WO2014057659A1 - Compound, and organic electroluminescent element produced using same - Google Patents

Compound, and organic electroluminescent element produced using same Download PDF

Info

Publication number
WO2014057659A1
WO2014057659A1 PCT/JP2013/006000 JP2013006000W WO2014057659A1 WO 2014057659 A1 WO2014057659 A1 WO 2014057659A1 JP 2013006000 W JP2013006000 W JP 2013006000W WO 2014057659 A1 WO2014057659 A1 WO 2014057659A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
unsubstituted
substituted
organic
light emitting
Prior art date
Application number
PCT/JP2013/006000
Other languages
French (fr)
Japanese (ja)
Inventor
俊裕 岩隈
真樹 沼田
亮平 橋本
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Publication of WO2014057659A1 publication Critical patent/WO2014057659A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/20Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the material in which the electroluminescent material is embedded
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine

Definitions

  • the present invention relates to a novel compound, an organic electroluminescence element material using the compound, and an organic electroluminescence element.
  • Organic electroluminescence (EL) elements include a fluorescent type and a phosphorescent type, and an optimum element design has been studied according to each light emission mechanism. With respect to phosphorescent organic EL elements, it is known from their light emission characteristics that high-performance elements cannot be obtained by simple diversion of fluorescent element technology. The reason is generally considered as follows. First, since phosphorescence emission is emission using triplet excitons, the energy gap of the compound used in the light emitting layer must be large. This is because the value of the energy gap (hereinafter also referred to as singlet energy) of a compound usually refers to the triplet energy of the compound (in the present invention, the energy difference between the lowest excited triplet state and the ground state). This is because it is larger than the value of).
  • a host material having a triplet energy larger than the triplet energy of the phosphorescent dopant material must first be used for the light emitting layer. I must. Furthermore, an electron transport layer and a hole transport layer adjacent to the light emitting layer are provided, and a compound having a triplet energy higher than that of the phosphorescent dopant material must be used for the electron transport layer and the hole transport layer.
  • a compound having a larger energy gap than the compound used for the fluorescent organic EL element is used for the phosphorescent organic EL element. The drive voltage of the entire element increases.
  • hydrocarbon compounds having high oxidation resistance and reduction resistance useful for fluorescent elements have a large energy gap due to the large spread of ⁇ electron clouds. Therefore, in a phosphorescent organic EL element, it is difficult to select such a hydrocarbon compound, and an organic compound containing a heteroatom such as oxygen or nitrogen is selected. As a result, the phosphorescent organic EL element is There is a problem that the lifetime is shorter than that of a fluorescent organic EL element.
  • the exciton relaxation rate of the triplet exciton of the phosphorescent dopant material is much longer than that of the singlet exciton also greatly affects the device performance. That is, since light emitted from singlet excitons has a high relaxation rate that leads to light emission, the diffusion of excitons to the peripheral layers of the light-emitting layer (for example, a hole transport layer or an electron transport layer) hardly occurs and is efficient. Light emission is expected. On the other hand, light emission from triplet excitons is spin-forbidden and has a slow relaxation rate, so that excitons are likely to diffuse into the peripheral layer, and thermal energy deactivation occurs from other than specific phosphorescent compounds. End up. That is, control of the recombination region of electrons and holes is more important than the fluorescent organic EL element.
  • the triplet energy of the host material used for the light-emitting layer needs to be approximately 3.0 eV or more.
  • Patent Documents 1 to 3 disclose materials having an arylamine structure containing a carbazole skeleton.
  • An object of the present invention is to provide a novel material having electron resistance and excellent hole injection and hole transport performance to a light emitting layer, and an organic EL device having a long lifetime and high light emission efficiency.
  • Ar is a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, a substituted or unsubstituted arylcarbazolyl group, a substituted or unsubstituted aryldibenzofuranyl group, a substituted or unsubstituted aryldibenzothiophenyl A group selected from the group consisting of a group, a substituted or unsubstituted carbazolyl group, a substituted or unsubstituted dibenzofuranyl group, and a substituted or unsubstituted dibenzothiophenyl group.
  • R 1 to R 14 each independently represents a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted carbon;
  • R 1 to R 14 each independently represents a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted carbon; An alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted haloalkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted haloalkoxy group having 1 to 20 carbon atoms, a cyano group, and a substituted or unsubstituted arylcarbazolyl group; Substituted or unsubstituted aryl dibenzofuranyl group, substituted or unsubstituted aryl dibenzothiophenyl group, substituted or unsubstituted carbazolyl group, substituted or un
  • [In the formulas (2) to (4), Ar, R 1 to R 14 and X are the same as those in the formula (1). ] 4).
  • Ar represents an unsubstituted aryl group having 6 to 30 ring carbon atoms, an unsubstituted arylcarbazolyl group, an unsubstituted aryldibenzofuranyl group, or an unsubstituted aryldibenzo. 5.
  • the compound according to 4 which represents a group selected from the group consisting of a thiophenyl group, an unsubstituted carbazolyl group, an unsubstituted dibenzofuranyl group, and an unsubstituted dibenzothiophenyl group. 6).
  • Ar is an unsubstituted phenyl group, an unsubstituted biphenylyl group, an unsubstituted phenylcarbazolyl group, an unsubstituted phenyldibenzofuranyl group, an unsubstituted phenyldibenzothiophenyl group, an unsubstituted carbazolyl group, an unsubstituted group 6.
  • a material for an organic electroluminescence device comprising the compound according to any one of 1 to 6. 8).
  • An organic electroluminescence device comprising one or more organic thin film layers including a light emitting layer between a cathode and an anode, wherein at least one of the organic thin film layers comprises the material for an organic electroluminescence device according to 7. 9.
  • the organic thin film layer includes one or more light emitting layers, 10.
  • the organic electroluminescence device 10 wherein the triplet energy of the phosphorescent material is 1.8 eV or more and less than 2.9 eV. 12
  • the phosphorescent material contains a metal complex compound;
  • 14 14.
  • the organic electroluminescence device any one of 8 to 13, wherein the maximum value of the emission wavelength is 430 nm or more and 720 nm or less. 15.
  • the organic electroluminescence device according to claim 7, wherein the organic EL device has a hole transport zone between the light emitting layer and the anode, the hole transport zone has one or more organic thin film layers, and at least one of the organic thin film layers has 7. 15.
  • the organic electroluminescence device according to any one of 8 to 14, comprising a material. 16. 16.
  • the organic electroluminescence device according to 15, wherein the hole transport zone is adjacent to the light emitting layer.
  • the compound of the present invention is represented by the following formula (1).
  • the compound of the present invention eliminates an arylamine structure having poor electron resistance from the structure, thereby providing an organic EL device with electron resistance that can be used as a hole transport material as an electron blocking (blocking) layer and a host material in a light emitting layer. Can be granted.
  • the compound of the present invention can provide an organic EL device having a high excited triplet energy level, a long lifetime, and high luminous efficiency.
  • Ar represents a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, a substituted or unsubstituted arylcarbazolyl group, a substituted or unsubstituted aryldibenzofuranyl group, substituted or unsubstituted It represents a group selected from the group consisting of an unsubstituted aryl dibenzothiophenyl group, a substituted or unsubstituted carbazolyl group, a substituted or unsubstituted dibenzofuranyl group, and a substituted or unsubstituted dibenzothiophenyl group.
  • R 1 to R 14 each independently represents a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted carbon;
  • R 1 to R 14 are each independently a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, Substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, substituted or unsubstituted haloalkyl group having 1 to 20 carbon atoms, substituted or unsubstituted haloalkoxy group having 1 to 20 carbon atoms, cyano group, substituted or unsubstituted Arylcarbazolyl group, substituted or unsubstituted aryldibenzofuranyl group, substituted or unsubstituted aryldibenzothiophenyl group, substituted or unsubstituted carbazolyl group, substituted or unsubstituted dibenzofuranyl group, and substituted or unsubstituted It may
  • X represents an oxygen atom or a sulfur atom.
  • “unsubstituted” in “substituted or unsubstituted...” Means that a hydrogen atom is bonded, and “ring-forming carbon” means a saturated ring, an unsaturated ring, or A carbon atom constituting an aromatic ring means “ring-forming atom” means an atom constituting a saturated ring, an unsaturated ring, or an aromatic ring.
  • the hydrogen atom includes isotopes having different numbers of neutrons, that is, light hydrogen (protium), deuterium (deuterium), and tritium (tritium).
  • Ar represents an unsubstituted aryl group having 6 to 30 ring carbon atoms, an unsubstituted arylcarbazolyl group, an unsubstituted aryldibenzofuranyl group, an unsubstituted aryldibenzothio group.
  • a group selected from the group consisting of a phenyl group, an unsubstituted carbazolyl group, an unsubstituted dibenzofuranyl group, and an unsubstituted dibenzothiophenyl group is preferable.
  • Ar represents an unsubstituted phenyl group, an unsubstituted biphenylyl group, an unsubstituted phenylcarbazolyl group, an unsubstituted phenyldibenzofuranyl group, an unsubstituted phenyldibenzothio group.
  • a group selected from the group consisting of a phenyl group, an unsubstituted carbazolyl group, an unsubstituted dibenzofuranyl group, and an unsubstituted dibenzothiophenyl group is preferable.
  • alkyl group having 1 to 20 carbon atoms include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, n-pentyl group, n -Hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl, n-tridecyl, n-tetradecyl, n-pentadecyl, n -Hexadecyl group, n-heptadecyl group, n-octadecyl group, neopentyl group, 1-methylpentyl group, 2-methylpentyl group,
  • alkoxy group having 1 to 20 carbon atoms examples include methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group and the like, and those having 3 or more carbon atoms are linear, cyclic or branched Among them, those having 1 to 6 carbon atoms are preferable.
  • haloalkyl group having 1 to 20 carbon atoms examples include groups in which one or more halogen atoms are substituted on the above alkyl group having 1 to 20 carbon atoms. Specific examples include a trifluoromethyl group and a pentafluoromethyl group. Etc. are preferred.
  • haloalkoxy group having 1 to 20 carbon atoms examples include groups in which one or more halogen atoms are substituted on the above-described alkoxy group having 1 to 20 carbon atoms. Specific examples include trifluoromethoxy groups, pentafluoroethoxy groups. Groups and the like are preferred.
  • aryl group having 6 to 30 ring carbon atoms include phenyl group, tolyl group, xylyl group, mesityl group, o-biphenylyl group, m-biphenylyl group, p-biphenylyl group, o-terphenylyl group, m- Examples thereof include a terphenylyl group, a p-terphenylyl group, a naphthyl group, a phenanthryl group, and a triphenylene group. Of these, phenyl, m-biphenylyl and m-terphenylyl are preferred.
  • the arylcarbazolyl group is a group in which the carbazolyl group is substituted with an aryl group (for example, the above aryl group having 6 to 30 ring carbon atoms).
  • an aryl group for example, the above aryl group having 6 to 30 ring carbon atoms.
  • a phenyl carbazolyl group, a diphenyl carbazolyl group, etc. are mentioned.
  • the aryl dibenzofuranyl group is a group in which the dibenzofuranyl group is substituted with an aryl group (for example, the above aryl group having 6 to 30 ring carbon atoms). Examples thereof include a phenyl dibenzofuranyl group and a diphenyl dibenzofuranyl group.
  • the aryl dibenzothiophenyl group is a group in which a dibenzothiophenyl group is substituted with an aryl group (for example, the above aryl group having 6 to 30 ring carbon atoms).
  • a phenyl dibenzothiophenyl group, a diphenyl dibenzothiophenyl group, etc. are mentioned.
  • the alkylsilyl group is a group in which the silyl group is substituted with an alkyl group (for example, the above alkyl group having 1 to 20 carbon atoms).
  • an alkyl group for example, the above alkyl group having 1 to 20 carbon atoms.
  • a trimethylsilyl group, a triethylsilyl group, t-butyldimethylsilyl and the like can be mentioned.
  • the arylsilyl group is a group in which the silyl group is substituted with an aryl group (for example, the above aryl group having 6 to 30 ring carbon atoms).
  • an aryl group for example, the above aryl group having 6 to 30 ring carbon atoms.
  • a triphenylsilyl group etc. are mentioned.
  • the aralkylsilyl group is a group in which a silyl group is substituted with an alkyl group (for example, the above alkyl group having 1 to 20 carbon atoms) and an aryl group (for example, the above aryl group having 6 to 30 ring carbon atoms). Examples thereof include t-butyldiphenylsilyl group, diphenylmethylsilyl group, diphenylethylsilyl group and the like.
  • the alkylgermanium group is a group in which the germanium group is substituted with an alkyl group (for example, the above alkyl group having 1 to 20 carbon atoms).
  • an alkyl group for example, the above alkyl group having 1 to 20 carbon atoms.
  • a trimethyl germanium group, a triethyl germanium group, etc. are mentioned.
  • the aryl germanium group is a group in which a germanium group is substituted with an aryl group (for example, the above-mentioned aryl group having 6 to 30 ring carbon atoms).
  • an aryl group for example, the above-mentioned aryl group having 6 to 30 ring carbon atoms.
  • a triphenyl germanium group etc. are mentioned.
  • the aralkyl germanium group is a group in which a germanium group is substituted with an alkyl group (for example, the above alkyl group having 1 to 20 carbon atoms) and an aryl group (for example, the above aryl group having 6 to 30 ring carbon atoms).
  • an alkyl group for example, the above alkyl group having 1 to 20 carbon atoms
  • an aryl group for example, the above aryl group having 6 to 30 ring carbon atoms.
  • t-butyldiphenylgermanium group, diphenylmethylgermanium group, diphenylethylgermanium group and the like can be mentioned.
  • Examples of the substituted aryl group include an aryl group substituted with a carbazolyl group, an aryl group substituted with a dibenzothiophenyl group, and an aryl group substituted with a dibenzofuranyl group.
  • a carbazolylphenyl group, a dibenzothiophenylphenyl group, a dibenzofuranylphenyl group and the like are preferable.
  • Examples of the substituted carbazolyl group include a methyl carbazolyl group, a dimethyl carbazolyl group, a carbazolyl carbazolyl group, and the like.
  • Examples of the substituted dibenzofuranyl group include a cyanodibenzofuranyl group and a carbazolyl dibenzofuranyl group.
  • Examples of the substituted dibenzothiophenyl group include a cyanodibenzothiophenyl group and a carbazolyl dibenzothiophenyl group.
  • the compounds of the present invention can be synthesized by the methods described in the synthesis examples of the examples.
  • the material for an organic EL device of the present invention includes the compound of the present invention.
  • the obtained organic EL device has a long life.
  • the material for an organic EL device of the present invention is particularly suitable as a material for an organic thin film layer constituting the organic EL device, specifically as a host material and a hole transport material for a light emitting layer of the organic EL device.
  • a hole transport layer adjacent to the light emitting layer high luminous efficiency can be maintained even in a high current density region.
  • the organic EL device of the present invention has one or more organic thin film layers including a light emitting layer between an anode and a cathode. At least one of the organic thin film layers contains the material of the present invention. Thereby, the lifetime of an organic EL element can be lengthened.
  • Examples of the organic thin film layer containing the material of the present invention include, but are not limited to, a hole transport layer, a light emitting layer, an electron transport layer, a space layer, and a barrier layer.
  • the material of the present invention is preferably contained in the light emitting layer, and particularly preferably used as a host material for the light emitting layer.
  • the light emitting layer preferably contains a fluorescent light emitting material or a phosphorescent light emitting material, and particularly preferably contains a phosphorescent light emitting material.
  • the organic EL element of this invention has an organic thin film layer in the positive hole transport zone between a cathode and a light emitting layer, and at least 1 layer of this organic thin film layer contains the organic EL element material of this invention. It is preferable (hereinafter, an organic thin film layer which is in the hole transport zone and contains the organic EL device material of the present invention is referred to as an organic thin film layer A).
  • the organic thin film layer A include an electron injection layer, an electron transport layer, and a hole blocking layer.
  • the organic thin film layer A and the light emitting layer are preferably adjacent to each other.
  • the organic EL element of the present invention may be a fluorescent or phosphorescent monochromatic light emitting element, a fluorescent / phosphorescent hybrid white light emitting element, or a simple type having a single light emitting unit.
  • a tandem type having a plurality of light emitting units may be used, and among them, a phosphorescent type is preferable.
  • the “light emitting unit” refers to a minimum unit that includes one or more organic layers, one of which is a light emitting layer, and can emit light by recombination of injected holes and electrons.
  • typical element configurations of simple organic EL elements include the following element configurations.
  • Anode / light emitting unit / cathode The above light emitting unit may be a laminated type having a plurality of phosphorescent light emitting layers and fluorescent light emitting layers. In that case, the light emitting unit is generated by a phosphorescent light emitting layer between the light emitting layers. In order to prevent the excitons from diffusing into the fluorescent light emitting layer, a space layer may be provided. A typical layer structure of the light emitting unit is shown below.
  • A Hole transport layer / light emitting layer (/ electron transport layer)
  • B Hole transport layer / first phosphorescent light emitting layer / second phosphorescent light emitting layer (/ electron transport layer)
  • C Hole transport layer / phosphorescent layer / space layer / fluorescent layer (/ electron transport layer)
  • D Hole transport layer / first phosphorescent light emitting layer / second phosphorescent light emitting layer / space layer / fluorescent light emitting layer (/ electron transport layer)
  • E Hole transport layer / first phosphorescent light emitting layer / space layer / second phosphorescent light emitting layer / space layer / fluorescent light emitting layer (/ electron transport layer)
  • F Hole transport layer / phosphorescent layer / space layer / first fluorescent layer / second fluorescent layer (/ electron transport layer)
  • G Hole transport layer / electron barrier layer / light emitting layer (/ electron transport layer)
  • H Hole transport layer / light emitting layer / hole barrier layer (
  • Each phosphorescent or fluorescent light-emitting layer may have a different emission color.
  • hole transport layer / first phosphorescent light emitting layer (red light emitting) / second phosphorescent light emitting layer (green light emitting) / space layer / fluorescent light emitting layer (blue light emitting) / Examples include a layer configuration such as an electron transport layer.
  • An electron barrier layer may be appropriately provided between each light emitting layer and the hole transport layer or space layer.
  • a hole blocking layer may be appropriately provided between each light emitting layer and the electron transport layer.
  • the following element structure can be mentioned as a typical element structure of a tandem type organic EL element.
  • the intermediate layer is generally called an intermediate electrode, an intermediate conductive layer, a charge generation layer, an electron extraction layer, a connection layer, or an intermediate insulating layer, and has electrons in the first light emitting unit and holes in the second light emitting unit.
  • a known material structure to be supplied can be used.
  • FIG. 1 is a schematic view showing a layer structure of an embodiment of the organic EL device of the present invention.
  • the organic EL element 1 has a configuration in which an anode 20, a hole transport zone 30, a light emitting layer 40, an electron transport zone 50, and a cathode 60 are laminated on a substrate 10 in this order.
  • the hole transport zone 30 refers to a layer sandwiched between the anode 20 and the light emitting layer 40 and means, for example, a hole transport layer, a hole injection layer, an electron barrier layer, or the like.
  • the electron transport zone 50 refers to a layer sandwiched between the cathode 60 and the light emitting layer 40 and means, for example, an electron transport layer, an electron injection layer, a hole barrier layer, or the like.
  • the barrier layer can confine electrons and holes in the light emitting layer 40 and increase the probability of exciton generation in the light emitting layer 40. These need not be formed, but are preferably formed in one or more layers.
  • the organic thin film layer is each organic layer provided in the hole transport zone 30, each light emitting layer 40, and each organic layer provided in the electron transport zone 50.
  • at least one layer contains the organic EL element material of the present invention.
  • the content of this material with respect to one organic thin film layer containing the organic EL device material of the present invention is preferably 1 to 100% by weight.
  • a host combined with a fluorescent dopant is referred to as a fluorescent host
  • a host combined with a phosphorescent dopant is referred to as a phosphorescent host.
  • the fluorescent host and the phosphorescent host are not distinguished only by the molecular structure. That is, the phosphorescent host means a material constituting a phosphorescent light emitting layer containing a phosphorescent dopant, and does not mean that it cannot be used as a material constituting a fluorescent light emitting layer. The same applies to the fluorescent host.
  • the configuration other than the layer using the organic EL element material of the present invention described above is not particularly limited, and a known material or the like can be used.
  • a known material or the like can be used.
  • the structural member of an organic EL element is demonstrated easily, the material applied to the organic EL element of this invention is not limited to the following.
  • the organic EL element of the present invention is produced on a translucent substrate.
  • the light-transmitting substrate is a substrate that supports the organic EL element, and is preferably a smooth substrate having a light transmittance in the visible region of 400 nm to 700 nm of 50% or more.
  • a glass plate, a polymer plate, etc. are mentioned.
  • the glass plate include those using soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, quartz and the like as raw materials.
  • the polymer plate include those using polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, polysulfone and the like as raw materials.
  • the anode of the organic EL element plays a role of injecting holes into the hole transport layer or the light emitting layer, and it is effective to use a material having a work function of 4.5 eV or more.
  • Specific examples of the anode material include indium tin oxide alloy (ITO), tin oxide (NESA), indium zinc oxide, gold, silver, platinum, copper, and the like.
  • the anode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. When light emitted from the light emitting layer is extracted from the anode, it is preferable that the transmittance of light in the visible region of the anode is greater than 10%.
  • the sheet resistance of the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness of the anode depends on the material, but is usually selected in the range of 10 nm to 1 ⁇ m, preferably 10 nm to 200 nm.
  • the cathode plays a role of injecting electrons into the electron injection layer, the electron transport layer or the light emitting layer, and is preferably formed of a material having a small work function.
  • the cathode material is not particularly limited, and specifically, indium, aluminum, magnesium, magnesium-indium alloy, magnesium-aluminum alloy, aluminum-lithium alloy, aluminum-scandium-lithium alloy, magnesium-silver alloy and the like can be used.
  • the cathode can be produced by forming a thin film by a method such as vapor deposition or sputtering. Moreover, you may take out light emission from the cathode side as needed.
  • An organic layer having a light emitting function includes a host material and a dopant material.
  • the host material mainly has a function of encouraging recombination of electrons and holes and confining excitons in the light emitting layer, and the dopant material efficiently emits excitons obtained by recombination. It has a function.
  • the host material mainly has a function of confining excitons generated by the dopant in the light emitting layer.
  • the light emitting layer employs, for example, a double host (also referred to as host / cohost) that adjusts the carrier balance in the light emitting layer by combining an electron transporting host and a hole transporting host.
  • the light emitting layer preferably contains a first host material and a second host material, and the first host material is preferably the organic EL device material of the present invention.
  • you may employ adopt the double dopant from which each dopant light-emits by putting in 2 or more types of dopant materials with a high quantum yield. Specifically, a mode in which yellow emission is realized by co-evaporating a host, a red dopant, and a green dopant to make the light emitting layer common is used.
  • the above light-emitting layer is a laminate in which a plurality of light-emitting layers are stacked, so that electrons and holes are accumulated at the light-emitting layer interface, and the recombination region is concentrated at the light-emitting layer interface to improve quantum efficiency. Can do.
  • the ease of injecting holes into the light emitting layer may be different from the ease of injecting electrons, and the hole transport ability and electron transport ability expressed by the mobility of holes and electrons in the light emitting layer may be different. May be different.
  • the light emitting layer can be formed by a known method such as a vapor deposition method, a spin coating method, or an LB method (Langmuir Broadgett method).
  • the light emitting layer can also be formed by thinning a solution obtained by dissolving a binder such as a resin and a material compound in a solvent by a spin coating method or the like.
  • the light emitting layer is preferably a molecular deposited film.
  • the molecular deposited film is a thin film formed by deposition from a material compound in a gas phase state or a film formed by solidifying from a material compound in a solution state or a liquid phase state.
  • the thin film (molecular accumulation film) formed by the LB method can be classified by the difference in the aggregation structure and the higher-order structure, and the functional difference resulting therefrom.
  • the dopant material is selected from known fluorescent dopants exhibiting fluorescent emission or phosphorescent dopants exhibiting phosphorescent emission.
  • the fluorescent dopant is selected from fluoranthene derivatives, pyrene derivatives, arylacetylene derivatives, fluorene derivatives, boron complexes, perylene derivatives, oxadiazole derivatives, anthracene derivatives, chrysene derivatives, and the like.
  • a fluoranthene derivative, a pyrene derivative, and a boron complex are used.
  • the phosphorescent dopant (phosphorescent material) that forms the light emitting layer is a compound that can emit light from the triplet excited state, and is not particularly limited as long as it emits light from the triplet excited state, but Ir, Pt, Os, Au, Cu
  • An organometallic complex containing at least one metal selected from the group consisting of, Re and Ru and a ligand is preferable.
  • the ligand preferably has an ortho metal bond.
  • a metal complex containing a metal atom selected from Ir, Os and Pt is preferable in that the phosphorescent quantum yield is high and the external quantum efficiency of the light-emitting element can be further improved, and an iridium complex, an osmium complex, or a platinum complex.
  • metal complexes such as orthometalated complexes (the ligand has a metal atom and an orthometal bond), more preferred are iridium complexes and platinum complexes, and particularly preferred are orthometalated iridium complexes.
  • the triplet energy of the phosphorescent material is preferably 1.8 eV or more and less than 2.9 eV.
  • the content of the phosphorescent dopant in the light emitting layer is not particularly limited and may be appropriately selected depending on the intended purpose. For example, it is preferably 0.1 to 70% by mass, more preferably 1 to 30% by mass. If the phosphorescent dopant content is 0.1% by mass or more, sufficient light emission can be obtained, and if it is 70% by mass or less, concentration quenching can be avoided.
  • the phosphorescent host is a compound having a function of efficiently emitting the phosphorescent dopant by efficiently confining the triplet energy of the phosphorescent dopant in the light emitting layer.
  • the organic EL device material of the present invention is suitable as a phosphorescent host.
  • the light emitting layer may contain 1 type of organic EL element material of this invention, and may contain 2 or more types of organic EL element material of this invention.
  • a compound other than the material for the organic EL device of the present invention can be appropriately selected as the phosphorescent host according to the purpose.
  • the organic EL device material of the present invention and other compounds may be used in combination as a phosphorescent host material in the same light emitting layer, and when there are a plurality of light emitting layers, the phosphorescent host of one of the light emitting layers.
  • the material for an organic EL device of the present invention may be used as a material, and a compound other than the material for an organic EL device of the present invention may be used as a phosphorescent host material for another light emitting layer.
  • the organic EL device material of the present invention can be used for organic layers other than the light emitting layer. In that case, a compound other than the organic EL device material of the present invention is used as the phosphorescent host of the light emitting layer. May be.
  • compounds other than the organic EL device material of the present invention and suitable as a phosphorescent host include carbazole derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, Pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, aromatic dimethylidene compounds, porphyrins Compounds, anthraquinodimethane derivatives, anthrone derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimide derivatives, fluorenylidene derivatives And metal complexes of heterocycl
  • the organic EL element material of the present invention is used as the first host material
  • the organic EL element material other than the organic EL element material of the present invention is used as the second host material.
  • a compound may be used.
  • the terms “first host material” and “second host material” mean that the plurality of host materials contained in the light emitting layer have different structures from each other. It is not specified by the material content. It does not specifically limit as said 2nd host material, It is a compound other than the organic EL element material of this invention, and the same thing as the above-mentioned compound as a compound suitable as a phosphorescent host is mentioned.
  • the second host material a compound having no cyano group is preferable.
  • the second host is preferably a carbazole derivative, arylamine derivative, fluorenone derivative, or aromatic tertiary amine compound.
  • the thickness of the light emitting layer is preferably 5 to 50 nm, more preferably 7 to 50 nm, and still more preferably 10 to 50 nm.
  • the thickness is 5 nm or more, it is easy to form a light emitting layer, and when the thickness is 50 nm or less, an increase in driving voltage can be avoided.
  • the electron transport layer is an organic layer formed between the light emitting layer and the cathode, and has a function of transporting electrons from the cathode to the light emitting layer.
  • an organic layer close to the cathode may be defined as an electron injection layer.
  • the electron injection layer has a function of efficiently injecting electrons from the cathode into the organic layer unit.
  • an aromatic heterocyclic compound containing one or more heteroatoms in the molecule is preferably used, and a nitrogen-containing ring derivative is particularly preferable.
  • the nitrogen-containing ring derivative is preferably an aromatic ring having a nitrogen-containing 6-membered ring or 5-membered ring skeleton, or a condensed aromatic ring compound having a nitrogen-containing 6-membered ring or 5-membered ring skeleton.
  • the electron transport layer of the organic EL device of the present invention particularly preferably contains at least one nitrogen-containing heterocyclic derivative represented by the following formulas (E) to (G).
  • Z 1 , Z 2 and Z 3 are each independently a nitrogen atom or a carbon atom.
  • R 1 and R 2 are each independently a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, a substituted or unsubstituted heteroaryl group having 5 to 50 ring atoms, substituted or unsubstituted carbon An alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted haloalkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms.
  • n is an integer of 0 to 5, and when n is an integer of 2 or more, the plurality of R 1 may be the same or different from each other. Further, two adjacent R 1 may be bonded to each other to form a substituted or unsubstituted hydrocarbon ring.
  • Ar 1 is a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms or a substituted or unsubstituted heteroaryl group having 5 to 50 ring atoms.
  • Ar 2 is a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted haloalkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, substituted Alternatively, it is an unsubstituted aryl group having 6 to 50 ring carbon atoms or a substituted or unsubstituted heteroaryl group having 5 to 50 ring atoms.
  • Ar 1 or Ar 2 is a substituted or unsubstituted condensed aromatic hydrocarbon ring group having 10 to 50 ring carbon atoms or a substituted or unsubstituted condensed aromatic group having 9 to 50 ring atoms. It is a heterocyclic group.
  • Ar 3 is a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms or a substituted or unsubstituted heteroarylene group having 5 to 50 ring atoms.
  • L 1 , L 2 and L 3 are each independently a single bond, a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted divalent ring having 9 to 50 ring atoms.
  • aryl group having 6 to 50 ring carbon atoms examples include phenyl group, naphthyl group, anthryl group, phenanthryl group, naphthacenyl group, chrysenyl group, pyrenyl group, biphenylyl group, terphenylyl group, tolyl group, fluoranthenyl group, fluorenyl group Etc.
  • heteroaryl groups having 5 to 50 ring atoms include pyrrolyl, furyl, thienyl, silolyl, pyridyl, quinolyl, isoquinolyl, benzofuryl, imidazolyl, pyrimidyl, carbazolyl, selenophenyl Group, oxadiazolyl group, triazolyl group, pyrazinyl group, pyridazinyl group, triazinyl group, quinoxalinyl group, acridinyl group, imidazo [1,2-a] pyridinyl group, imidazo [1,2-a] pyrimidinyl group and the like.
  • Examples of the alkyl group having 1 to 20 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group.
  • Examples of the haloalkyl group having 1 to 20 carbon atoms include groups obtained by substituting one or more hydrogen atoms of the alkyl group with at least one halogen atom selected from fluorine, chlorine, iodine and bromine.
  • Examples of the alkoxy group having 1 to 20 carbon atoms include groups having the above alkyl group as an alkyl moiety.
  • Examples of the arylene group having 6 to 50 ring carbon atoms include groups obtained by removing one hydrogen atom from the aryl group.
  • Examples of the divalent condensed aromatic heterocyclic group having 9 to 50 ring atoms include groups obtained by removing one hydrogen atom from the condensed aromatic heterocyclic group described as the heteroaryl group.
  • the thickness of the electron transport layer is not particularly limited, but is preferably 1 nm to 100 nm. Moreover, it is preferable to use an insulator or a semiconductor as an inorganic compound in addition to the nitrogen-containing ring derivative as a component of the electron injection layer that can be provided adjacent to the electron transport layer. If the electron injection layer is made of an insulator or a semiconductor, current leakage can be effectively prevented and the electron injection property can be improved.
  • an organic layer close to the anode may be defined as a hole injection layer.
  • the hole injection layer has a function of efficiently injecting holes from the anode into the organic layer unit.
  • an aromatic amine compound for example, an aromatic amine derivative represented by the following formula (H) is preferably used.
  • Ar 1 ⁇ Ar 4 is a substituted or an aromatic hydrocarbon group or fused aromatic hydrocarbon group unsubstituted ring carbon atoms 6 to 50, a substituted or unsubstituted ring atoms of 5 to 50 aromatic heterocyclic groups or condensed aromatic heterocyclic groups, or a group in which these aromatic hydrocarbon groups or condensed aromatic hydrocarbon groups and aromatic heterocyclic groups or condensed aromatic heterocyclic groups are bonded.
  • L represents a substituted or unsubstituted aromatic hydrocarbon group or condensed aromatic hydrocarbon group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted ring forming atom number of 5 to 50. Represents an aromatic heterocyclic group or a condensed aromatic heterocyclic group.
  • An aromatic amine represented by the following formula (J) is also preferably used for forming the hole transport layer.
  • the hole transport layer of the organic EL device of the present invention may have a two-layer structure of a first hole transport layer (anode side) and a second hole transport layer (cathode side).
  • the thickness of the hole transport layer is not particularly limited, but is preferably 10 to 200 nm.
  • a layer containing an acceptor material may be bonded to the anode side of the hole transport layer or the first hole transport layer. This is expected to reduce drive voltage and manufacturing costs.
  • the acceptor material a compound represented by the following formula (K) is preferable.
  • R 21 to R 26 may be the same as or different from each other, and each independently represents a cyano group, —CONH 2 , a carboxyl group, or —COOR 27 (R 27 is a group having 1 to 20 carbon atoms) Represents an alkyl group or a cycloalkyl group having 3 to 20 carbon atoms, provided that one or more pairs of R 21 and R 22 , R 23 and R 24 , and R 25 and R 26 are combined together.
  • a group represented by —CO—O—CO— may be formed.
  • R 27 examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, a cyclopentyl group, and a cyclohexyl group.
  • the thickness of the layer containing the acceptor material is not particularly limited, but is preferably 5 to 20 nm.
  • n doping is a method of doping a metal such as Li or Cs into an electron transport material
  • p doping is F 4 TCNQ (2, 3, 5, 6) as a hole transport material.
  • the space layer is a fluorescent layer for the purpose of adjusting the carrier balance so that excitons generated in the phosphorescent layer are not diffused into the fluorescent layer. It is a layer provided between the layer and the phosphorescent light emitting layer.
  • the space layer can be provided between the plurality of phosphorescent light emitting layers. Since the space layer is provided between the light emitting layers, a material having both electron transport properties and hole transport properties is preferable. In order to prevent diffusion of triplet energy in the adjacent phosphorescent light emitting layer, the triplet energy is preferably 2.6 eV or more. Examples of the material used for the space layer include the same materials as those used for the above-described hole transport layer.
  • the organic EL device of the present invention preferably has a barrier layer such as an electron barrier layer, a hole barrier layer, or a triplet barrier layer in a portion adjacent to the light emitting layer.
  • the electron barrier layer is a layer that prevents electrons from leaking from the light emitting layer to the hole transport layer
  • the hole barrier layer is a layer that prevents holes from leaking from the light emitting layer to the electron transport layer. is there.
  • the triplet barrier layer prevents the triplet excitons generated in the light emitting layer from diffusing into the surrounding layers, and confins the triplet excitons in the light emitting layer, thereby transporting electrons other than the light emitting dopant of the triplet excitons. It has a function of suppressing energy deactivation on the molecules of the layer.
  • the phosphorescent devices When providing the triplet barrier layer, the phosphorescent devices, triplet energy E T d of the phosphorescent dopant in the light emitting layer and the triplet energy of the compound used as a triplet barrier layer and E T TB, E T d ⁇ If the energy magnitude relationship of E T TB is satisfied, the triplet exciton of the phosphorescent dopant is confined (cannot move to other molecules) and the energy deactivation path other than light emission on the dopant is interrupted. It is assumed that light can be emitted with high efficiency.
  • the organic EL element material of the present invention can be used as a triplet barrier layer having a TTF element structure described in International Publication WO2010 / 134350A1.
  • the electron mobility of the material constituting the triplet barrier layer is desirably 10 ⁇ 6 cm 2 / Vs or more in the range of electric field strength of 0.04 to 0.5 MV / cm.
  • the electron mobility is determined by impedance spectroscopy.
  • the electron injection layer is desirably 10 ⁇ 6 cm 2 / Vs or more in the range of electric field strength of 0.04 to 0.5 MV / cm. This facilitates the injection of electrons from the cathode into the electron transport layer, and also promotes the injection of electrons into the adjacent barrier layer and the light emitting layer, thereby enabling driving at a lower voltage.
  • an electron donating dopant and an organometallic complex is added to the interface region between the cathode and the organic thin film layer.
  • the electron donating dopant include at least one selected from alkali metals, alkali metal compounds, alkaline earth metals, alkaline earth metal compounds, rare earth metals, rare earth metal compounds, and the like.
  • the organometallic complex include at least one selected from an organometallic complex containing an alkali metal, an organometallic complex containing an alkaline earth metal, an organometallic complex containing a rare earth metal, and the like.
  • alkali metal examples include lithium (Li) (work function: 2.93 eV), sodium (Na) (work function: 2.36 eV), potassium (K) (work function: 2.28 eV), rubidium (Rb) (work Function: 2.16 eV), cesium (Cs) (work function: 1.95 eV) and the like, and those having a work function of 2.9 eV or less are particularly preferable.
  • K, Rb, and Cs are preferred, Rb and Cs are more preferred, and Cs is most preferred.
  • alkaline earth metal examples include calcium (Ca) (work function: 2.9 eV), strontium (Sr) (work function: 2.0 eV to 2.5 eV), barium (Ba) (work function: 2.52 eV).
  • a work function of 2.9 eV or less is particularly preferable.
  • the rare earth metal examples include scandium (Sc), yttrium (Y), cerium (Ce), terbium (Tb), ytterbium (Yb) and the like, and those having a work function of 2.9 eV or less are particularly preferable.
  • preferred metals are particularly high in reducing ability, and by adding a relatively small amount to the electron injection region, it is possible to improve the light emission luminance and extend the life of the organic EL element.
  • alkali metal compound examples include lithium oxide (Li 2 O), cesium oxide (Cs 2 O), alkali oxides such as potassium oxide (K 2 O), lithium fluoride (LiF), sodium fluoride (NaF), fluorine.
  • alkali halides such as cesium fluoride (CsF) and potassium fluoride (KF), and lithium fluoride (LiF), lithium oxide (Li 2 O), and sodium fluoride (NaF) are preferable.
  • alkaline earth metal compound examples include barium oxide (BaO), strontium oxide (SrO), calcium oxide (CaO), and barium strontium oxide (Ba x Sr 1-x O) (0 ⁇ x ⁇ 1), Examples thereof include barium calcium oxide (Ba x Ca 1-x O) (0 ⁇ x ⁇ 1), and BaO, SrO, and CaO are preferable.
  • the rare earth metal compound ytterbium fluoride (YbF 3), scandium fluoride (ScF 3), scandium oxide (ScO 3), yttrium oxide (Y 2 O 3), cerium oxide (Ce 2 O 3), gadolinium fluoride (GdF 3), include such terbium fluoride (TbF 3) is, YbF 3, ScF 3, TbF 3 are preferable.
  • the organometallic complex is not particularly limited as long as it contains at least one of an alkali metal ion, an alkaline earth metal ion, and a rare earth metal ion as a metal ion as described above.
  • the ligands include quinolinol, benzoquinolinol, acridinol, phenanthridinol, hydroxyphenyl oxazole, hydroxyphenyl thiazole, hydroxydiaryl thiadiazole, hydroxydiaryl thiadiazole, hydroxyphenylpyridine, hydroxyphenylbenzimidazole, hydroxybenzotriazole, Hydroxyfulborane, bipyridyl, phenanthroline, phthalocyanine, porphyrin, cyclopentadiene, ⁇ -diketones, azomethines, and derivatives thereof are preferred, but are not limited thereto.
  • the electron donating dopant and the organometallic complex it is preferable to form a layer or an island in the interface region.
  • a forming method while depositing at least one of an electron donating dopant and an organometallic complex by a resistance heating vapor deposition method, an organic material as a light emitting material or an electron injection material for forming an interface region is simultaneously deposited, and an electron is deposited in the organic material.
  • a method of dispersing at least one of a donor dopant and an organometallic complex reducing dopant is preferable.
  • the dispersion concentration is usually organic substance: electron donating dopant and / or organometallic complex in a molar ratio of 100: 1 to 1: 100, preferably 5: 1 to 1: 5.
  • At least one of the electron donating dopant and the organometallic complex is formed in a layered form
  • at least one of the electron donating dopant and the organometallic complex is formed.
  • These are vapor-deposited by a resistance heating vapor deposition method alone, preferably with a layer thickness of 0.1 nm to 15 nm.
  • an electron donating dopant and an organometallic complex is formed in an island shape
  • a light emitting material or an electron injecting material which is an organic layer at the interface is formed in an island shape, and then the electron donating dopant and the organometallic complex are formed. At least one of them is vapor-deposited by a resistance heating vapor deposition method, preferably with an island thickness of 0.05 nm to 1 nm.
  • the ratio of at least one of the main component (light-emitting material or electron injection material), the electron-donating dopant, and the organometallic complex is, as a molar ratio, the main component: the electron-donating dopant.
  • / or organometallic complex 5: 1 to 1: 5, preferably 2: 1 to 1: 2.
  • each layer of the organic EL device of the present invention a known method such as a dry film forming method such as vacuum deposition, sputtering, plasma, or ion plating, or a wet film forming method such as spin coating, dipping, or flow coating is applied. be able to.
  • the thickness of each layer is not particularly limited, but must be set to an appropriate thickness. If the film thickness is too thick, a large applied voltage is required to obtain a constant light output, resulting in poor efficiency. If the film thickness is too thin, pinholes and the like are generated, and sufficient light emission luminance cannot be obtained even when an electric field is applied.
  • the normal film thickness is suitably in the range of 5 nm to 10 ⁇ m, but more preferably in the range of 10 nm to 0.2 ⁇ m.
  • the organic EL device of the present invention preferably has a maximum emission wavelength of 430 nm or more and 720 nm or less.
  • Example 1 A 25 mm ⁇ 75 mm ⁇ 1.1 mm glass substrate with an ITO transparent electrode (manufactured by Geomatech) was subjected to ultrasonic cleaning for 5 minutes in isopropyl alcohol, and further subjected to UV (Ultraviolet) ozone cleaning for 30 minutes.
  • ITO transparent electrode manufactured by Geomatech
  • the glass substrate with the transparent electrode thus cleaned is attached to the substrate holder of the vacuum evaporation apparatus, and first, on the surface of the glass substrate on which the transparent electrode line is formed, the transparent electrode is covered, Material 1 was deposited with a thickness of 20 nm to obtain a hole injection layer. Subsequently, the material 2 was vapor-deposited on this film
  • compound A as a phosphorescent host material and material 3 which is a phosphorescent material were co-evaporated at a thickness of 50 nm to obtain a phosphorescent layer.
  • concentration of Compound A in the phosphorescent light emitting layer was 80% by mass, and the concentration of Material 3 was 20% by mass.
  • the material 5 was deposited on the phosphorescent layer at a thickness of 10 nm to obtain a hole blocking layer. Furthermore, after depositing material 4 with a thickness of 10 nm to obtain an electron transport layer, LiF with a thickness of 1 nm and metal Al with a thickness of 80 nm were sequentially laminated to obtain a cathode. Note that LiF, which is an electron injecting electrode, was formed at a rate of 1 ⁇ / min.
  • Table 1 shows the evaluation results of the voltage and light emission efficiency (external quantum efficiency) at a current density of 1 mA / cm 2 and the luminance 50% lifetime (time during which the luminance is reduced to 50%) at an initial luminance of 3,000 cd / m 2 .
  • Examples 2-5 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that compounds B to E shown in Table 1 below were used in place of compound A as the phosphorescent host material. The results are shown in Table 1.
  • Comparative Examples 1 and 2 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that Comparative Compounds 1 and 2 shown in Table 1 below were used as the phosphorescent host material instead of Compound A. The results are shown in Table 1.
  • Example 1 the material 2 for the hole transport layer was vapor-deposited with a thickness of 50 nm, and further, the compounds A to E shown in Table 2 below were vapor-deposited with a thickness of 10 nm on the compound A as a host material for the light-emitting layer.
  • An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the material 5 was used instead of the above. The results are shown in Table 2.
  • Example 6 an organic EL device was prepared and evaluated in the same manner as in Example 6 except that Comparative Compounds 1 and 2 shown in Table 2 below were used instead of Compound A in the hole transport layer. The results are shown in Table 2.
  • Examples 11-15 organic EL elements were produced and evaluated in the same manner as in Examples 6 to 10 except that the material 6 was used instead of the material 5 as the host material of the light emitting layer. The results are shown in Table 3.
  • Example 11 an organic EL device was prepared and evaluated in the same manner as in Example 11 except that Comparative Compounds 1 and 2 shown in Table 3 below were used instead of Compound A in the hole transport layer. The results are shown in Table 3.
  • the organic EL device using the compound of the present invention as the phosphorescent host material of the phosphorescent light emitting layer has a significantly longer life than the case of using the comparative compound, and the voltage is high. Low and high external quantum efficiency was obtained. Further, from the results of Examples 6 to 15, the organic EL device using the compound of the present invention as the hole transport layer has a significantly longer life than the case of using the comparative compound, and has a high external quantum efficiency. Efficiency was obtained.
  • the compound of the present invention can be used for organic EL devices, organic EL displays, lighting, organic semiconductors, organic solar cells, and the like.
  • the material for an organic EL device of the present invention is useful as a material for realizing an organic EL device with high efficiency and long life.
  • the organic EL device of the present invention can be used for a flat light emitter such as a flat panel display of a wall-mounted television, a light source such as a copying machine, a printer, a backlight of a liquid crystal display or instruments, a display board, a marker lamp, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

A compound represented by formula (1).

Description

化合物及びそれを用いた有機エレクトロルミネッセンス素子Compound and organic electroluminescence device using the same
 本発明は、新規な化合物と、それを用いた有機エレクトロルミネッセンス素子用材料及び有機エレクトロルミネッセンス素子に関する。 The present invention relates to a novel compound, an organic electroluminescence element material using the compound, and an organic electroluminescence element.
 有機エレクトロルミネッセンス(EL)素子には、蛍光型及び燐光型があり、それぞれの発光メカニズムに応じ、最適な素子設計が検討されている。燐光型の有機EL素子については、その発光特性から、蛍光素子技術の単純な転用では高性能な素子が得られないことが知られている。その理由は、一般的に以下のように考えられている。
 まず、燐光発光は、三重項励起子を利用した発光であるため、発光層に用いる化合物のエネルギーギャップが大きくなくてはならない。何故なら、ある化合物のエネルギーギャップ(以下、一重項エネルギーともいう。)の値は、通常、その化合物の三重項エネルギー(本発明では、最低励起三重項状態と基底状態とのエネルギー差をいう。)の値よりも大きいからである。
Organic electroluminescence (EL) elements include a fluorescent type and a phosphorescent type, and an optimum element design has been studied according to each light emission mechanism. With respect to phosphorescent organic EL elements, it is known from their light emission characteristics that high-performance elements cannot be obtained by simple diversion of fluorescent element technology. The reason is generally considered as follows.
First, since phosphorescence emission is emission using triplet excitons, the energy gap of the compound used in the light emitting layer must be large. This is because the value of the energy gap (hereinafter also referred to as singlet energy) of a compound usually refers to the triplet energy of the compound (in the present invention, the energy difference between the lowest excited triplet state and the ground state). This is because it is larger than the value of).
 従って、燐光発光性ドーパント材料の三重項エネルギーを効率的に発光層内に閉じ込めるためには、まず、燐光発光性ドーパント材料の三重項エネルギーよりも大きい三重項エネルギーのホスト材料を発光層に用いなければならない。さらに、発光層に隣接する電子輸送層、及び正孔輸送層を設け、電子輸送層、及び正孔輸送層に燐光発光性ドーパント材料の三重項エネルギーよりも大きい化合物を用いなければならない。
 このように、従来の有機EL素子の素子設計思想に基づく場合、蛍光型の有機EL素子に用いる化合物と比べて大きなエネルギーギャップを有する化合物を燐光型の有機EL素子に用いることにつながり、有機EL素子全体の駆動電圧が上昇する。
Therefore, in order to efficiently confine the triplet energy of the phosphorescent dopant material in the light emitting layer, a host material having a triplet energy larger than the triplet energy of the phosphorescent dopant material must first be used for the light emitting layer. I must. Furthermore, an electron transport layer and a hole transport layer adjacent to the light emitting layer are provided, and a compound having a triplet energy higher than that of the phosphorescent dopant material must be used for the electron transport layer and the hole transport layer.
Thus, when based on the element design concept of the conventional organic EL element, a compound having a larger energy gap than the compound used for the fluorescent organic EL element is used for the phosphorescent organic EL element. The drive voltage of the entire element increases.
 また、蛍光素子で有用であった酸化耐性や還元耐性の高い炭化水素系の化合物はπ電子雲の広がりが大きいため、エネルギーギャップが小さい。そのため、燐光型の有機EL素子では、このような炭化水素系の化合物が選択され難く、酸素や窒素等のヘテロ原子を含んだ有機化合物が選択され、その結果、燐光型の有機EL素子は、蛍光型の有機EL素子と比較して寿命が短いという問題を有する。 In addition, hydrocarbon compounds having high oxidation resistance and reduction resistance useful for fluorescent elements have a large energy gap due to the large spread of π electron clouds. Therefore, in a phosphorescent organic EL element, it is difficult to select such a hydrocarbon compound, and an organic compound containing a heteroatom such as oxygen or nitrogen is selected. As a result, the phosphorescent organic EL element is There is a problem that the lifetime is shorter than that of a fluorescent organic EL element.
 さらに、燐光発光性ドーパント材料の三重項励起子の励起子緩和速度が一重項励起子と比較して非常に長いことも素子性能に大きな影響を与える。即ち、一重項励起子からの発光は、発光に繋がる緩和速度が速いため、発光層の周辺層(例えば、正孔輸送層や電子輸送層)への励起子の拡散が起きにくく、効率的な発光が期待される。一方、三重項励起子からの発光は、スピン禁制であり緩和速度が遅いため、周辺層への励起子の拡散が起きやすく、特定の燐光発光性化合物以外からは熱的なエネルギー失活が起きてしまう。つまり、電子、及び正孔の再結合領域のコントロールが蛍光型の有機EL素子よりも重要である。 Furthermore, the fact that the exciton relaxation rate of the triplet exciton of the phosphorescent dopant material is much longer than that of the singlet exciton also greatly affects the device performance. That is, since light emitted from singlet excitons has a high relaxation rate that leads to light emission, the diffusion of excitons to the peripheral layers of the light-emitting layer (for example, a hole transport layer or an electron transport layer) hardly occurs and is efficient. Light emission is expected. On the other hand, light emission from triplet excitons is spin-forbidden and has a slow relaxation rate, so that excitons are likely to diffuse into the peripheral layer, and thermal energy deactivation occurs from other than specific phosphorescent compounds. End up. That is, control of the recombination region of electrons and holes is more important than the fluorescent organic EL element.
 以上のような理由から燐光型の有機EL素子の高性能化には、蛍光型の有機EL素子と異なる材料選択、及び素子設計が必要になっている。
 特に、青色発光する燐光型の有機EL素子の場合、緑~赤色発光する燐光型の有機EL素子と比べて、発光層やその周辺層に三重項エネルギーが大きい化合物を使用する必要がある。具体的に、効率の損失無く青色の燐光発光を得るためには、発光層に使用するホスト材料の三重項エネルギーは概ね3.0eV以上が必要である。このような高い三重項エネルギーを有しながら、その他、有機EL材料として求められる性能を満たす化合物を得るためには、複素環化合物等の三重項エネルギーの高い分子パーツを単純に組み合わせるのではなく、π電子の電子状態を考慮した新たな思想による分子設計が必要になる。
For the above reasons, in order to improve the performance of phosphorescent organic EL elements, material selection and element design different from those of fluorescent organic EL elements are required.
In particular, in the case of a phosphorescent organic EL element that emits blue light, it is necessary to use a compound having a large triplet energy in the light emitting layer and its peripheral layer as compared with a phosphorescent organic EL element that emits green to red light. Specifically, in order to obtain blue phosphorescence without loss of efficiency, the triplet energy of the host material used for the light-emitting layer needs to be approximately 3.0 eV or more. In order to obtain a compound satisfying the performance required as an organic EL material while having such a high triplet energy, not simply combining molecular parts having a high triplet energy such as a heterocyclic compound, Molecular design based on a new concept that considers the electronic state of π electrons is required.
 このような状況下、燐光型の有機EL素子の材料として、例えば、特許文献1~3には、カルバゾール骨格を含むアリールアミン構造を有する材料が開示されている。 Under such circumstances, as materials for phosphorescent organic EL elements, for example, Patent Documents 1 to 3 disclose materials having an arylamine structure containing a carbazole skeleton.
欧州特許出願公開2450975第号明細書European Patent Application Publication No. 2450975 特開2012-28548号公報JP 2012-28548 A 国際公開第2012/011756号International Publication No. 2012/011756
 本発明者らは鋭意研究を進めた結果、アリールアミン構造を有する材料は概して電子に対して耐久性に乏しいという知見を得た。
 特に燐光素子の場合、発光層へのホール及び電子の注入レベルは、発光層のS1エネルギーレベルが蛍光素子のそれに比べて大きいため、LUMOのレベルが高く、HOMOのレベルが低い。それ故、発光層に一旦注入された電子又は正孔は、発光層周辺の正孔輸送層、電子輸送層の中まで到達してしまいやすくなるため、発光層に隣接する正孔輸送層及び電子輸送層に用いられる材料はそれぞれ電子、正孔に対する耐久性が必要となる。
 本発明の目的は、電子耐性があり、発光層への正孔注入及び正孔輸送性能に優れる新規な材料と、寿命が長く、発光効率が高い有機EL素子を提供することである。
As a result of diligent research, the present inventors have found that materials having an arylamine structure are generally poor in durability against electrons.
In particular, in the case of a phosphorescent device, the injection level of holes and electrons into the light emitting layer has a high LUMO level and a low HOMO level because the S1 energy level of the light emitting layer is higher than that of the fluorescent device. Therefore, since electrons or holes once injected into the light emitting layer are likely to reach the hole transport layer and the electron transport layer around the light emitting layer, the hole transport layer and the electrons adjacent to the light emitting layer The materials used for the transport layer need to be durable against electrons and holes, respectively.
An object of the present invention is to provide a novel material having electron resistance and excellent hole injection and hole transport performance to a light emitting layer, and an organic EL device having a long lifetime and high light emission efficiency.
 本発明によれば、以下の化合物等が提供される。
1.下記式(1)で表される化合物。
Figure JPOXMLDOC01-appb-C000001
[式(1)中、
 Arは、置換若しくは無置換の環形成炭素数6~30のアリール基、置換若しくは無置換のアリールカルバゾリル基、置換若しくは無置換のアリールジベンゾフラニル基、置換若しくは無置換のアリールジベンゾチオフェニル基、置換若しくは無置換のカルバゾリル基、置換若しくは無置換のジベンゾフラニル基、及び置換若しくは無置換のジベンゾチオフェニル基からなる群より選択される基を表す。
 R~R14は、それぞれ独立に、水素原子、置換若しくは無置換の環形成炭素数6~30のアリール基、置換若しくは無置換の炭素数1~20のアルキル基、置換若しくは無置換の炭素数1~20のアルコキシ基、置換若しくは無置換の炭素数1~20のハロアルキル基、置換若しくは無置換の炭素数1~20のハロアルコキシ基、シアノ基、置換若しくは無置換のアリールカルバゾリル基、置換若しくは無置換のアリールジベンゾフラニル基、置換若しくは無置換のアリールジベンゾチオフェニル基、置換若しくは無置換のカルバゾリル基、置換若しくは無置換のジベンゾフラニル基、置換若しくは無置換のジベンゾチオフェニル基、置換若しくは無置換のアルキルシリル基、置換若しくは無置換のアリールシリル基、置換若しくは無置換のアラルキルシリル基、置換若しくは無置換のアルキルゲルマニウム基、置換若しくは無置換のアリールゲルマニウム基、及び置換若しくは無置換のアラルキルゲルマニウム基からなる群より選択される基を表す。
 Xは、酸素原子又は硫黄原子を表す。]
2.R~R14は、それぞれ独立に、水素原子、置換若しくは無置換の環形成炭素数6~30のアリール基、置換若しくは無置換の炭素数1~20のアルキル基、置換若しくは無置換の炭素数1~20のアルコキシ基、置換若しくは無置換の炭素数1~20のハロアルキル基、置換若しくは無置換の炭素数1~20のハロアルコキシ基、シアノ基、置換若しくは無置換のアリールカルバゾリル基、置換若しくは無置換のアリールジベンゾフラニル基、置換若しくは無置換のアリールジベンゾチオフェニル基、置換若しくは無置換のカルバゾリル基、置換若しくは無置換のジベンゾフラニル基、及び置換若しくは無置換のジベンゾチオフェニル基からなる群より選択される基を表す1記載の化合物。
3.下記式(2)、(3)又は(4)で表される1又は2記載の化合物。
Figure JPOXMLDOC01-appb-C000002
[式(2)~(4)中、Ar、R~R14及びXは、それぞれ、前記式(1)と同じである。]
4.下記式(5)、(6)又は(7)で表される1~3のいずれか記載の化合物。
Figure JPOXMLDOC01-appb-C000003
[式(5)~(7)中、Ar、R、R、R、R、R~R11及びXは、それぞれ、前記式(1)と同じである。]
5.前記式(5)~(7)におけるArが、無置換の環形成炭素数6~30のアリール基、無置換のアリールカルバゾリル基、無置換のアリールジベンゾフラニル基、無置換のアリールジベンゾチオフェニル基、無置換のカルバゾリル基、無置換のジベンゾフラニル基、及び無置換のジベンゾチオフェニル基からなる群より選択される基を表す4記載の化合物。
6.Arが、無置換のフェニル基、無置換のビフェニリル基、無置換のフェニルカルバゾリル基、無置換のフェニルジベンゾフラニル基、無置換のフェニルジベンゾチオフェニル基、無置換のカルバゾリル基、無置換のジベンゾフラニル基、及び無置換のジベンゾチオフェニル基からなる群より選択される基を表す5記載の化合物。
7.1~6のいずれか記載の化合物を含む有機エレクトロルミネッセンス素子用材料。
8.陰極と陽極の間に、発光層を含む一層以上の有機薄膜層を有し、前記有機薄膜層のうち少なくとも一層が、7記載の有機エレクトロルミネッセンス素子用材料を含む有機エレクトロルミネッセンス素子。
9.前記発光層が前記有機エレクトロルミネッセンス素子用材料を含む8記載の有機エレクトロルミネッセンス素子。
10.前記有機薄膜層が、一層以上の発光層を含み、
 前記発光層の少なくとも一層が、7記載の有機エレクトロルミネッセンス素子用材料と燐光発光性材料とを含む8又は9記載の有機エレクトロルミネッセンス素子。
11.前記燐光発光性材料の三重項エネルギーが、1.8eV以上2.9eV未満である10記載の有機エレクトロルミネッセンス素子。
12.前記燐光発光性材料が金属錯体化合物を含有し、
 前記金属錯体化合物が、Ir、Pt、Os、Au、Cu、Re及びRuからなる群より選択される金属原子と配位子とを有する10又は11記載の有機エレクトロルミネッセンス素子。
13.前記配位子が、前記金属原子とオルトメタル結合を有する12記載の有機エレクトロルミネッセンス素子。
14.発光波長の極大値が、430nm以上720nm以下である8~13のいずれか記載の有機エレクトロルミネッセンス素子。
15.前記発光層と前記陽極との間に正孔輸送帯域を有し、該正孔輸送帯域が一層以上の有機薄膜層を有し、該有機薄膜層の少なくとも一層が7記載の有機エレクトロルミネッセンス素子用材料を含む8~14のいずれかに記載の有機エレクトロルミネッセンス素子。
16.前記正孔輸送帯域が前記発光層に隣接する15記載の有機エレクトロルミネッセンス素子。
According to the present invention, the following compounds and the like are provided.
1. A compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000001
[In Formula (1),
Ar is a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, a substituted or unsubstituted arylcarbazolyl group, a substituted or unsubstituted aryldibenzofuranyl group, a substituted or unsubstituted aryldibenzothiophenyl A group selected from the group consisting of a group, a substituted or unsubstituted carbazolyl group, a substituted or unsubstituted dibenzofuranyl group, and a substituted or unsubstituted dibenzothiophenyl group.
R 1 to R 14 each independently represents a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted carbon; An alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted haloalkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted haloalkoxy group having 1 to 20 carbon atoms, a cyano group, and a substituted or unsubstituted arylcarbazolyl group; Substituted or unsubstituted aryl dibenzofuranyl group, substituted or unsubstituted aryl dibenzothiophenyl group, substituted or unsubstituted carbazolyl group, substituted or unsubstituted dibenzofuranyl group, substituted or unsubstituted dibenzothiophenyl group Substituted or unsubstituted alkylsilyl group, substituted or unsubstituted arylsilyl group, substituted or unsubstituted Conversion aralkyl silyl group, a substituted or unsubstituted alkyl germanium group, a substituted or unsubstituted aryl germanium group, and a substituted or unsubstituted group selected from the group consisting of aralkyl germanium group.
X represents an oxygen atom or a sulfur atom. ]
2. R 1 to R 14 each independently represents a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted carbon; An alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted haloalkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted haloalkoxy group having 1 to 20 carbon atoms, a cyano group, and a substituted or unsubstituted arylcarbazolyl group; Substituted or unsubstituted aryl dibenzofuranyl group, substituted or unsubstituted aryl dibenzothiophenyl group, substituted or unsubstituted carbazolyl group, substituted or unsubstituted dibenzofuranyl group, and substituted or unsubstituted dibenzothiophenyl 2. The compound according to 1, which represents a group selected from the group consisting of groups.
3. The compound of 1 or 2 represented by following formula (2), (3) or (4).
Figure JPOXMLDOC01-appb-C000002
[In the formulas (2) to (4), Ar, R 1 to R 14 and X are the same as those in the formula (1). ]
4). The compound according to any one of 1 to 3 represented by the following formula (5), (6) or (7):
Figure JPOXMLDOC01-appb-C000003
[In the formulas (5) to (7), Ar, R 1 , R 2 , R 6 , R 7 , R 9 to R 11 and X are the same as those in the formula (1). ]
5. In the above formulas (5) to (7), Ar represents an unsubstituted aryl group having 6 to 30 ring carbon atoms, an unsubstituted arylcarbazolyl group, an unsubstituted aryldibenzofuranyl group, or an unsubstituted aryldibenzo. 5. The compound according to 4, which represents a group selected from the group consisting of a thiophenyl group, an unsubstituted carbazolyl group, an unsubstituted dibenzofuranyl group, and an unsubstituted dibenzothiophenyl group.
6). Ar is an unsubstituted phenyl group, an unsubstituted biphenylyl group, an unsubstituted phenylcarbazolyl group, an unsubstituted phenyldibenzofuranyl group, an unsubstituted phenyldibenzothiophenyl group, an unsubstituted carbazolyl group, an unsubstituted group 6. The compound according to 5, which represents a group selected from the group consisting of a dibenzofuranyl group and an unsubstituted dibenzothiophenyl group.
7.1 A material for an organic electroluminescence device comprising the compound according to any one of 1 to 6.
8). 8. An organic electroluminescence device comprising one or more organic thin film layers including a light emitting layer between a cathode and an anode, wherein at least one of the organic thin film layers comprises the material for an organic electroluminescence device according to 7.
9. 9. The organic electroluminescence device according to 8, wherein the light emitting layer contains the material for an organic electroluminescence device.
10. The organic thin film layer includes one or more light emitting layers,
10. The organic electroluminescence device according to 8 or 9, wherein at least one layer of the light emitting layer contains the material for an organic electroluminescence device according to 7, and a phosphorescent material.
11. 11. The organic electroluminescence device according to 10, wherein the triplet energy of the phosphorescent material is 1.8 eV or more and less than 2.9 eV.
12 The phosphorescent material contains a metal complex compound;
The organic electroluminescence device according to 10 or 11, wherein the metal complex compound has a metal atom and a ligand selected from the group consisting of Ir, Pt, Os, Au, Cu, Re, and Ru.
13. 13. The organic electroluminescence device according to 12, wherein the ligand has an ortho metal bond with the metal atom.
14 14. The organic electroluminescence device according to any one of 8 to 13, wherein the maximum value of the emission wavelength is 430 nm or more and 720 nm or less.
15. The organic electroluminescence device according to claim 7, wherein the organic EL device has a hole transport zone between the light emitting layer and the anode, the hole transport zone has one or more organic thin film layers, and at least one of the organic thin film layers has 7. 15. The organic electroluminescence device according to any one of 8 to 14, comprising a material.
16. 16. The organic electroluminescence device according to 15, wherein the hole transport zone is adjacent to the light emitting layer.
 本発明によれば、電子耐性があり、正孔輸送能に優れる新規な材料、及び寿命が長く、発光効率が高い有機EL素子を提供できる。 According to the present invention, it is possible to provide a novel material having electron resistance and excellent hole transport ability, and an organic EL element having a long lifetime and high luminous efficiency.
本発明の有機EL素子の一実施形態を示す概略図である。It is the schematic which shows one Embodiment of the organic EL element of this invention.
 本発明の化合物は、下記式(1)で表される。
Figure JPOXMLDOC01-appb-C000004
The compound of the present invention is represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000004
 本発明の化合物は、電子耐性に乏しいアリールアミン構造をその構造から排除することにより、電子阻止(ブロック)層としての正孔輸送材料、発光層のホスト材料として利用できる電子耐性を有機EL素子に付与することができる。
 また、本発明の化合物は、励起三重項エネルギーレベルが高く、寿命が長く発光効率が高い有機EL素子を提供することができる。
The compound of the present invention eliminates an arylamine structure having poor electron resistance from the structure, thereby providing an organic EL device with electron resistance that can be used as a hole transport material as an electron blocking (blocking) layer and a host material in a light emitting layer. Can be granted.
In addition, the compound of the present invention can provide an organic EL device having a high excited triplet energy level, a long lifetime, and high luminous efficiency.
 上記式(1)において、Arは、置換若しくは無置換の環形成炭素数6~30のアリール基、置換若しくは無置換のアリールカルバゾリル基、置換若しくは無置換のアリールジベンゾフラニル基、置換若しくは無置換のアリールジベンゾチオフェニル基、置換若しくは無置換のカルバゾリル基、置換若しくは無置換のジベンゾフラニル基、及び置換若しくは無置換のジベンゾチオフェニル基からなる群より選択される基を表す。 In the above formula (1), Ar represents a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, a substituted or unsubstituted arylcarbazolyl group, a substituted or unsubstituted aryldibenzofuranyl group, substituted or unsubstituted It represents a group selected from the group consisting of an unsubstituted aryl dibenzothiophenyl group, a substituted or unsubstituted carbazolyl group, a substituted or unsubstituted dibenzofuranyl group, and a substituted or unsubstituted dibenzothiophenyl group.
 R~R14は、それぞれ独立に、水素原子、置換若しくは無置換の環形成炭素数6~30のアリール基、置換若しくは無置換の炭素数1~20のアルキル基、置換若しくは無置換の炭素数1~20のアルコキシ基、置換若しくは無置換の炭素数1~20のハロアルキル基、置換若しくは無置換の炭素数1~20のハロアルコキシ基、シアノ基、置換若しくは無置換のアリールカルバゾリル基、置換若しくは無置換のアリールジベンゾフラニル基、置換若しくは無置換のアリールジベンゾチオフェニル基、置換若しくは無置換のカルバゾリル基、置換若しくは無置換のジベンゾフラニル基、置換若しくは無置換のジベンゾチオフェニル基、置換若しくは無置換のアルキルシリル基、置換若しくは無置換のアリールシリル基、置換若しくは無置換のアラルキルシリル基、置換若しくは無置換のアルキルゲルマニウム基、置換若しくは無置換のアリールゲルマニウム基、及び置換若しくは無置換のアラルキルゲルマニウム基からなる群より選択される基を表す。 R 1 to R 14 each independently represents a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted carbon; An alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted haloalkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted haloalkoxy group having 1 to 20 carbon atoms, a cyano group, and a substituted or unsubstituted arylcarbazolyl group; Substituted or unsubstituted aryl dibenzofuranyl group, substituted or unsubstituted aryl dibenzothiophenyl group, substituted or unsubstituted carbazolyl group, substituted or unsubstituted dibenzofuranyl group, substituted or unsubstituted dibenzothiophenyl group Substituted or unsubstituted alkylsilyl group, substituted or unsubstituted arylsilyl group, substituted or unsubstituted Conversion aralkyl silyl group, a substituted or unsubstituted alkyl germanium group, a substituted or unsubstituted aryl germanium group, and a substituted or unsubstituted group selected from the group consisting of aralkyl germanium group.
 式(1)において、R~R14は、それぞれ独立に、水素原子、置換若しくは無置換の環形成炭素数6~30のアリール基、置換若しくは無置換の炭素数1~20のアルキル基、置換若しくは無置換の炭素数1~20のアルコキシ基、置換若しくは無置換の炭素数1~20のハロアルキル基、置換若しくは無置換の炭素数1~20のハロアルコキシ基、シアノ基、置換若しくは無置換のアリールカルバゾリル基、置換若しくは無置換のアリールジベンゾフラニル基、置換若しくは無置換のアリールジベンゾチオフェニル基、置換若しくは無置換のカルバゾリル基、置換若しくは無置換のジベンゾフラニル基、及び置換若しくは無置換のジベンゾチオフェニル基からなる群より選択される基であってもよい。 In the formula (1), R 1 to R 14 are each independently a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, Substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, substituted or unsubstituted haloalkyl group having 1 to 20 carbon atoms, substituted or unsubstituted haloalkoxy group having 1 to 20 carbon atoms, cyano group, substituted or unsubstituted Arylcarbazolyl group, substituted or unsubstituted aryldibenzofuranyl group, substituted or unsubstituted aryldibenzothiophenyl group, substituted or unsubstituted carbazolyl group, substituted or unsubstituted dibenzofuranyl group, and substituted or unsubstituted It may be a group selected from the group consisting of unsubstituted dibenzothiophenyl groups.
 Xは、酸素原子又は硫黄原子を表す。
 本発明において、「置換若しくは無置換の・・・」の「無置換」とは、水素原子が結合していることを意味し、「環形成炭素」とは、飽和環、不飽和環、又は芳香環を構成する炭素原子を意味し、「環形成原子」とは、飽和環、不飽和環、又は芳香環を構成する原子を意味する。
 また、本発明において、水素原子とは、中性子数が異なる同位体、即ち、軽水素(protium)、重水素(deuterium)、三重水素(tritium)を包含する。
X represents an oxygen atom or a sulfur atom.
In the present invention, “unsubstituted” in “substituted or unsubstituted...” Means that a hydrogen atom is bonded, and “ring-forming carbon” means a saturated ring, an unsaturated ring, or A carbon atom constituting an aromatic ring means “ring-forming atom” means an atom constituting a saturated ring, an unsaturated ring, or an aromatic ring.
In the present invention, the hydrogen atom includes isotopes having different numbers of neutrons, that is, light hydrogen (protium), deuterium (deuterium), and tritium (tritium).
 上記式(1)の化合物のうち、下記式(2)、(3)又は(4)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000005
 上記式(2)~(4)中、Ar、R~R14及びXは、それぞれ、前記式(1)と同じである。
Of the compounds of the above formula (1), compounds represented by the following formula (2), (3) or (4) are preferred.
Figure JPOXMLDOC01-appb-C000005
In the above formulas (2) to (4), Ar, R 1 to R 14 and X are the same as those in the formula (1).
 また、上記式(1)の化合物のうち、下記式(5)、(6)又は(7)で表される化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000006
[式(5)~(7)中、Ar、R、R、R、R、R~R11及びXは、それぞれ、前記式(1)と同じである。]
Of the compounds of the above formula (1), compounds represented by the following formula (5), (6) or (7) are more preferred.
Figure JPOXMLDOC01-appb-C000006
[In the formulas (5) to (7), Ar, R 1 , R 2 , R 6 , R 7 , R 9 to R 11 and X are the same as those in the formula (1). ]
 式(5)~(7)におけるArが、無置換の環形成炭素数6~30のアリール基、無置換のアリールカルバゾリル基、無置換のアリールジベンゾフラニル基、無置換のアリールジベンゾチオフェニル基、無置換のカルバゾリル基、無置換のジベンゾフラニル基、及び無置換のジベンゾチオフェニル基からなる群より選択される基であると好ましい。 In the formulas (5) to (7), Ar represents an unsubstituted aryl group having 6 to 30 ring carbon atoms, an unsubstituted arylcarbazolyl group, an unsubstituted aryldibenzofuranyl group, an unsubstituted aryldibenzothio group. A group selected from the group consisting of a phenyl group, an unsubstituted carbazolyl group, an unsubstituted dibenzofuranyl group, and an unsubstituted dibenzothiophenyl group is preferable.
 また、式(5)~(7)におけるArが、無置換のフェニル基、無置換のビフェニリル基、無置換のフェニルカルバゾリル基、無置換のフェニルジベンゾフラニル基、無置換のフェニルジベンゾチオフェニル基、無置換のカルバゾリル基、無置換のジベンゾフラニル基、及び無置換のジベンゾチオフェニル基からなる群より選択される基であると好ましい。 In the formulas (5) to (7), Ar represents an unsubstituted phenyl group, an unsubstituted biphenylyl group, an unsubstituted phenylcarbazolyl group, an unsubstituted phenyldibenzofuranyl group, an unsubstituted phenyldibenzothio group. A group selected from the group consisting of a phenyl group, an unsubstituted carbazolyl group, an unsubstituted dibenzofuranyl group, and an unsubstituted dibenzothiophenyl group is preferable.
 以下、上述した式(1)~(7)の各基の例について説明する。
 炭素数1~20のアルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、ネオペンチル基、1-メチルペンチル基、2-メチルペンチル基、1-ペンチルヘキシル基、1-ブチルペンチル基、1-ヘプチルオクチル基、3-メチルペンチル基等が挙げられ、このうち炭素数1~6のものが好ましい。
Hereinafter, examples of the groups of the above formulas (1) to (7) will be described.
Specific examples of the alkyl group having 1 to 20 carbon atoms include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, n-pentyl group, n -Hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl, n-tridecyl, n-tetradecyl, n-pentadecyl, n -Hexadecyl group, n-heptadecyl group, n-octadecyl group, neopentyl group, 1-methylpentyl group, 2-methylpentyl group, 1-pentylhexyl group, 1-butylpentyl group, 1-heptyloctyl group, 3-methyl Examples thereof include a pentyl group, and among these, those having 1 to 6 carbon atoms are preferred.
 炭素数1~20のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基等が挙げられ、炭素数が3以上のものは直鎖状、環状又は分岐を有するものでもよく、このうち炭素数1~6のものが好ましい。 Examples of the alkoxy group having 1 to 20 carbon atoms include methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group and the like, and those having 3 or more carbon atoms are linear, cyclic or branched Among them, those having 1 to 6 carbon atoms are preferable.
 炭素数1~20のハロアルキル基としては、上述した炭素数1~20のアルキル基に1つ以上のハロゲン原子が置換した基が挙げられ、具体的には、トリフルオロメチル基、ペンタフルオロメチル基等が好ましい。 Examples of the haloalkyl group having 1 to 20 carbon atoms include groups in which one or more halogen atoms are substituted on the above alkyl group having 1 to 20 carbon atoms. Specific examples include a trifluoromethyl group and a pentafluoromethyl group. Etc. are preferred.
 炭素数1~20のハロアルコキシ基としては、上述した炭素数1~20のアルコキシ基に1つ以上のハロゲン原子が置換した基が挙げられ、具体的には、トリフルオロメトキシ基、ペンタフルオロエトキシ基等が好ましい。 Examples of the haloalkoxy group having 1 to 20 carbon atoms include groups in which one or more halogen atoms are substituted on the above-described alkoxy group having 1 to 20 carbon atoms. Specific examples include trifluoromethoxy groups, pentafluoroethoxy groups. Groups and the like are preferred.
 環形成炭素数6~30のアリール基の具体例としては、フェニル基、トリル基、キシリル基、メシチル基、o-ビフェニリル基、m-ビフェニリル基、p-ビフェニリル基、o-ターフェニリル基、m-ターフェニリル基、p-ターフェニリル基、ナフチル基、フェナントリル基、トリフェニレン基等が挙げられる。中でもフェニル基、m-ビフェニリル基、m-ターフェニリル基が好ましい。 Specific examples of the aryl group having 6 to 30 ring carbon atoms include phenyl group, tolyl group, xylyl group, mesityl group, o-biphenylyl group, m-biphenylyl group, p-biphenylyl group, o-terphenylyl group, m- Examples thereof include a terphenylyl group, a p-terphenylyl group, a naphthyl group, a phenanthryl group, and a triphenylene group. Of these, phenyl, m-biphenylyl and m-terphenylyl are preferred.
 アリールカルバゾリル基は、カルバゾリル基がアリール基(例えば、上記の環形成炭素数6~30のアリール基)で置換されたものである。例えば、フェニルカルバゾリル基、ジフェニルカルバゾリル基等が挙げられる。
 アリールジベンゾフラニル基は、ジベンゾフラニル基がアリール基(例えば、上記の環形成炭素数6~30のアリール基)で置換されたものである。例えば、フェニルジベンゾフラニル基、ジフェニルジベンゾフラニル基等が挙げられる。
 アリールジベンゾチオフェニル基は、ジベンゾチオフェニル基がアリール基(例えば、上記の環形成炭素数6~30のアリール基)で置換されたものである。例えば、フェニルジベンゾチオフェニル基、ジフェニルジベンゾチオフェニル基等が挙げられる。
The arylcarbazolyl group is a group in which the carbazolyl group is substituted with an aryl group (for example, the above aryl group having 6 to 30 ring carbon atoms). For example, a phenyl carbazolyl group, a diphenyl carbazolyl group, etc. are mentioned.
The aryl dibenzofuranyl group is a group in which the dibenzofuranyl group is substituted with an aryl group (for example, the above aryl group having 6 to 30 ring carbon atoms). Examples thereof include a phenyl dibenzofuranyl group and a diphenyl dibenzofuranyl group.
The aryl dibenzothiophenyl group is a group in which a dibenzothiophenyl group is substituted with an aryl group (for example, the above aryl group having 6 to 30 ring carbon atoms). For example, a phenyl dibenzothiophenyl group, a diphenyl dibenzothiophenyl group, etc. are mentioned.
 アルキルシリル基は、シリル基がアルキル基(例えば上記の炭素数1~20のアルキル基)で置換されたものである。例えば、トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル等が挙げられる。 The alkylsilyl group is a group in which the silyl group is substituted with an alkyl group (for example, the above alkyl group having 1 to 20 carbon atoms). For example, a trimethylsilyl group, a triethylsilyl group, t-butyldimethylsilyl and the like can be mentioned.
 アリールシリル基は、シリル基がアリール基(例えば上記の環形成炭素数6~30のアリール基)で置換されたものである。例えば、トリフェニルシリル基等が挙げられる。 The arylsilyl group is a group in which the silyl group is substituted with an aryl group (for example, the above aryl group having 6 to 30 ring carbon atoms). For example, a triphenylsilyl group etc. are mentioned.
 アラルキルシリル基は、シリル基がアルキル基(例えば上記の炭素数1~20のアルキル基)とアリール基(例えば上記の環形成炭素数6~30のアリール基)で置換されたものである。例えば、t-ブチルジフェニルシリル基、ジフェニルメチルシリル基、ジフェニルエチルシリル基等が挙げられる。 The aralkylsilyl group is a group in which a silyl group is substituted with an alkyl group (for example, the above alkyl group having 1 to 20 carbon atoms) and an aryl group (for example, the above aryl group having 6 to 30 ring carbon atoms). Examples thereof include t-butyldiphenylsilyl group, diphenylmethylsilyl group, diphenylethylsilyl group and the like.
 アルキルゲルマニウム基は、ゲルマニウム基がアルキル基(例えば上記の炭素数1~20のアルキル基)で置換されたものである。例えば、トリメチルゲルマニウム基、トリエチルゲルマニウム基等が挙げられる。 The alkylgermanium group is a group in which the germanium group is substituted with an alkyl group (for example, the above alkyl group having 1 to 20 carbon atoms). For example, a trimethyl germanium group, a triethyl germanium group, etc. are mentioned.
 アリールゲルマニウム基はゲルマニウム基がアリール基(例えば上記の環形成炭素数6~30のアリール基)で置換されたものである。例えば、トリフェニルゲルマニウム基等が挙げられる。 The aryl germanium group is a group in which a germanium group is substituted with an aryl group (for example, the above-mentioned aryl group having 6 to 30 ring carbon atoms). For example, a triphenyl germanium group etc. are mentioned.
 アラルキルゲルマニウム基は、ゲルマニウム基がアルキル基(例えば上記の炭素数1~20のアルキル基)とアリール基(例えば上記の環形成炭素数6~30のアリール基)で置換されたものである。例えば、t-ブチルジフェニルゲルマニウム基、ジフェニルメチルゲルマニウム基、ジフェニルエチルゲルマニウム基等が挙げられる。 The aralkyl germanium group is a group in which a germanium group is substituted with an alkyl group (for example, the above alkyl group having 1 to 20 carbon atoms) and an aryl group (for example, the above aryl group having 6 to 30 ring carbon atoms). For example, t-butyldiphenylgermanium group, diphenylmethylgermanium group, diphenylethylgermanium group and the like can be mentioned.
 上記各式で表される化合物の、各基の「置換若しくは無置換の・・・」の置換基としては、上記のアルキル基、アリール基、ヘテロアリール基(例えば、カルバゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基等)、アルコキシ基、フルオロアルキル基、アルキルシリル基、アリールシリル基、アラルキルシリル基、アルキルゲルマニウム基、アリールゲルマニウム基、アラルキルゲルマニウム基や、その他にハロゲン原子(フッ素、塩素、臭素、ヨウ素が挙げられ、好ましくはフッ素原子である。)、ヒドロキシル基、ニトロ基、シアノ基、カルボキシ基、アリールオキシ基、アラルキル基、フルオロアルコキシ基、ジアリールホスフィノ基、ジアリールホスフィンオキシド基、ジアリールホスフィノアリール基等が挙げられ、好ましくはR~R14として記載されている置換基である。 In the compounds represented by the above formulas, as the substituents of “substituted or unsubstituted...” Of each group, the above alkyl group, aryl group, heteroaryl group (for example, carbazolyl group, dibenzofuranyl group) , Dibenzothiophenyl groups, etc.), alkoxy groups, fluoroalkyl groups, alkylsilyl groups, arylsilyl groups, aralkylsilyl groups, alkylgermanium groups, arylgermanium groups, aralkylgermanium groups, and other halogen atoms (fluorine, chlorine, bromine) Iodine, and preferably a fluorine atom.), Hydroxyl group, nitro group, cyano group, carboxy group, aryloxy group, aralkyl group, fluoroalkoxy group, diarylphosphino group, diarylphosphine oxide group, diarylphosphine group Examples include finoaryl groups. Properly is a substituent described as the R 1 ~ R 14.
 置換されたアリール基としては、例えば、カルバゾリル基で置換されたアリール基、ジベンゾチオフェニル基で置換されたアリール基、ジベンゾフラニル基で置換されたアリール基等が挙げられる。カルバゾリルフェニル基、ジベンゾチオフェニルフェニル基、ジベンゾフラニルフェニル基等が好ましい。
 置換されたカルバゾリル基としては、例えば、メチルカルバゾリル基、ジメチルカルバゾリル基、カルバゾリルカルバゾリル基等が挙げられる。
 置換されたジベンゾフラニル基としては、例えば、シアノジベンゾフラニル基、カルバゾリルジベンゾフラニル基等が挙げられる。
 置換されたジベンゾチオフェニル基としては、例えば、シアノジベンゾチオフェニル基、カルバゾリルジベンゾチオフェニル基等が挙げられる。
Examples of the substituted aryl group include an aryl group substituted with a carbazolyl group, an aryl group substituted with a dibenzothiophenyl group, and an aryl group substituted with a dibenzofuranyl group. A carbazolylphenyl group, a dibenzothiophenylphenyl group, a dibenzofuranylphenyl group and the like are preferable.
Examples of the substituted carbazolyl group include a methyl carbazolyl group, a dimethyl carbazolyl group, a carbazolyl carbazolyl group, and the like.
Examples of the substituted dibenzofuranyl group include a cyanodibenzofuranyl group and a carbazolyl dibenzofuranyl group.
Examples of the substituted dibenzothiophenyl group include a cyanodibenzothiophenyl group and a carbazolyl dibenzothiophenyl group.
 上記式(1)で表される化合物の具体例を以下に示す。 Specific examples of the compound represented by the above formula (1) are shown below.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 本発明の化合物は実施例の合成例に記載の方法等により合成できる。 The compounds of the present invention can be synthesized by the methods described in the synthesis examples of the examples.
 本発明の有機EL素子用材料(以下、「本発明の材料」ということがある)は、上記本発明の化合物を含むことを特徴とする。
 本発明の有機EL素子用材料を用いることにより、得られる有機EL素子が長寿命化する。
 本発明の有機EL素子用材料は、有機EL素子を構成する有機薄膜層の材料、具体的には、有機EL素子の発光層のホスト材料、正孔輸送材料として特に好適である。特に発光層と隣接する正孔輸送層に適用した場合、高電流密度領域においても発光効率を高く維持することができる。
The material for an organic EL device of the present invention (hereinafter sometimes referred to as “the material of the present invention”) includes the compound of the present invention.
By using the organic EL device material of the present invention, the obtained organic EL device has a long life.
The material for an organic EL device of the present invention is particularly suitable as a material for an organic thin film layer constituting the organic EL device, specifically as a host material and a hole transport material for a light emitting layer of the organic EL device. In particular, when applied to a hole transport layer adjacent to the light emitting layer, high luminous efficiency can be maintained even in a high current density region.
 続いて、本発明の有機EL素子について説明する。
 本発明の有機EL素子は、陽極と陰極の間に、発光層を含む一層以上の有機薄膜層を有する。そして、有機薄膜層の少なくとも一層が、本発明の材料を含む。これにより、有機EL素子の寿命を長くすることができる。
Next, the organic EL element of the present invention will be described.
The organic EL device of the present invention has one or more organic thin film layers including a light emitting layer between an anode and a cathode. At least one of the organic thin film layers contains the material of the present invention. Thereby, the lifetime of an organic EL element can be lengthened.
 本発明の材料が含まれる有機薄膜層の例としては、正孔輸送層、発光層、電子輸送層、スペース層、及び障壁層等が挙げられるが、これらに限定されるものではない。本発明の材料は、発光層に含まれることが好ましく、特に、発光層のホスト材料として用いられることが好ましい。また、発光層は蛍光発光材料や燐光発光材料を含有することが好ましく、特に燐光発光材料を含有することが好ましい。 Examples of the organic thin film layer containing the material of the present invention include, but are not limited to, a hole transport layer, a light emitting layer, an electron transport layer, a space layer, and a barrier layer. The material of the present invention is preferably contained in the light emitting layer, and particularly preferably used as a host material for the light emitting layer. Further, the light emitting layer preferably contains a fluorescent light emitting material or a phosphorescent light emitting material, and particularly preferably contains a phosphorescent light emitting material.
 また、本発明の有機EL素子においては、陰極と発光層の間である正孔輸送帯域に有機薄膜層を有し、該有機薄膜層の少なくとも1層が本発明の有機EL素子用材料を含むことが好ましい(以下、正孔輸送帯域にあり、本発明の有機EL素子用材料を含む有機薄膜層を有機薄膜層Aという。)。有機薄膜層Aとしては、電子注入層、電子輸送層、正孔阻止層等がある。有機薄膜層Aと発光層は、隣接していることが好ましい。 Moreover, in the organic EL element of this invention, it has an organic thin film layer in the positive hole transport zone between a cathode and a light emitting layer, and at least 1 layer of this organic thin film layer contains the organic EL element material of this invention. It is preferable (hereinafter, an organic thin film layer which is in the hole transport zone and contains the organic EL device material of the present invention is referred to as an organic thin film layer A). Examples of the organic thin film layer A include an electron injection layer, an electron transport layer, and a hole blocking layer. The organic thin film layer A and the light emitting layer are preferably adjacent to each other.
 本発明の有機EL素子は、蛍光又は燐光発光型の単色発光素子であっても、蛍光/燐光ハイブリッド型の白色発光素子であってもよいし、単独の発光ユニットを有するシンプル型であっても、複数の発光ユニットを有するタンデム型であってもよく、中でも、燐光発光型であることが好ましい。ここで、「発光ユニット」とは、一層以上の有機層を含み、そのうちの一層が発光層であり、注入された正孔と電子が再結合することにより発光することができる最小単位をいう。 The organic EL element of the present invention may be a fluorescent or phosphorescent monochromatic light emitting element, a fluorescent / phosphorescent hybrid white light emitting element, or a simple type having a single light emitting unit. A tandem type having a plurality of light emitting units may be used, and among them, a phosphorescent type is preferable. Here, the “light emitting unit” refers to a minimum unit that includes one or more organic layers, one of which is a light emitting layer, and can emit light by recombination of injected holes and electrons.
 従って、シンプル型有機EL素子の代表的な素子構成としては、以下の素子構成を挙げることができる。
(1)陽極/発光ユニット/陰極
 また、上記発光ユニットは、燐光発光層や蛍光発光層を複数有する積層型であってもよく、その場合、各発光層の間に、燐光発光層で生成された励起子が蛍光発光層に拡散することを防ぐ目的で、スペース層を有していてもよい。発光ユニットの代表的な層構成を以下に示す。
(a)正孔輸送層/発光層(/電子輸送層)
(b)正孔輸送層/第一燐光発光層/第二燐光発光層(/電子輸送層)
(c)正孔輸送層/燐光発光層/スペース層/蛍光発光層(/電子輸送層)
(d)正孔輸送層/第一燐光発光層/第二燐光発光層/スペース層/蛍光発光層(/電子輸送層)
(e)正孔輸送層/第一燐光発光層/スペース層/第二燐光発光層/スペース層/蛍光発光層(/電子輸送層)
(f)正孔輸送層/燐光発光層/スペース層/第一蛍光発光層/第二蛍光発光層(/電子輸送層)
(g)正孔輸送層/電子障壁層/発光層(/電子輸送層)
(h)正孔輸送層/発光層/正孔障壁層(/電子輸送層)
(i)正孔輸送層/蛍光発光層/トリプレット障壁層(/電子輸送層)
Accordingly, typical element configurations of simple organic EL elements include the following element configurations.
(1) Anode / light emitting unit / cathode The above light emitting unit may be a laminated type having a plurality of phosphorescent light emitting layers and fluorescent light emitting layers. In that case, the light emitting unit is generated by a phosphorescent light emitting layer between the light emitting layers. In order to prevent the excitons from diffusing into the fluorescent light emitting layer, a space layer may be provided. A typical layer structure of the light emitting unit is shown below.
(A) Hole transport layer / light emitting layer (/ electron transport layer)
(B) Hole transport layer / first phosphorescent light emitting layer / second phosphorescent light emitting layer (/ electron transport layer)
(C) Hole transport layer / phosphorescent layer / space layer / fluorescent layer (/ electron transport layer)
(D) Hole transport layer / first phosphorescent light emitting layer / second phosphorescent light emitting layer / space layer / fluorescent light emitting layer (/ electron transport layer)
(E) Hole transport layer / first phosphorescent light emitting layer / space layer / second phosphorescent light emitting layer / space layer / fluorescent light emitting layer (/ electron transport layer)
(F) Hole transport layer / phosphorescent layer / space layer / first fluorescent layer / second fluorescent layer (/ electron transport layer)
(G) Hole transport layer / electron barrier layer / light emitting layer (/ electron transport layer)
(H) Hole transport layer / light emitting layer / hole barrier layer (/ electron transport layer)
(I) Hole transport layer / fluorescent light emitting layer / triplet barrier layer (/ electron transport layer)
 上記各燐光又は蛍光発光層は、それぞれ互いに異なる発光色を示すものとすることができる。具体的には、上記積層発光層(d)において、正孔輸送層/第一燐光発光層(赤色発光)/第二燐光発光層(緑色発光)/スペース層/蛍光発光層(青色発光)/電子輸送層といった層構成等が挙げられる。
 尚、各発光層と正孔輸送層あるいはスペース層との間には、適宜、電子障壁層を設けてもよい。また、各発光層と電子輸送層との間には、適宜、正孔障壁層を設けてもよい。電子障壁層や正孔障壁層を設けることで、電子又は正孔を発光層内に閉じ込めて、発光層における電荷の再結合確率を高め、寿命を向上させることができる。
Each phosphorescent or fluorescent light-emitting layer may have a different emission color. Specifically, in the laminated light emitting layer (d), hole transport layer / first phosphorescent light emitting layer (red light emitting) / second phosphorescent light emitting layer (green light emitting) / space layer / fluorescent light emitting layer (blue light emitting) / Examples include a layer configuration such as an electron transport layer.
An electron barrier layer may be appropriately provided between each light emitting layer and the hole transport layer or space layer. Further, a hole blocking layer may be appropriately provided between each light emitting layer and the electron transport layer. By providing an electron barrier layer or a hole barrier layer, electrons or holes can be confined in the light emitting layer, the recombination probability of charges in the light emitting layer can be increased, and the lifetime can be improved.
 タンデム型有機EL素子の代表的な素子構成としては、以下の素子構成を挙げることができる。
(2)陽極/第一発光ユニット/中間層/第二発光ユニット/陰極
 ここで、上記第一発光ユニット及び第二発光ユニットとしては、例えば、それぞれ独立に上述の発光ユニットと同様のものを選択することができる。
 上記中間層は、一般的に、中間電極、中間導電層、電荷発生層、電子引抜層、接続層、中間絶縁層とも呼ばれ、第一発光ユニットに電子を、第二発光ユニットに正孔を供給する、公知の材料構成を用いることができる。
The following element structure can be mentioned as a typical element structure of a tandem type organic EL element.
(2) Anode / first light emitting unit / intermediate layer / second light emitting unit / cathode Here, as the first light emitting unit and the second light emitting unit, for example, the same light emitting unit as that described above is selected independently. can do.
The intermediate layer is generally called an intermediate electrode, an intermediate conductive layer, a charge generation layer, an electron extraction layer, a connection layer, or an intermediate insulating layer, and has electrons in the first light emitting unit and holes in the second light emitting unit. A known material structure to be supplied can be used.
 図1は、本発明の有機EL素子の一実施形態の層構成を示す概略図である。
 有機EL素子1は、基板10上に、陽極20、正孔輸送帯域30、発光層40、電子輸送帯域50及び陰極60を、この順で積層した構成を有する。正孔輸送帯域30は、陽極20と発光層40に挟まれた層をいい、例えば正孔輸送層、正孔注入層、電子障壁層等を意味する。同様に、電子輸送帯域50は、陰極60と発光層40に挟まれた層をいい、例えば電子輸送層、電子注入層、正孔障壁層等を意味する。障壁層は、電子や正孔を発光層40に閉じ込めて、発光層40における励起子の生成確率を高めることができる。これらは形成しなくともよいが、好ましくは一層以上形成する。この素子において有機薄膜層は、正孔輸送帯域30に設けられる各有機層、発光層40及び電子輸送帯域50に設けられる各有機層である。これら有機薄膜層のうち、少なくとも一層が本発明の有機EL素子用材料を含有する。本発明の有機EL素子用材料を含有する有機薄膜層一層に対するこの材料の含有量は、好ましくは1~100重量%である。
FIG. 1 is a schematic view showing a layer structure of an embodiment of the organic EL device of the present invention.
The organic EL element 1 has a configuration in which an anode 20, a hole transport zone 30, a light emitting layer 40, an electron transport zone 50, and a cathode 60 are laminated on a substrate 10 in this order. The hole transport zone 30 refers to a layer sandwiched between the anode 20 and the light emitting layer 40 and means, for example, a hole transport layer, a hole injection layer, an electron barrier layer, or the like. Similarly, the electron transport zone 50 refers to a layer sandwiched between the cathode 60 and the light emitting layer 40 and means, for example, an electron transport layer, an electron injection layer, a hole barrier layer, or the like. The barrier layer can confine electrons and holes in the light emitting layer 40 and increase the probability of exciton generation in the light emitting layer 40. These need not be formed, but are preferably formed in one or more layers. In this element, the organic thin film layer is each organic layer provided in the hole transport zone 30, each light emitting layer 40, and each organic layer provided in the electron transport zone 50. Among these organic thin film layers, at least one layer contains the organic EL element material of the present invention. The content of this material with respect to one organic thin film layer containing the organic EL device material of the present invention is preferably 1 to 100% by weight.
 尚、本明細書において、蛍光ドーパントと組み合わされたホストを蛍光ホストと称し、燐光ドーパントと組み合わされたホストを燐光ホストと称する。蛍光ホストと燐光ホストは分子構造のみにより区分されるものではない。即ち、燐光ホストとは、燐光ドーパントを含有する燐光発光層を構成する材料を意味し、蛍光発光層を構成する材料として利用できないことを意味しているわけではない。蛍光ホストについても同様である。 In this specification, a host combined with a fluorescent dopant is referred to as a fluorescent host, and a host combined with a phosphorescent dopant is referred to as a phosphorescent host. The fluorescent host and the phosphorescent host are not distinguished only by the molecular structure. That is, the phosphorescent host means a material constituting a phosphorescent light emitting layer containing a phosphorescent dopant, and does not mean that it cannot be used as a material constituting a fluorescent light emitting layer. The same applies to the fluorescent host.
 本発明の有機EL素子では、上述した本発明の有機EL素子用材料を使用した層以外の構成については、特に限定されず、公知の材料等を使用できる。以下、有機EL素子の構成部材について簡単に説明するが、本発明の有機EL素子に適用される材料は以下に限定されない。 In the organic EL element of the present invention, the configuration other than the layer using the organic EL element material of the present invention described above is not particularly limited, and a known material or the like can be used. Hereinafter, although the structural member of an organic EL element is demonstrated easily, the material applied to the organic EL element of this invention is not limited to the following.
(基板)
 本発明の有機EL素子は、透光性基板上に作製する。透光性基板は有機EL素子を支持する基板であり、400nm~700nmの可視領域の光の透過率が50%以上で平滑な基板が好ましい。具体的には、ガラス板、ポリマー板等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を原料として用いてなるものを挙げられる。またポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を原料として用いてなるものを挙げることができる。
(substrate)
The organic EL element of the present invention is produced on a translucent substrate. The light-transmitting substrate is a substrate that supports the organic EL element, and is preferably a smooth substrate having a light transmittance in the visible region of 400 nm to 700 nm of 50% or more. Specifically, a glass plate, a polymer plate, etc. are mentioned. Examples of the glass plate include those using soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, quartz and the like as raw materials. Examples of the polymer plate include those using polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, polysulfone and the like as raw materials.
(陽極)
 有機EL素子の陽極は、正孔を正孔輸送層又は発光層に注入する役割を担うものであり、4.5eV以上の仕事関数を有するものを用いることが効果的である。陽極材料の具体例としては、酸化インジウム錫合金(ITO)、酸化錫(NESA)、酸化インジウム亜鉛酸化物、金、銀、白金、銅等が挙げられる。陽極はこれらの電極物質を蒸着法やスパッタリング法等の方法で薄膜を形成させることにより作製することができる。発光層からの発光を陽極から取り出す場合、陽極の可視領域の光の透過率を10%より大きくすることが好ましい。また、陽極のシート抵抗は、数百Ω/□以下が好ましい。陽極の膜厚は、材料にもよるが、通常10nm~1μm、好ましくは10nm~200nmの範囲で選択される。
(anode)
The anode of the organic EL element plays a role of injecting holes into the hole transport layer or the light emitting layer, and it is effective to use a material having a work function of 4.5 eV or more. Specific examples of the anode material include indium tin oxide alloy (ITO), tin oxide (NESA), indium zinc oxide, gold, silver, platinum, copper, and the like. The anode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. When light emitted from the light emitting layer is extracted from the anode, it is preferable that the transmittance of light in the visible region of the anode is greater than 10%. The sheet resistance of the anode is preferably several hundred Ω / □ or less. The film thickness of the anode depends on the material, but is usually selected in the range of 10 nm to 1 μm, preferably 10 nm to 200 nm.
(陰極)
 陰極は電子注入層、電子輸送層又は発光層に電子を注入する役割を担うものであり、仕事関数の小さい材料により形成するのが好ましい。陰極材料は特に限定されないが、具体的にはインジウム、アルミニウム、マグネシウム、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、アルミニウム-リチウム合金、アルミニウム-スカンジウム-リチウム合金、マグネシウム-銀合金等が使用できる。陰極も、陽極と同様に、蒸着法やスパッタリング法等の方法で薄膜を形成させることにより作製することができる。また、必要に応じて、陰極側から発光を取り出してもよい。
(cathode)
The cathode plays a role of injecting electrons into the electron injection layer, the electron transport layer or the light emitting layer, and is preferably formed of a material having a small work function. The cathode material is not particularly limited, and specifically, indium, aluminum, magnesium, magnesium-indium alloy, magnesium-aluminum alloy, aluminum-lithium alloy, aluminum-scandium-lithium alloy, magnesium-silver alloy and the like can be used. Similarly to the anode, the cathode can be produced by forming a thin film by a method such as vapor deposition or sputtering. Moreover, you may take out light emission from the cathode side as needed.
(発光層)
 発光機能を有する有機層であって、ドーピングシステムを採用する場合、ホスト材料とドーパント材料を含んでいる。このとき、ホスト材料は、主に電子と正孔の再結合を促し、励起子を発光層内に閉じ込める機能を有し、ドーパント材料は、再結合で得られた励起子を効率的に発光させる機能を有する。
 燐光素子の場合、ホスト材料は主にドーパントで生成された励起子を発光層内に閉じ込める機能を有する。
(Light emitting layer)
An organic layer having a light emitting function, and when a doping system is employed, includes a host material and a dopant material. At this time, the host material mainly has a function of encouraging recombination of electrons and holes and confining excitons in the light emitting layer, and the dopant material efficiently emits excitons obtained by recombination. It has a function.
In the case of a phosphorescent element, the host material mainly has a function of confining excitons generated by the dopant in the light emitting layer.
 ここで、上記発光層は、例えば、電子輸送性のホストと正孔輸送性のホストを組み合わせる等して、発光層内のキャリアバランスを調整するダブルホスト(ホスト・コホストともいう)を採用してもよく、発光層が第1ホスト材料と第2ホスト材料とを含有し、前記第1ホスト材料が本発明の有機EL素子用材料であると好ましい。
 また、量子収率の高いドーパント材料を二種類以上入れることによって、それぞれのドーパントが発光するダブルドーパントを採用してもよい。具体的には、ホスト、赤色ドーパント及び緑色ドーパントを共蒸着することによって、発光層を共通化して黄色発光を実現する態様が挙げられる。
Here, the light emitting layer employs, for example, a double host (also referred to as host / cohost) that adjusts the carrier balance in the light emitting layer by combining an electron transporting host and a hole transporting host. The light emitting layer preferably contains a first host material and a second host material, and the first host material is preferably the organic EL device material of the present invention.
Moreover, you may employ | adopt the double dopant from which each dopant light-emits by putting in 2 or more types of dopant materials with a high quantum yield. Specifically, a mode in which yellow emission is realized by co-evaporating a host, a red dopant, and a green dopant to make the light emitting layer common is used.
 上記発光層は、複数の発光層を積層した積層体とすることで、発光層界面に電子と正孔を蓄積させて、再結合領域を発光層界面に集中させて、量子効率を向上させることができる。
 発光層への正孔の注入し易さと電子の注入し易さは異なっていてもよく、また、発光層中での正孔と電子の移動度で表される正孔輸送能と電子輸送能が異なっていてもよい。
The above light-emitting layer is a laminate in which a plurality of light-emitting layers are stacked, so that electrons and holes are accumulated at the light-emitting layer interface, and the recombination region is concentrated at the light-emitting layer interface to improve quantum efficiency. Can do.
The ease of injecting holes into the light emitting layer may be different from the ease of injecting electrons, and the hole transport ability and electron transport ability expressed by the mobility of holes and electrons in the light emitting layer may be different. May be different.
 発光層は、例えば蒸着法、スピンコート法、LB法(Langmuir Blodgett法)等の公知の方法により形成することができる。また、樹脂等の結着剤と材料化合物とを溶剤に溶かした溶液をスピンコート法等により薄膜化することによっても、発光層を形成することができる。
 発光層は、分子堆積膜であることが好ましい。分子堆積膜とは、気相状態の材料化合物から沈着され形成された薄膜や、溶液状態又は液相状態の材料化合物から固体化され形成された膜のことであり、通常この分子堆積膜は、LB法により形成された薄膜(分子累積膜)とは凝集構造、高次構造の相違や、それに起因する機能的な相違により区分することができる。
The light emitting layer can be formed by a known method such as a vapor deposition method, a spin coating method, or an LB method (Langmuir Broadgett method). The light emitting layer can also be formed by thinning a solution obtained by dissolving a binder such as a resin and a material compound in a solvent by a spin coating method or the like.
The light emitting layer is preferably a molecular deposited film. The molecular deposited film is a thin film formed by deposition from a material compound in a gas phase state or a film formed by solidifying from a material compound in a solution state or a liquid phase state. The thin film (molecular accumulation film) formed by the LB method can be classified by the difference in the aggregation structure and the higher-order structure, and the functional difference resulting therefrom.
 ドーパント材料としては、公知の蛍光型発光を示す蛍光ドーパント又は燐光型発光を示す燐光ドーパントから選ばれる。
 蛍光ドーパントとしては、フルオランテン誘導体、ピレン誘導体、アリールアセチレン誘導体、フルオレン誘導体、硼素錯体、ペリレン誘導体、オキサジアゾール誘導体、アントラセン誘導体、クリセン誘導体等から選ばれる。好ましくは、フルオランテン誘導体、ピレン誘導体、硼素錯体が挙げられる。
The dopant material is selected from known fluorescent dopants exhibiting fluorescent emission or phosphorescent dopants exhibiting phosphorescent emission.
The fluorescent dopant is selected from fluoranthene derivatives, pyrene derivatives, arylacetylene derivatives, fluorene derivatives, boron complexes, perylene derivatives, oxadiazole derivatives, anthracene derivatives, chrysene derivatives, and the like. Preferably, a fluoranthene derivative, a pyrene derivative, and a boron complex are used.
 発光層を形成する燐光ドーパント(燐光発光性材料)は三重項励状態から発光することのできる化合物であり、三重項励状態から発光する限り特に限定されないが、Ir、Pt、Os、Au、Cu、Re及びRuからなる群より選択される少なくとも一つの金属と配位子とを含む有機金属錯体であることが好ましい。前記配位子は、オルトメタル結合を有することが好ましい。燐光量子収率が高く、発光素子の外部量子効率をより向上させることができるという点で、Ir、Os及びPtから選ばれる金属原子を含有する金属錯体が好ましく、イリジウム錯体、オスミウム錯体、白金錯体等の金属錯体、特にオルトメタル化錯体(配位子が、金属原子とオルトメタル結合を有する)がより好ましく、イリジウム錯体及び白金錯体がさらに好ましく、オルトメタル化イリジウム錯体が特に好ましい。 The phosphorescent dopant (phosphorescent material) that forms the light emitting layer is a compound that can emit light from the triplet excited state, and is not particularly limited as long as it emits light from the triplet excited state, but Ir, Pt, Os, Au, Cu An organometallic complex containing at least one metal selected from the group consisting of, Re and Ru and a ligand is preferable. The ligand preferably has an ortho metal bond. A metal complex containing a metal atom selected from Ir, Os and Pt is preferable in that the phosphorescent quantum yield is high and the external quantum efficiency of the light-emitting element can be further improved, and an iridium complex, an osmium complex, or a platinum complex. More preferred are metal complexes such as orthometalated complexes (the ligand has a metal atom and an orthometal bond), more preferred are iridium complexes and platinum complexes, and particularly preferred are orthometalated iridium complexes.
 燐光発光性材料の三重項エネルギーは、1.8eV以上2.9eV未満であることが好ましい。 The triplet energy of the phosphorescent material is preferably 1.8 eV or more and less than 2.9 eV.
 燐光ドーパントの発光層における含有量は特に制限はなく目的に応じて適宜選択することができるが、例えば、0.1~70質量%が好ましく、1~30質量%がより好ましい。燐光ドーパントの含有量が0.1質量%以上であると十分な発光が得られ、70質量%以下であると濃度消光を避けることができる。 The content of the phosphorescent dopant in the light emitting layer is not particularly limited and may be appropriately selected depending on the intended purpose. For example, it is preferably 0.1 to 70% by mass, more preferably 1 to 30% by mass. If the phosphorescent dopant content is 0.1% by mass or more, sufficient light emission can be obtained, and if it is 70% by mass or less, concentration quenching can be avoided.
 燐光ホストは、燐光ドーパントの三重項エネルギーを効率的に発光層内に閉じ込めることにより、燐光ドーパントを効率的に発光させる機能を有する化合物である。本発明の有機EL素子用材料は燐光ホストとして好適である。発光層は、本発明の有機EL素子用材料を1種含有していてもよく、本発明の有機EL素子用材料を2種以上含有していてもよい。 The phosphorescent host is a compound having a function of efficiently emitting the phosphorescent dopant by efficiently confining the triplet energy of the phosphorescent dopant in the light emitting layer. The organic EL device material of the present invention is suitable as a phosphorescent host. The light emitting layer may contain 1 type of organic EL element material of this invention, and may contain 2 or more types of organic EL element material of this invention.
 本発明の有機EL素子において、本発明の有機EL素子用材料以外の化合物も、燐光ホストとして、上記目的に応じて適宜選択することができる。
 本発明の有機EL素子用材料とそれ以外の化合物を同一の発光層内の燐光ホスト材料として併用してもよいし、複数の発光層がある場合には、そのうちの一つの発光層の燐光ホスト材料として本発明の有機EL素子用材料を用い、別の一つの発光層の燐光ホスト材料として本発明の有機EL素子用材料以外の化合物を用いてもよい。また、本発明の有機EL素子用材料は発光層以外の有機層にも使用しうるものであり、その場合には発光層の燐光ホストとして、本発明の有機EL素子用材料以外の化合物を用いてもよい。
In the organic EL device of the present invention, a compound other than the material for the organic EL device of the present invention can be appropriately selected as the phosphorescent host according to the purpose.
The organic EL device material of the present invention and other compounds may be used in combination as a phosphorescent host material in the same light emitting layer, and when there are a plurality of light emitting layers, the phosphorescent host of one of the light emitting layers. The material for an organic EL device of the present invention may be used as a material, and a compound other than the material for an organic EL device of the present invention may be used as a phosphorescent host material for another light emitting layer. Moreover, the organic EL device material of the present invention can be used for organic layers other than the light emitting layer. In that case, a compound other than the organic EL device material of the present invention is used as the phosphorescent host of the light emitting layer. May be.
 本発明の有機EL素子用材料以外の化合物で、燐光ホストとして好適な化合物の具体例としては、カルバゾール誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三アミン化合物、スチリルアミン化合物、芳香族ジメチリデン系化合物、ポルフィリン系化合物、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド誘導体、フルオレニリデンメタン誘導体、ジスチリルピラジン誘導体、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン誘導体、8-キノリノール誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾールを配位子とする金属錯体に代表される各種金属錯体ポリシラン系化合物、ポリ(N-ビニルカルバゾール)誘導体、アニリン系共重合体、チオフェンオリゴマー、ポリチオフェン等の導電性高分子オリゴマー、ポリチオフェン誘導体、ポリフェニレン誘導体、ポリフェニレンビニレン誘導体、ポリフルオレン誘導体等の高分子化合物等が挙げられる。燐光ホストは単独で使用してもよいし、2種以上を併用してもよい。具体例としては、以下のような化合物が挙げられる。 Specific examples of compounds other than the organic EL device material of the present invention and suitable as a phosphorescent host include carbazole derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, Pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, aromatic dimethylidene compounds, porphyrins Compounds, anthraquinodimethane derivatives, anthrone derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimide derivatives, fluorenylidene derivatives And metal complexes of heterocyclic tetracarboxylic anhydrides, phthalocyanine derivatives, 8-quinolinol derivatives, metal phthalocyanines, benzoxazoles and benzothiazoles as ligands Various metal complexes such as polysilane compounds, poly (N-vinylcarbazole) derivatives, aniline copolymers, thiophene oligomers, conductive polymer oligomers such as polythiophene, polythiophene derivatives, polyphenylene derivatives, polyphenylene vinylene derivatives, polyfluorene derivatives, etc. Examples thereof include polymer compounds. A phosphorescent host may be used independently and may use 2 or more types together. Specific examples include the following compounds.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 発光層が、第1ホスト材料と第2ホスト材料とを含有する場合、第1ホスト材料として本発明の有機EL素子用材料を用い、第2ホスト材料として本発明の有機EL素子用材料以外の化合物を用いてもよい。尚、本発明における「第1ホスト材料」及び「第2ホスト材料」という用語は、発光層に含有されている複数のホスト材料が、互いに構造が異なるという意味であり、発光層中の各ホスト材料の含有量で規定されるものではない。
 前記第2ホスト材料としては、特に限定されず、本発明の有機EL素子用材料以外の化合物であり、かつ燐光ホストとして好適な化合物として前記した化合物と同じものが挙げられる。第2ホスト材料としては、シアノ基を有さない化合物が好ましい。また、第2ホストとしては、カルバゾール誘導体、アリールアミン誘導体、フルオレノン誘導体、芳香族第三アミン化合物が好ましい。
When the light emitting layer contains the first host material and the second host material, the organic EL element material of the present invention is used as the first host material, and the organic EL element material other than the organic EL element material of the present invention is used as the second host material. A compound may be used. In the present invention, the terms “first host material” and “second host material” mean that the plurality of host materials contained in the light emitting layer have different structures from each other. It is not specified by the material content.
It does not specifically limit as said 2nd host material, It is a compound other than the organic EL element material of this invention, and the same thing as the above-mentioned compound as a compound suitable as a phosphorescent host is mentioned. As the second host material, a compound having no cyano group is preferable. The second host is preferably a carbazole derivative, arylamine derivative, fluorenone derivative, or aromatic tertiary amine compound.
 発光層の膜厚は、好ましくは5~50nm、より好ましくは7~50nm、さらに好ましくは10~50nmである。5nm以上であると発光層の形成が容易であり、50nm以下であると駆動電圧の上昇が避けられる。 The thickness of the light emitting layer is preferably 5 to 50 nm, more preferably 7 to 50 nm, and still more preferably 10 to 50 nm. When the thickness is 5 nm or more, it is easy to form a light emitting layer, and when the thickness is 50 nm or less, an increase in driving voltage can be avoided.
(電子輸送層)
 電子輸送層は、発光層と陰極との間に形成される有機層であって、電子を陰極から発光層へ輸送する機能を有する。電子輸送層が複数層で構成される場合、陰極に近い有機層を電子注入層と定義することがある。電子注入層は、陰極から電子を効率的に有機層ユニットに注入する機能を有する。
(Electron transport layer)
The electron transport layer is an organic layer formed between the light emitting layer and the cathode, and has a function of transporting electrons from the cathode to the light emitting layer. When the electron transport layer is composed of a plurality of layers, an organic layer close to the cathode may be defined as an electron injection layer. The electron injection layer has a function of efficiently injecting electrons from the cathode into the organic layer unit.
 電子輸送層に用いる電子輸送性材料としては、分子内にヘテロ原子を1個以上含有する芳香族ヘテロ環化合物が好ましく用いられ、特に含窒素環誘導体が好ましい。また、含窒素環誘導体としては、含窒素6員環もしくは5員環骨格を有する芳香族環、又は含窒素6員環もしくは5員環骨格を有する縮合芳香族環化合物が好ましい。 As the electron transporting material used for the electron transporting layer, an aromatic heterocyclic compound containing one or more heteroatoms in the molecule is preferably used, and a nitrogen-containing ring derivative is particularly preferable. The nitrogen-containing ring derivative is preferably an aromatic ring having a nitrogen-containing 6-membered ring or 5-membered ring skeleton, or a condensed aromatic ring compound having a nitrogen-containing 6-membered ring or 5-membered ring skeleton.
 本発明の有機EL素子の電子輸送層は、下記式(E)~(G)で表される含窒素複素環誘導体を少なくとも1種含むことが特に好ましい。
Figure JPOXMLDOC01-appb-C000018
The electron transport layer of the organic EL device of the present invention particularly preferably contains at least one nitrogen-containing heterocyclic derivative represented by the following formulas (E) to (G).
Figure JPOXMLDOC01-appb-C000018
(式(E)~式(G)中、Z、Z及びZは、それぞれ独立に、窒素原子又は炭素原子である。
 R及びRは、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50のヘテロアリール基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数1~20のハロアルキル基又は置換もしくは無置換の炭素数1~20のアルコキシ基である。
(In the formulas (E) to (G), Z 1 , Z 2 and Z 3 are each independently a nitrogen atom or a carbon atom.
R 1 and R 2 are each independently a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, a substituted or unsubstituted heteroaryl group having 5 to 50 ring atoms, substituted or unsubstituted carbon An alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted haloalkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms.
 nは、0~5の整数であり、nが2以上の整数であるとき、複数のRは互いに同一でも異なっていてもよい。また、隣接する2つのR同士が互いに結合して、置換もしくは無置換の炭化水素環を形成していてもよい。
 Arは、置換もしくは無置換の環形成炭素数6~50のアリール基又は置換もしくは無置換の環形成原子数5~50のヘテロアリール基である。
 Arは、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の環形成炭素数6~50のアリール基又は置換もしくは無置換の環形成原子数5~50のヘテロアリール基である。
n is an integer of 0 to 5, and when n is an integer of 2 or more, the plurality of R 1 may be the same or different from each other. Further, two adjacent R 1 may be bonded to each other to form a substituted or unsubstituted hydrocarbon ring.
Ar 1 is a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms or a substituted or unsubstituted heteroaryl group having 5 to 50 ring atoms.
Ar 2 is a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted haloalkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, substituted Alternatively, it is an unsubstituted aryl group having 6 to 50 ring carbon atoms or a substituted or unsubstituted heteroaryl group having 5 to 50 ring atoms.
 但し、Ar、Arのいずれか一方は、置換もしくは無置換の環形成炭素数10~50の縮合芳香族炭化水素環基又は置換もしくは無置換の環形成原子数9~50の縮合芳香族複素環基である。
 Arは、置換もしくは無置換の環形成炭素数6~50のアリーレン基又は置換もしくは無置換の環形成原子数5~50のヘテロアリーレン基である。
 L、L及びLは、それぞれ独立に、単結合、置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は置換もしくは無置換の環形成原子数9~50の2価の縮合芳香族複素環基である。)
However, either Ar 1 or Ar 2 is a substituted or unsubstituted condensed aromatic hydrocarbon ring group having 10 to 50 ring carbon atoms or a substituted or unsubstituted condensed aromatic group having 9 to 50 ring atoms. It is a heterocyclic group.
Ar 3 is a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms or a substituted or unsubstituted heteroarylene group having 5 to 50 ring atoms.
L 1 , L 2 and L 3 are each independently a single bond, a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted divalent ring having 9 to 50 ring atoms. A condensed aromatic heterocyclic group. )
 環形成炭素数6~50のアリール基としては、フェニル基、ナフチル基、アントリル基、フェナントリル基、ナフタセニル基、クリセニル基、ピレニル基、ビフェニリル基、ターフェニリル基、トリル基、フルオランテニル基、フルオレニル基等が挙げられる。
 環形成原子数5~50のヘテロアリール基としては、ピローリル基、フリル基、チエニル基、シローリル基、ピリジル基、キノリル基、イソキノリル基、べンゾフリル基、イミダゾリル基、ピリミジル基、カルバゾリル基、セレノフェニル基、オキサジアゾリル基、トリアゾーリル基、ピラジニル基、ピリダジニル基、トリアジニル基、キノキサリニル基、アクリジニル基、イミダゾ[1,2-a]ピリジニル基、イミダゾ[1,2-a]ピリミジニル基等が挙げられる。
Examples of the aryl group having 6 to 50 ring carbon atoms include phenyl group, naphthyl group, anthryl group, phenanthryl group, naphthacenyl group, chrysenyl group, pyrenyl group, biphenylyl group, terphenylyl group, tolyl group, fluoranthenyl group, fluorenyl group Etc.
Examples of heteroaryl groups having 5 to 50 ring atoms include pyrrolyl, furyl, thienyl, silolyl, pyridyl, quinolyl, isoquinolyl, benzofuryl, imidazolyl, pyrimidyl, carbazolyl, selenophenyl Group, oxadiazolyl group, triazolyl group, pyrazinyl group, pyridazinyl group, triazinyl group, quinoxalinyl group, acridinyl group, imidazo [1,2-a] pyridinyl group, imidazo [1,2-a] pyrimidinyl group and the like.
 炭素数1~20のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、へキシル基等が挙げられる。
 炭素数1~20のハロアルキル基としては、前記アルキル基の1又は2以上の水素原子をフッ素、塩素、ヨウ素及び臭素から選ばれる少なくとも1のハロゲン原子で置換して得られる基が挙げられる。
 炭素数1~20のアルコキシ基としては、前記アルキル基をアルキル部位としては有する基が挙げられる。
 環形成炭素数6~50のアリーレン基としては、前記アリール基から水素原子1個を除去して得られる基が挙げられる。
 環形成原子数9~50の2価の縮合芳香族複素環基としては、前記ヘテロアリール基として記載した縮合芳香族複素環基から水素原子1個を除去して得られる基が挙げられる。
Examples of the alkyl group having 1 to 20 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group.
Examples of the haloalkyl group having 1 to 20 carbon atoms include groups obtained by substituting one or more hydrogen atoms of the alkyl group with at least one halogen atom selected from fluorine, chlorine, iodine and bromine.
Examples of the alkoxy group having 1 to 20 carbon atoms include groups having the above alkyl group as an alkyl moiety.
Examples of the arylene group having 6 to 50 ring carbon atoms include groups obtained by removing one hydrogen atom from the aryl group.
Examples of the divalent condensed aromatic heterocyclic group having 9 to 50 ring atoms include groups obtained by removing one hydrogen atom from the condensed aromatic heterocyclic group described as the heteroaryl group.
 電子輸送層の膜厚は、特に限定されないが、好ましくは1nm~100nmである。
 また、電子輸送層に隣接して設けることができる電子注入層の構成成分として、含窒素環誘導体の他に無機化合物として、絶縁体又は半導体を使用することが好ましい。電子注入層が絶縁体や半導体で構成されていれば、電流のリークを有効に防止して、電子注入性を向上させることができる。
The thickness of the electron transport layer is not particularly limited, but is preferably 1 nm to 100 nm.
Moreover, it is preferable to use an insulator or a semiconductor as an inorganic compound in addition to the nitrogen-containing ring derivative as a component of the electron injection layer that can be provided adjacent to the electron transport layer. If the electron injection layer is made of an insulator or a semiconductor, current leakage can be effectively prevented and the electron injection property can be improved.
(正孔輸送層)
 発光層と陽極との間に形成される有機層であって、正孔を陽極から発光層へ輸送する機能を有する。正孔輸送層が複数層で構成される場合、陽極に近い有機層を正孔注入層と定義することがある。正孔注入層は、陽極から正孔を効率的に有機層ユニットに注入する機能を有する。
(Hole transport layer)
An organic layer formed between the light emitting layer and the anode, and has a function of transporting holes from the anode to the light emitting layer. When the hole transport layer is composed of a plurality of layers, an organic layer close to the anode may be defined as a hole injection layer. The hole injection layer has a function of efficiently injecting holes from the anode into the organic layer unit.
 正孔輸送層を形成する他の材料としては、芳香族アミン化合物、例えば、下記式(H)で表される芳香族アミン誘導体が好適に用いられる。
Figure JPOXMLDOC01-appb-C000019
As another material for forming the hole transport layer, an aromatic amine compound, for example, an aromatic amine derivative represented by the following formula (H) is preferably used.
Figure JPOXMLDOC01-appb-C000019
 前記式(H)において、Ar~Arは置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素基又は縮合芳香族炭化水素基、置換もしくは無置換の環形成原子数5~50の芳香族複素環基又は縮合芳香族複素環基、又は、それら芳香族炭化水素基又は縮合芳香族炭化水素基と芳香族複素環基又は縮合芳香族複素環基が結合した基を表す。
 また、前記式(H)において、Lは置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素基又は縮合芳香族炭化水素基、又は置換もしくは無置換の環形成原子数5~50の芳香族複素環基又は縮合芳香族複素環基を表す。
In the formula (H), Ar 1 ~ Ar 4 is a substituted or an aromatic hydrocarbon group or fused aromatic hydrocarbon group unsubstituted ring carbon atoms 6 to 50, a substituted or unsubstituted ring atoms of 5 to 50 aromatic heterocyclic groups or condensed aromatic heterocyclic groups, or a group in which these aromatic hydrocarbon groups or condensed aromatic hydrocarbon groups and aromatic heterocyclic groups or condensed aromatic heterocyclic groups are bonded.
In the formula (H), L represents a substituted or unsubstituted aromatic hydrocarbon group or condensed aromatic hydrocarbon group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted ring forming atom number of 5 to 50. Represents an aromatic heterocyclic group or a condensed aromatic heterocyclic group.
 式(H)の化合物の具体例を以下に記す。
Figure JPOXMLDOC01-appb-C000020
Specific examples of the compound of formula (H) are shown below.
Figure JPOXMLDOC01-appb-C000020
また、下記式(J)の芳香族アミンも正孔輸送層の形成に好適に用いられる。
Figure JPOXMLDOC01-appb-C000021
An aromatic amine represented by the following formula (J) is also preferably used for forming the hole transport layer.
Figure JPOXMLDOC01-appb-C000021
 前記式(J)において、Ar~Arの定義は前記式(H)のAr~Arの定義と同様である。以下に式(J)の化合物の具体例を記すがこれらに限定されるものではない。 In the formula (J), the definitions of Ar 1 to Ar 3 are the same as the definitions of Ar 1 to Ar 4 in the formula (H). Specific examples of the compound of formula (J) are shown below, but are not limited thereto.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 本発明の有機EL素子の正孔輸送層は第1正孔輸送層(陽極側)と第2正孔輸送層(陰極側)の2層構造にしてもよい。
 正孔輸送層の膜厚は特に限定されないが、10~200nmであるのが好ましい。
The hole transport layer of the organic EL device of the present invention may have a two-layer structure of a first hole transport layer (anode side) and a second hole transport layer (cathode side).
The thickness of the hole transport layer is not particularly limited, but is preferably 10 to 200 nm.
 本発明の有機EL素子では、正孔輸送層又は第1正孔輸送層の陽極側にアクセプター材料を含有する層を接合してもよい。これにより駆動電圧の低下及び製造コストの低減が期待される。
 前記アクセプター材料としては下記式(K)で表される化合物が好ましい。
In the organic EL device of the present invention, a layer containing an acceptor material may be bonded to the anode side of the hole transport layer or the first hole transport layer. This is expected to reduce drive voltage and manufacturing costs.
As the acceptor material, a compound represented by the following formula (K) is preferable.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
(上記式(K)中、R21~R26は互いに同一でも異なっていてもよく、それぞれ独立にシアノ基、-CONH、カルボキシル基、又は-COOR27(R27は炭素数1~20のアルキル基又は炭素数3~20のシクロアルキル基を表す)を表す。ただし、R21及びR22、R23及びR24、並びにR25及びR26の1又は2以上の対が一緒になって-CO-O-CO-で示される基を形成してもよい。)
 R27としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。
 アクセプター材料を含有する層の膜厚は特に限定されないが、5~20nmであるのが好ましい。
(In the formula (K), R 21 to R 26 may be the same as or different from each other, and each independently represents a cyano group, —CONH 2 , a carboxyl group, or —COOR 27 (R 27 is a group having 1 to 20 carbon atoms) Represents an alkyl group or a cycloalkyl group having 3 to 20 carbon atoms, provided that one or more pairs of R 21 and R 22 , R 23 and R 24 , and R 25 and R 26 are combined together. A group represented by —CO—O—CO— may be formed.)
Examples of R 27 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, a cyclopentyl group, and a cyclohexyl group.
The thickness of the layer containing the acceptor material is not particularly limited, but is preferably 5 to 20 nm.
(n/pドーピング)
 上述の正孔輸送層や電子輸送層においては、特許第3695714号明細書に記載されているように、ドナー性材料のドーピング(n)やアクセプター性材料のドーピング(p)により、キャリア注入能を調整することができる。
 nドーピングの代表例としては、電子輸送材料にLiやCs等の金属をドーピングする方法が挙げられ、pドーピングの代表例としては、正孔輸送材料にFTCNQ(2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane)等のアクセプター材料をドーピングする方法が挙げられる。
(N / p doping)
In the hole transport layer and the electron transport layer described above, as described in Japanese Patent No. 3695714, the carrier injection ability is improved by doping the donor material (n) and acceptor material (p). Can be adjusted.
A typical example of n doping is a method of doping a metal such as Li or Cs into an electron transport material, and a typical example of p doping is F 4 TCNQ (2, 3, 5, 6) as a hole transport material. -Tetrafluor-7,7,8,8-tetracyanoquinodimethane) and the like.
(スペース層)
 上記スペース層とは、例えば、蛍光発光層と燐光発光層とを積層する場合に、燐光発光層で生成する励起子を蛍光発光層に拡散させない、あるいは、キャリアバランスを調整する目的で、蛍光発光層と燐光発光層との間に設けられる層である。また、スペース層は、複数の燐光発光層の間に設けることもできる。
 スペース層は発光層間に設けられるため、電子輸送性と正孔輸送性を兼ね備える材料であることが好ましい。また、隣接する燐光発光層内の三重項エネルギーの拡散を防ぐため、三重項エネルギーが2.6eV以上であることが好ましい。スペース層に用いられる材料としては、上述の正孔輸送層に用いられるものと同様のものが挙げられる。
(Space layer)
For example, when the fluorescent layer and the phosphorescent layer are laminated, the space layer is a fluorescent layer for the purpose of adjusting the carrier balance so that excitons generated in the phosphorescent layer are not diffused into the fluorescent layer. It is a layer provided between the layer and the phosphorescent light emitting layer. In addition, the space layer can be provided between the plurality of phosphorescent light emitting layers.
Since the space layer is provided between the light emitting layers, a material having both electron transport properties and hole transport properties is preferable. In order to prevent diffusion of triplet energy in the adjacent phosphorescent light emitting layer, the triplet energy is preferably 2.6 eV or more. Examples of the material used for the space layer include the same materials as those used for the above-described hole transport layer.
(障壁層)
 本発明の有機EL素子は、発光層に隣接する部分に、電子障壁層、正孔障壁層、トリプレット障壁層といった障壁層を有することが好ましい。ここで、電子障壁層とは、発光層から正孔輸送層へ電子が漏れることを防ぐ層であり、正孔障壁層とは、発光層から電子輸送層へ正孔が漏れることを防ぐ層である。
 トリプレット障壁層は、発光層で生成する三重項励起子が、周辺の層へ拡散することを防止し、三重項励起子を発光層内に閉じ込めることによって三重項励起子の発光ドーパント以外の電子輸送層の分子上でのエネルギー失活を抑制する機能を有する。
(Barrier layer)
The organic EL device of the present invention preferably has a barrier layer such as an electron barrier layer, a hole barrier layer, or a triplet barrier layer in a portion adjacent to the light emitting layer. Here, the electron barrier layer is a layer that prevents electrons from leaking from the light emitting layer to the hole transport layer, and the hole barrier layer is a layer that prevents holes from leaking from the light emitting layer to the electron transport layer. is there.
The triplet barrier layer prevents the triplet excitons generated in the light emitting layer from diffusing into the surrounding layers, and confins the triplet excitons in the light emitting layer, thereby transporting electrons other than the light emitting dopant of the triplet excitons. It has a function of suppressing energy deactivation on the molecules of the layer.
 トリプレット障壁層を設ける場合、燐光素子においては、発光層中の燐光発光性ドーパントの三重項エネルギーをE 、トリプレット障壁層として用いる化合物の三重項エネルギーをE TBとすると、E <E TBのエネルギー大小関係であれば、エネルギー関係上、燐光発光性ドーパントの三重項励起子が閉じ込められ(他分子へ移動できなくなり)、該ドーパント上で発光する以外のエネルギー失活経路が断たれ、高効率に発光することができると推測される。ただし、E <E TBの関係が成り立つ場合であってもこのエネルギー差ΔE=E TB-E が小さい場合には、実際の素子駆動環境である室温程度の環境下では、周辺の熱エネルギーにより吸熱的にこのエネルギー差ΔEを乗り越えて三重項励起子が他分子へ移動することが可能であると考えられる。特に燐光発光の場合は蛍光発光に比べて励起子寿命が長いため、相対的に吸熱的励起子移動過程の影響が現れやすくなる。室温の熱エネルギーに対してこのエネルギー差ΔEは大きい程好ましく、0.1eV以上であるとさらに好ましく、0.2eV以上であると特に好ましい。一方、蛍光素子においては、国際公開WO2010/134350A1に記載するTTF素子構成のトリプレット障壁層として、本発明の有機EL素子用材料を用いることもできる。 When providing the triplet barrier layer, the phosphorescent devices, triplet energy E T d of the phosphorescent dopant in the light emitting layer and the triplet energy of the compound used as a triplet barrier layer and E T TB, E T d < If the energy magnitude relationship of E T TB is satisfied, the triplet exciton of the phosphorescent dopant is confined (cannot move to other molecules) and the energy deactivation path other than light emission on the dopant is interrupted. It is assumed that light can be emitted with high efficiency. However, even if the relationship of E T d <E T TB is satisfied, if this energy difference ΔE T = E T TB −E T d is small, under the environment of room temperature, which is the actual element driving environment, , endothermically triplet excitons overcame this energy difference Delta] E T by thermal energy near is considered to be possible to move to another molecule. In particular, in the case of phosphorescence emission, the exciton lifetime is longer than that of fluorescence emission, so that the influence of the endothermic exciton transfer process is likely to appear. The energy difference ΔE T is preferably as large as possible relative to the thermal energy at room temperature, more preferably 0.1 eV or more, and particularly preferably 0.2 eV or more. On the other hand, in the fluorescent element, the organic EL element material of the present invention can be used as a triplet barrier layer having a TTF element structure described in International Publication WO2010 / 134350A1.
 また、トリプレット障壁層を構成する材料の電子移動度は、電界強度0.04~0.5MV/cmの範囲において、10-6cm/Vs以上であることが望ましい。有機材料の電子移動度の測定方法としては、Time of Flight法等幾つかの方法が知られているが、ここではインピーダンス分光法で決定される電子移動度をいう。
 電子注入層は、電界強度0.04~0.5MV/cmの範囲において、10-6cm/Vs以上であることが望ましい。これにより陰極からの電子輸送層への電子注入が促進され、ひいては隣接する障壁層、発光層への電子注入も促進し、より低電圧での駆動を可能にするためである。
In addition, the electron mobility of the material constituting the triplet barrier layer is desirably 10 −6 cm 2 / Vs or more in the range of electric field strength of 0.04 to 0.5 MV / cm. As a method for measuring the electron mobility of an organic material, several methods such as the Time of Flight method are known. Here, the electron mobility is determined by impedance spectroscopy.
The electron injection layer is desirably 10 −6 cm 2 / Vs or more in the range of electric field strength of 0.04 to 0.5 MV / cm. This facilitates the injection of electrons from the cathode into the electron transport layer, and also promotes the injection of electrons into the adjacent barrier layer and the light emitting layer, thereby enabling driving at a lower voltage.
 本発明の有機EL素子は、陰極と有機薄膜層との界面領域に電子供与性ドーパント及び有機金属錯体の少なくともいずれかを添加してあることが好ましい。このような構成によれば、有機EL素子における発光輝度の向上や長寿命化が図られる。
 電子供与性ドーパントとしては、アルカリ金属、アルカリ金属化合物、アルカリ土類金属、アルカリ土類金属化合物、希土類金属、及び希土類金属化合物等から選ばれた少なくとも一種類が挙げられる。
 有機金属錯体としては、アルカリ金属を含む有機金属錯体、アルカリ土類金属を含む有機金属錯体、及び希土類金属を含む有機金属錯体等から選ばれた少なくとも一種類が挙げられる。
In the organic EL device of the present invention, it is preferable that at least one of an electron donating dopant and an organometallic complex is added to the interface region between the cathode and the organic thin film layer. According to such a configuration, it is possible to improve the light emission luminance and extend the life of the organic EL element.
Examples of the electron donating dopant include at least one selected from alkali metals, alkali metal compounds, alkaline earth metals, alkaline earth metal compounds, rare earth metals, rare earth metal compounds, and the like.
Examples of the organometallic complex include at least one selected from an organometallic complex containing an alkali metal, an organometallic complex containing an alkaline earth metal, an organometallic complex containing a rare earth metal, and the like.
 アルカリ金属としては、リチウム(Li)(仕事関数:2.93eV)、ナトリウム(Na)(仕事関数:2.36eV)、カリウム(K)(仕事関数:2.28eV)、ルビジウム(Rb)(仕事関数:2.16eV)、セシウム(Cs)(仕事関数:1.95eV)等が挙げられ、仕事関数が2.9eV以下のものが特に好ましい。これらのうち好ましくはK、Rb、Cs、さらに好ましくはRb又はCsであり、最も好ましくはCsである。
 アルカリ土類金属としては、カルシウム(Ca)(仕事関数:2.9eV)、ストロンチウム(Sr)(仕事関数:2.0eV以上2.5eV以下)、バリウム(Ba)(仕事関数:2.52eV)等が挙げられ、仕事関数が2.9eV以下のものが特に好ましい。
 希土類金属としては、スカンジウム(Sc)、イットリウム(Y)、セリウム(Ce)、テルビウム(Tb)、イッテルビウム(Yb)等が挙げられ、仕事関数が2.9eV以下のものが特に好ましい。
 以上の金属のうち好ましい金属は、特に還元能力が高く、電子注入域への比較的少量の添加により、有機EL素子における発光輝度の向上や長寿命化が可能である。
Examples of the alkali metal include lithium (Li) (work function: 2.93 eV), sodium (Na) (work function: 2.36 eV), potassium (K) (work function: 2.28 eV), rubidium (Rb) (work Function: 2.16 eV), cesium (Cs) (work function: 1.95 eV) and the like, and those having a work function of 2.9 eV or less are particularly preferable. Of these, K, Rb, and Cs are preferred, Rb and Cs are more preferred, and Cs is most preferred.
Examples of the alkaline earth metal include calcium (Ca) (work function: 2.9 eV), strontium (Sr) (work function: 2.0 eV to 2.5 eV), barium (Ba) (work function: 2.52 eV). A work function of 2.9 eV or less is particularly preferable.
Examples of the rare earth metal include scandium (Sc), yttrium (Y), cerium (Ce), terbium (Tb), ytterbium (Yb) and the like, and those having a work function of 2.9 eV or less are particularly preferable.
Among the above metals, preferred metals are particularly high in reducing ability, and by adding a relatively small amount to the electron injection region, it is possible to improve the light emission luminance and extend the life of the organic EL element.
 アルカリ金属化合物としては、酸化リチウム(LiO)、酸化セシウム(CsO)、酸化カリウム(K2O)等のアルカリ酸化物、フッ化リチウム(LiF)、フッ化ナトリウム(NaF)、フッ化セシウム(CsF)、フッ化カリウム(KF)等のアルカリハロゲン化物等が挙げられ、フッ化リチウム(LiF)、酸化リチウム(LiO)、フッ化ナトリウム(NaF)が好ましい。
 アルカリ土類金属化合物としては、酸化バリウム(BaO)、酸化ストロンチウム(SrO)、酸化カルシウム(CaO)及びこれらを混合したストロンチウム酸バリウム(BaxSr1-xO)(0<x<1)、カルシウム酸バリウム(BaxCa1-xO)(0<x<1)等が挙げられ、BaO、SrO、CaOが好ましい。
 希土類金属化合物としては、フッ化イッテルビウム(YbF)、フッ化スカンジウム(ScF)、酸化スカンジウム(ScO)、酸化イットリウム(Y)、酸化セリウム(Ce)、フッ化ガドリニウム(GdF)、フッ化テルビウム(TbF)等が挙げられ、YbF、ScF、TbFが好ましい。
Examples of the alkali metal compound include lithium oxide (Li 2 O), cesium oxide (Cs 2 O), alkali oxides such as potassium oxide (K 2 O), lithium fluoride (LiF), sodium fluoride (NaF), fluorine. Examples thereof include alkali halides such as cesium fluoride (CsF) and potassium fluoride (KF), and lithium fluoride (LiF), lithium oxide (Li 2 O), and sodium fluoride (NaF) are preferable.
Examples of the alkaline earth metal compound include barium oxide (BaO), strontium oxide (SrO), calcium oxide (CaO), and barium strontium oxide (Ba x Sr 1-x O) (0 <x <1), Examples thereof include barium calcium oxide (Ba x Ca 1-x O) (0 <x <1), and BaO, SrO, and CaO are preferable.
The rare earth metal compound, ytterbium fluoride (YbF 3), scandium fluoride (ScF 3), scandium oxide (ScO 3), yttrium oxide (Y 2 O 3), cerium oxide (Ce 2 O 3), gadolinium fluoride (GdF 3), include such terbium fluoride (TbF 3) is, YbF 3, ScF 3, TbF 3 are preferable.
 有機金属錯体としては、上記の通り、それぞれ金属イオンとしてアルカリ金属イオン、アルカリ土類金属イオン、希土類金属イオンの少なくとも一つ含有するものであれば特に限定はない。また、配位子にはキノリノール、ベンゾキノリノール、アクリジノール、フェナントリジノール、ヒドロキシフェニルオキサゾール、ヒドロキシフェニルチアゾール、ヒドロキシジアリールオキサジアゾール、ヒドロキシジアリールチアジアゾール、ヒドロキシフェニルピリジン、ヒドロキシフェニルベンゾイミダゾール、ヒドロキシベンゾトリアゾール、ヒドロキシフルボラン、ビピリジル、フェナントロリン、フタロシアニン、ポルフィリン、シクロペンタジエン、β-ジケトン類、アゾメチン類、及びそれらの誘導体等が好ましいが、これらに限定されるものではない。 The organometallic complex is not particularly limited as long as it contains at least one of an alkali metal ion, an alkaline earth metal ion, and a rare earth metal ion as a metal ion as described above. The ligands include quinolinol, benzoquinolinol, acridinol, phenanthridinol, hydroxyphenyl oxazole, hydroxyphenyl thiazole, hydroxydiaryl thiadiazole, hydroxydiaryl thiadiazole, hydroxyphenylpyridine, hydroxyphenylbenzimidazole, hydroxybenzotriazole, Hydroxyfulborane, bipyridyl, phenanthroline, phthalocyanine, porphyrin, cyclopentadiene, β-diketones, azomethines, and derivatives thereof are preferred, but are not limited thereto.
 電子供与性ドーパント及び有機金属錯体の添加形態としては、界面領域に層状又は島状に形成することが好ましい。形成方法としては、抵抗加熱蒸着法により電子供与性ドーパント及び有機金属錯体の少なくともいずれかを蒸着しながら、界面領域を形成する発光材料や電子注入材料である有機物を同時に蒸着させ、有機物中に電子供与性ドーパント及び有機金属錯体還元ドーパントの少なくともいずれかを分散する方法が好ましい。分散濃度は通常、モル比で有機物:電子供与性ドーパント及び/又は有機金属錯体=100:1~1:100であり、好ましくは5:1~1:5である。 As the addition form of the electron donating dopant and the organometallic complex, it is preferable to form a layer or an island in the interface region. As a forming method, while depositing at least one of an electron donating dopant and an organometallic complex by a resistance heating vapor deposition method, an organic material as a light emitting material or an electron injection material for forming an interface region is simultaneously deposited, and an electron is deposited in the organic material. A method of dispersing at least one of a donor dopant and an organometallic complex reducing dopant is preferable. The dispersion concentration is usually organic substance: electron donating dopant and / or organometallic complex in a molar ratio of 100: 1 to 1: 100, preferably 5: 1 to 1: 5.
 電子供与性ドーパント及び有機金属錯体の少なくともいずれかを層状に形成する場合は、界面の有機層である発光材料や電子注入材料を層状に形成した後に、電子供与性ドーパント及び有機金属錯体の少なくともいずれかを単独で抵抗加熱蒸着法により蒸着し、好ましくは層の厚み0.1nm以上15nm以下で形成する。 In the case where at least one of the electron donating dopant and the organometallic complex is formed in a layered form, after forming the light emitting material or the electron injecting material that is the organic layer at the interface in a layered form, at least one of the electron donating dopant and the organometallic complex is formed. These are vapor-deposited by a resistance heating vapor deposition method alone, preferably with a layer thickness of 0.1 nm to 15 nm.
 電子供与性ドーパント及び有機金属錯体の少なくともいずれかを島状に形成する場合は、界面の有機層である発光材料や電子注入材料を島状に形成した後に、電子供与性ドーパント及び有機金属錯体の少なくともいずれかを単独で抵抗加熱蒸着法により蒸着し、好ましくは島の厚み0.05nm以上1nm以下で形成する。 In the case where at least one of an electron donating dopant and an organometallic complex is formed in an island shape, a light emitting material or an electron injecting material which is an organic layer at the interface is formed in an island shape, and then the electron donating dopant and the organometallic complex are formed. At least one of them is vapor-deposited by a resistance heating vapor deposition method, preferably with an island thickness of 0.05 nm to 1 nm.
 また、本発明の有機EL素子における、主成分(発光材料又は電子注入材料)と、電子供与性ドーパント及び有機金属錯体の少なくともいずれかの割合としては、モル比で、主成分:電子供与性ドーパント及び/又は有機金属錯体=5:1~1:5であると好ましく、2:1~1:2であるとさらに好ましい。 In the organic EL device of the present invention, the ratio of at least one of the main component (light-emitting material or electron injection material), the electron-donating dopant, and the organometallic complex is, as a molar ratio, the main component: the electron-donating dopant. And / or organometallic complex = 5: 1 to 1: 5, preferably 2: 1 to 1: 2.
 本発明の有機EL素子の各層の形成は、真空蒸着、スパッタリング、プラズマ、イオンプレーティング等の乾式成膜法やスピンコーティング、ディッピング、フローコーティング等の湿式成膜法等の公知の方法を適用することができる。
 各層の膜厚は特に限定されるものではないが、適切な膜厚に設定する必要がある。膜厚が厚すぎると、一定の光出力を得るために大きな印加電圧が必要になり効率が悪くなる。膜厚が薄すぎるとピンホール等が発生して、電界を印加しても充分な発光輝度が得られない。通常の膜厚は5nm~10μmの範囲が適しているが、10nm~0.2μmの範囲がさらに好ましい。
For the formation of each layer of the organic EL device of the present invention, a known method such as a dry film forming method such as vacuum deposition, sputtering, plasma, or ion plating, or a wet film forming method such as spin coating, dipping, or flow coating is applied. be able to.
The thickness of each layer is not particularly limited, but must be set to an appropriate thickness. If the film thickness is too thick, a large applied voltage is required to obtain a constant light output, resulting in poor efficiency. If the film thickness is too thin, pinholes and the like are generated, and sufficient light emission luminance cannot be obtained even when an electric field is applied. The normal film thickness is suitably in the range of 5 nm to 10 μm, but more preferably in the range of 10 nm to 0.2 μm.
 本発明の有機EL素子は、発光波長の極大値が、430nm以上720nm以下であることが好ましい。 The organic EL device of the present invention preferably has a maximum emission wavelength of 430 nm or more and 720 nm or less.
 次に、合成例及び実施例を用いて本発明をさらに詳細に説明する。ただし、本発明は以下の合成例、実施例に限定されない。 Next, the present invention will be described in further detail using synthesis examples and examples. However, the present invention is not limited to the following synthesis examples and examples.
合成例1[化合物Aの合成]
Figure JPOXMLDOC01-appb-C000024
Synthesis Example 1 [Synthesis of Compound A]
Figure JPOXMLDOC01-appb-C000024
(1)中間体1の合成
 アルゴン気流下、1Lフラスコに化合物1を33.7g(116mmol)、トリフェニルホスフィン76.4g(291mmol)、オルトジクロロベンゼン300mlを加え、190℃で12時間撹拌後、室温まで放冷した。容積を半分濃縮し、メタノール180mlを加えて2時間撹拌して析出した結晶をろ過した。ろ別した結晶をトルエン180mlにて加熱懸洗して精製し、中間体1を15.7g(61mmol)、収率52%で得た。
(1) Synthesis of Intermediate 1 Under a stream of argon, 33.7 g (116 mmol) of Compound 1, 76.4 g (291 mmol) of triphenylphosphine, and 300 ml of orthodichlorobenzene were added to a 1 L flask, and stirred at 190 ° C. for 12 hours. Allowed to cool to room temperature. The volume was half concentrated, 180 ml of methanol was added and stirred for 2 hours, and the precipitated crystals were filtered. The crystals separated by filtration were purified by heating with 180 ml of toluene to obtain 15.7 g (61 mmol) of Intermediate 1 in a yield of 52%.
(2)中間体2の合成
 アルゴン気流下、500mlフラスコに中間体1を10g(39mmol)、ヨードベンゼン8.75g(43mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)357mg(0.39mmol)、トリブチルホスフィン2.0Mトルエン溶液0.78ml、t-ブトキシナトリウム7.5g(78mmol)を加え、トルエン200mlを加えて12時間加熱還流した。
 室温に放冷後、トルエンで抽出し、カラムクロマトグラフィーにて精製後、中間体2を11.5g(34.5mmol)を88%の収率で得た。
(2) Synthesis of Intermediate 2 10 g (39 mmol) of Intermediate 1 in the 500 ml flask under argon flow, 8.75 g (43 mmol) of iodobenzene, 357 mg (0.39 mmol) of tris (dibenzylideneacetone) dipalladium (0) Then, 0.78 ml of a 2.0 M toluene solution of tributylphosphine and 7.5 g (78 mmol) of t-butoxy sodium were added, 200 ml of toluene was added, and the mixture was heated to reflux for 12 hours.
The mixture was allowed to cool to room temperature, extracted with toluene, and purified by column chromatography to obtain 11.5 g (34.5 mmol) of Intermediate 2 in a yield of 88%.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
(3)中間体3の合成
 アルゴン気流下、500mlフラスコに11.5g(34.5mmol)の中間体2を脱水DMF80mlに溶かし、N-ブロモスクシンイミド6.14g(34.5mmol)を脱水DMF70mlに溶かした溶液を0℃で10分かけて撹拌しながら滴下した。徐々に昇温し、160℃で19時間撹拌した後、生成物を抽出し、カラムクロマトグラフィーにて精製して10.1g(24.6mmol)、71%の収率で中間体3を得た。
(3) Synthesis of Intermediate 3 Under a stream of argon, 11.5 g (34.5 mmol) of Intermediate 2 was dissolved in 80 ml of dehydrated DMF in a 500 ml flask, and 6.14 g (34.5 mmol) of N-bromosuccinimide was dissolved in 70 ml of dehydrated DMF. The solution was added dropwise with stirring at 0 ° C. over 10 minutes. After gradually warming and stirring at 160 ° C. for 19 hours, the product was extracted and purified by column chromatography to obtain 10.3 g (24.6 mmol), intermediate 3 in 71% yield. .
(4)化合物Aの合成
 アルゴン気流下、200mlフラスコに中間体3を3.3g(8mmol)、カルバゾール1.6g(9.6mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)293mg(0.32mmol)、トリブチルホスフィン2.0Mトルエン溶液0.32ml、t-ブトキシナトリウム1.5g(16mmol)を加え、トルエン40mlを加えて8時間加熱還流した。室温に放冷後、トルエンで抽出後、カラムクロマトグラフィーにて精製し、再結晶して化合物Aを2.1g(4.2mmol)、52%の収率で得た。生成物のFDマススペクトルを測定したところ、分子量498であった。
(4) Synthesis of Compound A Under a stream of argon, 3.3 g (8 mmol) of Intermediate 3 and 1.6 g (9.6 mmol) of carbazole, 293 mg of tris (dibenzylideneacetone) dipalladium (0) (0. 32 mmol), tributylphosphine 2.0M toluene solution 0.32 ml, t-butoxy sodium 1.5 g (16 mmol) were added, toluene 40 ml was added, and the mixture was heated to reflux for 8 hours. The mixture was allowed to cool to room temperature, extracted with toluene, purified by column chromatography, and recrystallized to obtain 2.1 g (4.2 mmol) of Compound A in a yield of 52%. When the FD mass spectrum of the product was measured, it was molecular weight 498.
合成例2[化合物Bの合成]
Figure JPOXMLDOC01-appb-C000026
Synthesis Example 2 [Synthesis of Compound B]
Figure JPOXMLDOC01-appb-C000026
(1)中間体4の合成
 アルゴン気流下、300mlのフラスコに中間体1を5g(20mmol)、2-ブロモジベンゾチオフェン5.76g(22mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)183mg(0.20mmol)、トリブチルホスフィン2.0Mトルエン溶液0.4ml、t-ブトキシナトリウム3.85g(40mmol)を加え、トルエン100mlを加えて12時間加熱還流した。
 室温に放冷後、トルエンで抽出し、カラムクロマトグラフィーにて精製後、中間体4を6.5g(14.8mmol)、74%の収率で得た。
(1) Synthesis of Intermediate 4 Under a stream of argon, 5 g (20 mmol) of Intermediate 1, 5.76 g (22 mmol) of 2-bromodibenzothiophene, 183 mg of tris (dibenzylideneacetone) dipalladium (0) ( 0.20 mmol), tributylphosphine 2.0 M toluene solution 0.4 ml, t-butoxy sodium 3.85 g (40 mmol) was added, toluene 100 ml was added, and the mixture was heated to reflux for 12 hours.
The mixture was allowed to cool to room temperature, extracted with toluene, and purified by column chromatography to obtain Intermediate 4 (6.5 g, 14.8 mmol) in a yield of 74%.
(2)中間体5の合成
 アルゴン気流下、200mlフラスコに中間体4を6.5g(14.8mmol)を脱水DMF40mlに溶かし、N-ブロモスクシンイミド2.63g(14.8mmol)を脱水DMF30mlに溶かした溶液を0℃で10分かけて撹拌しながら滴下した。徐々に昇温し、160℃で15時間撹拌した後、生成物を抽出し、カラムクロマトグラフィーにて精製して6.1g(11.8mmol) 79%の収率で中間体5を得た。
(2) Synthesis of Intermediate 5 Under an argon stream, 6.5 g (14.8 mmol) of Intermediate 4 was dissolved in 40 ml of dehydrated DMF in a 200 ml flask, and 2.63 g (14.8 mmol) of N-bromosuccinimide was dissolved in 30 ml of dehydrated DMF. The solution was added dropwise with stirring at 0 ° C. over 10 minutes. After gradually warming and stirring at 160 ° C. for 15 hours, the product was extracted and purified by column chromatography to obtain Intermediate 5 in a yield of 6.1 g (11.8 mmol) 79%.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
(3)化合物Bの合成
 アルゴン気流下、200mlフラスコに中間体5を6.1g(11.8mmol)、カルバゾール 2.4g(14.2mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)430mg(0.47mmol)、トリブチルホスフィン2.0Mトルエン溶液0.47ml、t-ブトキシナトリウム2.2g(24mmol)を加え、トルエン70mlを加えて8時間加熱還流した。室温に放冷後、トルエンで抽出してカラムクロマトグラフィーにて精製し、再結晶して化合物Bを4.6g(7.6mmol)、64%の収率で得た。生成物のFDマススペクトルを測定したところ、分子量604であった。
(3) Synthesis of Compound B Under an argon stream, 6.1 g (11.8 mmol) of Intermediate 5, 2.4 g (14.2 mmol) of carbazole, 430 mg of tris (dibenzylideneacetone) dipalladium (0) (200 mg) 0.47 mmol), tributylphosphine 2.0M toluene solution 0.47 ml, t-butoxy sodium 2.2 g (24 mmol) were added, toluene 70 ml was added, and the mixture was heated to reflux for 8 hours. The mixture was allowed to cool to room temperature, extracted with toluene, purified by column chromatography, and recrystallized to obtain 4.6 g (7.6 mmol) of Compound B in a yield of 64%. When the FD mass spectrum of the product was measured, it was molecular weight 604.
合成例3[化合物Cの合成]
Figure JPOXMLDOC01-appb-C000028
Synthesis Example 3 [Synthesis of Compound C]
Figure JPOXMLDOC01-appb-C000028
(1)中間体6の合成
 アルゴン気流下、500mlフラスコに化合物2 8.0g(21mmol)、カルバゾール4.2g(25.2mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)770mg(0.84mmol)、トリブチルホスフィン2.0Mトルエン溶液0.84ml、t-ブトキシナトリウム3.9g(42mmol)を加え、トルエン120mlを加えて15時間加熱還流した。室温に放冷後、トルエンで抽出後、カラムクロマトグラフィーにて精製し、中間体6を4.3g(9.1mmol)、44%の収率で得た。
(1) Synthesis of Intermediate 6 Under a stream of argon, Compound 2 8.0 g (21 mmol), Carbazole 4.2 g (25.2 mmol), Tris (dibenzylideneacetone) dipalladium (0) 770 mg (0.84 mmol) in a 500 ml flask. ), 0.84 ml of a 2.0 M toluene solution of tributylphosphine and 3.9 g (42 mmol) of t-butoxy sodium, 120 ml of toluene was added, and the mixture was heated to reflux for 15 hours. The mixture was allowed to cool to room temperature, extracted with toluene, and purified by column chromatography to obtain Intermediate 6 (4.3 g, 9.1 mmol) in a yield of 44%.
(2)中間体7の合成
 アルゴン気流下、300mlフラスコに中間体6を4.3g(9.1mmol)、トリフェニルホスフィン6.0g(22.7mmol)、オルトジクロロベンゼン120mlを加え、190℃で12時間撹拌後、室温まで放冷した。容積を半分濃縮し、メタノール20mlを加えて2時間撹拌して析出した結晶をろ過した。ろ別した結晶をトルエン30mlにて加熱懸洗し精製し、中間体7を2.6g(5.9mmol)65%の収率で得た。
(2) Synthesis of Intermediate 7 Under a stream of argon, 4.3 g (9.1 mmol) of Intermediate 6, 6.0 g (22.7 mmol) of triphenylphosphine and 120 ml of orthodichlorobenzene were added to a 300 ml flask at 190 ° C. After stirring for 12 hours, the mixture was allowed to cool to room temperature. The volume was concentrated by half, 20 ml of methanol was added and stirred for 2 hours, and the precipitated crystals were filtered. The crystal separated by filtration was washed with 30 ml of toluene and purified by heating to obtain 2.6 g (5.9 mmol) of Intermediate 7 in a yield of 65%.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
(3)化合物Cの合成
 アルゴン気流下、200mlフラスコに中間体7を2.6g(5.9mmol)、4-ブロモジベンゾチオフェン1.71g(6.5mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)55mg(0.06mmol)、トリブチルホスフィン2.0Mトルエン溶液0.12ml、t-ブトキシナトリウム1.15g(12mmol)を加え、トルエン60mlを加えて12時間加熱還流した。
(3) Synthesis of Compound C 2.6 g (5.9 mmol) of Intermediate 7 in the 200 ml flask, 1.71 g (6.5 mmol) of 4-bromodibenzothiophene, tris (dibenzylideneacetone) dipalladium (Argon stream) 0) 55 mg (0.06 mmol), tributylphosphine 2.0 M toluene solution 0.12 ml, t-butoxy sodium 1.15 g (12 mmol) were added, toluene 60 ml was added, and the mixture was heated to reflux for 12 hours.
 室温に放冷後、トルエンで抽出し、カラムクロマトグラフィーにて精製後、再結晶して、化合物Cを1.8g(2.9mmol)を49%の収率で得た。生成物のFDマススペクトルを測定したところ、分子量620であった。 The mixture was allowed to cool to room temperature, extracted with toluene, purified by column chromatography, and recrystallized to obtain 1.8 g (2.9 mmol) of Compound C in a yield of 49%. When the FD mass spectrum of the product was measured, it was molecular weight 620.
合成例4[化合物Dの合成]
Figure JPOXMLDOC01-appb-C000030
Synthesis Example 4 [Synthesis of Compound D]
Figure JPOXMLDOC01-appb-C000030
(1)中間体8の合成
 アルゴン気流下、500mlのフラスコに化合物3を12g(33mmol)、トリフェニルホスフィン21.5g(82mmol)、オルトジクロロベンゼン120mlを加え、190℃で14時間撹拌後、室温まで放冷した。容積を半分濃縮し、メタノール80mlを加えて2時間撹拌して析出した結晶をろ過した。ろ別した結晶をトルエン60mlにて加熱懸洗し精製し、中間体8を6.2g(18.6mmol)、56%の収率で得た。
(1) Synthesis of Intermediate 8 Under a stream of argon, 12 g (33 mmol) of Compound 3, 21.5 g (82 mmol) of triphenylphosphine, and 120 ml of orthodichlorobenzene were added to a 500 ml flask, stirred at 190 ° C. for 14 hours, and then room temperature. It was left to cool. The volume was concentrated by half, 80 ml of methanol was added and stirred for 2 hours, and the precipitated crystals were filtered. The crystals separated by filtration were purified by washing with 60 ml of toluene and purified to obtain Intermediate 8 (6.2 g, 18.6 mmol) in a yield of 56%.
(2)中間体9の合成
 アルゴン気流下、500mlフラスコに中間体8を6.2g(18.6mmol)、ヨードベンゼン4.5g(22mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)170mg(0.186mmol)、トリブチルホスフィン2.0Mトルエン溶液0.37ml、t-ブトキシナトリウム3.55g(37mmol)を加え、トルエン150mlを加えて12時間加熱還流した。室温に放冷後、トルエンで抽出し、カラムクロマトグラフィーにて精製後、中間体9を6.5g(15.9mmol)、85%の収率で得た。
(2) Synthesis of Intermediate 9 6.2 g (18.6 mmol) of Intermediate 8, 4.5 g (22 mmol) of iodobenzene, 170 mg of tris (dibenzylideneacetone) dipalladium (0) in a 500 ml flask under an argon stream. 0.186 mmol), tributylphosphine 2.0 M toluene solution 0.37 ml, t-butoxy sodium 3.55 g (37 mmol) were added, toluene 150 ml was added, and the mixture was heated to reflux for 12 hours. The mixture was allowed to cool to room temperature, extracted with toluene, and purified by column chromatography to obtain Intermediate 9 (6.5 g, 15.9 mmol) in a yield of 85%.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
(2)中間体10の合成
 アルゴン気流下、300mlフラスコに中間体9を6.5g(15.9mmol)を脱水DMF40mlに溶かし、N-ブロモスクシンイミド2.85g(16mmol)を脱水DMF30mlに溶かした溶液を0℃で10分かけて撹拌しながら滴下した。徐々に昇温し、160℃で15時間撹拌した後、生成物を抽出し、カラムクロマトグラフィーにて精製して4.8g(9.8mmol)、62%の収率で中間体10を得た。
(2) Synthesis of intermediate 10 Under argon flow, 6.5 g (15.9 mmol) of intermediate 9 was dissolved in 40 ml of dehydrated DMF in a 300 ml flask, and 2.85 g (16 mmol) of N-bromosuccinimide was dissolved in 30 ml of dehydrated DMF. Was added dropwise at 0 ° C. over 10 minutes with stirring. After gradually warming up and stirring at 160 ° C. for 15 hours, the product was extracted and purified by column chromatography to obtain Intermediate 10 in a yield of 4.8 g (9.8 mmol) and 62%. .
(3)化合物Dの合成
 アルゴン気流下、200mlフラスコに中間体10 4.8g(9.8mmol)、カルバゾール 1.9g(11.7mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)360mg(0.39mmol)、トリブチルホスフィン2.0Mトルエン溶液0.39ml、t-ブトキシナトリウム1.9g(19.6mmol)を加え、トルエン40mlを加えて8時間加熱還流した。室温に放冷後、トルエンで抽出後、カラムクロマトグラフィーにて精製し、再結晶して化合物Dを3.2g(5.5mmol)、56%の収率で得た。生成物のFDマススペクトルを測定したところ、分子量574であった。
(3) Synthesis of Compound D Under a stream of argon, 4.8 g (9.8 mmol) of Intermediate 10; 1.9 g (11.7 mmol) of carbazole; 360 mg of tris (dibenzylideneacetone) dipalladium (0) (0) .39 mmol), tributylphosphine 2.0 M toluene solution 0.39 ml, t-butoxy sodium 1.9 g (19.6 mmol) were added, toluene 40 ml was added, and the mixture was heated to reflux for 8 hours. The mixture was allowed to cool to room temperature, extracted with toluene, purified by column chromatography, and recrystallized to obtain 3.2 g (5.5 mmol) of Compound D in a yield of 56%. When the FD mass spectrum of the product was measured, it was molecular weight 574.
合成例5[化合物Eの合成]
Figure JPOXMLDOC01-appb-C000032
Synthesis Example 5 [Synthesis of Compound E]
Figure JPOXMLDOC01-appb-C000032
(1)中間体11の合成
 アルゴン気流下、300mlフラスコに中間体1 5.1g(20mmol)、4-(4-ブロモフェニル)ジベンゾフラン7g(21.5mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)183mg(0.20mmol)、トリブチルホスフィン2.0Mトルエン溶液0.4ml、t-ブトキシナトリウム3.8g(40mmol)を加え、トルエン100mlを加えて12時間加熱還流した。室温に放冷後、トルエンで抽出し、カラムクロマトグラフィーにて精製後、中間体11を7.0g(14.2mmol)、71%の収率で得た。
(1) Synthesis of Intermediate 11 In a 300 ml flask under an argon stream, 5.1 g (20 mmol) of Intermediate 1, 7 g (21.5 mmol) of 4- (4-bromophenyl) dibenzofuran, tris (dibenzylideneacetone) dipalladium ( 0) 183 mg (0.20 mmol), tributylphosphine 2.0 M toluene solution 0.4 ml, t-butoxy sodium 3.8 g (40 mmol) were added, toluene 100 ml was added, and the mixture was heated to reflux for 12 hours. The mixture was allowed to cool to room temperature, extracted with toluene, and purified by column chromatography to obtain 7.0 g (14.2 mmol) of intermediate 11 in a 71% yield.
(2)中間体12の合成
 アルゴン気流下、300mlフラスコに中間体11を7.0g(14.2mmol)を脱水DMF40mlに溶かし、N-ブロモスクシンイミド 2.58g(14.5mmol)を脱水DMF30mlに溶かした溶液を0℃で10分かけて撹拌しながら滴下した。徐々に昇温し、160℃で16時間撹拌した後、生成物を抽出し、カラムクロマトグラフィーにて精製して5.3g(9.1mmol) 64%の収率で中間体12を得た。
(2) Synthesis of Intermediate 12 Under an argon stream, 7.0 g (14.2 mmol) of Intermediate 11 was dissolved in 40 ml of dehydrated DMF in a 300 ml flask, and 2.58 g (14.5 mmol) of N-bromosuccinimide was dissolved in 30 ml of dehydrated DMF. The solution was added dropwise with stirring at 0 ° C. over 10 minutes. After gradually raising the temperature and stirring at 160 ° C. for 16 hours, the product was extracted and purified by column chromatography to obtain Intermediate 12 in a yield of 5.3 g (9.1 mmol) 64%.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
(3)化合物Eの合成
 アルゴン気流下、200mlフラスコに中間体12 5.3g(9.1mmol)、カルバゾール 1.76g(10.8mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)335mg(0.36mmol)、トリブチルホスフィン2.0Mトルエン溶液0.36ml、t-ブトキシナトリウム1.8g(18.2mmol)を加え、トルエン40mlを加えて8時間加熱還流した。室温に放冷後、トルエンで抽出後、カラムクロマトグラフィーにて精製し、再結晶して材料Eを3.6g(5.4mmol)、59%の収率で得た。生成物のFDマススペクトルを測定したところ、分子量664であった。
(3) Synthesis of Compound E In a 200 ml flask under argon stream, Intermediate 12 5.3 g (9.1 mmol), carbazole 1.76 g (10.8 mmol), tris (dibenzylideneacetone) dipalladium (0) 335 mg (0 .36 mmol), tributylphosphine 2.0 M toluene solution 0.36 ml, t-butoxy sodium 1.8 g (18.2 mmol) were added, toluene 40 ml was added, and the mixture was heated to reflux for 8 hours. The mixture was allowed to cool to room temperature, extracted with toluene, purified by column chromatography, and recrystallized to obtain 3.6 g (5.4 mmol) of material E in a yield of 59%. When the FD mass spectrum of the product was measured, it was molecular weight 664.
実施例1
 25mm×75mm×1.1mmのITO透明電極付きガラス基板(ジオマテック社製)に、イソプロピルアルコール中での5分間の超音波洗浄を施し、さらに、30分間のUV(Ultraviolet)オゾン洗浄を施した。
Example 1
A 25 mm × 75 mm × 1.1 mm glass substrate with an ITO transparent electrode (manufactured by Geomatech) was subjected to ultrasonic cleaning for 5 minutes in isopropyl alcohol, and further subjected to UV (Ultraviolet) ozone cleaning for 30 minutes.
 このようにして洗浄した透明電極付きガラス基板を、真空蒸着装置の基板ホルダーに装着し、まず、ガラス基板の透明電極ラインが形成されている側の面上に、透明電極を覆うようにして、材料1を厚さ20nmで蒸着し、正孔注入層を得た。次いで、この膜上に材料2を厚さ60nmで蒸着し、正孔輸送層を得た。 The glass substrate with the transparent electrode thus cleaned is attached to the substrate holder of the vacuum evaporation apparatus, and first, on the surface of the glass substrate on which the transparent electrode line is formed, the transparent electrode is covered, Material 1 was deposited with a thickness of 20 nm to obtain a hole injection layer. Subsequently, the material 2 was vapor-deposited on this film | membrane by thickness 60nm, and the positive hole transport layer was obtained.
 この正孔輸送層上に、燐光ホスト材料として化合物Aと燐光発光性材料である材料3を厚さ50nmで共蒸着し、燐光発光層を得た。燐光発光層内における化合物Aの濃度は80質量%、材料3の濃度は20質量%であった。 On this hole transport layer, compound A as a phosphorescent host material and material 3 which is a phosphorescent material were co-evaporated at a thickness of 50 nm to obtain a phosphorescent layer. The concentration of Compound A in the phosphorescent light emitting layer was 80% by mass, and the concentration of Material 3 was 20% by mass.
 続いて、この燐光発光層上に、材料5を厚さ10nmで蒸着し、正孔阻止層を得た。さらに、材料4を厚さ10nmで蒸着し、電子輸送層を得た後、厚さ1nmのLiF、厚さ80nmの金属Alを順次積層し、陰極を得た。尚、電子注入性電極であるLiFについては、1Å/minの速度で形成した。 Subsequently, the material 5 was deposited on the phosphorescent layer at a thickness of 10 nm to obtain a hole blocking layer. Furthermore, after depositing material 4 with a thickness of 10 nm to obtain an electron transport layer, LiF with a thickness of 1 nm and metal Al with a thickness of 80 nm were sequentially laminated to obtain a cathode. Note that LiF, which is an electron injecting electrode, was formed at a rate of 1 Å / min.
 作製した有機EL素子を直流電流駆動により発光させ、輝度、電流密度を測定し、電流密度1mA/cmにおける発光波長を測定したところ、発光波長は473nmであった。電流密度1mA/cmにおける電圧及び発光効率(外部量子効率)と初期輝度3,000cd/mにおける輝度50%寿命(輝度が50%まで低下する時間)の評価結果を表1に示す。 When the produced organic EL element was made to emit light by direct current drive, the luminance and current density were measured, and the emission wavelength at a current density of 1 mA / cm 2 was measured, the emission wavelength was 473 nm. Table 1 shows the evaluation results of the voltage and light emission efficiency (external quantum efficiency) at a current density of 1 mA / cm 2 and the luminance 50% lifetime (time during which the luminance is reduced to 50%) at an initial luminance of 3,000 cd / m 2 .
実施例2~5
 燐光ホスト材料として化合物Aの代わりに下記表1に示す化合物B~Eを用いた以外は、実施例1と同様にして有機EL素子を作製し、評価した。結果を表1に示す。
Examples 2-5
An organic EL device was prepared and evaluated in the same manner as in Example 1 except that compounds B to E shown in Table 1 below were used in place of compound A as the phosphorescent host material. The results are shown in Table 1.
比較例1~2
 燐光ホスト材料として化合物Aの代わりに下記表1に示す比較化合物1~2を用いた以外は、実施例1と同様にして有機EL素子を作製し、評価した。結果を表1に示す。
Comparative Examples 1 and 2
An organic EL device was prepared and evaluated in the same manner as in Example 1 except that Comparative Compounds 1 and 2 shown in Table 1 below were used as the phosphorescent host material instead of Compound A. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
実施例6~10
 実施例1において、正孔輸送層の材料2を厚さ50nmで蒸着し、さらにその上に下記表2に示す化合物A~Eを、厚さ10nmで蒸着し、発光層のホスト材料として化合物Aの代わりに材料5を用いた以外は、実施例1と同様にして有機EL素子を作製し、評価した。結果を表2に示す。
Examples 6 to 10
In Example 1, the material 2 for the hole transport layer was vapor-deposited with a thickness of 50 nm, and further, the compounds A to E shown in Table 2 below were vapor-deposited with a thickness of 10 nm on the compound A as a host material for the light-emitting layer. An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the material 5 was used instead of the above. The results are shown in Table 2.
比較例3~4
 実施例6において、正孔輸送層の化合物Aの代わりに下記表2に示す比較化合物1~2を用いた以外は、実施例6と同様にして有機EL素子を作製し、評価した。結果を表2に示す。
Comparative Examples 3-4
In Example 6, an organic EL device was prepared and evaluated in the same manner as in Example 6 except that Comparative Compounds 1 and 2 shown in Table 2 below were used instead of Compound A in the hole transport layer. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
実施例11~15
 実施例6~10において、発光層のホスト材料として材料5の代わりに材料6を用いた以外は、実施例6~10と同様にして有機EL素子を作製し、評価した。結果を表3に示す。
Examples 11-15
In Examples 6 to 10, organic EL elements were produced and evaluated in the same manner as in Examples 6 to 10 except that the material 6 was used instead of the material 5 as the host material of the light emitting layer. The results are shown in Table 3.
比較例5~6
 実施例11において、正孔輸送層の化合物Aの代わりに下記表3に示す比較化合物1~2を用いた以外は、実施例11と同様にして有機EL素子を作製し、評価した。結果を表3に示す。
Comparative Examples 5-6
In Example 11, an organic EL device was prepared and evaluated in the same manner as in Example 11 except that Comparative Compounds 1 and 2 shown in Table 3 below were used instead of Compound A in the hole transport layer. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例1~5の結果から、本発明の化合物を燐光発光層の燐光ホスト材料として用いた有機EL素子は、比較例化合物を用いた場合と比べて、著しく長寿命であり、また、電圧が低く、高い外部量子効率が得られた。
 また、実施例6~15の結果から、本発明の化合物を正孔輸送層として用いた有機EL素子は、比較例化合物を用いた場合と比べて、著しく長寿命であり、また、高い外部量子効率が得られた。
From the results of Examples 1 to 5, the organic EL device using the compound of the present invention as the phosphorescent host material of the phosphorescent light emitting layer has a significantly longer life than the case of using the comparative compound, and the voltage is high. Low and high external quantum efficiency was obtained.
Further, from the results of Examples 6 to 15, the organic EL device using the compound of the present invention as the hole transport layer has a significantly longer life than the case of using the comparative compound, and has a high external quantum efficiency. Efficiency was obtained.
 本発明の化合物は、有機EL素子、有機ELディスプレイ、照明、有機半導体、有機太陽電池等に利用できる。
 本発明の有機EL素子用材料は、高効率及び長寿命な有機EL素子を実現する材料として有用である。
 本発明の有機EL素子は、壁掛けテレビのフラットパネルディスプレイ等の平面発光体、複写機、プリンター、液晶ディスプレイのバックライト又は計器類等の光源、表示板、標識灯等に利用できる。
The compound of the present invention can be used for organic EL devices, organic EL displays, lighting, organic semiconductors, organic solar cells, and the like.
The material for an organic EL device of the present invention is useful as a material for realizing an organic EL device with high efficiency and long life.
The organic EL device of the present invention can be used for a flat light emitter such as a flat panel display of a wall-mounted television, a light source such as a copying machine, a printer, a backlight of a liquid crystal display or instruments, a display board, a marker lamp, and the like.
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 本願のパリ優先の基礎となる日本出願明細書の内容を全てここに援用する。
Although several embodiments and / or examples of the present invention have been described in detail above, those skilled in the art will appreciate that these exemplary embodiments and / or embodiments are substantially without departing from the novel teachings and advantages of the present invention. It is easy to make many changes to the embodiment. Accordingly, many of these modifications are within the scope of the present invention.
All the contents of the Japanese application specification that is the basis of the priority of Paris in this application are incorporated herein.

Claims (16)

  1.  下記式(1)で表される化合物。
    Figure JPOXMLDOC01-appb-C000036
    [式(1)中、
     Arは、置換若しくは無置換の環形成炭素数6~30のアリール基、置換若しくは無置換のアリールカルバゾリル基、置換若しくは無置換のアリールジベンゾフラニル基、置換若しくは無置換のアリールジベンゾチオフェニル基、置換若しくは無置換のカルバゾリル基、置換若しくは無置換のジベンゾフラニル基、及び置換若しくは無置換のジベンゾチオフェニル基からなる群より選択される基を表す。
     R~R14は、それぞれ独立に、水素原子、置換若しくは無置換の環形成炭素数6~30のアリール基、置換若しくは無置換の炭素数1~20のアルキル基、置換若しくは無置換の炭素数1~20のアルコキシ基、置換若しくは無置換の炭素数1~20のハロアルキル基、置換若しくは無置換の炭素数1~20のハロアルコキシ基、シアノ基、置換若しくは無置換のアリールカルバゾリル基、置換若しくは無置換のアリールジベンゾフラニル基、置換若しくは無置換のアリールジベンゾチオフェニル基、置換若しくは無置換のカルバゾリル基、置換若しくは無置換のジベンゾフラニル基、置換若しくは無置換のジベンゾチオフェニル基、置換若しくは無置換のアルキルシリル基、置換若しくは無置換のアリールシリル基、置換若しくは無置換のアラルキルシリル基、置換若しくは無置換のアルキルゲルマニウム基、置換若しくは無置換のアリールゲルマニウム基、及び置換若しくは無置換のアラルキルゲルマニウム基からなる群より選択される基を表す。
     Xは、酸素原子又は硫黄原子を表す。]
    A compound represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000036
    [In Formula (1),
    Ar is a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, a substituted or unsubstituted arylcarbazolyl group, a substituted or unsubstituted aryldibenzofuranyl group, a substituted or unsubstituted aryldibenzothiophenyl A group selected from the group consisting of a group, a substituted or unsubstituted carbazolyl group, a substituted or unsubstituted dibenzofuranyl group, and a substituted or unsubstituted dibenzothiophenyl group.
    R 1 to R 14 each independently represents a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted carbon; An alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted haloalkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted haloalkoxy group having 1 to 20 carbon atoms, a cyano group, and a substituted or unsubstituted arylcarbazolyl group; Substituted or unsubstituted aryl dibenzofuranyl group, substituted or unsubstituted aryl dibenzothiophenyl group, substituted or unsubstituted carbazolyl group, substituted or unsubstituted dibenzofuranyl group, substituted or unsubstituted dibenzothiophenyl group Substituted or unsubstituted alkylsilyl group, substituted or unsubstituted arylsilyl group, substituted or unsubstituted Conversion aralkyl silyl group, a substituted or unsubstituted alkyl germanium group, a substituted or unsubstituted aryl germanium group, and a substituted or unsubstituted group selected from the group consisting of aralkyl germanium group.
    X represents an oxygen atom or a sulfur atom. ]
  2.  R~R14は、それぞれ独立に、水素原子、置換若しくは無置換の環形成炭素数6~30のアリール基、置換若しくは無置換の炭素数1~20のアルキル基、置換若しくは無置換の炭素数1~20のアルコキシ基、置換若しくは無置換の炭素数1~20のハロアルキル基、置換若しくは無置換の炭素数1~20のハロアルコキシ基、シアノ基、置換若しくは無置換のアリールカルバゾリル基、置換若しくは無置換のアリールジベンゾフラニル基、置換若しくは無置換のアリールジベンゾチオフェニル基、置換若しくは無置換のカルバゾリル基、置換若しくは無置換のジベンゾフラニル基、及び置換若しくは無置換のジベンゾチオフェニル基からなる群より選択される基を表す請求項1記載の化合物。 R 1 to R 14 each independently represents a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted carbon; An alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted haloalkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted haloalkoxy group having 1 to 20 carbon atoms, a cyano group, and a substituted or unsubstituted arylcarbazolyl group; Substituted or unsubstituted aryl dibenzofuranyl group, substituted or unsubstituted aryl dibenzothiophenyl group, substituted or unsubstituted carbazolyl group, substituted or unsubstituted dibenzofuranyl group, and substituted or unsubstituted dibenzothiophenyl The compound according to claim 1, which represents a group selected from the group consisting of groups.
  3.  下記式(2)、(3)又は(4)で表される請求項1又は2記載の化合物。
    Figure JPOXMLDOC01-appb-C000037
    [式(2)~(4)中、Ar、R~R14及びXは、それぞれ、前記式(1)と同じである。]
    The compound of Claim 1 or 2 represented by following formula (2), (3) or (4).
    Figure JPOXMLDOC01-appb-C000037
    [In the formulas (2) to (4), Ar, R 1 to R 14 and X are the same as those in the formula (1). ]
  4.  下記式(5)、(6)又は(7)で表される請求項1~3のいずれか記載の化合物。
    Figure JPOXMLDOC01-appb-C000038
    [式(5)~(7)中、Ar、R、R、R、R、R~R11及びXは、それぞれ、前記式(1)と同じである。]
    The compound according to any one of claims 1 to 3, which is represented by the following formula (5), (6) or (7):
    Figure JPOXMLDOC01-appb-C000038
    [In the formulas (5) to (7), Ar, R 1 , R 2 , R 6 , R 7 , R 9 to R 11 and X are the same as those in the formula (1). ]
  5.  前記式(5)~(7)におけるArが、無置換の環形成炭素数6~30のアリール基、無置換のアリールカルバゾリル基、無置換のアリールジベンゾフラニル基、無置換のアリールジベンゾチオフェニル基、無置換のカルバゾリル基、無置換のジベンゾフラニル基、及び無置換のジベンゾチオフェニル基からなる群より選択される基を表す請求項4記載の化合物。 In the above formulas (5) to (7), Ar represents an unsubstituted aryl group having 6 to 30 ring carbon atoms, an unsubstituted arylcarbazolyl group, an unsubstituted aryldibenzofuranyl group, or an unsubstituted aryldibenzo. The compound according to claim 4, which represents a group selected from the group consisting of a thiophenyl group, an unsubstituted carbazolyl group, an unsubstituted dibenzofuranyl group, and an unsubstituted dibenzothiophenyl group.
  6.  Arが、無置換のフェニル基、無置換のビフェニリル基、無置換のフェニルカルバゾリル基、無置換のフェニルジベンゾフラニル基、無置換のフェニルジベンゾチオフェニル基、無置換のカルバゾリル基、無置換のジベンゾフラニル基、及び無置換のジベンゾチオフェニル基からなる群より選択される基を表す請求項5記載の化合物。 Ar is an unsubstituted phenyl group, an unsubstituted biphenylyl group, an unsubstituted phenylcarbazolyl group, an unsubstituted phenyldibenzofuranyl group, an unsubstituted phenyldibenzothiophenyl group, an unsubstituted carbazolyl group, an unsubstituted group 6. The compound according to claim 5, which represents a group selected from the group consisting of a dibenzofuranyl group and an unsubstituted dibenzothiophenyl group.
  7.  請求項1~6のいずれか記載の化合物を含む有機エレクトロルミネッセンス素子用材料。 A material for an organic electroluminescence element comprising the compound according to any one of claims 1 to 6.
  8.  陰極と陽極の間に、発光層を含む一層以上の有機薄膜層を有し、前記有機薄膜層のうち少なくとも一層が、請求項7記載の有機エレクトロルミネッセンス素子用材料を含む有機エレクトロルミネッセンス素子。 An organic electroluminescence device comprising one or more organic thin film layers including a light emitting layer between a cathode and an anode, wherein at least one of the organic thin film layers comprises the material for an organic electroluminescence device according to claim 7.
  9.  前記発光層が前記有機エレクトロルミネッセンス素子用材料を含む請求項8記載の有機エレクトロルミネッセンス素子。 The organic electroluminescent element according to claim 8, wherein the light emitting layer contains the material for the organic electroluminescent element.
  10.  前記有機薄膜層が、一層以上の発光層を含み、
     前記発光層の少なくとも一層が、請求項7記載の有機エレクトロルミネッセンス素子用材料と燐光発光性材料とを含む請求項8又は9記載の有機エレクトロルミネッセンス素子。
    The organic thin film layer includes one or more light emitting layers,
    The organic electroluminescent device according to claim 8 or 9, wherein at least one of the light emitting layers contains the material for an organic electroluminescent device according to claim 7 and a phosphorescent material.
  11.  前記燐光発光性材料の三重項エネルギーが、1.8eV以上2.9eV未満である請求項10記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to claim 10, wherein the triplet energy of the phosphorescent material is 1.8 eV or more and less than 2.9 eV.
  12.  前記燐光発光性材料が金属錯体化合物を含有し、
     前記金属錯体化合物が、Ir、Pt、Os、Au、Cu、Re及びRuからなる群より選択される金属原子と配位子とを有する請求項10又は11記載の有機エレクトロルミネッセンス素子。
    The phosphorescent material contains a metal complex compound;
    The organic electroluminescence device according to claim 10 or 11, wherein the metal complex compound has a metal atom and a ligand selected from the group consisting of Ir, Pt, Os, Au, Cu, Re, and Ru.
  13.  前記配位子が、前記金属原子とオルトメタル結合を有する請求項12記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to claim 12, wherein the ligand has an ortho metal bond with the metal atom.
  14.  発光波長の極大値が、430nm以上720nm以下である請求項8~13のいずれか記載の有機エレクトロルミネッセンス素子。 14. The organic electroluminescence device according to claim 8, wherein the maximum value of the emission wavelength is 430 nm or more and 720 nm or less.
  15.  前記発光層と前記陽極との間に正孔輸送帯域を有し、該正孔輸送帯域が一層以上の有機薄膜層を有し、該有機薄膜層の少なくとも一層が請求項7記載の有機エレクトロルミネッセンス素子用材料を含む請求項8~14のいずれかに記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence according to claim 7, wherein the organic electroluminescence has a hole transport zone between the light emitting layer and the anode, the hole transport zone has one or more organic thin film layers, and at least one of the organic thin film layers. The organic electroluminescence device according to any one of claims 8 to 14, comprising a device material.
  16.  前記正孔輸送帯域が前記発光層に隣接する請求項15記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to claim 15, wherein the hole transport zone is adjacent to the light emitting layer.
PCT/JP2013/006000 2012-10-12 2013-10-08 Compound, and organic electroluminescent element produced using same WO2014057659A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-227200 2012-10-12
JP2012227200 2012-10-12

Publications (1)

Publication Number Publication Date
WO2014057659A1 true WO2014057659A1 (en) 2014-04-17

Family

ID=50477141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006000 WO2014057659A1 (en) 2012-10-12 2013-10-08 Compound, and organic electroluminescent element produced using same

Country Status (1)

Country Link
WO (1) WO2014057659A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111116561A (en) * 2019-12-03 2020-05-08 北京绿人科技有限责任公司 Compound containing condensed ring structure, application thereof and organic electroluminescent device
WO2022134074A1 (en) * 2020-12-25 2022-06-30 京东方科技集团股份有限公司 Organic electroluminescent device, display panel, display device and light-emitting device
JP2022166086A (en) * 2017-02-09 2022-11-01 株式会社半導体エネルギー研究所 Compound

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009148062A1 (en) * 2008-06-05 2009-12-10 出光興産株式会社 Polycyclic compound and organic electroluminescent device using the same
WO2012011756A1 (en) * 2010-07-21 2012-01-26 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent devices including the same
JP2012028548A (en) * 2010-07-23 2012-02-09 Konica Minolta Holdings Inc Material for organic electroluminescence element, and organic electroluminescence element, and display device and illuminating device using organic electroluminescence element
WO2012050371A1 (en) * 2010-10-13 2012-04-19 Rohm And Haas Electronic Materials Korea Ltd. Novel compounds for organic electronic material and organic electroluminescent device using the same
EP2450975A2 (en) * 2010-11-04 2012-05-09 Cheil Industries Inc. Compound for organic optoelectronic device and organic light emitting diode including the same
WO2012165832A1 (en) * 2011-05-30 2012-12-06 Rohm And Haas Electronic Materials Korea Ltd. Novel compounds for organic electronic material and organic electroluminescent device using the same
WO2013154325A1 (en) * 2012-04-10 2013-10-17 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device containing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009148062A1 (en) * 2008-06-05 2009-12-10 出光興産株式会社 Polycyclic compound and organic electroluminescent device using the same
WO2012011756A1 (en) * 2010-07-21 2012-01-26 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent devices including the same
JP2012028548A (en) * 2010-07-23 2012-02-09 Konica Minolta Holdings Inc Material for organic electroluminescence element, and organic electroluminescence element, and display device and illuminating device using organic electroluminescence element
WO2012050371A1 (en) * 2010-10-13 2012-04-19 Rohm And Haas Electronic Materials Korea Ltd. Novel compounds for organic electronic material and organic electroluminescent device using the same
EP2450975A2 (en) * 2010-11-04 2012-05-09 Cheil Industries Inc. Compound for organic optoelectronic device and organic light emitting diode including the same
WO2012165832A1 (en) * 2011-05-30 2012-12-06 Rohm And Haas Electronic Materials Korea Ltd. Novel compounds for organic electronic material and organic electroluminescent device using the same
WO2013154325A1 (en) * 2012-04-10 2013-10-17 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device containing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022166086A (en) * 2017-02-09 2022-11-01 株式会社半導体エネルギー研究所 Compound
CN111116561A (en) * 2019-12-03 2020-05-08 北京绿人科技有限责任公司 Compound containing condensed ring structure, application thereof and organic electroluminescent device
CN111116561B (en) * 2019-12-03 2022-06-17 北京绿人科技有限责任公司 Compound containing condensed ring structure, application thereof and organic electroluminescent device
WO2022134074A1 (en) * 2020-12-25 2022-06-30 京东方科技集团股份有限公司 Organic electroluminescent device, display panel, display device and light-emitting device
CN114981274A (en) * 2020-12-25 2022-08-30 京东方科技集团股份有限公司 Organic electroluminescent device, display panel, display apparatus, and light-emitting apparatus

Similar Documents

Publication Publication Date Title
JP6195828B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
JP6157617B2 (en) Material for organic electroluminescence element, organic electroluminescence element and electronic device using the same
JP5802854B2 (en) Condensed fluoranthene compound, material for organic electroluminescence device using the same, and organic electroluminescence device and electronic equipment using the same
JP6199752B2 (en) Material for organic electroluminescence device, organic electroluminescence device using the same, and nitrogen-containing heterocyclic compound
JP5870045B2 (en) Biscarbazole derivative and organic electroluminescence device using the same
JP5993934B2 (en) Material for organic electroluminescence device and organic electroluminescence device
JP6270735B2 (en) Aromatic amine derivative and organic electroluminescence device
JP6114232B2 (en) Heterocyclic compound, material for organic electroluminescence device using the same, and organic electroluminescence device and electronic equipment using the same
JP2020501349A (en) Organic electroluminescent compound and organic electroluminescent device containing the same
EP2754661A1 (en) Nitrogen-containing heteroaromatic ring compound
JP6322587B2 (en) Organic electroluminescence device
WO2012165256A1 (en) Organic electroluminescent element
JP6182217B2 (en) COMPOUND, MATERIAL FOR ORGANIC ELECTROLUMINESCENT ELEMENT, ORGANIC ELECTROLUMINESCENT ELEMENT AND ELECTRONIC DEVICE
WO2014157708A1 (en) Heterocyclic compound, material for organic electroluminescent elements using same, organic electroluminescent element using same, and electronic device
WO2014051004A1 (en) Material for organic electroluminescent elements, and organic electroluminescent element
JP2014094935A (en) Compound, and organic electroluminescent element using the same
WO2014054263A1 (en) Material for organic electroluminescent element, and organic electroluminescent element produced using same
WO2014057659A1 (en) Compound, and organic electroluminescent element produced using same
WO2014050093A1 (en) Material for organic electroluminescent element, and organic electroluminescent element produced using same
JP6088323B2 (en) Nitrogen-containing aromatic heterocyclic derivative, material for organic electroluminescence device, and organic electroluminescence device
KR102370068B1 (en) Organic Electroluminescent Compound and Organic Electroluminescent Device Comprising the Same
JP6088324B2 (en) Nitrogen-containing aromatic heterocyclic derivative, material for organic electroluminescence device, and organic electroluminescence device
JP2014196251A (en) Hetero-arene derivative, organic electroluminescence element material, and organic electroluminescence element
JP2014196252A (en) Hetero-arene derivative, organic electroluminescence element material, and organic electroluminescence element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13845991

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13845991

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP