとして定電流駆動させたときの素子性能(半減寿命(輝度が初期発光輝度の50%まで低下するまでの時間))を評価した。 About the obtained organic EL element, the element performance (half life (time until a brightness | luminance falls to 50% of initial light emission luminance)) when driving at constant current as initial light emission luminance of 1000 cd / m 2 was evaluated.
比較例5
 化合物(20)の代わりに化合物E3を燐光発光層のホストとして用いた以外は実施例4と同様にして有機EL素子を作製し、評価した。結果を表3に示す。尚、「半減寿命(相対%)」とは、実施例4の素子の半減寿命を100%とした場合の相対割合である。
Comparative Example 5
An organic EL device was prepared and evaluated in the same manner as in Example 4 except that compound E3 was used as the host of the phosphorescent light emitting layer instead of compound (20). The results are shown in Table 3. The “half life (relative%)” is a relative ratio when the half life of the element of Example 4 is 100%.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3より、本発明の化合物を燐光発光層のホストとして用いた場合、長寿命な有機EL素子を提供できることがわかる。 From Table 3, it can be seen that when the compound of the present invention is used as a host of the phosphorescent layer, a long-life organic EL device can be provided.
実施例5:化合物12の合成
Figure JPOXMLDOC01-appb-C000040
Example 5: Synthesis of compound 12
Figure JPOXMLDOC01-appb-C000040
 出発原料を2-Dibenzofuranyl boronic acidの代わりに8-(N-Carbazolyl)dibenzofuran-2-boronic acidを用いた以外は実施例1の(3)と同様にして化合物12を合成した。
 収量 0.69g
 収率 30%
Compound 12 was synthesized in the same manner as (3) of Example 1 except that 8- (N-Carbazolyl) dibenzofuran-2-boronic acid was used as the starting material instead of 2-Dibenzofuranyl boronic acid.
Yield 0.69g
Yield 30%
 化合物の同定はFD-MS及びH-NMRにて行った。
 H-NMR(400MHz,CDCl):δ=7.18(1H,d),7.32-7.47(22H,m),7.54-7.58(3H,m),7.62-7.65(1H,m),7.69-7.72(2H,m),7.79(1H,d),7.96-8.00(1H,m),8.07(1H,d),8.17-8.20(2H,m)
 FD-MS測定データ  理論値:767  実測値:767
The compound was identified by FD-MS and 1 H-NMR.
1 H-NMR (400 MHz, CDCl 3 ): δ = 7.18 (1H, d), 7.32-7.47 (22H, m), 7.54-7.58 (3H, m), 7. 62-7.65 (1H, m), 7.69-7.72 (2H, m), 7.79 (1H, d), 7.96-8.00 (1H, m), 8.07 ( 1H, d), 8.17-8.20 (2H, m)
FD-MS measurement data Theoretical value: 767 Actual value: 767
実施例6:化合物15の合成
(1)中間体11の合成
Figure JPOXMLDOC01-appb-C000041
Example 6 Synthesis of Compound 15 (1) Synthesis of Intermediate 11
Figure JPOXMLDOC01-appb-C000041
 三口フラスコに9-Phenyl-9H,9‘H-[3,3’]bicarbazolyl 4.1g(10mmol)、1-Bromo-3,4-dichlorobenzene 2.7g(12mmol)、trans-1,2-cyclohexanediamine 0.11g(1mmol)、ヨウ化銅 0.2g(1mmol)、リン酸三カリウム 6.4g(30mmol)、キシレン 30mlを入れ、窒素雰囲気下で24時間還流させた。反応終了後、室温まで冷却した。溶媒を濃縮して得られた粗生成物をシリカゲルカラムクロマトグラフィー(トルエン:ヘキサン=1:1)で精製し、中間体11 3.6gを得た。
 収量 3.60g
 収率 65%
In a three-necked flask, 9-Phenyl-9H, 9′H- [3,3 ′] bicarbazolyl 4.1 g (10 mmol), 1-Bromo-3,4-dichlorobenzene, 2.7 g (12 mmol), trans-1,2-cyclohexanediamine 0.11 g (1 mmol), 0.2 g (1 mmol) of copper iodide, 6.4 g (30 mmol) of tripotassium phosphate and 30 ml of xylene were added and refluxed for 24 hours under a nitrogen atmosphere. After completion of the reaction, it was cooled to room temperature. The crude product obtained by concentrating the solvent was purified by silica gel column chromatography (toluene: hexane = 1: 1) to obtain 3.6 g of intermediate 11.
Yield 3.60g
Yield 65%
(2)中間体12の合成
Figure JPOXMLDOC01-appb-C000042
(2) Synthesis of intermediate 12
Figure JPOXMLDOC01-appb-C000042
 三口フラスコに中間体11 5.5g(10mmol)、酢酸パラジウム 0.22g(1mmol)、P(t-Bu)-HBF 0.44g(1.5mmol)、t-BuONa 2.88g(30mmol)、アニリン 20mlを入れ、窒素雰囲気下で4時間還流させた。反応終了後、室温まで冷却した。トルエンで希釈し、不溶物を濾去した後、溶媒を濃縮して得られた粗生成物をシリカゲルカラムクロマトグラフィー(ジクロロメタン:ヘキサン=1:2)で精製し、中間体12 3.6gを得た。
 収量 4.00g
 収率 60%
Three-necked flask Intermediate 11 5.5g (10mmol), palladium acetate 0.22g (1mmol), P (t -Bu) 3 -HBF 4 0.44g (1.5mmol), t-BuONa 2.88g (30mmol) Then, 20 ml of aniline was added and refluxed for 4 hours under a nitrogen atmosphere. After completion of the reaction, it was cooled to room temperature. The crude product obtained by diluting with toluene and filtering off insolubles and then concentrating the solvent was purified by silica gel column chromatography (dichloromethane: hexane = 1: 2) to obtain 3.6 g of intermediate 12. It was.
Yield 4.00g
Yield 60%
(3)化合物15の合成
Figure JPOXMLDOC01-appb-C000043
(3) Synthesis of compound 15
Figure JPOXMLDOC01-appb-C000043
 出発原料を2-Dibenzofuranyl boronic acidの代わりにPhenylboronic acidを用い、中間体2の代わりに中間体12を用いた以外は実施例1の(3)と同様にして化合物15を合成した。
 収量 0.79g
 収率 35%
Compound 15 was synthesized in the same manner as in (3) of Example 1, except that phenylboronic acid was used instead of 2-Dibenzofuranyl boronic acid, and intermediate 12 was used instead of intermediate 2.
Yield 0.79g
Yield 35%
 化合物の同定はFD-MS及びH-NMRにて行った。
 H-NMR(400MHz,CDCl):δ=7.10-7.52(28H,m),7.62-7.69(3H,m),7.74-7.78(2H,m),8.20-8.25(2H,m),8.43-8.46(2H,m)
 FD-MS測定データ  理論値:752  実測値:752
The compound was identified by FD-MS and 1 H-NMR.
1 H-NMR (400 MHz, CDCl 3 ): δ = 7.10-7.52 (28H, m), 7.62-7.69 (3H, m), 7.74-7.78 (2H, m ), 8.20-8.25 (2H, m), 8.43-8.46 (2H, m)
FD-MS measurement data Theoretical value: 752 Actual value: 752
実施例7:化合物73の合成 
(1)中間体13の合成
Figure JPOXMLDOC01-appb-C000044
Example 7: Synthesis of Compound 73
(1) Synthesis of intermediate 13
Figure JPOXMLDOC01-appb-C000044
 出発原料を9-Phenyl-9H,9‘H-[3,3’]bicarbazolylの代わりにCarbazoleを用いた以外は実施例6の(1)と同様にして中間体13を合成した。
 収量 1.40g
 収率 45%
Intermediate 13 was synthesized in the same manner as (1) of Example 6 except that Carbazole was used instead of 9-Phenyl-9H, 9′H- [3,3 ′] bicarbazolyl as the starting material.
Yield 1.40g
Yield 45%
(2)中間体14の合成
Figure JPOXMLDOC01-appb-C000045
(2) Synthesis of intermediate 14
Figure JPOXMLDOC01-appb-C000045
 出発原料を中間体11の代わりに中間体13を用いた以外は実施例6の(2)と同様にして中間体14を合成した。
 収量 3.40g
 収率 80%
Intermediate 14 was synthesized in the same manner as (2) of Example 6 except that intermediate 13 was used instead of intermediate 11.
Yield 3.40g
Yield 80%
(3)化合物73の合成
Figure JPOXMLDOC01-appb-C000046
