WO2014006736A1 - Dust-collecting device - Google Patents

Dust-collecting device Download PDF

Info

Publication number
WO2014006736A1
WO2014006736A1 PCT/JP2012/067288 JP2012067288W WO2014006736A1 WO 2014006736 A1 WO2014006736 A1 WO 2014006736A1 JP 2012067288 W JP2012067288 W JP 2012067288W WO 2014006736 A1 WO2014006736 A1 WO 2014006736A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
gas
electrode
dust
electrodes
Prior art date
Application number
PCT/JP2012/067288
Other languages
French (fr)
Japanese (ja)
Inventor
一隆 富松
上田 泰稔
小嶋 勝久
加藤 雅也
Original Assignee
三菱重工メカトロシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工メカトロシステムズ株式会社 filed Critical 三菱重工メカトロシステムズ株式会社
Priority to PCT/JP2012/067288 priority Critical patent/WO2014006736A1/en
Publication of WO2014006736A1 publication Critical patent/WO2014006736A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/41Ionising-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/06Plant or installations having external electricity supply dry type characterised by presence of stationary tube electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/49Collecting-electrodes tubular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • B01D46/50Means for discharging electrostatic potential
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/10Ionising electrode has multiple serrated ends or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/74Cleaning the electrodes
    • B03C3/80Cleaning the electrodes by gas or solid particle blasting

Definitions

  • the present invention relates to a dust collector for removing a collection target such as dust contained in a gas, and an operation method thereof.
  • a bag filter equipped with a filter cloth for treating dust (particulate matter) contained in gas is installed.
  • the gas include exhaust gas generated when burning coal and heavy oil, and air.
  • the above-mentioned bag filter is installed in the flue of power generation plants such as coal-fired and heavy oil-fired, industrial combustion equipment such as incinerators, etc., as well as a dust collector that is installed in the vicinity of devices that generate dust and performs environmental dust collection Also applies.
  • a pre-charged part may be installed in the flue upstream of the bag filter.
  • the preliminary charging unit is a charging unit including a discharge electrode and a ground electrode, and applies positive or negative charge to the dust in the gas by corona discharge to charge the dust.
  • the charged dust is collected on the filter cloth surface of the subsequent bag filter to form a charged dust layer.
  • fine particles entering the dust layer are attached to the coarse particles by electrostatic force. Thereby, clogging of the bag filter is reduced and the dust layer is also porous.
  • coarse particles easily settle during backwashing, as a result, an increase in the pressure loss of the bag filter can be suppressed. Further, since the fine particles adhere to the coarse particles due to electrostatic force, the slipping of the fine particles through the bag filter is reduced, and as a result, the dust can be collected with high efficiency.
  • Patent Document 1 discloses a two-stage electrostatic precipitator including a charging unit (preliminary charging unit) and a dust collection unit.
  • the dust collecting electrode (earth electrode) having a circular shape or an equivalent shape is arranged in a polygonal shape, and the discharge electrode is arranged at the center thereof.
  • One discharge electrode forms an electric field with a dust collecting electrode existing around the discharge electrode and charges the dust by corona discharge.
  • the dust charged by the charging unit is collected by the downstream dust collecting unit.
  • the dust collector of Patent Document 1 it is only necessary to supply the dust collector with a necessary minimum current that can prevent re-scattering. Therefore, it is possible to maintain high electric field strength without causing back ionization in the dust collector. And high dust collection efficiency can be obtained.
  • JP-A-60-209273 page 3, upper left column, line 11 to lower right column, line 3, FIG. 8)
  • Reverse ionization occurs when the electric field strength represented by the product ( ⁇ d ⁇ id) of the electrical resistivity ( ⁇ d) of the dust and the current density (id) flowing through the deposited dust layer exceeds the breakdown pressure of the dust layer. To do. Therefore, as one means for preventing the occurrence of reverse ionization, a method for eliminating the presence of dust itself, that is, preventing dust from accumulating on the dust collecting electrode is considered as one of the countermeasures.
  • An object of the present invention is to provide a dust collector capable of removing a collection target with high efficiency.
  • the present invention includes, in a flue through which a gas circulates, a precharge unit that discharges the collection target in the gas in order from the upstream side, and a bag filter that collects the collection target.
  • the preliminary charging unit includes a plurality of discharge electrodes arranged in a direction orthogonal to the gas flow direction in the gas flow path, and a direction orthogonal to the gas flow direction.
  • a plurality of ground electrodes arranged, the ground electrode has a curved surface with a continuous surface facing the upstream side of the gas, and the one discharge electrode has a plurality of protruding discharge portions.
  • the one discharge electrode is located between the two ground electrodes adjacent to each other when viewed from the upstream side of the gas, and the one discharge electrode and the two grounds closest to the one discharge electrode Corona discharge is generated between the surface of the pole facing the upstream side of the gas and the arc A surface precipitator corona discharge is inhibited by facing the downstream side of the electrode of the gas.
  • the collection target in the present invention is a gaseous substance such as dust or mercury contained in the combustion exhaust gas.
  • corona discharge is generated between the discharge electrode and the gas upstream surface of the earth electrode that is disposed on the gas downstream side of the discharge electrode and is closest to the discharge electrode.
  • the dust is charged.
  • the ground electrode is exposed to a high-speed gas. Then, even if dust adheres to the gas upstream surface of the earth electrode due to electric force, other dust collides and the earth electrode is arranged so that dust does not accumulate on the gas upstream surface of the earth. By doing so, the cleanliness of the gas upstream surface of the ground electrode is ensured.
  • charged dust is allowed to adhere to and accumulate on the gas downstream surface of the earth electrode.
  • a corona discharge is generated between one discharge electrode and the gas upstream side surface of the adjacent earth electrode. Corona discharge is suppressed on the gas downstream surface of the earth electrode.
  • the state of “corona discharge is suppressed” means that reverse ionization occurs, and the charge opposite to the discharge electrode is released from the ground electrode, and the charge of the dust is neutralized to greatly increase the charging capability. It means that it is suppressed to be lowered.
  • there is no discharge between the discharge electrode and the gas downstream surface of the ground electrode but it is acceptable to rarely generate back ionization to the extent that the charging capability is not significantly reduced. is there.
  • the precharge portion of the dust collector of the present invention when passing through the corona discharge generated between the discharge electrode and the ground electrode, Some are oxidized to a solid state. The substance that has become a solid state is further charged in the precharge portion. The substance in a solid state is transported to a subsequent bag filter and collected by the bag filter. In the present invention, fine particles adhere to the coarse particles by electrostatic force in the latter-stage bag filter, and an effect of reducing slipping of the fine particles in the bag filter can be obtained. For this reason, it becomes possible to collect the mercury etc. which became the solid state with high efficiency.
  • the discharge electrode has a cylindrical shape, and has one or a pair of discharge portions projecting outward in a cross section in a direction orthogonal to the axial direction, and the one or the pair of discharge portions are in the axial direction.
  • a plurality of the discharge portions are arranged in a direction perpendicular to the gas flow direction or toward the upstream side of the gas, and the discharge portion has a tip that is closer to the gas than the center of the ground electrode. It is preferable that the discharge electrode and the ground electrode are arranged so as to be located on the upstream side. By doing so, it is possible to prevent dust from adhering to the tip of the discharge part.
  • the ground electrode rows and the discharge electrode rows in a direction orthogonal to the gas flow direction are alternately arranged in a plurality of rows in the gas flow direction, and adjacent to each other in the gas flow direction.
  • the discharge electrode arranged between the poles is arranged in the center between the rows of earth electrodes, or is displaced toward the earth electrode rows on the gas downstream side. .
  • Charging performance can be improved by arranging a plurality of rows of ground electrodes and discharge electrodes.
  • the discharge electrode arranged between the earth electrodes is shifted to the center or the gas downstream side between the earth electrodes, the discharge gas is preferentially placed between the gas upstream surface of the earth electrode on the gas downstream side and the discharge electrode. Corona discharge occurs and stable discharge is continued.
  • corona discharge is suppressed between the ground electrode and the discharge electrode located on the gas upstream side. That is, corona discharge between the gas downstream surface of the earth electrode on which dust is deposited and the discharge electrode is suppressed. For this reason, high charging ability can be continued.
  • the precharge unit in the dust collector of the present invention dust is not deposited on the surface of the earth electrode that is the object of corona discharge of the discharge electrode, that is, the gas upstream surface of the earth electrode. For this reason, in the precharge part of this invention, dust can be charged, without generating reverse ionization, and high charging performance is shown. Moreover, the dust collector of this invention can be efficiently removed by oxidizing gaseous substances, such as mercury, which exist in combustion exhaust gas, and making it change into a solid state.
  • FIG. 1 is a schematic view of a dust collector according to the present embodiment.
  • the dust collector 1 is installed in a flue downstream of a boiler (combustion furnace) 2 and includes a preliminary charging unit 3 and a bag filter 5 in order from the gas upstream side.
  • the boiler 2 is a coal-fired boiler, for example.
  • a high voltage power source 4 is connected to the preliminary charging unit 3.
  • An induction fan 9 and a chimney 10 are installed in the downstream flue of the bag filter 5.
  • the flow rate of the flowing flue gas is in the range of 5 m / s to 20 m / s, preferably in the range of 10 m / s to 15 m / s.
  • the dust collector 1 is installed in a flue having the above flow velocity, or a damper or the like is installed upstream of the dust collector 1 and controlled at the above flow velocity.
  • FIG. 2 is a schematic diagram for explaining the electrode arrangement of the preliminary charging unit of the dust collector 1.
  • the preliminary charging unit 3 includes a plurality of ground electrodes 12a to 12d and a plurality of discharge electrodes 13a to 13c in an internal gas flow path 11.
  • the ground electrodes 12a to 12d are curved surfaces having a continuous surface (reference A in FIG. 2) facing the gas upstream side.
  • the shape of the surface (reference symbol B in FIG. 2) facing the gas downstream side of the earthing electrodes 12a to 12d is not particularly limited, but the earthing electrodes 12a to 12d are shaped so as not to have corners.
  • the ground electrodes 12a to 12d are shown in a cylindrical shape, but may be in an elliptical shape.
  • the ground electrodes 12a to 12d may be solid or hollow.
  • the earth electrodes 12a to 12d and the discharge electrodes 13a to 13c are made of a conductive material.
  • a wear-resistant material having conductivity such as a steel material subjected to quenching treatment (specifically, S45C, SUS420J1, SCM435, etc.), chill cast iron, high chromium cast iron, hardened chromium plating treatment material, and the like.
  • the surface of an inexpensive electrode material such as SS400 may be subjected to surface hardening treatment such as nitriding.
  • the earth electrodes 12a to 12d and the discharge electrodes 13a to 13c are structured so that they can be easily exchanged, and they are made of an inexpensive material with low wear resistance such as SS400, SUS304, SUS316, and periodically exchanged. It is also possible.
  • the discharge electrodes 13a to 13c of the present embodiment have a shape having a long axis such as a columnar shape, a prism shape, a rhomboid shape, or a flat plate shape.
  • FIG. 3 is a schematic cross-sectional view in a direction perpendicular to the axial direction of the discharge electrode 13 (13a to 13c) having a cylindrical shape.
  • the discharge electrode 13 has a discharge part protruding outward.
  • two discharge portions 14a and 14b are formed.
  • a plurality of discharge portions 14a and 14b are arranged and installed along the axial direction of the discharge electrodes 14a and 14b having a cylindrical shape.
  • the shape of the discharge parts 14a and 14b has a sharp tip shape.
  • each of the discharge portions 14a and 14b has a needle shape or a conical shape whose tip is processed into a tapered shape.
  • the discharge parts 14a and 14b are manufactured with a conductive material.
  • the discharge parts 14a and 14b may be subjected to the same wear resistance measures as the discharge electrodes 13a and 13b.
  • the tips of the discharge portions 14a and 14b are located upstream of the line passing through the center of the axis and orthogonal to the gas flow direction (the dashed line in FIG. It is attached to the discharge electrode 13 so that is located. Furthermore, as shown in FIG. 3, the tips of the discharge portions 14a and 14b are in a direction perpendicular to the gas flow direction (a direction in which the dashed line in FIG. 3 extends) or in a direction perpendicular to the gas flow direction. Directed upstream of the gas.
  • the discharge portions 14a and 14b attached to the discharge electrode 13 are 1 It may be one.
  • the plurality of ground electrodes 12a to 12d and the plurality of discharge electrodes 13a to 13c are arranged along a direction orthogonal to the gas flow direction.
  • the discharge electrode 13a is arranged so as to be shifted from each other so that it is located between the two ground electrodes 12a and 12b.
  • the discharge electrode 13b is positioned between the two ground electrodes 12b and 12c
  • the discharge electrode 13c is positioned between the ground electrodes 12c and 12d.
  • the discharge electrodes 13a to 13c and the ground electrodes 12a to 12d are arranged so that the tips of the discharge parts 14a and 14b are located on the gas upstream side from the centers of the ground electrodes 12a to 12d.
  • the discharge current to the gas upstream surface A of the ground electrodes 12a to 12d can be increased.
  • the discharge electrodes 13a to 13c and the ground electrodes 12a to 12d are arranged so that the tips of the discharge portions 14a and 14b are located on the gas upstream side of the gas upstream side ends of the ground electrodes 12a to 12d.
  • the gas downstream ends of the discharge electrodes 13a to 13c are drawn so as to be located on the gas upstream side of the gas upstream ends of the ground electrodes 12a to 12d.
  • the gas downstream side end of the discharge electrode may be positioned downstream of the gas upstream side of the ground electrode. This is to suppress the corona discharge to the gas downstream surface B of the ground electrodes 12a to 12d if the tips of the discharge portions 14a and 14b are located on the gas upstream side of the centers of the ground electrodes 12a to 12d. This is because you can
  • ground electrodes 12a and 12d adjacent to the wall 15 of the gas flow path and the wall 15 are preferably as close as possible to reduce the amount of gas that passes through.
  • Each of the ground electrodes 12a to 12d and the discharge electrodes 13a to 13c is connected to a high voltage power source 4 installed outside the precharge unit 3.
  • the high voltage power source is DC charged. Voltages having opposite polarities are applied to the ground electrodes 12a to 12d and the discharge electrodes 13a to 13c by a high-voltage power source.
  • the voltage application may be continuous, or may be on-off charge control (repeat voltage application and voltage application stop for a predetermined period).
  • the energy density between the discharge electrode and the earth electrode may be increased.
  • the bag filter 5 is configured by installing a filter cloth 6 for collecting dust in the gas in a dust chamber 8.
  • the filter cloth material of the bag filter is not particularly limited as long as it can be used in a combustion exhaust gas atmosphere.
  • PPS, PTFE, P84 or the like is adopted as the filter cloth material.
  • a supported filter cloth or the like may be employed.
  • an upper space 7 that is separated from the dust chamber 8 through the wall above the dust chamber 8 and the filter cloth 6 is provided.
  • the dust chamber 8 is connected to the precharging unit 3 by a flue, and the upper space 7 is connected to the induction fan 9 by the flue.
  • the combustion exhaust gas generated when the fuel is burned in the coal-fired boiler 2 contains gaseous substances such as dust and mercury.
  • the combustion exhaust gas is conveyed to the preliminary charging unit 3 of the dust collector 1.
  • a voltage is applied to the ground electrodes 12a to 12d and the discharge electrodes 13a to 13c of the preliminary charging unit 3.
  • a negative voltage is applied to the discharge electrodes 13a to 13c, and the ground electrodes 12a to 12d are connected to the ground.
  • corona discharge occurs between one discharge electrode 13a and the gas upstream surface A of the ground electrodes 12a and 12b closest to the discharge electrode 13a.
  • the discharge electrode 13a has two discharge portions 14a and 14b in cross section as shown in FIGS. 2 and 3
  • corona discharge occurs between the one discharge portion 14a and the gas upstream surface A of the ground electrode 12a.
  • Corona discharge occurs between the other discharge portion 14b and the gas upstream surface A of the ground electrode 12b.
  • a corona discharge is generated between one discharge electrode and the gas upstream surface of the ground electrode adjacent to the discharge electrode.
  • a collection object a gaseous substance such as dust and mercury
  • the dust is negatively charged.
  • the charged dust is conveyed to a bag filter on the gas downstream side.
  • Some charged dust is collected by the ground electrodes 12a to 12d. Since the combustion exhaust gas circulates at a high flow velocity in the above range, even if dust is collected by the electric force on the gas upstream surface A of the earth electrodes 12a to 12d, it is blown off by collision with other dust. That is, while the gas is flowing, the gas upstream surfaces of the ground electrodes 12a to 12d are cleaned by dust. Therefore, it is possible to secure a clean surface on the gas upstream side of the ground electrodes 12a to 12d where dust is hardly attached. As a result, corona discharge is continuously generated without back ionization on the gas upstream surface of the ground electrodes 12a to 12d.
  • mercury Some gaseous substances such as mercury are oxidized into solid substances when passing between the above corona discharges.
  • mercury combines with oxygen or chlorine in combustion exhaust gas to form mercury oxide (HgO) or mercury chloride (HgCl 2 ).
  • Mercury oxide and mercury chloride may exist as solids depending on the temperature of the flue gas flowing through the precharged part. Solidified mercury oxide and mercury chloride are charged when passing through the precharged portion.
  • Dust and solid substances (mercury oxide HgO, mercury chloride HgCl 2, etc.) flowing out from the precharge unit 3 flow into the dust chamber 8 of the bag filter 5 together with the combustion exhaust gas. Since the upper space 7 of the bag filter 5 is sucked by the attracting fan 9, an airflow flowing from the dust chamber 8 through the filter cloth 6 into the upper space 7 is generated. When the combustion exhaust gas passes through the filter cloth 6, charged dust and solid substances (mercury oxide HgO, mercury chloride HgCl 2, etc.) adhere to the outer surface of the filter cloth 6 and are collected.
  • the tips of the discharge portions 14a and 14b of the discharge electrodes 13a to 13c are directed to the direction orthogonal to the gas flow direction or the upstream side of the gas. This prevents dust from adhering to the tips of the discharge portions 14a and 14b, as with the gas upstream surface of the ground electrodes 12a to 12d.
  • a link mechanism that can rotate around the ground poles 12a to 12d may be installed.
  • the link mechanism rotates the ground poles 12a to 12d by a predetermined angle at predetermined time intervals.
  • FIG. 4 shows another example of the electrode arrangement of the precharge unit.
  • a plurality of rows of ground electrodes 22 and rows of discharge electrodes 23 are installed in the gas flow passage 21 in the gas flow direction.
  • the rows of earth electrodes 22 and the rows of discharge electrodes 23 are alternately arranged. If a plurality of rows of ground electrodes 22 and discharge electrodes 23 are installed as shown in FIG. 4, dust charging performance is improved.
  • the number of stages of the ground electrode 22 row and the discharge electrode row 23 may be appropriately set.
  • the distance D between adjacent earth electrodes 22 in the gas flow direction is set to 2d or more.
  • the gas also collides with the gas upstream surface of the ground electrode 22 in the latter stage within the above flow velocity range, and the cleanliness of the gas upstream surface is maintained.
  • the distance between the earth electrodes in the gas flow direction is appropriately set so that the cleanliness of the gas upstream surface can be ensured as in the cylinder shape.
  • the rows of discharge electrodes 23 located between the rows of earth electrodes 22 indicate the distance in the gas flow direction between the center position of the ground electrode 22 and the center position of the discharge electrode 23 in the gas flow direction.
  • the distance in the gas flow direction between the center position of the ground electrode 22 at the rear stage and the center position of the discharge electrode 23 is L2
  • the discharge electrode 23 and the ground electrode 22 are arranged so that the tip of the discharge unit is located upstream of the center of each ground electrode 22. More preferably, the discharge electrode 23 and the ground electrode 22 are arranged such that the tip of the discharge portion is located on the gas upstream side of the gas upstream end of the ground electrode 22. Further, it is preferable that the ground electrode 22 and the wall 25 adjacent to the wall 25 of the gas flow path be as close as possible in order to reduce the amount of gas passing through.
  • the discharge electrode 23 when the discharge electrode 23 is located between adjacent ground electrodes 22, the gas upstream surface of the nearest ground electrode 22 located on the gas downstream side of the discharge electrode 23 and the discharge electrode 23. Corona discharge is reliably generated between the two. On the other hand, corona discharge is suppressed between the discharge electrode 23 and the surface of the earth electrode 22 located on the gas upstream side of the discharge electrode 23 on which dust is deposited (surface on the gas downstream side). 4, the corona discharge is mainly generated between the discharge electrode 23 and the gas upstream surface of the earth electrode 22. For this reason, stable charging ability is continued.

Landscapes

  • Electrostatic Separation (AREA)

Abstract

Provided is a dust-collecting device capable of efficiently removing the substances to be collected. A dust-collecting device provided, in order from the upstream side, with a preliminary charging unit (3) and a bag filter in the flue through which the gas flows. Discharge electrodes (13a - 13c) and earth electrodes (12a - 12d) disposed in a direction orthogonal to the direction of gas flow are provided in the gas distribution channel (11) of the preliminary charging unit (3). The discharge electrodes (13) comprise multiple protruding discharge sections. Corona discharge is generated between a discharge electrode (13a) and the surfaces (A) facing the upstream gas side of the two earth electrodes (12a, 12b) adjacent to the discharge electrode (13a) and corona discharge is limited on the surfaces (B) facing the downstream gas side of the earth electrodes (12a, 12b).

Description

集塵装置Dust collector
 本発明は、ガス中に含有されるダスト等の捕集対象物を除去する集塵装置及びその運転方法に関する。 The present invention relates to a dust collector for removing a collection target such as dust contained in a gas, and an operation method thereof.
 従来、ガス中に含有されるダスト(粒子状物質)を処理するための濾布を備えるバグフィルタが設置される。ガスの一例として、石炭や重油を燃焼する際に発生する排ガスや、空気が挙げられる。上記バグフィルタは、石炭焚きや重油焚き等の発電プラント、焼却炉等の産業用燃焼設備などの煙道に設置される他、粉塵を発生させる装置付近に設置されて環境集塵を実施する集塵機にも適用される。 Conventionally, a bag filter equipped with a filter cloth for treating dust (particulate matter) contained in gas is installed. Examples of the gas include exhaust gas generated when burning coal and heavy oil, and air. The above-mentioned bag filter is installed in the flue of power generation plants such as coal-fired and heavy oil-fired, industrial combustion equipment such as incinerators, etc., as well as a dust collector that is installed in the vicinity of devices that generate dust and performs environmental dust collection Also applies.
 バグフィルタの上流側煙道には、予備荷電部が設置されることがある。予備荷電部は、放電極とアース極とからなる帯電部において、コロナ放電によりガス中のダストに正または負の電荷を与えて、ダストを帯電させる。帯電したダストは、後段のバグフィルタの濾布表面に捕集され、帯電したダスト層を形成する。帯電したダスト層が形成されることによってダスト層内に侵入する微細粒子が静電気力によって粗大粒子に付着される。これにより、バグフィルタの目詰まりが低減するとともに、ダスト層もポーラスとなる。また、逆洗時に粗大粒子が沈降しやすくなる為、この結果として、バグフィルタの圧損上昇を抑制することができる。また、微細粒子が静電気力によって粗大粒子に付着する為、バグフィルタでの微細粒子のすり抜けが低減し、結果としてダストを高効率に捕集することが可能になる。 ∙ A pre-charged part may be installed in the flue upstream of the bag filter. The preliminary charging unit is a charging unit including a discharge electrode and a ground electrode, and applies positive or negative charge to the dust in the gas by corona discharge to charge the dust. The charged dust is collected on the filter cloth surface of the subsequent bag filter to form a charged dust layer. By forming a charged dust layer, fine particles entering the dust layer are attached to the coarse particles by electrostatic force. Thereby, clogging of the bag filter is reduced and the dust layer is also porous. Moreover, since coarse particles easily settle during backwashing, as a result, an increase in the pressure loss of the bag filter can be suppressed. Further, since the fine particles adhere to the coarse particles due to electrostatic force, the slipping of the fine particles through the bag filter is reduced, and as a result, the dust can be collected with high efficiency.
 特許文献1は、帯電部(予備荷電部)と集塵部とで構成される2段式電気集塵装置を開示している。帯電部において、円形または同等の形状を有する集塵極(アース極)が多角形になるように配列され、その中心に放電極が配置される。1つの放電極は、その放電極の周囲に存在する集塵極との間で電界を形成するとともに、コロナ放電によりダストに帯電させる。帯電部で電荷が与えられたダストは、後流の集塵部で捕集される。特許文献1の集塵装置では、再飛散を防止できるだけの必要最低限の電流を集塵部に供給すればよいので、集塵部において逆電離を発生させることなく高い電界強度を維持することができ、高い集塵効率を得ることが可能となる。 Patent Document 1 discloses a two-stage electrostatic precipitator including a charging unit (preliminary charging unit) and a dust collection unit. In the charging unit, the dust collecting electrode (earth electrode) having a circular shape or an equivalent shape is arranged in a polygonal shape, and the discharge electrode is arranged at the center thereof. One discharge electrode forms an electric field with a dust collecting electrode existing around the discharge electrode and charges the dust by corona discharge. The dust charged by the charging unit is collected by the downstream dust collecting unit. In the dust collector of Patent Document 1, it is only necessary to supply the dust collector with a necessary minimum current that can prevent re-scattering. Therefore, it is possible to maintain high electric field strength without causing back ionization in the dust collector. And high dust collection efficiency can be obtained.
特開昭60-209273号公報(3頁左上欄11行~右下欄3行、第8図)JP-A-60-209273 (page 3, upper left column, line 11 to lower right column, line 3, FIG. 8)
 しかしながら、特許文献1の電気集塵装置では、予備荷電部の集塵極表面にもダストが捕集され、電極表面が汚れる。特に、石炭炊きのボイラの下流側に集塵装置を設置する場合、石炭の燃焼により発生するダストの電気抵抗率が高い。このため、ダストが堆積した集塵極と放電極との間でコロナ放電を発生させていると、逆電離現象が発生しやすい。逆電離現象が発生すると、逆極性のイオンが予備荷電部内に放出されることになるので、ダスト帯電能力が大幅に低下するという問題があった。 However, in the electric dust collector of Patent Document 1, dust is also collected on the surface of the dust collecting electrode of the preliminary charging unit, and the electrode surface becomes dirty. In particular, when a dust collector is installed on the downstream side of a coal-fired boiler, the electrical resistivity of dust generated by the combustion of coal is high. For this reason, when corona discharge is generated between the dust collecting electrode and the discharge electrode on which dust is accumulated, a reverse ionization phenomenon is likely to occur. When the reverse ionization phenomenon occurs, ions of reverse polarity are released into the precharged portion, which causes a problem that the dust charging ability is significantly reduced.
 逆電離は、ダストの電気抵抗率(ρd)と堆積されたダスト層を流れる電流密度(id)の積(ρd×id)で表される電界強度がダスト層の破壊耐圧を超えたときに発生する。従って、逆電離を発生させないための手段の一つとして、ダストそのものの存在を無くす方法、すなわち、集塵極にダストを堆積させないことが対策の一つとして考えられる。 Reverse ionization occurs when the electric field strength represented by the product (ρd × id) of the electrical resistivity (ρd) of the dust and the current density (id) flowing through the deposited dust layer exceeds the breakdown pressure of the dust layer. To do. Therefore, as one means for preventing the occurrence of reverse ionization, a method for eliminating the presence of dust itself, that is, preventing dust from accumulating on the dust collecting electrode is considered as one of the countermeasures.
 また近年では、石炭炊きのボイラを有する燃焼設備における排出ガス中の水銀等の気体状物質の量が厳しく制限させることがある。このため、燃焼排ガス中の水銀等の気体状物質を集塵装置により効果的に除去することが求められている。 In recent years, the amount of gaseous substances such as mercury in exhaust gas in a combustion facility having a coal-fired boiler may be severely limited. For this reason, it is required to effectively remove gaseous substances such as mercury in the combustion exhaust gas with a dust collector.
 本発明は、高効率で捕集対象物を除去することができる集塵装置を提供することを目的とする。 An object of the present invention is to provide a dust collector capable of removing a collection target with high efficiency.
 本発明の一態様は、ガスが流通する煙道に、上流側から順に前記ガス中の捕集対象物に対して放電する予備荷電部と、該捕集対象物を収集するバグフィルタとを備える集塵装置であって、前記予備荷電部が、前記ガスの流通経路内に、前記ガスの流通方向に直交する方向に配列された複数の放電極と、前記ガスの流通方向に直交する方向に配列された複数のアース極とを備え、前記アース極が、前記ガスの上流側に面する表面が連続した曲面を有し、一の前記放電極が、複数の突起状の放電部を有し、一の前記放電極が、前記ガスの上流側から見たときに隣接する2つの前記アース極の間に位置し、一の前記放電極と、該一の放電極に最も近い2つの前記アース極の前記ガスの上流側に面する表面との間でコロナ放電が発生され、前記アース極の前記ガスの下流側に面する表面でコロナ放電が抑制される集塵装置である。 One aspect of the present invention includes, in a flue through which a gas circulates, a precharge unit that discharges the collection target in the gas in order from the upstream side, and a bag filter that collects the collection target. In the dust collector, the preliminary charging unit includes a plurality of discharge electrodes arranged in a direction orthogonal to the gas flow direction in the gas flow path, and a direction orthogonal to the gas flow direction. A plurality of ground electrodes arranged, the ground electrode has a curved surface with a continuous surface facing the upstream side of the gas, and the one discharge electrode has a plurality of protruding discharge portions. The one discharge electrode is located between the two ground electrodes adjacent to each other when viewed from the upstream side of the gas, and the one discharge electrode and the two grounds closest to the one discharge electrode Corona discharge is generated between the surface of the pole facing the upstream side of the gas and the arc A surface precipitator corona discharge is inhibited by facing the downstream side of the electrode of the gas.
 本発明における捕集対象物は、燃焼排ガス中に含まれるダストや水銀等の気体状物質とされる。
 本発明の集塵装置では、放電極と、放電極よりもガス下流側に配置され放電極に最も近いアース極のガス上流側表面との間でコロナ放電が発生される。このコロナ放電の中をダストが通過することにより、ダストが帯電される。本発明の集塵装置の予備荷電部では、アース極が高速流のガスに曝される状態とする。そして、アース極のガス上流側表面にダストが電気力によって付着しても他のダストが衝突して、アースのガス上流側表面にダストが堆積しないように、アース極を配置する。こうすることにより、アース極のガス上流側表面は清浄性が確保される。一方、アース極のガス下流側表面には帯電したダストが付着し堆積することを許容する。
The collection target in the present invention is a gaseous substance such as dust or mercury contained in the combustion exhaust gas.
In the dust collector of the present invention, corona discharge is generated between the discharge electrode and the gas upstream surface of the earth electrode that is disposed on the gas downstream side of the discharge electrode and is closest to the discharge electrode. As dust passes through the corona discharge, the dust is charged. In the precharge part of the dust collector of the present invention, the ground electrode is exposed to a high-speed gas. Then, even if dust adheres to the gas upstream surface of the earth electrode due to electric force, other dust collides and the earth electrode is arranged so that dust does not accumulate on the gas upstream surface of the earth. By doing so, the cleanliness of the gas upstream surface of the ground electrode is ensured. On the other hand, charged dust is allowed to adhere to and accumulate on the gas downstream surface of the earth electrode.
 本発明においては、1つの放電極と近接するアース極のガス上流側表面との間でコロナ放電を発生させる。アース極のガス下流側表面では、コロナ放電が抑制される。この結果、本発明の集塵装置では逆電離が発生せず、高い帯電能力を維持させることができる。なお、ここでの「コロナ放電が抑制される」との状態とは、逆電離が発生してアース極から放電極と逆の電荷が放出され、ダストの電荷が中和されて帯電能力が大幅に低下されることが抑制されることを意味する。好ましくは、放電極とアース極のガス下流側表面との間で放電が発生していない状態であるが、帯電能力を大幅に低下させない程度の逆電離が稀に発生することは許容するものである。 In the present invention, a corona discharge is generated between one discharge electrode and the gas upstream side surface of the adjacent earth electrode. Corona discharge is suppressed on the gas downstream surface of the earth electrode. As a result, in the dust collector of the present invention, reverse ionization does not occur, and high charging ability can be maintained. Here, the state of “corona discharge is suppressed” means that reverse ionization occurs, and the charge opposite to the discharge electrode is released from the ground electrode, and the charge of the dust is neutralized to greatly increase the charging capability. It means that it is suppressed to be lowered. Preferably, there is no discharge between the discharge electrode and the gas downstream surface of the ground electrode, but it is acceptable to rarely generate back ionization to the extent that the charging capability is not significantly reduced. is there.
 また、燃焼排ガス中の水銀等の気体状物質の中には、本発明の集塵装置の予備荷電部において、放電極とアース極との間で発生しているコロナ放電中を通過する際、酸化されて固体状態になるものがある。固体状態になった物質は、予備荷電部で更に帯電される。固体状態になった物質は、後段のバグフィルタに搬送され、バグフィルタで捕集される。本発明では、後段バグフィルタにおいて微細粒子が静電気力によって粗大粒子に付着し、バグフィルタでの微細粒子のすり抜けが低減する効果が得られる。このため、固体状態になった水銀等を高効率に捕集することが可能になる。 Further, in the gaseous substance such as mercury in the combustion exhaust gas, in the precharge portion of the dust collector of the present invention, when passing through the corona discharge generated between the discharge electrode and the ground electrode, Some are oxidized to a solid state. The substance that has become a solid state is further charged in the precharge portion. The substance in a solid state is transported to a subsequent bag filter and collected by the bag filter. In the present invention, fine particles adhere to the coarse particles by electrostatic force in the latter-stage bag filter, and an effect of reducing slipping of the fine particles in the bag filter can be obtained. For this reason, it becomes possible to collect the mercury etc. which became the solid state with high efficiency.
 上記発明において、前記放電極が円筒形状とされ、軸方向に直交する方向の断面において、外側に突出する1つまたは一対の放電部を有し、前記1つまたは一対の放電部が軸方向に沿って複数配列され、前記放電部の先端が、前記ガスの流通方向に直交する方向に、または、前記ガスの上流側に向き、前記放電部の先端が前記アース極の中心よりも前記ガスの上流側に位置するように、前記放電極と前記アース極とが配置されることが好ましい。
 こうすることにより、放電部の先端へのダスト付着を防止することができる。
In the above invention, the discharge electrode has a cylindrical shape, and has one or a pair of discharge portions projecting outward in a cross section in a direction orthogonal to the axial direction, and the one or the pair of discharge portions are in the axial direction. A plurality of the discharge portions are arranged in a direction perpendicular to the gas flow direction or toward the upstream side of the gas, and the discharge portion has a tip that is closer to the gas than the center of the ground electrode. It is preferable that the discharge electrode and the ground electrode are arranged so as to be located on the upstream side.
By doing so, it is possible to prevent dust from adhering to the tip of the discharge part.
 上記発明において、前記ガスの流通方向に直交する方向の前記アース極の列及び前記放電極の列が、前記ガスの流通方向に複数列交互に配列され、前記ガスの流通方向で隣接する前記アース極の間に配置される前記放電極は、前記アース極の列の間の中央に配置される、または、前記ガス下流側の前記アース極の列の方に変位して配置されることが好ましい。 In the above invention, the ground electrode rows and the discharge electrode rows in a direction orthogonal to the gas flow direction are alternately arranged in a plurality of rows in the gas flow direction, and adjacent to each other in the gas flow direction. Preferably, the discharge electrode arranged between the poles is arranged in the center between the rows of earth electrodes, or is displaced toward the earth electrode rows on the gas downstream side. .
 アース極及び放電極の列を複数段配置することにより、帯電性能を向上させることができる。
 この場合、アース極間に配置される放電極を、アース極間の中央またはガス下流側にずらして配置すると、ガス下流側のアース極のガス上流側表面と放電極との間で優先的にコロナ放電が発生し、安定した放電が継続される。一方、ガス上流側に位置するアース極と放電極との間ではコロナ放電が抑制される。すなわち、ダストが堆積されているアース極のガス下流側表面と放電極との間でのコロナ放電は抑制される。このため、高い帯電能力を継続させることができる。
Charging performance can be improved by arranging a plurality of rows of ground electrodes and discharge electrodes.
In this case, if the discharge electrode arranged between the earth electrodes is shifted to the center or the gas downstream side between the earth electrodes, the discharge gas is preferentially placed between the gas upstream surface of the earth electrode on the gas downstream side and the discharge electrode. Corona discharge occurs and stable discharge is continued. On the other hand, corona discharge is suppressed between the ground electrode and the discharge electrode located on the gas upstream side. That is, corona discharge between the gas downstream surface of the earth electrode on which dust is deposited and the discharge electrode is suppressed. For this reason, high charging ability can be continued.
 本発明の集塵装置における予備荷電部は、放電極のコロナ放電対象となるアース極の表面、即ち、アース極のガス上流側表面にダストが堆積されない。このため、本発明の予備荷電部では逆電離を発生させることなくダストを帯電させることができ、高い帯電性能を示す。
 また、本発明の集塵装置は、燃焼排ガス中に存在する水銀等の気体状物質を酸化させて固体状態に変化させることにより、効率良く除去することが可能である。
In the precharge unit in the dust collector of the present invention, dust is not deposited on the surface of the earth electrode that is the object of corona discharge of the discharge electrode, that is, the gas upstream surface of the earth electrode. For this reason, in the precharge part of this invention, dust can be charged, without generating reverse ionization, and high charging performance is shown.
Moreover, the dust collector of this invention can be efficiently removed by oxidizing gaseous substances, such as mercury, which exist in combustion exhaust gas, and making it change into a solid state.
本発明の一実施形態に係る集塵装置の概略図である。It is the schematic of the dust collector which concerns on one Embodiment of this invention. 予備荷電部の電極配置を説明する概略図である。It is the schematic explaining the electrode arrangement | positioning of a precharge part. 放電極の一例の断面概略図である。It is a cross-sectional schematic diagram of an example of a discharge electrode. 予備荷電部の電極配置の別の例を説明する概略図である。It is the schematic explaining another example of the electrode arrangement | positioning of a precharge part.
 以下に、本発明に係る集塵装置の一実施形態を、図面を参照して説明する。
 図1は、本実施形態に係る集塵装置の概略図である。集塵装置1は、ボイラ(燃焼炉)2の下流側の煙道に設置され、ガス上流側から順に予備荷電部3及びバグフィルタ5を備える。ボイラ2は、例えば石炭炊きのボイラとされる。予備荷電部3には高圧電源4が接続される。
 バグフィルタ5の下流側煙道には、誘引ファン9及び煙突10が設置される。
Hereinafter, an embodiment of a dust collector according to the present invention will be described with reference to the drawings.
FIG. 1 is a schematic view of a dust collector according to the present embodiment. The dust collector 1 is installed in a flue downstream of a boiler (combustion furnace) 2 and includes a preliminary charging unit 3 and a bag filter 5 in order from the gas upstream side. The boiler 2 is a coal-fired boiler, for example. A high voltage power source 4 is connected to the preliminary charging unit 3.
An induction fan 9 and a chimney 10 are installed in the downstream flue of the bag filter 5.
 本実施形態の集塵装置1では、流通する燃焼排ガスの流速が5m/sから20m/sの範囲内、好ましくは10m/sから15m/sの範囲内とされる。集塵装置1が上記流速となる煙道に設置されるか、集塵装置1の上流にダンパなどを設置して上記流速に制御される。 In the dust collector 1 of the present embodiment, the flow rate of the flowing flue gas is in the range of 5 m / s to 20 m / s, preferably in the range of 10 m / s to 15 m / s. The dust collector 1 is installed in a flue having the above flow velocity, or a damper or the like is installed upstream of the dust collector 1 and controlled at the above flow velocity.
 図2は、集塵装置1の予備荷電部の電極配置を説明する概略図である。予備荷電部3は、内部のガス流通経路11内に、複数のアース極12a~12dと複数の放電極13a~13cとを備える。 FIG. 2 is a schematic diagram for explaining the electrode arrangement of the preliminary charging unit of the dust collector 1. The preliminary charging unit 3 includes a plurality of ground electrodes 12a to 12d and a plurality of discharge electrodes 13a to 13c in an internal gas flow path 11.
 本実施形態において、長軸を有する柱状形状とされることが好ましい。アース極12a~12dは、ガス上流側に面する表面(図2の符号A)が連続した曲面とされる。アース極12a~12dのガス下流側に面する表面(図2の符号B)の形状は特に限定されないが、アース極12a~12dに角部がないような形状とされる。図2ではアース極12a~12dは円柱形状で示されているが、楕円形状などでも良い。アース極12a~12dは中実でも良いし、中空でも良い。 In this embodiment, a columnar shape having a long axis is preferable. The ground electrodes 12a to 12d are curved surfaces having a continuous surface (reference A in FIG. 2) facing the gas upstream side. The shape of the surface (reference symbol B in FIG. 2) facing the gas downstream side of the earthing electrodes 12a to 12d is not particularly limited, but the earthing electrodes 12a to 12d are shaped so as not to have corners. In FIG. 2, the ground electrodes 12a to 12d are shown in a cylindrical shape, but may be in an elliptical shape. The ground electrodes 12a to 12d may be solid or hollow.
 アース極12a~12d及び放電極13a~13cは、導電性材料で製造される。例えば焼入れ処理された鋼材(具体的にS45C、SUS420J1、SCM435など)、チル鋳鉄、高クロム鋳鉄、硬化クロムめっき処理材料等の導電性を有する耐摩耗性材料で製造される。あるいは、SS400等の安価な電極材料の表面に、窒化等の表面硬化処理が施されていても良い。更に、アース極12a~12d及び放電極13a~13cを交換しやすいような構造にしておき、SS400、SUS304、SUS316等の耐磨耗性能の低い安価な材料で製作して、定期的に交換することも可能である。 The earth electrodes 12a to 12d and the discharge electrodes 13a to 13c are made of a conductive material. For example, it is manufactured from a wear-resistant material having conductivity such as a steel material subjected to quenching treatment (specifically, S45C, SUS420J1, SCM435, etc.), chill cast iron, high chromium cast iron, hardened chromium plating treatment material, and the like. Alternatively, the surface of an inexpensive electrode material such as SS400 may be subjected to surface hardening treatment such as nitriding. Further, the earth electrodes 12a to 12d and the discharge electrodes 13a to 13c are structured so that they can be easily exchanged, and they are made of an inexpensive material with low wear resistance such as SS400, SUS304, SUS316, and periodically exchanged. It is also possible.
 本実施形態の放電極13a~13cは、円柱形状、角柱形状、菱柱形状、平板形状などの長軸を有する形状とされる。
 図3は、円柱形状とされる放電極13(13a~13c)の軸方向に直交する方向の断面概略図である。放電極13は、外側に突出する放電部を有する。図3では2つの放電部14a,14bが形成されている。放電部14a,14bは、円柱形状とされる放電極14a,14bの軸方向に沿って複数本配列されて設置される。
The discharge electrodes 13a to 13c of the present embodiment have a shape having a long axis such as a columnar shape, a prism shape, a rhomboid shape, or a flat plate shape.
FIG. 3 is a schematic cross-sectional view in a direction perpendicular to the axial direction of the discharge electrode 13 (13a to 13c) having a cylindrical shape. The discharge electrode 13 has a discharge part protruding outward. In FIG. 3, two discharge portions 14a and 14b are formed. A plurality of discharge portions 14a and 14b are arranged and installed along the axial direction of the discharge electrodes 14a and 14b having a cylindrical shape.
 放電部14a,14bの形状は、鋭利な先端形状を有する。例えば、放電部14a,14bは図3に示されるように、先端がテーパ状に加工されたニードル形状や、円錐形状を有する。
 放電部14a,14bは、導電性材料で製造される。放電部14a,14bは、放電極13a,13bと同様の耐磨耗対策が施されても良い。
The shape of the discharge parts 14a and 14b has a sharp tip shape. For example, as shown in FIG. 3, each of the discharge portions 14a and 14b has a needle shape or a conical shape whose tip is processed into a tapered shape.
The discharge parts 14a and 14b are manufactured with a conductive material. The discharge parts 14a and 14b may be subjected to the same wear resistance measures as the discharge electrodes 13a and 13b.
 放電極13の軸に直交する断面(図3)から見たときに、軸中心をとおりガス流通方向に直交する線(図3の一点破線)よりもガス上流側に放電部14a,14bの先端が位置するように、放電極13に取り付けられる。
 更に、放電部14a,14bの先端は、図3に示すように、ガス流通方向に直交する方向(図3の一点破線の延在する方向)に、または、ガス流通方向に直交する方向よりもガス上流側に向けられる。放電部14a,14bの先端がガスの流れに対向して設置される(先端が向く方向がガス流通方向に対して180°をなす)場合、放電極13に取り付けられる放電部14a,14bは1つであっても良い。
When viewed from a cross section orthogonal to the axis of the discharge electrode 13 (FIG. 3), the tips of the discharge portions 14a and 14b are located upstream of the line passing through the center of the axis and orthogonal to the gas flow direction (the dashed line in FIG. It is attached to the discharge electrode 13 so that is located.
Furthermore, as shown in FIG. 3, the tips of the discharge portions 14a and 14b are in a direction perpendicular to the gas flow direction (a direction in which the dashed line in FIG. 3 extends) or in a direction perpendicular to the gas flow direction. Directed upstream of the gas. When the tips of the discharge portions 14a and 14b are installed facing the gas flow (the direction in which the tips are directed is 180 ° with respect to the gas flow direction), the discharge portions 14a and 14b attached to the discharge electrode 13 are 1 It may be one.
 複数のアース極12a~12d及び複数の放電極13a~13cは、それぞれガス流通方向に直交する方向に沿って配列される。ガス上流側から見たときに、放電極13aが2つのアース極12a,12bの間に位置するように、互いにずらして配置される。同様に、放電極13bは2つのアース極12b,12cの間に位置し、放電極13cはアース極12c,12dの間に位置する。
 本実施形態において、放電部14a,14bの先端が各アース極12a~12dの中心よりもガス上流側に位置するように、放電極13a~13cとアース極12a~12dとが配置される。こうすることにより、アース極12a~12dのガス上流側表面Aへの放電電流を大きくすることができる。好ましくは、放電部14a,14bの先端がアース極12a~12dのガス上流側端よりもガス上流側に位置するように、放電極13a~13cとアース極12a~12dとが配置される。図2では、放電極13a~13cのガス下流側端がアース極12a~12dのガス上流側端よりもガス上流側に位置するように描かれているが、放電部14a,14bの先端が各アース極12a~12dの中心よりもガス上流側に位置していれば、放電極のガス下流側端がアース極のガス上流側端よりもガス下流側に位置していても良い。これは、放電部14a,14bの先端が各アース極12a~12dの中心よりもガス上流側に位置していれば、アース極12a~12dのガス下流側表面Bへのコロナ放電を抑制することができるためである。
The plurality of ground electrodes 12a to 12d and the plurality of discharge electrodes 13a to 13c are arranged along a direction orthogonal to the gas flow direction. When viewed from the gas upstream side, the discharge electrode 13a is arranged so as to be shifted from each other so that it is located between the two ground electrodes 12a and 12b. Similarly, the discharge electrode 13b is positioned between the two ground electrodes 12b and 12c, and the discharge electrode 13c is positioned between the ground electrodes 12c and 12d.
In the present embodiment, the discharge electrodes 13a to 13c and the ground electrodes 12a to 12d are arranged so that the tips of the discharge parts 14a and 14b are located on the gas upstream side from the centers of the ground electrodes 12a to 12d. By doing so, the discharge current to the gas upstream surface A of the ground electrodes 12a to 12d can be increased. Preferably, the discharge electrodes 13a to 13c and the ground electrodes 12a to 12d are arranged so that the tips of the discharge portions 14a and 14b are located on the gas upstream side of the gas upstream side ends of the ground electrodes 12a to 12d. In FIG. 2, the gas downstream ends of the discharge electrodes 13a to 13c are drawn so as to be located on the gas upstream side of the gas upstream ends of the ground electrodes 12a to 12d. As long as the gas downstream side end of the discharge electrode is positioned upstream of the center of the ground electrode 12a to 12d, the gas downstream side end of the discharge electrode may be positioned downstream of the gas upstream side of the ground electrode. This is to suppress the corona discharge to the gas downstream surface B of the ground electrodes 12a to 12d if the tips of the discharge portions 14a and 14b are located on the gas upstream side of the centers of the ground electrodes 12a to 12d. This is because you can
 なお、ガス流通経路の壁15に隣接するアース極12a,12dと壁15とは、すり抜けるガス量を低減するために、できる限り接近させておくことが好ましい。 The ground electrodes 12a and 12d adjacent to the wall 15 of the gas flow path and the wall 15 are preferably as close as possible to reduce the amount of gas that passes through.
 アース極12a~12d及び放電極13a~13cの各々は、予備荷電部3の外部に設置される高圧電源4に接続される。高圧電源は直流荷電とされる。高圧電源によりアース極12a~12d及び放電極13a~13cにそれぞれ逆極性の電圧が印加される。電圧の印加は、連続的であっても良いし、オン―オフ荷電制御(所定期間の電圧印加及び電圧印加停止を繰り返す)であっても良い。ダストの帯電効果及び気体状物質の酸化効果を高めるために、放電極とアース極間のエネルギー密度を高くしても良い。その具体的手段として、連続的な直流高電圧にパルス状の直流高電圧を重畳させる方法が挙げられる。 Each of the ground electrodes 12a to 12d and the discharge electrodes 13a to 13c is connected to a high voltage power source 4 installed outside the precharge unit 3. The high voltage power source is DC charged. Voltages having opposite polarities are applied to the ground electrodes 12a to 12d and the discharge electrodes 13a to 13c by a high-voltage power source. The voltage application may be continuous, or may be on-off charge control (repeat voltage application and voltage application stop for a predetermined period). In order to enhance the charging effect of dust and the oxidizing effect of gaseous substances, the energy density between the discharge electrode and the earth electrode may be increased. As a specific means, there is a method of superimposing a pulsed DC high voltage on a continuous DC high voltage.
 バグフィルタ5は、ダストチャンバ8内にガス中のダストを捕集するための濾布6が設置されて構成される。バグフィルタの濾布材質は、燃焼排ガス雰囲気で使用できるものであれば、特に限定されない。通常、濾布材質にはPPS、PTFE、P84等が採用される。更に捕集効率を向上させる為、部分的又は全体的に繊維径を細かくした濾布や、表面にPTFEメンブレン処理をした濾布、水銀等の気体状物質の酸化能力を持たせるために触媒を担持した濾布などを採用しても良い。 The bag filter 5 is configured by installing a filter cloth 6 for collecting dust in the gas in a dust chamber 8. The filter cloth material of the bag filter is not particularly limited as long as it can be used in a combustion exhaust gas atmosphere. Usually, PPS, PTFE, P84 or the like is adopted as the filter cloth material. In order to further improve the collection efficiency, a filter cloth with a partially or totally fine fiber diameter, a filter cloth with a PTFE membrane treatment on the surface, and a catalyst to have the ability to oxidize gaseous substances such as mercury. A supported filter cloth or the like may be employed.
 ダストチャンバ8の上部には、ダストチャンバ8上部の壁及び濾布6を介してダストチャンバ8と分離される上部空間7が設けられる。ダストチャンバ8は煙道により予備荷電部3に接続され、上部空間7は煙道により誘引ファン9に接続される。 In the upper part of the dust chamber 8, an upper space 7 that is separated from the dust chamber 8 through the wall above the dust chamber 8 and the filter cloth 6 is provided. The dust chamber 8 is connected to the precharging unit 3 by a flue, and the upper space 7 is connected to the induction fan 9 by the flue.
 以下に、本実施形態の集塵装置の作動について説明する。
 石炭炊きのボイラ2において燃料を燃焼させたときに発生する燃焼排ガス中には、ダスト及び水銀等の気体状物質が含まれる。燃焼排ガスは、集塵装置1の予備荷電部3に搬送される。
Below, the action | operation of the dust collector of this embodiment is demonstrated.
The combustion exhaust gas generated when the fuel is burned in the coal-fired boiler 2 contains gaseous substances such as dust and mercury. The combustion exhaust gas is conveyed to the preliminary charging unit 3 of the dust collector 1.
 予備荷電部3のアース極12a~12d及び放電極13a~13cに電圧が印加される。例えば、放電極13a~13cに負の電圧が印加され、アース極12a~12dがアースに接続される。これにより、1つの放電極13aと、放電極13aに最も近いアース極12a,12bのガス上流側表面Aとの間でコロナ放電が発生する。図2及び図3のように放電極13aが断面において2つの放電部14a,14bを有する場合は、一方の放電部14aとアース極12aのガス上流側表面Aとの間でコロナ放電が発生し、他方の放電部14bとアース極12bのガス上流側表面Aとの間でコロナ放電が発生する。
 同様に、放電極13b,13cについても、同様に、1つの放電極と当該放電極に近接するアース極のガス上流側表面との間との間でコロナ放電が発生する。
A voltage is applied to the ground electrodes 12a to 12d and the discharge electrodes 13a to 13c of the preliminary charging unit 3. For example, a negative voltage is applied to the discharge electrodes 13a to 13c, and the ground electrodes 12a to 12d are connected to the ground. As a result, corona discharge occurs between one discharge electrode 13a and the gas upstream surface A of the ground electrodes 12a and 12b closest to the discharge electrode 13a. When the discharge electrode 13a has two discharge portions 14a and 14b in cross section as shown in FIGS. 2 and 3, corona discharge occurs between the one discharge portion 14a and the gas upstream surface A of the ground electrode 12a. Corona discharge occurs between the other discharge portion 14b and the gas upstream surface A of the ground electrode 12b.
Similarly, with respect to the discharge electrodes 13b and 13c, similarly, a corona discharge is generated between one discharge electrode and the gas upstream surface of the ground electrode adjacent to the discharge electrode.
 ボイラ2での発生した捕集対象物(ダスト及び水銀等の気体状物質)を含む燃焼排ガスが、予備荷電部3に流入する。ダストが上記のコロナ放電の間を通過する際、ダストが負に帯電する。帯電したダストはガス下流側のバグフィルタに搬送される。 Combustion exhaust gas containing a collection object (a gaseous substance such as dust and mercury) generated in the boiler 2 flows into the preliminary charging unit 3. When the dust passes between the corona discharges, the dust is negatively charged. The charged dust is conveyed to a bag filter on the gas downstream side.
 一部の帯電したダストは、アース極12a~12dに捕集される。燃焼排ガスは上記範囲の高流速で流通しているため、アース極12a~12dのガス上流側表面Aにダストが電気力によって捕集されても、他のダストが衝突することによって弾き飛ばされる。すなわち、ガスが流通している間、アース極12a~12dのガス上流側表面はダストによってクリーニングされることになる。このため、アース極12a~12dのガス上流側表面は、ダストがほとんど付着していない清浄な面を確保することができる。この結果、アース極12a~12dのガス上流側表面で逆電離が発生することなく、コロナ放電が継続して発生される。
 一方、アース極12a~12dのガス下流側表面Bにはダストが捕集されると堆積する。本実施形態においては、アース極12a~12dのガス下流側表面Bではコロナ放電が抑制される。
 従って、コロナ放電は主として放電極13とアース極12のガス上流側表面Aとの間で発生する。このため、本実施形態の予備荷電部3では、高い帯電能力が維持される。
Some charged dust is collected by the ground electrodes 12a to 12d. Since the combustion exhaust gas circulates at a high flow velocity in the above range, even if dust is collected by the electric force on the gas upstream surface A of the earth electrodes 12a to 12d, it is blown off by collision with other dust. That is, while the gas is flowing, the gas upstream surfaces of the ground electrodes 12a to 12d are cleaned by dust. Therefore, it is possible to secure a clean surface on the gas upstream side of the ground electrodes 12a to 12d where dust is hardly attached. As a result, corona discharge is continuously generated without back ionization on the gas upstream surface of the ground electrodes 12a to 12d.
On the other hand, dust is deposited on the gas downstream surface B of the ground electrodes 12a to 12d when collected. In the present embodiment, corona discharge is suppressed on the gas downstream surface B of the ground electrodes 12a to 12d.
Therefore, corona discharge is mainly generated between the discharge electrode 13 and the gas upstream surface A of the earth electrode 12. For this reason, in the preliminary | backup charge part 3 of this embodiment, a high charging capability is maintained.
 水銀等の気体状物質の中には、上記のコロナ放電の間を通過する際、酸化されて固体状物質となるものがある。例えば水銀は、燃焼排ガス中の酸素、または塩素と結合して酸化水銀(HgO)や塩化水銀(HgCl)となる。酸化水銀や塩化水銀は、予備荷電部を流通する燃焼排ガス温度によっては、固体として存在するものもある。固体化した酸化水銀や塩化水銀は、予備荷電部を通過する際に帯電される。 Some gaseous substances such as mercury are oxidized into solid substances when passing between the above corona discharges. For example, mercury combines with oxygen or chlorine in combustion exhaust gas to form mercury oxide (HgO) or mercury chloride (HgCl 2 ). Mercury oxide and mercury chloride may exist as solids depending on the temperature of the flue gas flowing through the precharged part. Solidified mercury oxide and mercury chloride are charged when passing through the precharged portion.
 予備荷電部3から流出したダスト及び固体状物質(酸化水銀HgO、塩化水銀HgCl等)は、燃焼排ガスと共にバグフィルタ5のダストチャンバ8内に流入する。バグフィルタ5の上部空間7は誘引ファン9により吸引されているため、ダストチャンバ8から濾布6を介して上部空間7に流入する気流が発生する。燃焼排ガスが濾布6を通過する際、濾布6の外表面に帯電したダスト及び固体状物質(酸化水銀HgO、塩化水銀HgCl等)が付着して捕集される。 Dust and solid substances (mercury oxide HgO, mercury chloride HgCl 2, etc.) flowing out from the precharge unit 3 flow into the dust chamber 8 of the bag filter 5 together with the combustion exhaust gas. Since the upper space 7 of the bag filter 5 is sucked by the attracting fan 9, an airflow flowing from the dust chamber 8 through the filter cloth 6 into the upper space 7 is generated. When the combustion exhaust gas passes through the filter cloth 6, charged dust and solid substances (mercury oxide HgO, mercury chloride HgCl 2, etc.) adhere to the outer surface of the filter cloth 6 and are collected.
 本実施形態では、放電極13a~13cの放電部14a,14bの先端が、ガスの流通方向に直交する方向またはガスの上流側に向けられている。このため、アース極12a~12dのガス上流側表面と同様に、放電部14a,14bの先端へのダストの付着が防止される。 In this embodiment, the tips of the discharge portions 14a and 14b of the discharge electrodes 13a to 13c are directed to the direction orthogonal to the gas flow direction or the upstream side of the gas. This prevents dust from adhering to the tips of the discharge portions 14a and 14b, as with the gas upstream surface of the ground electrodes 12a to 12d.
 本実施形態の予備荷電部3では、アース極12a~12dを軸中心に回転可能とするリンク機構が設置されていても良い。リンク機構は、所定の時間間隔で、アース極12a~12dを所定角度ずつ回転させる。ダストが堆積した表面がガス上流側に移動されると、ダストの衝突により堆積層がクリーニングされ、清浄な面が露出する。この結果、ダスト堆積層が厚く成長することを防止することができる。 In the preliminary charging unit 3 of the present embodiment, a link mechanism that can rotate around the ground poles 12a to 12d may be installed. The link mechanism rotates the ground poles 12a to 12d by a predetermined angle at predetermined time intervals. When the surface on which the dust is deposited is moved to the upstream side of the gas, the deposited layer is cleaned by the collision of the dust, and a clean surface is exposed. As a result, it is possible to prevent the dust accumulation layer from growing thick.
 図4は、予備荷電部の電極配置の別の例である。図4の予備荷電部20にでは、ガス流通路21内に、アース極22の列及び放電極23の列がガス流通方向に複数設置されている。この場合、アース極22の列と放電極23の列とは交互に配置される。図4のようにアース極22の列及び放電極23の列を複数段設置すると、ダスト帯電性能が向上する。一方で、段数が多くなりすぎても性能は飽和傾向となる上、圧損が上昇する。このため、性能と圧損とを考慮して、アース極22の列及び放電極の列23の段数を適宜設定すると良い。 FIG. 4 shows another example of the electrode arrangement of the precharge unit. In the preliminary charging unit 20 of FIG. 4, a plurality of rows of ground electrodes 22 and rows of discharge electrodes 23 are installed in the gas flow passage 21 in the gas flow direction. In this case, the rows of earth electrodes 22 and the rows of discharge electrodes 23 are alternately arranged. If a plurality of rows of ground electrodes 22 and discharge electrodes 23 are installed as shown in FIG. 4, dust charging performance is improved. On the other hand, even if the number of stages increases too much, the performance tends to be saturated and the pressure loss increases. For this reason, in consideration of performance and pressure loss, the number of stages of the ground electrode 22 row and the discharge electrode row 23 may be appropriately set.
 アース極22が円柱形状である場合、アース極22の直径をdとすると、ガス流通方向の隣接するアース極22間の距離Dは2d以上に設定される。こうすることで、後段のアース極22のガス上流側表面にも上述の流速範囲内でガスが衝突することになり、ガス上流側表面の清浄性が保たれる。 When the earth electrode 22 has a cylindrical shape, if the diameter of the earth electrode 22 is d, the distance D between adjacent earth electrodes 22 in the gas flow direction is set to 2d or more. By doing so, the gas also collides with the gas upstream surface of the ground electrode 22 in the latter stage within the above flow velocity range, and the cleanliness of the gas upstream surface is maintained.
 アース極22が円柱以外の形状である場合は、円柱形状と同様にガス上流側表面の清浄性が確保できるように、ガス流通方向のアース極間距離が適宜設定される。 When the earth electrode 22 has a shape other than a cylinder, the distance between the earth electrodes in the gas flow direction is appropriately set so that the cleanliness of the gas upstream surface can be ensured as in the cylinder shape.
 また、アース極22の列間に位置する放電極23の列は、図4に示すように、前段のアース極22の中心位置と放電極23の中心位置とのガス流通方向での距離をL1、後段のアース極22の中心位置と放電極23の中心位置とのガス流通方向での距離をL2としたときに、L1≧L2の関係を満たすように配置される。すなわち、アース極22の列間に位置する放電極23の列は、アース極22の列間の中央に、もしくは、後段のアース極22の列の方に変位して設置される。 Further, as shown in FIG. 4, the rows of discharge electrodes 23 located between the rows of earth electrodes 22 indicate the distance in the gas flow direction between the center position of the ground electrode 22 and the center position of the discharge electrode 23 in the gas flow direction. When the distance in the gas flow direction between the center position of the ground electrode 22 at the rear stage and the center position of the discharge electrode 23 is L2, it is arranged so as to satisfy the relationship of L1 ≧ L2. That is, the rows of discharge electrodes 23 positioned between the rows of earth electrodes 22 are displaced in the center between the rows of earth electrodes 22 or toward the rows of the earth electrodes 22 in the subsequent stage.
 図4の予備荷電部20においても、放電部の先端が各アース極22の中心よりも上流側に位置するように、放電極23とアース極22とが配置される。より好ましくは、放電部の先端がアース極22のガス上流側端よりもガス上流側に位置するように、放電極23とアース極22とが配置される。
 また、ガス流通経路の壁25に隣接するアース極22と壁25とは、すり抜けるガス量を低減するために、できる限り接近させておくことが好ましい。
Also in the precharge unit 20 of FIG. 4, the discharge electrode 23 and the ground electrode 22 are arranged so that the tip of the discharge unit is located upstream of the center of each ground electrode 22. More preferably, the discharge electrode 23 and the ground electrode 22 are arranged such that the tip of the discharge portion is located on the gas upstream side of the gas upstream end of the ground electrode 22.
Further, it is preferable that the ground electrode 22 and the wall 25 adjacent to the wall 25 of the gas flow path be as close as possible in order to reduce the amount of gas passing through.
 図4の予備荷電部20では、放電極23が隣接するアース極22の列間に位置する場合、放電極23と放電極23のガス下流側に位置する最も近いアース極22のガス上流側表面との間で確実にコロナ放電が発生される。一方で、放電極23と放電極23のガス上流側に位置するアース極22のダストが堆積した表面(ガス下流側の表面)との間ではコロナ放電が抑制される。図4の予備荷電部20においてもコロナ放電は主として放電極23とアース極22のガス上流側表面との間で発生する。このため、安定した帯電能力が継続される。 In the precharge unit 20 of FIG. 4, when the discharge electrode 23 is located between adjacent ground electrodes 22, the gas upstream surface of the nearest ground electrode 22 located on the gas downstream side of the discharge electrode 23 and the discharge electrode 23. Corona discharge is reliably generated between the two. On the other hand, corona discharge is suppressed between the discharge electrode 23 and the surface of the earth electrode 22 located on the gas upstream side of the discharge electrode 23 on which dust is deposited (surface on the gas downstream side). 4, the corona discharge is mainly generated between the discharge electrode 23 and the gas upstream surface of the earth electrode 22. For this reason, stable charging ability is continued.
 1 集塵装置
 2 ボイラ
 3 予備荷電部
 4 高圧電源
 5 バグフィルタ
 6 濾布
 7 上部空間
 8 ダストチャンバ
 9 誘引ファン
 10 煙突
 11,21 ガス流通経路
 12a,12b,12c,22 アース極
 13,13a,13b,23 放電極
 14a,14b 放電部
 15.25 壁
DESCRIPTION OF SYMBOLS 1 Dust collector 2 Boiler 3 Preliminary charge part 4 High voltage power supply 5 Bag filter 6 Filter cloth 7 Upper space 8 Dust chamber 9 Attraction fan 10 Chimney 11, 21 Gas distribution path 12a, 12b, 12c, 22 Ground electrode 13, 13a, 13b , 23 Discharge electrode 14a, 14b Discharge part 15.25 Wall

Claims (3)

  1.  ガスが流通する煙道に、上流側から順に前記ガス中の捕集対象物に対して放電する予備荷電部と、該捕集対象物を収集するバグフィルタとを備える集塵装置であって、
     前記予備荷電部が、前記ガスの流通経路内に、
     前記ガスの流通方向に直交する方向に配列された複数の放電極と、
     前記ガスの流通方向に直交する方向に配列された複数のアース極とを備え、
     前記アース極が、前記ガスの上流側に面する表面が連続した曲面を有し、
     一の前記放電極が、複数の突起状の放電部を有し、
     一の前記放電極が、前記ガスの上流側から見たときに隣接する2つの前記アース極の間に位置し、
     一の前記放電極と、該一の放電極に最も近い2つの前記アース極の前記ガスの上流側に面する表面との間でコロナ放電が発生され、前記アース極の前記ガスの下流側に面する表面でコロナ放電が抑制される集塵装置。
    A dust collector comprising a precharge unit that discharges to a collection target in the gas in order from the upstream side, and a bag filter that collects the collection target in a flue through which the gas flows,
    The preliminary charging unit is in the gas flow path,
    A plurality of discharge electrodes arranged in a direction perpendicular to the gas flow direction;
    A plurality of ground electrodes arranged in a direction perpendicular to the gas flow direction,
    The ground electrode has a curved surface with a continuous surface facing the upstream side of the gas,
    One discharge electrode has a plurality of protruding discharge portions,
    One discharge electrode is located between the two ground electrodes adjacent to each other when viewed from the upstream side of the gas;
    Corona discharge is generated between the one discharge electrode and the surfaces of the two ground electrodes closest to the one discharge electrode facing the upstream side of the gas, and on the downstream side of the gas of the ground electrode. A dust collector that suppresses corona discharge on the facing surface.
  2.  前記放電極が円筒形状とされ、軸方向に直交する方向の断面において、外側に突出する1つまたは一対の放電部を有し、前記1つまたは一対の放電部が軸方向に沿って複数配列され、
     前記放電部の先端が、前記ガスの流通方向に直交する方向に、または、前記ガスの上流側に向き、
     前記放電部の先端が前記アース極の中心よりも前記ガスの上流側に位置するように、前記放電極と前記アース極とが配置される請求項1に記載の集塵装置。
    The discharge electrode has a cylindrical shape and has one or a pair of discharge portions protruding outward in a cross section in a direction orthogonal to the axial direction, and the one or a plurality of discharge portions are arranged in a plurality along the axial direction. And
    The tip of the discharge part is oriented in a direction perpendicular to the gas flow direction or upstream of the gas,
    2. The dust collector according to claim 1, wherein the discharge electrode and the ground electrode are arranged such that a tip of the discharge part is located upstream of the center of the ground electrode.
  3.  前記ガスの流通方向に直交する方向の前記アース極の列及び前記放電極の列が、前記ガスの流通方向に複数列交互に配列され、
     前記ガスの流通方向で隣接する前記アース極の間に配置される前記放電極は、前記アース極の列の間の中央に配置される、または、前記ガス下流側の前記アース極の列の方に変位して配置される請求項1または請求項2に記載の集塵装置。
    The ground electrode rows and the discharge electrode rows in a direction perpendicular to the gas flow direction are alternately arranged in a plurality of rows in the gas flow direction,
    The discharge electrode disposed between the ground electrodes adjacent in the gas flow direction is disposed at the center between the ground electrode rows, or toward the ground electrode row on the gas downstream side. The dust collector according to claim 1, wherein the dust collector is arranged to be displaced.
PCT/JP2012/067288 2012-07-06 2012-07-06 Dust-collecting device WO2014006736A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/067288 WO2014006736A1 (en) 2012-07-06 2012-07-06 Dust-collecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/067288 WO2014006736A1 (en) 2012-07-06 2012-07-06 Dust-collecting device

Publications (1)

Publication Number Publication Date
WO2014006736A1 true WO2014006736A1 (en) 2014-01-09

Family

ID=49881525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067288 WO2014006736A1 (en) 2012-07-06 2012-07-06 Dust-collecting device

Country Status (1)

Country Link
WO (1) WO2014006736A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016153110A (en) * 2015-02-20 2016-08-25 アズビル株式会社 Electric dust collector
KR20200094210A (en) * 2018-01-15 2020-08-06 미츠비시 히타치 파워 시스템즈 칸쿄 솔루션 가부시키가이샤 Electrostatic precipitator
US20210283621A1 (en) * 2018-08-01 2021-09-16 Mitsubishi Power Environmental Solutions, Ltd. Electrostatic precipitator

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57180445A (en) * 1981-04-30 1982-11-06 Hitachi Plant Eng & Constr Co Ltd Dust filtering and collecting device
JPS60227851A (en) * 1984-04-27 1985-11-13 Mitsubishi Heavy Ind Ltd Preliminary charging device of electrical dust collector
JPS6146267A (en) * 1984-08-07 1986-03-06 Nippon Soken Inc Ionic wind generator
JPS627456A (en) * 1985-07-04 1987-01-14 Takahide Ono Electric dust precipitator
JPS63274428A (en) * 1987-05-07 1988-11-11 Central Res Inst Of Electric Power Ind Porous electrostatic dust collector for coal gasification gas
JPH0237751U (en) * 1988-09-06 1990-03-13
JPH1043629A (en) * 1996-08-08 1998-02-17 Daikin Ind Ltd Air cleaner
JP2002500562A (en) * 1998-03-23 2002-01-08 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Air cleaner
JP2010069360A (en) * 2008-09-16 2010-04-02 Fuji Electric Systems Co Ltd Electrostatic dust collector

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57180445A (en) * 1981-04-30 1982-11-06 Hitachi Plant Eng & Constr Co Ltd Dust filtering and collecting device
JPS60227851A (en) * 1984-04-27 1985-11-13 Mitsubishi Heavy Ind Ltd Preliminary charging device of electrical dust collector
JPS6146267A (en) * 1984-08-07 1986-03-06 Nippon Soken Inc Ionic wind generator
JPS627456A (en) * 1985-07-04 1987-01-14 Takahide Ono Electric dust precipitator
JPS63274428A (en) * 1987-05-07 1988-11-11 Central Res Inst Of Electric Power Ind Porous electrostatic dust collector for coal gasification gas
JPH0237751U (en) * 1988-09-06 1990-03-13
JPH1043629A (en) * 1996-08-08 1998-02-17 Daikin Ind Ltd Air cleaner
JP2002500562A (en) * 1998-03-23 2002-01-08 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Air cleaner
JP2010069360A (en) * 2008-09-16 2010-04-02 Fuji Electric Systems Co Ltd Electrostatic dust collector

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016153110A (en) * 2015-02-20 2016-08-25 アズビル株式会社 Electric dust collector
KR20200094210A (en) * 2018-01-15 2020-08-06 미츠비시 히타치 파워 시스템즈 칸쿄 솔루션 가부시키가이샤 Electrostatic precipitator
EP3725412A4 (en) * 2018-01-15 2021-01-20 Mitsubishi Hitachi Power Systems Environmental Solutions, Ltd. Electrostatic precipitator
KR102451222B1 (en) * 2018-01-15 2022-10-06 미츠비시 쥬고 파워 칸쿄 솔루션 가부시키가이샤 electrostatic precipitator
US11484890B2 (en) 2018-01-15 2022-11-01 Mitsubishi Heavy Industries Power Environmental Solutions, Ltd. Electrostatic precipitator
US20210283621A1 (en) * 2018-08-01 2021-09-16 Mitsubishi Power Environmental Solutions, Ltd. Electrostatic precipitator

Similar Documents

Publication Publication Date Title
WO2011152357A1 (en) Method for operation of dust collection device, and dust collection device
US7585352B2 (en) Grid electrostatic precipitator/filter for diesel engine exhaust removal
US4955991A (en) Arrangement for generating an electric corona discharge in air
US10994282B2 (en) Electric precipitator air pollution control device
US11364508B2 (en) Electrostatic air filter
JP2007100635A (en) Exhaust emission control device
FI124675B (en) Procedure for collecting microparticles from flue gases and corresponding arrangements
JP2005320895A (en) Gas purifying device
JP2005320895A5 (en)
EP2922636A1 (en) Electrofilter for the purification of smoke from in particular minor straw boilers
JP2010069360A (en) Electrostatic dust collector
JP5959960B2 (en) Wet electrostatic precipitator and exhaust gas treatment method
CN106765416B (en) Fume purifier
WO2014006736A1 (en) Dust-collecting device
KR100876141B1 (en) Discharge plate for electrostatic precipitator
CA2985468C (en) Method and arrangement
JP2010075864A (en) Electric dust precipitator
CN215389993U (en) Electric field device and gas purification device
KR102448562B1 (en) Dust precipitator collecting dust particles by using an annular discharge region and dust precipitation system having the same
JP2011031127A (en) Dust collector
RU171798U1 (en) ELECTRIC FILTER
RU2330726C1 (en) Electric filter with wave section electrodes
RU2330727C1 (en) Electric filter
Yamamoto et al. Integrated diesel engine emission control using plasma-combined hybrid system
RU2333041C1 (en) Electric precipitator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12880424

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12880424

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP