WO2014006310A1 - Redresseur de turbomachine avec aubes à profil ameliore - Google Patents

Redresseur de turbomachine avec aubes à profil ameliore Download PDF

Info

Publication number
WO2014006310A1
WO2014006310A1 PCT/FR2013/051531 FR2013051531W WO2014006310A1 WO 2014006310 A1 WO2014006310 A1 WO 2014006310A1 FR 2013051531 W FR2013051531 W FR 2013051531W WO 2014006310 A1 WO2014006310 A1 WO 2014006310A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
leading edge
height
curve
turbomachine
Prior art date
Application number
PCT/FR2013/051531
Other languages
English (en)
Inventor
Pradeep COJANDE
Hanna Reiss
Original Assignee
Snecma
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snecma filed Critical Snecma
Priority to CA2878149A priority Critical patent/CA2878149C/fr
Priority to EP13744667.0A priority patent/EP2870367A1/fr
Priority to US14/413,042 priority patent/US20150226074A1/en
Priority to BR112015000075A priority patent/BR112015000075A2/pt
Priority to RU2015103931A priority patent/RU2632350C2/ru
Priority to CN201380036009.1A priority patent/CN104411982B/zh
Publication of WO2014006310A1 publication Critical patent/WO2014006310A1/fr
Priority to US15/618,904 priority patent/US10844735B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/02Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines
    • F01D1/04Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines traversed by the working-fluid substantially axially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/542Bladed diffusers
    • F04D29/544Blade shapes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/041Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector using blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/70Shape
    • F05B2250/71Shape curved
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/36Application in turbines specially adapted for the fan of turbofan engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/121Fluid guiding means, e.g. vanes related to the leading edge of a stator vane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the invention relates to the field of turbomachine rectifiers and turbomachines comprising such rectifiers.
  • a turbomachine with a double flow for aeronautical propulsion is represented in FIG. 1. It comprises a fan 10 delivering a flow of air, a central part of which, called the primary flow F P , is injected into a compressor 12 which supplies a turbine 14 driving the turbine. blower.
  • the peripheral part, called the secondary flow F s , of the air flow is in turn ejected to the atmosphere to provide a part of the thrust of the turbomachine 1, after having passed a ring of vanes arranged downstream of the blower.
  • This ring called the rectifier 20 (also known by the acronym OGV for "Outlet Guide Valve”), straighten the air flow at the output of the fan, while limiting losses to the maximum.
  • a decrease of 0.1% of the losses (for example pressure decrease) in the rectifier can lead to a 0.2 point increase in efficiency of the assembly comprising the fan and the rectifier, the correspondence between the losses and the efficiency depending on heard of the engine and the aerodynamic load of the associated blower.
  • the efficiency of the rectifier depends in particular on the gradients of certain physical quantities of the air flow at the outlet of the fan, as a function of the distance with respect to the axis of the turbomachine. This is called the rectifier power supply by the blower.
  • These physical quantities are, for example, the air flow rate, its compression ratio or its temperature.
  • the straightening of the air flow is ensured by the vanes of the straightener, whose arrangement and geometry are adapted to this power supply.
  • the first stator vanes were two-dimensional, of substantially rectangular shape.
  • these geometries are no longer compatible with loss improvements and congestion reductions required by new designs.
  • Three-dimensional profiles of straightener vanes have therefore been developed, as for example in the document FR 2 828 709.
  • document US 2005/008494 proposes a rectifier whose blades extend radially around the axis of revolution of the stator and have a head end inclined at an angle of between 27 and 33 degrees to in the radial direction, this to reduce the noise generated by the fan positioned upstream of the rectifier.
  • the invention aims to provide a rectifier whose blades have a geometry adapted to overcome at least one of the aforementioned drawbacks.
  • the invention relates to a turbomachine rectifier comprising a plurality of blades arranged around a ring centered on an axis of the turbomachine, each blade having a leading edge and extending between one end. foot and a leading end, the leading edge at the foot end of each blade being located upstream of the leading edge at the head end of the blade, with respect to the direction of flow of the blade.
  • the rectifier being characterized in that the stacking curve Tangential, constituted by the position, in the direction tangential to the ring, of the centers of gravity of successive sections of blade in the height of the dawn, is a constantly increasing curve towards the upper surface of the dawn, in that said curve has, in the vicinity of the end of head of a blade, an accentuated slope towards the upper surface with respect to the remainder of said curve, and in that the average slope of the curve in the vicinity of the head end of the dawn is greater than at least 1 .2 times the slope of the curve on the portion between 30% and 90% of the height of the blade.
  • the invention also has at least one of the following characteristics:
  • the portion of the curve in the vicinity of the leading end is between 90% and 100% of the height of the blade.
  • the leading edge of each blade comprises at least a portion located downstream of the leading edge position at the head end of the blade relative to the direction of the air flow.
  • the downstream portion of the leading edge position at the leading end of the blade is included in a leading edge area between 60 and 100% of the blade height.
  • the point of the leading edge disposed at the leading edge position at the head end of the blade is between 60 and 80% of the height of the blade.
  • the leading edge at the foot end of each blade is located upstream of the leading edge at the head end of the blade relative to the direction of the air flow by a distance between 12 and 20% of the height of the blade, the distance being measured in the direction of the axis of the turbomachine.
  • the invention further relates to a turbomachine, comprising at least one rectifier according to the invention.
  • FIG. 1, already described, schematically represents a double-flow turbomachine.
  • Figure 2a is a partial schematic view of a rectifier.
  • FIG. 2b shows the principle of a stator blade formed of a plurality of blade sections.
  • FIG. 3a shows the evolution of the trace of the leading edge of a blade with respect to the direction of the air flow in the turbomachine.
  • FIG. 3b represents the stacking curve with respect to the direction tangential to the rectifier. .
  • FIG. 4a represents, on the one hand for a blade according to one embodiment of the invention (curve in solid lines) and, on the other hand, for another blade of two-dimensional geometry (curve in dashed lines), the distribution of the flow rate air along the height of dawn, at the foot of dawn.
  • FIG. 4b represents, for one and the other of these two blades, the air pressure losses at the passage of the dawn along the height of the dawn, at the level of the foot of the dawn .
  • FIG. 4c represents, for one and the other of these two blades, the evolution of the pressure losses of the air at the passage of the dawn all along the height of the blade.
  • Figures 5a and 5b show the detachments at the head of a blade, respectively according to the prior art and according to the invention.
  • a turbomachine one double present flows, as described above, a blower 10 and a rectifier 20 type OGV, for rectifying a secondary air flow F s coming from the fan.
  • the rectifier 20 comprises a plurality of vanes 22 regularly distributed around an annulus 29 centered on the axis of the turbomachine (not shown in the figure).
  • the blades shown in FIGS. 2a and 2b are not representative of the geometry adopted by the invention.
  • Each blade 22 comprises a leading edge 23, and a trailing edge 24, extending between a radially inner end 25, called the root of the blade, and a radially outer end 26, called the head of the blade.
  • the leading edge 23 and the trailing edge 24 delimit an intrados face I and an extrados face E.
  • X is the direction of the axis of the turbomachine or motor axis
  • Y is the tangential direction relative to the ring 29 of the rectifier
  • Z is the radial direction, in which extends every dawn. Advanced leading edge at dawn
  • FIG. 3a there is shown the position of the leading edge at all points of the blade, relative to the direction X of the motor axis. This curve is called a leading edge trace.
  • the ordinate represents the height position of the leading edge relative to the total height of the blade
  • the abscissa represents the offset the leading edge, as a percentage of the height of the blade, relative to the position E of the leading edge at the leading end 26 of the blade.
  • the position A of the leading edge at the foot end 25 of the blade is offset upstream, in the direction X of the motor axis, relative to the position E of the edge of the blade. attack at the head end 26 of dawn.
  • This offset is greater than 10% of the height of the dawn. It is preferably between 10 and 20% of the height of the blade, advantageously between 12 and 20% of the height of the blade, and more preferably between 15 and 20%.
  • This advance of the foot of the blade allows a better distribution of the air flow on the height of the blade.
  • This distribution of the value of the air flow rate on the blade is represented in FIG. 4a, along the height of the blade for a part extending between the root tip of the blade and 50% from the height of it.
  • each blade 22 conventionally consists of a stack of sections of blades 27 that are successive in the height of the blade.
  • FIG. 3b there is shown the tangential stacking curve of a blade constituted by the position, relative to the tangential direction Y at the ring 29, of the centers of gravity of the blade sections 27.
  • This curve is also dimensioned by the height of the blade, the origin being taken at the position A 'of the center of gravity of the section at the bottom of the blade.
  • the positive values on the abscissa correspond to a shift towards the upper surface of the dawn, while the negative values correspond to an offset towards the intrados of the dawn.
  • the tangential stacking curve of a blade is a constantly increasing curve to the upper surface of the blade.
  • This tangential stack towards the extrados makes it possible to reduce the detachments of the flow of air at the top of the blade, to increase the speed and the flow rate at the bottom of the blade, and to reduce the pressure losses in this zone.
  • the losses at the blade root can be reduced by almost 2% thanks to the proposed blade profile.
  • the advance of the leading edge of a blade at the blade root is combined with a tangential stack of the blade towards the upper surface to combine the effects obtained and to minimize the pressure losses.
  • the tangential stacking curve of the blade advantageously has an accentuated slope, in the vicinity of the head of the blade, relative to the rest of the blade.
  • the curve has a portion CD ', situated in a region between 90 and 100% of the height of the blade, such as the average slope of this part, that is to say the average slope of the segment CD 'is at least 1, 2 times that of the portion B'C between 30% and 90% of the height of the blade.
  • a flow of air crossing a blade has been simulated whose tangential stacking is towards the intrados, and a flow of air crossing a blade whose tangential stacking is towards the extrados, with accentuation of the slope at the top of 'dawn.
  • FIGS. 5a and 5b each represent a blade 22 and the separation zone ZD of the airflow at the head of the blade. Note that for the first blade, in Figure 5a, this separation zone ZD is much larger than the second, according to the invention, of Figure 5b.
  • the trace of the leading edge of a blade furthermore has a portion situated downstream from the position E of the leading edge at the blade head with respect to the X direction of the blade. motor axis.
  • a point C of the leading edge located at the right of the position E of the leading edge of the blade. This point is advantageously situated between 60 and 80% of the height of the blade, so that the part situated downstream of the position E extends itself in the zone between 60 and 100% of the height of the blade. 'dawn.
  • Point C may be more preferably between 65 and 75% of the height of the blade.
  • This part of the blade in the vicinity of the head of the blade is therefore further away from the turbine engine fan than the rest of the blade, which limits acoustic disturbances at the head of the blade.
  • the proposed geometry thus makes it possible to improve the performance of a stator blade and to reduce the detachments of the air flow at the head of the blade.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Geometry (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

L'invention concerne un redresseur de turbomachine, comportant une pluralité d'aubes disposées autour d'un anneau, chaque aube présentant un bord d'attaque et s'étendant entre une extrémité de pied et une extrémité de tête, le bord d'attaque à l'extrémité de pied de chaque aube étant situé en amont du bord d'attaque à l'extrémité de tête de l'aube, par rapport à la direction du flux d'air, le décalage du bord d'attaque entre ces deux extrémités étant supérieur à 10 % de la hauteur de la pale. A cette caractéristique principale se combine également un empilage tangentiel du redresseur vers l'extrados, le redresseur étant caractérisé en ce que la courbe d'empilage tangentiel, constituée par la position, selon la direction tangentielle à l'anneau, des centres de gravité de sections d'aube successives dans la hauteur de l'aube, est une courbe constamment croissante vers l'extrados de l'aube, en ce que ladite courbe présente, au voisinage de l'extrémité de tête d'une aube, une pente accentuée vers l'extrados par rapport au reste de ladite courbe, et en ce que ladite courbe présente une pente moyenne au voisinage de l'extrémité de tête de l'aube supérieure à au moins 1.2 fois la pente moyenne de la courbe sur la portion comprise entre 30% et 90% de hauteur de l'aube.

Description

REDRESSEUR DE TURBOMACHINE AVEC AUBES A PROFIL AMELIORE
DOMAINE DE L'INVENTION
L'invention concerne le domaine des redresseurs de turbomachines et des turbomachines comprenant de tels redresseurs.
ETAT DE LA TECHNIQUE
Une turbomachine à double flux pour la propulsion aéronautique est représentée en figure 1. Elle comprend une soufflante 10 délivrant un flux d'air dont une partie centrale, appelée flux primaire FP, est injectée dans un compresseur 12 qui alimente une turbine 14 entraînant la soufflante.
La partie périphérique, appelée flux secondaire Fs, du flux d'air est quant à elle éjectée vers l'atmosphère pour fournir une partie de la poussée de la turbomachine 1 , après avoir franchi une couronne d'aubes fixes disposée en aval de la soufflante. Cette couronne, appelée redresseur 20 (également connue sous l'acronyme anglais OGV pour « Outlet Guide Vanne »), permet de redresser le flux d'air en sortie de la soufflante, tout en limitant les pertes au maximum.
En effet, une diminution de 0.1 % des pertes (par exemple diminution de pression) dans le redresseur peut entraîner une augmentation de 0.2 point de rendement de l'ensemble comprenant la soufflante et le redresseur, la correspondance entre les pertes et le rendement dépendant bien entendu du moteur et de la charge aérodynamique de la soufflante associée.
L'efficacité du redresseur dépend notamment des gradients de certaines grandeurs physiques du flux d'air en sortie de la soufflante, en fonction de la distance par rapport à l'axe de la turbomachine. C'est ce qu'on appelle l'alimentation du redresseur par la soufflante. Ces grandeurs physiques sont par exemple le débit de l'air, son taux de compression ou sa température.
Le redressement du flux d'air est assuré par les aubes du redresseur, dont la disposition et la géométrie sont adaptées à cette alimentation. Au cours des développements dans ce domaine, les premières aubes de redresseurs étaient bidimensionnelles, de forme sensiblement rectangulaire. Cependant, ces géométries ne sont plus compatibles avec des améliorations de pertes et des diminutions d'encombrement demandées par les nouvelles conceptions. Des profils tridimensionnels d'aubes de redresseurs ont donc été développés, comme par exemple dans le document FR 2 828 709.
De nouveaux profils d'alimentation du redresseur ont en outre conduit à poursuivre la conception des redresseurs dans cette voie.
Il a été notamment proposé dans le document US 2005/008494 un redresseur dont les aubes s'étendent radialement autour de l'axe de révolution du redresseur, et présentent une extrémité de tête inclinée d'un angle compris entre 27 et 33 degrés par rapport à la direction radiale, ceci afin de réduire le bruit engendré par la soufflante positionnée en amont du redresseur.
Cependant le redresseur proposé dans ce document ne permet pas d'améliorer la répartition du débit d'air dans la veine du redresseur ni de diminuer les pertes.
PRESENTATION DE L'INVENTION
L'invention a pour but de proposer un redresseur dont les aubes présentent une géométrie adaptée pour pallier au moins l'un des inconvénients précités.
A cet égard, l'invention a pour objet un redresseur de turbomachine, comportant une pluralité d'aubes disposées autour d'un anneau centré sur un axe de la turbomachine, chaque aube présentant un bord d'attaque et s'étendant entre une extrémité de pied et une extrémité de tête, le bord d'attaque à l'extrémité de pied de chaque aube étant situé en amont du bord d'attaque à l'extrémité de tête de l'aube, par rapport à la direction du flux d'air, le décalage du bord d'attaque entre ces deux extrémités étant supérieur à 10 % de la hauteur de la pale, mesuré dans la direction de l'axe de la turbomachine, le redresseur étant caractérisé en ce que la courbe d'empilage tangentiel, constituée par la position, selon la direction tangentielle à l'anneau, des centres de gravité de sections d'aube successives dans la hauteur de l'aube, est une courbe constamment croissante vers l'extrados de l'aube, en ce que ladite courbe présente, au voisinage de l'extrémité de tête d'une aube, une pente accentuée vers l'extrados par rapport au reste de ladite courbe, et en ce que la pente moyenne de la courbe au voisinage de l'extrémité de tête de l'aube est supérieure à au moins 1 .2 fois la pente de la courbe sur la portion comprise entre 30% et 90% de hauteur de l'aube.
Avantageusement, mais facultativement, l'invention présente en outre au moins l'une des caractéristiques suivantes :
la partie de courbe au voisinage de l'extrémité de tête est comprise entre 90% et 100% de la hauteur de l'aube.
le bord d'attaque de chaque aube comprend au moins une partie située en aval de la position du bord d'attaque à l'extrémité de tête de l'aube par rapport à la direction du flux d'air.
la partie en aval de la position du bord d'attaque à l'extrémité de tête de l'aube est incluse dans une zone du bord d'attaque située entre 60 et 100% de la hauteur de l'aube.
le point du bord d'attaque disposé au droit de la position du bord d'attaque à l'extrémité de tête de l'aube est situé entre 60 et 80 % de la hauteur de l'aube.
le bord d'attaque à l'extrémité de pied de chaque aube est situé en amont du bord d'attaque à l'extrémité de tête de l'aube par rapport à la direction du flux d'air d'une distance comprise entre 12 et 20 % de la hauteur de la pale, la distance étant mesurée selon la direction de l'axe de la turbomachine.
L'invention concerne en outre une turbomachine, comprenant au moins un redresseur selon l'invention.
DESCRIPTION DES FIGURES
D'autres caractéristiques, buts et avantages de l'invention ressortiront de la description qui suit, qui est purement illustrative et non limitative, et qui doit être lue en regard des dessins annexés sur lesquels :
la figure 1 , déjà décrite, représente schématiquement une turbomachine à double-flux.
La figure 2a est une vue schématique partielle d'un redresseur.
La figure 2b représente le principe d'une aube de redresseur formée d'une pluralité de sections d'aubes. La figure 3a représente l'évolution de la trace du bord d'attaque d'une aube par rapport à la direction du flux d'air dans la turbomachine, La figure 3b représente la courbe d'empilage par rapport à la direction tangentielle au redresseur.
La figure 4a représente, d'une part pour une aube conforme à un mode de réalisation de l'invention (courbe en trait plein) et d'autre part pour une autre aube de géométrie bidimensionnelle (courbe en traits pointillés) la répartition du débit de l'air le long de la hauteur de l'aube, au niveau du pied de l'aube.
La figure 4b représente, pour l'une et l'autre de ces deux aubes, les pertes de pression de l'air au passage de l'aube le long de la hauteur de l'aube, au niveau du pied de l'aube.
La figure 4c représente, pour l'une et l'autre de ces deux aubes, l'évolution des pertes de pression de l'air au passage de l'aube tout le long de la hauteur de l'aube.
Les figures 5a et 5b représentent les décollements en tête d'une aube, respectivement selon l'art antérieur et selon l'invention.
DESCRIPTION DETAILLEE D'AU MOINS UN MODE DE REALISATION
En référence à la figure 1 , une turbomachine 1 à double flux présente, comme décrit précédemment, une soufflante 10, et un redresseur 20 de type OGV, pour redresser un flux d'air secondaire Fs provenant de la soufflante.
En référence à la figure 2a, le redresseur 20 comprend une pluralité d'aubes 22 réparties régulièrement autour d'un anneau 29 centré sur l'axe de la turbomachine (non représenté sur la figure). Les aubes représentées en figure 2a et 2b ne sont pas représentatives de la géométrie adoptée par l'invention.
Chaque aube 22 comprend un bord d'attaque 23, et un bord de fuite 24, s'étendant entre une extrémité radialement interne 25, appelée pied de l'aube, et une extrémité radialement externe 26, appelée tête de l'aube. Le bord d'attaque 23 et le bord de fuite 24 délimitent une face intrados I et une face extrados E.
On utilise en outre les notations suivantes : X est la direction de l'axe de la turbomachine ou axe moteur, Y est la direction tangentielle par rapport à l'anneau 29 du redresseur, et Z est la direction radiale, selon laquelle s'étend chaque aube. Avancée du bord d'attaque en pied d'aube
En référence à la figure 3a, on a représenté la position du bord d'attaque en tous points de l'aube, par rapport à la direction X de l'axe moteur. Cette courbe est appelée trace du bord d'attaque.
Toutes les distances ont en outre été adimensionnées en fonction de la hauteur de l'aube : ainsi l'ordonnée représente la position en hauteur du bord d'attaque par rapport à la hauteur totale de l'aube, et l'abscisse représente le décalage du bord d'attaque, en pourcentage de la hauteur de l'aube, par rapport à la position E du bord d'attaque à l'extrémité de tête 26 de l'aube.
Comme visible sur la figure, la position A du bord d'attaque à l'extrémité de pied 25 de l'aube est décalée en amont, dans la direction X de l'axe moteur, par rapport à la position E du bord d'attaque à l'extrémité de tête 26 de l'aube. Ce décalage est supérieur à 10% de la hauteur de l'aube. Il est de préférence compris entre 10 et 20 % de la hauteur de l'aube, avantageusement compris entre 12 et 20 % de la hauteur de l'aube, et encore plus avantageusement compris entre 15 et 20 %.
Cette avancée du pied de l'aube permet une meilleure répartition du débit d'air sur la hauteur de la pale. Cette répartition de la valeur du débit du flux d'air sur l'aube est représentée en figure 4a, le long de la hauteur de l'aube pour une partie s'étendant entre l'extrémité de pied de l'aube et 50 % de la hauteur de celle-ci.
On constate de bien meilleures performances pour l'aube proposée (correspondant aux courbes en traits pleins sur les figures 4a à 4c), que pour d'autres aubes et en particulier celles de l'art antérieur (courbes en traits pointillés). Notamment, à 10% de la hauteur de l'aube, on constate que le profil proposé permet une augmentation de plus de 6% en débit,
Empilement tangentiel vers l'extrados
En référence à la figure 2b, chaque aube 22 est classiquement constituée d'un empilement de sections d'aubes 27 successives dans la hauteur de l'aube.
En référence à la figure 3b, on a représenté la courbe d'empilage tangentiel d'une aube, constituée par la position, par rapport la direction tangentielle Y à l'anneau 29, des centres de gravité des sections d'aube 27. Cette courbe est également adimensionnée par la hauteur de l'aube, l'origine étant prise à la position A' du centre de gravité de la section en pied d'aube. En outre, les valeurs positives en abscisse correspondent à un décalage vers l'extrados de l'aube, tandis que les valeurs négatives correspondent à un décalage vers l'intrados de l'aube.
Comme visible en figure 3b, la courbe d'empilage tangentiel d'une aube est une courbe constamment croissante vers l'extrados de l'aube. Cet empilage tangentiel vers l'extrados permet de diminuer les décollements du flux d'air en tête d'aube, d'augmenter la vitesse et le débit en pied d'aube, et de diminuer les pertes de pression dans cette zone. En particulier, on constate sur la figure 4b que les pertes en pied d'aube peuvent être diminuées de près de 2% grâce au profil d'aube proposé.
Avantageusement, l'avancée du bord d'attaque d'une aube en pied de pale est combinée à un empilage tangentiel de l'aube vers l'extrados pour combiner les effets obtenus et diminuer au maximum les pertes de pression.
En outre, de retour à la figure 3b, la courbe d'empilement tangentiel de l'aube présente avantageusement une pente accentuée, au voisinage de la tête de l'aube, par rapport au reste de l'aube.
De préférence, la courbe présente une partie CD', située dans une région comprise entre 90 et 100% de la hauteur de l'aube, telle que la pente moyenne de cette partie, c'est-à-dire la pente moyenne du segment CD', est au moins 1 ,2 fois celle de la portion B'C comprise entre 30% et 90% de la hauteur de l'aube.
On a simulé un flux d'air franchissant une aube dont l'empilage tangentiel est vers l'intrados, et un flux d'air franchissant une aube dont l'empilage tangentiel est vers l'extrados, avec accentuation de la pente en tête d'aube.
Les résultats sont illustrés respectivement en figures 5a et 5b, qui représentent chacune une aube 22 et la zone de décollement ZD du flux d'air en tête d'aube. On remarque que pour la première aube, en figure 5a, cette zone de décollement ZD est beaucoup plus importante que pour la seconde, conforme à l'invention, de la figure 5b.
Enfin, de retour à la figure 3a, la trace du bord d'attaque d'une aube présente en outre une partie située en aval de la position E du bord d'attaque en tête d'aube par rapport à la direction X de l'axe moteur. Ainsi, il existe un point C du bord d'attaque situé au droit de la position E du bord d'attaque en tête d'aube. Ce point est avantageusement situé entre 60 et 80% de la hauteur de l'aube, de sorte que la partie située en aval de la position E s'étend elle-même dans la zone comprise entre 60 et 100 % de la hauteur de l'aube.
Le point C peut être plus préférablement situé entre 65 et 75 % de la hauteur de l'aube.
Les positions respectives des points A, C et E impliquent donc que la trace du bord d'attaque de l'aube présente, au voisinage de la tête de l'aube, une forme de crochet, ou de concavité ouverte vers l'amont par rapport à la direction de l'axe moteur.
Cette partie de l'aube au voisinage de la tête de l'aube est donc plus éloignée de la soufflante de la turbomachine que le reste de l'aube, ce qui permet de limiter les perturbations acoustiques en tête d'aube.
La géométrie proposée permet donc d'améliorer les performances d'une aube de redresseur et de diminuer les décollements du flux d'air en tête d'aube.

Claims

REVENDICATIONS
1 . Redresseur (20) de turbomachine, comportant une pluralité d'aubes (22) disposées autour d'un anneau (29) centré sur un axe de la turbomachine, chaque aube (22) présentant un bord d'attaque (23) et s'étendant entre une extrémité de pied (25) et une extrémité de tête (26),
le bord d'attaque (23) à l'extrémité de pied (25) de chaque aube (22) étant situé en amont du bord d'attaque (23) à l'extrémité de tête (26) de l'aube, par rapport à la direction du flux d'air, le décalage du bord d'attaque (23) entre ces deux extrémités étant supérieur à 10 % de la hauteur de la pale (22), mesuré dans la direction de l'axe (X) de la turbomachine,
le redresseur étant caractérisé en ce que la courbe d'empilage tangentiel, constituée par la position, selon la direction tangentielle (Y) à l'anneau (29), des centres de gravité de sections d'aube (27) successives dans la hauteur de l'aube (22), est une courbe constamment croissante vers l'extrados (E) de l'aube (22),
en ce que ladite courbe présente, au voisinage de l'extrémité de tête (26) d'une aube (22), une pente accentuée vers l'extrados (E) par rapport au reste de ladite courbe, et en ce que ladite courbe présente une pente moyenne au voisinage de l'extrémité de tête (26) de l'aube supérieure à au moins 1 .2 fois la pente moyenne de la courbe sur la portion comprise entre 30% et 90% de hauteur de l'aube.
2. Redresseur (20) de turbomachine selon la revendication 1 , dans lequel la partie de la pente au voisinage de l'extrémité de tête (26) est comprise entre 90% et 100% de la hauteur de l'aube (22).
3. Redresseur (20) de turbomachine selon l'une des revendications précédentes, dans lequel le bord d'attaque (23) de chaque aube (22) comprend au moins une partie située en aval de la position du bord d'attaque (23) à l'extrémité de tête (26) de l'aube par rapport à la direction du flux d'air.
4. Redresseur (20) de turbomachine selon la revendication 3, dans lequel ladite partie est incluse dans une zone du bord d'attaque (23) située entre 60 et 100% de la hauteur de l'aube (22).
5. Redresseur (20) de turbomachine selon l'une des revendications 3 ou 4, dans lequel le point du bord d'attaque (23) disposé au droit de la position du bord d'attaque à l'extrémité de tête (26) de l'aube est situé entre 60 et 80 % de la hauteur de l'aube.
6. Redresseur (20) de turbomachine selon l'une des revendications précédentes, dans lequel le bord d'attaque à l'extrémité de pied (25) de chaque aube (22) est situé en amont du bord d'attaque (23) à l'extrémité de tête (26) de l'aube par rapport à la direction du flux d'air d'une distance comprise entre 10 et 20% de la hauteur de la pale, de préférence entre 12 et 20 % de la hauteur de la pale, la distance étant mesurée dans la direction de l'axe (X) de la turbomachine.
7. Turbomachine (1 ), comprenant au moins un redresseur (20) selon l'une des revendications précédentes.
PCT/FR2013/051531 2012-07-06 2013-06-28 Redresseur de turbomachine avec aubes à profil ameliore WO2014006310A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA2878149A CA2878149C (fr) 2012-07-06 2013-06-28 Redresseur de turbomachine avec aubes a profil ameliore
EP13744667.0A EP2870367A1 (fr) 2012-07-06 2013-06-28 Redresseur de turbomachine avec aubes à profil ameliore
US14/413,042 US20150226074A1 (en) 2012-07-06 2013-06-28 Turbomachine guide vanes with improved vane profile
BR112015000075A BR112015000075A2 (pt) 2012-07-06 2013-06-28 retificador de uma turbomáquina, e, turbomáquina
RU2015103931A RU2632350C2 (ru) 2012-07-06 2013-06-28 Выпрямитель газотурбинного двигателя с лопатками улучшенного профиля
CN201380036009.1A CN104411982B (zh) 2012-07-06 2013-06-28 具有改进叶片轮廓的涡轮机引导叶片
US15/618,904 US10844735B2 (en) 2012-07-06 2017-06-09 Turbomachine guide vanes with improved vane profile

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1256532A FR2993020B1 (fr) 2012-07-06 2012-07-06 Redresseur de turbomachine avec aubes a profil ameliore
FR1256532 2012-07-06

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/413,042 A-371-Of-International US20150226074A1 (en) 2012-07-06 2013-06-28 Turbomachine guide vanes with improved vane profile
US15/618,904 Continuation US10844735B2 (en) 2012-07-06 2017-06-09 Turbomachine guide vanes with improved vane profile

Publications (1)

Publication Number Publication Date
WO2014006310A1 true WO2014006310A1 (fr) 2014-01-09

Family

ID=46826796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2013/051531 WO2014006310A1 (fr) 2012-07-06 2013-06-28 Redresseur de turbomachine avec aubes à profil ameliore

Country Status (7)

Country Link
US (2) US20150226074A1 (fr)
EP (1) EP2870367A1 (fr)
BR (1) BR112015000075A2 (fr)
CA (1) CA2878149C (fr)
FR (1) FR2993020B1 (fr)
RU (1) RU2632350C2 (fr)
WO (1) WO2014006310A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10233758B2 (en) 2013-10-08 2019-03-19 United Technologies Corporation Detuning trailing edge compound lean contour
CN115013089B (zh) * 2022-06-09 2023-03-07 西安交通大学 宽工况后向遮挡的涡轮后机匣整流支板设计方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995017584A1 (fr) * 1993-12-22 1995-06-29 Alliedsignal Inc. Ensemble aube de stator inserable
FR2828709A1 (fr) 2001-08-17 2003-02-21 Snecma Moteurs Aube de redresseur
US20050008494A1 (en) 2003-03-28 2005-01-13 Ishikawajima-Harima Heavy Industries Co., Ltd. Aircraft engine, fan thereof and fan stator vane thereof
EP1921007A2 (fr) * 2006-11-10 2008-05-14 Rolls-Royce plc Agencement d'assemblage de moteur à turbine
EP2267273A2 (fr) * 2009-06-25 2010-12-29 Rolls-Royce plc Surface portante à cambrure réglable

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6195983B1 (en) * 1999-02-12 2001-03-06 General Electric Company Leaned and swept fan outlet guide vanes
US6331100B1 (en) * 1999-12-06 2001-12-18 General Electric Company Doubled bowed compressor airfoil
US7547186B2 (en) * 2004-09-28 2009-06-16 Honeywell International Inc. Nonlinearly stacked low noise turbofan stator
RU2350787C2 (ru) * 2007-04-13 2009-03-27 Открытое акционерное общество "Научно-производственное объединение "Сатурн" Высокопроизводительный малошумящий компрессор низкого давления газотурбинного двигателя с высокой степенью двухконтурности

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995017584A1 (fr) * 1993-12-22 1995-06-29 Alliedsignal Inc. Ensemble aube de stator inserable
FR2828709A1 (fr) 2001-08-17 2003-02-21 Snecma Moteurs Aube de redresseur
US20050008494A1 (en) 2003-03-28 2005-01-13 Ishikawajima-Harima Heavy Industries Co., Ltd. Aircraft engine, fan thereof and fan stator vane thereof
EP1921007A2 (fr) * 2006-11-10 2008-05-14 Rolls-Royce plc Agencement d'assemblage de moteur à turbine
EP2267273A2 (fr) * 2009-06-25 2010-12-29 Rolls-Royce plc Surface portante à cambrure réglable

Also Published As

Publication number Publication date
EP2870367A1 (fr) 2015-05-13
FR2993020A1 (fr) 2014-01-10
US10844735B2 (en) 2020-11-24
CN104411982A (zh) 2015-03-11
BR112015000075A2 (pt) 2017-06-27
CA2878149C (fr) 2020-10-27
FR2993020B1 (fr) 2016-03-18
US20170276004A1 (en) 2017-09-28
CA2878149A1 (fr) 2014-01-09
US20150226074A1 (en) 2015-08-13
RU2015103931A (ru) 2016-08-27
RU2632350C2 (ru) 2017-10-04

Similar Documents

Publication Publication Date Title
EP3030749B1 (fr) Aube mobile de turbomachine
EP2652336B1 (fr) Aube de turbomachine a loi d'empilage améliorée
EP2673472B1 (fr) Ensemble pale-plateforme pour ecoulement subsonique
CA2920345C (fr) Aube de redresseur de turbomachine
EP2697114A1 (fr) Dispositif de propulsion a helices contrarotatives et coaxiales non-carenees
WO2018138439A1 (fr) Profil amélioré de bord d'attaque d'aubes
CA2878149C (fr) Redresseur de turbomachine avec aubes a profil ameliore
FR2965846A1 (fr) Queue de carenage d'ailette de turbine
EP2976507B1 (fr) Aube et angle de diedre d'aube
CA2878827C (fr) Aube de turbomachine ayant un profil configure de maniere a obtenir des proprietes aerodynamiques et mecaniques ameliorees.
CA2994912C (fr) Aube de rotor de turbomachine
FR3005989A1 (fr) Turbopropulseur d'aeronef
WO2021069817A1 (fr) Aube de redresseur à calage variable comportant des ailettes aérodynamiques
WO2023021258A1 (fr) Pièce statorique d'une turbomachine comprenant une pale et une ailette définissant entre elles une surface décroissante d'amont en aval selon le sens d'écoulement des gaz
FR3085055A1 (fr) Sillon de canalisation en amont d'une aube
FR3087828A1 (fr) Aubage mobile de turbomachine
WO2024121507A1 (fr) Piece statorique avec agencement de pale et d'ailette dans une turbomachine
EP3555427A1 (fr) Aube antigivre, compresseur et turbomachine associée

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13744667

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2878149

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14413042

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013744667

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015103931

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015000075

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015000075

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150105