(3) Synthesis of compound 73
Figure JPOXMLDOC01-appb-C000046
 出発原料を中間体2の代わりに中間体14を用いた以外は実施例1の(3)と同様にして化合物73を合成した。
 収量 0.59g
 収率 33%
Compound 73 was synthesized in the same manner as (3) of Example 1 except that Intermediate 14 was used instead of Intermediate 2.
Yield 0.59g
Yield 33%
 化合物の同定はFD-MS及びH-NMRにて行った。
 H-NMR(400MHz,CDCl):δ=7.17-7.53(24H,m),7.61-7.64(1H,m),7.72(1H,d),8.13(2H,d)
 FD-MS測定データ  理論値:601  実測値:601
The compound was identified by FD-MS and 1 H-NMR.
1 H-NMR (400 MHz, CDCl 3 ): δ = 7.17-7.53 (24H, m), 7.61-7.64 (1H, m), 7.72 (1H, d), 8. 13 (2H, d)
FD-MS measurement data Theoretical value: 601 Actual value: 601
 実施例5、6、7で合成した化合物の三重項エネルギー、及びイオン化ポテンシャルを上記の方法で測定した。結果を表4に示す。 The triplet energy and ionization potential of the compounds synthesized in Examples 5, 6, and 7 were measured by the above methods. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
実施例8
 膜厚130nmのITO電極ライン付きガラス基板(ジオマテック社製)を、イソプロピルアルコール中で5分間、超音波洗浄した後、UVオゾン洗浄を30分間行なった。
 洗浄後のITO電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まずITO電極ラインが形成されている側の面上に、ITO電極ラインを覆うようにして化合物HI1を厚さ20nmで、次いで化合物HT1を厚さ60nmで抵抗加熱蒸着し、順次薄膜を成膜した。成膜レートは1Å/sとした。これらの薄膜は、それぞれ正孔注入層及び正孔輸送層として機能する。
Example 8
A glass substrate with a 130 nm-thick ITO electrode line (manufactured by Geomatec) was ultrasonically cleaned in isopropyl alcohol for 5 minutes, and then UV ozone cleaning was performed for 30 minutes.
The glass substrate with the ITO electrode line after the cleaning is mounted on the substrate holder of the vacuum evaporation apparatus, and first, the compound HI1 is formed with a thickness of 20 nm on the surface on which the ITO electrode line is formed so as to cover the ITO electrode line. Subsequently, compound HT1 was deposited by resistance heating with a thickness of 60 nm, and thin films were sequentially formed. The film formation rate was 1 Å / s. These thin films function as a hole injection layer and a hole transport layer, respectively.
 次に、正孔輸送層上に、化合物7と化合物BD1を同時に抵抗加熱蒸着して膜厚40nmの薄膜を成膜した。このとき、化合物BD1を、化合物7と化合物BD1の総質量に対し質量比で20%になるように蒸着した。成膜レートはそれぞれ1.2Å/s、0.3Å/sとした。この薄膜は燐光発光層として機能し、この薄膜において化合物7はホスト、化合物BD1は発光ドーパントとして機能する。
 次に、この燐光発光層上に、化合物7を抵抗加熱蒸着して膜厚5nmの薄膜を成膜した。この薄膜は正孔障壁層として機能する。成膜レートは1.2Å/sとした。
Next, on the hole transport layer, Compound 7 and Compound BD1 were simultaneously deposited by resistance heating to form a thin film having a thickness of 40 nm. At this time, the compound BD1 was vapor-deposited so that the mass ratio was 20% with respect to the total mass of the compound 7 and the compound BD1. The film formation rates were 1.2 Å / s and 0.3 Å / s, respectively. This thin film functions as a phosphorescent light emitting layer, in which the compound 7 functions as a host and the compound BD1 functions as a light emitting dopant.
Next, a thin film having a thickness of 5 nm was formed on the phosphorescent light emitting layer by resistance heating vapor deposition of Compound 7. This thin film functions as a hole blocking layer. The film formation rate was 1.2 liter / s.
 次に、この正孔障壁層上に、化合物ET1を抵抗加熱蒸着して膜厚25nmの薄膜を成膜した。成膜レートは1Å/sとした。この膜は電子注入層として機能する。
 次に、この電子注入層上に膜厚1.0nmのLiFを成膜レート0.1Å/sで蒸着した。
 次に、このLiF膜上に金属アルミニウムを成膜レート8.0Å/sにて蒸着し、膜厚80nmの金属陰極を形成して有機EL素子を得た。
Next, a compound having a thickness of 25 nm was formed on the hole barrier layer by resistance heating vapor deposition of the compound ET1. The film formation rate was 1 Å / s. This film functions as an electron injection layer.
Next, LiF having a film thickness of 1.0 nm was deposited on the electron injection layer at a film formation rate of 0.1 Å / s.
Next, metallic aluminum was vapor-deposited on the LiF film at a deposition rate of 8.0 Å / s to form a metal cathode with a film thickness of 80 nm to obtain an organic EL element.
実施例9
 化合物7の代わりに化合物12を用いた以外は、実施例8と同様にして、有機EL素子を得た。
Example 9
An organic EL device was obtained in the same manner as in Example 8, except that Compound 12 was used instead of Compound 7.
実施例10
 化合物7の代わりに化合物15を用いた以外は、実施例8と同様にして、有機EL素子を得た。
Example 10
An organic EL device was obtained in the same manner as in Example 8 except that Compound 15 was used instead of Compound 7.
実施例11
 化合物7の代わりに化合物73を用いた以外は、実施例8と同様にして、有機EL素子を得た。
Example 11
An organic EL device was obtained in the same manner as in Example 8 except that Compound 73 was used instead of Compound 7.
比較例6
 化合物7の代わりに化合物E2を用いた以外は、実施例8と同様にして、有機EL素子を作製したが、E2は蒸着温度が非常に低く、均一な薄膜を形成することができず、性能を測定可能な有機EL素子を作製できなかった。
比較例7
 化合物7の代わりに化合物E3を用いた以外は、実施例8と同様にして、有機EL素子を得た。
Comparative Example 6
An organic EL device was produced in the same manner as in Example 8 except that Compound E2 was used instead of Compound 7, but E2 had a very low vapor deposition temperature and could not form a uniform thin film. It was not possible to produce an organic EL device capable of measuring
Comparative Example 7
An organic EL device was obtained in the same manner as in Example 8 except that Compound E3 was used instead of Compound 7.
 得られた有機EL素子について、定電流駆動により発光させ、輝度、電流密度を測定し、電流密度1mA/cmにおける電圧、発光効率(外部量子効率)を求めた。さらに初期輝度1,000cd/mにおける半減寿命(輝度が初期発光輝度の50%まで低下する時間)を求めた。結果を表5に示す。
 なお、「半減寿命(相対%)」とは、実施例Y-1の素子の半減寿命を100%とした場合の相対割合である。
About the obtained organic EL element, it was made to light-emit by constant current drive, the brightness | luminance and the current density were measured, and the voltage in the current density of 1 mA / cm < 2 >, and luminous efficiency (external quantum efficiency) were calculated | required. Further, the half life at an initial luminance of 1,000 cd / m 2 (the time for the luminance to decrease to 50% of the initial emission luminance) was determined. The results are shown in Table 5.
The “half life (relative%)” is a relative ratio when the half life of the device of Example Y-1 is 100%.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5に示した結果より、本発明の化合物を燐光発光層のホスト材料として用いた場合、低電圧、高効率、長寿命な有機EL素子を提供できることが分かる。また、正孔障壁層材料としても機能し、有用であることが分かる。 From the results shown in Table 5, it can be seen that when the compound of the present invention is used as the host material of the phosphorescent light emitting layer, an organic EL device having a low voltage, high efficiency, and long life can be provided. Further, it also functions as a hole barrier layer material, and is found to be useful.
実施例12
 膜厚130nmのITO電極ライン付きガラス基板(ジオマテック社製)を、イソプロピルアルコール中で5分間、超音波洗浄した後、UVオゾン洗浄を30分間行なった。
 洗浄後のITO電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まずITO電極ラインが形成されている側の面上に、ITO電極ラインを覆うようにして化合物HI1を厚さ20nmで、次いで化合物HT1を厚さ50nmで抵抗加熱蒸着し、順次薄膜を成膜した。成膜レートは1Å/sとした。これらの薄膜は、それぞれ正孔注入層及び第1の正孔輸送層として機能する。
Example 12
A glass substrate with a 130 nm-thick ITO electrode line (manufactured by Geomatec) was ultrasonically cleaned in isopropyl alcohol for 5 minutes, and then UV ozone cleaning was performed for 30 minutes.
The glass substrate with the ITO electrode line after the cleaning is mounted on the substrate holder of the vacuum evaporation apparatus, and first, the compound HI1 is formed with a thickness of 20 nm on the surface on which the ITO electrode line is formed so as to cover the ITO electrode line. Then, compound HT1 was deposited by resistance heating with a thickness of 50 nm, and a thin film was sequentially formed. The film formation rate was 1 Å / s. These thin films function as a hole injection layer and a first hole transport layer, respectively.
 次に、正孔輸送層上に、化合物73を抵抗加熱蒸着して膜厚10nmの薄膜を成膜した。この薄膜は、第2の正孔輸送層として機能する。さらに、化合物B1と化合物BD1を同時に抵抗加熱蒸着して膜厚40nmの薄膜を成膜した。このとき、化合物BD1を、化合物7と化合物BD1の総質量に対し質量比で20%になるように蒸着した。成膜レートはそれぞれ1.2Å/s、0.3Å/sとした。この薄膜は燐光発光層として機能し、この薄膜において化合物7はホスト、化合物BD1は発光ドーパントとして機能する。
 次に、この燐光発光層上に、化合物7を抵抗加熱蒸着して膜厚5nmの薄膜を成膜した。この薄膜は正孔障壁層として機能する。成膜レートは1.2Å/sとした。
Next, a thin film having a thickness of 10 nm was formed on the hole transport layer by resistance heating vapor deposition of compound 73. This thin film functions as a second hole transport layer. Further, Compound B1 and Compound BD1 were simultaneously deposited by resistance heating to form a thin film having a thickness of 40 nm. At this time, the compound BD1 was vapor-deposited so that the mass ratio was 20% with respect to the total mass of the compound 7 and the compound BD1. The film formation rates were 1.2 Å / s and 0.3 Å / s, respectively. This thin film functions as a phosphorescent light emitting layer, in which the compound 7 functions as a host and the compound BD1 functions as a light emitting dopant.
Next, a thin film having a thickness of 5 nm was formed on the phosphorescent light emitting layer by resistance heating vapor deposition of Compound 7. This thin film functions as a hole blocking layer. The film formation rate was 1.2 liter / s.
 次に、この正孔障壁層上に、化合物ET1を抵抗加熱蒸着して膜厚25nmの薄膜を成膜した。成膜レートは1Å/sとした。この膜は電子注入層として機能する。
 次に、この電子注入層上に膜厚1.0nmのLiFを成膜レート0.1Å/sで蒸着した。
 次に、このLiF膜上に金属アルミニウムを成膜レート8.0Å/sにて蒸着し、膜厚80nmの金属陰極を形成して有機EL素子を得た。
Next, a compound having a thickness of 25 nm was formed on the hole barrier layer by resistance heating vapor deposition of the compound ET1. The film formation rate was 1 Å / s. This film functions as an electron injection layer.
Next, LiF having a film thickness of 1.0 nm was deposited on the electron injection layer at a film formation rate of 0.1 Å / s.
Next, metallic aluminum was vapor-deposited on the LiF film at a deposition rate of 8.0 Å / s to form a metal cathode with a film thickness of 80 nm to obtain an organic EL element.
比較例8
 化合物73の代わりに化合物E3を用いた以外は、実施例12と同様にして、有機EL素子を得た。
 得られた有機EL素子について、定電流駆動により発光させ、輝度、電流密度を測定し、電流密度1mA/cmにおける電圧、発光効率(外部量子効率)を求めた。さらに初期輝度1,000cd/mにおける半減寿命(輝度が初期発光輝度の50%まで低下する時間)を求めた。結果を表6に示す。
 なお、「半減寿命(相対%)」とは、実施例12の素子の半減寿命を100%とした場合の相対割合である。
Comparative Example 8
An organic EL device was obtained in the same manner as in Example 12 except that the compound E3 was used instead of the compound 73.
About the obtained organic EL element, it was made to light-emit by constant current drive, the brightness | luminance and the current density were measured, and the voltage in the current density of 1 mA / cm < 2 >, and luminous efficiency (external quantum efficiency) were calculated | required. Further, the half life at an initial luminance of 1,000 cd / m 2 (the time for the luminance to decrease to 50% of the initial emission luminance) was determined. The results are shown in Table 6.
The “half life (relative%)” is a relative ratio when the half life of the element of Example 12 is 100%.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6に示した結果より、本発明の化合物を正孔輸送層材料として用いた場合、高効率、長寿命な有機EL素子を提供できることが分かる。 From the results shown in Table 6, it can be seen that when the compound of the present invention is used as the hole transport layer material, an organic EL device with high efficiency and long life can be provided.
 本発明の化合物は高い電気化学的酸化安定性を有するため、有機エレクトロニクス素子用材料として極めて有用である。 Since the compound of the present invention has high electrochemical oxidation stability, it is extremely useful as a material for organic electronics elements.
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 本願のパリ優先の基礎となる日本出願明細書の内容を全てここに援用する。
Although several embodiments and / or examples of the present invention have been described in detail above, those skilled in the art will appreciate that these exemplary embodiments and / or embodiments are substantially without departing from the novel teachings and advantages of the present invention. It is easy to make many changes to the embodiment. Accordingly, many of these modifications are within the scope of the present invention.
All the contents of the Japanese application specification that is the basis of the priority of Paris in this application are incorporated herein.

Claims (21)

  1.  式(1)で表されるベンゾジアザボロール化合物。
    Figure JPOXMLDOC01-appb-C000047
    (式中、
     A及びAは、それぞれ独立して、
    置換若しくは無置換の環形成炭素数6~30の芳香族環基、
    置換若しくは無置換の環形成原子数5~30の複素芳香族環基、
    置換若しくは無置換の炭素数3~20のアルキル基、
    置換若しくは無置換の環形成炭素数3~20のシクロアルキル基、
    置換若しくは無置換のシリル基、
    置換若しくは無置換のホスフィノ基、
    置換若しくは無置換のホスフィンオキシド基、
    置換若しくは無置換のスルホキシド基、
    置換若しくは無置換のスルホン基、又は
    単結合であり、
     Aは、
    置換若しくは無置換の環形成炭素数6~30の芳香族環基、
    置換若しくは無置換の環形成原子数5~30の複素芳香族環基、
    置換若しくは無置換の炭素数1~20のアルキル基、
    置換若しくは無置換の環形成炭素数3~20のシクロアルキル基、
    置換若しくは無置換の炭素数1~20のアルコキシ基、
    置換若しくは無置換の環形成炭素数3~20のシクロアルコキシ基、
    置換若しくは無置換の環形成炭素数6~30のアリールオキシ基、
    置換若しくは無置換のアミノ基、
    置換若しくは無置換の炭素数1~20のアルキルスルフィド基、
    置換若しくは無置換の環形成炭素数6~30のアリールスルフィド基、
    フルオロ基、
    シアノ基、又は
    単結合であり、
     AとA、又はAとAは、互いに結合して、ベンゾジアザボロール骨格の窒素原子及びホウ素原子を含めて5~7員環を形成してもよい。
     ただし、A、A、及びAが互いに結合して、ジアザボロール環が3個縮合した下記の環を形成することはない。
    Figure JPOXMLDOC01-appb-C000048
     ジアザボロール環と縮合する環Qは、
    置換若しくは無置換のベンゼン環、
    置換若しくは無置換の環形成炭素数10~30の縮合芳香族環、又は
    置換若しくは無置換の環形成原子数5~24の複素芳香族環が少なくとも1つ縮合した、置換若しくは無置換のベンゼン環であり、
     nは、1~6の整数であり、
     nが1の場合、Lは存在せず、
     nが2~6の場合、Lは、Q、A、A、及びAのいずれか同士の間を架橋する連結基、又は単結合であり、
     nが2~6の場合、n個あるQ、A、A、及びAは、互いに同一でも異なっていてもよい。
     ただし、
    (i)nが1のときに、Qが無置換のベンゼン環となる場合、
    (ii)nが2~6であり、Qが無置換のベンゼン環であり、Lが単結合であるときに、無置換のベンゼン環であるQ同士が単結合であるLで結合する場合、及び
    (iii)nが2~6であり、Qが無置換のベンゼン環であるときに、A、A又はAのいずれか同士がLによって結合する場合
    を除く。)
    A benzodiazaborol compound represented by formula (1).
    Figure JPOXMLDOC01-appb-C000047
    (Where
    A 1 and A 2 are each independently
    A substituted or unsubstituted aromatic ring group having 6 to 30 ring carbon atoms,
    A substituted or unsubstituted heteroaromatic ring group having 5 to 30 ring atoms,
    A substituted or unsubstituted alkyl group having 3 to 20 carbon atoms,
    A substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms,
    A substituted or unsubstituted silyl group,
    A substituted or unsubstituted phosphino group,
    A substituted or unsubstituted phosphine oxide group,
    A substituted or unsubstituted sulfoxide group,
    A substituted or unsubstituted sulfone group, or a single bond,
    A 3 is,
    A substituted or unsubstituted aromatic ring group having 6 to 30 ring carbon atoms,
    A substituted or unsubstituted heteroaromatic ring group having 5 to 30 ring atoms,
    A substituted or unsubstituted alkyl group having 1 to 20 carbon atoms,
    A substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms,
    A substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms,
    A substituted or unsubstituted cycloalkoxy group having 3 to 20 ring carbon atoms,
    A substituted or unsubstituted aryloxy group having 6 to 30 ring carbon atoms,
    A substituted or unsubstituted amino group,
    A substituted or unsubstituted alkyl sulfide group having 1 to 20 carbon atoms,
    A substituted or unsubstituted arylsulfide group having 6 to 30 ring carbon atoms,
    A fluoro group,
    A cyano group or a single bond,
    A 1 and A 3 , or A 2 and A 3 may be bonded to each other to form a 5- to 7-membered ring including a nitrogen atom and a boron atom of the benzodiazaborol skeleton.
    However, A 1 , A 2 , and A 3 are not bonded to each other to form the following ring in which three diazaborol rings are condensed.
    Figure JPOXMLDOC01-appb-C000048
    Ring Q fused with the diazaborol ring is
    A substituted or unsubstituted benzene ring,
    A substituted or unsubstituted benzene ring in which at least one substituted or unsubstituted condensed aromatic ring having 10 to 30 carbon atoms or a substituted or unsubstituted heterocyclic aromatic ring having 5 to 24 ring atoms is condensed And
    n is an integer from 1 to 6,
    When n is 1, L does not exist,
    when n is 2 to 6, L is a linking group that bridges between any of Q, A 1 , A 2 , and A 3 , or a single bond;
    When n is 2 to 6, n, Q, A 1 , A 2 , and A 3 may be the same as or different from each other.
    However,
    (I) When n is 1 and Q is an unsubstituted benzene ring,
    (Ii) when n is 2 to 6, Q is an unsubstituted benzene ring, and L is a single bond, when the unsubstituted benzene rings Q are bonded to each other by a single bond L, And (iii) When n is 2 to 6 and Q is an unsubstituted benzene ring, any of A 1 , A 2 or A 3 is bonded by L. )
  2.  式(I-1)で表される請求項1に記載のベンゾジアザボロール化合物。
    Figure JPOXMLDOC01-appb-C000049
    (式中、
     A及びAは、それぞれ独立して、
    置換若しくは無置換の環形成炭素数6~30の芳香族環基、
    置換若しくは無置換の環形成原子数5~30の複素芳香族環基、
    置換若しくは無置換の炭素数3~20のアルキル基、
    置換若しくは無置換の環形成炭素数3~20のシクロアルキル基、
    置換若しくは無置換のシリル基、
    置換若しくは無置換のホスフィノ基、
    置換若しくは無置換のホスフィンオキシド基、
    置換若しくは無置換のスルホキシド基、
    置換若しくは無置換のスルホン基、又は
    単結合であり、
     Aは、
    置換若しくは無置換の環形成炭素数6~30の芳香族環基、
    置換若しくは無置換の環形成原子数5~30の複素芳香族環基、
    置換若しくは無置換の炭素数1~20のアルキル基、
    置換若しくは無置換の環形成炭素数3~20のシクロアルキル基、
    置換若しくは無置換の炭素数1~20のアルコキシ基、
    置換若しくは無置換の環形成炭素数3~20のシクロアルコキシ基、
    置換若しくは無置換の環形成炭素数6~30のアリールオキシ基、
    置換若しくは無置換のアミノ基、
    置換若しくは無置換の炭素数1~20のアルキルスルフィド基、
    置換若しくは無置換の環形成炭素数6~30のアリールスルフィド基、
    フルオロ基、
    シアノ基、又は
    単結合であり、
     AとA、又はAとAは、互いに結合して、ベンゾジアザボロール骨格の窒素原子及びホウ素原子を含めて5~7員環を形成してもよい。
     ただし、AとA、又はAとAは、互いに結合して、下記の5員環を形成することはない。
     ジアザボロール環と縮合する環Qは、少なくとも1つの置換基Rを有し、さらに任意の置換基を有していてもよいベンゼン環、又は置換若しくは無置換の芳香族環、若しくは置換若しくは無置換の複素芳香族環が少なくとも1つ縮合し、さらに任意の置換基を有していてもよいベンゼン環であり、
     置換基Rは、
    置換若しくは無置換の環形成炭素数6~30の芳香族環基、
    置換若しくは無置換の環形成原子数5~30の複素芳香族環基、
    sp混成軌道性を有する原子で結合する置換若しくは無置換の炭素数2~20の不飽和脂肪族炭化水素基、
    sp混成軌道性を有する原子で結合する置換若しくは無置換の環形成炭素数3~20の不飽和脂肪族炭化水素環基、
    置換若しくは無置換の炭素数1~20のアルコキシ基、
    置換若しくは無置換の環形成炭素数3~20のシクロアルコキシ基、
    置換若しくは無置換の環形成炭素数6~30のアリールオキシ基、
    置換若しくは無置換のアミノ基、
    置換若しくは無置換のボリル基、
    置換若しくは無置換のホスフィノ基、
    置換若しくは無置換の炭素数1~20のアルキルスルフィド基、又は
    置換若しくは無置換の環形成炭素数6~30のアリールスルフィド基
    であり、
     nは、1~6の整数であり、
     nが1の場合、Lは存在せず、
     nが2~6の場合、Lは、Q、A、A、及びAのいずれか同士の間を架橋する連結基、又は単結合であり、
     nが2~6の場合、n個あるQ、A、A、及びAは、互いに同一でも異なっていてもよい。)
    The benzodiazaborol compound according to claim 1, which is represented by the formula (I-1).
    Figure JPOXMLDOC01-appb-C000049
    (Where
    A 1 and A 2 are each independently
    A substituted or unsubstituted aromatic ring group having 6 to 30 ring carbon atoms,
    A substituted or unsubstituted heteroaromatic ring group having 5 to 30 ring atoms,
    A substituted or unsubstituted alkyl group having 3 to 20 carbon atoms,
    A substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms,
    A substituted or unsubstituted silyl group,
    A substituted or unsubstituted phosphino group,
    A substituted or unsubstituted phosphine oxide group,
    A substituted or unsubstituted sulfoxide group,
    A substituted or unsubstituted sulfone group, or a single bond,
    A 3 is,
    A substituted or unsubstituted aromatic ring group having 6 to 30 ring carbon atoms,
    A substituted or unsubstituted heteroaromatic ring group having 5 to 30 ring atoms,
    A substituted or unsubstituted alkyl group having 1 to 20 carbon atoms,
    A substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms,
    A substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms,
    A substituted or unsubstituted cycloalkoxy group having 3 to 20 ring carbon atoms,
    A substituted or unsubstituted aryloxy group having 6 to 30 ring carbon atoms,
    A substituted or unsubstituted amino group,
    A substituted or unsubstituted alkyl sulfide group having 1 to 20 carbon atoms,
    A substituted or unsubstituted arylsulfide group having 6 to 30 ring carbon atoms,
    A fluoro group,
    A cyano group or a single bond,
    A 1 and A 3 , or A 2 and A 3 may be bonded to each other to form a 5- to 7-membered ring including a nitrogen atom and a boron atom of the benzodiazaborol skeleton.
    However, A 1 and A 3 , or A 2 and A 3 are not bonded to each other to form the following 5-membered ring.
    The ring Q condensed with the diazaborol ring has at least one substituent R, and may further have an optional substituent, a substituted or unsubstituted aromatic ring, or a substituted or unsubstituted ring A heteroaromatic ring is condensed with at least one benzene ring which may further have an optional substituent,
    Substituent R is
    A substituted or unsubstituted aromatic ring group having 6 to 30 ring carbon atoms,
    A substituted or unsubstituted heteroaromatic ring group having 5 to 30 ring atoms,
    a substituted or unsubstituted unsaturated aliphatic hydrocarbon group having 2 to 20 carbon atoms bonded by an atom having sp 2 hybrid orbital property,
    a substituted or unsubstituted ring-formed unsaturated aliphatic hydrocarbon ring group having 3 to 20 carbon atoms bonded by an atom having sp 2 hybrid orbital property,
    A substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms,
    A substituted or unsubstituted cycloalkoxy group having 3 to 20 ring carbon atoms,
    A substituted or unsubstituted aryloxy group having 6 to 30 ring carbon atoms,
    A substituted or unsubstituted amino group,
    Substituted or unsubstituted boryl group,
    A substituted or unsubstituted phosphino group,
    A substituted or unsubstituted alkylsulfide group having 1 to 20 carbon atoms, or a substituted or unsubstituted arylsulfide group having 6 to 30 ring carbon atoms,
    n is an integer from 1 to 6,
    When n is 1, L does not exist,
    when n is 2 to 6, L is a linking group that bridges between any of Q, A 1 , A 2 , and A 3 , or a single bond;
    When n is 2 to 6, n, Q, A 1 , A 2 , and A 3 may be the same as or different from each other. )
  3.  下記構造式(I-2)~(I-14)からなる群から選択される基本骨格を有する、請求項1又は2に記載のベンゾジアザボロール化合物。
    Figure JPOXMLDOC01-appb-C000051
    Figure JPOXMLDOC01-appb-I000002
    (式中、A~A、L、及びnは、前記式(1)で定義した通りである。
     Xは、それぞれ独立して、酸素原子、窒素原子、又は硫黄原子である。)
    The benzodiazaborol compound according to claim 1 or 2, having a basic skeleton selected from the group consisting of the following structural formulas (I-2) to (I-14).
    Figure JPOXMLDOC01-appb-C000051
    Figure JPOXMLDOC01-appb-I000002
    (Wherein A 1 to A 3 , L, and n are as defined in the formula (1)).
    X is each independently an oxygen atom, a nitrogen atom, or a sulfur atom. )
  4.  前記AとA、又はAとAが互いに結合して、ジアザボロール骨格の窒素原子及びホウ素原子を含めて5~7員環を形成する場合、下記構造式(I-15)及び(I-16)からなる群から選択される基本骨格を有する、請求項1~3のいずれかに記載のベンゾジアザボロール化合物。
    Figure JPOXMLDOC01-appb-C000052
    (式中、A、A、Q、L、及びnは、前記式(1)で定義した通りである。
    In the case where A 1 and A 3 or A 2 and A 3 are bonded to each other to form a 5- to 7-membered ring including a nitrogen atom and a boron atom of a diazaborol skeleton, the following structural formulas (I-15) and ( The benzodiazaborol compound according to any one of claims 1 to 3, which has a basic skeleton selected from the group consisting of I-16).
    Figure JPOXMLDOC01-appb-C000052
    (Wherein A 1 , A 2 , Q, L, and n are as defined in Formula (1) above).
  5.  前記Lの連結基が、エーテル基、チオエーテル基、置換若しくは無置換の環形成炭素数6~30の芳香族環基、置換若しくは無置換の環形成原子数6~30の複素芳香族環基、又は置換若しくは無置換のアミノ基である請求項1~4のいずれかに記載のベンゾジアザボロール化合物。 The L linking group is an ether group, a thioether group, a substituted or unsubstituted aromatic ring group having 6 to 30 ring carbon atoms, a substituted or unsubstituted heteroaromatic ring group having 6 to 30 ring atoms, The benzodiazaborol compound according to any one of claims 1 to 4, which is a substituted or unsubstituted amino group.
  6.  前記nが、1又は2である請求項1~5のいずれかに記載のベンゾジアザボロール化合物。 The benzodiazaborol compound according to any one of claims 1 to 5, wherein n is 1 or 2.
  7.  前記A、A、及びAが、それぞれ独立して、置換若しくは無置換の環形成炭素数6~30の芳香族環基、又は置換若しくは無置換の環形成原子数5~30の複素芳香族環基である請求項1~6のいずれかに記載のベンゾジアザボロール化合物。 A 1 , A 2 , and A 3 are each independently a substituted or unsubstituted aromatic ring group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms. The benzodiazaborol compound according to any one of claims 1 to 6, which is an aromatic ring group.
  8.  前記A、A、及びAが、それぞれ独立して、置換若しくは無置換のフェニル基、置換若しくは無置換のトリル基、置換若しくは無置換のキシリル基、置換若しくは無置換のメシチル基、置換若しくは無置換のビフェニル基、置換若しくは無置換のフルオレニル基、置換若しくは無置換のフェナントリル基、置換若しくは無置換のトリフェニレニン基、置換若しくは無置換のm-ターフェニル基、置換若しくは無置換のジベンゾフラニル基、置換若しくは無置換のジベンゾチオフェニル基、又は置換若しくは無置換のカルバゾリル基である請求項7に記載のベンゾジアザボロール化合物。 A 1 , A 2 , and A 3 are each independently substituted or unsubstituted phenyl group, substituted or unsubstituted tolyl group, substituted or unsubstituted xylyl group, substituted or unsubstituted mesityl group, substituted Or an unsubstituted biphenyl group, a substituted or unsubstituted fluorenyl group, a substituted or unsubstituted phenanthryl group, a substituted or unsubstituted triphenylenine group, a substituted or unsubstituted m-terphenyl group, a substituted or unsubstituted dibenzo The benzodiazaborol compound according to claim 7, which is a furanyl group, a substituted or unsubstituted dibenzothiophenyl group, or a substituted or unsubstituted carbazolyl group.
  9.  前記Qが置換基Rを有するベンゼン環である場合の置換基Rが、置換若しくは無置換のフェニル基、置換若しくは無置換のo-ビフェニル基、置換若しくは無置換のm-ビフェニル基、置換若しくは無置換のp-ビフェニル基、置換若しくは無置換のm-ターフェニル基、置換若しくは無置換のp-ターフェニル基、置換若しくは無置換のフルオレニル基、置換若しくは無置換のフェナントリル基、置換若しくは無置換のトリフェニレニン基、置換若しくは無置換のジベンゾフラニル基、置換若しくは無置換のジベンゾチオフェニル基、又は置換若しくは無置換のカルバゾリル基である請求項1~8のいずれかに記載のベンゾジアザボロール化合物。 When Q is a benzene ring having a substituent R, the substituent R is a substituted or unsubstituted phenyl group, a substituted or unsubstituted o-biphenyl group, a substituted or unsubstituted m-biphenyl group, substituted or unsubstituted Substituted p-biphenyl group, substituted or unsubstituted m-terphenyl group, substituted or unsubstituted p-terphenyl group, substituted or unsubstituted fluorenyl group, substituted or unsubstituted phenanthryl group, substituted or unsubstituted The benzodiazaborol according to claim 1, which is a triphenylenine group, a substituted or unsubstituted dibenzofuranyl group, a substituted or unsubstituted dibenzothiophenyl group, or a substituted or unsubstituted carbazolyl group. Compound.
  10.  前記Qが置換若しくは無置換の芳香族環、又は置換若しくは無置換の複素芳香族環が縮合したベンゼン環である場合の該ベンゼン環を含む縮合環が、置換若しくは無置換のフェナントレン、置換若しくは無置換のトリフェニレン、置換若しくは無置換のフルオレン、置換若しくは無置換のジベンゾフラン、置換若しくは無置換のジベンゾチオフェン、又は置換若しくは無置換のカルバゾールである請求項1~9のいずれかに記載のベンゾジアザボロール化合物。 When Q is a substituted or unsubstituted aromatic ring, or a benzene ring fused with a substituted or unsubstituted heteroaromatic ring, the condensed ring containing the benzene ring is a substituted or unsubstituted phenanthrene, substituted or unsubstituted The benzodiazaborol according to any one of claims 1 to 9, which is substituted triphenylene, substituted or unsubstituted fluorene, substituted or unsubstituted dibenzofuran, substituted or unsubstituted dibenzothiophene, or substituted or unsubstituted carbazole. Compound.
  11.  式(II-1)で表される請求項1に記載のベンゾジアザボロール化合物。
    Figure JPOXMLDOC01-appb-C000053
    [式中、
     A11及びA12は、それぞれ独立して、
    置換若しくは無置換の環形成炭素数6~30の芳香族環基、
    置換若しくは無置換の環形成原子数5~30の複素芳香族環基、
    置換若しくは無置換の炭素数3~20のアルキル基、
    置換若しくは無置換の環形成炭素数3~20のシクロアルキル基、
    置換若しくは無置換のシリル基、
    置換若しくは無置換のホスフィノ基、
    置換若しくは無置換のホスフィンオキシド基、
    置換若しくは無置換のスルホキシド基、又は
    置換若しくは無置換のスルホン基であり、
     A11とA12は、互いに結合して、ベンゾジアザボロール骨格の窒素原子及びホウ素原子を含めて5~7員環を形成してもよい。
     ただし、A11とA12とが互いに結合して、下記の5員環を形成することはない。
    Figure JPOXMLDOC01-appb-C000054
     ジアザボロール環と縮合する環Q及びQは、それぞれ独立して、
    置換若しくは無置換のベンゼン環、
    置換若しくは無置換の環形成炭素数10~30の縮合芳香族環、又は
    置換若しくは無置換の環形成原子数5~24の複素芳香族環が少なくとも1つ縮合した、置換若しくは無置換のベンゼン環である。
     nは、1~6の整数であり、
     nが1の場合、Lは存在せず、
     nが2~6の場合、Lは、Q、Q、A11、及びA12のいずれか同士の間を架橋する連結基、又は単結合であり、
     nが2~6の場合、n個あるQ、Q、A11、及びA12は、互いに同一でも異なっていてもよい。]
    The benzodiazaborol compound according to claim 1 represented by formula (II-1).
    Figure JPOXMLDOC01-appb-C000053
    [Where:
    A 11 and A 12 are each independently
    A substituted or unsubstituted aromatic ring group having 6 to 30 ring carbon atoms,
    A substituted or unsubstituted heteroaromatic ring group having 5 to 30 ring atoms,
    A substituted or unsubstituted alkyl group having 3 to 20 carbon atoms,
    A substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms,
    A substituted or unsubstituted silyl group,
    A substituted or unsubstituted phosphino group,
    A substituted or unsubstituted phosphine oxide group,
    A substituted or unsubstituted sulfoxide group, or a substituted or unsubstituted sulfone group,
    A 11 and A 12 may be bonded to each other to form a 5- to 7-membered ring including a nitrogen atom and a boron atom of the benzodiazaborol skeleton.
    However, A 11 and A 12 are not bonded to each other to form the following 5-membered ring.
    Figure JPOXMLDOC01-appb-C000054
    Rings Q 1 and Q 2 fused with the diazaborol ring are each independently
    A substituted or unsubstituted benzene ring,
    A substituted or unsubstituted benzene ring in which at least one substituted or unsubstituted condensed aromatic ring having 10 to 30 carbon atoms or a substituted or unsubstituted heterocyclic aromatic ring having 5 to 24 ring atoms is condensed It is.
    n 2 is an integer of 1 to 6,
    When n 2 is 1, L 2 is not present,
    When n 2 is 2 to 6, L 2 is a linking group that bridges between any of Q 1 , Q 2 , A 11 , and A 12 , or a single bond,
    When n 2 is 2 to 6, n 2 Q 1 , Q 2 , A 11 , and A 12 may be the same as or different from each other. ]
  12.  式(II-2)で表される請求項11に記載のベンゾジアザボロール化合物。
    Figure JPOXMLDOC01-appb-C000055
    [式中、
     A11及びA12は前記式(II-1)で定義した通りであり、
     R~Rは、それぞれ独立して、
    水素原子、
    置換若しくは無置換の環形成炭素数6~30の芳香族環基、
    置換若しくは無置換の環形成原子数5~30の複素芳香族環基、
    置換若しくは無置換の炭素数3~20のアルキル基、
    置換若しくは無置換の環形成炭素数3~20のシクロアルキル基、
    置換若しくは無置換のシリル基、
    置換若しくは無置換のホスフィノ基、
    置換若しくは無置換のホスフィンオキシド基、
    置換若しくは無置換のスルホキシド基、又は
    置換若しくは無置換のスルホン基であり、
     R~Rのうちの隣接する基同士が結合して環を形成してもよい。]
    The benzodiazaborol compound according to claim 11 represented by formula (II-2).
    Figure JPOXMLDOC01-appb-C000055
    [Where:
    A 11 and A 12 are as defined in Formula (II-1),
    R 1 to R 8 are each independently
    Hydrogen atom,
    A substituted or unsubstituted aromatic ring group having 6 to 30 ring carbon atoms,
    A substituted or unsubstituted heteroaromatic ring group having 5 to 30 ring atoms,
    A substituted or unsubstituted alkyl group having 3 to 20 carbon atoms,
    A substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms,
    A substituted or unsubstituted silyl group,
    A substituted or unsubstituted phosphino group,
    A substituted or unsubstituted phosphine oxide group,
    A substituted or unsubstituted sulfoxide group, or a substituted or unsubstituted sulfone group,
    Adjacent groups of R 1 to R 8 may be bonded to form a ring. ]
  13.  前記A11及びA12が、それぞれ独立して、
    置換若しくは無置換の環形成炭素数6~30の芳香族環基、又は
    置換若しくは無置換の環形成原子数5~30の複素芳香族環基
    である請求項11又は12に記載のベンゾジアザボロール化合物。
    A 11 and A 12 are each independently
    The benzodiazabo according to claim 11 or 12, which is a substituted or unsubstituted aromatic ring group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted heteroaromatic ring group having 5 to 30 ring atoms. Roll compound.
  14.  前記A11及びA12が、それぞれ独立して、
    置換若しくは無置換のフェニル基、
    置換若しくは無置換のビフェニル基、
    置換若しくは無置換のターフェニル基、
    置換若しくは無置換のフルオレニル基、
    置換若しくは無置換のピリジニル基、
    置換若しくは無置換のピリミジニル基、
    置換若しくは無置換のトリアジニル基、
    置換若しくは無置換のジベンゾフラニル基、
    置換若しくは無置換のジベンゾチオフェニル基、
    置換若しくは無置換のカルバゾリル基、
    置換若しくは無置換のアザジベンゾフラニル基、
    置換若しくは無置換のアザジベンゾチオフェニル基、
    置換若しくは無置換のアザカルバゾリル基、
    置換若しくは無置換のベンゾイミダゾリル基、及び
    置換若しくは無置換のイミダゾリル基
    からなる群から選択される請求項11~13のいずれかに記載のベンゾジアザボロール化合物。
    A 11 and A 12 are each independently
    A substituted or unsubstituted phenyl group,
    A substituted or unsubstituted biphenyl group,
    A substituted or unsubstituted terphenyl group,
    A substituted or unsubstituted fluorenyl group,
    A substituted or unsubstituted pyridinyl group,
    A substituted or unsubstituted pyrimidinyl group,
    A substituted or unsubstituted triazinyl group,
    A substituted or unsubstituted dibenzofuranyl group,
    A substituted or unsubstituted dibenzothiophenyl group,
    A substituted or unsubstituted carbazolyl group,
    A substituted or unsubstituted azadibenzofuranyl group,
    A substituted or unsubstituted azadibenzothiophenyl group,
    A substituted or unsubstituted azacarbazolyl group,
    The benzodiazaborol compound according to any one of claims 11 to 13, which is selected from the group consisting of a substituted or unsubstituted benzimidazolyl group and a substituted or unsubstituted imidazolyl group.
  15.  前記R~Rのうちの1又は2個が、それぞれ独立して、
    置換若しくは無置換のフェニル基、
    置換若しくは無置換のビフェニル基、
    置換若しくは無置換のターフェニル基、
    置換若しくは無置換のフルオレニル基、
    置換若しくは無置換のピリジニル基、
    置換若しくは無置換のピリミジニル基、
    置換若しくは無置換のトリアジニル基、
    置換若しくは無置換のジベンゾフラニル基、
    置換若しくは無置換のカルバゾリル基、
    置換若しくは無置換のジベンゾチオフェニル基、
    置換若しくは無置換のカルバゾリル基、
    置換若しくは無置換のアザジベンゾフラニル基、
    置換若しくは無置換のアザジベンゾチオフェニル基、
    置換若しくは無置換のアザカルバゾリル基、
    置換若しくは無置換のベンゾイミダゾリル基、及び
    置換若しくは無置換のイミダゾリル基
    からなる群から選択される基であり、
     それ以外のR~Rが水素原子である
    請求項12~14のいずれかに記載のベンゾジアザボロール化合物。
    1 or 2 of R 1 to R 8 are each independently
    A substituted or unsubstituted phenyl group,
    A substituted or unsubstituted biphenyl group,
    A substituted or unsubstituted terphenyl group,
    A substituted or unsubstituted fluorenyl group,
    A substituted or unsubstituted pyridinyl group,
    A substituted or unsubstituted pyrimidinyl group,
    A substituted or unsubstituted triazinyl group,
    A substituted or unsubstituted dibenzofuranyl group,
    A substituted or unsubstituted carbazolyl group,
    A substituted or unsubstituted dibenzothiophenyl group,
    A substituted or unsubstituted carbazolyl group,
    A substituted or unsubstituted azadibenzofuranyl group,
    A substituted or unsubstituted azadibenzothiophenyl group,
    A substituted or unsubstituted azacarbazolyl group,
    A group selected from the group consisting of a substituted or unsubstituted benzimidazolyl group and a substituted or unsubstituted imidazolyl group,
    The benzodiazaborol compound according to any one of claims 12 to 14, wherein the other R 1 to R 8 are hydrogen atoms.
  16.  請求項1~15のいずれかに記載のベンゾジアザボロール化合物を含む有機エレクトロルミネッセンス素子用材料。 An organic electroluminescent device material comprising the benzodiazaborol compound according to any one of claims 1 to 15.
  17.  陰極と陽極との間に発光層を含む1以上の有機薄膜層を有し、前記有機薄膜層の少なくとも1層が、請求項16に記載の有機エレクトロルミネッセンス素子用材料を含有する有機エレクトロルミネッセンス素子。 The organic electroluminescent element which has one or more organic thin film layers containing a light emitting layer between a cathode and an anode, and at least 1 layer of the said organic thin film layer contains the material for organic electroluminescent elements of Claim 16 .
  18.  前記発光層が、前記有機エレクトロルミネッセンス素子用材料を含有する請求項17に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescent element according to claim 17, wherein the light emitting layer contains the material for an organic electroluminescent element.
  19.  前記発光層が燐光発光材料を含有し、前記燐光発光材料がイリジウム(Ir)、オスミウム(Os)、白金(Pt)から選択される金属原子のオルトメタル化錯体である請求項17又は18に記載の有機エレクトロルミネッセンス素子。 19. The light-emitting layer contains a phosphorescent material, and the phosphorescent material is an orthometalated complex of metal atoms selected from iridium (Ir), osmium (Os), and platinum (Pt). Organic electroluminescence element.
  20.  前記発光層と前記陽極との間に正孔輸送帯域を有し、該正孔輸送帯域が前記有機エレクトロルミネッセンス素子用材料を含有する請求項17~19のいずれかに記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to any one of claims 17 to 19, wherein the organic electroluminescence device has a hole transport zone between the light emitting layer and the anode, and the hole transport zone contains the material for an organic electroluminescence device.
  21.  前記発光層と前記陽極との間に電子輸送帯域を有し、該電子輸送帯域が前記有機エレクトロルミネッセンス素子用材料を含有する請求項17~19のいずれかに記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to any one of claims 17 to 19, wherein the organic electroluminescence device has an electron transport zone between the light emitting layer and the anode, and the electron transport zone contains the material for the organic electroluminescence device.
PCT/JP2013/004167 2012-07-06 2013-07-04 Benzodiazaborole compound, and material for organic electroluminescent element and organic electroluminescent element each utilizing same WO2014006913A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012152851 2012-07-06
JP2012-152851 2012-07-06
JP2012225713 2012-10-11
JP2012-225713 2012-10-11

Publications (1)

Publication Number Publication Date
WO2014006913A1 true WO2014006913A1 (en) 2014-01-09

Family

ID=49881680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004167 WO2014006913A1 (en) 2012-07-06 2013-07-04 Benzodiazaborole compound, and material for organic electroluminescent element and organic electroluminescent element each utilizing same

Country Status (2)

Country Link
TW (1) TW201418268A (en)
WO (1) WO2014006913A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016167491A1 (en) * 2015-04-13 2016-10-20 덕산네오룩스 주식회사 Compound for organic electronic element, organic electronic element using same, and electronic apparatus
US9768397B2 (en) 2014-03-31 2017-09-19 Commonwealth Scientific And Industrial Research Organisation Phenylenediamine compounds for phosphorescent diazaborole metal complexes
US9859504B2 (en) 2014-03-31 2018-01-02 Commonwealth Scientific And Industrial Research Organisation Diamine compounds for phosphorescent diazaborole metal complexes and electroluminescent devices
CN109867690A (en) * 2017-12-01 2019-06-11 元智大学 Benzodiazepine boron heterocyclic pentylene compound and Organic Light Emitting Diode component
CN111518122A (en) * 2020-05-29 2020-08-11 南京知研科技有限公司 Boron-nitrogen hetero-aromatic ring compound and application thereof
JP2020533358A (en) * 2017-09-12 2020-11-19 メルク パテント ゲーエムベーハー Materials for OLED devices
CN112390829A (en) * 2019-08-15 2021-02-23 环球展览公司 Organic electroluminescent material and device
US11495752B2 (en) 2018-10-08 2022-11-08 Universal Display Corporation Organic electroluminescent materials and devices
WO2023171231A1 (en) * 2022-03-07 2023-09-14 キヤノン株式会社 Organic compound and organic light-emitting device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120056169A1 (en) * 2009-03-23 2012-03-08 Merck Patent Gmbh Patents & Scientific Information Organic electroluminescent device
DE102012000064A1 (en) * 2011-01-21 2012-07-26 Merck Patent Gmbh New heterocyclic compound excluding 9,10-dioxa-4b-aza-9a-phospha-indeno(1,2-a)indene and 9,10-dioxa-4b-aza-indeno(1,2-a)indene, useful e.g. as matrix material for fluorescent or phosphorescent emitters of electronic devices

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120056169A1 (en) * 2009-03-23 2012-03-08 Merck Patent Gmbh Patents & Scientific Information Organic electroluminescent device
DE102012000064A1 (en) * 2011-01-21 2012-07-26 Merck Patent Gmbh New heterocyclic compound excluding 9,10-dioxa-4b-aza-9a-phospha-indeno(1,2-a)indene and 9,10-dioxa-4b-aza-indeno(1,2-a)indene, useful e.g. as matrix material for fluorescent or phosphorescent emitters of electronic devices

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
L.WEBER ET AL.: "1,3,2-Diazaborolyl- functionalized thiophenes and dithiophenes: synthesis, structure, electrochemistry and luminescence", DALTON TRANSACTIONS, no. 31, 2006, pages 3777 - 3784 *
L.WEBER ET AL.: "N-Aryl- and N- Thienylcarbazoles with Dimesitylboryl and 1,3,2-Benzodiazaborolyl Functions", EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, no. 20, 2011, pages 3091 - 3101 *
L.WEBER ET AL.: "Syntheses, Structure, Electrochemistry, and Optical Properties of 1,3-Diethyl-2,3-dihydro-I-H-1,3,2-pyrido- [4,5-b]- diazaboroles", ZEITSCHRIFT FUER ANORGANISCHE UND ALLGEMEINE CHEMIE, vol. 634, no. 10, 2008, pages 1729 - 1734 *
L.WEBER ET AL.: "Synthetic, Structural, Photophysical and Computational Studies on n-Conjugated 1,3,2-Benzodiazaboroles with Carbazole Building Blocks", EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, no. 34, 2010, pages 5416 - 5425 *
M.DAINI ET AL.: "Palladium-catalyzed carboboration of alkynes using chloroborane and organozirconium reagents", CHEMICAL COMMUNICATIONS, no. 41, 2008, pages 5224 - 5226 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9768397B2 (en) 2014-03-31 2017-09-19 Commonwealth Scientific And Industrial Research Organisation Phenylenediamine compounds for phosphorescent diazaborole metal complexes
US9859504B2 (en) 2014-03-31 2018-01-02 Commonwealth Scientific And Industrial Research Organisation Diamine compounds for phosphorescent diazaborole metal complexes and electroluminescent devices
WO2016167491A1 (en) * 2015-04-13 2016-10-20 덕산네오룩스 주식회사 Compound for organic electronic element, organic electronic element using same, and electronic apparatus
JP2020533358A (en) * 2017-09-12 2020-11-19 メルク パテント ゲーエムベーハー Materials for OLED devices
CN109867690A (en) * 2017-12-01 2019-06-11 元智大学 Benzodiazepine boron heterocyclic pentylene compound and Organic Light Emitting Diode component
US11495752B2 (en) 2018-10-08 2022-11-08 Universal Display Corporation Organic electroluminescent materials and devices
CN112390829A (en) * 2019-08-15 2021-02-23 环球展览公司 Organic electroluminescent material and device
US11930699B2 (en) 2019-08-15 2024-03-12 Universal Display Corporation Organic electroluminescent materials and devices
CN111518122A (en) * 2020-05-29 2020-08-11 南京知研科技有限公司 Boron-nitrogen hetero-aromatic ring compound and application thereof
WO2023171231A1 (en) * 2022-03-07 2023-09-14 キヤノン株式会社 Organic compound and organic light-emitting device

Also Published As

Publication number Publication date
TW201418268A (en) 2014-05-16

Similar Documents

Publication Publication Date Title
JP5993934B2 (en) Material for organic electroluminescence device and organic electroluminescence device
JP6195828B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
EP2674429B1 (en) Biscarbazole derivative and organic electroluminescent element using same
US9604972B2 (en) Nitrogen-containing heteroaromatic ring compound
JP5938175B2 (en) Nitrogen-containing aromatic heterocyclic derivative and organic electroluminescence device using the same
US9601708B2 (en) Organic light emitting device and materials for use in same
WO2014006913A1 (en) Benzodiazaborole compound, and material for organic electroluminescent element and organic electroluminescent element each utilizing same
WO2014104315A1 (en) Organic electroluminescent element
JP2016122672A (en) Light emitting device
JP6182217B2 (en) COMPOUND, MATERIAL FOR ORGANIC ELECTROLUMINESCENT ELEMENT, ORGANIC ELECTROLUMINESCENT ELEMENT AND ELECTRONIC DEVICE
TW201302703A (en) Organic electroluminescent element
US20140231772A1 (en) Material for organic electroluminescent elements, and organic electroluminescent element using the same
WO2014051004A1 (en) Material for organic electroluminescent elements, and organic electroluminescent element
JP2014094935A (en) Compound, and organic electroluminescent element using the same
WO2014054263A1 (en) Material for organic electroluminescent element, and organic electroluminescent element produced using same
KR102187989B1 (en) Compound and organic light emitting device comprising the same
KR20170024545A (en) Organometallic compound and organic light-emitting device including the same
WO2014057659A1 (en) Compound, and organic electroluminescent element produced using same
WO2014050093A1 (en) Material for organic electroluminescent element, and organic electroluminescent element produced using same
JP6088323B2 (en) Nitrogen-containing aromatic heterocyclic derivative, material for organic electroluminescence device, and organic electroluminescence device
JP6088324B2 (en) Nitrogen-containing aromatic heterocyclic derivative, material for organic electroluminescence device, and organic electroluminescence device
JP2014196251A (en) Hetero-arene derivative, organic electroluminescence element material, and organic electroluminescence element
JP2014196252A (en) Hetero-arene derivative, organic electroluminescence element material, and organic electroluminescence element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13813205

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13813205

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP