WO2014006779A1 - Tungsten alloy part, and discharge lamp, transmitting tube and magnetron using same - Google Patents

Tungsten alloy part, and discharge lamp, transmitting tube and magnetron using same Download PDF

Info

Publication number
WO2014006779A1
WO2014006779A1 PCT/JP2012/083284 JP2012083284W WO2014006779A1 WO 2014006779 A1 WO2014006779 A1 WO 2014006779A1 JP 2012083284 W JP2012083284 W JP 2012083284W WO 2014006779 A1 WO2014006779 A1 WO 2014006779A1
Authority
WO
WIPO (PCT)
Prior art keywords
tungsten alloy
tungsten
zro
alloy part
less
Prior art date
Application number
PCT/JP2012/083284
Other languages
French (fr)
Japanese (ja)
Inventor
山本 慎一
佳代 中野
宏道 堀江
Original Assignee
株式会社 東芝
東芝マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝マテリアル株式会社 filed Critical 株式会社 東芝
Priority to EP12880512.4A priority Critical patent/EP2871666B1/en
Priority to CN201280060372.2A priority patent/CN103975414B/en
Priority to JP2014523549A priority patent/JP5911576B2/en
Publication of WO2014006779A1 publication Critical patent/WO2014006779A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/02Electrodes; Magnetic control means; Screens
    • H01J23/04Cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/02Electrodes; Magnetic control means; Screens
    • H01J23/04Cathodes
    • H01J23/05Cathodes having a cylindrical emissive surface, e.g. cathodes for magnetrons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J25/00Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
    • H01J25/50Magnetrons, i.e. tubes with a magnet system producing an H-field crossing the E-field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/073Main electrodes for high-pressure discharge lamps
    • H01J61/0735Main electrodes for high-pressure discharge lamps characterised by the material of the electrode

Definitions

  • Embodiments of the present invention relate to a tungsten alloy part, and a discharge lamp, a transmission tube, and a magnetron using the tungsten alloy part.
  • Tungsten alloy parts are used in various fields using the high-temperature strength of tungsten. Examples thereof include a discharge lamp, a transmission tube, and a magnetron. In a discharge lamp (HID lamp), tungsten alloy parts are used for cathode electrodes, electrode support rods, coil parts, and the like. In the transmission tube, tungsten alloy parts are used for filaments and mesh grit. In the magnetron, tungsten alloy parts are used for coil parts. These tungsten alloy parts have a shape of a coil part in which a sintered body having a predetermined shape, a wire, and a wire are coiled.
  • Patent Document 1 tungsten alloys containing thorium (or a thorium compound) are used for these tungsten alloy parts as described in JP-A-2002-226935 (Patent Document 1).
  • the tungsten alloy of Patent Document 1 improves deformation resistance by finely dispersing the average particle diameter of thorium particles and thorium compound particles to 0.3 ⁇ m or less.
  • Thorium-containing tungsten alloys are used in the aforementioned fields because of their excellent emitter characteristics and mechanical strength at high temperatures.
  • Patent Document 2 Japanese Patent Laid-Open No. 2011-103240 (Patent Document 2), a tungsten alloy part containing lanthanum boride (LaB 6 ) has been developed as a tungsten alloy part that does not use thorium.
  • LaB 6 lanthanum boride
  • Patent Document 3 describes a short arc type high-pressure discharge lamp using a tungsten alloy containing lanthanum oxide (La 2 O 3 ) and HfO 2 or ZrO 2 .
  • a tungsten alloy containing lanthanum oxide (La 2 O 3 ) and HfO 2 or ZrO 2 According to the tungsten alloy described in Patent Document 3, sufficient emission characteristics cannot be obtained. This is because the melting point of lanthanum oxide is as low as about 2300 ° C., so when the applied voltage or current density is raised, the lanthanum oxide evaporates early when the temperature of the component becomes high, and the emission characteristics deteriorate. .
  • discharge lamps which are a kind of application of tungsten alloy parts, can be broadly divided into two types: low pressure discharge lamps and high pressure discharge lamps.
  • the low-pressure discharge lamp include various arc discharge type discharge lamps such as general lighting, special lighting used for roads and tunnels, paint curing devices, UV curing devices, sterilization devices, and semiconductor photo-cleaning devices.
  • high-pressure discharge lamps include water and sewage treatment equipment, general lighting, outdoor lighting for stadiums, UV curing equipment, exposure equipment for semiconductors and printed circuit boards, wafer inspection equipment, high-pressure mercury lamps for projectors, metal halide lamps, Examples include ultra-high pressure mercury lamps, xenon lamps and sodium lamps.
  • a voltage of 10 V or more is applied to the discharge lamp according to its application.
  • a life equal to that of the thorium-containing tungsten alloy was obtained when the voltage was less than 100V.
  • the emission characteristics were lowered, and as a result, the life was greatly reduced.
  • the transmitter tube and magnetron have a problem that sufficient characteristics cannot be obtained as the applied voltage increases.
  • the present invention provides a tungsten alloy part that does not use thorium, which is a radioactive substance, and exhibits characteristics equivalent to or better than those of a thorium-containing tungsten alloy part, and a discharge lamp, a transmission tube, and a magnetron using the tungsten alloy part. It is the purpose.
  • a tungsten alloy part including tungsten and at least two components selected from the group consisting of Zr, ZrO 2 , ZrC, and C (hereinafter referred to as Zr component).
  • the tungsten alloy part contains the Zr component in an amount of 0.1 to 5 wt% in terms of ZrO 2 .
  • the tungsten alloy part preferably contains 0.1 to 3 wt% of the Zr component in terms of ZrO 2 .
  • the tungsten alloy part may further contain 0.01 wt% or less of at least one element selected from the group consisting of K, Si and Al. Further, the tungsten alloy may contain 2 wt% or less of at least one of Ti, Hf, V, Nb, Ta, Mo, and rare earth elements. In particular, when the total content of Zr is 100 parts by mass, it may contain 15 parts by mass or less of Hf.
  • the primary particles of ZrO 2 preferably have an average particle size of 15 ⁇ m or less, more preferably an average particle size of 5 ⁇ m or less and a maximum diameter of 15 ⁇ m or less.
  • the secondary particles of ZrO 2 preferably have a maximum diameter of 100 ⁇ m or less.
  • the Zr component is preferably present as two types of ZrO 2 and metal Zr. It is preferable that at least a part of the metal Zr is dissolved in tungsten.
  • the metal Zr is preferably present on the surface of the tungsten alloy part. Further, when the total content of Zr is 100 parts by mass, the content of Zr constituting ZrO 2 is preferably 30 to 98 parts by mass.
  • the tungsten alloy part preferably has a wire diameter of 0.1 to 30 mm and a Vickers hardness Hv of 330 or more, particularly preferably in the range of 330 to 700.
  • the electrode component for a discharge lamp has a tip portion having a tapered tip and a cylindrical body portion.
  • the area ratio of tungsten crystals having a crystal grain size of 1 to 80 ⁇ m per unit area (for example, 300 ⁇ m ⁇ 300 ⁇ m) is 90% or more.
  • the area ratio of tungsten crystals having a crystal grain size of 2 to 120 ⁇ m per unit area (for example, 300 ⁇ m ⁇ 300 ⁇ m) is preferably 90% or more.
  • the tungsten alloy component of the embodiment is used for a discharge lamp component, a transmitter tube component, or a magnetron component, for example.
  • the discharge lamp of the embodiment uses the tungsten alloy part of the embodiment.
  • the transmission tube of the embodiment uses the tungsten alloy component of the embodiment.
  • the magnetron of the embodiment uses the tungsten alloy component of the embodiment.
  • an applied voltage to the electrode is 100 V or more. Since the tungsten alloy part of the embodiment constituting the electrode for the discharge lamp does not contain thorium (or thorium oxide) which is a radioactive substance, there is no adverse effect on the environment.
  • the discharge lamp electrode made of the tungsten alloy component of the embodiment has characteristics equal to or better than those made of a thorium-containing tungsten alloy. For this reason, the discharge lamp using the tungsten alloy component of the embodiment is environmentally friendly.
  • FIG. 1 is a diagram illustrating an example of an electrode component for a discharge lamp according to an embodiment.
  • FIG. 2 is a diagram illustrating another example of the electrode component for a discharge lamp according to the embodiment.
  • FIG. 3 is a diagram illustrating an example of the discharge lamp according to the embodiment.
  • FIG. 4 is a diagram illustrating an example of a magnetron component according to the embodiment.
  • FIG. 5 is a diagram illustrating an example of an electrode component for a discharge lamp according to the embodiment.
  • FIG. 6 is a diagram illustrating another example of the electrode component for a discharge lamp according to the embodiment.
  • FIG. 7 is a diagram illustrating an example of a cross section of the body portion of the electrode component for a discharge lamp according to the embodiment.
  • Drawing 8 is a figure showing an example of the longitudinal section of the body part of the electrode component for discharge lamps of an embodiment.
  • FIG. 9 is a diagram illustrating an example of the discharge lamp according to the embodiment.
  • FIG. 10 is a graph showing the relationship between the emission current density and the applied voltage in Example 1 and Comparative Example 1.
  • the tungsten alloy component of the embodiment includes tungsten and at least two components selected from the group consisting of Zr, ZrO 2 , ZrC, and C, and contains 0.1 to 5 wt% of Zr in terms of ZrO 2. .
  • Zr is preferably contained in an amount of 0.1 to 3 wt% in terms of ZrO 2 .
  • Zr zirconium
  • ZrO 2 zirconium oxide
  • characteristics such as emission characteristics and strength can be improved. That is, if the Zr content is less than 0.1 wt% in terms of ZrO 2 , the effect of addition is insufficient, and if it exceeds 3 wt%, the characteristics deteriorate.
  • the Zr content is preferably 0.5 to 2.5 wt% in terms of ZrO 2 .
  • the tungsten alloy component of the embodiment contains at least two components selected from the group consisting of Zr, ZrO 2 , ZrC, and C. Specifically, a combination of Zr and ZrO 2, a combination of ZrO 2 and ZrC (zirconium carbide), a combination of ZrO 2 and C (carbon), a combination of Zr, ZrO 2 and ZrC, and a combination of ZrO 2 , ZrC and C , Zr and ZrO 2 and C combined, contains a ZrO 2 component in any combination of Zr and ZrO 2 and ZrC and C (carbon).
  • metal Zr is 1850 ° C.
  • ZrO 2 is 2720 ° C.
  • ZrC is 3420 ° C.
  • tungsten is 3400 ° C. (refer to Iwanami Shoten “Rikagaku Encyclopedia”).
  • Metal thorium has a melting point of 1750 ° C.
  • thorium oxide (ThO 2 ) has a melting point of 3220 ⁇ 50 ° C. Since zirconium has a higher melting point than thorium, the tungsten alloy component of the embodiment can have high temperature strength equal to or higher than that of thorium-containing tungsten alloy component.
  • x ⁇ 2 does not mean that all ZrO 2 components contained in the tungsten alloy are present in the form of stoichiometric ZrO 2 , and that some of them are metals Zr and ZrC. means.
  • the work function of the metal Zr is 4.1 and is larger than the work function of the metal Th, it is considered that the emission characteristics are deteriorated. However, there is no particular problem in applications such as discharge lamps. .
  • Metal zirconium is an effective element for improving strength because it forms a solid solution with tungsten. When the contents of Zr and O are converted to ZrOx, 0 ⁇ x ⁇ 2 is preferable.
  • 0 ⁇ x means that either ZrC or C is present in the tungsten alloy.
  • ZrC or C has a deoxidizing effect for removing impurity oxygen contained in the tungsten alloy. By reducing the impurity oxygen, the electrical resistance value of the tungsten component can be lowered, so that the characteristics as an electrode are improved.
  • Z of ZrOx is in the above range, metals Zr, ZrO 2 , ZrC or C exist in a well-balanced manner, and characteristics such as emission characteristics, strength, electrical resistance, and life are improved.
  • the contents of Zr, ZrO 2 , ZrC, and O in the tungsten alloy part can be measured using an ICP analysis method and an inert gas melting-infrared absorption method.
  • ICP analysis method the total amount of Zr of metal Zr and the amount of Zr of ZrO 2 and ZrC can be measured.
  • inert gas melting-infrared absorption method the total amount of oxygen of ZrOx and the amount of oxygen present alone or as another oxide can be measured.
  • the Zr amount and the O amount are measured by an ICP analysis method and an inert gas melting-infrared absorption method, and converted to ZrOx.
  • the tungsten alloy component of the embodiment may contain 0.01 wt% or less of at least one element selected from the group consisting of K, Si, and Al.
  • K (potassium), Si (silicon), and Al (aluminum) are so-called dope materials, and recrystallization characteristics can be improved by adding these dope materials. By improving the recrystallization characteristics, it becomes easier to obtain a uniform recrystallized structure when the recrystallization heat treatment is performed.
  • the minimum of content of dope material is not specifically limited, It is preferable that it is 0.001 wt% or more. If it is less than 0.001 wt%, the effect of addition is small, and if it exceeds 0.01 wt%, the sinterability and workability may be deteriorated and the mass productivity may be reduced.
  • the tungsten alloy component of the embodiment preferably contains 15 parts by mass or less of Hf when the Zr content is 100 parts by mass.
  • the content of Zr indicates the total amount of Zr of Zr, ZrO 2 and ZrC. Since Hf (hafnium) has a high melting point of 2207 ° C., there is little adverse effect even if it is contained in tungsten alloy parts.
  • Commercially available Zr powder may contain several percent of Hf depending on the grade. The use of high-purity Zr powder or high-purity ZrO 2 powder from which impurities are removed is effective for improving the characteristics. On the other hand, increasing the purity of the raw material increases the cost.
  • Zr is 100 parts by weight, if the Hf (hafnium) content is 15 parts by mass or less, it is not necessary to deteriorate the characteristics more than necessary.
  • the carbon content in the surface portion is C1 (wt%) and the carbon content in the central portion is C2 (wt%).
  • the surface portion indicates a portion from the surface of the tungsten alloy part to 20 ⁇ m.
  • the central portion is a central portion in the cross section of the tungsten alloy part.
  • This carbon amount is a total value of both carbon of a carbide such as ZrC and carbon present alone, and can be analyzed by a combustion-infrared absorption method.
  • the fact that the amount of carbon in the surface portion C1 ⁇ the amount of carbon in the central portion C2 indicates that the carbon in the surface portion was converted to CO 2 by deoxidation and went out of the system.
  • the amount of carbon in the surface portion decreases, the amount of Zr in the surface portion relatively increases. For this reason, it is particularly effective when Zr is used as an emitter material.
  • the tungsten alloy part of the embodiment preferably contains a tungsten crystal having an average crystal grain size of 1 to 100 ⁇ m.
  • the tungsten alloy part is preferably a sintered body. If it is a sintered body, it is possible to produce parts having various shapes by using a molding process.
  • the sintered body can be easily processed into a wire rod (including a filament), a coil component, and the like by performing a forging process, a rolling process, a drawing process, and the like.
  • the sintered tungsten crystal has an isotropic crystal structure with 90% or more of crystals having an aspect ratio of less than 3. When such a sintered body is drawn, a crystal having an aspect ratio of 3 or more becomes a flat crystal structure of 90% or more.
  • the grain size of the tungsten crystal can be determined as follows. First, a crystal structure is taken with an enlarged photograph of a metal microscope or the like. The maximum ferret diameter is measured for one tungsten crystal existing in the cross section to obtain a particle diameter. This measurement is performed on any 100 tungsten crystals, and the average value is defined as the average crystal grain size.
  • the average of the maximum ferret diameter of the tungsten crystal is as small as less than 1 ⁇ m, it becomes difficult to make the dispersion state of the dispersed components such as Zr, ZrO 2 , ZrC or C uniform. This is because if the average of the maximum ferret diameter of the tungsten crystal is as small as less than 1 ⁇ m, the grain boundary becomes small, and thus it becomes difficult for the dispersed component to be uniformly dispersed at the grain boundary between the tungsten crystals. On the other hand, if the average of the maximum ferret diameter of the tungsten crystal is larger than 100 ⁇ m, the strength as a sintered body is lowered. Therefore, the average maximum ferret diameter of the tungsten crystal is preferably 1 to 100 ⁇ m, and more preferably 10 to 60 ⁇ m.
  • the average value of the maximum ferret diameter of the dispersion component such as Zr, ZrO 2 , ZrC, or C is preferably smaller than the average value of the maximum ferret diameter of the tungsten crystal. Specifically, it is preferable that B / A ⁇ 0.5 when the average value of the maximum ferret diameter of the tungsten crystal is A ( ⁇ m) and the average value of the maximum ferret diameter of the dispersed component is B ( ⁇ m). .
  • a dispersion component such as Zr, ZrO 2 , ZrC, or C exists at the grain boundary between tungsten crystals, and functions as an emitter material or a grain boundary reinforcing material. By reducing the average particle size of the dispersed component to 1 ⁇ 2 or less of the average crystal particle size of tungsten, the dispersed component can be easily dispersed uniformly at the grain boundary of the tungsten crystal, and the characteristic variation can be reduced.
  • the tungsten alloy parts as described above are preferably used for at least one of discharge lamp parts, transmitter tube parts, and magnetron parts.
  • Examples of parts for discharge lamps include cathode electrodes, electrode support rods, and coil parts used for discharge lamps.
  • An example of a discharge lamp cathode electrode is shown in FIGS.
  • 1 is a cathode electrode
  • 2 is an electrode body
  • 3 is an electrode tip.
  • the cathode electrode 1 is formed of a tungsten alloy sintered body.
  • the tip of the electrode tip 3 may be a truncated cone as shown in FIG. 1, or the tip may be a cone as shown in FIG. If necessary, the tip is polished.
  • the electrode body 2 is preferably cylindrical with a diameter of 2 to 35 mm and a length of 10 to 600 mm.
  • Fig. 3 shows an example of a discharge lamp.
  • 1 is a cathode electrode
  • 4 is a discharge lamp
  • 5 is an electrode support rod
  • 6 is a glass tube.
  • the pair of cathode electrodes 1 are arranged so that the electrode tip portions face each other.
  • the cathode electrode 1 is joined to the electrode support bar 5.
  • a phosphor layer (not shown) is provided on the inner surface of the glass tube 6.
  • the glass tube 6 is filled with mercury, halogen, argon gas (or neon gas) or the like as necessary.
  • the entire electrode support rod may be the tungsten alloy of the embodiment, or the tungsten alloy of the embodiment is used as a portion to be joined to the cathode electrode, and the remaining portion.
  • a shape in which another lead material is joined may be used.
  • an electrode that has a coil component attached to an electrode support rod. It is also possible to apply the tungsten alloy of the embodiment to this coil component.
  • the discharge lamp of the embodiment uses the tungsten alloy part of the embodiment.
  • the type of the discharge lamp is not particularly limited, and can be applied to both a low pressure discharge lamp and a high pressure discharge lamp.
  • Examples of the low pressure discharge lamp include various arc discharge type discharge lamps such as general lighting, special lighting used for roads and tunnels, paint curing devices, UV curing devices, sterilizing devices, and light cleaning devices such as semiconductors.
  • High pressure discharge lamps include water and sewage treatment equipment, general lighting, outdoor lighting for stadiums, UV curing equipment, exposure equipment for semiconductors and printed circuit boards, wafer inspection equipment, high pressure mercury lamps for projectors, metal halide lamps, A high pressure mercury lamp, a xenon lamp, a sodium lamp, etc. are mentioned.
  • the tungsten alloy part of the embodiment is also suitable for a transmission pipe part.
  • the transmission tube component include a filament or a mesh grid.
  • the mesh grid may be obtained by knitting a wire material in a mesh shape or by forming a plurality of holes in a sintered body plate. Since the transmission tube of the embodiment uses the tungsten alloy component of the embodiment as a transmission tube component, the emission characteristics and the like are good.
  • the tungsten alloy part of the embodiment is also suitable for a magnetron part.
  • magnetron parts include coil parts.
  • FIG. 4 shows a cathode structure for a magnetron as an example of a magnetron component.
  • 7 is a coil component
  • 8 is an upper support member
  • 9 is a lower support member
  • 10 is a support rod
  • 11 is a magnetron cathode assembly.
  • the upper support member 8 and the lower support member 9 are integrated via a support bar 10.
  • a coil component 7 is disposed around the support rod 10 and integrated with the upper support member 8 and the lower support member 9.
  • Such a magnetron component is suitable for a microwave oven.
  • the coil component is preferably made of a tungsten wire having a wire diameter of 0.1 to 1 mm.
  • the diameter of the coil component is preferably 2 to 6 mm.
  • the manufacturing method of the tungsten alloy component of the embodiment is not particularly limited as long as it has the above-described configuration, but the following method can be given as an efficient manufacturing method.
  • a tungsten powder as a raw material is prepared.
  • the tungsten powder preferably has an average particle size of 1 to 10 ⁇ m. If the average particle size is less than 1 ⁇ m, the tungsten powder tends to aggregate and it is difficult to uniformly disperse the ZrO 2 component. If the average grain size exceeds 10 ⁇ m, the average crystal grain size as a sintered body may exceed 100 ⁇ m.
  • the purity of the tungsten powder is preferably 99.0 wt% or more, more preferably 99.9 wt% or more, although it depends on the application.
  • ZrO 2 powder is prepared as the Zr component
  • ZrC powder is prepared as the ZrC component.
  • a mixture of Zr powder and carbon powder may be used.
  • ZrC powder instead of the ZrC powder alone, it is possible to mix ZrC powder with one or two kinds of Zr powder or carbon powder. Among these, it is preferable to use ZrO 2 powder or ZrC powder.
  • ZrC powder is preferable because part of the carbon decomposes and reacts with impurity oxygen in the tungsten powder in the sintering step, and becomes carbon dioxide which is released out of the system and contributes to the homogenization of the tungsten alloy.
  • the load of the manufacturing process increases because both Zr powder and carbon powder are uniformly mixed.
  • metal Zr is easy to oxidize, it is preferable to use ZrC powder.
  • the primary particles of the ZrO 2 powder preferably have an average particle size of 15 ⁇ m or less, and more preferably 0.5 to 5 ⁇ m.
  • the average particle size is less than 0.5 ⁇ m, the aggregation of the ZrO 2 powder is large and it is difficult to uniformly disperse.
  • the average particle diameter exceeds 15 ⁇ m, it is difficult to uniformly disperse the tungsten crystal grain boundaries.
  • the ZrC powder preferably has an average particle size of 0.5 to 5 ⁇ m. When the average particle size is less than 0.5 ⁇ m, the aggregation of ZrC powder is large and it is difficult to uniformly disperse.
  • the average particle diameter of the ZrO 2 powder or the ZrC powder ⁇ the average particle diameter of the tungsten powder.
  • the Hf content of the ZrO 2 powder, the ZrC powder, and the Zr powder is 100 parts by mass
  • the Hf content is preferably 15 parts by mass or less, and more preferably 10 parts by mass or less.
  • the amount of Hf is more preferably 0.1 to 3 parts by mass.
  • At least one dope material selected from the group consisting of K, Si and Al is added.
  • the amount added is preferably 0.01 wt% or less.
  • each raw material powder is uniformly mixed.
  • the mixing step is preferably performed using a mixer such as a ball mill.
  • the mixing step is preferably performed for 8 hours or longer, more preferably 20 hours or longer. If necessary, it may be mixed with an organic binder or an organic solvent to form a slurry. You may perform a granulation process as needed.
  • a sintering process is performed.
  • the sintering step is preferably performed in an inert atmosphere such as hydrogen or nitrogen or in a vacuum.
  • Sintering is preferably performed at a temperature of 1400 to 3000 ° C. for 1 to 20 hours. If the sintering temperature is less than 1400 ° C. or the sintering time is less than 1 hour, the sintering is insufficient and the strength of the sintered body is lowered. If the sintering temperature exceeds 3000 ° C. or the sintering time exceeds 20 hours, the tungsten crystal may grow too much.
  • Sintering By performing sintering in hydrogen, an inert atmosphere, or in a vacuum, carbon on the surface of the sintered body can be easily released out of the system.
  • Sintering can be performed by electric current sintering, atmospheric pressure sintering, pressure sintering, etc., and is not particularly limited.
  • a process for processing the sintered body into a part is performed.
  • the processing process include a forging process, a rolling process, a drawing process, a cutting process, and a polishing process.
  • a coiling process is mentioned when making it a coil component.
  • a step of assembling filaments into a mesh shape can be mentioned.
  • the processed parts are subjected to strain relief heat treatment as necessary.
  • the strain relief heat treatment is preferably performed in the range of 1300 to 2500 ° C. in an inert atmosphere or vacuum. By performing the strain relief heat treatment, it is possible to relieve internal stress generated in the processing step for the component and improve the strength of the component.
  • Tungsten alloy part embodiment contains 0.1 ⁇ 5 wt% of Zr in terms of ZrO 2, and is preferably the primary particles of ZrO 2 particles is less than or equal to the average particle size of 15 [mu] m.
  • the tungsten alloy part preferably contains two kinds of ZrO 2 and Zr.
  • ZrO 2 hafnium oxide
  • the atomic ratio of O / Zr is not limited to 2, and may be in the range of 1.6-2.
  • Zr is a component that functions as an emitter material in an electrode component for a discharge lamp. If the Zr content is less than 0.1 wt% in terms of ZrO 2 , the emission characteristics are insufficient. If Zr exceeds 5 wt%, the strength may be lowered. Therefore, Zr is preferably 0.3 to 3.0 wt% in terms of ZrO 2 , and more preferably 0.5 to 2.5 wt%.
  • ZrO 2 exists in the form of particles, and the primary particles of ZrO 2 preferably have an average particle size of 15 ⁇ m or less. ZrO 2 particles exist at the grain boundaries between tungsten crystal particles. For this reason, if the ZrO 2 particles are too large, the gap between the tungsten crystal particles is enlarged, which causes a decrease in density and strength. When ZrO 2 particles exist at the grain boundaries between tungsten crystal particles, they function not only as an emission material but also as a dispersion strengthening material, which is advantageous in improving the strength of electrode parts.
  • the primary particles of the ZrO 2 particles preferably have an average particle diameter of 5 ⁇ m or less and a maximum diameter of 15 ⁇ m or less. Further, the primary particles of the ZrO 2 particles preferably have an average particle size of 0.1 ⁇ m or more and 3 ⁇ m or less and a maximum diameter of 1 ⁇ m or more and 10 ⁇ m or less. Small ZrO 2 particles having an average particle diameter of less than 0.1 ⁇ m or a maximum diameter of less than 1 ⁇ m may disappear quickly due to exhaustion due to emission. In order to extend the life as an electrode, the ZrO 2 particles preferably have an average particle diameter of 0.1 ⁇ m or more or a maximum diameter of 1 ⁇ m or more.
  • the dispersion state of ZrO 2 particles in the tungsten alloy part is preferably in the range of 2 to 30 on an arbitrary straight line having a length of 200 ⁇ m.
  • the number of ZrO 2 particles is less than 2 (0 to 1) per 200 ⁇ m long straight line, ZrO 2 particles are partially reduced, resulting in a large variation in emissions.
  • the number of ZrO 2 particles exceeds 30 (31 or more) per straight line having a length of 200 ⁇ m (31 or more), ZrO 2 particles may be excessively increased in part, which may cause adverse effects such as strength reduction.
  • the dispersion state of ZrO 2 particles is examined by magnifying and photographing an arbitrary cross section of the tungsten alloy.
  • the magnification of the enlarged photograph is 1000 times or more.
  • An arbitrary straight line having a length of 200 ⁇ m (line thickness: 0.5 mm) is drawn on the enlarged photograph, and the number of ZrO 2 particles present on the line is counted.
  • the secondary particles of ZrO 2 preferably have a maximum diameter of 100 ⁇ m or less.
  • the secondary particles of ZrO 2 are aggregates of primary particles. If the secondary particles are larger than 100 ⁇ m, the strength of the tungsten alloy part is lowered. Therefore, the maximum diameter of the secondary particles of the ZrO 2 particles is preferably as small as 100 ⁇ m or less, 50 ⁇ m or less, and further 20 ⁇ m or less.
  • Zr metal Zr
  • Zr has various dispersion states.
  • the metal Zr exists as particles.
  • the metal Zr particles are present at the grain boundaries between the tungsten crystal particles in the same manner as the ZrO 2 particles.
  • the metal Zr particles also function as an emission material and a dispersion strengthening material. Therefore, the primary particles of the metal Zr preferably have an average particle size of 15 ⁇ m or less, more preferably 10 ⁇ m or less, and further preferably 0.1 to 3 ⁇ m.
  • the primary particle of the metal Zr preferably has a maximum diameter of 15 ⁇ m or less, and more preferably 10 ⁇ m or less.
  • ZrO 2 particles and metal Zr particles may be mixed in advance, or metal Zr particles may be generated by deoxidizing the ZrO 2 particles during the manufacturing process. If a method of deoxidizing ZrO 2 particles is used, it is preferable because oxygen in tungsten is also released from the system. If deoxidation can be performed, the electrical resistance of the tungsten alloy can be lowered, so that the conductivity of the electrode is improved.
  • metal Zr is present on the surface of the ZrO 2 particles. Similar to the first dispersion state, when a sintered body of tungsten alloy is produced, oxygen is deoxidized from the surface of the ZrO 2 particles, and a metal Zr film is formed on the surface. Even ZrO 2 particles with metal Zr coating exhibit excellent emission characteristics.
  • the primary particles of ZrO 2 with a metal Zr coating preferably have an average particle size of 15 ⁇ m or less, more preferably 10 ⁇ m or less, and even more preferably 0.1 to 3 ⁇ m.
  • the primary particles of ZrO 2 with a metal Zr coating preferably have a maximum diameter of 15 ⁇ m or less, and more preferably 10 ⁇ m or less.
  • part or all of the metal Zr is solid-solved in tungsten.
  • Metal Zr forms a solid solution with tungsten.
  • the strength of the tungsten alloy can be improved.
  • the presence or absence of solid solution can be determined by XRD analysis. First, the Zr component and oxygen content are measured. The content of Zr and oxygen is converted to ZrOx, and it is confirmed that x ⁇ 2. Next, XRD analysis is performed to confirm that no metal Zr peak is detected.
  • the ZrOx x is smaller than 2 and there is zirconium which is not stoichiometric zirconium oxide, the fact that the peak of the metal Zr is not detected means that the metal Zr is dissolved in tungsten.
  • Z of ZrOx is smaller than 2 and there is zirconium which is not stoichiometric zirconium oxide, and the peak of metal Zr is detected, metal Zr is not dissolved and the tungsten crystals are not dissolved. It means the first dispersed state existing at the grain boundary.
  • the second dispersion state can be analyzed using EPMA (electron beam microanalyzer) or TEM (transmission electron microscope).
  • the dispersion state of the metal Zr may be any one of the first dispersion state, the second dispersion state, and the third dispersion state, or a combination of two or more.
  • the proportion of Zr that is ZrO 2 particles is preferably 30 to 98 parts by mass. All of Zr may be ZrO 2 particles. With ZrO 2 particles, emission characteristics can be obtained. On the other hand, by dispersing the metal Zr, the conductivity and strength of the tungsten alloy can be improved. However, if all of Zr is metal Zr, emission characteristics and high-temperature strength are lowered. Metal Zr has a melting point of 1850 ° C., ZrO 2 has a melting point of 2720 ° C., and metal tungsten has a melting point of 3400 ° C.
  • the tungsten alloy component containing ZrO 2 has improved high-temperature strength. Moreover, since the surface current density of ZrO 2 is substantially equal to that of ThO 2 , a current equivalent to that of the thorium oxide-containing tungsten alloy component can be passed through the tungsten alloy component of the embodiment. Therefore, when the tungsten alloy component of the embodiment is applied to an electrode of a discharge lamp, a current density equivalent to that of a thorium oxide-containing tungsten alloy electrode can be set, so that a design change such as a control circuit is unnecessary. From these viewpoints, when the total content of Zr components is 100 parts by mass, the content of Zr constituting ZrO 2 is preferably 30 to 98 parts by mass, and more preferably 60 to 95 parts by mass. preferable.
  • the contents of ZrO 2 and metal Zr in the tungsten alloy can be analyzed as follows.
  • the total amount of Zr in the tungsten alloy is measured by ICP analysis.
  • the total amount of oxygen in the tungsten alloy is measured by an inert gas melting-infrared absorption method.
  • the size of the ZrO 2 particles an enlarged photograph of an arbitrary cross section of the tungsten alloy sintered body is taken, and the longest diagonal of the ZrO 2 particles existing in the cross section is measured to obtain the particle size of the primary particles of ZrO 2 . This measurement is performed on 50 ZrO 2 particles, and the average value is defined as the average particle size of the primary particles of ZrO 2 . Among the particle diameters of ZrO 2 primary particles (longest diagonal line), the maximum value is the maximum diameter of the primary particles of ZrO 2 .
  • the tungsten alloy component of the embodiment may contain 2 wt% or less of at least one element selected from the group consisting of Ti, V, Nb, Ta, Mo and rare earth elements. At least one element selected from the group consisting of Ti, V, Nb, Ta, Mo and rare earth elements exists in any form of a simple metal, an oxide, and a carbide. You may contain these 2 or more types of elements. Even when two or more elements are contained, the total is preferably 2 wt% or less. These elements mainly function as a dispersion strengthening material. Since ZrO 2 particles function as an emission material, they are consumed when the discharge lamp is used for a long time.
  • Ti, V, Nb, Ta, Mo, and rare earth elements have weak emission characteristics, they are less consumed by emission and can maintain their function as a dispersion strengthening material over a long period of time.
  • the minimum of content of these elements is not specifically limited, It is preferable that it is 0.01 wt% or more. Of these elements, rare earth elements are preferred. Rare earth elements have a large atomic radius of 0.16 nm or more, which is advantageous for increasing the surface current density. In other words, it is preferable to use a metal simple substance or an element thereof containing an element having an atomic radius of 0.16 nm or more as the dispersion strengthening material.
  • FIG. 5 and FIG. 6 show an example of the electrode component for the discharge lamp of the embodiment.
  • 21 is a discharge lamp electrode part
  • 22 is a discharge lamp electrode part having a tapered tip part
  • 23 is a tip part
  • 24 is a body part.
  • the discharge lamp electrode part 21 has a cylindrical shape, and a tip part 23 thereof is processed into a tapered shape to form a discharge lamp electrode part 22.
  • the discharge lamp electrode component 21 before processing into a tapered shape is usually a cylindrical shape, but may be a quadrangular prism shape.
  • the electrode component for a discharge lamp has a tip portion having a tapered tip and a cylindrical body portion.
  • the taper shape that is, the shape having a sharp tip, improves the characteristics as an electrode component for a discharge lamp.
  • the ratio of the length of the front end portion 23 and the body portion 24 is not particularly limited, and is appropriately set according to the application.
  • the wire diameter ⁇ of the discharge lamp electrode component is preferably 0.1 to 30 mm. If the thickness is less than 0.1 mm, the strength as an electrode part cannot be maintained, and there is a possibility that the electrode part may be broken when assembled into a discharge lamp, or may be broken when the tip is tapered. On the other hand, if it exceeds 30 mm, it becomes difficult to control the uniformity of the tungsten crystal structure as described later.
  • FIG. 7 shows an example of a cross section of the body part.
  • 24 is a body part and 25 is a transverse section.
  • an enlarged photograph of the radial cross section at the center of the length of the body part is taken. Note that, when the wire diameter is small and a unit area of, for example, 300 ⁇ m ⁇ 300 ⁇ m cannot be imaged in one field of view, an arbitrary cross section is imaged multiple times.
  • the longest diagonal line among the tungsten crystal particles existing in the cross section is defined as the maximum diameter.
  • the area ratio of tungsten crystal particles whose maximum diameter is in the range of 1 to 80 ⁇ m is calculated.
  • the area ratio of tungsten crystals having a crystal grain size of 1 to 80 ⁇ m per unit area of the cross section of the body portion is 90% or more. This means that a small tungsten crystal having a crystal grain size of less than 1 ⁇ m and a large tungsten having a crystal grain size of more than 80 ⁇ m. Indicates that there are few crystals. If there are too many tungsten crystals of less than 1 ⁇ m, the grain boundaries between tungsten crystal particles become too small. If the proportion of ZrO 2 particles in the tungsten crystal grain boundary increases, a large defect occurs when the ZrO 2 particles are consumed due to emission, and the strength of the tungsten alloy decreases.
  • the area ratio of tungsten crystals having a crystal grain size of 1 to 80 ⁇ m per unit area of the cross section of the body portion is preferably 96% or more, and more preferably 100%.
  • the average particle diameter of the tungsten crystal particles in the cross section is preferably 50 ⁇ m or less, more preferably 20 ⁇ m or less.
  • the average aspect ratio of the tungsten crystal grains in the cross section is preferably less than 3.
  • the aspect ratio is calculated as follows. An enlarged photograph of a unit area (for example, 300 ⁇ m ⁇ 300 ⁇ m) is taken, the maximum diameter (ferret diameter) of the tungsten crystal particles existing in the cross section is the long diameter L, and the particle diameter obtained by vertically extending from the center of the long diameter L is the short diameter S.
  • the area ratio of tungsten crystals having a crystal grain size of 2 to 120 ⁇ m per unit area is preferably 90% or more.
  • FIG. 8 shows an example of a longitudinal section.
  • 24 is a body part and 26 is a longitudinal section.
  • 26 is a longitudinal section.
  • an enlarged photograph of the longitudinal section passing through the center of the diameter of the body part is taken.
  • a unit area of, for example, 300 ⁇ m ⁇ 300 ⁇ m cannot be photographed in one field of view
  • an arbitrary longitudinal section is photographed a plurality of times.
  • the longest diagonal line among the tungsten crystal particles existing in the cross section is defined as the maximum diameter.
  • the area ratio of tungsten crystal particles whose maximum diameter is in the range of 2 to 120 ⁇ m is calculated.
  • the area ratio of tungsten crystals having a crystal grain size of 2 to 120 ⁇ m per unit area of the longitudinal section of the body portion is 90% or more, which means that a small tungsten crystal having a crystal grain size of less than 2 ⁇ m and a large tungsten having a crystal grain size of more than 120 ⁇ m Indicates that there are few crystals.
  • the grain boundary between tungsten crystal particles will become too small. If the proportion of ZrO 2 particles in the tungsten crystal grain boundary increases, a large defect occurs when the ZrO 2 particles are consumed due to emission, and the strength of the tungsten alloy decreases.
  • the area ratio of tungsten crystals having a crystal grain size of 2 to 120 ⁇ m per unit area of the longitudinal section of the body portion is preferably 96% or more, and more preferably 100%.
  • the average particle diameter of tungsten crystal particles in the longitudinal section is preferably 70 ⁇ m or less, more preferably 40 ⁇ m or less.
  • the average aspect ratio of the tungsten crystal particles in the longitudinal section is preferably 3 or more.
  • the method for measuring the average particle diameter and the average aspect ratio is the same as the method described for the cross section.
  • the characteristics of the discharge lamp electrode component are also improved.
  • the tungsten alloy part preferably has a relative density of 95.0% or more, more preferably 98.0% or more. If the relative density is less than 95.0%, bubbles may increase and adverse effects such as strength reduction and partial discharge may occur.
  • the theoretical density is obtained by calculation from the density and mass ratio of known components.
  • the density of the tungsten 19.3 g / cm 3, the density of zirconium 6.51 g / cm 3, the density of the zirconium oxide is 6.52 g / cm 3.
  • the tungsten alloy component of the embodiment preferably has a Vickers hardness Hv of 330 or more, and more preferably within a range of Hv 330 to 700. If the Vickers hardness is less than Hv330, the tungsten alloy is too soft and the strength is lowered. On the other hand, if it exceeds Hv700, the tungsten alloy is too hard and it is difficult to process the tip into a tapered shape. On the other hand, if it is too hard, in the case of an electrode part having a long body part, there is a possibility that it is not flexible and easily breaks. If the Vickers hardness Hv is 330 or more, the three-point bending strength of the tungsten alloy can be increased to 400 MPa or more.
  • the surface roughness Ra is preferably 5 ⁇ m or less.
  • the tip has a surface roughness Ra of preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less. If the surface irregularities are large, the emission characteristics will deteriorate.
  • the tungsten alloy parts as described above can be applied to various discharge lamps and are not particularly limited, such as a low pressure discharge lamp and a high pressure discharge lamp. Therefore, a long life can be achieved even when a large voltage of 100 V or higher is applied.
  • the wire diameter of the body part is in the range of 0.1 to 30 mm, the wire diameter is 0.1 mm to 3 mm thin size, 3 mm to 10 mm medium size, 10 mm to 30 mm thick Applicable up to.
  • the length of the electrode body is preferably 10 to 600 mm.
  • Fig. 9 shows an example of a discharge lamp.
  • reference numeral 22 denotes an electrode component (tip portion has been tapered)
  • 27 denotes a discharge lamp
  • 28 denotes an electrode support rod
  • 29 denotes a glass tube.
  • the discharge lamp 27 arranges the pair of electrode parts 22 so that the electrode tip portions face each other.
  • the electrode component 22 is joined to the electrode support rod 28.
  • a phosphor layer (not shown) is provided on the inner surface of the glass tube 29. Inside the glass tube 29, mercury, halogen, argon gas (or neon gas) or the like is sealed as necessary.
  • the discharge lamp of the embodiment uses the tungsten alloy part of the embodiment.
  • the type of the discharge lamp is not particularly limited, and can be applied to both a low pressure discharge lamp and a high pressure discharge lamp.
  • Examples of the low-pressure discharge lamp include various arc discharge type discharge lamps such as general lighting, special lighting used for roads and tunnels, paint curing devices, UV curing devices, sterilization devices, and semiconductor photo-cleaning devices.
  • High-pressure discharge lamps include water and sewage treatment equipment, general lighting, outdoor lighting for stadiums, UV curing equipment, exposure equipment for semiconductors and printed circuit boards, wafer inspection equipment, high-pressure mercury lamps for projectors, metal halide lamps, ultra-high pressure, etc.
  • a mercury lamp, a xenon lamp, a sodium lamp, etc. are mentioned. Since the strength of the tungsten alloy is improved, it can be applied to a field involving movement (vibration) such as an automobile discharge lamp.
  • the manufacturing method is not particularly limited, but examples of the manufacturing method for obtaining efficiently include the following.
  • a tungsten alloy powder containing a Zr component is prepared.
  • a ZrO 2 powder is prepared as a Zr component.
  • the primary particles of the ZrO 2 powder preferably have an average particle size of 15 ⁇ m or less, and more preferably have an average particle size of 5 ⁇ m or less. It is preferable to use a sieve to remove in advance those exceeding the maximum diameter of 15 ⁇ m. When it is desired to reduce the maximum diameter to 10 ⁇ m or less, large ZrO 2 particles are removed using a sieve having a predetermined mesh diameter. Even when it is desired to remove ZrO 2 particles having a small particle diameter, they are removed using a sieve having a predetermined mesh diameter. Prior to sieving, it is preferable to pulverize the ZrO 2 particles with a ball mill or the like. By performing the pulverization step, the aggregates can be broken, so that it is easy to control the particle size by sieving.
  • the metal tungsten powder preferably has an average particle size of 0.5 to 10 ⁇ m.
  • the metal tungsten powder preferably has a purity of 98.0 wt% or more, an oxygen content of 1 wt% or less, and an impurity metal component of 1 wt% or less.
  • the particles are pulverized in advance by a ball mill or the like, and small particles and large particles are removed by a sieving step.
  • Metal tungsten powder is added so that the Zr content is 0.1 to 5 wt% in terms of ZrO 2 .
  • a mixed powder of ZrO 2 particles and metal tungsten powder is put in a mixing container, and the mixing container is rotated to mix uniformly.
  • a cylindrical container is used as the mixing container, and the mixing container can be smoothly mixed by rotating in the circumferential direction.
  • a tungsten powder containing ZrO 2 particles can be prepared.
  • a small amount of carbon powder may be added in consideration of deoxidation during the sintering process described later.
  • a compact is produced using the tungsten powder containing the obtained ZrO 2 particles.
  • a binder is used as necessary.
  • the diameter is preferably 0.1 to 40 mm.
  • the size of a molded object is arbitrary.
  • the length (thickness) of a molded object is arbitrary.
  • the compact is pre-sintered.
  • Presintering is preferably performed at 1250 to 1500 ° C.
  • a presintered body can be obtained.
  • the pre-sintered body is subjected to current sintering.
  • the electric current sintering is preferably performed under the condition that the sintered body has a temperature of 2100 to 2500 ° C. If the temperature is less than 2100 ° C., sufficient densification cannot be achieved and the strength is lowered. When the temperature exceeds 2500 ° C., ZrO 2 particles and tungsten particles grow too much, and the desired crystal structure cannot be obtained.
  • the molded body may be sintered at a temperature of 1400 to 3000 ° C. for 1 to 20 hours. If the sintering temperature is less than 1400 ° C. or the sintering time is less than 1 hour, the sintering is insufficient and the strength of the sintered body is lowered. If the sintering temperature exceeds 3000 ° C. or the sintering time exceeds 20 hours, the tungsten crystal may grow too much.
  • the sintering atmosphere examples include an inert atmosphere such as nitrogen and argon, a reducing atmosphere such as hydrogen, and a vacuum.
  • the carbon of the ZrO 2 particles is decarburized during the sintering process. Since impurity oxygen in the tungsten powder is removed together at the time of decarburization, the oxygen content in the tungsten alloy can be reduced to 1 wt% or less, and further to 0.5 wt% or less. When the oxygen content in the tungsten alloy is reduced, the conductivity is improved.
  • a Zr-containing tungsten sintered body can be obtained.
  • the sintered body is also a cylindrical sintered body (ingot).
  • a cylindrical sintered body (ingot) can be obtained by a step of cutting to a predetermined size.
  • the diameter of the cylindrical sintered body is adjusted by forging, rolling, drawing, or the like.
  • the processing rate is preferably in the range of 30 to 90%.
  • the wire diameter is preferably adjusted by a plurality of processes. By performing the processing a plurality of times, it is possible to obtain a high-density electrode part by crushing the pores of the cylindrical sintered body before processing.
  • the processing rate is as low as less than 30%, the crystal structure is not sufficiently extended in the processing direction, and it becomes difficult to make the tungsten crystal and the ZrO 2 particles have a desired size. Further, if the processing rate is as small as less than 30%, the pores inside the cylindrical sintered body before processing may not be sufficiently crushed and may remain as they are. If the internal pores remain, it may cause a decrease in the durability of the cathode component. On the other hand, if the processing rate is larger than 90%, there is a possibility that the yield is lowered due to disconnection due to excessive processing. For this reason, the processing rate is preferably 30 to 90%, more preferably 35 to 70%. In addition, when the relative density of the sintered tungsten alloy is 95% or more, the processing is not necessarily performed at the above processing rate.
  • the electrode part After processing the wire diameter of the sintered body to 0.1 to 30 mm, the electrode part can be produced by cutting to a required length. If necessary, the tip is processed into a tapered shape. Further, polishing, heat treatment (such as recrystallization heat treatment), and shape processing are performed as necessary.
  • the recrystallization heat treatment is preferably performed in a range of 1300 to 2500 ° C. in a reducing atmosphere, an inert atmosphere or a vacuum.
  • the discharge lamp electrode component of the embodiment can be efficiently manufactured.
  • Example 1 As a raw material powder, ZrO 2 powder (purity 99.0%) having an average particle diameter of 2 ⁇ m was added to tungsten powder (purity 99.99 wt%) having an average particle diameter of 2 ⁇ m so as to be 1.5 wt%. Note that the ZrO 2 powder, impurity amount of Hf when the Zr amount is 100 parts by mass was 1.0 parts by mass.
  • the raw material powder was mixed with a ball mill for 10 hours to prepare a mixed raw material powder.
  • the mixed raw material powder was put into a mold to produce a molded body.
  • the obtained molded body was subjected to furnace sintering in hydrogen at 1800 ° C. for 10 hours. By this step, a sintered body of 16 mm length ⁇ 16 mm width ⁇ 420 mm length was obtained.
  • a rod having a square or circular cross section was produced by forging or the like, and then a cylindrical sample having a diameter of 2.4 mm and a length of 150 mm was cut out. The sample was subjected to centerless polishing so that the surface roughness Ra was 5 ⁇ m or less. Next, a strain relief heat treatment at 1600 ° C. was performed in hydrogen.
  • the content of ZrO 2 , the carbon content of the surface portion and the central portion, and the average grain size of tungsten crystals were examined.
  • the content of ZrO 2 was analyzed by ICP analysis and inert gas melting-infrared absorption method to analyze the amount of Zr and the amount of oxygen, and converted to ZrOx.
  • the carbon content in the surface portion and the central portion was measured by a combustion-infrared absorption method by cutting a sample for measurement from a range of 10 ⁇ m from the surface and from a cylindrical cross section.
  • the average crystal grain size of the tungsten crystal particles is an average value obtained by measuring the crystal particle size of 100 tungsten crystal particles in an arbitrary cross-sectional structure. The results are shown in Table 1.
  • Example 1 the emission characteristics of the cathode component for a discharge lamp according to Example 1 and Comparative Example 1 were examined.
  • the emission characteristics were measured by changing the applied voltage (V) to 100 V, 200 V, 300 V, and 400 V and measuring the emission current density (mA / mm 2 ).
  • the measurement was performed at an applied current load of 18 ⁇ 0.5 A / W to the cathode component and an application time of 20 ms. The result is shown in FIG.
  • FIG. 10 indicates that the emission characteristics of Example 1 are superior to those of Comparative Example 1.
  • the cathode part for the discharge lamp of Example 1 exhibits excellent emission characteristics without using thorium oxide, which is a radioactive substance.
  • the cathode component was 2100 to 2200 ° C. For this reason, it turns out that the cathode component which concerns on Example 1 is excellent also in high temperature strength, a lifetime, etc.
  • Example 2 raw material mixed powders were prepared in which the addition amount of ZrO 2, the addition amount of ZrC, and the addition amount of K as a doping material were changed as shown in Table 2.
  • Each raw material mixed powder was molded and sintered in hydrogen at 1500 to 1900 ° C. for 7 to 16 hours to obtain a sintered body.
  • the cut-out process was performed in the same manner as in Example 1 in the size of the sintered body.
  • a sintered compact having a diameter of 2.4 mm and a length of 150 mm was directly obtained by adjusting the size of the molded body.
  • Example 6 0.5 wt% of ZrC powder (purity 99.0%) having an average particle diameter of 2 ⁇ m was added. Note that the ZrO 2 powder, impurity amount of Hf when the Zr amount is 100 parts by mass was 1.0 parts by mass. Further, when the ZrO 2 powder and the ZrC powder of Example 6 were used, the impurity Hf amount was 1.0 part by mass when the Zr amount was 100 parts by mass.
  • Example 3 Each sample was subjected to centerless polishing to have a surface roughness Ra of 5 ⁇ m or less. Next, the tip was processed into a conical shape with an inclination angle of 45 °. Next, a strain relief heat treatment at 1400 to 1700 ° C. was performed in hydrogen. As a result, cathode components for discharge lamps according to Examples 2 to 5 were produced, and the same measurements as in Example 1 were performed. The results are shown in Table 3.
  • Example 1 it was one containing two Zr and ZrO 2. Further, Example 6 contained three kinds of Zr, ZrO 2 and ZrC.
  • Tungsten powder (purity 99.0 wt% or more) and ZrO 2 powder shown in Table 5 were prepared as raw material powder. Each powder was sufficiently loosened by a ball mill, and subjected to a sieving step as necessary so that the maximum diameter was a value shown in Table 5, respectively.
  • tungsten powder and ZrO 2 powder were mixed at a ratio shown in Table 6 and mixed again by a ball mill. Next, it shape
  • a cylindrical sintered body (ingot) was cut out from the obtained tungsten alloy sintered body, and the wire diameter was adjusted by appropriately combining forging, rolling, and drawing.
  • the processing rate is as shown in Table 7.
  • recrystallization heat treatment at 1600 ° C. was performed in a hydrogen atmosphere. Thereby, the electrode part for discharge lamps was completed.
  • the ratio of ZrO 2 in the Zr component was measured for each discharge lamp electrode part. Further, the oxygen content, relative density (%), Vickers hardness (Hv), and three-point bending strength were determined.
  • the proportion of ZrO 2 in the Zr component is determined by measuring the amount of Zr in the tungsten alloy by ICP analysis and the amount of carbon in the tungsten alloy by the combustion-infrared absorption method. It can be considered that the carbon in the tungsten alloy is ZrO 2 . Therefore, the total amount of Zr detected is 100 parts by weight, the amount of Zr that becomes ZrO 2 is converted, and the mass ratio is obtained.
  • the oxygen content in the tungsten alloy was analyzed by an inert gas combustion-infrared absorption method. The relative density was obtained by dividing the measured density analyzed by the Archimedes method by the theoretical density. The theoretical density was determined by the above calculation.
  • the Vickers hardness (Hv) was determined according to JIS-Z-2244.
  • the three-point bending strength was determined according to JIS-R1601. The results are shown in Table 9.
  • the electrode part for a discharge lamp according to the present example had a high density and an excellent Vickers hardness (Hv). This is because a part of ZrO 2 was deoxidized.
  • the Zr component that is not ZrO 2 is any one of those that have become metal Zr particles, those that have part of the surface of ZrO 2 particles become metal Zr, and those that have become a solid solution of tungsten and hafnium. It was in a state.
  • Example 21 to 25 Next, a tungsten powder and a ZrO 2 powder similar to those in Example 12 were used, and a second component having a composition shown in Table 10 was prepared.
  • An ingot was obtained by sintering the furnace at 2000 ° C. in a hydrogen atmosphere. The ingot was processed at a processing rate of 50% to obtain an electrode part having a wire diameter of 10 mm. Further, a recrystallization heat treatment at 1600 ° C. was performed in a hydrogen atmosphere. The same measurement was performed for each example. The results are shown in Tables 10-12.
  • Example 11A to 25A, Comparative Examples 11-1A to 11-2A and Comparative Example 12 The emission characteristics of the electrode parts for discharge lamps of Examples 11 to 25, Comparative Example 11-1, and Comparative Example 11-2 were examined.
  • the emission characteristics were measured by changing the applied voltage (V) to 100 V, 200 V, 300 V, and 400 V and measuring the emission current density (mA / mm 2 ). The measurement was performed at an applied current load of 18 ⁇ 0.5 A / W and an application time of 20 ms to the electrode parts for the discharge lamp.
  • the discharge lamp electrode parts according to each example exhibited emission characteristics equal to or higher than those of Comparative Example 2 using thorium oxide, although thorium oxide was not used. At the time of measurement, the electrode parts were at 2100 to 2200 ° C. For this reason, the electrode components for discharge lamps according to the respective examples have excellent high temperature strength.
  • Example 26 (Examples 26 to 28) Next, the electrode parts for discharge lamps of Example 11, Example 13, and Example 18 were manufactured by the same manufacturing method except that the recrystallization heat treatment condition was changed to 1800 ° C.
  • Example 26 (Example) 11 was changed to 1800 ° C.
  • Example 27 was changed to 1800 ° C. (Example 13)
  • Example 28 was changed to 1800. Prepared at a temperature changed to °C). Similar measurements were made. The results are shown in Tables 14 and 15.
  • the electrode part for a discharge lamp according to this example had a high density, and also exhibited excellent values of Vickers hardness (Hv) and three-point bending strength. This is because a part of ZrO 2 was deoxidized. Moreover, as a result of analyzing the Zr component which is not ZrO 2 , both were solid solutions of tungsten and zirconium. That is, there are two types of Zr components, Zr and ZrO 2 . For this reason, it has been found that when the recrystallization heat treatment temperature is set to 1700 ° C. or higher, the metal Zr is easily dissolved in tungsten. The emission characteristics were measured by the same method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Discharge Lamp (AREA)
  • Powder Metallurgy (AREA)
  • Solid Thermionic Cathode (AREA)

Abstract

Provided is a tungsten alloy part which comprises tungsten and at least two types of components selected from the group consisting of Zr, ZrO2, ZrC and C. This tungsten alloy part contains 0.1-5 wt% of Zr in terms of ZrO2.

Description

タングステン合金部品、ならびにそれを用いた放電ランプ、送信管およびマグネトロンTungsten alloy parts, and discharge lamps, transmitter tubes and magnetrons using the same
 本発明の実施形態は、タングステン合金部品、ならびにそれを用いた放電ランプ、送信管およびマグネトロンに関する。 Embodiments of the present invention relate to a tungsten alloy part, and a discharge lamp, a transmission tube, and a magnetron using the tungsten alloy part.
 タングステン合金部品は、タングステンの高温強度を利用して様々な分野に使われている。その一例として、放電ランプ、送信管、マグネトロンが挙げられる。放電ランプ(HIDランプ)では、カソード電極、電極支持棒、コイル部品などにタングステン合金部品が使われている。また、送信管では、フィラメントやメッシュグリットなどにタングステン合金部品が使われている。また、マグネトロンでは、コイル部品などにタングステン合金部品が使われている。これらタングステン合金部品は、所定の形状を有する焼結体、線材、線材をコイル状にしたコイル部品の形状を取っている。 Tungsten alloy parts are used in various fields using the high-temperature strength of tungsten. Examples thereof include a discharge lamp, a transmission tube, and a magnetron. In a discharge lamp (HID lamp), tungsten alloy parts are used for cathode electrodes, electrode support rods, coil parts, and the like. In the transmission tube, tungsten alloy parts are used for filaments and mesh grit. In the magnetron, tungsten alloy parts are used for coil parts. These tungsten alloy parts have a shape of a coil part in which a sintered body having a predetermined shape, a wire, and a wire are coiled.
 従来、これらタングステン合金部品には、特開2002-226935号公報(特許文献1)に記載されたようにトリウム(またはトリウム化合物)を含有したタングステン合金が用いられている。特許文献1のタングステン合金は、トリウム粒子およびトリウム化合物粒子の平均粒径を0.3μm以下と微細分散させることにより、耐変形性を向上させるものである。トリウム含有タングステン合金は、エミッタ特性や高温での機械的強度に優れていることから、前述の分野に使われている。 Conventionally, tungsten alloys containing thorium (or a thorium compound) are used for these tungsten alloy parts as described in JP-A-2002-226935 (Patent Document 1). The tungsten alloy of Patent Document 1 improves deformation resistance by finely dispersing the average particle diameter of thorium particles and thorium compound particles to 0.3 μm or less. Thorium-containing tungsten alloys are used in the aforementioned fields because of their excellent emitter characteristics and mechanical strength at high temperatures.
 しかしながら、トリウムまたはトリウム化合物は放射性物質であることから、環境への影響を考慮してトリウムを使わないタングステン合金部品が望まれている。特開2011-103240号公報(特許文献2)では、トリウムを使わないタングステン合金部品として、ホウ化ランタン(LaB)を含有するタングステン合金部品が開発されている。 However, since thorium or a thorium compound is a radioactive substance, a tungsten alloy part that does not use thorium is desired in consideration of the influence on the environment. In Japanese Patent Laid-Open No. 2011-103240 (Patent Document 2), a tungsten alloy part containing lanthanum boride (LaB 6 ) has been developed as a tungsten alloy part that does not use thorium.
 一方、特許文献3には、酸化ランタン(La)と、HfOまたはZrOとを含むタングステン合金を用いたショートアーク型高圧放電ランプが記載されている。特許文献3に記載のタングステン合金によると、十分なエミッション特性が得られない。これは、酸化ランタンの融点が2300℃程度と低いため、印加電圧または電流密度を上げることにより部品が高温になったときに酸化ランタンが早期に蒸発してしまい、エミッション特性が低下するためである。 On the other hand, Patent Document 3 describes a short arc type high-pressure discharge lamp using a tungsten alloy containing lanthanum oxide (La 2 O 3 ) and HfO 2 or ZrO 2 . According to the tungsten alloy described in Patent Document 3, sufficient emission characteristics cannot be obtained. This is because the melting point of lanthanum oxide is as low as about 2300 ° C., so when the applied voltage or current density is raised, the lanthanum oxide evaporates early when the temperature of the component becomes high, and the emission characteristics deteriorate. .
特開2002-226935号公報JP 2002-226935 A 特開2011-103240号公報JP 2011-103240 A 特許第4741190号公報Japanese Patent No. 4741190
 例えば、タングステン合金部品の用途の一種である放電ランプは、大きく分けて低圧放電ランプと高圧放電ランプの2種類に分けられる。低圧放電ランプは、一般照明、道路やトンネルなどに使われる特殊照明、塗料硬化装置、UV硬化装置、殺菌装置、半導体などの光洗浄装置など様々なアーク放電型の放電ランプが挙げられる。また、高圧放電ランプは、上下水の処理装置、一般照明、競技場などの屋外照明、UV硬化装置、半導体やプリント基板などの露光装置、ウエハ検査装置、プロジェクタなどの高圧水銀ランプ、メタルハライドランプ、超高圧水銀ランプ、キセノンランプ、ナトリウムランプなどが挙げられる。 For example, discharge lamps, which are a kind of application of tungsten alloy parts, can be broadly divided into two types: low pressure discharge lamps and high pressure discharge lamps. Examples of the low-pressure discharge lamp include various arc discharge type discharge lamps such as general lighting, special lighting used for roads and tunnels, paint curing devices, UV curing devices, sterilization devices, and semiconductor photo-cleaning devices. In addition, high-pressure discharge lamps include water and sewage treatment equipment, general lighting, outdoor lighting for stadiums, UV curing equipment, exposure equipment for semiconductors and printed circuit boards, wafer inspection equipment, high-pressure mercury lamps for projectors, metal halide lamps, Examples include ultra-high pressure mercury lamps, xenon lamps and sodium lamps.
 放電ランプは、その用途に応じて、10V以上の電圧が印加される。特許文献2に記載されたホウ化ランタンを含有したタングステン合金では、電圧が100V未満ではトリウム含有タングステン合金と同等の寿命が得られていた。しかしながら、電圧が100V以上と大きくなるにつれエミッション特性が低下し、その結果、寿命も大きく低下した。 A voltage of 10 V or more is applied to the discharge lamp according to its application. In the tungsten alloy containing lanthanum boride described in Patent Document 2, a life equal to that of the thorium-containing tungsten alloy was obtained when the voltage was less than 100V. However, as the voltage increased to 100 V or higher, the emission characteristics were lowered, and as a result, the life was greatly reduced.
 送信管やマグネトロンに関しても、同様に印加電圧が上がるにつれて十分な特性が得られないと言った問題があった。 Similarly, the transmitter tube and magnetron have a problem that sufficient characteristics cannot be obtained as the applied voltage increases.
 本発明は、放射性物質であるトリウムを使用せず、トリウム含有タングステン合金部品と同等以上の特性を示すタングステン合金部品、ならびにこのタングステン合金部品を用いた放電ランプ、送信管及びマグネトロンを提供することを目的とするものである。 The present invention provides a tungsten alloy part that does not use thorium, which is a radioactive substance, and exhibits characteristics equivalent to or better than those of a thorium-containing tungsten alloy part, and a discharge lamp, a transmission tube, and a magnetron using the tungsten alloy part. It is the purpose.
 実施形態によれば、タングステンと、Zr、ZrO、ZrC、およびCからなる群より選択される少なくとも2種の成分(以下、Zr成分という)とを含むタングステン合金部品が提供される。タングステン合金部品は、前記Zr成分をZrO換算で0.1~5wt%含有する。タングステン合金部品は、前記Zr成分をZrO換算で0.1~3wt%含有することが好ましい。ZrおよびOの含有量をZrO換算したときx<2であることが好ましく、0<x<2であることがより好ましい。 According to the embodiment, there is provided a tungsten alloy part including tungsten and at least two components selected from the group consisting of Zr, ZrO 2 , ZrC, and C (hereinafter referred to as Zr component). The tungsten alloy part contains the Zr component in an amount of 0.1 to 5 wt% in terms of ZrO 2 . The tungsten alloy part preferably contains 0.1 to 3 wt% of the Zr component in terms of ZrO 2 . When the contents of Zr and O are converted to ZrO x, x <2 is preferable, and 0 <x <2 is more preferable.
 タングステン合金部品は、さらに、K、SiおよびAlからなる群より選択される少なくとも1種の元素を0.01wt%以下含有していてもよい。また、タングステン合金は、Ti、Hf、V、Nb、Ta、Mo、希土類元素の少なくとも1種を2wt%以下含有していてもよい。特に、Zrの全含有量を100質量部としたとき15質量部以下のHfを含有していてもよい。 The tungsten alloy part may further contain 0.01 wt% or less of at least one element selected from the group consisting of K, Si and Al. Further, the tungsten alloy may contain 2 wt% or less of at least one of Ti, Hf, V, Nb, Ta, Mo, and rare earth elements. In particular, when the total content of Zr is 100 parts by mass, it may contain 15 parts by mass or less of Hf.
 ZrOの一次粒子は、平均粒径が15μm以下であることが好ましく、平均粒径が5μm以下、最大径が15μm以下であることがより好ましい。ZrOの二次粒子は、最大径が100μm以下であることが好ましい。 The primary particles of ZrO 2 preferably have an average particle size of 15 μm or less, more preferably an average particle size of 5 μm or less and a maximum diameter of 15 μm or less. The secondary particles of ZrO 2 preferably have a maximum diameter of 100 μm or less.
 前記Zr成分は、ZrOおよび金属Zrの2種として存在することが好ましい。金属Zrの少なくとも一部はタングステンに固溶していることが好ましい。タングステン合金部品の表面に金属Zrが存在することが好ましい。また、Zrの全含有量を100質量部としたとき、ZrOを構成するZrの含有量が30~98質量部であることが好ましい。 The Zr component is preferably present as two types of ZrO 2 and metal Zr. It is preferable that at least a part of the metal Zr is dissolved in tungsten. The metal Zr is preferably present on the surface of the tungsten alloy part. Further, when the total content of Zr is 100 parts by mass, the content of Zr constituting ZrO 2 is preferably 30 to 98 parts by mass.
 タングステン合金部品は、線径が0.1~30mmであることが好ましく、ビッカース硬度Hvが330以上、特に330~700の範囲内であることが好ましい。 The tungsten alloy part preferably has a wire diameter of 0.1 to 30 mm and a Vickers hardness Hv of 330 or more, particularly preferably in the range of 330 to 700.
 放電ランプ用電極部品は先端をテーパ形状とした先端部と円柱状の胴体部を有することが好ましい。胴体部の横断面(径方向断面)の結晶組織を観察したとき、単位面積(たとえば300μm×300μm)あたり、1~80μmの結晶粒径を有するタングステン結晶の面積率が90%以上であることが好ましい。胴体部の縦断面の結晶組織を観察したとき、単位面積(たとえば300μm×300μm)あたり、2~120μmの結晶粒径を有するタングステン結晶の面積率が90%以上であることが好ましい。 It is preferable that the electrode component for a discharge lamp has a tip portion having a tapered tip and a cylindrical body portion. When the crystal structure of the transverse section (radial section) of the body part is observed, the area ratio of tungsten crystals having a crystal grain size of 1 to 80 μm per unit area (for example, 300 μm × 300 μm) is 90% or more. preferable. When the crystal structure of the longitudinal section of the body portion is observed, the area ratio of tungsten crystals having a crystal grain size of 2 to 120 μm per unit area (for example, 300 μm × 300 μm) is preferably 90% or more.
 実施形態のタングステン合金部品は、たとえば放電ランプ用部品、送信管用部品、またはマグネトロン用部品に用いられる。 The tungsten alloy component of the embodiment is used for a discharge lamp component, a transmitter tube component, or a magnetron component, for example.
 実施形態の放電ランプは、実施形態のタングステン合金部品を用いたものである。実施形態の送信管は、実施形態のタングステン合金部品を用いたものである。実施形態のマグネトロンは、実施形態のタングステン合金部品を用いたものである。 The discharge lamp of the embodiment uses the tungsten alloy part of the embodiment. The transmission tube of the embodiment uses the tungsten alloy component of the embodiment. The magnetron of the embodiment uses the tungsten alloy component of the embodiment.
 実施形態のタングステン合金部品を放電ランプの電極に適用した場合、この電極への印加電圧が100V以上であることが好ましい。放電ランプ用電極を構成する実施形態のタングステン合金部品は放射性物質であるトリウム(または酸化トリウム)を含まないことから環境への悪影響がない。しかも、実施形態のタングステン合金部品からなる放電ランプ用電極は、トリウム含有タングステン合金からなるものと同等以上の特性を有する。このため、実施形態のタングステン合金部品を用いた放電ランプは環境にやさしい。 When the tungsten alloy part of the embodiment is applied to an electrode of a discharge lamp, it is preferable that an applied voltage to the electrode is 100 V or more. Since the tungsten alloy part of the embodiment constituting the electrode for the discharge lamp does not contain thorium (or thorium oxide) which is a radioactive substance, there is no adverse effect on the environment. In addition, the discharge lamp electrode made of the tungsten alloy component of the embodiment has characteristics equal to or better than those made of a thorium-containing tungsten alloy. For this reason, the discharge lamp using the tungsten alloy component of the embodiment is environmentally friendly.
図1は、実施形態の放電ランプ用電極部品の一例を示す図。FIG. 1 is a diagram illustrating an example of an electrode component for a discharge lamp according to an embodiment. 図2は、実施形態の放電ランプ用電極部品の他の一例を示す図。FIG. 2 is a diagram illustrating another example of the electrode component for a discharge lamp according to the embodiment. 図3は、実施形態の放電ランプの一例を示す図である。FIG. 3 is a diagram illustrating an example of the discharge lamp according to the embodiment. 図4は、実施形態のマグネトロン用部品の一例を示す図である。FIG. 4 is a diagram illustrating an example of a magnetron component according to the embodiment. 図5は、実施形態の放電ランプ用電極部品の一例を示す図である。FIG. 5 is a diagram illustrating an example of an electrode component for a discharge lamp according to the embodiment. 図6は、実施形態の放電ランプ用電極部品の他の一例を示す図である。FIG. 6 is a diagram illustrating another example of the electrode component for a discharge lamp according to the embodiment. 図7は、実施形態の放電ランプ用電極部品の胴体部の横断面の一例を示す図である。FIG. 7 is a diagram illustrating an example of a cross section of the body portion of the electrode component for a discharge lamp according to the embodiment. 図8は、実施形態の放電ランプ用電極部品の胴体部の縦断面の一例を示す図である。 Drawing 8 is a figure showing an example of the longitudinal section of the body part of the electrode component for discharge lamps of an embodiment. 図9は、実施形態の放電ランプの一例を示す図である。FIG. 9 is a diagram illustrating an example of the discharge lamp according to the embodiment. 図10は、実施例1および比較例1のエミッション電流密度-印加電圧の関係を示す図である。FIG. 10 is a graph showing the relationship between the emission current density and the applied voltage in Example 1 and Comparative Example 1.
 実施形態のタングステン合金部品は、タングステンと、Zr、ZrO、ZrC、およびCからなる群より選択される少なくとも2種の成分とを含み、ZrをZrO換算で0.1~5wt%含有する。ZrをZrO換算で0.1~3wt%含有することが好ましい。 The tungsten alloy component of the embodiment includes tungsten and at least two components selected from the group consisting of Zr, ZrO 2 , ZrC, and C, and contains 0.1 to 5 wt% of Zr in terms of ZrO 2. . Zr is preferably contained in an amount of 0.1 to 3 wt% in terms of ZrO 2 .
 Zr(ジルコニウム)をZrO(酸化ジルコニウム)換算で0.1~5wt%含有することにより、エミッション特性や強度などの特性を向上させることができる。つまり、Zr含有量がZrO換算で0.1wt%未満であると添加の効果が不十分であり、3wt%を超えると特性が低下する。Zr含有量はZrO換算で0.5~2.5wt%であることが好ましい。 By containing 0.1 to 5 wt% of Zr (zirconium) in terms of ZrO 2 (zirconium oxide), characteristics such as emission characteristics and strength can be improved. That is, if the Zr content is less than 0.1 wt% in terms of ZrO 2 , the effect of addition is insufficient, and if it exceeds 3 wt%, the characteristics deteriorate. The Zr content is preferably 0.5 to 2.5 wt% in terms of ZrO 2 .
 実施形態のタングステン合金部品には、Zr、ZrO、ZrC、およびCからなる群より選択される少なくとも2種の成分が含有されている。具体的には、ZrとZrOの組合せ、ZrOとZrC(炭化ジルコニウム)の組合せ、ZrOとC(炭素)の組合せ、ZrとZrOとZrCの組合せ、ZrOとZrCとCの組合せ、ZrとZrOとCの組合せ、ZrとZrOとZrCとC(炭素)の組合せのいずれかでZrO成分を含有している。それぞれ融点を比較すると、金属Zrは1850℃、ZrOは2720℃、ZrCは3420℃、タングステンは3400℃である(岩波書店「理化学事典」参照)。また、金属トリウムの融点は1750℃、酸化トリウム(ThO)の融点は3220±50℃である。ジルコニウムはトリウムと比べて高融点であることから、実施形態のタングステン合金部品は、トリウム含有タングステン合金部品と比較して、高温強度を同等以上にすることができる。 The tungsten alloy component of the embodiment contains at least two components selected from the group consisting of Zr, ZrO 2 , ZrC, and C. Specifically, a combination of Zr and ZrO 2, a combination of ZrO 2 and ZrC (zirconium carbide), a combination of ZrO 2 and C (carbon), a combination of Zr, ZrO 2 and ZrC, and a combination of ZrO 2 , ZrC and C , Zr and ZrO 2 and C combined, contains a ZrO 2 component in any combination of Zr and ZrO 2 and ZrC and C (carbon). Comparing the melting points, metal Zr is 1850 ° C., ZrO 2 is 2720 ° C., ZrC is 3420 ° C., and tungsten is 3400 ° C. (refer to Iwanami Shoten “Rikagaku Encyclopedia”). Metal thorium has a melting point of 1750 ° C., and thorium oxide (ThO 2 ) has a melting point of 3220 ± 50 ° C. Since zirconium has a higher melting point than thorium, the tungsten alloy component of the embodiment can have high temperature strength equal to or higher than that of thorium-containing tungsten alloy component.
 ZrおよびOの含有量をZrOx換算したとき、x<2であることが好ましい。x<2であるということは、タングステン合金中に含有するZrO成分がすべて化学量論的なZrOの形態で存在するわけではなく、その一部が金属ZrやZrCになっていることを意味する。金属Zrの仕事関数は4.1であり、金属Thの仕事関数3.4と比べて大きいことからエミッション特性は低下すると考えられるが、放電ランプ用などの用途においては特に問題となるものではない。また、金属ジルコニウムはタングステンと固溶体を形成するので強度向上に有効な元素である。ZrおよびOの含有量をZrOx換算したとき、0<x<2であることが好ましい。x<2は前述の通りである。また、0<xであるということは、タングステン合金中にZrCまたはCのいずれかが存在することを意味している。ZrCまたはCは、タングステン合金に含まれる不純物酸素を取り除く脱酸効果がある。不純物酸素を低減することにより、タングステン部品の電気抵抗値を下げることができるので電極としての特性が向上する。ZrOxのxが上記の範囲であると、金属Zr、ZrO、ZrCまたはCがバランスよく存在し、エミッション特性、強度、電気抵抗、寿命などの特性が向上する。 When the contents of Zr and O are converted to ZrOx, it is preferable that x <2. The fact that x <2 does not mean that all ZrO 2 components contained in the tungsten alloy are present in the form of stoichiometric ZrO 2 , and that some of them are metals Zr and ZrC. means. Although the work function of the metal Zr is 4.1 and is larger than the work function of the metal Th, it is considered that the emission characteristics are deteriorated. However, there is no particular problem in applications such as discharge lamps. . Metal zirconium is an effective element for improving strength because it forms a solid solution with tungsten. When the contents of Zr and O are converted to ZrOx, 0 <x <2 is preferable. x <2 is as described above. In addition, 0 <x means that either ZrC or C is present in the tungsten alloy. ZrC or C has a deoxidizing effect for removing impurity oxygen contained in the tungsten alloy. By reducing the impurity oxygen, the electrical resistance value of the tungsten component can be lowered, so that the characteristics as an electrode are improved. When Z of ZrOx is in the above range, metals Zr, ZrO 2 , ZrC or C exist in a well-balanced manner, and characteristics such as emission characteristics, strength, electrical resistance, and life are improved.
 タングステン合金部品中のZr、ZrO、ZrC、Oの含有量はICP分析法および不活性ガス融解-赤外線吸収法を用いて測定できる。ICP分析法では、金属ZrのZr量とZrOおよびZrCのZr量とを合計したZr量を測定することができる。不活性ガス融解-赤外線吸収法では、ZrOxのO(酸素)量と、単独で存在する酸素量もしくは他の酸化物として存在する酸素量とを合計した酸素量を測定することができる。実施形態ではICP分析法および不活性ガス融解-赤外線吸収法によりZr量、O量を測定し、ZrOxに換算するものとする。 The contents of Zr, ZrO 2 , ZrC, and O in the tungsten alloy part can be measured using an ICP analysis method and an inert gas melting-infrared absorption method. In the ICP analysis method, the total amount of Zr of metal Zr and the amount of Zr of ZrO 2 and ZrC can be measured. In the inert gas melting-infrared absorption method, the total amount of oxygen of ZrOx and the amount of oxygen present alone or as another oxide can be measured. In the embodiment, the Zr amount and the O amount are measured by an ICP analysis method and an inert gas melting-infrared absorption method, and converted to ZrOx.
 実施形態のタングステン合金部品は、K、SiおよびAlからなる群より選択される少なくとも1種の元素を0.01wt%以下含有していてもよい。K(カリウム)、Si(珪素)、Al(アルミニウム)はいわゆるドープ材であり、これらドープ材を添加することにより再結晶特性を向上させることができる。再結晶特性を向上させることにより、再結晶熱処理を行った際に均一な再結晶組織を得易くなる。ドープ材の含有量の下限は特に限定されないが、0.001wt%以上であることが好ましい。0.001wt%未満では添加の効果が小さく、0.01wt%を超えると焼結性や加工性が悪くなり量産性が低下する恐れがある。 The tungsten alloy component of the embodiment may contain 0.01 wt% or less of at least one element selected from the group consisting of K, Si, and Al. K (potassium), Si (silicon), and Al (aluminum) are so-called dope materials, and recrystallization characteristics can be improved by adding these dope materials. By improving the recrystallization characteristics, it becomes easier to obtain a uniform recrystallized structure when the recrystallization heat treatment is performed. Although the minimum of content of dope material is not specifically limited, It is preferable that it is 0.001 wt% or more. If it is less than 0.001 wt%, the effect of addition is small, and if it exceeds 0.01 wt%, the sinterability and workability may be deteriorated and the mass productivity may be reduced.
 実施形態のタングステン合金部品は、Zrの含有量を100質量部としたとき、15質量部以下のHfを含有することが好ましい。Zrの含有量はZr、ZrOおよびZrCの合計のZr量を示す。Hf(ハフニウム)は、融点が2207℃と高いことからタングステン合金部品に含有されていたとしても悪影響は少ない。市販のZr粉は、グレードによっては数%のHfを含むこともある。不純物を除去した高純度Zr粉または高純度ZrO粉を使うことは特性向上のためには有効である。一方で原料の高純度化はコストアップの要因となる。Zrを100重量部としたとき、Hf(ハフニウム)含有量が15質量部以下であれば、特性を必要以上に低下させずに済む。 The tungsten alloy component of the embodiment preferably contains 15 parts by mass or less of Hf when the Zr content is 100 parts by mass. The content of Zr indicates the total amount of Zr of Zr, ZrO 2 and ZrC. Since Hf (hafnium) has a high melting point of 2207 ° C., there is little adverse effect even if it is contained in tungsten alloy parts. Commercially available Zr powder may contain several percent of Hf depending on the grade. The use of high-purity Zr powder or high-purity ZrO 2 powder from which impurities are removed is effective for improving the characteristics. On the other hand, increasing the purity of the raw material increases the cost. When Zr is 100 parts by weight, if the Hf (hafnium) content is 15 parts by mass or less, it is not necessary to deteriorate the characteristics more than necessary.
 実施形態のタングステン合金部品は、表面部の炭素量をC1(wt%)、中心部の炭素量をC2(wt%)としたとき、C1<C2であることが好ましい。表面部とはタングステン合金部品の表面から20μmまでの部分を示す。中心部とはタングステン合金部品の断面における中心部分である。この炭素量は、ZrCなどの炭化物の炭素と単独で存在する炭素の両方を合計した値であり、燃焼-赤外線吸収法で分析できる。表面部の炭素量C1<中心部の炭素量C2、であるということは表面部の炭素が脱酸によりCOとなって系外に出て行ったことを示す。表面部の炭素量が減ると、相対的に表面部のZr量が増える。このため、Zrをエミッタ材として使用する場合に特に有効である。 In the tungsten alloy component of the embodiment, it is preferable that C1 <C2 when the carbon content in the surface portion is C1 (wt%) and the carbon content in the central portion is C2 (wt%). The surface portion indicates a portion from the surface of the tungsten alloy part to 20 μm. The central portion is a central portion in the cross section of the tungsten alloy part. This carbon amount is a total value of both carbon of a carbide such as ZrC and carbon present alone, and can be analyzed by a combustion-infrared absorption method. The fact that the amount of carbon in the surface portion C1 <the amount of carbon in the central portion C2 indicates that the carbon in the surface portion was converted to CO 2 by deoxidation and went out of the system. When the amount of carbon in the surface portion decreases, the amount of Zr in the surface portion relatively increases. For this reason, it is particularly effective when Zr is used as an emitter material.
 実施形態のタングステン合金部品は、平均結晶粒径が1~100μmのタングステン結晶を含有することが好ましい。タングステン合金部品は焼結体であることが好ましい。焼結体であると、成型工程を利用することにより様々な形状の部品を作製することができる。また、焼結体は、鍛造工程、圧延工程、線引き工程などを施すことにより、線材(フィラメントを含む)、コイル部品などへの加工を行い易い。焼結体のタングステン結晶は、アスペクト比3未満の結晶が90%以上である等方結晶組織となる。このような焼結体を線引き加工すると、アスペクト比3以上の結晶が90%以上の扁平結晶組織となる。タングステン結晶の粒径は以下のようにして求めることができる。まず、金属顕微鏡などの拡大写真により結晶組織を撮る。その断面に存在する1個のタングステン結晶について最大フェレー径を測定して粒径とする。この測定を任意の100個のタングステン結晶について行い、その平均値を平均結晶粒径とする。 The tungsten alloy part of the embodiment preferably contains a tungsten crystal having an average crystal grain size of 1 to 100 μm. The tungsten alloy part is preferably a sintered body. If it is a sintered body, it is possible to produce parts having various shapes by using a molding process. In addition, the sintered body can be easily processed into a wire rod (including a filament), a coil component, and the like by performing a forging process, a rolling process, a drawing process, and the like. The sintered tungsten crystal has an isotropic crystal structure with 90% or more of crystals having an aspect ratio of less than 3. When such a sintered body is drawn, a crystal having an aspect ratio of 3 or more becomes a flat crystal structure of 90% or more. The grain size of the tungsten crystal can be determined as follows. First, a crystal structure is taken with an enlarged photograph of a metal microscope or the like. The maximum ferret diameter is measured for one tungsten crystal existing in the cross section to obtain a particle diameter. This measurement is performed on any 100 tungsten crystals, and the average value is defined as the average crystal grain size.
 タングステン結晶の最大フェレー径の平均が1μm未満と小さいと、Zr、ZrO、ZrCまたはCといった分散成分の分散状態を均一にするのが困難となる。これは、タングステン結晶の最大フェレー径の平均が1μm未満と小さいと粒界が小さくなるため、タングステン結晶同士の粒界に分散成分が均一に分散しにくくなるためである。一方、タングステン結晶の最大フェレー径の平均が100μmを超えて大きいと、焼結体としての強度が低下する。そのため、タングステン結晶の最大フェレー径の平均は1~100μmであることが好ましく、10~60μmであることがより好ましい。 If the average of the maximum ferret diameter of the tungsten crystal is as small as less than 1 μm, it becomes difficult to make the dispersion state of the dispersed components such as Zr, ZrO 2 , ZrC or C uniform. This is because if the average of the maximum ferret diameter of the tungsten crystal is as small as less than 1 μm, the grain boundary becomes small, and thus it becomes difficult for the dispersed component to be uniformly dispersed at the grain boundary between the tungsten crystals. On the other hand, if the average of the maximum ferret diameter of the tungsten crystal is larger than 100 μm, the strength as a sintered body is lowered. Therefore, the average maximum ferret diameter of the tungsten crystal is preferably 1 to 100 μm, and more preferably 10 to 60 μm.
 均一分散の観点からZr、ZrO、ZrCまたはCといった分散成分の最大フェレー径の平均値は、タングステン結晶の最大フェレー径の平均値よりも小さいことが好ましい。具体的には、タングステン結晶の最大フェレー径の平均値をA(μm)、分散成分の最大フェレー径の平均値をB(μm)としたとき、B/A≦0.5であることが好ましい。Zr、ZrO、ZrCまたはCといった分散成分は、タングステン結晶同士の粒界に存在し、エミッタ材や粒界強化材として機能する。分散成分の平均粒径をタングステンの平均結晶粒径の1/2以下に小さくすることにより、分散成分がタングステン結晶の粒界に均一に分散し易くなり、特性バラツキを低減することができる。 From the viewpoint of uniform dispersion, the average value of the maximum ferret diameter of the dispersion component such as Zr, ZrO 2 , ZrC, or C is preferably smaller than the average value of the maximum ferret diameter of the tungsten crystal. Specifically, it is preferable that B / A ≦ 0.5 when the average value of the maximum ferret diameter of the tungsten crystal is A (μm) and the average value of the maximum ferret diameter of the dispersed component is B (μm). . A dispersion component such as Zr, ZrO 2 , ZrC, or C exists at the grain boundary between tungsten crystals, and functions as an emitter material or a grain boundary reinforcing material. By reducing the average particle size of the dispersed component to ½ or less of the average crystal particle size of tungsten, the dispersed component can be easily dispersed uniformly at the grain boundary of the tungsten crystal, and the characteristic variation can be reduced.
 以上のようなタングステン合金部品は、放電ランプ用部品、送信管用部品、マグネトロン用部品の少なくとも1種に用いることが好ましい。 The tungsten alloy parts as described above are preferably used for at least one of discharge lamp parts, transmitter tube parts, and magnetron parts.
 放電ランプ用部品としては、放電ランプに用いるカソード電極、電極支持棒、コイル部品が挙げられる。図1および図2に放電ランプ用カソード電極の一例を示した。図中、1はカソード電極、2は電極胴体部、3は電極先端部、である。カソード電極1はタングステン合金の焼結体で形成されている。電極先端部3は図1のように先端が円錐台であってもよいし、図2のように先端が円錐であってもよい。必要に応じ、先端部には研磨加工を施す。電極胴体部2は直径2~35mm、長さ10~600mmの円柱状であることが好ましい。 Examples of parts for discharge lamps include cathode electrodes, electrode support rods, and coil parts used for discharge lamps. An example of a discharge lamp cathode electrode is shown in FIGS. In the figure, 1 is a cathode electrode, 2 is an electrode body, and 3 is an electrode tip. The cathode electrode 1 is formed of a tungsten alloy sintered body. The tip of the electrode tip 3 may be a truncated cone as shown in FIG. 1, or the tip may be a cone as shown in FIG. If necessary, the tip is polished. The electrode body 2 is preferably cylindrical with a diameter of 2 to 35 mm and a length of 10 to 600 mm.
 図3に放電ランプの一例を示した。図中、1はカソード電極、4は放電ランプ、5は電極支持棒、6はガラス管、である。放電ランプ4は、一対のカソード電極1を電極先端部が向い合せになるように配置する。カソード電極1は電極支持棒5に接合されている。ガラス管6の内面には、図示しない蛍光体層が設けられている。ガラス管6の内部には、必要に応じ、水銀、ハロゲン、アルゴンガス(またはネオンガス)などが封入されている。実施形態のタングステン合金部品を電極支持棒5として使う場合、電極支持棒全体が実施形態のタングステン合金であってもよいし、カソード電極と接合する部分に実施形態のタングステン合金を使い、残りの部分として他のリード材を接合した形状であってもよい。 Fig. 3 shows an example of a discharge lamp. In the figure, 1 is a cathode electrode, 4 is a discharge lamp, 5 is an electrode support rod, and 6 is a glass tube. In the discharge lamp 4, the pair of cathode electrodes 1 are arranged so that the electrode tip portions face each other. The cathode electrode 1 is joined to the electrode support bar 5. A phosphor layer (not shown) is provided on the inner surface of the glass tube 6. The glass tube 6 is filled with mercury, halogen, argon gas (or neon gas) or the like as necessary. When the tungsten alloy component of the embodiment is used as the electrode support rod 5, the entire electrode support rod may be the tungsten alloy of the embodiment, or the tungsten alloy of the embodiment is used as a portion to be joined to the cathode electrode, and the remaining portion. Alternatively, a shape in which another lead material is joined may be used.
 放電ランプの種類によっては、電極支持棒にコイル部品を取り付けて電極とするものもある。このコイル部品に実施形態のタングステン合金を適用することも可能である。 Depending on the type of discharge lamp, there is an electrode that has a coil component attached to an electrode support rod. It is also possible to apply the tungsten alloy of the embodiment to this coil component.
 実施形態の放電ランプは、実施形態のタングステン合金部品を用いたものである。放電ランプの種類は特に限定されるものではなく、低圧放電ランプと高圧放電ランプのどちらにも適用できる。低圧放電ランプとしては、一般照明、道路やトンネルなどに使われる特殊照明、塗料硬化装置、UV硬化装置、殺菌装置、半導体などの光洗浄装置など様々なアーク放電型の放電ランプが挙げられる。高圧放電ランプとしては、上下水の処理装置、一般照明、競技場などの屋外照明、UV硬化装置、半導体やプリント基板などの露光装置、ウエハ検査装置、プロジェクタなどの高圧水銀ランプ、メタルハライドランプ、超高圧水銀ランプ、キセノンランプ、ナトリウムランプなどが挙げられる。 The discharge lamp of the embodiment uses the tungsten alloy part of the embodiment. The type of the discharge lamp is not particularly limited, and can be applied to both a low pressure discharge lamp and a high pressure discharge lamp. Examples of the low pressure discharge lamp include various arc discharge type discharge lamps such as general lighting, special lighting used for roads and tunnels, paint curing devices, UV curing devices, sterilizing devices, and light cleaning devices such as semiconductors. High pressure discharge lamps include water and sewage treatment equipment, general lighting, outdoor lighting for stadiums, UV curing equipment, exposure equipment for semiconductors and printed circuit boards, wafer inspection equipment, high pressure mercury lamps for projectors, metal halide lamps, A high pressure mercury lamp, a xenon lamp, a sodium lamp, etc. are mentioned.
 実施形態のタングステン合金部品は、送信管用部品にも好適である。送信管用部品としては、フィラメントまたはメッシュグリッドが挙げられる。メッシュグリッドは線材をメッシュ状に編んだものや、焼結体板に複数の穴を形成したものであってもよい。実施形態の送信管は、送信管用部品として実施形態のタングステン合金部品を使用しているのでエミッション特性などがよい。 The tungsten alloy part of the embodiment is also suitable for a transmission pipe part. Examples of the transmission tube component include a filament or a mesh grid. The mesh grid may be obtained by knitting a wire material in a mesh shape or by forming a plurality of holes in a sintered body plate. Since the transmission tube of the embodiment uses the tungsten alloy component of the embodiment as a transmission tube component, the emission characteristics and the like are good.
 実施形態のタングステン合金部品は、マグネトロン用部品にも好適である。マグネトロン用部品としては、コイル部品が挙げられる。図4にマグネトロン用部品の一例として、マグネトロン用陰極構体を示した。図中、7はコイル部品、8は上部支持部材、9は下部支持部材、10は支持棒、11はマグネトロン用陰極構体、である。上部支持部材8と下部支持部材9は支持棒10を介して一体化されている。支持棒10の周囲にはコイル部品7が配置され、上部支持部材8と下部支持部材9に一体化されている。このようなマグネトロン用部品は、電子レンジに好適である。コイル部品には、線径0.1~1mmのタングステン線材で作製することが好ましい。コイル部品の直径は2~6mmが好ましい。実施形態のタングステン合金部品をマグネトロン用部品に用いたとき、優れたエミッション特性と高温強度を示す。そのため、それを用いたマグネトロンの信頼性を向上させることができる。 The tungsten alloy part of the embodiment is also suitable for a magnetron part. Examples of magnetron parts include coil parts. FIG. 4 shows a cathode structure for a magnetron as an example of a magnetron component. In the figure, 7 is a coil component, 8 is an upper support member, 9 is a lower support member, 10 is a support rod, and 11 is a magnetron cathode assembly. The upper support member 8 and the lower support member 9 are integrated via a support bar 10. A coil component 7 is disposed around the support rod 10 and integrated with the upper support member 8 and the lower support member 9. Such a magnetron component is suitable for a microwave oven. The coil component is preferably made of a tungsten wire having a wire diameter of 0.1 to 1 mm. The diameter of the coil component is preferably 2 to 6 mm. When the tungsten alloy part of the embodiment is used for a magnetron part, it exhibits excellent emission characteristics and high temperature strength. Therefore, the reliability of the magnetron using it can be improved.
 次に実施形態のタングステン合金部品の製造方法について説明する。実施形態のタングステン合金部品は前述の構成を有すればその製造方法は特に限定されないが、効率のよい製造方法として以下の方法が挙げられる。 Next, a method for manufacturing the tungsten alloy part of the embodiment will be described. The manufacturing method of the tungsten alloy component of the embodiment is not particularly limited as long as it has the above-described configuration, but the following method can be given as an efficient manufacturing method.
 まず、原料となるタングステン粉末を用意する。タングステン粉末は平均粒径1~10μmが好ましい。平均粒径が1μm未満では、タングステン粉末が凝集し易く、ZrO成分を均一分散させ難い。平均粒径が10μmを超えると焼結体としての平均結晶粒径が100μmを超えてしまう恐れがある。タングステン粉末の純度は、用途にもよるが、99.0wt%以上、さらには99.9wt%以上の高純度であることが好ましい。 First, a tungsten powder as a raw material is prepared. The tungsten powder preferably has an average particle size of 1 to 10 μm. If the average particle size is less than 1 μm, the tungsten powder tends to aggregate and it is difficult to uniformly disperse the ZrO 2 component. If the average grain size exceeds 10 μm, the average crystal grain size as a sintered body may exceed 100 μm. The purity of the tungsten powder is preferably 99.0 wt% or more, more preferably 99.9 wt% or more, although it depends on the application.
 次に、Zr成分としてZrO粉末、ZrC成分としてZrC粉末を用意する。ZrC粉末の代わりにZr粉末および炭素粉末の混合物を用いてもよい。また、ZrC粉末単独ではなく、ZrC粉末に、Zr粉末または炭素粉末の1~2種を混合したものであってもよい。これらのうち、ZrO粉末またはZrC粉末を用いることが好ましい。ZrC粉末は、焼結工程において、一部の炭素が分解してタングステン粉末中の不純物酸素と反応し、二酸化炭素となって系外に放出され、タングステン合金の均一化に貢献するので好ましい。Zr粉末と炭素粉末の混合粉末を用いた場合、Zr粉末と炭素粉末の両方を均一混合するために製造工程の負荷が増える。また、金属Zrは酸化し易いのでZrC粉末を用いることが好ましい。 Next, ZrO 2 powder is prepared as the Zr component, and ZrC powder is prepared as the ZrC component. Instead of ZrC powder, a mixture of Zr powder and carbon powder may be used. Further, instead of the ZrC powder alone, it is possible to mix ZrC powder with one or two kinds of Zr powder or carbon powder. Among these, it is preferable to use ZrO 2 powder or ZrC powder. ZrC powder is preferable because part of the carbon decomposes and reacts with impurity oxygen in the tungsten powder in the sintering step, and becomes carbon dioxide which is released out of the system and contributes to the homogenization of the tungsten alloy. When a mixed powder of Zr powder and carbon powder is used, the load of the manufacturing process increases because both Zr powder and carbon powder are uniformly mixed. Moreover, since metal Zr is easy to oxidize, it is preferable to use ZrC powder.
 後述するように、ZrO粉末の一次粒子は平均粒径が15μm以下であることが好ましく、0.5~5μmであることがより好ましい。平均粒径が0.5μm未満ではZrO粉末の凝集が大きく均一分散させ難い。平均粒径が15μmを超えるとタングステン結晶の粒界に均一分散させ難くなる。ZrC粉末は、平均粒径が0.5~5μmであることが好ましい。平均粒径が0.5μm未満ではZrC粉末の凝集が大きく均一分散させ難い。平均粒径が5μmを超えるとタングステン結晶の粒界に均一分散させ難くなる。均一分散の観点から、ZrO粉末またはZrC粉末の平均粒径≦タングステン粉末の平均粒径であることが好ましい。 As will be described later, the primary particles of the ZrO 2 powder preferably have an average particle size of 15 μm or less, and more preferably 0.5 to 5 μm. When the average particle size is less than 0.5 μm, the aggregation of the ZrO 2 powder is large and it is difficult to uniformly disperse. When the average particle diameter exceeds 15 μm, it is difficult to uniformly disperse the tungsten crystal grain boundaries. The ZrC powder preferably has an average particle size of 0.5 to 5 μm. When the average particle size is less than 0.5 μm, the aggregation of ZrC powder is large and it is difficult to uniformly disperse. When the average particle diameter exceeds 5 μm, it is difficult to uniformly disperse the tungsten crystal grain boundaries. From the viewpoint of uniform dispersion, it is preferable that the average particle diameter of the ZrO 2 powder or the ZrC powder ≦ the average particle diameter of the tungsten powder.
 前述したように、ZrO粉末、ZrC粉末およびZr粉末のZr量を100質量部としたとき、Hf含有量は15質量部以下であることが好ましく、10質量部以下であることがより好ましい。Hf量は少ないほど好ましいが、原料の高純度化はコストアップの要因となるため、Hf量は0.1~3質量部がさらに好ましい。 As described above, when the Zr content of the ZrO 2 powder, the ZrC powder, and the Zr powder is 100 parts by mass, the Hf content is preferably 15 parts by mass or less, and more preferably 10 parts by mass or less. The smaller the amount of Hf, the better. However, since high purity of the raw material causes an increase in cost, the amount of Hf is more preferably 0.1 to 3 parts by mass.
 必要に応じ、K、SiおよびAlからなる群より選択される少なくとも1種のドープ材を添加する。添加量は0.01wt%以下が好ましい。 If necessary, at least one dope material selected from the group consisting of K, Si and Al is added. The amount added is preferably 0.01 wt% or less.
 次に、各原料粉末を均一混合する。混合工程は、ボールミルなどの混合機を用いて行うことが好ましい。混合工程は8時間以上、さらには20時間以上行うことが好ましい。必要に応じ、有機バインダーや有機溶媒と混合してスラリーとしてもよい。必要に応じ、造粒工程を行ってもよい。 Next, each raw material powder is uniformly mixed. The mixing step is preferably performed using a mixer such as a ball mill. The mixing step is preferably performed for 8 hours or longer, more preferably 20 hours or longer. If necessary, it may be mixed with an organic binder or an organic solvent to form a slurry. You may perform a granulation process as needed.
 次に、金型でプレスし、成形体を作製する。必要に応じ、成形体に脱脂工程を行う。次に、焼結工程を行う。焼結工程は、水素、窒素などの不活性雰囲気または真空中で行うことが好ましい。焼結は温度1400~3000℃×1~20時間で行うことが好ましい。焼結温度が1400℃未満または焼結時間が1時間未満では焼結が不十分であり、焼結体の強度が低下する。焼結温度が3000℃を超えるまたは焼結時間が20時間を超えるとタングステン結晶が粒成長し過ぎる恐れがある。水素、不活性雰囲気または真空中で焼結を行うことにより、焼結体表面部の炭素を系外に放出し易くできる。焼結は、通電焼結、常圧焼結、加圧焼結などで行なうことができ、特に限定されない。 Next, press with a mold to produce a compact. A degreasing process is performed to a molded object as needed. Next, a sintering process is performed. The sintering step is preferably performed in an inert atmosphere such as hydrogen or nitrogen or in a vacuum. Sintering is preferably performed at a temperature of 1400 to 3000 ° C. for 1 to 20 hours. If the sintering temperature is less than 1400 ° C. or the sintering time is less than 1 hour, the sintering is insufficient and the strength of the sintered body is lowered. If the sintering temperature exceeds 3000 ° C. or the sintering time exceeds 20 hours, the tungsten crystal may grow too much. By performing sintering in hydrogen, an inert atmosphere, or in a vacuum, carbon on the surface of the sintered body can be easily released out of the system. Sintering can be performed by electric current sintering, atmospheric pressure sintering, pressure sintering, etc., and is not particularly limited.
 次に、焼結体を部品に加工するための工程を行う。加工工程としては、鍛造工程、圧延工程、線引き工程、切断工程、研磨工程などが挙げられる。コイル部品にする場合はコイリング工程が挙げられる。送信管用部品としてメッシュグリッドを作製する場合は、フィラメントをメッシュ状に組み上げる工程が挙げられる。 Next, a process for processing the sintered body into a part is performed. Examples of the processing process include a forging process, a rolling process, a drawing process, a cutting process, and a polishing process. A coiling process is mentioned when making it a coil component. In the case of producing a mesh grid as a transmission tube component, a step of assembling filaments into a mesh shape can be mentioned.
 次に、加工した部品に、必要に応じ、歪取り熱処理を行う。歪取り熱処理は、不活性雰囲気または真空中で、1300~2500℃の範囲で行うことが好ましい。歪取り熱処理を行うことにより、部品への加工工程で発生した内部応力を緩和し、部品の強度を向上させることができる。 Next, the processed parts are subjected to strain relief heat treatment as necessary. The strain relief heat treatment is preferably performed in the range of 1300 to 2500 ° C. in an inert atmosphere or vacuum. By performing the strain relief heat treatment, it is possible to relieve internal stress generated in the processing step for the component and improve the strength of the component.
 実施形態のタングステン合金部品は、ZrをZrO換算で0.1~5wt%含有し、かつZrO粒子の一次粒子が平均粒径15μm以下であることが好ましい。 Tungsten alloy part embodiment contains 0.1 ~ 5 wt% of Zr in terms of ZrO 2, and is preferably the primary particles of ZrO 2 particles is less than or equal to the average particle size of 15 [mu] m.
 タングステン合金部品は、ZrOおよびZrの2種を含有することが好ましい。ZrO(酸化ハフニウム)について、O/Zrの原子比は2に限らず、1.6~2の範囲でよい。ZrはZrO(O/Zr原子比=2)換算で0.1~5wt%含有される。Zrは放電ランプ用電極部品においてエミッタ材として機能する成分である。Zrの含有量がZrO換算で0.1wt%未満ではエミッション特性が不十分である。Zrが5wt%を超えると強度低下などを招く恐れがある。そのため、ZrはZrO換算で0.3~3.0wt%であることが好ましく、0.5~2.5wt%であることがより好ましい。 The tungsten alloy part preferably contains two kinds of ZrO 2 and Zr. For ZrO 2 (hafnium oxide), the atomic ratio of O / Zr is not limited to 2, and may be in the range of 1.6-2. Zr is contained in an amount of 0.1 to 5 wt% in terms of ZrO 2 (O / Zr atomic ratio = 2). Zr is a component that functions as an emitter material in an electrode component for a discharge lamp. If the Zr content is less than 0.1 wt% in terms of ZrO 2 , the emission characteristics are insufficient. If Zr exceeds 5 wt%, the strength may be lowered. Therefore, Zr is preferably 0.3 to 3.0 wt% in terms of ZrO 2 , and more preferably 0.5 to 2.5 wt%.
 ZrOは粒子の形態で存在し、ZrOの一次粒子は平均粒径が15μm以下であることが好ましい。ZrO粒子はタングステン結晶粒子同士の粒界に存在する。そのため、ZrO粒子があまり大きいとタングステン結晶粒子同士の隙間を大きくしてしまい、密度低下や強度低下の原因となる。ZrO粒子がタングステン結晶粒子同士の粒界に存在すると、エミッション材としてだけでなく分散強化材としても機能するため、電極部品の強度向上に有利になる。 ZrO 2 exists in the form of particles, and the primary particles of ZrO 2 preferably have an average particle size of 15 μm or less. ZrO 2 particles exist at the grain boundaries between tungsten crystal particles. For this reason, if the ZrO 2 particles are too large, the gap between the tungsten crystal particles is enlarged, which causes a decrease in density and strength. When ZrO 2 particles exist at the grain boundaries between tungsten crystal particles, they function not only as an emission material but also as a dispersion strengthening material, which is advantageous in improving the strength of electrode parts.
 ZrO粒子の一次粒子は、平均粒径が5μm以下、かつ最大径が15μm以下であることが好ましい。さらに、ZrO粒子の一次粒子は、平均粒径が0.1μm以上3μm以下、最大径が1μm以上10μm以下であることが好ましい。平均粒径が0.1μm未満または最大径が1μm未満の小さなZrO粒子ではエミッションによる消耗により早く消滅してしまう恐れがある。電極としての長寿命化を図るためには、ZrO粒子は、平均粒径0.1μm以上または最大径1μm以上であることが好ましい。 The primary particles of the ZrO 2 particles preferably have an average particle diameter of 5 μm or less and a maximum diameter of 15 μm or less. Further, the primary particles of the ZrO 2 particles preferably have an average particle size of 0.1 μm or more and 3 μm or less and a maximum diameter of 1 μm or more and 10 μm or less. Small ZrO 2 particles having an average particle diameter of less than 0.1 μm or a maximum diameter of less than 1 μm may disappear quickly due to exhaustion due to emission. In order to extend the life as an electrode, the ZrO 2 particles preferably have an average particle diameter of 0.1 μm or more or a maximum diameter of 1 μm or more.
 タングステン合金部品中のZrO粒子の分散状態は、長さ200μmの任意の直線上に2~30個の範囲であることが好ましい。ZrO粒子の個数が長さ200μmの直線あたり2個未満(0~1個)であると部分的にZrO粒子が少なくなりエミッションのばらつきが大きくなる。一方、ZrO粒子の個数が長さ200μmの直線あたり30個を超えて多い(31個以上)と、部分的にZrO粒子が多くなりすぎ、強度低下などの悪影響がでる恐れがある。なお、ZrO粒子の分散状態は、タングステン合金の任意の断面を拡大撮影することによって調べる。拡大写真の倍率は1000倍以上とする。拡大写真上に、長さ200μmの任意の直線(線の太さ0.5mm)を引き、その線上に存在するZrO粒子の個数をカウントする。 The dispersion state of ZrO 2 particles in the tungsten alloy part is preferably in the range of 2 to 30 on an arbitrary straight line having a length of 200 μm. When the number of ZrO 2 particles is less than 2 (0 to 1) per 200 μm long straight line, ZrO 2 particles are partially reduced, resulting in a large variation in emissions. On the other hand, if the number of ZrO 2 particles exceeds 30 (31 or more) per straight line having a length of 200 μm (31 or more), ZrO 2 particles may be excessively increased in part, which may cause adverse effects such as strength reduction. The dispersion state of ZrO 2 particles is examined by magnifying and photographing an arbitrary cross section of the tungsten alloy. The magnification of the enlarged photograph is 1000 times or more. An arbitrary straight line having a length of 200 μm (line thickness: 0.5 mm) is drawn on the enlarged photograph, and the number of ZrO 2 particles present on the line is counted.
 ZrOの二次粒子は、最大径が100μm以下であることが好ましい。ZrOの二次粒子とは、一次粒子の凝集体のことである。二次粒子が100μmを超えて大きいとタングステン合金部品の強度が低下する。そのため、ZrO粒子の二次粒子の最大径は100μm以下、50μm以下、さらには20μm以下と小さいことが好ましい。 The secondary particles of ZrO 2 preferably have a maximum diameter of 100 μm or less. The secondary particles of ZrO 2 are aggregates of primary particles. If the secondary particles are larger than 100 μm, the strength of the tungsten alloy part is lowered. Therefore, the maximum diameter of the secondary particles of the ZrO 2 particles is preferably as small as 100 μm or less, 50 μm or less, and further 20 μm or less.
 Zr成分のうち、Zr(金属Zr)に関しては、様々な分散状態がある。 
 第一の分散状態は、金属Zrが粒子として存在するものである。金属Zr粒子はZrO粒子と同様にタングステン結晶粒子同士の粒界に存在する。タングステン結晶粒子同士の粒界に存在することにより、金属Zr粒子もエミッション材および分散強化材として機能する。そのため、金属Zrの一次粒子は、平均粒径が15μm以下であることが好ましく、10μm以下であることがより好ましく、0.1~3μmであることがさらに好ましい。また、金属Zrの一次粒子は、最大径が15μm以下であることが好ましく、10μm以下であることがより好ましい。タングステン合金を作製する場合に、予めZrO粒子と金属Zr粒子を混合してもよいし、製造工程中にZrO粒子を脱酸して金属Zr粒子を生じさせてもよい。ZrO粒子を脱酸する方法を使えば、タングステン中の酸素も系外に放出させる効果も得られることから好ましい。脱酸ができれば、タングステン合金の電気抵抗を下げることができるので電極として導電性が向上する。
Among Zr components, Zr (metal Zr) has various dispersion states.
In the first dispersion state, the metal Zr exists as particles. The metal Zr particles are present at the grain boundaries between the tungsten crystal particles in the same manner as the ZrO 2 particles. By being present at the grain boundaries between the tungsten crystal particles, the metal Zr particles also function as an emission material and a dispersion strengthening material. Therefore, the primary particles of the metal Zr preferably have an average particle size of 15 μm or less, more preferably 10 μm or less, and further preferably 0.1 to 3 μm. The primary particle of the metal Zr preferably has a maximum diameter of 15 μm or less, and more preferably 10 μm or less. When producing a tungsten alloy, ZrO 2 particles and metal Zr particles may be mixed in advance, or metal Zr particles may be generated by deoxidizing the ZrO 2 particles during the manufacturing process. If a method of deoxidizing ZrO 2 particles is used, it is preferable because oxygen in tungsten is also released from the system. If deoxidation can be performed, the electrical resistance of the tungsten alloy can be lowered, so that the conductivity of the electrode is improved.
 第二の分散状態は、ZrO粒子の表面に金属Zrが存在するものである。第一の分散状態と同様に、タングステン合金の焼結体を作製する場合にZrO粒子表面から酸素が脱酸されて、表面に金属Zr被膜が形成された状態となる。金属Zr被膜付きZrO粒子であっても、すぐれたエミッション特性を示す。また、金属Zr被膜付きZrOの一次粒子は、平均粒径が15μm以下であることが好ましく、10μm以下であることがより好ましく、0.1~3μmであることがさらに好ましい。また、金属Zr被膜付きZrOの一次粒子は、最大径が15μm以下であることが好ましく、10μm以下であることがより好ましい。 In the second dispersion state, metal Zr is present on the surface of the ZrO 2 particles. Similar to the first dispersion state, when a sintered body of tungsten alloy is produced, oxygen is deoxidized from the surface of the ZrO 2 particles, and a metal Zr film is formed on the surface. Even ZrO 2 particles with metal Zr coating exhibit excellent emission characteristics. The primary particles of ZrO 2 with a metal Zr coating preferably have an average particle size of 15 μm or less, more preferably 10 μm or less, and even more preferably 0.1 to 3 μm. The primary particles of ZrO 2 with a metal Zr coating preferably have a maximum diameter of 15 μm or less, and more preferably 10 μm or less.
 第三の分散状態は、金属Zrの一部または全部がタングステンに固溶しているものである。金属Zrはタングステンと固溶体を形成する。固溶体を形成することでタングステン合金の強度を向上させることができる。固溶の有無は、XRD分析によって判定できる。まず、Zr成分および酸素の含有量を測定する。Zrおよび酸素の含有量をZrOx換算し、x<2であることを確認する。次に、XRD分析を行い金属Zrのピークが検出されないことを確認する。このように、ZrOxのxが2より小さく、化学量論的な酸化ジルコニウムになっていないジルコニウムが存在するにも関わらず、金属Zrのピークが検出されないということは金属Zrがタングステンに固溶していることを意味する。 In the third dispersed state, part or all of the metal Zr is solid-solved in tungsten. Metal Zr forms a solid solution with tungsten. By forming a solid solution, the strength of the tungsten alloy can be improved. The presence or absence of solid solution can be determined by XRD analysis. First, the Zr component and oxygen content are measured. The content of Zr and oxygen is converted to ZrOx, and it is confirmed that x <2. Next, XRD analysis is performed to confirm that no metal Zr peak is detected. Thus, although the ZrOx x is smaller than 2 and there is zirconium which is not stoichiometric zirconium oxide, the fact that the peak of the metal Zr is not detected means that the metal Zr is dissolved in tungsten. Means that
 一方、ZrOxのxが2より小さく、化学量論的な酸化ジルコニウムになっていないジルコニウムが存在し、かつ金属Zrのピークが検出される場合には、金属Zrが固溶せずタングステン結晶同士の粒界に存在する第一の分散状態であることを意味する。また、第二の分散状態は、EPMA(電子線マイクロアナライザ)やTEM(透過型電子顕微鏡)を用いて分析できる。 On the other hand, when Z of ZrOx is smaller than 2 and there is zirconium which is not stoichiometric zirconium oxide, and the peak of metal Zr is detected, metal Zr is not dissolved and the tungsten crystals are not dissolved. It means the first dispersed state existing at the grain boundary. The second dispersion state can be analyzed using EPMA (electron beam microanalyzer) or TEM (transmission electron microscope).
 金属Zrの分散状態は、第一の分散状態、第二の分散状態、第三の分散状態のいずれか1種または2種以上の組合せであってもよい。 The dispersion state of the metal Zr may be any one of the first dispersion state, the second dispersion state, and the third dispersion state, or a combination of two or more.
 Zrの全含有量を100質量部としたとき、ZrO粒子になっているZrの割合は30~98質量部であることが好ましい。ZrのすべてがZrO粒子であってもよい。ZrO粒子であれば、エミッション特性は得られる。一方、金属Zrを分散させることにより、タングステン合金の導電性や強度を向上させることができる。しかしながら、Zrのすべてが金属Zrであるとエミッション特性や高温強度が低下する。金属Zrは融点が1850℃、ZrOは融点が2720℃、金属タングステンは融点が3400℃である。ZrOは金属Zrよりも融点が高いことから、ZrOを含有するタングステン合金部品は高温強度が向上する。また、ZrOは表面電流密度がThOとほぼ同等なので、実施形態のタングステン合金部品には、酸化トリウム含有タングステン合金部品と同等の電流を流すことができる。そのため、実施形態のタングステン合金部品を放電ランプの電極に適用した場合、酸化トリウム含有タングステン合金電極と同等の電流密度を設定できるため、制御回路等の設計変更が不要である。これらの観点から、Zr成分の全含有量を100質量部としたとき、ZrOを構成するZrの含有量は30~98質量部であることが好ましく、60~95質量部であることがより好ましい。 When the total content of Zr is 100 parts by mass, the proportion of Zr that is ZrO 2 particles is preferably 30 to 98 parts by mass. All of Zr may be ZrO 2 particles. With ZrO 2 particles, emission characteristics can be obtained. On the other hand, by dispersing the metal Zr, the conductivity and strength of the tungsten alloy can be improved. However, if all of Zr is metal Zr, emission characteristics and high-temperature strength are lowered. Metal Zr has a melting point of 1850 ° C., ZrO 2 has a melting point of 2720 ° C., and metal tungsten has a melting point of 3400 ° C. Since ZrO 2 has a melting point higher than that of metal Zr, the tungsten alloy component containing ZrO 2 has improved high-temperature strength. Moreover, since the surface current density of ZrO 2 is substantially equal to that of ThO 2 , a current equivalent to that of the thorium oxide-containing tungsten alloy component can be passed through the tungsten alloy component of the embodiment. Therefore, when the tungsten alloy component of the embodiment is applied to an electrode of a discharge lamp, a current density equivalent to that of a thorium oxide-containing tungsten alloy electrode can be set, so that a design change such as a control circuit is unnecessary. From these viewpoints, when the total content of Zr components is 100 parts by mass, the content of Zr constituting ZrO 2 is preferably 30 to 98 parts by mass, and more preferably 60 to 95 parts by mass. preferable.
 タングステン合金中のZrOと金属Zrの含有量は以下のようにして分析することができる。ICP分析法によりタングステン合金中の全Zr量を測定する。次に、不活性ガス融解-赤外線吸収法によりタングステン合金中の全酸素量を測定する。タングステン合金がタングステンとZrとの2元系である場合、測定された全酸素量は実質的にすべてがZrOになっていると考えてよい。そのため、測定された全Zr量と全酸素量とに基づいてZrO量を算出することができる。この方法の場合は、O/Zr=2としてZrO量を計算する。 The contents of ZrO 2 and metal Zr in the tungsten alloy can be analyzed as follows. The total amount of Zr in the tungsten alloy is measured by ICP analysis. Next, the total amount of oxygen in the tungsten alloy is measured by an inert gas melting-infrared absorption method. When the tungsten alloy is a binary system of tungsten and Zr, it can be considered that the total amount of oxygen measured is substantially all ZrO 2 . Therefore, the ZrO 2 amount can be calculated based on the measured total Zr amount and total oxygen amount. In the case of this method, the amount of ZrO 2 is calculated with O / Zr = 2.
 ZrO粒子のサイズに関しては、タングステン合金焼結体の任意の断面の拡大写真を撮り、その断面に存在するZrO粒子の最も長い対角線を測定してZrOの一次粒子の粒径とする。ZrO粒子50個についてこの測定を行い、その平均値をZrOの一次粒子の平均粒径とする。ZrOの一次粒子の粒径(最も長い対角線)のうち、最大の値をZrOの一次粒子の最大径とする。 Regarding the size of the ZrO 2 particles, an enlarged photograph of an arbitrary cross section of the tungsten alloy sintered body is taken, and the longest diagonal of the ZrO 2 particles existing in the cross section is measured to obtain the particle size of the primary particles of ZrO 2 . This measurement is performed on 50 ZrO 2 particles, and the average value is defined as the average particle size of the primary particles of ZrO 2 . Among the particle diameters of ZrO 2 primary particles (longest diagonal line), the maximum value is the maximum diameter of the primary particles of ZrO 2 .
 実施形態のタングステン合金部品は、Ti、V、Nb、Ta、Moおよび希土類元素からなる群より選択される少なくとも1種の元素を2wt%以下含有していてもよい。Ti、V、Nb、Ta、Moおよび希土類元素からなる群より選択される少なくとも1種の元素は、金属単体、酸化物、炭化物のいずれかの形態で存在する。これらの2種以上の元素を含有してもよい。2種以上の元素を含有する場合であっても、その合計が2wt%以下であることが好ましい。これらの元素は、主に分散強化材として機能する。ZrO粒子はエミッション材として機能するので、放電ランプを長時間使用すると消耗する。一方、Ti、V、Nb、Ta、Moおよび希土類元素はエミッション特性が弱いため、エミッションによる消耗が少なく、長期に渡り分散強化材としての機能を維持することができる。これらの元素の含有量の下限は特に限定されないが、0.01wt%以上であることが好ましい。これらの元素のうちでは、希土類元素が好ましい。希土類元素は原子半径が0.16nm以上と大きいため、表面電流密度を大きくするのに有利である。言い換えれば、分散強化材として、原子半径が0.16nm以上の元素を含む金属単体またはその化合物を用いることが好ましい。 The tungsten alloy component of the embodiment may contain 2 wt% or less of at least one element selected from the group consisting of Ti, V, Nb, Ta, Mo and rare earth elements. At least one element selected from the group consisting of Ti, V, Nb, Ta, Mo and rare earth elements exists in any form of a simple metal, an oxide, and a carbide. You may contain these 2 or more types of elements. Even when two or more elements are contained, the total is preferably 2 wt% or less. These elements mainly function as a dispersion strengthening material. Since ZrO 2 particles function as an emission material, they are consumed when the discharge lamp is used for a long time. On the other hand, since Ti, V, Nb, Ta, Mo, and rare earth elements have weak emission characteristics, they are less consumed by emission and can maintain their function as a dispersion strengthening material over a long period of time. Although the minimum of content of these elements is not specifically limited, It is preferable that it is 0.01 wt% or more. Of these elements, rare earth elements are preferred. Rare earth elements have a large atomic radius of 0.16 nm or more, which is advantageous for increasing the surface current density. In other words, it is preferable to use a metal simple substance or an element thereof containing an element having an atomic radius of 0.16 nm or more as the dispersion strengthening material.
 図5および図6に、実施形態の放電ランプ用電極部品の一例を示した。図中、21は放電ランプ用電極部品、22はテーパ形状の先端部を有する放電ランプ用電極部品、23は先端部、24は胴体部、である。放電ランプ用電極部品21は円柱状であり、その先端部23をテーパ形状に加工して放電ランプ用電極部品22にする。なお、テーパ形状に加工する前の放電ランプ用電極部品21は、通常、円柱形状であるが、四角柱形状であってもよい。 FIG. 5 and FIG. 6 show an example of the electrode component for the discharge lamp of the embodiment. In the figure, 21 is a discharge lamp electrode part, 22 is a discharge lamp electrode part having a tapered tip part, 23 is a tip part, and 24 is a body part. The discharge lamp electrode part 21 has a cylindrical shape, and a tip part 23 thereof is processed into a tapered shape to form a discharge lamp electrode part 22. The discharge lamp electrode component 21 before processing into a tapered shape is usually a cylindrical shape, but may be a quadrangular prism shape.
 放電ランプ用電極部品は先端をテーパ形状とした先端部と円柱状の胴体部を有することが好ましい。テーパ形状、つまりは先端部を尖らせた形状とすることにより放電ランプ用電極部品としての特性が向上する。図6に示したように、先端部23と胴体部24の長さの割合は特に限定されるものではなく、用途に応じて適宜設定される。 It is preferable that the electrode component for a discharge lamp has a tip portion having a tapered tip and a cylindrical body portion. The taper shape, that is, the shape having a sharp tip, improves the characteristics as an electrode component for a discharge lamp. As shown in FIG. 6, the ratio of the length of the front end portion 23 and the body portion 24 is not particularly limited, and is appropriately set according to the application.
 放電ランプ用電極部品の線径φは0.1~30mmであることが好ましい。0.1mm未満では電極部品としての強度が保てず、放電ランプに組み込む際に折れたり、先端部をテーパ加工する際に折れたりする恐れがある。また、30mmを超えて大きいと後述するようなタングステン結晶組織の均一性を制御し難くなる。 The wire diameter φ of the discharge lamp electrode component is preferably 0.1 to 30 mm. If the thickness is less than 0.1 mm, the strength as an electrode part cannot be maintained, and there is a possibility that the electrode part may be broken when assembled into a discharge lamp, or may be broken when the tip is tapered. On the other hand, if it exceeds 30 mm, it becomes difficult to control the uniformity of the tungsten crystal structure as described later.
 胴体部の横断面(径方向断面)の結晶組織を観察したとき、単位面積(たとえば300μm×300μm)あたり、1~80μmの結晶粒径を有するタングステン結晶の面積率が90%以上であることが好ましい。図7に胴体部の横断面の一例を示した。図中、24は胴体部、25は横断面、である。横断面の結晶組織を測定するには、胴体部の長さの中央の径方向断面の拡大写真を撮影する。なお、線径が細く、一視野でたとえば300μm×300μmの単位面積を撮影できないときには、任意の横断面を複数回撮影する。拡大写真において、その断面に存在するタングステン結晶粒子のうち最も長い対角線を最大径とする。その断面において、最大径が1~80μmの範囲内に入っているタングステン結晶粒子の面積率を算出する。 When the crystal structure of the transverse section (radial section) of the body part is observed, the area ratio of tungsten crystals having a crystal grain size of 1 to 80 μm per unit area (for example, 300 μm × 300 μm) is 90% or more. preferable. FIG. 7 shows an example of a cross section of the body part. In the figure, 24 is a body part and 25 is a transverse section. In order to measure the crystal structure of the cross section, an enlarged photograph of the radial cross section at the center of the length of the body part is taken. Note that, when the wire diameter is small and a unit area of, for example, 300 μm × 300 μm cannot be imaged in one field of view, an arbitrary cross section is imaged multiple times. In the enlarged photograph, the longest diagonal line among the tungsten crystal particles existing in the cross section is defined as the maximum diameter. In the cross section, the area ratio of tungsten crystal particles whose maximum diameter is in the range of 1 to 80 μm is calculated.
 胴体部の横断面の単位面積あたり、1~80μmの結晶粒径を有するタングステン結晶の面積率が90%以上であるということは、結晶粒径が1μm未満の小さなタングステン結晶および80μmを超える大きなタングステン結晶が少ないことを示す。1μm未満のタングステン結晶が多すぎるとタングステン結晶粒子同士の粒界が小さくなり過ぎてしまう。タングステン結晶粒界中にZrO粒子の割合が増えてしまうと、エミッションによりZrO粒子が消耗した場合に大きな欠陥となりタングステン合金の強度が低下する。一方、80μmを超えて大きなタングステン結晶粒子が多いと、粒界が大きくなり過ぎてタングステン合金の強度が低下する。胴体部の横断面の単位面積あたり、1~80μmの結晶粒径を有するタングステン結晶の面積率は96%以上であることが好ましく、さらに100%であることが好ましい。 The area ratio of tungsten crystals having a crystal grain size of 1 to 80 μm per unit area of the cross section of the body portion is 90% or more. This means that a small tungsten crystal having a crystal grain size of less than 1 μm and a large tungsten having a crystal grain size of more than 80 μm. Indicates that there are few crystals. If there are too many tungsten crystals of less than 1 μm, the grain boundaries between tungsten crystal particles become too small. If the proportion of ZrO 2 particles in the tungsten crystal grain boundary increases, a large defect occurs when the ZrO 2 particles are consumed due to emission, and the strength of the tungsten alloy decreases. On the other hand, when there are many large tungsten crystal grains exceeding 80 μm, the grain boundary becomes too large and the strength of the tungsten alloy is lowered. The area ratio of tungsten crystals having a crystal grain size of 1 to 80 μm per unit area of the cross section of the body portion is preferably 96% or more, and more preferably 100%.
 横断面におけるタングステン結晶粒子の平均粒径は50μm以下、さらには20μm以下が好ましい。横断面におけるタングステン結晶粒子の平均アスペクト比は3未満であることが好ましい。アスペクト比は以下のようにして算出する。単位面積(たとえば300μm×300μm)の拡大写真を撮影し、その断面に存在するタングステン結晶粒子の最大径(フェレー径)を長径L、長径Lの中心から垂直に伸ばした粒径を短径Sとし、長径L/短径S=アスペクト比とする。この測定を50個のタングステン結晶粒子について行い、その平均値を平均アスペクト比とする。また、(長径L+短径S)/2=粒径とし、50個のタングステン結晶粒子の平均値を平均粒径とする。 The average particle diameter of the tungsten crystal particles in the cross section is preferably 50 μm or less, more preferably 20 μm or less. The average aspect ratio of the tungsten crystal grains in the cross section is preferably less than 3. The aspect ratio is calculated as follows. An enlarged photograph of a unit area (for example, 300 μm × 300 μm) is taken, the maximum diameter (ferret diameter) of the tungsten crystal particles existing in the cross section is the long diameter L, and the particle diameter obtained by vertically extending from the center of the long diameter L is the short diameter S. , Major axis L / minor axis S = aspect ratio. This measurement is performed on 50 tungsten crystal grains, and the average value is defined as the average aspect ratio. Further, (major axis L + minor axis S) / 2 = particle diameter, and an average value of 50 tungsten crystal particles is defined as an average particle diameter.
 胴体部の縦断面の結晶組織を観察したとき、単位面積(たとえば300μm×300μm)あたり、2~120μmの結晶粒径を有するタングステン結晶の面積率が90%以上であることが好ましい。図8に縦断面の一例を示した。図中、24は胴体部、26は縦断面、である。縦断面の結晶組織を測定するには、胴体部の径の中心を通る縦断面の拡大写真を撮影する。なお、一視野でたとえば300μm×300μmの単位面積を撮影できないときは、任意の縦断面を複数回撮影する。拡大写真において、その断面に存在するタングステン結晶粒子のうち最も長い対角線を最大径とする。その断面において、最大径が2~120μmの範囲内に入っているタングステン結晶粒子の面積率を算出する。 When the crystal structure of the longitudinal section of the body part is observed, the area ratio of tungsten crystals having a crystal grain size of 2 to 120 μm per unit area (for example, 300 μm × 300 μm) is preferably 90% or more. FIG. 8 shows an example of a longitudinal section. In the figure, 24 is a body part and 26 is a longitudinal section. In order to measure the crystal structure of the longitudinal section, an enlarged photograph of the longitudinal section passing through the center of the diameter of the body part is taken. When a unit area of, for example, 300 μm × 300 μm cannot be photographed in one field of view, an arbitrary longitudinal section is photographed a plurality of times. In the enlarged photograph, the longest diagonal line among the tungsten crystal particles existing in the cross section is defined as the maximum diameter. In the cross section, the area ratio of tungsten crystal particles whose maximum diameter is in the range of 2 to 120 μm is calculated.
 胴体部の縦断面の単位面積あたり、2~120μmの結晶粒径を有するタングステン結晶の面積率が90%以上であるということは、結晶粒径が2μm未満の小さなタングステン結晶および120μmを超える大きなタングステン結晶が少ないことを示す。2μm未満のタングステン結晶が多すぎるとタングステン結晶粒子同士の粒界が小さくなり過ぎてしまう。タングステン結晶粒界中にZrO粒子の割合が増えてしまうと、エミッションによりZrO粒子が消耗した場合に大きな欠陥となりタングステン合金の強度が低下する。一方、120μmを超えて大きなタングステン結晶粒子が多いと、粒界が大きくなり過ぎてタングステン合金の強度が低下する。胴体部の縦断面の単位面積あたり、2~120μmの結晶粒径を有するタングステン結晶の面積率は96%以上であることが好ましく、さらに100%であることが好ましい。 The area ratio of tungsten crystals having a crystal grain size of 2 to 120 μm per unit area of the longitudinal section of the body portion is 90% or more, which means that a small tungsten crystal having a crystal grain size of less than 2 μm and a large tungsten having a crystal grain size of more than 120 μm Indicates that there are few crystals. When there are too many tungsten crystals less than 2 micrometers, the grain boundary between tungsten crystal particles will become too small. If the proportion of ZrO 2 particles in the tungsten crystal grain boundary increases, a large defect occurs when the ZrO 2 particles are consumed due to emission, and the strength of the tungsten alloy decreases. On the other hand, when there are many large tungsten crystal grains exceeding 120 μm, the grain boundary becomes too large and the strength of the tungsten alloy is lowered. The area ratio of tungsten crystals having a crystal grain size of 2 to 120 μm per unit area of the longitudinal section of the body portion is preferably 96% or more, and more preferably 100%.
 縦断面におけるタングステン結晶粒子の平均粒径は70μm以下、さらには40μm以下が好ましい。縦断面におけるタングステン結晶粒子の平均アスペクト比は3以上であることが好ましい。なお、平均粒径や平均アスペクト比の測定方法は横断面に関して述べた方法と同じである。 The average particle diameter of tungsten crystal particles in the longitudinal section is preferably 70 μm or less, more preferably 40 μm or less. The average aspect ratio of the tungsten crystal particles in the longitudinal section is preferably 3 or more. The method for measuring the average particle diameter and the average aspect ratio is the same as the method described for the cross section.
 以上のように、タングステン結晶粒子のサイズ、ZrO粒子のサイズや割合を制御することにより、放電特性に優れ、かつ強度、特に高温強度のタングステン合金を提供することが可能となる。そのため、放電ランプ用電極部品の特性も向上する。 As described above, by controlling the size of the tungsten crystal particles and the size and ratio of the ZrO 2 particles, it is possible to provide a tungsten alloy having excellent discharge characteristics and strength, particularly high-temperature strength. Therefore, the characteristics of the discharge lamp electrode component are also improved.
 タングステン合金部品は、相対密度が95.0%以上であることが好ましく、98.0%以上であることがより好ましい。相対密度が95.0%未満であると気泡が増えて強度低下や部分放電などの悪影響がでる恐れがある。相対密度は、アルキメデス法による実測密度と理論密度から、(実測密度/理論密度)×100(%)=相対密度、という計算により求める。理論密度は、既知成分の密度と質量比とから計算により求める。ここで、タングステンの密度は19.3g/cm、ジルコニウムの密度は6.51g/cm、酸化ジルコニウムの密度は6.52g/cmである。例えば、ZrO1wt%、Zr0.2wt%、残部タングステンからなるタングステン合金の場合、6.52×0.01+6.51×0.002+19.3×0.988=19.14662g/cmが理論密度になる。理論密度を計算する場合は、不純物の存在は考慮しなくてよい。 The tungsten alloy part preferably has a relative density of 95.0% or more, more preferably 98.0% or more. If the relative density is less than 95.0%, bubbles may increase and adverse effects such as strength reduction and partial discharge may occur. The relative density is obtained from the measured density and the theoretical density by the Archimedes method by calculation of (actual density / theoretical density) × 100 (%) = relative density. The theoretical density is obtained by calculation from the density and mass ratio of known components. Here, the density of the tungsten 19.3 g / cm 3, the density of zirconium 6.51 g / cm 3, the density of the zirconium oxide is 6.52 g / cm 3. For example, in the case of a tungsten alloy composed of 1 wt% ZrO 2 , 0.2 wt% Zr, and the balance tungsten, 6.52 × 0.01 + 6.51 × 0.002 + 19.3 × 0.988 = 19.146662 g / cm 3 is the theoretical density. become. When calculating the theoretical density, it is not necessary to consider the presence of impurities.
 実施形態のタングステン合金部品は、ビッカース硬度Hvが330以上であることが好ましく、Hv330~700の範囲内であることがより好ましい。ビッカース硬度がHv330未満ではタングステン合金が柔らか過ぎて強度が低下する。一方、Hv700を超えるとタングステン合金が硬過ぎて先端部をテーパ形状に加工し難くなる。また、硬過ぎると胴体部の長い電極部品の場合に柔軟性がなく折れやすくなる恐れがある。ビッカース硬度Hvが330以上であれば、タングステン合金の3点曲げ強度を400MPa以上と高くすることができる。 The tungsten alloy component of the embodiment preferably has a Vickers hardness Hv of 330 or more, and more preferably within a range of Hv 330 to 700. If the Vickers hardness is less than Hv330, the tungsten alloy is too soft and the strength is lowered. On the other hand, if it exceeds Hv700, the tungsten alloy is too hard and it is difficult to process the tip into a tapered shape. On the other hand, if it is too hard, in the case of an electrode part having a long body part, there is a possibility that it is not flexible and easily breaks. If the Vickers hardness Hv is 330 or more, the three-point bending strength of the tungsten alloy can be increased to 400 MPa or more.
 実施形態のタングステン合金部品を放電ランプ用電極に適用する場合、表面粗さRaが5μm以下であることが好ましい。特に、その先端部は表面粗さRaが5μm以下であることが好ましく、3μm以下であることがより好ましい。表面凹凸が大きいとエミッション特性が低下する。 When the tungsten alloy part of the embodiment is applied to an electrode for a discharge lamp, the surface roughness Ra is preferably 5 μm or less. In particular, the tip has a surface roughness Ra of preferably 5 μm or less, more preferably 3 μm or less. If the surface irregularities are large, the emission characteristics will deteriorate.
 以上のようなタングステン合金部品は、様々な放電ランプに適用することができ、低圧放電ランプや高圧放電ランプなど、特に制限を受けない。そのため、100V以上と大きな電圧をかけても長寿命を達成することができる。胴体部の線径は0.1~30mmの範囲であり、線径が0.1mm以上3mm以下の細いサイズ、3mmを超えて10mm以下の中くらいのサイズ、10mmを超えて30mm以下の太いものまで適用可能である。電極胴体部の長さは10~600mmであることが好ましい。 The tungsten alloy parts as described above can be applied to various discharge lamps and are not particularly limited, such as a low pressure discharge lamp and a high pressure discharge lamp. Therefore, a long life can be achieved even when a large voltage of 100 V or higher is applied. The wire diameter of the body part is in the range of 0.1 to 30 mm, the wire diameter is 0.1 mm to 3 mm thin size, 3 mm to 10 mm medium size, 10 mm to 30 mm thick Applicable up to. The length of the electrode body is preferably 10 to 600 mm.
 図9に放電ランプの一例を示した。図中、22は電極部品(先端部をテーパ加工済み)、27は放電ランプ、28は電極支持棒、29はガラス管、である。放電ランプ27は、一対の電極部品22を電極先端部が向い合せになるように配置する。電極部品22は電極支持棒28に接合されている。ガラス管29の内面には、図示しない蛍光体層が設けられている。ガラス管29の内部には、必要に応じ、水銀、ハロゲン、アルゴンガス(またはネオンガス)などが封入されている。 Fig. 9 shows an example of a discharge lamp. In the figure, reference numeral 22 denotes an electrode component (tip portion has been tapered), 27 denotes a discharge lamp, 28 denotes an electrode support rod, and 29 denotes a glass tube. The discharge lamp 27 arranges the pair of electrode parts 22 so that the electrode tip portions face each other. The electrode component 22 is joined to the electrode support rod 28. A phosphor layer (not shown) is provided on the inner surface of the glass tube 29. Inside the glass tube 29, mercury, halogen, argon gas (or neon gas) or the like is sealed as necessary.
 実施形態の放電ランプは、実施形態のタングステン合金部品を用いたものである。放電ランプの種類は特に限定されるものではなく、低圧放電ランプと高圧放電ランプのどちらにも適用できる。低圧放電ランプは、一般照明、道路やトンネルなどに使われる特殊照明、塗料硬化装置、UV硬化装置、殺菌装置、半導体などの光洗浄装置など様々なアーク放電型の放電ランプが挙げられる。高圧放電ランプは、上下水の処理装置、一般照明、競技場などの屋外照明、UV硬化装置、半導体やプリント基板などの露光装置、ウエハ検査装置、プロジェクタなどの高圧水銀ランプ、メタルハライドランプ、超高圧水銀ランプ、キセノンランプ、ナトリウムランプなどが挙げられる。タングステン合金の強度を向上させているので、自動車用放電ランプのように移動(振動)を伴う分野にも適用できる。 The discharge lamp of the embodiment uses the tungsten alloy part of the embodiment. The type of the discharge lamp is not particularly limited, and can be applied to both a low pressure discharge lamp and a high pressure discharge lamp. Examples of the low-pressure discharge lamp include various arc discharge type discharge lamps such as general lighting, special lighting used for roads and tunnels, paint curing devices, UV curing devices, sterilization devices, and semiconductor photo-cleaning devices. High-pressure discharge lamps include water and sewage treatment equipment, general lighting, outdoor lighting for stadiums, UV curing equipment, exposure equipment for semiconductors and printed circuit boards, wafer inspection equipment, high-pressure mercury lamps for projectors, metal halide lamps, ultra-high pressure, etc. A mercury lamp, a xenon lamp, a sodium lamp, etc. are mentioned. Since the strength of the tungsten alloy is improved, it can be applied to a field involving movement (vibration) such as an automobile discharge lamp.
 次に、製造方法について説明する。実施形態のタングステン合金部品は、前述の構成を有すれば製造方法は特に限定されるものではないが、効率よく得るための製造方法として次のものが挙げられる。 Next, the manufacturing method will be described. As long as the tungsten alloy component of the embodiment has the above-described configuration, the manufacturing method is not particularly limited, but examples of the manufacturing method for obtaining efficiently include the following.
 まず、Zr成分を含有したタングステン合金粉末の調製を行う。Zr成分として、ZrO粉末を用意する。ZrO粉末の一次粒子は平均粒径が15μm以下であることが好ましく、平均粒径が5μm以下であることがより好ましい。篩を使用して最大径15μmを超えるものを予め除去することが好ましい。最大径を10μm以下にしたいときは所定のメッシュ径を有する篩を使って大きなZrO粒子を除去する。小さな粒径のZrO粒子を除去したい場合にも所定のメッシュ径を有する篩を使って除去する。篩通しを行う前に、ZrO粒子をボールミル等により粉砕工程を行うことが好ましい。粉砕工程を行うことにより、凝集体を破壊できるので篩通しによる粒径制御を行い易くなる。 First, a tungsten alloy powder containing a Zr component is prepared. A ZrO 2 powder is prepared as a Zr component. The primary particles of the ZrO 2 powder preferably have an average particle size of 15 μm or less, and more preferably have an average particle size of 5 μm or less. It is preferable to use a sieve to remove in advance those exceeding the maximum diameter of 15 μm. When it is desired to reduce the maximum diameter to 10 μm or less, large ZrO 2 particles are removed using a sieve having a predetermined mesh diameter. Even when it is desired to remove ZrO 2 particles having a small particle diameter, they are removed using a sieve having a predetermined mesh diameter. Prior to sieving, it is preferable to pulverize the ZrO 2 particles with a ball mill or the like. By performing the pulverization step, the aggregates can be broken, so that it is easy to control the particle size by sieving.
 次に、金属タングステン粉末を混合する。金属タングステン粉末は平均粒径0.5~10μmのものが好ましい。金属タングステン粉末は、純度98.0wt%以上、酸素含有量1wt%以下、不純物金属成分1wt%以下であることが好ましい。ZrO粒子と同様に、予めボールミル等により粉砕し、篩通し工程により、小さな粒子および大きな粒子を除去しておくことが好ましい。 Next, metallic tungsten powder is mixed. The metal tungsten powder preferably has an average particle size of 0.5 to 10 μm. The metal tungsten powder preferably has a purity of 98.0 wt% or more, an oxygen content of 1 wt% or less, and an impurity metal component of 1 wt% or less. Similarly to the ZrO 2 particles, it is preferable that the particles are pulverized in advance by a ball mill or the like, and small particles and large particles are removed by a sieving step.
 Zr含有量がZrO換算で0.1~5wt%になるように金属タングステン粉末を添加する。ZrO粒子と金属タングステン粉末の混合粉末を混合容器に入れ、混合容器を回転させて均一に混合させる。このとき、混合容器として円筒形状のものを用い、円周方向に回転させることにより、スムーズに混合させることができる。この工程により、ZrO粒子を含有するタングステン粉末を調製することができる。また、後述の焼結工程時に脱酸することを考慮して炭素粉末を微量添加してもよい。 Metal tungsten powder is added so that the Zr content is 0.1 to 5 wt% in terms of ZrO 2 . A mixed powder of ZrO 2 particles and metal tungsten powder is put in a mixing container, and the mixing container is rotated to mix uniformly. At this time, a cylindrical container is used as the mixing container, and the mixing container can be smoothly mixed by rotating in the circumferential direction. Through this step, a tungsten powder containing ZrO 2 particles can be prepared. Further, a small amount of carbon powder may be added in consideration of deoxidation during the sintering process described later.
 次に、得られたZrO粒子を含有するタングステン粉末を用いて成形体を作製する。成形体を形成する際に、必要に応じてバインダーを用いる。円柱形状の成形体を形成する場合、直径を0.1~40mmとすることが好ましい。また、後述するように板状の焼結体から成形体を切り出す場合は、成形体のサイズは任意である。また、成形体の長さ(厚さ)は任意である。 Next, a compact is produced using the tungsten powder containing the obtained ZrO 2 particles. When forming a molded body, a binder is used as necessary. In the case of forming a cylindrical shaped body, the diameter is preferably 0.1 to 40 mm. Moreover, when cutting a molded object from a plate-shaped sintered compact so that it may mention later, the size of a molded object is arbitrary. Moreover, the length (thickness) of a molded object is arbitrary.
 次に、成形体を予備焼結する。予備焼結は1250~1500℃で行うことが好ましい。この工程により、予備焼結体を得ることができる。次に、予備焼結体を通電焼結する。通電焼結は、焼結体が2100~2500℃の温度になる条件で行うことが好ましい。温度が2100℃未満では十分な緻密化ができず強度が低下する。温度が2500℃を超えると、ZrO粒子およびタングステン粒子が粒成長し過ぎて目的とする結晶組織が得られない。 Next, the compact is pre-sintered. Presintering is preferably performed at 1250 to 1500 ° C. By this step, a presintered body can be obtained. Next, the pre-sintered body is subjected to current sintering. The electric current sintering is preferably performed under the condition that the sintered body has a temperature of 2100 to 2500 ° C. If the temperature is less than 2100 ° C., sufficient densification cannot be achieved and the strength is lowered. When the temperature exceeds 2500 ° C., ZrO 2 particles and tungsten particles grow too much, and the desired crystal structure cannot be obtained.
 別の方法では、成形体を温度1400~3000℃で1~20時間で焼結してもよい。焼結温度が1400℃未満または焼結時間が1時間未満では焼結が不十分であり、焼結体の強度が低下する。焼結温度が3000℃を超えるまたは焼結時間が20時間を超えるとタングステン結晶が粒成長し過ぎる恐れがある。 In another method, the molded body may be sintered at a temperature of 1400 to 3000 ° C. for 1 to 20 hours. If the sintering temperature is less than 1400 ° C. or the sintering time is less than 1 hour, the sintering is insufficient and the strength of the sintered body is lowered. If the sintering temperature exceeds 3000 ° C. or the sintering time exceeds 20 hours, the tungsten crystal may grow too much.
 焼結雰囲気としては、窒素やアルゴンなどの不活性雰囲気中、水素などの還元雰囲気中、真空中が挙げられる。これらの雰囲気であれば焼結工程時に、ZrO粒子の炭素が脱炭する。脱炭の際にタングステン粉末中の不純物酸素が一緒に除去されるので、タングステン合金中の酸素含有量を1wt%以下、さらには0.5wt%以下と小さくすることができる。タングステン合金中の酸素含有量が減ると導電性が向上する。 Examples of the sintering atmosphere include an inert atmosphere such as nitrogen and argon, a reducing atmosphere such as hydrogen, and a vacuum. In these atmospheres, the carbon of the ZrO 2 particles is decarburized during the sintering process. Since impurity oxygen in the tungsten powder is removed together at the time of decarburization, the oxygen content in the tungsten alloy can be reduced to 1 wt% or less, and further to 0.5 wt% or less. When the oxygen content in the tungsten alloy is reduced, the conductivity is improved.
 この焼結工程により、Zr含有タングステン焼結体を得ることができる。予備焼結体が円柱形状であれば焼結体も円柱状焼結体(インゴット)になる。板状焼結体の場合は、所定のサイズに切り出す工程により円柱状焼結体(インゴット)を得ることができる。 By this sintering step, a Zr-containing tungsten sintered body can be obtained. If the pre-sintered body is cylindrical, the sintered body is also a cylindrical sintered body (ingot). In the case of a plate-like sintered body, a cylindrical sintered body (ingot) can be obtained by a step of cutting to a predetermined size.
 次に、円柱状焼結体(インゴット)を、鍛造加工、圧延加工、線引加工などして、線径を調整する。その際の加工率は30~90%の範囲であることが好ましい。この加工率とは、加工前の円柱状焼結体の断面積をA、加工後の円柱状焼結体の断面積をBとしたとき、加工率=[(A-B)/A]×100%、により求められる。線径は複数回の加工により調整することが好ましい。複数回の加工を行うことにより、加工前の円柱状焼結体のポアをつぶし密度の高い電極部品を得ることができる。 Next, the diameter of the cylindrical sintered body (ingot) is adjusted by forging, rolling, drawing, or the like. In this case, the processing rate is preferably in the range of 30 to 90%. This processing rate means that the processing rate = [(AB) / A] × where A is the cross-sectional area of the cylindrical sintered body before processing, and B is the cross-sectional area of the cylindrical sintered body after processing. 100%. The wire diameter is preferably adjusted by a plurality of processes. By performing the processing a plurality of times, it is possible to obtain a high-density electrode part by crushing the pores of the cylindrical sintered body before processing.
 例えば、直径25mmの円柱状焼結体を直径20mmの円柱状焼結体に加工した場合を使って説明する。直径25mmの円の断面積Aは460.6mm、直径20mmの円の断面積Bは314mmであるから加工率は、[(460.6-314)/460.6]×100=32%となる。このとき、複数回の線引加工などにより、直径25mmから直径20mmに加工することが好ましい。 For example, a case where a cylindrical sintered body having a diameter of 25 mm is processed into a cylindrical sintered body having a diameter of 20 mm will be described. Processing rate since the cross-sectional area A of a circle having a diameter of 25mm 460.6mm 2, the cross-sectional area B of the circle of diameter 20mm is 314 mm 2 is, [(460.6-314) /460.6] × 100 = 32% It becomes. At this time, it is preferable to process from a diameter of 25 mm to a diameter of 20 mm by a plurality of drawing processes.
 加工率が30%未満と低いと、結晶組織が加工方向に十分延ばされず、タングステン結晶およびZrO粒子を目的のサイズにすることが困難になる。また、加工率が30%未満と小さいと加工前の円柱状焼結体内部のポアが十分につぶれず、そのまま残存する恐れがある。内部ポアが残存するとカソード部品の耐久性などが低下する原因となる。一方、加工率が90%を超えて大きいと、加工し過ぎにより断線して歩留まりが低下する恐れがある。このため、加工率は30~90%が好ましく、35~70%がより好ましい。なお、焼結上がりのタングステン合金の相対密度が95%以上である場合は、必ずしも上記の加工率で加工しなくてもよい。 When the processing rate is as low as less than 30%, the crystal structure is not sufficiently extended in the processing direction, and it becomes difficult to make the tungsten crystal and the ZrO 2 particles have a desired size. Further, if the processing rate is as small as less than 30%, the pores inside the cylindrical sintered body before processing may not be sufficiently crushed and may remain as they are. If the internal pores remain, it may cause a decrease in the durability of the cathode component. On the other hand, if the processing rate is larger than 90%, there is a possibility that the yield is lowered due to disconnection due to excessive processing. For this reason, the processing rate is preferably 30 to 90%, more preferably 35 to 70%. In addition, when the relative density of the sintered tungsten alloy is 95% or more, the processing is not necessarily performed at the above processing rate.
 焼結体の線径を0.1~30mmに加工した後、必要な長さに切断することにより、電極部品を作製することができる。必要に応じ、先端部をテーパ形状に加工する。また、必要に応じ、研磨加工、熱処理(再結晶熱処理など)、形状加工を行う。 After processing the wire diameter of the sintered body to 0.1 to 30 mm, the electrode part can be produced by cutting to a required length. If necessary, the tip is processed into a tapered shape. Further, polishing, heat treatment (such as recrystallization heat treatment), and shape processing are performed as necessary.
 再結晶熱処理は還元雰囲気、不活性雰囲気または真空中で、1300~2500℃の範囲で行うことが好ましい。再結晶熱処理を行うことにより、電極部品への加工工程で発生した内部応力を緩和する歪取り熱処理の効果が得られ、部品の強度を向上させることができる。 The recrystallization heat treatment is preferably performed in a range of 1300 to 2500 ° C. in a reducing atmosphere, an inert atmosphere or a vacuum. By performing the recrystallization heat treatment, the effect of the strain relief heat treatment that relieves internal stress generated in the processing step for the electrode component can be obtained, and the strength of the component can be improved.
 以上のような製造方法によれば、実施形態の放電ランプ用電極部品を効率的に製造することができる。 According to the manufacturing method as described above, the discharge lamp electrode component of the embodiment can be efficiently manufactured.
 (実施例1)
 原料粉末として、平均粒径2μmのタングステン粉末(純度99.99wt%)に、平均粒径2μmのZrO粉末(純度99.0%)を1.5wt%となるように添加した。なお、ZrO粉末については、Zr量を100質量部としたとき不純物Hf量は1.0質量部であった。
(Example 1)
As a raw material powder, ZrO 2 powder (purity 99.0%) having an average particle diameter of 2 μm was added to tungsten powder (purity 99.99 wt%) having an average particle diameter of 2 μm so as to be 1.5 wt%. Note that the ZrO 2 powder, impurity amount of Hf when the Zr amount is 100 parts by mass was 1.0 parts by mass.
 原料粉末をボールミルにより10時間混合して混合原料粉末を調製した。次に、混合原料粉末を金型に入れて、成形体を作製した。得られた成形体を水素中で1800℃×10時間の炉焼結を行った。この工程により、縦16mm×横16mm×長さ420mmの焼結体を得た。 The raw material powder was mixed with a ball mill for 10 hours to prepare a mixed raw material powder. Next, the mixed raw material powder was put into a mold to produce a molded body. The obtained molded body was subjected to furnace sintering in hydrogen at 1800 ° C. for 10 hours. By this step, a sintered body of 16 mm length × 16 mm width × 420 mm length was obtained.
 鍛造加工などにより断面が四角形状あるいは円形状の棒を作製し、次に、直径2.4mm×長さ150mmの円柱体の試料を切り出した。試料に対し、センタレス研磨加工を施し、表面粗さRaを5μm以下にした。次に、水素中にて1600℃の歪取り熱処理を施した。 A rod having a square or circular cross section was produced by forging or the like, and then a cylindrical sample having a diameter of 2.4 mm and a length of 150 mm was cut out. The sample was subjected to centerless polishing so that the surface roughness Ra was 5 μm or less. Next, a strain relief heat treatment at 1600 ° C. was performed in hydrogen.
 これにより、実施例1に係るタングステン合金部品としてエミッション特性測定用電極を作製し、エミッション電流測定を行った。 Thereby, an electrode for measuring emission characteristics was produced as a tungsten alloy part according to Example 1, and the emission current was measured.
 (比較例1)
 ThOを2wt%含有するタングステン合金からなる同サイズの放電ランプ用カソード部品を作製した。
(Comparative Example 1)
A cathode component for a discharge lamp of the same size made of a tungsten alloy containing 2 wt% ThO 2 was produced.
 実施例1に係るタングステン合金部品に関して、ZrOの含有量、表面部と中心部の炭素量、タングステン結晶の平均粒径を調べた。ZrOの含有量の分析は、ICP分析、不活性ガス融解-赤外線吸収法により、Zr量、酸素量を分析し、ZrOx換算した。また、表面部と中心部の炭素量は、表面から10μmの範囲および円柱断面から測定用試料を切り取り、燃焼-赤外線吸収法によりそれぞれ測定した。タングステン結晶粒子の平均結晶粒径は、任意の断面組織において100個のタングステン結晶粒子について結晶粒径を測定した平均値である。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
Regarding the tungsten alloy part according to Example 1, the content of ZrO 2 , the carbon content of the surface portion and the central portion, and the average grain size of tungsten crystals were examined. The content of ZrO 2 was analyzed by ICP analysis and inert gas melting-infrared absorption method to analyze the amount of Zr and the amount of oxygen, and converted to ZrOx. The carbon content in the surface portion and the central portion was measured by a combustion-infrared absorption method by cutting a sample for measurement from a range of 10 μm from the surface and from a cylindrical cross section. The average crystal grain size of the tungsten crystal particles is an average value obtained by measuring the crystal particle size of 100 tungsten crystal particles in an arbitrary cross-sectional structure. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 次に、実施例1および比較例1に係る放電ランプ用カソード部品のエミッション特性を調べた。エミッション特性の測定は、印加電圧(V)を100V、200V、300V、400Vと変化させ、エミッション電流密度(mA/mm)を測定した。カソード部品への印加電流負荷18±0.5A/W、印加時間20msで測定した。その結果を図10に示す。 Next, the emission characteristics of the cathode component for a discharge lamp according to Example 1 and Comparative Example 1 were examined. The emission characteristics were measured by changing the applied voltage (V) to 100 V, 200 V, 300 V, and 400 V and measuring the emission current density (mA / mm 2 ). The measurement was performed at an applied current load of 18 ± 0.5 A / W to the cathode component and an application time of 20 ms. The result is shown in FIG.
 図10から、実施例1は比較例1と比べて、エミッション特性が優れていることが分かった。このように、実施例1の放電ランプ用カソード部品は放射性物質である酸化トリウムを使わずに、優れたエミッション特性を示すことが分かる。なお、測定時は、カソード部品は2100~2200℃になっていた。このため、実施例1に係るカソード部品は高温強度や寿命なども優れていることが分かる。 FIG. 10 indicates that the emission characteristics of Example 1 are superior to those of Comparative Example 1. Thus, it can be seen that the cathode part for the discharge lamp of Example 1 exhibits excellent emission characteristics without using thorium oxide, which is a radioactive substance. At the time of measurement, the cathode component was 2100 to 2200 ° C. For this reason, it turns out that the cathode component which concerns on Example 1 is excellent also in high temperature strength, a lifetime, etc.
 (実施例2~6)
 次に、ZrOの添加量、ZrCの添加量、ドープ材としてのKの添加量を表2のように変えた原料混合粉末を調製した。各原料混合粉末を金型成形し、水素中にて1500~1900℃×7~16時間焼結して焼結体を得た。なお、実施例2~3は焼結体サイズを実施例1と同様にして、切り出し工程を行った。実施例4~5は、成形体サイズを調整して直径2.4mm×長さ150mmの焼結体を直接得た。実施例6は、平均粒径2μmのZrC粉末(純度99.0%)を0.5wt%添加した。なお、ZrO粉末については、Zr量を100質量部としたとき不純物Hf量は1.0質量部であった。また、実施例6のZrO粉末とZrC粉末を使用した場合、Zr量を100質量部としたとき、不純物Hf量は1.0質量部であった。
(Examples 2 to 6)
Next, raw material mixed powders were prepared in which the addition amount of ZrO 2, the addition amount of ZrC, and the addition amount of K as a doping material were changed as shown in Table 2. Each raw material mixed powder was molded and sintered in hydrogen at 1500 to 1900 ° C. for 7 to 16 hours to obtain a sintered body. In Examples 2 to 3, the cut-out process was performed in the same manner as in Example 1 in the size of the sintered body. In Examples 4 to 5, a sintered compact having a diameter of 2.4 mm and a length of 150 mm was directly obtained by adjusting the size of the molded body. In Example 6, 0.5 wt% of ZrC powder (purity 99.0%) having an average particle diameter of 2 μm was added. Note that the ZrO 2 powder, impurity amount of Hf when the Zr amount is 100 parts by mass was 1.0 parts by mass. Further, when the ZrO 2 powder and the ZrC powder of Example 6 were used, the impurity Hf amount was 1.0 part by mass when the Zr amount was 100 parts by mass.
 各試料に対し、センタレス研磨加工を施し、表面粗さRaを5μm以下にした。次に先端部を傾斜角度が45°である円錐形状に加工した。次に、水素中にて1400~1700℃の歪取り熱処理を施した。これにより、実施例2~5に係る放電ランプ用カソード部品を作製し、実施例1と同様の測定を行った。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Each sample was subjected to centerless polishing to have a surface roughness Ra of 5 μm or less. Next, the tip was processed into a conical shape with an inclination angle of 45 °. Next, a strain relief heat treatment at 1400 to 1700 ° C. was performed in hydrogen. As a result, cathode components for discharge lamps according to Examples 2 to 5 were produced, and the same measurements as in Example 1 were performed. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 次に、実施例1と同様の条件にて、エミッション特性を評価した。その結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
Next, the emission characteristics were evaluated under the same conditions as in Example 1. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
 表4から分かる通り、本実施例に係る放電ランプ用カソード部品は、いずれも優れた特性を示した。なお、測定時は、カソード部品は2100~2200℃になっていた。このため、実施例2~6に係るカソード部品は高温強度や寿命なども優れていることが分かる。なお、実施例1はZrとZrOの2種を含有するものであった。また、実施例6はZr、ZrOおよびZrCの3種を含有するものであった。 As can be seen from Table 4, all the cathode parts for the discharge lamp according to this example exhibited excellent characteristics. At the time of measurement, the cathode component was 2100 to 2200 ° C. Therefore, it can be seen that the cathode parts according to Examples 2 to 6 are excellent in high temperature strength and life. Incidentally, in Example 1 it was one containing two Zr and ZrO 2. Further, Example 6 contained three kinds of Zr, ZrO 2 and ZrC.
 (実施例11~20、比較例11)
 原料粉末として表5に示したタングステン粉末(純度99.0wt%以上)、ZrO粉末を用意した。いずれの粉末もボールミルにより十分ほぐし、必要に応じ、それぞれ最大径が表5に示した値になるように篩通し工程を行ったものである。
Figure JPOXMLDOC01-appb-T000005
(Examples 11 to 20, Comparative Example 11)
Tungsten powder (purity 99.0 wt% or more) and ZrO 2 powder shown in Table 5 were prepared as raw material powder. Each powder was sufficiently loosened by a ball mill, and subjected to a sieving step as necessary so that the maximum diameter was a value shown in Table 5, respectively.
Figure JPOXMLDOC01-appb-T000005
 次にタングステン粉末とZrO粉末を表6に示す割合で混合して、ボールミルにより再度混合した。次に成形して成形体を調製した。次に表6に示した条件により焼結工程を行った。縦16mm×横16mm×長さ420mmの焼結体を得た。
Figure JPOXMLDOC01-appb-T000006
Next, tungsten powder and ZrO 2 powder were mixed at a ratio shown in Table 6 and mixed again by a ball mill. Next, it shape | molded and the molded object was prepared. Next, the sintering process was performed under the conditions shown in Table 6. A sintered body of 16 mm long × 16 mm wide × 420 mm long was obtained.
Figure JPOXMLDOC01-appb-T000006
 次に、得られたタングステン合金焼結体から、円柱状焼結体(インゴット)を切り出し、鍛造加工、圧延加工、線引加工を適宜組合せて線径を調整した。加工率は表7に示す通りである。また、線径を調整後、所定の長さに切断し、先端部をテーパ形状に加工した。その後、表面研磨して表面粗さRaをRa5μm以下に研磨した。次に、水素雰囲気中にて1600℃の再結晶熱処理を施した。これにより、放電ランプ用電極部品を完成させた。
Figure JPOXMLDOC01-appb-T000007
Next, a cylindrical sintered body (ingot) was cut out from the obtained tungsten alloy sintered body, and the wire diameter was adjusted by appropriately combining forging, rolling, and drawing. The processing rate is as shown in Table 7. Moreover, after adjusting a wire diameter, it cut | disconnected to predetermined length, and processed the front-end | tip part into the taper shape. Thereafter, the surface was polished to a surface roughness Ra of Ra 5 μm or less. Next, recrystallization heat treatment at 1600 ° C. was performed in a hydrogen atmosphere. Thereby, the electrode part for discharge lamps was completed.
Figure JPOXMLDOC01-appb-T000007
 次に、各放電ランプ用電極部品の胴体部の横断面と縦断面の拡大写真を撮り、ZrO成分の平均粒径、最大径、タングステン結晶粒子の割合、平均粒径、アスペクト比を測定した。拡大写真に関しては、それぞれ胴体部の中心を通る円周断面および縦断面を切り出し、任意の単位面積300μm×300μmについて調べた。その結果を表8に示す。
Figure JPOXMLDOC01-appb-T000008
Next, enlarged photographs of the cross section and vertical section of the body part of each discharge lamp electrode part were taken, and the average particle diameter, maximum diameter, ratio of tungsten crystal particles, average particle diameter, and aspect ratio of the ZrO 2 component were measured. . Regarding the enlarged photograph, a circumferential section and a longitudinal section passing through the center of the body part were cut out, and an arbitrary unit area of 300 μm × 300 μm was examined. The results are shown in Table 8.
Figure JPOXMLDOC01-appb-T000008
 次に各放電ランプ用電極部品に対して、Zr成分中のZrOの割合を測定した。また、酸素含有量、相対密度(%)、ビッカース硬度(Hv)、3点曲げ強度を求めた。 Next, the ratio of ZrO 2 in the Zr component was measured for each discharge lamp electrode part. Further, the oxygen content, relative density (%), Vickers hardness (Hv), and three-point bending strength were determined.
 Zr成分中のZrOの割合は、ICP分析法によりタングステン合金中のZr量、燃焼-赤外線吸収法によりタングステン合金中の炭素量を測定する。タングステン合金中の炭素はZrOになっていると考えて良い。そのため、検出された全Zr量を100重量部とし、ZrOになるZr量を換算し、その質量比を求めるものとする。また、タングステン合金中の酸素含有量は不活性ガス燃焼-赤外線吸収法により分析した。また、相対密度は、アルキメデス法により分析した実測密度を理論密度で割って求めた。なお、理論密度は前述の計算により求めた。また、ビッカース硬度(Hv)は、JIS-Z-2244に準じて求めた。また、3点曲げ強度は、JIS-R-1601に準じて求めた。その結果を表9に示す。
Figure JPOXMLDOC01-appb-T000009
The proportion of ZrO 2 in the Zr component is determined by measuring the amount of Zr in the tungsten alloy by ICP analysis and the amount of carbon in the tungsten alloy by the combustion-infrared absorption method. It can be considered that the carbon in the tungsten alloy is ZrO 2 . Therefore, the total amount of Zr detected is 100 parts by weight, the amount of Zr that becomes ZrO 2 is converted, and the mass ratio is obtained. The oxygen content in the tungsten alloy was analyzed by an inert gas combustion-infrared absorption method. The relative density was obtained by dividing the measured density analyzed by the Archimedes method by the theoretical density. The theoretical density was determined by the above calculation. The Vickers hardness (Hv) was determined according to JIS-Z-2244. The three-point bending strength was determined according to JIS-R1601. The results are shown in Table 9.
Figure JPOXMLDOC01-appb-T000009
 本実施例に係る放電ランプ用電極部品は密度が高く、ビッカース硬度(Hv)も優れた値を示した。これは、ZrOの一部が脱酸したためである。また、ZrOになっていないZr成分は、金属Zr粒子になったもの、ZrO粒子の表面の一部が金属Zrになったもの、タングステンとハフニウムの固溶体になったもの、のいずれかの状態であった。 The electrode part for a discharge lamp according to the present example had a high density and an excellent Vickers hardness (Hv). This is because a part of ZrO 2 was deoxidized. In addition, the Zr component that is not ZrO 2 is any one of those that have become metal Zr particles, those that have part of the surface of ZrO 2 particles become metal Zr, and those that have become a solid solution of tungsten and hafnium. It was in a state.
 (実施例21~25)
 次に、タングステン粉末およびZrO粉末として実施例12と同様のものを用い、第二の成分として表10に示した組成に変えたものを用意した。焼結条件を水素雰囲気中、2000℃で炉焼結としてインゴットを得た。インゴットを加工率50%で加工して、線径10mmの電極部品を得た。また、水素雰囲気中にて1600℃の再結晶熱処理を施した。各実施例に対して、同様の測定を行った。その結果を、表10~12に示した。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
(Examples 21 to 25)
Next, a tungsten powder and a ZrO 2 powder similar to those in Example 12 were used, and a second component having a composition shown in Table 10 was prepared. An ingot was obtained by sintering the furnace at 2000 ° C. in a hydrogen atmosphere. The ingot was processed at a processing rate of 50% to obtain an electrode part having a wire diameter of 10 mm. Further, a recrystallization heat treatment at 1600 ° C. was performed in a hydrogen atmosphere. The same measurement was performed for each example. The results are shown in Tables 10-12.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 表10~12から分かる通り、添加元素を用いることにより、分散強化機能が強化し、タングステン結晶の粒成長が抑制されるため強度の向上が見られた。 As can be seen from Tables 10 to 12, by using the additive element, the dispersion strengthening function was strengthened, and the grain growth of the tungsten crystal was suppressed, so that the strength was improved.
 (実施例11A~25A、比較例11-1A~11-2Aおよび比較例12)
 実施例11~25、比較例11-1および比較例11-2の放電ランプ用電極部品のエミッション特性を調べた。エミッション特性の測定は、印加電圧(V)を100V、200V、300V、400Vと変化させ、エミッション電流密度(mA/mm)を測定した。放電ランプ用電極部品への印加電流負荷18±0.5A/W、印加時間20msで測定した。
(Examples 11A to 25A, Comparative Examples 11-1A to 11-2A and Comparative Example 12)
The emission characteristics of the electrode parts for discharge lamps of Examples 11 to 25, Comparative Example 11-1, and Comparative Example 11-2 were examined. The emission characteristics were measured by changing the applied voltage (V) to 100 V, 200 V, 300 V, and 400 V and measuring the emission current density (mA / mm 2 ). The measurement was performed at an applied current load of 18 ± 0.5 A / W and an application time of 20 ms to the electrode parts for the discharge lamp.
 また、比較例12として、ThOを2wt%含有するタングステン合金からなる線径8mmの放電ランプ用電極部品を作製した。その結果を表13に示す。
Figure JPOXMLDOC01-appb-T000013
As Comparative Example 12, a discharge lamp electrode part having a wire diameter of 8 mm made of a tungsten alloy containing 2 wt% ThO 2 was produced. The results are shown in Table 13.
Figure JPOXMLDOC01-appb-T000013
 各実施例に係る放電ランプ用電極部品は、酸化トリウムを使用しないにも関わらず、酸化トリウムを使用した比較例2と同等以上のエミッション特性を示した。また、測定時は、電極部品は2100~2200℃になっていた。このため、各実施例に係る放電ランプ用電極部品は高温強度も優れるものである。 The discharge lamp electrode parts according to each example exhibited emission characteristics equal to or higher than those of Comparative Example 2 using thorium oxide, although thorium oxide was not used. At the time of measurement, the electrode parts were at 2100 to 2200 ° C. For this reason, the electrode components for discharge lamps according to the respective examples have excellent high temperature strength.
 (実施例26~28)
 次に、実施例11、実施例13、実施例18の放電ランプ用電極部品に対し、再結晶熱処理条件を1800℃に変えた以外は同じ製造方法にて製造したものを実施例26(実施例11の再結晶熱処理条件を1800℃に変えたもの)、実施例27(実施例13の再結晶熱処理条件を1800℃に変えたもの)、実施例28(実施例18の再結晶熱処理条件を1800℃に変えたもの)として用意した。同様の測定を行った。その結果を表14、15に示した。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
(Examples 26 to 28)
Next, the electrode parts for discharge lamps of Example 11, Example 13, and Example 18 were manufactured by the same manufacturing method except that the recrystallization heat treatment condition was changed to 1800 ° C. Example 26 (Example) 11 was changed to 1800 ° C.), Example 27 was changed to 1800 ° C. (Example 13), and Example 28 was changed to 1800. Prepared at a temperature changed to ℃). Similar measurements were made. The results are shown in Tables 14 and 15.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 本実施例に係る放電ランプ用電極部品は密度が高く、ビッカース硬度(Hv)および3点曲げ強度も優れた値を示した。これはZrOの一部が脱酸したためである。また、ZrOになっていないZr成分を分析した結果、いずれもタングステンとジルコニウムの固溶体になったものであった。つまり、Zr成分としてZrとZrOの2種が存在するものであった。このため、再結晶熱処理温度を1700℃以上にすると金属Zrをタングステンに固溶させ易いことが分かった。また、エミッション特性を同様の方法により測定した。
Figure JPOXMLDOC01-appb-T000016
The electrode part for a discharge lamp according to this example had a high density, and also exhibited excellent values of Vickers hardness (Hv) and three-point bending strength. This is because a part of ZrO 2 was deoxidized. Moreover, as a result of analyzing the Zr component which is not ZrO 2 , both were solid solutions of tungsten and zirconium. That is, there are two types of Zr components, Zr and ZrO 2 . For this reason, it has been found that when the recrystallization heat treatment temperature is set to 1700 ° C. or higher, the metal Zr is easily dissolved in tungsten. The emission characteristics were measured by the same method.
Figure JPOXMLDOC01-appb-T000016
 上記のように金属Zrをすべてタングステンに固溶させることによりエミッション特性が向上することが分かった。これは固溶により金属Zrがタングステン合金の表面に存在し易くなったためであると考えられる。 It was found that the emission characteristics are improved by dissolving all of the metal Zr in tungsten as described above. This is considered to be because the metal Zr is likely to be present on the surface of the tungsten alloy due to the solid solution.
 また、上記のようにエミッション特性に優れることから放電ランプ用電極部品に限らず、エミッション特性を要求されるマグネトロン用部品(コイル部品)、送信管用部品(メッシュグリット)などの分野にも使用できる。 Also, since it has excellent emission characteristics as described above, it can be used not only for electrode parts for discharge lamps but also for fields such as magnetron parts (coil parts) and transmission pipe parts (mesh grit) that require emission characteristics.

Claims (21)

  1.  タングステンと、Zr、ZrO、ZrC、およびCからなる群より選択される少なくとも2種の成分とを含み、ZrをZrO換算で0.1~5wt%含有することを特徴とするタングステン合金部品。 A tungsten alloy part comprising tungsten and at least two components selected from the group consisting of Zr, ZrO 2 , ZrC and C, and containing 0.1 to 5 wt% of Zr in terms of ZrO 2 .
  2.  ZrをZrO換算で0.1~3wt%含有することを特徴とする請求項1に記載のタングステン合金部品。 The tungsten alloy part according to claim 1, wherein Zr is contained in an amount of 0.1 to 3 wt% in terms of ZrO 2 .
  3.  ZrおよびOの含有量をZrO換算したときx<2であることを特徴とする請求項1または2に記載のタングステン合金部品。 The tungsten alloy part according to claim 1 or 2, wherein the content of Zr and O is x <2 when converted to ZrO x .
  4.  ZrおよびOの含有量をZrO換算したとき0<x<2であることを特徴とする請求項1ないし3のいずれか1項に記載のタングステン合金部品。 4. The tungsten alloy part according to claim 1, wherein the content of Zr and O is 0 <x <2 when converted to ZrO x . 5.
  5.  さらに、K、SiおよびAlからなる群より選択される少なくとも1種の元素を0.01wt%以下含有することを特徴とする請求項1ないし4のいずれか1項に記載のタングステン合金部品。 The tungsten alloy part according to any one of claims 1 to 4, further comprising 0.01 wt% or less of at least one element selected from the group consisting of K, Si and Al.
  6.  Zrの含有量を100質量部としたとき、15質量部以下のHfを含有することを特徴とする請求項1ないし5のいずれか1項に記載のタングステン合金部品。 6. The tungsten alloy component according to claim 1, wherein the content of Hf is 15 parts by mass or less when the content of Zr is 100 parts by mass.
  7.  前記ZrOの一次粒子は、平均粒径が15μm以下であることを特徴とする請求項1ないし6のいずれか1項に記載のタングステン合金部品。 7. The tungsten alloy part according to claim 1, wherein the primary particles of the ZrO 2 have an average particle size of 15 μm or less.
  8.  前記ZrOの一次粒子は、平均粒径が5μm以下、最大径が15μm以下であることを特徴とする請求項7に記載のタングステン合金部品。 The tungsten alloy component according to claim 7, wherein the primary particles of the ZrO 2 have an average particle size of 5 µm or less and a maximum diameter of 15 µm or less.
  9.  前記ZrOの二次粒子は、最大径が100μm以下であることを特徴とする請求項7または8に記載のタングステン合金部品。 9. The tungsten alloy part according to claim 7, wherein the secondary particles of ZrO 2 have a maximum diameter of 100 μm or less.
  10.  金属Zrの少なくとも一部がタングステンに固溶していることを特徴とする請求項1ないし9のいずれか1項に記載のタングステン合金部品。 The tungsten alloy component according to any one of claims 1 to 9, wherein at least a part of the metal Zr is solid-dissolved in tungsten.
  11.  前記タングステン合金部品の表面に金属Zrが存在することを特徴とする請求項1ないし10のいずれか1項に記載のタングステン合金部品。 The tungsten alloy part according to any one of claims 1 to 10, wherein metal Zr is present on a surface of the tungsten alloy part.
  12.  Zrの含有量を100質量部としたとき、ZrOを構成するZrの含有量が30~98質量部であることを特徴とする請求項1ないし11のいずれか1項に記載のタングステン合金部品。 The tungsten alloy component according to any one of claims 1 to 11, wherein the content of Zr constituting ZrO 2 is 30 to 98 parts by mass when the content of Zr is 100 parts by mass. .
  13.  前記タングステン合金部品は、ビッカース硬度Hvが330以上であることを特徴とする請求項1ないし12のいずれか1項に記載のタングステン合金部品。 The tungsten alloy part according to any one of claims 1 to 12, wherein the tungsten alloy part has a Vickers hardness Hv of 330 or more.
  14.  前記タングステン合金部品は、線径が0.1~30mmであることを特徴とする請求項1ないし13のいずれか1項に記載のタングステン合金部品。 The tungsten alloy part according to any one of claims 1 to 13, wherein the tungsten alloy part has a wire diameter of 0.1 to 30 mm.
  15.  前記タングステン合金部品は、平均結晶粒径が1~100μmのタングステン結晶を含有することを特徴とする請求項1ないし13のいずれか1項に記載のタングステン合金部品。 The tungsten alloy part according to any one of claims 1 to 13, wherein the tungsten alloy part contains a tungsten crystal having an average crystal grain size of 1 to 100 µm.
  16.  前記タングステン合金部品の横断面の単位面積あたり、1~80μmの結晶粒径を有するタングステン結晶の面積率が90%以上であることを特徴とする請求項15に記載のタングステン合金部品。 16. The tungsten alloy part according to claim 15, wherein the area ratio of tungsten crystals having a crystal grain size of 1 to 80 μm per unit area of a cross section of the tungsten alloy part is 90% or more.
  17.  前記タングステン合金部品の縦断面の単位面積あたり、2~120μmの結晶粒径を有するタングステン結晶の面積率が90%以上であることを特徴とする請求項15または16に記載のタングステン合金部品。 The tungsten alloy part according to claim 15 or 16, wherein an area ratio of tungsten crystals having a crystal grain size of 2 to 120 µm per unit area of a longitudinal section of the tungsten alloy part is 90% or more.
  18.  放電ランプ用部品、送信管用部品、またはマグネトロン用部品に用いられることを特徴とする請求項1ないし17のいずれか1項に記載のタングステン合金部品。 18. The tungsten alloy part according to claim 1, wherein the tungsten alloy part is used for a discharge lamp part, a transmitter tube part, or a magnetron part.
  19.  請求項18にタングステン合金部品を用いたことを特徴とする放電ランプ。 19. A discharge lamp characterized by using a tungsten alloy part according to claim 18.
  20.  請求項18にタングステン合金部品を用いたことを特徴とする送信管。 19. A transmission tube using a tungsten alloy part according to claim 18.
  21.  請求項18にタングステン合金部品を用いたことを特徴とするマグネトロン。 19. A magnetron according to claim 18, wherein a tungsten alloy part is used.
PCT/JP2012/083284 2012-07-03 2012-12-21 Tungsten alloy part, and discharge lamp, transmitting tube and magnetron using same WO2014006779A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12880512.4A EP2871666B1 (en) 2012-07-03 2012-12-21 Tungsten alloy part, and discharge lamp using the same
CN201280060372.2A CN103975414B (en) 2012-07-03 2012-12-21 Tungsten alloy part and the discharge lamp using this tungsten alloy part, transmitting tube and magnetron
JP2014523549A JP5911576B2 (en) 2012-07-03 2012-12-21 Tungsten alloy parts, and discharge lamps, transmitter tubes and magnetrons using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-150019 2012-07-03
JP2012150019 2012-07-03
JP2012154977 2012-07-10
JP2012-154977 2012-07-10

Publications (1)

Publication Number Publication Date
WO2014006779A1 true WO2014006779A1 (en) 2014-01-09

Family

ID=49881558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083284 WO2014006779A1 (en) 2012-07-03 2012-12-21 Tungsten alloy part, and discharge lamp, transmitting tube and magnetron using same

Country Status (4)

Country Link
EP (1) EP2871666B1 (en)
JP (1) JP5911576B2 (en)
CN (1) CN103975414B (en)
WO (1) WO2014006779A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104789844A (en) * 2015-04-23 2015-07-22 江苏峰峰钨钼制品股份有限公司 Tungsten crucible and preparation method thereof
JP2016181358A (en) * 2015-03-23 2016-10-13 東芝ライテック株式会社 Discharge lamp
WO2020105644A1 (en) * 2018-11-19 2020-05-28 株式会社 東芝 Cathode component for discharge lamp, and discharge lamp
WO2020171065A1 (en) * 2019-02-18 2020-08-27 株式会社 東芝 Cathode component for discharge lamps, discharge lamp and method for producing cathode component for discharge lamps
WO2020196192A1 (en) * 2019-03-22 2020-10-01 株式会社 東芝 Discharge lamp cathode part, and discharge lamp
JPWO2021070459A1 (en) * 2019-10-09 2021-04-15

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104611618A (en) * 2015-01-03 2015-05-13 北京工业大学 High temperature-resistant tungsten alloy material
CN105441766B (en) * 2016-01-05 2018-01-09 河南科技大学 High-specific gravity tungsten alloy and preparation method thereof
CN106480347A (en) * 2016-12-05 2017-03-08 郑州丽福爱生物技术有限公司 A kind of high-strength aluminum alloy material and preparation method thereof
CN107217995A (en) * 2017-05-05 2017-09-29 胜利油田胜鑫防腐有限责任公司 A kind of tungsten-plated alloy anti-corrosion tubing and casing
AT16409U1 (en) * 2017-05-23 2019-08-15 Plansee Se Cathode material
CN108149103B (en) * 2017-12-29 2019-11-05 中国科学院合肥物质科学研究院 A kind of potassium zirconium carbide codope tungsten alloy and preparation method thereof
CN109378266A (en) * 2018-09-21 2019-02-22 厦门虹鹭钨钼工业有限公司 A kind of environment-friendly type cathode material and preparation method thereof
CN110284843B (en) * 2019-07-01 2021-06-22 山西中能企服环保科技有限公司 Anti-corrosion anti-sticking high-temperature-resistant oil casing connector and preparation method thereof

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339738B1 (en) * 1970-12-29 1978-10-23
JPH0499146A (en) * 1990-08-02 1992-03-31 Toshiba Corp Powder sintered material and its manufacture
JPH11283516A (en) * 1998-03-31 1999-10-15 Toshiba Corp Electron-emitting member for magnetron, cathode structural body for the magnetron, and the magnetron
JP2002042643A (en) * 2000-07-28 2002-02-08 Toshiba Corp Method for blackening anode inner surface of electron tube
JP2002226935A (en) 2001-02-02 2002-08-14 Toshiba Corp Thorium-tungsten alloy, thorium-tungsten wire, method for manufacturing the same, thorium-tungsten wire coil, and cathode structure for electron tube
JP2003013102A (en) * 2001-07-03 2003-01-15 Honda Motor Co Ltd Multicomponent carbonitride powder, manufacturing method therefor, and sintered compact by using it as raw material
JP2005123016A (en) * 2003-10-16 2005-05-12 Allied Material Corp Alloy for lead member of electric bulb, and electrode structure of electric bulb using the same
WO2005073418A1 (en) * 2004-01-30 2005-08-11 Nippon Tungsten Co., Ltd. Tungsten based sintered compact and method for production thereof
JP2006286236A (en) * 2005-03-31 2006-10-19 Ushio Inc Heavy-load and high-intensity discharge lamp
JP2007113104A (en) * 2005-10-24 2007-05-10 Toshiba Corp Tungsten electrode material
JP2008196041A (en) * 2007-02-16 2008-08-28 Tungaloy Corp Cemented carbide
JP2010146989A (en) * 2008-12-22 2010-07-01 Ushio Inc Discharge lamp
JP2010159484A (en) * 2008-12-08 2010-07-22 Allied Material Corp Tungsten electrode material and method for manufacturing the same
JP2011103240A (en) 2009-11-11 2011-05-26 Toshiba Materials Co Ltd Tungsten electrode and discharge lamp using the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4090875A (en) * 1973-10-01 1978-05-23 The United States Of America As Represented By The Department Of Energy Ductile tungsten-nickel-alloy and method for manufacturing same
BE1007595A3 (en) * 1993-10-07 1995-08-16 Philips Electronics Nv HIGH-metal halide discharge LAMP.
CN1083492C (en) * 1999-09-17 2002-04-24 哈尔滨工业大学 Preparation of zirconium carbide particle-reinforced composite tungsten material
US6559582B2 (en) * 2000-08-31 2003-05-06 New Japan Radio Co., Ltd. Cathode and process for producing the same
JP4263888B2 (en) * 2002-08-30 2009-05-13 株式会社東芝 Tungsten rod for tube and tube using the same
WO2006114770A1 (en) * 2005-04-27 2006-11-02 Koninklijke Philips Electronics N.V. Discharge lamp with electrode made of tungsten alloy comprising < 3 wt .% of rhenium
US8324918B2 (en) * 2007-09-27 2012-12-04 Kabushiki Kaisha Toshiba Probe needle material, probe needle and probe card each using the same, and inspection process
CN102246260A (en) * 2008-12-08 2011-11-16 联合材料公司 Tungsten electrode material and thermal electron emission current measurement device
EP3778939A1 (en) * 2012-05-29 2021-02-17 Kabushiki Kaisha Toshiba Method for producing a tungsten alloy part

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339738B1 (en) * 1970-12-29 1978-10-23
JPH0499146A (en) * 1990-08-02 1992-03-31 Toshiba Corp Powder sintered material and its manufacture
JPH11283516A (en) * 1998-03-31 1999-10-15 Toshiba Corp Electron-emitting member for magnetron, cathode structural body for the magnetron, and the magnetron
JP2002042643A (en) * 2000-07-28 2002-02-08 Toshiba Corp Method for blackening anode inner surface of electron tube
JP2002226935A (en) 2001-02-02 2002-08-14 Toshiba Corp Thorium-tungsten alloy, thorium-tungsten wire, method for manufacturing the same, thorium-tungsten wire coil, and cathode structure for electron tube
JP2003013102A (en) * 2001-07-03 2003-01-15 Honda Motor Co Ltd Multicomponent carbonitride powder, manufacturing method therefor, and sintered compact by using it as raw material
JP2005123016A (en) * 2003-10-16 2005-05-12 Allied Material Corp Alloy for lead member of electric bulb, and electrode structure of electric bulb using the same
WO2005073418A1 (en) * 2004-01-30 2005-08-11 Nippon Tungsten Co., Ltd. Tungsten based sintered compact and method for production thereof
JP2006286236A (en) * 2005-03-31 2006-10-19 Ushio Inc Heavy-load and high-intensity discharge lamp
JP2007113104A (en) * 2005-10-24 2007-05-10 Toshiba Corp Tungsten electrode material
JP2008196041A (en) * 2007-02-16 2008-08-28 Tungaloy Corp Cemented carbide
JP2010159484A (en) * 2008-12-08 2010-07-22 Allied Material Corp Tungsten electrode material and method for manufacturing the same
JP2010146989A (en) * 2008-12-22 2010-07-01 Ushio Inc Discharge lamp
JP2011103240A (en) 2009-11-11 2011-05-26 Toshiba Materials Co Ltd Tungsten electrode and discharge lamp using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2871666A4

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016181358A (en) * 2015-03-23 2016-10-13 東芝ライテック株式会社 Discharge lamp
CN104789844A (en) * 2015-04-23 2015-07-22 江苏峰峰钨钼制品股份有限公司 Tungsten crucible and preparation method thereof
JPWO2020105644A1 (en) * 2018-11-19 2021-05-13 株式会社東芝 Cathode parts for discharge lamps and discharge lamps
WO2020105644A1 (en) * 2018-11-19 2020-05-28 株式会社 東芝 Cathode component for discharge lamp, and discharge lamp
JPWO2020171065A1 (en) * 2019-02-18 2021-09-13 株式会社東芝 Manufacturing method of cathode parts for discharge lamps, discharge lamps, and cathode parts for discharge lamps
WO2020171065A1 (en) * 2019-02-18 2020-08-27 株式会社 東芝 Cathode component for discharge lamps, discharge lamp and method for producing cathode component for discharge lamps
JP7098812B2 (en) 2019-02-18 2022-07-11 株式会社東芝 Manufacturing method of cathode parts for discharge lamps, discharge lamps, and cathode parts for discharge lamps
WO2020196192A1 (en) * 2019-03-22 2020-10-01 株式会社 東芝 Discharge lamp cathode part, and discharge lamp
CN113272937A (en) * 2019-03-22 2021-08-17 株式会社东芝 Cathode member for discharge lamp and discharge lamp
JPWO2020196192A1 (en) * 2019-03-22 2021-10-14 株式会社東芝 Cathode parts for discharge lamps and discharge lamps
JP7043680B2 (en) 2019-03-22 2022-03-29 株式会社東芝 Cathode parts for discharge lamps and discharge lamps
CN113272937B (en) * 2019-03-22 2023-06-30 株式会社东芝 Cathode member for discharge lamp and discharge lamp
JPWO2021070459A1 (en) * 2019-10-09 2021-04-15
WO2021070459A1 (en) * 2019-10-09 2021-04-15 ウシオ電機株式会社 Short arc discharge lamp
JP7294436B2 (en) 2019-10-09 2023-06-20 ウシオ電機株式会社 short arc discharge lamp

Also Published As

Publication number Publication date
EP2871666B1 (en) 2022-09-07
CN103975414A (en) 2014-08-06
JPWO2014006779A1 (en) 2016-06-02
EP2871666A1 (en) 2015-05-13
CN103975414B (en) 2017-03-08
EP2871666A4 (en) 2016-09-14
JP5911576B2 (en) 2016-04-27

Similar Documents

Publication Publication Date Title
JP5911576B2 (en) Tungsten alloy parts, and discharge lamps, transmitter tubes and magnetrons using the same
US10998157B2 (en) Tungsten alloy part, and discharge lamp, transmitting tube, and magnetron using the same
US10167536B2 (en) Tungsten alloy, tungsten alloy part, discharge lamp, transmitting tube, and magnetron
JP5881742B2 (en) Tungsten alloy and tungsten alloy parts, discharge lamp, transmitter tube and magnetron using the same
JP5800922B2 (en) Cathode parts for discharge lamps
JP2013133492A (en) Tungsten alloy part and discharge lamp, transmitting tube and magnetron using the same
JP5881740B2 (en) Tungsten alloy and tungsten alloy parts, discharge lamp, transmitter tube and magnetron using the same
JP2013133493A (en) Tungsten alloy component, and discharge lamp, transmitting tube and magnetron using the tungsten alloy component
JP2013229179A (en) Discharge lamp electrode support rod and discharge lamp using the same
JP2013182739A (en) Cathode component support rod for discharge lamp

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12880512

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014523549

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012880512

Country of ref document: EP