WO2014006178A1 - Procédé de production d'un gaz naturel traité, d'une coupe riche en hydrocarbures en c3 +, et éventuellement d'un courant riche en éthane, et installation associée - Google Patents

Procédé de production d'un gaz naturel traité, d'une coupe riche en hydrocarbures en c3 +, et éventuellement d'un courant riche en éthane, et installation associée Download PDF

Info

Publication number
WO2014006178A1
WO2014006178A1 PCT/EP2013/064238 EP2013064238W WO2014006178A1 WO 2014006178 A1 WO2014006178 A1 WO 2014006178A1 EP 2013064238 W EP2013064238 W EP 2013064238W WO 2014006178 A1 WO2014006178 A1 WO 2014006178A1
Authority
WO
WIPO (PCT)
Prior art keywords
stream
column
natural gas
starting
heat exchanger
Prior art date
Application number
PCT/EP2013/064238
Other languages
English (en)
Inventor
Vanessa Gahier
Fabien Gaël Léo LACROIX
Vincent Patrick MATHIEU
Original Assignee
Technip France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46754708&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014006178(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Technip France filed Critical Technip France
Priority to CA2878125A priority Critical patent/CA2878125C/fr
Priority to RU2015103754A priority patent/RU2620601C2/ru
Priority to EP13734098.0A priority patent/EP2870226B1/fr
Priority to AP2015008259A priority patent/AP2015008259A0/xx
Priority to US14/412,172 priority patent/US20150153101A1/en
Priority to MX2015000147A priority patent/MX2015000147A/es
Publication of WO2014006178A1 publication Critical patent/WO2014006178A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/12Liquefied petroleum gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0238Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0242Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 3 carbon atoms or more
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/06Heat exchange, direct or indirect
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/10Recycling of a stream within the process or apparatus to reuse elsewhere therein
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/46Compressors or pumps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/48Expanders, e.g. throttles or flash tanks
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • C10L2290/543Distillation, fractionation or rectification for separating fractions, components or impurities during preparation or upgrading of a fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/72Refluxing the column with at least a part of the totally condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/76Refluxing the column with condensed overhead gas being cycled in a quasi-closed loop refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/78Refluxing the column with a liquid stream originating from an upstream or downstream fractionator column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/06Splitting of the feed stream, e.g. for treating or cooling in different ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/62Ethane or ethylene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/04Internal refrigeration with work-producing gas expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/04Internal refrigeration with work-producing gas expansion loop
    • F25J2270/06Internal refrigeration with work-producing gas expansion loop with multiple gas expansion loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/88Quasi-closed internal refrigeration or heat pump cycle, if not otherwise provided

Definitions

  • the present invention relates to a process for the simultaneous production of a treated natural gas, a C 3 + hydrocarbon-rich fraction and, in at least some production conditions, an ethane rich stream, from a starting natural gas stream containing methane, ethane and C 3 + hydrocarbons, the process comprising the steps of:
  • Such a process is intended to treat a stream of natural gas to extract at least the C 3 + hydrocarbons, in order to recover liquids from the natural gas and an adjustable amount of C 2 hydrocarbons.
  • the C 2 and C 3 + hydrocarbons are extracted from the starting natural gas in order to avoid condensation during transport and / or handling of the gas. This condensation can lead to the production of liquid plugs in the transport facilities, which is detrimental to production. In addition, these hydrocarbons can marketed with significant market value, which contributes to the profitability of the facilities.
  • US Pat. No. 7,458,232 discloses a solution to this problem, by proposing a process which guarantees an optimized extraction of C 3 + hydrocarbons, generally greater than 99%, and which nevertheless reaches flexible ethane recoveries, for example between 2 % and 85%, depending on the composition of the feed gas.
  • An object of the invention is to obtain a process that allows to obtain ethane extraction rates of up to 85% in a flexible manner, while significantly reducing the energy consumption of the installation.
  • the subject of the invention is an installation of the aforementioned type, characterized in that the method comprises the following steps:
  • the method comprising withdrawing from the bottom of the recovery column at least one background reboiling stream, and placing the background reboil stream in heat exchange relationship with at least a portion of the starting natural gas or and with the recycle stream, the bottom reboiling being provided by the calories taken from the starting natural gas stream and / or the recycle stream.
  • the method according to the invention may comprise one or more of the following characteristics, taken separately or in any technically possible combination:
  • At least a portion of the overhead stream of the recovery column and the recycle stream are placed in heat exchange relationship with the starting natural gas stream and the bottom reboiling stream;
  • At least one lateral reboiling stream is taken above the bottom reboiling stream, the or each side reboiling stream being placed in a heat exchange relationship with at least a portion of the starting natural gas stream;
  • the ethane-rich stream is withdrawn from an intermediate level of the fractionation column situated above the feed level of the column, and below the head level of the fractionation column;
  • At least a portion of the recycle stream is compressed in an auxiliary compressor coupled to the auxiliary turbine;
  • At least a portion of the overhead stream is compressed in an auxiliary compressor coupled to the auxiliary turbine, advantageously between a first compressor coupled to the first turbine and a second compressor, it comprises a step of compressing at least a portion of the head stream in a first compressor coupled to the first turbine, then a step of compressing the partially compressed head stream in a second compressor, the recycling stream being taken in downstream of the second compressor.
  • At least one secondary recycling stream is taken from the recycling stream, the secondary recycling stream being introduced into a secondary expansion turbine before being reintroduced into the overhead stream, advantageously upstream of a passage of the head in the first upstream heat exchanger;
  • the secondary reflux stream consists of a liquid, a gas, or a mixture of liquid and gas coming from the top condenser of the fractionation column;
  • the liquid flow coming from the first upstream separator flask is expanded and is introduced into a second upstream separator flask to form a liquid fraction and a gaseous fraction
  • the liquid fraction being introduced after expansion at the first intermediate level of the recovery column, the gaseous fraction being introduced at a higher level of the recovery column, located above the intermediate level,
  • the liquid flow from the first upstream separator tank being advantageously placed in heat exchange relation with the starting natural gas stream to be reheated before being introduced into the second upstream separator tank;
  • the gas stream from the first separator tank is separated into the feed stream and a reflux stream, the feed stream being intended to supply the dynamic expansion turbine, the reflux stream being introduced, after cooling, condensation. partial or total, and expansion in a valve, reflux in the recovery column;
  • the method comprises a stage of compression of the foot stream coming from the recovery column in a pump, before its introduction into the fractionation column the method comprises a step of cooling the secondary reflux stream by heat exchange with at least a portion of the overhead stream of the recovery column.
  • the subject of the invention is also an installation for the simultaneous production of a treated natural gas, a C 3 + hydrocarbon-rich fraction and, in at least some production conditions, a stream rich in ethane, from a starting natural gas stream containing methane, ethane and C 3 + hydrocarbons, the plant comprising:
  • a cooling and partial condensation assembly of the starting natural gas stream comprising at least a first upstream heat exchanger to form a cooled starting stream;
  • a feed stream expansion assembly comprising a dynamic expansion turbine and a feed stream feed assembly expanded in the recovery column to a second intermediate level
  • the ethane-rich stream being able to be produced, in the said production conditions, from a stream coming from the column of fractionation, the fractionation column being adapted to produce a foot stream for forming, at least in part, the C 3 + hydrocarbon cut;
  • the installation comprises:
  • the installation further comprising a collection assembly in the bottom of the recovery column of at least one bottom reboiling stream, and set of heat exchange connection of the background reboiling stream with at least a portion of the starting natural gas and / or with the recycle stream, the reboiling being adapted to be ensured by the calories taken from the gas stream natural departure or / and in the recycling stream.
  • the installation according to the invention may comprise one or more of the following characteristics, taken separately or in any technically possible combination:
  • first upstream heat exchanger capable of putting into heat exchange relation at least a part of the starting natural gas stream, the bottom reboiling current, possibly lateral reboiling currents, at least a part of the head and recycling stream;
  • first upstream heat exchanger capable of putting into heat exchange relation a first part of the starting natural gas stream, with at least a portion of the head stream
  • second upstream heat exchanger distinct from the first upstream heat exchanger, , able to put in heat exchange relationship a second part of the starting gas stream with the bottom reboiling stream from the recovery column
  • third upstream heat exchanger distinct from the first upstream heat exchanger and the second heat exchanger upstream
  • the third upstream heat exchanger being adapted to put in heat exchange relationship at least a portion of the recycle stream with at least a portion of the overhead stream
  • the installation advantageously comprising a backup compressor capable of compressing the part recycling stream for introduction into the third upstream heat exchanger
  • the installation comprises a first head heat exchanger suitable for placing at least a portion of the overhead stream, optionally the reflux stream, and the secondary reflux stream in heat exchange relation; -
  • the installation comprises a second head heat exchanger, separate from the first head heat exchanger, and adapted to put in heat exchange relationship a second portion of the head stream and the recycle stream.
  • FIG. 1 is a functional block diagram of a first installation for implementing a first method according to the invention
  • FIG. 2 is a diagram similar to FIG. 1 of a second installation for implementing a second method according to the invention
  • FIG. 3 is a diagram similar to FIG. 1 of a third installation for the implementation of a third method according to the invention
  • FIG. 4 is a diagram similar to FIG. 1 of a fourth installation for the implementation of a fourth method according to the invention.
  • FIG. 5 is a diagram similar to FIG. 1 of a fifth installation for the implementation of a fifth method according to the invention.
  • FIG. 6 is a diagram similar to Figure 1 of a sixth installation, for the implementation of a sixth method according to the invention, the sixth installation resulting from a debottlenecking of an existing installation.
  • the first installation 1 1 according to the invention is intended for the simultaneous production, from a stream 13 of natural gas, which is desulfurized, dry and at least partially decarbonated, from a gas
  • the natural product is treated as a main product, a C 3 + hydrocarbon fraction 17, and an ethane-rich stream 19 of adjustable flow rate.
  • the term "at least partially decarbonated” means that the carbon dioxide content in the starting natural gas stream 13 is advantageously less than or equal to 50 ppm when the treated natural gas is to be liquefied. This content is advantageously less than 3% when the treated natural gas is sent directly to a gas distribution network.
  • the water content is less than 1 ppm, advantageously less than
  • the installation 11 comprises a C 2 + hydrocarbon recovery unit 21 and a C 2 + hydrocarbon fractionation unit 23.
  • the unit 21 for recovering C 2 + hydrocarbons comprises, successively, a first upstream heat exchanger 25, a first upstream separator tank 27, a first upstream turbine 29, coupled to a first compressor 31, a first head heat exchanger 33, and a recovery column 35 provided with at least one lateral reboiling circuit 37, 39 and a bottom reboiling circuit 41.
  • the column 35 is provided with two lateral reboiling circuits
  • the unit 21 further comprises a second compressor 43 driven by an external energy source and a first refrigerant 45 placed downstream of the second compressor 43.
  • the unit 21 also comprises a pump 47 of the bottom of the column.
  • the fractionation unit 23 comprises a fractionation column 61.
  • Column 61 comprises, at the head, a top condenser 63, and at the bottom, a reboiler 65.
  • the overhead condenser 63 comprises a second refrigerant 67 and a first downstream separator tank 69 associated with a reflux pump 71.
  • the molar fraction of methane in the starting natural gas stream 13 is 75% and 90%, the molar fraction in C 2 + hydrocarbons. is between 5% and 15%, and the molar fraction of C 3 + hydrocarbons is between 1% and 8%.
  • the charge rate to be treated is for example of the order of 38000 Kmol / h.
  • the starting natural gas stream 13 has a temperature close to ambient temperature and in particular substantially equal to 20%, and a pressure in particular greater than 35 bars.
  • the stream of natural gas 13 has a temperature of 20 ° C and a pressure of 50 bar absolute.
  • the starting natural gas stream 13 is cooled and at least partially condensed in the first upstream heat exchanger 25 to form a cooled start stream 13.
  • the cooled starting stream 13 is introduced into the first upstream separator tank 27 in which a separation takes place between a gaseous phase 1 and a liquid phase 1 17.
  • the liquid phase 1 17 forms, after passing through an expansion valve 1 19, a relaxed mixed phase 120 which is introduced at a first intermediate level N1 of the recovery column 35, located in the upper region of the column, above lateral reboiling circuits 37 and 39.
  • intermediate level is meant a location comprising distillation means above and below this level.
  • the gaseous fraction 1 is separated into a feed stream 121 and a reflux stream 123.
  • the molar flow rate of the feed stream 121 is greater than the molar flow rate of the reflux stream 123.
  • the feed stream 121 is expanded in the turbine 29 to a pressure close to that of the column 35 to provide a relaxed feed stream 125.
  • the stream 125 is introduced into the recovery column 35 at a second intermediate level. N2, located above the first intermediate level N1.
  • the reflux stream 123 is partially or completely condensed in the first head heat exchanger 33, and is then expanded in an expansion valve 127, to form a relaxed reflux stream 128.
  • This stream 128 is introduced into the recovery column 35.
  • the pressure of the recovery column 35 is for example between 12 and 40 bar.
  • the recovery column 35 produces a top stream 131, which is heated in the first top heat exchanger 33 by heat exchange with the reflux stream 123 to form a partially heated overhead stream 139.
  • the stream 139 is reheated in the first upstream heat exchanger 25 by heat exchange with the starting natural gas stream 13 to form a heated overhead stream 140.
  • the heated overhead stream 140 is then compressed in the first compressor 31, then in the second compressor 43, to form a compressed overhead stream 141.
  • the pressure of the stream 141 is greater than 25 bars, for example equal to 50 bars.
  • the stream 141 is then cooled in the first refrigerant 45 to form the treated natural gas 15.
  • a recycle stream 152 is taken from the overhead stream from the column 35.
  • the recycle stream 152 is taken from the compressed heated overhead stream 141 after its cooling in the first refrigerant 45.
  • the ratio of the molar flow rate of the recycle stream 152, relative to the molar flow rate of the overhead stream 131 from the recovery column 35 is between 0% and 25%.
  • the recycle stream 152 is then introduced into the first upstream heat exchanger 25 to be cooled by heat exchange with at least a portion of the overhead stream 131.
  • the stream 152 is placed in heat exchange relationship with the partially heated head stream 139 from the head heat exchanger 33, to form a partially cooled recycle stream 154.
  • the stream 154 is then introduced into the head heat exchanger 33, to be cooled by heat exchange with the head stream 131, and form, after expansion in a valve 156, a cooled recycle stream 155.
  • the cooled recycle stream 155 is introduced into the recovery column 35 at a level N5 located above the level N3, advantageously corresponding to the first stage starting from the top of the column 35.
  • the treated gas contains 1.36 mol% nitrogen, 96.80 mol% methane and 1.76 mol% C 2 hydrocarbons.
  • the treated gas contains more than 99 mol% of the methane contained in the starting natural gas stream 13 and less than 0.1 mol% of the C 3 + hydrocarbons contained in the starting natural gas stream.
  • the treated gas contains a molar proportion of between 2% and 85% of the C 2 hydrocarbons contained in the starting natural gas stream 13, this proportion being adjustable.
  • the gas thus comprises a C 6 + hydrocarbon content of less than 1 ppm, a water content of less than 1 ppm, advantageously less than 0.1 ppm, and a carbon dioxide content of less than 50 ppm.
  • the treated gas can thus be sent directly to a liquefaction train to produce liquefied natural gas. It can also be sent directly to a gas distribution network.
  • lateral reboiling currents 161 and 163 are extracted from the column 35 and are reintroduced after reheating in the first upstream heat exchanger 25, by heat exchange with at least a portion of the gas stream. natural starting material 13 and at least a part of the recycle stream 152.
  • an upper lateral reboiling current 163 is taken at a level N6 located below the level N1, for example at the eleventh stage starting from the top of the column 35, then is brought to the first heat exchanger 25.
  • the current 163 is then heated in the exchanger 25, then returned to the column 35 at a level N7 located below the level N6.
  • a lower lateral reboiling current 161 is taken at a level N8 located below the level N7, then is fed into the heat exchanger 25.
  • the current 161 is then reheated in the heat exchanger 25 and is reintroduced to a level N9 located below level N8, for example on the fourteenth floor from the top of column 35.
  • a bottom reboiler liquid stream 165 is withdrawn near the bottom of the column 35, below the side reboiling currents 161, 163.
  • the stream 165 is fed into the first upstream heat exchanger 25, where it is heated by heat exchange with at least a portion of the starting natural gas stream 13 and at least a portion of the recycle stream 152.
  • the Warmed and partially vaporized bottom reboil stream 165 is then reintroduced into column 35.
  • a bottom stream 171 rich in C 2 + hydrocarbons is extracted from the bottom of the recovery column 35.
  • the bottom stream 171 contains more than 99 mol% of the C 3 + hydrocarbons contained in the starting natural gas stream 13. It has a methane content of between 0% and 5%.
  • the bottom stream 171 is pumped by the bottom pump 47 and introduced at an intermediate level P1 of the fractionation column 61.
  • the fractionation column 61 operates at a pressure of between 20 and 42 bar.
  • the pressure of the fractionation column 61 is at least 1 bar higher than the pressure of the recovery column 35.
  • a bottom stream 181 is removed from the fractionation column 61 to form the C 3 + hydrocarbon section 17.
  • the extraction rate of C 3 + hydrocarbons in the process is greater than 99%. In all cases, the rate of propane extraction is greater than 99%.
  • the ethane-rich stream 19 is withdrawn directly at an intermediate level P2 located in the upper region of the fractionation column 61.
  • this stream comprises 1.21% of methane, 97.77% of ethane and 1.00% of propane.
  • the molar content of ethane in the ethane-rich stream More generally, the molar content of ethane in the ethane-rich stream
  • 19 is greater than 95% and especially between 96% and 100%.
  • the number of theoretical plates between the head of the column 61 and the upper level P2 is for example between 1 and 7.
  • the level P2 is greater than the supply level P1.
  • a second head stream 183 is withdrawn from the top of the column 61 and then cooled in the second refrigerant 67 to form a second overhead stream 185 at least partially cooled and condensed.
  • This second stream 185 is introduced into the second separator tank 69 to produce a liquid fraction 187 and a gaseous fraction 188.
  • the entire gas fraction 188 forms, after cooling in the head heat exchanger 33 and expansion in a valve 193, a secondary reflux flow 192.
  • the gaseous fraction 188 is cooled by heat exchange with the head stream 131.
  • the liquid fraction 187 is separated into a primary reflux liquid fraction 189 and a secondary liquid fraction.
  • the secondary liquid fraction 191 when present, is then mixed with the gaseous fraction 188 to form, after cooling and expansion, the secondary reflux stream 192.
  • the secondary reflux stream 922 is refluxed at a N4 head level of the recovery column 35 located between the N5 head level and the N3 intermediate level.
  • the ethane extraction rate, and consequently the ethane flow rate produced in the installation 1 1, is controlled by regulating the flow rate of the recycle stream 1 52, on the one hand, by adjusting the pressure in the column 35, using the compressors 43 and 31 which are variable speed type, secondly, and finally adjusting the flow rate of the secondary reflux current 192 flowing through the expansion valve 193.
  • the flow rate of the ethane-rich stream is adjustable, virtually without affecting the C 3 + hydrocarbon removal rate.
  • the method according to the invention thus makes it possible, by simple and inexpensive means, to obtain a variable and easily adjustable flow rate of a stream rich in ethane 19 extracted from the starting natural gas 13, while maintaining the extraction rate of propane greater than 99%. This result is obtained without significant modification of the installation in which the process is implemented.
  • the installation 1 1 according to the invention also does not require imperative use of multiflux exchangers. It is thus possible to use only tube and shell exchangers.
  • the treated natural gas comprises substantially zero levels of C 5 + hydrocarbons, for example less than 1 ppm. As a result, if the carbon dioxide content in the treated gas is less than 50 ppm, this gas can be liquefied without further treatment or fractionation.
  • the bottom reboiling current 165 is placed in heat exchange relationship in the first heat exchanger 25 with the recycle stream 152, with at least a portion of the overhead stream 131, with the starting natural gas stream 13 and with the lateral reboiling currents 161, 163.
  • the gain obtained is 9.4%, whereas when the first method 1 1 is implemented without integrated bottom reboiler in the exchanger 25, the gain obtained is 0.2%.
  • the gain observed by the pooling of the aforementioned characteristics is therefore significantly greater than the sum of the individual gains obtained, demonstrating an unexpected synergistic effect, which does not affect the recovery of ethane.
  • the treated gas stream from the first compressor 31 can be fed to a compressor 43 having two stages of equivalent powers, with an intermediate refrigerant cooling the gas to the same temperature as the refrigerant 45.
  • FIG. 1 A second installation 201 according to the invention is illustrated in FIG.
  • the installation 201 differs from the first installation January 1 in that it further comprises an auxiliary expansion turbine 203 and an auxiliary compressor 205 coupled to the turbine 203.
  • the auxiliary compressor 205 is interposed between the first compressor 31 and the second compressor 43.
  • a second method according to the invention is implemented in the second installation 201.
  • the starting natural gas stream 13 is separated into a first starting stream 207 and a second starting stream 209.
  • the molar flow rate of the first starting stream 207 is advantageously greater than the molar flow rate of the second starting stream 209. Then, the first starting stream 207 is introduced into the first heat exchanger 25 to be cooled and partially condensed and form the stream of cooled natural gas 1 13 introduced into the first separator tank 27.
  • the second starting stream 209 is introduced into the auxiliary expansion turbine 203, to be expanded to a pressure close to the operating pressure of the column 35 and form an auxiliary reflux flow 21 1.
  • the auxiliary reflux stream 21 1 is then introduced into the first overhead heat exchanger 33 to be cooled and partially condensed, and then into an expansion valve 21 3 to form a relaxed auxiliary reflux stream 21.
  • the stream 215 is then introduced into the recovery column 35 at a higher level N10 located between the level N3 and the level N4.
  • the top stream 21 7 coming from the first compressor 31 is introduced, at its outlet of the first compressor 31 into the auxiliary compressor 205, to be compressed at an intermediate pressure, before joining the second compressor 43.
  • the implementation of the second method according to the invention produces a result similar to that of the first method, thanks to the synergy observed between the heat exchange connection of the background reboiling current 165 with the current of starting natural gas 13, taken in combination with the presence of a recycle stream 152, in heat exchange relationship with at least a portion of the overhead stream 131.
  • the consumption of the implementation method of the installation 201 leads to a consumed power equal to 37588 KW, a gain of 1 6% compared to that of the installation of the state of the art.
  • the auxiliary compressor 205 is mounted downstream of the compressor 43 to compress the recycle stream 1 52 before it is introduced into the first heat exchanger 25.
  • FIG. 3 A third installation 221 according to the invention is illustrated in FIG. 3. Unlike the installation 1 1 represented in FIG. 1, the installation 221 comprises a second upstream separator tank 223 disposed downstream of the first separator tank to collect the liquid phase 17 from the first separator tank 27.
  • a third method according to the invention is implemented using the installation 221.
  • This third method differs from the first method according to the invention, in that the liquid phase 1 1 7 is expanded in a static expansion valve 225. This expansion is performed up to a pressure greater than the operating pressure of the column 35 .
  • the liquid phase is then relaxed and introduced into the second upstream separator tank 223.
  • a liquid fraction 227 is recovered at the bottom of the flask 223, and is expanded in a valve 229 to form a loose fraction 231.
  • the expanded fraction 231 is introduced into the recovery column 35 at the level N1.
  • a gaseous fraction 233 is collected at the top of the second upstream separator tank 223. This fraction 233 is sent to the head heat exchanger 33 to be cooled before being expanded in an expansion valve 135 to form a relaxed fraction 237.
  • the expanded fraction 237 is introduced into the recovery column 35 at an intermediate level N1 1 between the level N2 and the level N3.
  • the method implemented using the third installation 221 according to the invention leads to a total power consumed by the compressors of 35960 KW, a gain of 19.7% compared to the method of the state of the art. .
  • the liquid phase 1 17 obtained at the bottom of the first separator tank 27 is introduced into the first heat exchanger 25 to be reheated, before being fed into the valve 225.
  • the mixture is expanded in the valve 225, before being separated in the second upstream separator tank 223.
  • a fourth installation 241 according to the invention is illustrated in FIG. 4. Unlike the first installation 11, the stream 171 coming from the recovery column 35 is passed through the first heat exchanger 25, to be reheated before to be introduced into the fractionation column 61.
  • the fourth method according to the invention thus implements heating of this bottom stream 171 after passing through the pump 47.
  • the total consumption is then 34201 kW, which provides a gain of 23.6% over the installation of the state of the art.
  • the gain is also 8.6% compared to the first method according to the invention.
  • FIG. 5 A fifth installation according to the invention 251 is illustrated in FIG. 5. This installation is intended for the implementation of a fifth method according to the invention.
  • a bypass stream 253 is taken from the recycle stream 1 52, advantageously downstream of the first heat exchanger 25 and upstream of the second heat exchanger 33, to be reintroduced into a current located upstream of the first dynamic expansion turbine 29.
  • the flow rate of the bypass stream 253 is for example equal to 47% of the total molar flow rate of the recycle stream 1 52 taken from the treated stream.
  • the fifth method according to the invention is moreover implemented analogously to the fourth method according to the invention.
  • bypass stream 253 is mixed with the feed stream 1 21 before it is introduced into the turbine 29.
  • the fifth installation 251 further comprises a secondary dynamic expansion turbine 255 coupled to a secondary compressor 257.
  • a secondary recycling stream 258 is then taken in the recycle stream 152 before its introduction into the first exchanger thermal 25.
  • the secondary recycle stream 258 is introduced into the secondary expansion turbine 255, to form a relaxed secondary recycle stream 261, which is reintroduced into the partially heated head stream 139 from the first head heat exchanger 33.
  • a secondary head stream 263 is taken from the heated overhead stream 140 from the first heat exchanger 25 to be supplied to the secondary compressor 257 and form a compressed secondary head stream 265.
  • This current 265 is then reintroduced into the compressed head stream at an intermediate pressure from the first compressor 31 upstream of the second compressor 43.
  • the power gain obtained with respect to the method of the state of the art is then of the order of 1 5,4%, for a total power consumed of 37,851 kW.
  • FIG. 6 A sixth installation 271 according to the invention is shown in FIG. 6.
  • This installation 271 is intended for debottlenecking an installation as illustrated in US Pat. No. 7,458,232 and initially comprising a first upstream heat exchanger 25, a first separator flask 27, a recovery column 35, a first head heat exchanger 33 and a fractionation column 61 provided with a head condenser 63.
  • the installation 271 further comprises a second upstream heat exchanger 273 and a third upstream heat exchanger 275, intended to be placed in parallel with the first upstream heat exchanger 25.
  • the plant 271 further includes a booster compressor 277 for compressing the recycle stream 152, and a booster refrigerant 279 for cooling the compressed recycle stream.
  • the sixth installation 271 comprises a second head heat exchanger 281 intended to be placed in parallel with the first head heat exchanger 33, for placing at least a portion of the head stream 131 in heat exchange relation with at least one part of the recycling stream 152.
  • a sixth method according to the invention is implemented in the sixth installation
  • the starting natural gas stream 13 is separated into a first starting stream 207 introduced into the first upstream heat exchanger 25 and a second starting stream 209 introduced into a second upstream heat exchanger 273.
  • the first starting stream 207 is then cooled in the first upstream heat exchanger 25 to form a first cooled start stream 281 A.
  • the second start stream 209 is cooled in the second upstream heat exchanger 273 to form a second stream. 283 cooled start.
  • the currents 281 A and 283 are mixed to form the cooled stream 1 13 intended to be introduced into the first upstream separator tank 27.
  • the lateral reboiling currents 161, 163 are introduced into the first heat exchanger 25 to be reheated.
  • the bottom reboiling current 165 is introduced into the second upstream heat exchanger 273 to be heated by heat exchange with the second starting stream 209.
  • the overhead stream 131 from the recovery column 35 is first separated into a first overhead stream fraction 285 and a second overhead stream fraction 287. .
  • the first fraction 285 is introduced into the first overhead heat exchanger 33 to be heated by heat exchange, on the one hand, with the reflux stream 123, and on the other hand, with the secondary reflux stream 192.
  • the second fraction 287 is introduced into the second head heat exchanger 281.
  • the ratio of the molar flow rate of the first fraction 285 to the second fraction 287 is, for example, between 0 and 20. Then, the fractions recovered at the outlet of the head exchangers 33, 281 are remixed before being separated again into a first portion 289 of the heated overhead stream and into a second portion 291 of the heated overhead stream.
  • the first part 289 is introduced into the first upstream heat exchanger 25 to be heated by heat exchange with the first starting stream 207, simultaneously with the lateral reboiling currents 161 and 163.
  • the second portion 291 is introduced into the third upstream heat exchanger 275 to be reheated.
  • the heated portions 289 and 291 are then combined to form the heated overhead stream 140, and then fed to the first compressor 31.
  • the recycle stream 152 is taken from the heated overhead stream 140 upstream of the first compressor 31.
  • the ratio of the molar flow rate of the recycle stream 152 to the molar flow rate of the overhead stream 131 from the column 35 is, for example, between 0% and 25%.
  • the recycle stream 152 is then compressed in the makeup compressor
  • the stream 293 is then introduced successively into the third upstream heat exchanger 275, then into the second head heat exchanger 281 to be cooled thereon, before being expanded in an expansion valve 295 and forming a cooled expanded recycle stream 297.
  • the stream 297 is then introduced into the recovery column 35, at the same level as the secondary reflux stream 194.
  • the lateral reboiling currents 161, 163 and a portion 289 of the overhead stream are placed in relation to each other. heat exchange.
  • a second portion 209 of the starting natural gas stream 13, and the bottom reboiling stream 165 are placed in heat exchange relationship.
  • a second portion 291 of the head stream 131, and the recycle stream 152 are placed in heat exchange relationship.
  • the installation 271 according to the invention also does not require imperative use of multiflux exchangers. It is thus possible to use only tube and shell exchangers. Further, at the top of the column 35, the reflux stream 123, a first portion of the overhead stream 285, and the secondary reflux stream 1 92 are placed in heat exchange relationship in the first overhead heat exchanger 33. In the second head heat exchanger 281, a second portion 287 of the head stream 311 and the cooled compressed recycle stream 233 are placed in heat exchange relationship.
  • the installation 271 as shown in FIG. 6 makes it possible to accommodate increases in the feed rate from 0% to 15%, and more preferably at least 10%, while limiting the increase in power as much as possible. compression needed.
  • the ethane-rich stream 19 is taken directly from the fractionation column 61, advantageously at a higher level P2 of the column 61 defined above.
  • the C 3 + hydrocarbon fraction 17 is also directly formed by the bottom stream 181 of the column 61.
  • the C 2 hydrocarbons are extracted from the fractionation column 61 by the bottom stream 181, along with the C 3 + hydrocarbons.
  • the foot stream 181 is then introduced into a downstream fractionation column.
  • the ethane-rich cut 19 as well as the C 3 + 17 hydrocarbon cut are then produced in the downstream fractionation column.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Le procédé comporte les étapes suivantes : - prélèvement d'un courant de recyclage (152) dans un courant de tête (131, 140, 141) issu d'une colonne de récupération (35); - mise en relation d'échange thermique du courant de recyclage (152) avec au moins une partie du courant de tête (131) issu de la colonne de récupération (35), - réintroduction, après détente, du courant de recyclage refroidi et détendu, dans la colonne de récupération (35). Le procédé comporte le prélèvement dans le fond de la colonne de récupération (35) d'au moins un courant de rebouillage de fond (165), et la mise en relation d'échange thermique du courant de rebouillage de fond avec au moins une partie du gaz naturel de départ (13) ou/et avec le courant de recyclage (152), le rebouillage de fond étant assuré par les calories prélevées dans le courant de gaz naturel de départ (13) ou/et dans le courant de recyclage (152).

Description

Procédé de production d'un gaz naturel traité, d'une coupe riche en hydrocarbures en C3 +, et éventuellement d'un courant riche en éthane, et installation associée
La présente invention concerne un procédé de production simultanée d'un gaz naturel traité, d'une coupe riche en hydrocarbures en C3 +, et dans au moins certaines conditions de production, d'un courant riche en éthane, à partir d'un courant de gaz naturel de départ contenant du méthane, de l'éthane et des hydrocarbures en C3 +, le procédé comprenant les étapes suivantes :
- refroidissement et condensation partielle du courant de gaz naturel de départ dans au moins un premier échangeur thermique amont pour former un courant de départ refroidi ;
- séparation du courant de gaz de départ refroidi en un flux liquide et en un flux gazeux ;
- détente du flux liquide, et introduction d'un courant issu du flux liquide dans une colonne de récupération des hydrocarbures en C2 + à un premier niveau intermédiaire ;
- formation d'un courant d'alimentation de turbine à partir du flux gazeux ;
- détente du courant d'alimentation dans une turbine de détente dynamique et introduction dans la colonne de récupération à un deuxième niveau intermédiaire ;
- récupération et compression d'au moins une partie du courant de tête de la colonne de récupération pour former le gaz naturel et récupération du courant de pied de la colonne de récupération pour former un courant liquide riche en hydrocarbures en C2 + ;
- introduction du courant liquide à un niveau d'alimentation d'une colonne de fractionnement munie d'un condenseur de tête, le courant riche en éthane étant produit, dans les dites conditions de production, à partir d'un courant issu de la colonne de fractionnement, la colonne de fractionnement produisant un courant de pied destiné à former au moins en partie la coupe d'hydrocarbures en C3 + ;
- introduction d'un courant de reflux primaire produit dans le condenseur de tête en reflux dans la colonne de fractionnement ;
- production d'un courant de reflux secondaire à partir du condenseur de tête et introduction du courant de reflux secondaire en tête de la colonne de récupération.
Un tel procédé est destiné à traiter un courant de gaz naturel pour en extraire au moins les hydrocarbures en C3 +, afin de récupérer des liquides du gaz naturel et une quantité ajustable d'hydrocarbures en C2.
Les hydrocarbures en C2 et C3 + sont extraits du gaz naturel de départ afin d'éviter la condensation au cours du transport et/ou de la manipulation du gaz. Cette condensation peut conduire à la production de bouchons liquides dans les installations de transport, ce qui est préjudiciable à la production. En outre, ces hydrocarbures peuvent être commercialisés avec une valeur marchande significative, ce qui contribue à la rentabilité des installations.
Par suite, des procédés ont été mis au point pour extraire simultanément la quasi- totalité des hydrocarbures en C3 + présents dans le gaz naturel de départ, et une proportion élevée de l'éthane présent dans le gaz de départ.
Toutefois, la demande en éthane sur le marché est très fluctuante, alors que celle des coupes d'hydrocarbures en C3 + est relativement constante et bien valorisée.
Dans certains cas, il est donc nécessaire de diminuer la production d'éthane dans le procédé, en réduisant le taux d'extraction de ce composé dans la colonne de récupération. Dans ce cas, le taux d'extraction des hydrocarbures en C3 + diminue également, ce qui réduit la rentabilité de l'installation.
Pour pallier ce problème, il est connu de prévoir des installations doubles, c'est-à- dire comprenant une unité secondaire optimisée pour la production d'hydrocarbures en C3 + lorsque l'extraction d'éthane est nulle. Une telle unité secondaire est onéreuse à opérer et à maintenir.
Le brevet US 7 458 232 divulgue une solution à ce problème, en proposant un procédé qui garantit une extraction optimisée des hydrocarbures en C3 +, généralement supérieure à 99%, et qui atteint néanmoins des récupérations en éthane flexibles, comprises par exemple entre 2% et 85%, en fonction de la composition du gaz de charge.
Le procédé décrit dans US 7 458 232 est donc particulièrement efficace et reste très flexible. Toutefois, lorsque le taux d'extraction d'éthane augmente, la consommation d'énergie résultant de l'utilisation des compresseurs augmente également. Une amélioration du rendement de l'installation, notamment pour des taux de récupération d'éthane élevés, est donc toujours souhaitable.
Un but de l'invention est d'obtenir un procédé qui permet d'obtenir de manière flexible des taux d'extraction d'éthane pouvant aller jusqu'à 85 %, tout en réduisant notablement la consommation énergétique de l'installation.
A cet effet, l'invention a pour objet une installation du type précité, caractérisé en ce que le procédé comporte les étapes suivantes :
- prélèvement d'un courant de recyclage dans le courant de tête issu de la colonne de récupération ;
- mise en relation d'échange thermique du courant de recyclage avec au moins une partie du courant de tête issu de la colonne de récupération,
- réintroduction, après détente, du courant de recyclage refroidi et détendu, dans la colonne de récupération ; le procédé comportant le prélèvement dans le fond de la colonne de récupération d'au moins un courant de rebouillage de fond, et la mise en relation d'échange thermique du courant de rebouillage de fond avec au moins une partie du gaz naturel de départ ou/et avec le courant de recyclage, le rebouillage de fond étant assuré par les calories prélevées dans le courant de gaz naturel de départ ou/et dans le courant de recyclage.
Le procédé selon l'invention peut comprendre une ou plusieurs des caractéristiques suivantes, prises isolément ou suivant toutes combinaisons techniquement possibles :
- au moins une partie du courant de tête de la colonne de récupération et le courant de recyclage sont placés en relation d'échange thermique avec le courant de gaz naturel de départ et avec le courant de rebouillage de fond ;
- le courant de recyclage issu du premier échangeur thermique amont, le courant de reflux secondaire issu du condenseur de tête , et le courant de tête provenant de la colonne de récupération sont mis en relation d'échange thermique dans un premier échangeur thermique de tête ;
- au moins un courant de rebouillage latéral est prélevé au-dessus du courant de rebouillage de fond, le ou chaque courant de rebouillage latéral étant placé en relation d'échange thermique avec au moins une partie du courant de gaz naturel de départ ;
- le courant riche en éthane est soutiré à partir d'un niveau intermédiaire de la colonne de fractionnement situé au-dessus du niveau d'alimentation de la colonne, et en dessous du niveau de tête de la colonne de fractionnement ;
- il comporte les étapes suivantes :
• séparation du courant de gaz naturel de départ en un premier courant de départ et en un deuxième courant de départ ;
· introduction du premier courant de départ dans le premier échangeur thermique amont ;
• introduction d'au moins une partie du deuxième courant de départ dans une turbine de détente dynamique auxiliaire pour former un courant de reflux auxiliaire à partir de l'effluent issu de la turbine auxiliaire ;
· introduction du courant de reflux auxiliaire dans la colonne de récupération ;
- au moins une partie du courant de recyclage est comprimée dans un compresseur auxiliaire couplé à la turbine auxiliaire ;
- au moins une partie du courant de tête est comprimée dans un compresseur auxiliaire couplé à la turbine auxiliaire, avantageusement entre un premier compresseur couplé à la première turbine et un deuxième compresseur, - il comporte une étape de compression d'au moins une partie du courant de tête dans un premier compresseur accouplé à la première turbine, puis une étape de compression du courant de tête partiellement comprimé dans un deuxième compresseur, le courant de recyclage étant prélevé en aval du deuxième compresseur.
- au moins un courant de recyclage secondaire est prélevé dans le courant de recyclage, le courant de recyclage secondaire étant introduit dans une turbine de détente secondaire avant d'être réintroduit dans le courant de tête, avantageusement en amont d'un passage du courant de tête dans le premier échangeur thermique amont ;
- le courant de reflux secondaire est constitué d'un liquide, d'un gaz, ou d'un mélange de liquide et de gaz provenant du condenseur de tête de la colonne de fractionnement ;
- il comporte le prélèvement, dans le courant de recyclage, d'un courant de dérivation, le courant de dérivation étant réintroduit dans un courant situé en amont de la première turbine de détente dynamique ;
- le flux liquide issu du premier ballon séparateur amont est détendu et est introduit dans un deuxième ballon séparateur amont pour former une fraction liquide et une fraction gazeuse,
la fraction liquide étant introduite après détente au premier niveau intermédiaire de la colonne de récupération, la fraction gazeuse étant introduite à un niveau supérieur de la colonne de récupération, situé au-dessus du niveau intermédiaire,
le flux liquide issu du premier ballon séparateur amont étant avantageusement placé en relation d'échange thermique avec le courant de gaz naturel de départ pour être réchauffé avant d'être introduit dans le deuxième ballon séparateur amont ;
- il comporte la mise en relation d'échange thermique du courant de pied issu de la colonne de récupération avec le courant de gaz naturel de départ et avec le courant de rebouillage de fond dans le premier échangeur thermique amont avant son introduction dans la colonne de fractionnement ;
- le flux gazeux issu du premier ballon séparateur est séparé en le courant d'alimentation et en un courant de reflux, le courant d'alimentation étant destiné à alimenter la turbine de détente dynamique, le courant de reflux étant introduit, après refroidissement, condensation partielle ou totale, et détente dans une vanne, en reflux dans la colonne de récupération ;
- il comporte une étape de compression du courant de pied issu de la colonne de récupération dans une pompe, avant son introduction dans la colonne de fractionnement - le procédé comporte une étape de refroidissement du courant de reflux secondaire par échange thermique avec au moins une partie du courant de tête de la colonne de récupération.
L'invention a également pour objet une installation de production simultanée d'un gaz naturel traité, d'une coupe riche en hydrocarbures en C3 +, et dans au moins certaines conditions de production, d'un courant riche en éthane, à partir d'un courant de gaz naturel de départ contenant du méthane, de l'éthane et des hydrocarbures C3 +, l'installation comprenant :
- un ensemble de refroidissement et de condensation partielle du courant de gaz naturel de départ comprenant au moins un premier échangeur thermique amont pour former un courant de départ refroidi ;
- un ensemble de séparation du courant de départ refroidi en un flux liquide et en un flux gazeux ;
- une colonne de récupération des hydrocarbures en C2 +
- un ensemble de détente du flux liquide, et d'introduction d'un courant issu du flux liquide dans la colonne de récupération à un premier niveau intermédiaire ;
- un ensemble de formation d'un courant d'alimentation de turbine à partir du flux gazeux ;
- un ensemble de détente du courant d'alimentation comprenant une turbine de détente dynamique et un ensemble d'introduction du courant d'alimentation détendu dans la colonne de récupération à un deuxième niveau intermédiaire ;
- un ensemble de récupération et de compression d'au moins une partie du courant de tête de la colonne de récupération pour former le gaz naturel et un ensemble de récupération du courant de pied de la colonne de récupération pour former un courant liquide riche en hydrocarbures en C2 + ;
- une colonne de fractionnement munie d'un condenseur de tête,
- un ensemble d'introduction du courant liquide à un niveau d'alimentation de la colonne de fractionnement, le courant riche en éthane étant propre à être produit, dans les dites conditions de production, à partir d'un courant issu de la colonne de fractionnement, la colonne de fractionnement étant apte à produire un courant de pied destiné à former, au moins en partie la coupe d'hydrocarbures en C3 + ;
- un ensemble d'introduction d'un courant de reflux primaire produit dans le condenseur de tête en reflux dans la colonne de fractionnement ;
- un ensemble de production d'un courant de reflux secondaire à partir du condenseur de tête et un ensemble d'introduction du courant de reflux secondaire en tête de la colonne de récupération, caractérisée en ce que l'installation comporte :
- un ensemble de prélèvement d'un courant de recyclage dans le courant de tête de la colonne de récupération;
- un ensemble de mise en relation d'échange thermique du courant de recyclage avec au moins une partie du courant de tête issu de la colonne de récupération,
- un ensemble de réintroduction, après détente, du courant de recyclage dans la colonne de récupération, l'installation comportant en outre un ensemble de prélèvement dans le fond de la colonne de récupération d'au moins un courant de rebouillage de fond, et un ensemble de mise en relation d'échange thermique du courant de rebouillage de fond avec au moins une partie du gaz naturel de départ ou/et avec le courant de recyclage, le rebouillage étant propre à être assuré par les calories prélevées dans le courant de gaz naturel de départ ou/et dans le courant de recyclage.
L'installation selon l'invention peut comprendre l'une ou plusieurs des caractéristiques suivantes, prises isolément ou suivant toutes combinaisons techniquement possibles :
- elle comporte un premier échangeur thermique amont propre à mettre en relation d'échange thermique au moins une partie du courant de gaz naturel de départ, le courant de rebouillage de fond, éventuellement des courants de rebouillage latéral, au moins une partie du courant de tête et le courant de recyclage ;
- elle comporte un premier échangeur thermique amont propre à mettre en relation d'échange thermique une première partie du courant de gaz naturel de départ, avec au moins une partie du courant de tête, un deuxième échangeur thermique amont, distinct du premier échangeur thermique amont, propre à mettre en relation d'échange thermique une deuxième partie du courant de gaz de départ avec le courant de rebouillage de fond issu de la colonne de récupération, et un troisième échangeur thermique amont distinct du premier échangeur thermique amont et du deuxième échangeur thermique amont, le troisième échangeur thermique amont étant propre à mettre en relation d'échange thermique au moins une partie du courant de recyclage avec au moins une partie du courant de tête, l'installation comportant avantageusement un compresseur d'appoint propre à comprimer la partie du courant de recyclage destinée à être introduite dans le troisième échangeur thermique amont ;
- l'installation comprend un premier échangeur thermique de tête, propre à placer en relation d'échange thermique au moins une partie du courant de tête, éventuellement le courant de reflux, et le courant de reflux secondaire ; - l'installation comprend un deuxième échangeur thermique de tête, distinct du premier échangeur thermique de tête, et propre à mettre en relation d'échange thermique une deuxième partie du courant de tête et le courant de recyclage.
L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple, et faite en se référant aux dessins annexés, sur lesquels :
- la figure 1 est un schéma synoptique fonctionnel d'une première installation de mise en œuvre d'un premier procédé selon l'invention,
- la figure 2 est un schéma analogue à la figure 1 d'une deuxième installation pour la mise en œuvre d'un deuxième procédé selon l'invention ;
- la figure 3 est un schéma analogue à la figure 1 d'une troisième installation pour la mise en œuvre d'un troisième procédé selon l'invention ;
- la figure 4 est un schéma analogue à la figure 1 d'une quatrième installation pour la mise en œuvre d'un quatrième procédé selon l'invention ;
- la figure 5 est un schéma analogue à la figure 1 d'une cinquième installation pour la mise en œuvre d'un cinquième procédé selon l'invention ;
- la figure 6 est un schéma analogue à la figure 1 d'une sixième installation, pour la mise en œuvre d'un sixième procédé selon l'invention, la sixième installation résultant d'un dégoulottage d'une installation existante.
La première installation 1 1 selon l'invention, représentée sur la Figure 1 , est destinée à la production simultanée, à partir d'un courant 13 de gaz naturel de départ, désulfuré, sec, et au moins partiellement décarbonaté, d'un gaz naturel traité 15 comme produit principal, d'une coupe 17 d'hydrocarbures en C3 +, et d'un courant 19 riche en éthane, de débit réglable.
Le terme « au moins partiellement décarbonaté » signifie que la teneur en dioxyde de carbone dans le courant de gaz naturel de départ 13 est avantageusement inférieure ou égale à 50 ppm lorsque le gaz naturel traité 15 doit être liquéfié. Cette teneur est avantageusement inférieure à 3% lorsque le gaz naturel traité 15 est envoyé directement à un réseau de distribution de gaz.
De même, la teneur en eau est inférieure à 1 ppm, avantageusement inférieure à
0,1 ppm.
L'installation 1 1 comprend une unité 21 de récupération des hydrocarbures en C2 +, et une unité 23 de fractionnement des hydrocarbures en C2 +.
Dans tout ce qui suit, on désignera par une même référence un flux de liquide et la conduite qui le véhicule, les pressions considérées sont des pressions absolues, et les pourcentages considérés sont des pourcentages molaires. L'unité 21 de récupération des hydrocarbures en C2 + comprend successivement, un premier échangeur thermique amont 25, un premier ballon séparateur amont 27, une première turbine amont 29, couplée à un premier compresseur 31 , un premier échangeur thermique 33 de tête, et une colonne 35 de récupération munie d'au moins un circuit 37, 39 de rebouillage latéral et d'un circuit 41 de rebouillage de fond.
Dans cet exemple, la colonne 35 est munie de deux circuits de rebouillage latéral
37, 39.
L'unité 21 comprend en outre un deuxième compresseur 43 entraîné par une source d'énergie externe et un premier réfrigérant 45 placé en aval du deuxième compresseur 43. L'unité 21 comprend également une pompe 47 de fond de colonne.
L'unité de fractionnement 23 comprend une colonne de fractionnement 61 . La colonne 61 comporte, en tête, un condenseur de tête 63, et en pied, un rebouilleur 65.
Le condenseur de tête 63 comprend un deuxième réfrigérant 67 et un premier ballon séparateur aval 69 associé à une pompe de reflux 71 .
Un premier procédé selon l'invention mis en œuvre à l'aide de l'installation 1 1 va maintenant être décrit.
Un exemple de composition molaire initiale du courant 13 de gaz naturel de départ désulfuré, sec, et au moins partiellement décarbonaté, est donné dans le tableau ci- dessous.
Figure imgf000010_0001
Plus généralement, la fraction molaire en méthane dans le courant 13 de gaz naturel de départ est comprise 75% et 90%, la fraction molaire en hydrocarbures en C2 + est comprise entre 5% et 15%, et la fraction molaire en hydrocarbures en C3 + est comprise entre 1 % et 8%.
Le débit de charge à traiter est par exemple de l'ordre de 38000 Kmol/h.
Le courant de gaz naturel de départ 13 présente une température voisine de la température ambiante et notamment sensiblement égale à 20 ^, et une pression notamment supérieure à 35 bars.
Dans un exemple particulier, le courant de gaz naturel 13 présente une température de 20 °C et une pression de 50 bars absolus.
Dans l'installation représentée sur la figure 1 , le courant de gaz naturel de départ 13 est refroidi et au moins partiellement condensé dans le premier échangeur thermique amont 25 pour former un courant de départ refroidi 1 13.
Le courant de départ refroidi 1 13 est introduit dans le premier ballon séparateur amont 27 dans lequel s'effectue une séparation entre une phase gazeuse 1 15 et une phase liquide 1 17.
La phase liquide 1 17 forme, après passage dans une vanne de détente 1 19, une phase mixte détendue 120 qui est introduite à un premier niveau intermédiaire N1 de la colonne de récupération 35, situé dans la région supérieure de la colonne, au-dessus des circuits de rebouillage latéral 37 et 39.
Par « niveau intermédiaire », on entend un emplacement comportant des moyens de distillation au-dessus et au-dessous de ce niveau.
La fraction gazeuse 1 15 est séparée en un courant d'alimentation 121 et un courant de reflux 123.
Avantageusement, le débit molaire du courant d'alimentation 121 est supérieur au débit molaire du courant de reflux 123.
Le courant d'alimentation 121 est détendu dans la turbine 29 jusqu'à une pression proche de celle de la colonne 35 pour donner un courant d'alimentation détendu 125. Le courant 125 est introduit dans la colonne de récupération 35 à un deuxième niveau intermédiaire N2, situé au-dessus du premier niveau intermédiaire N1 .
Le courant de reflux 123 est partiellement ou totalement condensé dans le premier échangeur thermique de tête 33, puis est détendu dans une vanne de détente 127, pour former un courant de reflux détendu 128. Ce courant 128 est introduit dans la colonne de récupération 35 à un troisième niveau intermédiaire N3, situé au-dessus du niveau intermédiaire N2.
La pression de la colonne de récupération 35 est par exemple comprise entre 12 et 40 bars. La colonne de récupération 35 produit un courant de tête 131 , qui est réchauffé dans le premier échangeur thermique de tête 33 par échange thermique avec le courant de reflux 123 pour former un courant de tête partiellement réchauffé 139.
Le courant 139 est à nouveau réchauffé dans le premier échangeur thermique amont 25 par échange thermique avec le courant de gaz naturel de départ 13 pour former un courant de tête réchauffé 140.
Le courant de tête réchauffé 140 est ensuite comprimé dans le premier compresseur 31 , puis dans le deuxième compresseur 43, pour former un courant de tête comprimé 141 . La pression du courant 141 est supérieure à 25 bars, par exemple égale à 50 bars. Le courant 141 est ensuite refroidi dans le premier réfrigérant 45 pour former le gaz naturel traité 15.
Selon l'invention, un courant de recyclage 152 est prélevé dans le courant de tête issu de la colonne 35. Dans l'exemple représenté sur la figure 1 , le courant de recyclage 152 est prélevé dans le courant de tête réchauffé comprimé 141 , après son refroidissement dans le premier réfrigérant 45.
Le rapport du débit molaire du courant de recyclage 152, par rapport au débit molaire du courant de tête 131 issu de la colonne de récupération 35 est compris entre 0% et 25%.
Le courant de recyclage 152 est ensuite introduit dans le premier échangeur thermique amont 25 pour y être refroidi par échange thermique avec au moins une partie du courant de tête 131 . Dans cet exemple, le courant 152 est placé en relation d'échange thermique avec le courant de tête partiellement réchauffé 139 issu de l'échangeur thermique de tête 33, pour former un courant de recyclage 154 partiellement refroidi.
Le courant 154 est ensuite introduit dans l'échangeur thermique de tête 33, pour y être refroidi par échange thermique avec le courant de tête 131 , et former, après détente dans une vanne 156, un courant de recyclage refroidi 155.
Le courant de recyclage refroidi 155 est introduit dans la colonne de récupération 35 à un niveau N5 situé au dessus du niveau N3, correspondant avantageusement au premier étage en partant du haut de la colonne 35.
Le gaz traité 15 contient dans cet exemple 1 ,36% molaire d'azote, 96,80% molaire de méthane et 1 ,76% molaire d'hydrocarbures en C2.
Plus généralement, le gaz traité 15 contient plus de 99% molaire du méthane contenu dans le courant de gaz naturel de départ 13 et moins de 0,1 % molaire des hydrocarbures en C3 + contenus dans le courant de gaz naturel de départ. Le gaz traité 15 contient une proportion molaire variant entre 2% et 85% des hydrocarbures en C2 contenus dans le courant de gaz naturel de départ 13, cette proportion étant ajustable.
Le gaz 15 comprend ainsi une teneur en hydrocarbures en C6 + inférieure à 1 ppm, une teneur en eau inférieure à 1 ppm, avantageusement inférieure à 0,1 ppm, et une teneur en dioxyde de carbone inférieure à 50 ppm. Le gaz traité 15 peut donc être envoyé directement à un train de liquéfaction pour produire du gaz naturel liquéfié. Il peut également être directement envoyé à un réseau de distribution de gaz.
Dans les circuits de rebouillage latéral 37 et 39, des courants de rebouillage latéral 161 et 163 sont extraits de la colonne 35 et y sont réintroduits après réchauffage dans le premier échangeur thermique amont 25, par échange thermique avec au moins une partie du courant de gaz naturel de départ 13 et au moins une partie du courant de recyclage 152.
Ainsi, un courant de rebouillage latéral supérieur 163 est prélevé à un niveau N6 situé sous le niveau N1 , par exemple au onzième étage en partant du haut de la colonne 35, puis est amené jusqu'au premier échangeur thermique 25. Le courant 163 est alors réchauffé dans l'échangeur 25, puis est renvoyé dans la colonne 35 à un niveau N7 situé sous le niveau N6.
De même, un courant de rebouillage latéral inférieur 161 est prélevé à un niveau N8 situé sous le niveau N7, puis est amené dans l'échangeur thermique 25. Le courant 161 est alors réchauffé dans l'échangeur thermique 25 puis est réintroduit à un niveau N9 situé sous le niveau N8, par exemple au quatorzième étage en partant du haut de la colonne 35.
Dans le circuit de rebouillage de fond 41 , un courant liquide 165 de rebouillage de fond est extrait au voisinage du pied de la colonne 35, en dessous des courants de rebouillage latéral 161 , 163.
Selon l'invention, le courant 165 est amené dans le premier échangeur thermique amont 25, où il est réchauffé par échange thermique avec au moins une partie du courant de gaz naturel de départ 13 et au moins une partie du courant de recyclage 152. Le courant de rebouillage de fond 165 réchauffé et partiellement vaporisé est ensuite réintroduit dans la colonne 35.
Un courant de fond 171 riche en hydrocarbures en C2 + est extrait du pied de la colonne de récupération 35.
Le courant de fond 171 contient plus de 99% molaire des hydrocarbures en C3 + contenus dans le courant de gaz naturel de départ 13. Il a une teneur en méthane comprise entre 0% et 5%. Le courant de fond 171 est pompé par la pompe de fond de cuve 47 et introduit à un niveau intermédiaire P1 de la colonne de fractionnement 61 .
Dans l'exemple représenté, la colonne de fractionnement 61 opère à une pression comprise entre 20 et 42 bars. Dans cet exemple, la pression de la colonne de fractionnement 61 est supérieure d'au moins 1 bar à la pression de la colonne de récupération 35.
Un courant de pied 181 est extrait de la colonne de fractionnement 61 pour former la coupe 17 d'hydrocarbures en C3 +.
Le taux d'extraction des hydrocarbures en C3 + dans le procédé est supérieur à 99%. Dans tous les cas, le taux d'extraction de propane est supérieur à 99%.
Le courant riche en éthane 19 est soutiré directement à un niveau intermédiaire P2 situé dans la région supérieure de la colonne de fractionnement 61 .
Dans l'exemple représenté sur les figures, ce courant comprend 1 ,21 % de méthane, 97,77% d'éthane et 1 ,00% de propane.
Plus généralement, la teneur molaire en éthane dans le courant riche en éthane
19 est supérieure à 95% et notamment comprise entre 96% et 100%.
Le nombre de plateaux théoriques entre la tête de la colonne 61 et le niveau supérieur P2 est par exemple compris entre 1 et 7. Le niveau P2 est supérieur au niveau d'alimentation P1 .
Un deuxième courant de tête 183 est extrait de la tête de la colonne 61 puis est refroidi dans le deuxième réfrigérant 67 pour former un deuxième courant de tête 185 refroidi et condensé au moins partiellement. Ce deuxième courant 185 est introduit dans le deuxième ballon séparateur 69 pour produire une fraction liquide 187 et une fraction gazeuse 188.
Dans l'exemple représenté sur la figure 1 , la totalité de la fraction liquide 187 est pompée dans la pompe 71 pour former un courant de reflux primaire 190 avant d'être réintroduit comme reflux dans la colonne de fractionnement 61 à un niveau de tête P3 situé au dessus du niveau P2.
Dans ce cas, la totalité de la fraction gazeuse 188 forme, après refroidissement dans l'échangeur thermique de tête 33 et détente dans une vanne 193, un courant de reflux secondaire 192.
Dans l'échangeur de tête 33, la fraction gazeuse 188 est refroidie par échange thermique avec le courant de tête 131 .
Dans une variante représentée en pointillés, la fraction liquide 187 est séparée en une fraction 189 liquide de reflux primaire et en une fraction 191 liquide secondaire. La fraction de liquide secondaire 191 , lorsqu'elle est présente, est alors mélangée à la fraction gazeuse 1 88 pour former, après refroidissement et détente, le courant de reflux secondaire 192.
Le courant de reflux secondaire 1 92 est introduit en reflux à un niveau de tête N4 de la colonne de récupération 35 située entre le niveau de tête N5 et le niveau intermédiaire N3.
Le taux d'extraction d'éthane, et par suite le débit d'éthane produit dans l'installation 1 1 , est commandé en réglant le débit du courant de recyclage 1 52, d'une part, en réglant la pression dans la colonne de récupération 35, à l'aide des compresseurs 43 et 31 qui sont du type à vitesse variable, d'autre part, et en réglant enfin le débit du courant de reflux secondaire 192 circulant à travers la vanne de détente 193.
Comme le montre le tableau ci-dessous, le débit du courant riche en éthane est réglable, pratiquement sans affecter le taux d'extraction des hydrocarbures en C3 +.
Le procédé selon l'invention permet donc, par des moyens simples et peu coûteux, d'obtenir un débit variable et facilement réglable d'un courant riche en éthane 19 extrait du gaz naturel de départ 13, en maintenant le taux d'extraction de propane supérieur à 99%. Ce résultat est obtenu sans modification importante de l'installation dans laquelle le procédé est mis en œuvre.
Figure imgf000015_0001
Les valeurs des pressions, des températures et débits dans le cas où le taux de récupération d'éthane est égal à 84,99% sont données dans le tableau ci-dessous.
Courant Température ( °C) Pression (bar abs) Débit (kmol/h)
13 20.0 50.0 38000
15 40.0 50.0 33634
17 86.8 33.5 978
19 1 1 .9 33.0 3389
1 1 3 -44.0 49.8 38000
1 1 5 -44.0 49.8 3641 2 120 -69.5 17.8 1588
125 -81 .0 17.8 30858
128 -108.5 17.8 5554
131 -101 .6 17.6 38134
152 40.0 50.0 4500
154 -40.0 49.8 4500
155 -1 1 1 .7 17.8 4500
171 -5.3 17.8 4376
192 -3.4 33.0 10
194 -99.0 17.8 10
Lorsque le débit du courant riche en éthane 19 est réduit, la puissance totale de compression est également fortement réduite.
L'installation 1 1 selon l'invention ne requiert par ailleurs pas d'utilisation impérative d'échangeurs multiflux. Il est ainsi possible d'utiliser uniquement des échangeurs à tubes et calandre.
Le gaz naturel traité 15 comporte des teneurs sensiblement nulles en hydrocarbures en C5 +, par exemple inférieures à 1 ppm. Par suite, si la teneur en dioxyde de carbone dans le gaz traité 15 est inférieure à 50 ppm, ce gaz 15 peut être liquéfié sans traitement ou fractionnement complémentaire.
Dans le premier procédé selon l'invention, le courant de rebouillage de fond 165 est mis en relation d'échange thermique dans le premier échangeur thermique 25 avec le courant de recyclage 152, avec au moins une partie du courant de tête 131 , avec le courant de gaz naturel de départ 13 et avec les courants de rebouillage latéral 161 , 163.
Cette intégration thermique particulière du procédé est bénéfique en termes de rendement, et n'affecte pas la récupération d'éthane, lorsque celle-ci est souhaitée.
Ainsi, lorsque le courant de recyclage 152 est placé en relation d'échange thermique avec au moins une partie du courant de tête 131 , et lorsque le courant de rebouillage de fond 165 est placé en relation d'échange thermique avec le courant de gaz naturel de départ 13, les inventeurs ont constaté de manière surprenante une augmentation synergique du rendement de l'installation 1 1 .
Ainsi, comme illustre le tableau ci-dessous, un gain de rendement de 16% est observé par rapport à l'installation selon l'état de la technique en conservant un taux de récupération de 85%, toutes les autres conditions étant maintenues. Ce gain extrêmement significatif est obtenu, en maintenant une récupération d'éthane très élevée. Cas Récupération d'éthane (% mole) Puissance totale (kW) Gain (%)
Etat de la technique 85.01 44756
US 7 458 232
Installation 1 1 85.00 40566 9.4 sans recyclage
de gaz traité
Installation 1 1 85.04 44651 0.2 sans rebouilleur
de fond intégré
Installation 1 1 84.99 37422 16.4
Par ailleurs, la présence combinée du recyclage d'une partie du gaz traité et d'un ensemble de rebouillage de fond 41 intégré dans le premier échangeur thermique 25 engendre, de manière inattendue, un gain de rendement supérieur à ce qui est observé en présence de l'une ou l'autre de ces dispositions prise individuellement.
Ainsi, lorsque le premier procédé est mis en œuvre sans courant de recyclage de gaz traité 152, le gain obtenu est de 9,4%, alors que lorsque le premier procédé 1 1 est mis en œuvre sans rebouilleur de fond intégré dans l'échangeur thermique 25, le gain obtenu est de 0,2%. Le gain observé par la mise en commun des caractéristiques précitées est donc notablement supérieur à la somme des gains individuels obtenus, démontrant un effet synergique inattendu, qui n'affecte pas la récupération d'éthane.
En variante, le courant de gaz traité issu du premier compresseur 31 peut être amené dans un compresseur 43 à deux étages de puissances équivalentes, avec un réfrigérant intermédiaire refroidissant le gaz à la même température que le réfrigérant 45.
Une deuxième installation 201 selon l'invention est illustrée par la figure 2.
L'installation 201 diffère de la première installation 1 1 en ce qu'elle comporte en outre une turbine de détente auxiliaire 203 et un compresseur auxiliaire 205 couplé à la turbine 203. Dans un premier mode de réalisation, le compresseur auxiliaire 205 est interposé entre le premier compresseur 31 et le deuxième compresseur 43.
Un deuxième procédé selon l'invention est mis en œuvre dans la deuxième installation 201 .
A la différence du premier procédé selon l'invention, le courant de gaz naturel de départ 13 est séparé en un premier courant de départ 207 et un deuxième courant de départ 209.
Le débit molaire du premier courant de départ 207 est avantageusement supérieur au débit molaire du deuxième courant de départ 209. Puis, le premier courant de départ 207 est introduit dans le premier échangeur thermique 25 pour y être refroidi et partiellement condensé et former le courant de gaz naturel refroidi 1 13 introduit dans le premier ballon séparateur 27.
Le deuxième courant de départ 209 est introduit dans la turbine de détente auxiliaire 203, pour y être détendu jusqu'à une pression proche de la pression de fonctionnement de la colonne 35 et former un courant de reflux auxiliaire 21 1 . Le courant de reflux auxiliaire 21 1 est alors introduit dans le premier échangeur thermique de tête 33 pour y être refroidi et partiellement condensé, puis dans une vanne de détente 21 3 pour former un courant de reflux auxiliaire détendu 21 5.
Le courant 215 est ensuite introduit dans la colonne de récupération 35 à un niveau supérieur N1 0 situé entre le niveau N3 et le niveau N4.
Dans l'exemple représenté sur la figure 2, le courant de tête 21 7 issu du premier compresseur 31 est introduit, à sa sortie du premier compresseur 31 dans le compresseur auxiliaire 205, pour y être comprimé à une pression intermédiaire, avant de rejoindre le deuxième compresseur 43.
Les valeurs des pressions, des températures, et des débits dans le cas où le taux de récupération d'éthane est égal à 85,00% sont données dans le tableau ci-dessous.
Figure imgf000018_0001
La mise en œuvre du deuxième procédé selon l'invention produit un résultat analogue à celui du premier procédé, grâce à la synergie observée entre la mise en relation d'échange thermique du courant de rebouillage de fond 165 avec le courant de gaz naturel de départ 13, prise en combinaison avec la présence d'un courant de recyclage 152, mis en relation d'échange thermique avec au moins une partie du courant de tête 131 .
Ainsi, la consommation du procédé de mise en œuvre de l'installation 201 conduit à une puissance consommée égale à 37588 KW, soit un gain de 1 6% par rapport à celui de l'installation de l'état de la technique.
Dans une variante de la figure 2 (visible en pointillés), le compresseur auxiliaire 205 est monté en aval du compresseur 43 pour comprimer le courant de recyclage 1 52, avant son introduction dans le premier échangeur thermique 25.
L'installation et la mise en œuvre du procédé sont par ailleurs analogues à celui de la figure 2.
Une troisième installation 221 selon l'invention est illustrée par la figure 3. A la différence de l'installation 1 1 représentée sur la figure 1 , l'installation 221 comporte un deuxième ballon séparateur amont 223 disposé en aval du premier ballon séparateur pour recueillir la phase liquide 1 17 issue du premier ballon séparateur 27.
Un troisième procédé selon l'invention, est mis en œuvre à l'aide de l'installation 221 . Ce troisième procédé diffère du premier procédé selon l'invention, en ce que la phase liquide 1 1 7 est détendue dans une vanne de détente statique 225. Cette détente est effectuée jusqu'à une pression supérieure à la pression de fonctionnement de la colonne 35.
La phase liquide est ensuite détendue et introduite dans le deuxième ballon séparateur amont 223.
Une fraction liquide 227 est récupérée au fond du ballon 223, et est détendue dans une vanne 229 pour former une fraction détendue 231 . La fraction détendue 231 est introduite dans la colonne de récupération 35 au niveau N1 .
Une fraction gazeuse 233 est recueillie en tête du deuxième ballon séparateur amont 223. Cette fraction 233 est envoyée vers l'échangeur thermique de tête 33 pour y être refroidie avant d'être détendue dans une vanne de détente 135 pour former une fraction détendue 237.
La fraction détendue 237 est introduite dans la colonne de récupération 35 à un niveau intermédiaire N1 1 compris entre le niveau N2 et le niveau N3.
Les valeurs des pressions, des températures, et des débits dans le cas où le taux de récupération d'éthane est égal à 84,99% sont données dans le tableau ci-dessous :
Courant Température ( °C) Pression (bar abs) Débit (kmol/h)
13 20.0 50.0 38000
15 40.0 50.0 33658 17 86.8 33.5 978
19 13.1 33.0 3364
1 13 -42.7 49.8 38000
1 15 -42.7 49.8 36709
1 17 -42.7 49.8 1291
1 18 -62.3 23.3 1291
125 -79.4 18.0 32325
128 -108.1 18.0 4384
131 -101 .4 17.8 39758
152 40.0 50.0 6100
154 -40.0 49.8 6100
155 -1 1 1 .3 18.0 6100
171 -3.5 18.0 4392
188 7.2 33.0 50
192 -98.8 18.0 50
231 -67.4 18.0 910
233 -62.3 23.3 381
237 -106.2 18.0 381
Le procédé mis en œuvre à l'aide de la troisième installation 221 selon l'invention conduit à une puissance totale consommée par les compresseurs de 35960 KW, soit un gain de 19,7% par rapport au procédé de l'état de la technique.
Elle permet en outre un gain additionnel de 3,9% par rapport au premier procédé selon l'invention.
Dans une variante du troisième procédé, la phase liquide 1 17 obtenue au pied du premier ballon séparateur 27 est introduite dans le premier échangeur thermique 25 pour y être réchauffée, avant d'être amenée dans la vanne 225.
Le mélange est détendu dans la vanne 225, avant d'être séparé dans le deuxième ballon séparateur amont 223.
Une quatrième installation 241 selon l'invention est illustrée par la figure 4. A la différence de la première installation 1 1 , le courant 171 issu de la colonne de récupération 35 est passé dans le premier échangeur thermique 25, pour y être réchauffé avant d'être introduit dans la colonne de fractionnement 61 .
Le quatrième procédé selon l'invention met donc en œuvre un réchauffage de ce courant de fond 171 , après son passage dans la pompe 47.
Pour un taux de récupération d'éthane de 85,00%, la consommation totale est alors de 34201 kW, ce qui fournit un gain de 23,6% par rapport à l'installation de l'état de la technique. Le gain est par ailleurs de 8,6% par rapport au premier procédé selon l'invention.
Les valeurs des pressions, des températures, et des débits dans le cas où le taux de récupération d'éthane est égal à 85,00% sont données dans le tableau ci-dessous : Courant Température ( °C) Pression (bar abs) Débit (kmol/h)
13 20.0 50.0 38000
15 40.0 50.0 33656
17 86.8 33.5 976
19 12.9 33.0 3368
1 1 3 -40.1 49.8 38000
1 1 5 -40.1 49.8 3721 8
120 -65.8 16.2 782
125 -80.1 16.2 27578
128 -1 1 0.6 16.2 9640
131 -102.9 16.0 34051
152 40.0 50.0 395
154 -40.0 49.8 395
155 -1 1 3.9 16.2 395
171 -7.7 16.2 4354
188 5.4 33.0 10
192 -100.2 16.2 10
243 12.0 33.5 4354
Une cinquième installation selon l'invention 251 est illustrée par la figure 5. Cette installation est destinée à la mise en œuvre d'un cinquième procédé selon l'invention.
A la différence du premier procédé selon l'invention, un courant de dérivation 253 est prélevé dans le courant de recyclage 1 52, avantageusement en aval du premier échangeur thermique 25 et en amont du deuxième échangeur thermique 33, pour être réintroduit dans un courant situé en amont de la première turbine de détente dynamique 29.
Le débit du courant de dérivation 253 est par exemple égal à 47% du débit molaire total du courant de recyclage 1 52 prélevé dans le courant traité.
Le cinquième procédé selon l'invention est par ailleurs mis en œuvre de manière analogue au quatrième procédé selon l'invention.
Dans l'exemple de la figure 5, le courant de dérivation 253 est mélangé au courant d'alimentation 1 21 avant son introduction dans la turbine 29.
Dans une variante représentée en pointillés, la cinquième installation 251 comporte en outre une turbine de détente dynamique secondaire 255 attelée à un compresseur secondaire 257. Un courant de recyclage secondaire 258 est alors prélevé dans le courant de recyclage 152 avant son introduction dans le premier échangeur thermique 25.
Le courant de recyclage secondaire 258 est introduit dans la turbine de détente secondaire 255, pour former un courant de recyclage secondaire détendu 261 , qui est réintroduit dans le courant de tête partiellement réchauffé 139 issu du premier échangeur thermique de tête 33.
Par ailleurs, un courant de tête secondaire 263 est prélevé dans le courant de tête réchauffé 140 issu du premier échangeur thermique 25 pour être amené jusqu'au compresseur secondaire 257 et former un courant de tête secondaire comprimé 265.
Ce courant 265 est ensuite réintroduit dans le courant de tête comprimé à une pression intermédiaire issu du premier compresseur 31 en amont du deuxième compresseur 43.
Le gain de puissance obtenu par rapport au procédé de l'état de la technique est alors de l'ordre de 1 5,4%, pour une puissance totale consommée de 37851 kW.
Les valeurs des pressions, des températures, et des débits dans le cas où le taux de récupération d'éthane est égal à 85,00% sont données dans le tableau ci-dessous :
Figure imgf000022_0001
Une sixième installation 271 selon l'invention est représentée sur la figure 6. Cette installation 271 est destinée au dégoulottage d'une installation telle qu'illustrée dans US 7 458 232 et comprenant initialement, un premier échangeur thermique amont 25, un premier ballon séparateur 27, une colonne de récupération 35, un premier échangeur thermique de tête 33 et une colonne de fractionnement 61 munie d'un condenseur de tête 63..
A la différence de la première installation 1 1 selon l'invention, l'installation 271 comporte en outre un deuxième échangeur thermique amont 273 et un troisième échangeur thermique amont 275, destinés à être placés en parallèle du premier échangeur thermique amont 25.
L'installation 271 comporte en outre un compresseur d'appoint 277 destiné à comprimer le courant de recyclage 152, et un réfrigérant d'appoint 279 destiné à refroidir le courant de recyclage comprimé.
Par ailleurs, la sixième installation 271 comporte un deuxième échangeur thermique de tête 281 destiné à être placé en parallèle du premier échangeur thermique de tête 33, pour placer au moins une partie du courant de tête 131 en relation d'échange thermique avec au moins une partie du courant de recyclage 152.
Un sixième procédé selon l'invention est mis en œuvre dans la sixième installation
271 . Dans ce procédé, le courant de gaz naturel de départ 13 est séparé en un premier courant de départ 207 introduit dans le premier échangeur thermique amont 25 et en un deuxième courant de départ 209 introduit dans un deuxième échangeur thermique amont 273.
Le premier courant de départ 207 est ensuite refroidi dans le premier échangeur thermique amont 25 pour former un premier courant de départ refroidi 281 A. De même, le deuxième courant de départ 209 est refroidi dans le deuxième échangeur thermique amont 273 pour former un deuxième courant 283 de départ refroidi. Les courants 281 A et 283 sont mélangés pour former le courant refroidi 1 13 destiné à être introduit dans le premier ballon séparateur amont 27.
Les courants de rebouillage latéral 161 , 163 sont introduits dans le premier échangeur thermique 25 pour y être réchauffés.
A la différence du premier procédé selon l'invention, le courant de rebouillage de fond 165 est introduit dans le deuxième échangeur thermique amont 273 pour y être réchauffé par échange thermique avec le deuxième courant de départ 209.
De même, à la différence du premier procédé selon l'invention, le courant de tête 131 issu de la colonne de récupération 35 est tout d'abord séparé en une première fraction 285 de courant de tête et une deuxième fraction 287 de courant de tête.
La première fraction 285 est introduite dans le premier échangeur thermique de tête 33 pour y être réchauffée par échange thermique, d'une part, avec le courant de reflux 123, et d'autre part, avec le courant de reflux secondaire 192.
La deuxième fraction 287 est introduite dans le deuxième échangeur thermique de tête 281 .
Le rapport du débit molaire de la première fraction 285 à la deuxième fraction 287 est par exemple compris entre 0 et 20. Puis, les fractions récupérées à la sortie des échangeurs de tête 33, 281 sont remélangées, avant d'être à nouveau séparées en une première partie 289 du courant de tête réchauffé et en une deuxième partie 291 du courant de tête réchauffé.
La première partie 289 est introduite dans le premier échangeur thermique amont 25 pour y être réchauffée par échange thermique avec le premier courant de départ 207, simultanément avec les courants de rebouillage latéral 161 et 163.
La deuxième partie 291 est introduite dans le troisième échangeur thermique amont 275 pour y être réchauffée.
Les parties 289 et 291 réchauffées sont alors réunies pour former le courant de tête réchauffé 140, puis sont amenés vers le premier compresseur 31 .
A la différence du premier procédé selon l'invention, le courant de recyclage 152 est prélevé dans le courant de tête réchauffé 140 en amont du premier compresseur 31 .
Le rapport du débit molaire du courant de recyclage 152 au débit molaire du courant de tête 131 issu de la colonne 35 est par exemple compris entre 0% et 25%.
Le courant de recyclage 152 est ensuite comprimé dans le compresseur d'appoint
277, jusqu'à une pression par exemple supérieure à 50 bar, puis est refroidi dans le réfrigérant 279, pour former un courant de recyclage comprimé refroidi 293.
Le courant 293 est ensuite introduit successivement dans le troisième échangeur thermique amont 275, puis dans le deuxième échangeur thermique de tête 281 pour y être refroidi, avant d'être détendu dans une vanne de détente 295 et former un courant de recyclage détendu refroidi 297.
Le courant 297 est alors introduit dans la colonne de récupération 35, au même niveau que le courant de reflux secondaire 194.
Ainsi, dans le premier échangeur thermique amont 25 présent initialement dans l'installation, une partie 207 du courant de gaz naturel de départ 13, les courants de rebouillage latéral 161 , 163 et une partie 289 du courant de tête sont placés en relation d'échange thermique.
Dans le deuxième échangeur thermique amont 273, une deuxième partie 209 du courant de gaz naturel de départ 13, et le courant de rebouillage de fond 165 sont placés en relation d'échange thermique. Dans le troisième échangeur thermique amont 275, une deuxième partie 291 du courant de tête 131 , et le courant de recyclage 152 sont placés en relation d'échange thermique.
L'installation 271 selon l'invention ne requiert par ailleurs pas d'utilisation impérative d'échangeurs multiflux. Il est ainsi possible d'utiliser uniquement des échangeurs à tubes et calandre. En outre, en tête de la colonne 35, le courant de reflux 123, une première partie du courant de tête 285, et le courant de reflux secondaire 1 92 sont placés en relation d'échange thermique dans le premier échangeur thermique de tête 33. Dans le deuxième échangeur thermique de tête 281 , une deuxième partie 287 du courant de tête 1 31 et le courant de recyclage comprimé refroidi 233 sont placés en relation d'échange thermique.
L'installation 271 telle que représentée sur la figure 6 permet d'accommoder des augmentations du débit d'alimentation de 0% à 1 5%, et plus préférentiellement d'au moins 1 0%, en limitant au minimum l'augmentation de puissance de compression nécessaire.
Les valeurs des pressions, des températures, et des débits dans le cas où le taux de récupération d'éthane est égal à 85,00% sont données dans le tableau ci-dessous :
Figure imgf000025_0001
Dans les exemples représentés sur les Figures, le courant riche en éthane 19 est prélevé directement dans la colonne de fractionnement 61 , avantageusement à un niveau supérieur P2 de la colonne 61 défini plus haut.
La coupe d'hydrocarbures 17 en C3 + est par ailleurs formée directement par le courant de pied 1 81 de la colonne 61 . En variante (non représentée), les hydrocarbures en C2 sont extraits de la colonne de fractionnement 61 par le courant de pied 181 , en même temps que les hydrocarbures en C3 +. Le courant de pied 181 est alors introduit dans une colonne aval de fractionnement.
La coupe riche en éthane 19 comme la coupe d'hydrocarbures en C3 + 17 sont alors produites dans la colonne aval de fractionnement.

Claims

REVENDICATIONS
1 .- Procédé de production simultanée d'un gaz naturel traité (15), d'une coupe (17) riche en hydrocarbures en C3 +, et dans au moins certaines conditions de production, d'un courant (19) riche en éthane, à partir d'un courant (13) de gaz naturel de départ contenant du méthane, de l'éthane et des hydrocarbures en C3 +, le procédé comprenant les étapes suivantes :
- refroidissement et condensation partielle du courant (13) de gaz naturel de départ dans au moins un premier échangeur thermique amont (25) pour former un courant de départ refroidi (1 13) ;
- séparation du courant de gaz de départ refroidi (1 13) en un flux liquide (1 17) et en un flux gazeux (1 15);
- détente du flux liquide (1 17), et introduction d'un courant issu du flux liquide (1 17) dans une colonne (35) de récupération des hydrocarbures en C2 + à un premier niveau intermédiaire (N1 ) ;
- formation d'un courant d'alimentation (121 ) de turbine à partir du flux gazeux
(1 15) ;
- détente du courant d'alimentation (121 ) dans une turbine (29) de détente dynamique et introduction dans la colonne de récupération (35) à un deuxième niveau intermédiaire (N2) ;
- récupération et compression d'au moins une partie du courant de tête (131 ) de la colonne de récupération (35) pour former le gaz naturel (15) et récupération du courant de pied de la colonne de récupération (35) pour former un courant liquide (171 ) riche en hydrocarbures en C2 + ;
- introduction du courant liquide (171 ) à un niveau d'alimentation (P1 ) d'une colonne de fractionnement (61 ) munie d'un condenseur de tête (63), le courant riche en éthane (19) étant produit, dans les dites conditions de production, à partir d'un courant issu de la colonne de fractionnement (61 ), la colonne de fractionnement (61 ) produisant un courant de pied (181 ) destiné à former au moins en partie la coupe d'hydrocarbures en C3 + ;
- introduction d'un courant de reflux primaire (190) produit dans le condenseur de tête (63) en reflux dans la colonne de fractionnement (61 ) ;
- production d'un courant de reflux secondaire (192) à partir du condenseur de tête (63) et introduction du courant de reflux secondaire (192) en tête de la colonne de récupération (35),
caractérisé en ce que le procédé comporte les étapes suivantes : - prélèvement d'un courant de recyclage (152) dans le courant de tête (131 , 140, 141 ) issu de la colonne de récupération (35);
- mise en relation d'échange thermique du courant de recyclage (152) avec au moins une partie du courant de tête (131 ) issu de la colonne de récupération (35),
- réintroduction, après détente, du courant de recyclage refroidi et détendu, dans la colonne de récupération (35).
le procédé comportant le prélèvement dans le fond de la colonne de récupération (35) d'au moins un courant de rebouillage de fond (165), et la mise en relation d'échange thermique du courant de rebouillage de fond avec au moins une partie du gaz naturel de départ (13) ou/et avec le courant de recyclage (152), le rebouillage de fond étant assuré par les calories prélevées dans le courant de gaz naturel de départ (13) ou/et dans le courant de recyclage (152)
2. - Procédé selon la revendication 1 , caractérisé en ce qu'au moins une partie du courant de tête (131 ) de la colonne de récupération (35) et le courant de recyclage (152) sont placés en relation d'échange thermique avec le courant de gaz naturel de départ (13) et avec le courant de rebouillage de fond (165).
3. - Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le courant de recyclage (154) issu du premier échangeur thermique amont (25), le courant de reflux secondaire (192) issu du condenseur de tête (63), et le courant de tête (131 ) provenant de la colonne de récupération (35) sont mis en relation d'échange thermique dans un premier échangeur thermique de tête (33).
4. - Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'au moins un courant de rebouillage latéral (161 , 163) est prélevé au-dessus du courant de rebouillage de fond (165), le ou chaque courant de rebouillage latéral (161 , 163) étant placé en relation d'échange thermique avec au moins une partie du courant de gaz naturel de départ (13).
5. - Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le courant riche en éthane (19) est soutiré à partir d'un niveau intermédiaire de la colonne de fractionnement (61 ) situé au-dessus du niveau d'alimentation de la colonne (61 ), et en dessous du niveau de tête de la colonne de fractionnement (61 ).
6. - Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte les étapes suivantes :
- séparation du courant de gaz naturel de départ (13) en un premier courant de départ (207) et en un deuxième courant de départ (209) ;
- introduction du premier courant de départ (207) dans le premier échangeur thermique amont (25) ; - introduction d'au moins une partie du deuxième courant de départ (209) dans une turbine de détente dynamique auxiliaire (203) pour former un courant de reflux auxiliaire (215) à partir de l'effluent issu de la turbine auxiliaire (203) ;
- introduction du courant de reflux auxiliaire (215) dans la colonne de récupération (35).
7. - Procédé selon la revendication 6, caractérisé en ce qu'au moins une partie du courant de recyclage (152) est comprimée dans un compresseur auxiliaire (205) couplé à la turbine auxiliaire (203).
8. - Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'au moins une partie du courant de tête est comprimée dans un compresseur auxiliaire (205) couplé à la turbine auxiliaire (203), avantageusement entre un premier compresseur (31 ) couplé à la première turbine (29) et un deuxième compresseur (43).
9. - Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte le prélèvement, dans le courant de recyclage (152), d'un courant de dérivation (253), le courant de dérivation (253) étant réintroduit dans un courant situé en amont de la première turbine de détente dynamique (29).
10. - Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le flux liquide (1 17) issu du premier ballon séparateur amont (27) est détendu et est introduit dans un deuxième ballon séparateur amont (223) pour former une fraction liquide (227) et une fraction gazeuse (233),
la fraction liquide (227) étant introduite après détente au premier niveau intermédiaire (N1 ) de la colonne de récupération (35), la fraction gazeuse (233) étant introduite à un niveau supérieur (N1 1 ) de la colonne de récupération (35), situé au-dessus du niveau intermédiaire (N1 ),
le flux liquide (1 17) issu du premier ballon séparateur amont (25) étant avantageusement placé en relation d'échange thermique avec le courant de gaz naturel de départ (13) pour être réchauffé avant d'être introduit dans le deuxième ballon séparateur amont (223).
1 1 . - Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte la mise en relation d'échange thermique du courant de pied (171 ) issu de la colonne de récupération (35) avec le courant de gaz naturel de départ (13) et avec le courant de rebouillage de fond (165) dans le premier échangeur thermique amont (25) avant son introduction dans la colonne de fractionnement (61 ).
12. - Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le flux gazeux (1 15) issu du premier ballon séparateur (27) est séparé en le courant d'alimentation (121 ) et en un courant de reflux (123), le courant d'alimentation (121 ) étant destiné à alimenter la turbine de détente dynamique (29), le courant de reflux (123) étant introduit, après refroidissement, condensation partielle ou totale, et détente dans une vanne, en reflux dans la colonne de récupération (35).
13.- Installation (1 1 ; 201 ; 221 , 241 ; 251 ; 271 ) de production simultanée d'un gaz naturel traité (15), d'une coupe (17) riche en hydrocarbures en C3 +, et dans au moins certaines conditions de production, d'un courant (19) riche en éthane, à partir d'un courant (13) de gaz naturel de départ contenant du méthane, de l'éthane et des hydrocarbures C3 +, l'installation comprenant :
- un ensemble de refroidissement et de condensation partielle du courant (13) de gaz naturel de départ comprenant au moins un premier échangeur thermique amont (25) pour former un courant de départ refroidi (1 13) ;
- un ensemble de séparation du courant de départ refroidi (1 13) en un flux liquide (1 17) et en un flux gazeux (1 15);
- une colonne (35) de récupération des hydrocarbures en C2 +
- un ensemble de détente du flux liquide (1 17), et d'introduction d'un courant issu du flux liquide (1 17) dans la colonne de récupération (35) à un premier niveau intermédiaire (N1 ) ;
- un ensemble de formation d'un courant d'alimentation (121 ) de turbine à partir du flux gazeux (1 15) ;
- un ensemble de détente du courant d'alimentation (121 ) comprenant une turbine
(29) de détente dynamique et un ensemble d'introduction du courant d'alimentation détendu dans la colonne de récupération (35) à un deuxième niveau intermédiaire (N2) ;
- un ensemble de récupération et de compression d'au moins une partie du courant de tête (131 ) de la colonne de récupération (35) pour former le gaz naturel (15) et un ensemble de récupération du courant de pied de la colonne de récupération (35) pour former un courant liquide (171 ) riche en hydrocarbures en C2 + ;
- une colonne de fractionnement (61 ) munie d'un condenseur de tête (63),
- un ensemble d'introduction du courant liquide à un niveau d'alimentation (P1 ) de la colonne de fractionnement (61 ), le courant riche en éthane (19) étant propre à être produit, dans les dites conditions de production, à partir d'un courant issu de la colonne de fractionnement (61 ), la colonne de fractionnement (61 ) étant apte à produire un courant de pied (181 ) destiné à former, au moins en partie la coupe d'hydrocarbures en C3 + (17) ;
- un ensemble d'introduction d'un courant de reflux primaire (190) produit dans le condenseur de tête (63) en reflux dans la colonne de fractionnement (61 ) ; - un ensemble de production d'un courant de reflux secondaire (192) à partir du condenseur de tête (63) et un ensemble d'introduction du courant de reflux secondaire (192) en tête de la colonne de récupération (35),
caractérisée en ce que l'installation comporte :
- un ensemble de prélèvement d'un courant de recyclage (152) dans le courant de tête (131 , 140, 141 ) de la colonne de récupération (35);
- un ensemble de mise en relation d'échange thermique du courant de recyclage (152) avec au moins une partie du courant de tête (131 ) issu de la colonne de récupération (35),
- un ensemble de réintroduction, après détente (35), du courant de recyclage (152) dans la colonne de récupération (35), l'installation comportant en outre un ensemble de prélèvement dans le fond de la colonne de récupération (35) d'au moins un courant de rebouillage de fond (165), et un ensemble de mise en relation d'échange thermique du courant de rebouillage de fond avec au moins une partie du gaz naturel de départ (13) ou/et avec le courant de recyclage (152), le rebouillage étant propre à être assuré par les calories prélevées dans le courant de gaz naturel de départ (13) ou/et dans le courant de recyclage (152).
14. - Installation (1 1 ; 201 ; 221 ; 241 ; 251 ) selon la revendication 13, caractérisée en ce qu'elle comporte un premier échangeur thermique amont (25) propre à mettre en relation d'échange thermique au moins une partie du courant de gaz naturel de départ (13), le courant de rebouillage de fond (165), éventuellement des courants de rebouillage latéral (161 , 163), au moins une partie du courant de tête (131 ) et le courant de recyclage (152).
15. - Installation (271 ) selon la revendication 13, caractérisée en ce qu'elle comporte un premier échangeur thermique amont (25) propre à mettre en relation d'échange thermique une première partie du courant de gaz naturel de départ (13), avec au moins une partie du courant de tête (131 ), un deuxième échangeur thermique amont (273), distinct du premier échangeur thermique amont (25), propre à mettre en relation d'échange thermique une deuxième partie du courant de gaz de départ (13) avec le courant de rebouillage de fond (165) issu de la colonne de récupération (35), et un troisième échangeur thermique amont (275) distinct du premier échangeur thermique amont (25) et du deuxième échangeur thermique amont (273), le troisième échangeur thermique amont (275) étant propre à mettre en relation d'échange thermique au moins une partie du courant de recyclage (152) avec au moins une partie du courant de tête (131 ), l'installation (271 ) comportant avantageusement un compresseur d'appoint (277) propre à comprimer la partie du courant de recyclage (152) destinée à être introduite dans le troisième échangeur thermique amont (275).
PCT/EP2013/064238 2012-07-05 2013-07-05 Procédé de production d'un gaz naturel traité, d'une coupe riche en hydrocarbures en c3 +, et éventuellement d'un courant riche en éthane, et installation associée WO2014006178A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2878125A CA2878125C (fr) 2012-07-05 2013-07-05 Procede de production d'un courant riche en ethane d'un gaz naturel traite et installation associee
RU2015103754A RU2620601C2 (ru) 2012-07-05 2013-07-05 Способ получения обработанного природного газа, фракции, обогащённой c3+- углеводородами, и, необязательно, потока, обогащённого этаном, а также относящаяся к данному способу установка
EP13734098.0A EP2870226B1 (fr) 2012-07-05 2013-07-05 Procédé de production d'un gaz naturel traité, d'une coupe riche en hydrocarbures en c3+, et éventuellement d'un courant riche en éthane, et installation associée
AP2015008259A AP2015008259A0 (en) 2012-07-05 2013-07-05 Process for producing treated natural gas, A C3+ hydrocarbon-rich fraction and optionally an ethane-rich stream, and associated apparatus
US14/412,172 US20150153101A1 (en) 2012-07-05 2013-07-05 Method for producing a treated natural gas, a cut rich in c3+ hydrocarbons and optionally an ethane-rich stream, and associated facility
MX2015000147A MX2015000147A (es) 2012-07-05 2013-07-05 Procedimiento de produccion de gas natural tratado, de corte rico en hidrocarburos en c3+, y eventualmente de corriente rica en etano, e instalacion asociada.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1256488 2012-07-05
FR1256488A FR2992972B1 (fr) 2012-07-05 2012-07-05 Procede de production d'un gaz naturel traite, d'une coupe riche en hydrocarbures en c3+, et eventuellement d'un courant riche en ethane, et installation associee

Publications (1)

Publication Number Publication Date
WO2014006178A1 true WO2014006178A1 (fr) 2014-01-09

Family

ID=46754708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/064238 WO2014006178A1 (fr) 2012-07-05 2013-07-05 Procédé de production d'un gaz naturel traité, d'une coupe riche en hydrocarbures en c3 +, et éventuellement d'un courant riche en éthane, et installation associée

Country Status (9)

Country Link
US (1) US20150153101A1 (fr)
EP (1) EP2870226B1 (fr)
AP (1) AP2015008259A0 (fr)
AR (1) AR093223A1 (fr)
CA (1) CA2878125C (fr)
FR (1) FR2992972B1 (fr)
MX (1) MX2015000147A (fr)
RU (1) RU2620601C2 (fr)
WO (1) WO2014006178A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107548446A (zh) * 2015-05-04 2018-01-05 通用电气石油和天然气公司 制备供存储的烃流
FR3088648A1 (fr) * 2018-11-16 2020-05-22 Technip France Procede de traitement d'un flux de gaz d'alimentation et installation associee
EP3694959A4 (fr) * 2017-09-06 2021-09-08 Linde Engineering North America Inc. Procédés pour fournir une réfrigération dans des installations de récupération de liquides de gaz naturel

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10852060B2 (en) 2011-04-08 2020-12-01 Pilot Energy Solutions, Llc Single-unit gas separation process having expanded, post-separation vent stream
JP6225049B2 (ja) * 2013-12-26 2017-11-01 千代田化工建設株式会社 天然ガスの液化システム及び液化方法
US10352616B2 (en) * 2015-10-29 2019-07-16 Black & Veatch Holding Company Enhanced low temperature separation process
WO2017151147A1 (fr) * 2016-03-04 2017-09-08 Pilot Energy Solutions, Llc Récupération de gaz de torche à capture du carbone
US10844304B2 (en) 2016-06-02 2020-11-24 Pilot Energy Solutions, Llc Two column hydrocarbon recovery from carbon dioxide enhanced oil recovery streams
CN110185506B (zh) * 2019-05-27 2022-02-08 西南石油大学 一种天然气调压站压力能综合利用系统
US20210063083A1 (en) * 2019-08-29 2021-03-04 Exxonmobil Upstream Research Company Liquefaction of Production Gas
CN111253985A (zh) * 2020-03-03 2020-06-09 武汉科技大学 一种用于荒煤气冷却及馏分初步分离的装置及其工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6116050A (en) * 1998-12-04 2000-09-12 Ipsi Llc Propane recovery methods
US20040261452A1 (en) * 2002-05-20 2004-12-30 John Mak Twin reflux process and configurations for improved natural gas liquids recovery
FR2879729A1 (fr) * 2004-12-22 2006-06-23 Technip France Sa Procede et installation de production de gaz traite, d'une coupe riche en hydrocarbures en c3+ et d'un courant riche en ethane

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2578637B1 (fr) 1985-03-05 1987-06-26 Technip Cie Procede de fractionnement de charges gazeuses et installation pour l'execution de ce procede
US5983664A (en) * 1997-04-09 1999-11-16 Elcor Corporation Hydrocarbon gas processing
EA014452B1 (ru) * 2005-07-07 2010-12-30 Флуор Текнолоджиз Корпорейшн Способы и установка для извлечения газоконденсатных жидкостей
FR2944523B1 (fr) * 2009-04-21 2011-08-26 Technip France Procede de production d'un courant riche en methane et d'une coupe riche en hydrocarbures en c2+ a partir d'un courant de gaz naturel de charge, et installation associee
RU2434671C1 (ru) * 2010-05-11 2011-11-27 Учреждение Российской Академии Наук Институт Сильноточной Электроники Сибирского Отделения Ран (Исэ Со Ран) Способ получения конденсата и осушки природного газа и проточный реактор для его осуществления
CN103857648B (zh) * 2011-06-20 2015-09-09 氟石科技公司 改造天然气加工液态产物回收成套设备的构造和方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6116050A (en) * 1998-12-04 2000-09-12 Ipsi Llc Propane recovery methods
US20040261452A1 (en) * 2002-05-20 2004-12-30 John Mak Twin reflux process and configurations for improved natural gas liquids recovery
FR2879729A1 (fr) * 2004-12-22 2006-06-23 Technip France Sa Procede et installation de production de gaz traite, d'une coupe riche en hydrocarbures en c3+ et d'un courant riche en ethane
US7458232B2 (en) * 2004-12-22 2008-12-02 Technip France Method and installation for producing treated natural gas, a C3+ hydrocarbon cut and an ethane rich stream

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107548446A (zh) * 2015-05-04 2018-01-05 通用电气石油和天然气公司 制备供存储的烃流
US10928128B2 (en) 2015-05-04 2021-02-23 GE Oil & Gas, Inc. Preparing hydrocarbon streams for storage
US11988445B2 (en) 2015-05-04 2024-05-21 GE Oil & Gas, Inc. Preparing hydrocarbon streams for storage
EP3694959A4 (fr) * 2017-09-06 2021-09-08 Linde Engineering North America Inc. Procédés pour fournir une réfrigération dans des installations de récupération de liquides de gaz naturel
AU2018328192B2 (en) * 2017-09-06 2023-08-24 Linde Engineering North America, Inc. Methods for providing refrigeration in natural gas liquids recovery plants
FR3088648A1 (fr) * 2018-11-16 2020-05-22 Technip France Procede de traitement d'un flux de gaz d'alimentation et installation associee
WO2020099658A1 (fr) * 2018-11-16 2020-05-22 Technip France Procédé de traitement d'un flux de gaz d'alimentation et installation associée
US11920098B2 (en) 2018-11-16 2024-03-05 Technip France Method for treating a feed gas stream and associated installation

Also Published As

Publication number Publication date
RU2620601C2 (ru) 2017-05-29
EP2870226A1 (fr) 2015-05-13
FR2992972A1 (fr) 2014-01-10
EP2870226B1 (fr) 2017-05-31
AR093223A1 (es) 2015-05-27
FR2992972B1 (fr) 2014-08-15
CA2878125C (fr) 2020-09-22
CA2878125A1 (fr) 2014-01-09
MX2015000147A (es) 2015-04-10
AP2015008259A0 (en) 2015-02-28
RU2015103754A (ru) 2016-08-27
US20150153101A1 (en) 2015-06-04

Similar Documents

Publication Publication Date Title
EP2870226B1 (fr) Procédé de production d'un gaz naturel traité, d'une coupe riche en hydrocarbures en c3+, et éventuellement d'un courant riche en éthane, et installation associée
EP1828697B1 (fr) Procede et installation de production de gaz naturel traite , d ' une coupe riche en hydrocarbures en c3 + et courant riche en ethane
EP1454104B1 (fr) Procede et installation de separation d'un melange gazeux contenant du methane par distillation
EP2452140B1 (fr) Procédé de production d'un courant riche en méthane et d'un courant riche en hydrocarbures en c2+, et installation associée
EP2205920B1 (fr) Procede de liquefaction d'un gaz naturel avec fractionnement a haute pression
EP2659211A2 (fr) Procédé de production d'un courant riche en methane et d'un courant riche en hydrocarbures en c2+ et installation associee
EP2630428A2 (fr) Procédé simplifié de production d'un courant riche en méthane et d'une coupe riche en hydrocarbures en c2+ à partir d'un courant de gaz naturel de charge, et installation associée.
WO2017077203A1 (fr) Reflux de colonnes de déméthanisation
EP2494295B1 (fr) Procédé de fractionnement d'un courant de gaz craqué pour obtenir une coupe riche en éthylène et un courant de combustible, et installation associée
WO2016156691A1 (fr) Procédé de traitement du gaz naturel pour minimiser la perte d'éthane
CA2823900C (fr) Procede de production d'une coupe riche en hydrocarbures c3+ et d'un courant riche en methane et ethane
EP3060629B1 (fr) Procédé de fractionnement d'un courant de gaz craqué, mettant en oeuvre un courant de recycle intermédiaire, et installation associée
WO2016156674A1 (fr) Procédé de déazotation du gaz naturel
FR3042984B1 (fr) Optimisation d’un procede de deazotation d’un courant de gaz naturel
FR3042982B1 (fr) Procede de separation des composants d’un melange gazeux a traiter comprenant du methane, de l’azote et au moins un hydrocarbure ayant au moins deux atomes de carbone
WO2022101211A1 (fr) Procédé d'extraction d'éthane dans un courant de gaz naturel de départ et installation correspondant
FR3106136A1 (fr) Procédé de dégazolinage d’un gaz contenant des hydrocarbures condensables

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13734098

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2878125

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14412172

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/000147

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2015103754

Country of ref document: RU

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013734098

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013734098

Country of ref document: EP