WO2014006003A1 - Procédé et dispositif pour la détermination et la signalisation d'une technologie modulaire d'un générateur photovoltaïque - Google Patents

Procédé et dispositif pour la détermination et la signalisation d'une technologie modulaire d'un générateur photovoltaïque Download PDF

Info

Publication number
WO2014006003A1
WO2014006003A1 PCT/EP2013/063849 EP2013063849W WO2014006003A1 WO 2014006003 A1 WO2014006003 A1 WO 2014006003A1 EP 2013063849 W EP2013063849 W EP 2013063849W WO 2014006003 A1 WO2014006003 A1 WO 2014006003A1
Authority
WO
WIPO (PCT)
Prior art keywords
generator
voltage
current
determining
comparison
Prior art date
Application number
PCT/EP2013/063849
Other languages
German (de)
English (en)
Inventor
Christopher Merz
Markus Hopf
Sebastian Bieniek
Felix Eger
Original Assignee
Sma Solar Technology Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sma Solar Technology Ag filed Critical Sma Solar Technology Ag
Publication of WO2014006003A1 publication Critical patent/WO2014006003A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • H01L31/02019Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02021Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • Photovoltaic systems are used to convert sunlight into electrical energy.
  • a plurality of photovoltaic modules abbreviated to PV modules, each of which is an interconnection of several
  • PV cells Photovoltaic cells
  • PV generator electrically connected to a photovoltaic generator (PV generator).
  • the PV generator is usually connected to a possibly remotely mounted inverter, which is used to convert the direct current supplied by the PV generator into alternating current, which is suitable for feeding into a public or private (isolated) power supply network.
  • PV cells and PV modules constructed from them are known in a wide variety of designs, which differ, inter alia, in the materials used, their electrical properties and the manufacturing process.
  • Common to all PV cells is the utilization of at least one areally configured diode junction between two or three differently doped semiconductor layers.
  • crystalline cells or modules and thin-film cells or modules can be distinguished.
  • Crystalline cells use mono- or polycrystalline semiconductor material, usually silicon, which is produced as bulk material (bulk material) and which is cut into slices with a thickness of about 100 to 300 micrometers ( ⁇ ) used in the PV cells.
  • a semiconductor layer of about 1 to 5 ⁇ m in thickness is applied to a suitable carrier material in an epitaxy process applied.
  • the semiconductor layer in thin-film cells is either amorphous or microcrystalline.
  • Thin-film cells differ from crystalline cells in, among other things, the amount of power delivered by one cell per area and - at the same voltage of the considered cells - their maximum current. Due to the interconnection of several cells to one
  • the inverter of a PV system performs other important functions. For example, it usually has a tracking device for the operating point of the PV generator, the so-called MPP (Maximum Power Point) tracker. The tracking device is used to operate the PV generator at an operating point of the highest possible power output. Furthermore, some inverters provide monitoring and diagnostic functionality and are thus able to detect and signal a fault condition of the PV generator.
  • MPP Maximum Power Point
  • An inventive method for determining and signaling a module technology of a PV generator of a PV system comprises the following steps: An impedance measurement is carried out on the PV generator to determine a frequency dependence of an impedance of the PV generator, hereinafter also referred to as impedance curve, and a capacity of the PV generator is determined on the basis of the impedance curve. Furthermore, a PV voltage and a PV current of the PV generator are determined under reference conditions, wherein the reference conditions relate to a predetermined irradiation intensity. From the determined capacitance, the PV voltage and the PV current, a comparison capacity is calculated, which is compared with a given threshold value. The module technology of the PV generator is determined as a thin-film technology and signals if the comparison capacity is greater than the specified threshold value and as a crystalline technology if the comparison capacity is less than or equal to the specified threshold value.
  • a high irradiation intensity is assumed as the reference condition, in particular a radiation intensity of 1000 W / m 2 or more.
  • the reference condition in particular a radiation intensity of 1000 W / m 2 or more.
  • Such chosen reference conditions can be easily identified during the day.
  • the PV generator 2 comprises a parallel connection of two strings, each of which has a plurality of series-connected PV modules.
  • FIG. 1 only two PV modules 2a and 2b as well as 2c and 2d, which are symbolized by the switching symbol of a single photovoltaic cell, are shown by way of example for each string. It is understood that in principle also a different number of strings connected in parallel or also a different type of series and parallel connection of PV modules in the PV generator 2 is possible.
  • the power supply network 6 may be a public utility network or a private network (island operation).
  • the inverter 5 is designed with three alternating current (AC) outputs for a three-phase feeding into the energy supply network 6. It is understood that a different three-phase design of the inverter 5 and / or the power supply network 6 is possible, for example, a single-phase design.
  • AC alternating current
  • FIG. 1 only the essential parts of the PV system 1 are shown in FIG. 1. Further DC or AC side of the inverter 5 arranged elements, such as separation or switching elements, filters, monitoring devices or transformers are not shown for reasons of clarity.
  • a control device 18 which, on the one hand, drives the signal generator 1 2 and, on the other hand, receives an output signal of the signal amplifier 14, the AC voltage measuring device 1 5, the DC current measuring device 1 6 and the DC voltage measuring device 1 7 for further processing.
  • the control device 18 also has a signaling output 19 at which, as a result of the method according to the invention, the module technology used is signaled, that is, whether the PV Generator 2 consists of crystalline cells (mono- or polycrystalline cells) or thin-film cells (amorphous or microcrystalline cells).
  • the signaling output 19 is coupled to a control input of the inverter 5 so that it can perform, for example, an optimized MPP tracking method depending on the detected module technology and can specify suitable monitoring criteria and limit values for its internal or associated monitoring devices.
  • impedance measurements are carried out on the PV generator 2 by the device 10.
  • an AC signal generated by the signal generator 12 is fed via the coupling means 1 1 in the DC circuit of the PV system 1.
  • the AC current I A c caused by the supplied AC signal superimposes the PV current I PV possibly flowing in the circuit.
  • a measurement signal is decoupled, which is amplified by the signal amplifier 14 and forwarded for evaluation to the control device 18 and which is linked to the alternating current flowing in the circuit.
  • the height of the AC voltage U AC is determined by the AC voltage measuring device 15 and also transmitted to the control device 18.
  • the measurement is carried out at several frequencies f of the injected signal, so that a dependence of the impedance Z on the frequency f is determined, which is also referred to as impedance curve Z (f) or frequency-dependent impedance Z (f). If, in addition to amplitudes of the signals coupled in and out, their phase relationship is also taken into account, the impedance curve Z (f) becomes complex.
  • the test signal is inductively impressed or decoupled from the coupling means 1 1 and decoupling 13. It is understood that, alternatively, the test signal can also be capacitively connected and / or decoupled.
  • the signal generator 12 can, for example, output a test signal whose frequency is varied with time, for example.
  • the signal measured by the signal amplifier 14 is evaluated depending on the frequency of the signal generator 12.
  • the signal generator 12 outputs a broadband noise signal containing frequency components of a plurality of frequencies.
  • a signal amplitude and possibly phase position are then detected as a function of the filter frequency by means of a tunable bandpass filter present in the control device or the signal amplifier 14, while the filter frequency is varied.
  • Multiple use of components of device 10 may be accomplished by using the components to exchange signals, e.g. Control signals are used with corresponding transceivers near the generator via the DC lines 3, 4.
  • Such a signal transmission is also known as "power line communication" (PLC), so that the coupling-in means 11 and the signal generator 12 for the transmission and the decoupling means 13 and the signal amplifier 14 can be used for the reception of signals.
  • PLC power line communication
  • the device 10 may be completely or partially integrated in the inverter 5. This applies in particular to the control device 18, the signal generator 12, the signal amplifier 14, the AC
  • the coupling of the AC signal can also be done by a clocking of semiconductor switches of an inverter own boost converter or an inverter bridge.
  • a signal amplitude detected by the decoupling means 13 and representing the alternating current is amplified via the signal amplifier 14, as well as a signal obtained by the AC voltage measuring device 15.
  • the signal level and optionally a phase angle of the decoupled signal with respect to the injected signal or the measured alternating current c with respect to the measured AC voltage UAC is determined. This measurement is performed for a plurality of frequencies within a predetermined frequency range from f min to f max .
  • the measured impedance curve Z (f) comprises the frequency range of the resonance point.
  • the value of the capacity of the PV generator determined in step S2 is stored for further use.
  • the capacitance in the equivalent circuit is composed of several components from which the junction capacitance of the PV cells may possibly be extracted. This procedure is possible, but a dark measurement in step S1 is preferred. It goes without saying that other models, possibly more complex models than that of a series resonant circuit, can also be used to evaluate the impedance curve Z (f).
  • a PV voltage U R and a PV current I R are determined at a radiation intensity which is as exactly as possible This can be done for example with the aid of the DC current measuring device 16 and the DC voltage measuring device 1 7 according to the embodiment of FIG.
  • a measurement at the given irradiation intensity is also referred to below as measurement under reference conditions.
  • a relatively high value for the predetermined irradiation intensity can be selected, for example 1000 W / m 2 .
  • Voltage UR * and a comparison PV current I R * supplies.
  • a comparison PV voltage UR * of 0.5 V and a comparison PV current I R * of 5 A are defined here as values.
  • the introduction of this imaginary (virtual) comparison cell serves for the resolution of the interconnection network of the plurality of individual PV cells, from which the PV generator, for example the PV generator 2 of FIG. 1, is composed.
  • the aim of step S5 is to deduce from the capacitance C of the entire PV generator measured in step S2 to the comparative capacitance C * of a single PV cell intended as a comparison cell.
  • the capacitance C * kris t of a polycrystalline or monocrystalline cell with the same comparative PV voltage and the same comparative PV current under reference conditions in the darkened state is less than 5 ⁇ . If different irradiation intensities are used as reference conditions, the actual capacitance values may change, but in principle the large discrepancy between the capacitance values of cells of different module technology is maintained.
  • the threshold value C * sw used in step S6 can be set in a range between 5 ⁇ and 50 ⁇ , for example 40 ⁇ .

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

L'invention concerne un procédé pour la détermination et la signalisation d'une technologie modulaire d'un générateur photovoltaïque (2) d'une installation photovoltaïque (1). Ledit procédé comprend les étapes suivantes : - l'exécution d'une mesure d'impédance sur le générateur photovoltaïque (2) pour la détermination d'une dépendance vis-à-vis de la fréquence d'une impédance (Z(f)) du générateur photovoltaïque (2); - la détermination d'une capacité (C) du générateur photovoltaïque (2) en fonction de la dépendance vis-à-vis de la fréquence de l'impédance (Z(f)); - la détermination d'une tension photovoltaïque (UR) et d'une intensité de courant photovoltaïque (IR) du générateur photovoltaïque (2) sous des conditions de référence qui concernent une intensité de rayonnement incident prédéfinie; - le calcul d'une capacité comparative (C*) à partir de la capacité déterminée (C), de la tension photovoltaïque (UR) et de l'intensité de courant photovoltaïque (IR); - la comparaison de la capacité comparative (C*) à une valeur de seuil prédéfinie (C*sw); - la détermination et la signalisation de la technologie modulaire du générateur photovoltaïque (2) comme technologie à couche mince si la capacité comparative (C*) est plus grande que la valeur de seuil prédéfinie (C*sw); et - la détermination et la signalisation de la technologie modulaire du générateur photovoltaïque (2) comme technologie cristalline si la capacité comparative (C*) est inférieure ou égale à la valeur de seuil prédéfinie (C*s). L'invention concerne en outre un dispositif approprié à la mise en oeuvre du procédé et un onduleur qui comporte au moins un dispositif de commande d'un tel dispositif.
PCT/EP2013/063849 2012-07-02 2013-07-01 Procédé et dispositif pour la détermination et la signalisation d'une technologie modulaire d'un générateur photovoltaïque WO2014006003A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201210105807 DE102012105807B3 (de) 2012-07-02 2012-07-02 Verfahren und Vorrichtung zur Bestimmung und Signalisierung einer Modultechnologie eines Photovoltaikgenerators
DE102012105807.5 2012-07-02

Publications (1)

Publication Number Publication Date
WO2014006003A1 true WO2014006003A1 (fr) 2014-01-09

Family

ID=48747540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/063849 WO2014006003A1 (fr) 2012-07-02 2013-07-01 Procédé et dispositif pour la détermination et la signalisation d'une technologie modulaire d'un générateur photovoltaïque

Country Status (2)

Country Link
DE (1) DE102012105807B3 (fr)
WO (1) WO2014006003A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007048421A2 (fr) * 2005-10-24 2007-05-03 Conergy Ag Interrupteur a fusibles avec gestion de commande pour piles solaires
US20100149847A1 (en) * 2008-12-12 2010-06-17 Kent Kernahan Apparatus providing bias to solar cells
WO2011032993A1 (fr) * 2009-09-18 2011-03-24 Schott Solar Ag Procédé et dispositif pour la caractérisation d'au moins un module de cellules solaires
WO2011066554A2 (fr) * 2009-11-30 2011-06-03 Atonometrics, Inc. Système de mesure des relations du courant par rapport à la tension (i-v) pour des modules photovoltaïques
WO2011144649A1 (fr) * 2010-05-18 2011-11-24 Sma Solar Technology Ag Procédé de diagnostic des contacts d'un système photovoltaïque et appareil correspondant
WO2013011046A1 (fr) * 2011-07-19 2013-01-24 Refusol Gmbh Installation photovoltaïque avec prétension sur l'onduleur

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007048421A2 (fr) * 2005-10-24 2007-05-03 Conergy Ag Interrupteur a fusibles avec gestion de commande pour piles solaires
US20100149847A1 (en) * 2008-12-12 2010-06-17 Kent Kernahan Apparatus providing bias to solar cells
WO2011032993A1 (fr) * 2009-09-18 2011-03-24 Schott Solar Ag Procédé et dispositif pour la caractérisation d'au moins un module de cellules solaires
WO2011066554A2 (fr) * 2009-11-30 2011-06-03 Atonometrics, Inc. Système de mesure des relations du courant par rapport à la tension (i-v) pour des modules photovoltaïques
WO2011144649A1 (fr) * 2010-05-18 2011-11-24 Sma Solar Technology Ag Procédé de diagnostic des contacts d'un système photovoltaïque et appareil correspondant
WO2013011046A1 (fr) * 2011-07-19 2013-01-24 Refusol Gmbh Installation photovoltaïque avec prétension sur l'onduleur

Also Published As

Publication number Publication date
DE102012105807B3 (de) 2013-11-07

Similar Documents

Publication Publication Date Title
DE102005030907B4 (de) Solargeneratoranlage, Multistrangwechselrichter für Solargeneratoranlagen und Verfahren zum Überprüfen der Isolationswiderstände der Solargeneratorstränge
AT508834B1 (de) Verfahren und vorrichtung zur fehlererkennung in einer photovoltaik-anlage
DE102012102932B4 (de) Verfahren und Vorrichtung zur Signalisierung einer Teilverschattung eines Photovoltaikgenerators
EP3987297B1 (fr) Procédé et onduleur photovoltaïque destinés à la détermination de la résistance d'isolement d'une installation photovoltaïque contre la terre
DE102011002467A1 (de) Systeme und Verfahren zum Deaktivieren eines Matrix-Umwandlers
DE202004021675U1 (de) Leistungsversorgungsschaltungen
EP2461455B1 (fr) Installation photovoltaïque
EP3345294B1 (fr) Procédé de fonctionnement d'un onduleur et onduleur
WO2011032993A1 (fr) Procédé et dispositif pour la caractérisation d'au moins un module de cellules solaires
DE102011054002A1 (de) Dezentrale Energieerzeugungsanlage mit Einrichtung und Verfahren zur Inselnetzerkennung
EP3980795B1 (fr) Procédé et onduleur photovoltaïque permettant de déterminer la capacité d'installation d'une installation photovoltaïque contre la terre
WO2015063098A1 (fr) Onduleur et procédé de détection permettant à un onduleur d'identifier un défaut du réseau
WO2017085174A1 (fr) Procédé et dispositif de détection de défauts dans un générateur photovoltaïque (pv)
DE102016113624A1 (de) Motorantrieb mit Funktion zum Detektieren von Schaltungsabnormalitäten aufgrund eindringender Fremdstoffe, bevor es zu einer erheblichen Abnormalität kommt
WO2018220223A1 (fr) Procédé servant à identifier un contact défectueux dans une installation photovoltaïque
DE112015002996T5 (de) Balancing-korrektur-steuervorrichtung, balancing-korrektur-system und elektrisches speichersystem
DE102018116446A1 (de) Windenergiesystem und Verfahren zum Erkennen niederfrequenter Schwingungen in einem elektrischen Versorgungsnetz
WO2015144390A1 (fr) Procédé de détection et de signalement d'un défaut de contact à l'intérieur d'un module photovoltaïque
WO2021099085A1 (fr) Procédé de détermination d'un paramètre de fonctionnement d'une installation pv, installation pv dotée d'un onduleur et onduleur pour une telle installation pv
DE102012104004B3 (de) Verfahren und Vorrichtung zum Feststellen eines Typs eines Lichtbogens in einer Photovoltaikanlage
DE102011121197B4 (de) Verfahren zur Inbetriebnahme eines Wechselrichters und Wechselrichter
DE102012105807B3 (de) Verfahren und Vorrichtung zur Bestimmung und Signalisierung einer Modultechnologie eines Photovoltaikgenerators
EP3987624B1 (fr) Procédé de détermination d'une courbe caractéristique d'une chaîne photovoltaïque (pv), convertisseur cc/cc et système pv approprié à la mise en oeuvre du procédé
CH706968A2 (de) Erfassung von Fehlern innerhalb eines Kreises in Generatorstatoren.
DE112014002160B4 (de) Modul mit passiver Messsignalrückführung über Ladungsspeicher

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13734376

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13734376

Country of ref document: EP

Kind code of ref document: A1