WO2014005452A1 - 一种终端节电方法及终端节电装置及网络侧节电装置 - Google Patents

一种终端节电方法及终端节电装置及网络侧节电装置 Download PDF

Info

Publication number
WO2014005452A1
WO2014005452A1 PCT/CN2013/074059 CN2013074059W WO2014005452A1 WO 2014005452 A1 WO2014005452 A1 WO 2014005452A1 CN 2013074059 W CN2013074059 W CN 2013074059W WO 2014005452 A1 WO2014005452 A1 WO 2014005452A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
parameter
power saving
network side
network
Prior art date
Application number
PCT/CN2013/074059
Other languages
English (en)
French (fr)
Inventor
谢宝国
李志军
齐斯莫波罗斯⋅哈里斯
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP13813924.1A priority Critical patent/EP2830367B1/en
Priority to ES13813924.1T priority patent/ES2690316T3/es
Priority to US14/396,813 priority patent/US9615327B2/en
Publication of WO2014005452A1 publication Critical patent/WO2014005452A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • Terminal power saving method terminal power saving device and network side power saving device
  • the present invention relates to the field of communications, and in particular to a terminal power saving method for a terminal in a 3GPP network, a terminal power saving device, and a network side power saving device.
  • M2M Machine to Machine
  • the M2M service provider mainly uses the existing wireless network to carry out M2M services, for example, a general packet radio service (GPRS) network, and an Evolved Packet System (EPS) network.
  • GPRS general packet radio service
  • EPS Evolved Packet System
  • FIG. 1 shows the network architecture of the UMTS PS. As shown in Figure 1, the network architecture includes the following NEs:
  • Radio Network System includes NodeB and Radio Network Controller (RNC), where NodeB provides air interface connection for terminals;
  • RNC is mainly used to manage radio resources and control NodeB.
  • the RNC and the NodeB are connected through the Iub port, and the terminal accesses the packet domain core network (Packet Core) of the UMTS through the RNS;
  • Packet Core packet domain core network
  • SGSN Serving GPRS Support Node
  • the Gateway GPRS Support Node is internally connected to the SGSN through the Gn port and is used to allocate the IP address of the terminal and implement the gateway function to the external network.
  • the SGSN is connected to the GGSN through the Gc interface, and is used to store the subscription data of the user and the current SGSN address;
  • a Packet Data Network (PDN) is connected to the GGSN through the Gi port to provide a packet-based service network for users.
  • the UE needs to transmit data information to the MTC Server or other MTC UEs through the GPRS network transmission.
  • the GPRS network establishes a tunnel between the RNC-SGSN and the GGSN for the transmission.
  • the tunnel is based on the GPRS Tunneling Protocol (GTP), and the data information is reliably transmitted through the GTP tunnel.
  • GTP GPRS Tunneling Protocol
  • SAE System Architecture Evolution
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • UTRAN Universal Terrestrial Radio Access Network
  • WLAN Wireless Local Area Network
  • Evolved Radio Access Network Evolved Radio Access Network
  • eNodeB Evolved NodeB
  • PDN Packet Data Network
  • EPC provides lower latency and allows more wireless access systems Access, which includes the following network elements:
  • a Mobility Management Entity is a control plane function entity that temporarily stores user data and is responsible for managing and storing the context of the UE (eg, user identity, mobility management status, user security parameters, etc.). The user is assigned a temporary identifier, and when the UE is camped on the tracking area or the network, it is responsible for authenticating the user.
  • a Serving Gateway is a user plane entity responsible for user plane data routing processing and terminating downlink data of UEs in idle (ECM_IDLE) state. Manage and store the SAE bearer context of the UE, such as IP bearer service parameters and network internal routing information. SGW is the anchor point of the internal user plane of the 3GPP system. The user can only have one SGW at a time.
  • the packet data network gateway (PDN Gateway, PGW or P-GW for short) is the gateway responsible for the UE accessing the PDN, and assigns the user IP address. It is also the mobility anchor of the 3GPP and non-3GPP access systems.
  • the functions of the PGW also include Policy implementation, billing support. Users can access multiple PGWs at the same time.
  • the Policy and Charging Enforcement Function (PCEF) is also located in the PGW.
  • the foregoing SGW and PGW may be unified, and the EPC system user plane network element includes an SGW and a PGW.
  • the Policy and Charging Rules Function (PCRF) is responsible for providing policy control and charging rules to the PCEF.
  • the Home Subscriber Server (HSS) is responsible for permanently storing user subscription data.
  • the content stored in the HSS includes the International Mobile Subscriber Identification (IMSI) of the UE and the IP address of the PGW.
  • IMSI International Mobile Subscriber Identification
  • the MTC server is mainly responsible for information collection and data storage/processing of the MTC User Equipment (MTC UE), and can perform necessary management on the MTC UE.
  • MTC UE MTC User Equipment
  • the MTC UE is usually responsible for collecting information of several collectors and accessing the core network through the RAN node to exchange data with the MTC Server.
  • the MTC UE needs to transmit data information to the MTC Server or other MTC UEs through the EPS network.
  • the SAE network establishes a GTP tunnel between the SGW and the PGW for this transmission, and the data information is reliably transmitted through the GTP tunnel.
  • the MTC enhancement architecture of the PS network is shown in Figure 3, and is introduced in the PS network architecture.
  • the MTC Server is used to provide M2M application control for users.
  • the MTC Server is mainly responsible for information collection and data storage/processing of the MTC device, and necessary management of the MTC device (MTC UE).
  • the MTC IWF network element is responsible for network topology hiding and application layer and bearer layer protocol conversion.
  • the MTCsp interface is used to connect with the MTC Server.
  • the function of the existing MTC IWF is mainly to receive the activation message of the MTC server, and send the activation message to the MTC terminal through the relevant network element of the 3GPP network.
  • terminal power saving generally has two modes: One is to use the discontinuous reception (DRX) parameter to control the intermittent operation in the Connected state to achieve the purpose of power saving, when the DRX parameter is enabled.
  • the segment terminal transmits and receives IP data packets, and does not perform packet processing during the period when the DRX parameter is not enabled.
  • the other is the idle (Idle) mode.
  • DRX discontinuous reception
  • the terminal ensures that the communication module works to monitor the broadcast channel of the network, and other unnecessary application software such as a screen display, a keyboard, etc. can be turned off.
  • the terminal needs to activate all modules and enter normal operation.
  • the terminal can establish a wireless connection and initiate data services.
  • the more optimized power saving mode is: When the terminal is in the idle mode, the terminal can enter the sleep state, and the terminal can Turn off the wireless communication module and other unnecessary application software to minimize power consumption.
  • the terminal needs to initiate the service and then activate and enter normal operation, it can initiate an access request to the network and initiate data services.
  • the current power saving scheme is terminal controlled.
  • the frequency reduction or application shutdown can be used to save power, for example, the input is turned off/
  • the output module, the display module, and the processor are switched to the power saving mode, but the network side is not notified.
  • the terminal In the idle mode, the terminal only uses the terminal to turn off the screen to save power. Since the network does not have a power saving policy for the terminal, even if the terminal has power saving requirements, the network side will perform location update according to the normal process.
  • the operation such as radio paging enables the terminal in the power saving mode to frequently receive the wireless signal and perform data processing, and the optimal effect of power saving of the terminal cannot be achieved.
  • the above-mentioned terminal enters the sleep state in the idle mode, although the power saving effect is good, but the problem is that the 3GPP network does not control the terminal how to receive the paging during the sleep period, and the 3GPP network cannot be in the sleep period after the terminal enters the sleep state. Internal paging terminal, therefore unable to achieve terminal call Business.
  • the sleep time exceeds the time of the terminal's periodic location update, it may result in
  • the 3GPP network side initiates implicit deactivation of the terminal.
  • the terminal needs to exit the sleep state and then attach to the network again to initiate the uplink and downlink services, resulting in network signaling resource consumption and reducing the user experience.
  • the terminal after the terminal accesses the 3GPP network, the terminal has power saving requirements, and the 3GPP network should be able to formulate a corresponding power saving policy for the terminal, and notify the terminal and each required network side network element. Ensure that the terminal can achieve the purpose of power saving, and does not affect the mobility management and downlink services of the network to the terminal, and avoid unnecessary signaling plane and user plane resource consumption on the network side, thereby ensuring optimal power saving of the terminal. Nor does it reduce the 3GPP user experience. Summary of the invention
  • the technical problem to be solved by the present invention is to provide a terminal power saving method, a terminal power saving device and a network side power saving device, which solve the problem of lack of network side control capability in the terminal power saving process in the prior art and save power for the terminal.
  • the problem provides a new solution.
  • the present invention provides a terminal power saving method, including: a terminal accessing a network, a network side network element determining an idle mode power saving parameter of the terminal, and notifying the idle mode power saving parameter to the After the terminal enters the idle mode, the terminal performs a power saving operation according to the idle mode power saving parameter.
  • the idle mode power saving parameter includes a terminal active time parameter, where the active time parameter includes an active window time period and a sleep time period, and after the terminal enters the idle mode, receives a paging message of the network side in the active window time period, The paging message on the network side is not received during the sleep period.
  • the terminal activity time parameter includes a sleep time period parameter, and the sleep time period includes one or more of the active window time period and the sleep time period, and the terminal performs a power saving operation within the sleep time period after entering the idle mode.
  • the value of the sleep period defaults to a long periodic location area update time (TAU) parameter or a normal periodic location area update time parameter.
  • the idle mode power saving parameter further includes a long periodic location area update time (TAU) parameter,
  • TAU long periodic location area update time
  • the value of the long periodic TAU parameter is greater than the value of the normal periodic location area update time parameter.
  • the network side network element further determines a connection mode power saving parameter of the terminal, and notifies the connection mode power saving parameter to the terminal, where the connection mode power saving parameter includes a long discontinuous receiving parameter, and the long non-continuous parameter
  • the value of the data transmission and reception off time in the receiving parameter is greater than the value of the data transmission and reception off time in the ordinary discontinuous reception parameter.
  • the network side network element determines that the terminal is a power saving terminal according to an International Mobile Subscriber Identity (IMSI) identifier and an Access Point Name (APN) of the terminal.
  • IMSI International Mobile Subscriber Identity
  • API Access Point Name
  • the network side network element is a network side mobility management network element
  • the reference terminal activity time parameter of the user plane network element the reference terminal activity time parameter of the terminal side
  • the operator policy At least one of determining the terminal activity time parameter of the terminal.
  • the network side network element is a network side user plane network element
  • determining the terminal according to at least one of a reference terminal activity time parameter of the user plane network element, a reference terminal activity time parameter of the terminal side, and an operator policy.
  • the terminal activity time parameter is a reference terminal activity time parameter of the user plane network element, a reference terminal activity time parameter of the terminal side, and an operator policy.
  • the network-side mobility management network element determines, for the power-saving terminal, a value of a long-period location area update time parameter for the idle mode and a value of the long discontinuous reception parameter for the connection mode according to the operator policy.
  • the present invention further provides a terminal power saving device, including: a power saving parameter receiving module and a power saving executing module;
  • the power saving parameter receiving module is configured to: receive an idle mode power saving parameter from a network side; and the power saving executing module is configured to: perform a power saving operation according to the idle mode power saving parameter after the terminal enters an idle mode.
  • the above terminal power saving device can also have the following features:
  • the power saving execution module is configured to: after the terminal enters an idle mode, receive a paging message on the network side in an active window time period in the idle mode power saving parameter, where the idle mode power saving parameter The paging message on the network side is not received during the sleep period in the middle.
  • the above terminal power saving device can also have the following features:
  • the power saving execution module is configured to: after the terminal enters an idle mode, perform a power saving operation in a sleep time period in the idle mode power saving parameter, and receive a network in an active window time period of a sleep time period The paging message on the side does not receive the paging message on the network side during the sleep period of the sleep period.
  • the above terminal power saving device can also have the following features:
  • the terminal power saving device further includes a reference power saving parameter sending module configured to send the power saving indication or the reference terminal active time parameter to the network side according to the static configuration of the terminal and/or the operator policy.
  • the present invention further provides a network side power saving device, including: a power saving parameter determining module and a power saving parameter sending module;
  • the power saving parameter determining module is configured to: determine an idle mode power saving parameter of the terminal; and the power saving parameter sending module is configured to: send the idle mode power saving parameter to the terminal.
  • the network side power saving device further includes a reference power saving parameter receiving module
  • the reference power saving parameter receiving module is configured to: receive the subscribed terminal active time parameter, the reference terminal active time parameter of the user plane network element, and the reference terminal active time parameter of the terminal side to One less; and
  • the power saving parameter determining module is configured to: determine, according to at least one of a subscribed terminal active time parameter, a reference terminal active time parameter of the user plane network element, a reference terminal active time parameter of the terminal side, and an operator policy, The terminal activity time parameter in the idle mode power saving parameter; the active time parameter includes an active window time period and a sleep time period, and the operation in the active window time period corresponds to the terminal in the idle mode receiving the paging message on the network side The operation in the sleep period corresponds to an operation in which the terminal in the idle mode does not receive the paging message on the network side.
  • the power saving parameter determining module is further configured to: determine a long periodic location area update time (TAU) parameter in the idle mode power saving parameter, where the value of the long periodic location area update time parameter is greater than a normal periodic position The value of the zone update time parameter.
  • TAU long periodic location area update time
  • the power saving parameter determining module is further configured to: determine a connection mode power saving parameter of the terminal, the connection mode power saving parameter includes a long discontinuous receiving parameter, and a value of a data sending and receiving closing time in the long discontinuous receiving parameter It is greater than the value of the data transmission and reception off time in the normal discontinuous reception parameter.
  • the network side power saving device further includes a power saving execution module
  • the power-saving execution module is configured to: when the network element of the network side is the mobility management network element, the downlink paging for the terminal is not performed during the sleep period of the terminal; When the user plane side network element is in the sleep period of the terminal, the downlink data packet for the terminal is not sent; when the network side network element belongs to the machine type communication interworking function network element, during the sleep period of the terminal, A downlink terminal activation request for the terminal is not performed.
  • the present invention further provides a terminal power saving method, including: a network side mobility management network element notifying a terminal activity time parameter of a terminal to a network side machine type communication interworking function network element (MTC IWF) or a network side user plane network element, where the activity time parameter includes an active window time period and a sleep time period;
  • MTC IWF network side machine type communication interworking function network element
  • the MTC IWF or the network side user plane network element does not perform downlink signaling or downlink data transmission to the terminal during the sleep period of the terminal.
  • the above terminal power saving method can also have the following features:
  • the network-side mobility management network element directly notifies the terminal activity time parameter of the terminal to the MTC IWF through a T5 interface.
  • the terminal power saving method may also have the following features: the server, the home subscriber server saves the terminal activity time parameter in the subscription data or the terminal context information, when the network side mobility management network element receives the MTC When the terminal of the IWF routes the query information to the terminal, the saved terminal active time parameter of the terminal is notified to the MTC IWF.
  • the above terminal power saving method can also have the following features:
  • the network side mobility management network element After receiving the downlink data notification message sent by the network element user plane network element, the network side mobility management network element carries the terminal activity time of the terminal in the reject message sent to the network side user plane network element. parameter.
  • the 3GPP network side network element determines the final terminal activity time parameter, the long TAU time, and the long DRX parameter for the terminal according to the operator policy and the reference power saving parameter. And other power saving parameters.
  • the terminal can perform more optimized power saving control through the long DRX parameter; in the idle mode, the terminal can receive the paging message during the active window period, and close the wireless transceiver system during the sleep period, thereby greatly reducing the terminal's Power consumption, to achieve the purpose of saving electricity.
  • the terminal can still be triggered by the active time period to trigger the terminal to receive downlink data, so the user experience is not reduced.
  • the network side can further notify the MTC IWF and the user plane network element GGSN/PGW to ensure that no downlink data or downlink activation is accepted outside the active time window, thereby reducing the load pressure on the network and saving.
  • the optimized current limiting process of the invention enables the terminal to significantly achieve the effect of power saving.
  • FIG. 1 is a schematic diagram of a GPRS network system architecture in the prior art
  • FIG. 2 is a schematic structural diagram of an EPS network system in the prior art
  • 3 is a schematic diagram of an enhanced PS network system architecture for satisfying M2M requirements
  • FIG. 4 is a schematic diagram of a terminal power saving method in an embodiment
  • FIG. 11 are flowcharts of specific implementation manners 1 to 7 of the GPP network side for performing power saving parameter decision;
  • the problem of optimal power-saving control of the network side to the terminal is mainly solved, the power saving effect of the terminal is optimized, and the terminal service is not significantly affected.
  • the terminal power saving method includes: a terminal accessing a network, a network side network element determining an idle mode power saving parameter of the terminal, and notifying the idle mode power saving parameter to the terminal, where the terminal enters an idle state. After the mode, the power saving operation is performed according to the idle mode power saving parameter.
  • the idle mode power saving parameter includes a terminal active time parameter, where the active time parameter includes an active window time period and a sleep time period, and after the terminal enters the idle mode, receives a paging message of the network side in the active window time period, The paging message on the network side is not received during the sleep period.
  • the terminal activity time parameter further includes a sleep time period parameter, and the sleep time period includes one or more of the active window time period and the sleep time period, and the terminal needs to perform power saving during the sleep time period after performing the idle mode. operating.
  • the value of the sleep period may default to a long periodic location area update time (TAU) parameter or a normal periodic location area update time parameter, and the value of the long periodic TAU parameter is greater than the value of the ordinary periodic TAU parameter (ordinary The value of the periodic TAU parameter refers to the value defined in the existing standard or the value commonly used in specific communication system applications)
  • TAU long periodic location area update time
  • the value of the periodic TAU parameter refers to the value defined in the existing standard or the value commonly used in specific communication system applications
  • the value of the sleep time period defaults to the value of the periodic TAU, the value of the sleep time period does not need to be carried in the terminal active time parameter.
  • the value of the sleep time period is other values, the value of the sleep time period needs to be carried in the terminal active time parameter.
  • the idle mode power saving parameter further includes a long periodic location area update time (TAU) parameter, and the value of the long periodic TAU parameter is greater than a value of the normal periodic location area update time parameter.
  • TAU long periodic location area update time
  • the network side network element further determines a connection mode power saving parameter of the terminal, and notifies the connection mode power saving parameter to the terminal, where the connection mode power saving parameter includes a long discontinuous receiving parameter, and the long non-continuous parameter
  • the connection mode power saving parameter includes a long discontinuous receiving parameter, and the long non-continuous parameter
  • the value of the data transmission and reception off time in the receiving parameter is greater than the value of the data transmission and reception off time in the ordinary discontinuous reception parameter (the value of the ordinary discontinuous reception parameter refers to the value defined in the existing standard or the value commonly used in the specific communication system application) Therefore, the non-working time of the terminal can be longer, which is conducive to power saving.
  • the network side network element determines, according to the power saving indication sent by the terminal, that the terminal is a power saving terminal, or the network side network element identifies and connects according to an International Mobile Subscriber Identity (IMSI) of the terminal.
  • IMSI International Mobile Subscriber Identity
  • the in-point name (APN) determines that the terminal is a power-saving terminal, thereby conveniently determining that the terminal is a terminal that needs to save power, thereby formulating a power-saving policy for the terminal, and performing power-saving control.
  • the network side network element is a network side mobility management network element (SGSN/MME)
  • SGSN/MME network side mobility management network element
  • the network side network element is a network side user plane network element (GGSN/PGW), according to at least one of a reference terminal activity time parameter of the user plane network element, a reference terminal activity time parameter of the terminal side, and an operator policy. Determining the terminal activity time parameter of the terminal.
  • GGSN/PGW network side user plane network element
  • the network side mobility management network element determines, for the power saving terminal, a value of a long periodic location area update time parameter for the idle mode and a long discontinuous reception parameter for the connection mode according to the operator policy. value.
  • the network side mobility management network element (SGSN/MME) does not perform downlink paging for the terminal during the sleep period of the terminal; the network side user plane network element (GGSN/PGW) is at the terminal During the sleep period, downlink packets for the terminal are not sent.
  • the terminal power saving device in the solution includes: a power saving parameter receiving module and a power saving executing module.
  • the power saving parameter receiving module is configured to: receive an idle mode power saving parameter from a network side; and the power saving executing module is configured to: perform a power saving operation according to the idle mode power saving parameter after the terminal enters an idle mode.
  • the power saving execution module is configured to: after the terminal enters an idle mode, receive a paging message on the network side in an active window time period in the idle mode power saving parameter, and save power in the idle mode The paging message on the network side is not received during the sleep period in the parameter.
  • the power saving execution module is configured to: perform a power saving operation in a sleep time period in the idle mode power saving parameter after the terminal enters an idle mode, and receive a network side search in an active window time period of the sleep time period The call message does not receive the paging message on the network side during the sleep period of the sleep period.
  • the terminal power saving device further includes a reference power saving parameter sending module configured to send the power saving indication or the reference terminal active time parameter to the network side according to the static configuration of the terminal and/or the operator policy.
  • the network side power saving device in the solution includes: a power saving parameter determining module and a power saving parameter transmitting module.
  • the power saving parameter determining module is configured to: determine an idle mode power saving parameter of the terminal; and the power saving parameter sending module is configured to: send the idle mode power saving parameter to the terminal.
  • the network side power saving device further includes a reference power saving parameter receiving module.
  • the reference power saving parameter receiving module is configured to: receive at least one of a contracted terminal activity time parameter, a reference terminal activity time parameter of the user plane network element, and a reference terminal activity time parameter of the terminal side;
  • the power saving parameter determining module is configured to: according to the contracted terminal activity time parameter, the user plane At least one of a reference terminal activity time parameter of the network element, a reference terminal activity time parameter of the terminal side, and an operator policy determines a terminal activity time parameter in the idle mode power saving parameter of the terminal; the activity time parameter includes an activity The window period and the sleep period, the operation in the active window period corresponds to an operation in which the terminal in the idle mode receives the paging message on the network side, and the operation in the sleep period corresponds to the terminal in the idle mode does not receive the network. The operation of the paging message on the side.
  • the power saving parameter determining module is further configured to: determine a long periodic location area update time (TAU) parameter in the idle mode power saving parameter, where the value of the long periodic location area update time parameter is greater than a normal periodic position The value of the zone update time parameter.
  • TAU long periodic location area update time
  • the power saving parameter determining module is further configured to: determine a connection mode power saving parameter of the terminal, the connection mode power saving parameter includes a long discontinuous receiving parameter, and a value of a data sending and receiving closing time in the long discontinuous receiving parameter It is greater than the value of the data transmission and reception off time in the normal discontinuous reception parameter.
  • the network side power saving device further includes a power saving execution module.
  • the power-saving execution module is configured to: when the network element of the network side is the mobility management network element, the downlink paging for the terminal is not performed during the sleep period of the terminal; When the network side user plane network element is in the sleep period of the terminal, the downlink data packet for the terminal is not sent; when the network side network element belongs to the machine type communication interworking function network element, during the sleep period of the terminal The downlink terminal activation request for the terminal is not performed.
  • a terminal is a terminal having a power saving requirement
  • the network-side mobility management network element SGSN/MME may be based on the accessed IMSI identifier, or according to The specific APN in the contract is used to identify that the terminal needs to save power.
  • the SGSN/MME determines a terminal activity time parameter for the terminal according to the operator's policy, and can also formulate a power saving policy, such as setting a long periodic location area update time parameter for the terminal for power saving demand, and adjusting the DRX used in the Connected mode.
  • the parameters are long DRX parameters and so on.
  • Step 101 The 3GPP terminal initiates an attach or location update request to the RAN access network of the 3GPP network, the RAN selects a serving SGSN/MME, and sends the request to the SGSN/MME.
  • Step 102 The SGSN/MME sends a location update request to the HSS, and the HSS identifies the terminal as an unrestricted terminal according to the IMSI identifier, and searches for the subscription data of the terminal.
  • Step 103 The HSS sends the subscription information of the terminal to the SGSN/MME, and the SGSN/MME performs access authentication on the terminal.
  • Step 104 The SGSN/MME is configured according to the IMSI identifier of the access (in the IMSI plan, a dedicated IMSI identification interval may be planned for the power saving terminal), or according to a specific APN (APN is specifically used for power saving) in the subscription. Identifying the terminal requires power saving.
  • the SGSN/MME determines a terminal activity time parameter for the terminal according to the operator's policy, and can also formulate a power saving policy, such as setting a long periodic location area update time parameter for the terminal for power saving demand, and adjusting the DRX used in the Connected mode.
  • the parameters are long DRX parameters and so on.
  • the time period of the long periodic position area update time parameter is longer than the time period of the normal periodic position area update time parameter, so that the time period in which the terminal enters the Connected mode is greatly extended, which is beneficial to the terminal power saving.
  • the value of the data transmission and reception off time in the long discontinuous reception parameter is larger than the value of the data transmission and reception off time in the ordinary discontinuous reception parameter, so that the terminal non-working time can be longer, which is conducive to power saving.
  • Step 105 After the SGSN/MME determines the relevant power saving parameter, the SGSN/MME carries the power saving parameter in the access request response message and notifies the terminal in time, and the terminal performs a power saving operation according to the power saving parameter, and the power saving parameter includes at least the terminal active time.
  • Parameters can also include long TAU time parameters, long DRX parameters, and so on.
  • the terminal activity time parameter may include a sleep time, and one or more active window time periods (referred to as active time periods, the same below) and a sleep time period (active time periods during sleep time) during the sleep time period.
  • the outer side of the time is called the sleep period). If the sleep time defaults to TAU time, it may not be included in the terminal activity time parameter.
  • the system default sleep time is the TAU time.
  • the terminal activity time parameter should contain at least one or more active window periods and sleep time. Paragraph.
  • the terminal can receive a paging (Paging) message during the active window period, and cannot receive the wireless signal during the sleep period, and cannot receive the paging message.
  • Paging paging
  • power saving control can be implemented according to the adjusted long DRX parameters. IP packets are sent and received in the DRX on cycle, and IP packets are stopped and sent during the DRX off period. Compared with the normal DRX parameters, the DRX parameters for power saving have shorter DRX on time and longer DRX off time.
  • the terminal active time parameter is used for power saving control, and the wireless system is turned on to receive the Paging message during the active time period, and if there is a Paging message, the connection mode is re-entered.
  • the wireless system is turned off during the sleep period and does not receive Paging messages.
  • multiple active time periods can be defined in the long sleep time, and the average distribution time is solved in the sleep time period.
  • the long sleep time needs to be less than or equal to the long TAU period, preventing the SGSN/MME from performing an implicit Detach operation on the terminal because the terminal does not initiate periodic location area update.
  • FIG. 6 is a schematic flowchart of a second embodiment.
  • the terminal is a terminal having a power saving requirement.
  • the request message carries a power saving indication to the network side, and the notification is a power saving terminal.
  • the network side mobility management network element SGSN/MME identifies the terminal to perform power saving according to the power saving indication.
  • the SGSN/MME determines a terminal activity time parameter for the terminal according to the operator's policy, and can also formulate a power saving policy, such as setting a long periodic location area update time parameter for the terminal for power saving demand, and adjusting the DRX used in the Connected mode.
  • the parameters are long DRX parameters and so on.
  • the SGSN/MME formulates the relevant power-saving parameters, it needs to notify the terminal in time, and the terminal performs the power-saving operation according to the power-saving parameters.
  • the steps 201-206 are included:
  • Step 201 The 3GPP terminal initiates an attach or location update request to the RAN access network of the 3GPP network, and carries a power saving indication.
  • the RAN selects a serving SGSN/MME and sends the access request carrying the power saving indication to the SGSN/MME.
  • the terminal has two kinds of active terminals and passive terminals. Whether the passive terminal needs the network to optimize power saving can be statically configured as a characteristic of the terminal on the terminal, and the power saving indication can be carried when the terminal accesses.
  • Step 203 The HSS sends the subscription information of the terminal to the SGSN/MME, and the SGSN/MME performs access authentication on the terminal.
  • Step 204 The SGSN/MME identifies, according to the power saving indication, whether the terminal needs to save power.
  • the SGSN/MME determines a terminal activity time parameter for the terminal according to the operator's policy, and can also formulate a power saving policy, such as setting a long periodic location area update time parameter for the terminal for power saving demand, and adjusting the DRX used in the Connected mode.
  • the parameters are long DRX parameters and so on.
  • Step 205 After the SGSN/MME determines the relevant power saving parameter, the SGSN/MME carries the power saving parameter in the access request response message and notifies the terminal in time, and the terminal performs a power saving operation according to the power saving parameter, and the power saving parameter includes at least the terminal activity time parameter. It can also contain long TAU time parameters, DRX parameters, and so on.
  • Step 206 After receiving the power saving parameter, the terminal performs a power saving operation, and the specific power saving operation scheme is described in step 106.
  • a terminal is a terminal having a power saving requirement.
  • the request message carries the reference terminal activity time parameter to the network side, and the network side terminal needs to be defined. Power saving during the sleep period.
  • the network-side mobility management network element SGSN/MME determines a terminal activity time parameter for the terminal according to the reference terminal activity time parameter and the operator's policy, and can also formulate a power saving policy, such as formulating a long periodicity for the terminal that saves power demand.
  • the location area update time parameter is adjusted, and the DRX parameter used in the Connected mode is adjusted to a long DRX parameter.
  • the SGSN/MME formulates the relevant power-saving parameters, it needs to notify the terminal in time, and the terminal performs the power-saving operation according to the power-saving parameters.
  • the steps include: 301-306:
  • Step 301 The 3GPP terminal initiates an attach or location update request to the RAN access network of the 3GPP network, and carries the reference terminal activity time parameter.
  • the RAN selects a serving SGSN/MME, and sends the access request carrying the reference terminal active time parameter to the SGSN/MME, indicating that the network side terminal needs to define a sleep time period for power saving.
  • Step 302 The SGSN/MME sends a location update request to the HSS, and the HSS identifies the terminal as an unrestricted terminal according to the IMSI identifier, and searches for the subscription data of the terminal.
  • Step 303 The HSS sends the subscription information of the terminal to the SGSN/MME, and the SGSN/MME performs access authentication on the terminal.
  • Step 304 The SGSN/MME determines a terminal activity time parameter for the terminal according to the reference terminal activity time parameter and the operator's policy, and can formulate a power saving policy, for example, formulating a long periodic location area for the terminal that saves power demand. Update the time parameters, adjust the DRX parameters used in Connected mode to long DRX parameters, and so on.
  • Step 305 After the SGSN/MME determines the relevant power saving parameter, the SGSN/MME carries the power saving parameter in the access request response message and notifies the terminal in time, and the terminal performs a power saving operation according to the power saving parameter, and the power saving parameter includes at least the terminal active time parameter. It can also include long TAU time parameters, long DRX parameters, and so on.
  • Step 306 The terminal performs the power saving operation after receiving the power saving parameter, and the specific power saving operation scheme is described in step 106.
  • a terminal is a terminal having a power saving requirement.
  • the request message carries the reference terminal activity time parameter to the network side, and the network side terminal needs to be defined.
  • the terminal activity time parameter is also signed in the HSS contract information.
  • the network-side mobility management network element SGSN/MME determines a terminal activity time parameter for the terminal according to the reference terminal activity time parameter, the operator's policy, and the contracted terminal activity time parameter, and can also formulate a power-saving policy, such as a power-saving requirement.
  • the terminal establishes a long periodic location area update time parameter, and adjusts the DRX parameter used in the Connected mode to a long DRX parameter.
  • the SGSN/MME formulates the relevant power-saving parameters, it needs to notify the terminal in time, and the terminal performs the power-saving operation according to the power-saving parameters. Specifically, it includes steps 401-406:
  • Step 401 The 3GPP terminal initiates an attach or location update request to the RAN access network of the 3GPP network, and carries the reference terminal activity time parameter.
  • the RAN selects a serving SGSN/MME, and sends the access request carrying the reference terminal active time parameter to the SGSN/MME, indicating the end of the network side. The end needs to define a sleep period to save power.
  • Step 402 The SGSN/MME sends a location update request to the HSS.
  • the HSS identifies the terminal as an unrestricted terminal according to the IMSI identifier, and searches for the subscription data of the terminal.
  • the subscription information includes the subscription terminal activity time parameter.
  • Step 403 The HSS sends the subscription information of the terminal to the SGSN/MME, and the SGSN/MME obtains the activity time parameter of the subscription terminal from the subscription information, and performs access authentication on the terminal.
  • Step 404 The SGSN/MME determines a terminal activity time parameter for the terminal according to the reference terminal activity time parameter, the operator's policy, and the contracted terminal activity time parameter, and can also formulate a power saving strategy, such as setting a terminal for power saving demand.
  • a long periodic position area update time parameter, and the DRX parameter used in the Connected mode is adjusted to a long DRX parameter.
  • Step 405 After the SGSN/MME determines the relevant power saving parameter, the SGSN/MME carries the power saving parameter in the access request response message and notifies the terminal in time, and the terminal performs a power saving operation according to the power saving parameter, and the power saving parameter includes at least the terminal active time parameter. It can also contain long TAU time parameters, long DRX parameters, and so on.
  • Step 406 The terminal performs the power saving operation after receiving the power saving parameter, and the specific power saving operation scheme is described in step 106.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • a terminal is a terminal having a power saving requirement.
  • the request message carries a power saving indication to the network side, indicating that the network side terminal needs power saving, and
  • the terminal activity time parameter is also signed in the contract information of the HSS, and the network side mobility management network element SGSN/MME determines the terminal according to the operator's policy, the contracted terminal activity time parameter, and the parameter terminal activity time parameter of the user plane.
  • a terminal activity time parameter, and a power saving strategy can be formulated at the same time, for example, a long periodic position area update time parameter is set for the terminal for power saving demand, and the DRX parameter used in the Connected mode is adjusted to a long DRX parameter.
  • the SGSN/MME formulates the relevant power-saving parameters, it needs to notify the terminal in time, and the terminal performs the power-saving operation according to the power-saving parameters.
  • the steps include: 501-508: Step 501: The 3GPP terminal initiates an attach or location update request to the RAN access network of the 3GPP network, and carries a power saving indication.
  • the RAN selects a serving SGSN/MME, and sends the access request carrying the power saving indication to the SGSN/MME, indicating that the network side terminal needs to save power.
  • Step 502 The SGSN/MME sends a location update request to the HSS.
  • the HSS identifies the terminal as an unrestricted terminal according to the IMSI identifier, and searches for the subscription data of the terminal.
  • the subscription information includes the subscription terminal activity time parameter.
  • Step 503 The HSS sends the subscription information of the terminal to the SGSN/MME, and the SGSN/MME obtains the activity time parameter of the subscription terminal from the subscription information, and performs access authentication on the terminal.
  • Step 504 The SGSN/MME sends a bearer setup or bearer modification request to the user plane network element GGSN/PGW, and requests to establish a user plane bearer for the terminal.
  • Step 505 The GGSN/PGW sends the reference terminal active time parameter of the user plane side to the SGSN/MME in the bearer setup/bearer modification response message.
  • the GGSN/PGW may also determine a reference terminal activity time parameter based on the historical data of the user plane carrying packet traffic monitoring.
  • Step 506 The SGSN/MME determines a terminal activity time parameter for the terminal according to the operator's policy, the contracted terminal activity time parameter, and the reference terminal activity time parameter of the user plane, and can also formulate a power saving policy, such as a power saving requirement.
  • the terminal develops a long periodic location area update time parameter, and adjusts the DRX parameter used in the Connected mode to a long DRX parameter.
  • Step 507 After the SGSN/MME formulates the relevant power saving parameter, the SGSN/MME carries the power saving parameter in the access request response message and notifies the terminal in time, and the terminal performs a power saving operation according to the power saving parameter, and the power saving parameter includes at least the terminal activity time parameter. It can also contain long TAU time parameters, long DRX parameters, and so on.
  • Step 508 The terminal performs the power saving operation after receiving the power saving parameter, and the specific power saving operation scheme is described in step 106.
  • the terminal is a terminal having a power saving requirement, and is terminated.
  • the request message carries the reference terminal activity time parameter to the network side, and the network side terminal is notified to define a sleep time period for power saving, and the terminal activity time parameter is also signed in the HSS subscription information.
  • the user plane network element GGSN/PGW may also provide a reference terminal activity time parameter to the SGSN/MME.
  • the network-side mobility management network element SGSN/MME determines a terminal activity time parameter for the terminal according to the reference terminal activity time parameter, the operator's policy, the contracted terminal activity time parameter, and the parameter terminal activity time parameter of the user plane, and can also formulate a section.
  • the electrical strategy for example, formulates a long-period location area update time parameter for the terminal that saves power demand, and adjusts the DRX parameter used in the Connected mode to a long DRX parameter.
  • the SGSN/MME formulates the relevant power-saving parameters, it needs to notify the terminal in time, and the terminal performs the power-saving operation according to the power-saving parameters.
  • the steps include: 601-608:
  • Step 601 The 3GPP terminal initiates an attach or location update request to the RAN access network of the 3GPP network, and carries the reference terminal activity time parameter.
  • the RAN selects a serving SGSN/MME, and sends the access request carrying the reference terminal active time parameter to the SGSN/MME, instructing the network side terminal to define a sleep time period for power saving.
  • Step 602 The SGSN/MME sends a location update request to the HSS.
  • the HSS identifies the terminal as an unrestricted terminal according to the IMSI identifier, and searches for the subscription data of the terminal.
  • the subscription information includes the subscription terminal activity time parameter.
  • Step 603 The HSS sends the subscription information of the terminal to the SGSN/MME, and the SGSN/MME obtains the activity time parameter of the subscription terminal from the subscription information, and performs access authentication on the terminal.
  • Step 604 The SGSN/MME sends a bearer setup or bearer modification request to the user plane network element GGSN/PGW, and requests to establish a user plane bearer for the terminal.
  • Step 605 The GGSN/PGW sends the reference terminal active time parameter of the user plane side to the SGSN/MME in the bearer setup/bearer modification response message.
  • the GGSN/PGW may also determine a reference terminal activity time parameter based on the historical data of the user plane carrying packet traffic monitoring.
  • Step 606 The SGSN/MME determines a terminal for the terminal according to the reference terminal activity time parameter, the operator's policy, the contracted terminal activity time parameter, and the reference terminal activity time parameter of the user plane.
  • the terminal activity time parameter can be used to formulate a power saving strategy. For example, a long-period location area update time parameter is set for the terminal that saves power demand, and the DRX parameter used in the Connected mode is adjusted to a long DRX parameter.
  • Step 607 After the SGSN/MME formulates the relevant power saving parameter, the SGSN/MME carries the power saving parameter in the access request response message and notifies the terminal in time, and the terminal performs a power saving operation according to the power saving parameter, and the power saving parameter includes at least the terminal active time parameter. , can also include long TAU time parameters, long DRX parameters, and so on.
  • Step 608 The terminal performs the power saving operation after receiving the power saving parameter, and the specific power saving operation scheme is described in step 106.
  • a terminal is a terminal having a power saving requirement.
  • the request message carries the reference terminal active time parameter to the network side, and the network side terminal needs to be defined.
  • the power saving period during the sleep period can also carry the power saving indication.
  • a terminal activity time parameter is determined for the terminal, and the terminal activity time parameter is notified to the terminal in time, and the terminal performs a power saving operation according to the terminal activity time parameter. Specifically, it includes steps 701-708:
  • Step 701 The 3GPP terminal initiates an attach or location update request to the RAN access network of the 3GPP network, and carries the reference terminal activity time parameter or the power saving indication, which can be carried in the PCO parameter.
  • the RAN selects a serving SGSN/MME, and sends the access request carrying the reference terminal active time parameter or the power saving indication to the SGSN/MME, indicating that the network side terminal needs to define a sleep time period for power saving.
  • Step 702 The SGSN/MME sends a location update request to the HSS, and the HSS identifies the terminal as an unrestricted terminal according to the IMSI identifier, and searches for the subscription data of the terminal.
  • Step 703 The HSS sends the subscription information of the terminal to the SGSN/MME, and the SGSN/MME performs access authentication on the terminal.
  • Step 704 The SGSN/MME sends a bearer setup or bearer modification request to the user plane network element GGSN/PGW, requesting to establish a user plane bearer for the terminal, and the request message includes the reference terminal activity.
  • the inter-parameter or power-saving indication can be placed in the PCO parameter.
  • Step 705 The SGSN/MME determines a terminal activity time parameter for the terminal according to the reference terminal activity time parameter, the operator's policy, and the reference terminal activity time parameter of the user plane.
  • the GGSN/PGW may also determine a reference terminal activity time parameter based on the historical data of the user plane carrying packet traffic monitoring.
  • Step 706 The GGSN/PGW sends the terminal activity time parameter to the SGSN/MME in the bearer setup/bearer modification response message, and the terminal activity time parameter may be included in the PCO parameter.
  • Step 707 The SGSN/MME sends the terminal activity time parameter to the terminal in the access request response message, and the terminal activity time parameter may be included in the PCO parameter.
  • the terminal performs a power saving operation according to the terminal active time parameter.
  • Step 708 The terminal performs a power saving operation after receiving the terminal activity time parameter, and the specific power saving operation scheme is described in step 106. It should be noted that, in order to prevent the SGSN/MME from knowing the sleep time of the terminal, when the sleep time exceeds the TAU time, there is a risk of implicit Detach. In the actual time parameter setting, the TAU time can be defaulted to the terminal sleep time, GGSN. /MME only needs to set the terminal activity time window period.
  • the network side network element can notify the MTC IWF or the user plane network element GGSN/PGW in multiple ways, such as using the T5 interface notification, or using the HSS save and query method, or The time parameter is carried in the downlink data notification response message sent by the user plane network element.
  • the MTC IWF does not receive the downlink signaling of the MTC Server during the sleep period of the terminal, such as the terminal activation request message, so as to avoid resource consumption on the network side signaling plane resources; the user plane network element GGSN/PGW does not sleep in the terminal sleep period.
  • the transmission of the downlink data packet is further received, thereby avoiding resource consumption on the network side user plane resource.
  • the solution for providing terminal-side control of the network side includes: network-side mobility management network element
  • SGSN/MME notifying the terminal activity time parameter of the terminal to the network side machine type communication interworking function network element (MTC IWF) or the network side user plane network element, where the activity time parameter includes an active window time period and a sleep time period;
  • MTC IWF network side machine type communication interworking function network element
  • the activity time parameter includes an active window time period and a sleep time period
  • the MTC IWF or the network side user plane network element at the terminal During the sleep period, downlink signaling or downlink data transmission to the terminal is not performed.
  • the network-side mobility management network element directly notifies the terminal activity time parameter of the terminal to the MTC IWF through the ⁇ 5 interface; the server, the home user server saves the terminal activity time parameter in the subscription data or the terminal context information. And receiving the terminal routing query information of the terminal of the MTC IWF, and notifying the saved terminal active time parameter of the terminal to the MTC IWF.
  • the network side mobility management network element After receiving the downlink data notification message sent by the network element user plane network element, the network side mobility management network element carries the terminal activity time of the terminal in the reject message sent to the network side user plane network element. parameter.
  • FIG. 12 is a schematic flowchart of a specific embodiment. After the GPP and the MME of the 3GPP network-side mobility management network obtain the terminal activity time parameter, the SGSN/MME notifies the time parameter to the MTC through the T5 interface with the MTC IWF. IWF, MTC IWF implement the corresponding power saving strategy. Specific steps include 801-807:
  • Step 801 The terminal requests access to the 3GPP network, and after the terminal is attached to the network, the SGSN/MME obtains an active time parameter of the terminal.
  • the active time parameter may be notified to the SGSN/MME after the terminal determines, or may be notified to the terminal after the network side determines.
  • Step 802 If the SGSN/MME of the network side has established a T5 interface connection with the MTC IWF, the MSC/SGSN uses the T5 interface to notify the MTC IWF of the terminal active time parameter by using specific signaling.
  • Step 803 After receiving the terminal activity time parameter, the MTC IWF receives the downlink signaling from the MTC Server, such as the terminal activation request signaling, and the MTC IWF determines whether the active time period or the sleep time period is at this time. If it is a sleep period, the MTC IWF will reject the downlink signaling. The request is to prevent the signaling from being sent to the core network element, resulting in consumption of signaling and user plane resources.
  • the MTC IWF After receiving the terminal activity time parameter, the MTC IWF receives the downlink signaling from the MTC Server, such as the terminal activation request signaling, and the MTC IWF determines whether the active time period or the sleep time period is at this time. If it is a sleep period, the MTC IWF will reject the downlink signaling. The request is to prevent the signaling from being sent to the core network element, resulting in consumption of signaling and user plane resources.
  • Step 804 After receiving the downlink request of the application server, the MTC Server initiates a terminal activation request to the network, and activates the terminal to perform the terminal call service.
  • Step 805 If the terminal is in the dormant state, the MTC IWF rejects the activation request, and may send the terminal active time parameter to the MTC Server in the activation request response message.
  • Step 806 The MTC Server may try to initiate an activation request to the MTC IWF again after a period of time, or initiate an activation request during the terminal activity period.
  • Step 807 In the terminal active time period, the MTC IWF encapsulates the activation request in the T4 interface to the SMSC through the T4 interface of the SMSC, and the SMSC encapsulates the activation request in the short message to the terminal through the short message mechanism.
  • FIG. 13 is a schematic flowchart of a specific embodiment.
  • the 3GPP network-side mobility management network element SGSN/MME obtains the terminal activity time parameter
  • the SGSN/MME notifies the HSS to save.
  • the MTC IWF initiates a service route query request to the HSS
  • the HSS carries the time parameter to the MTC IWF in the service route query response message, and the MTC IWF executes the corresponding power saving policy. Specifically, including steps 901-909:
  • Step 901 The terminal requests access to the 3GPP network, and after the terminal is attached to the network, the SGSN/MME obtains the active time parameter of the terminal.
  • the active time parameter may be notified to the SGSN/MME after the terminal determines, or may be notified to the terminal after the network side determines.
  • Step 902 After the terminal is attached, the network side SGSN/MME sends a notification message to the HSS, and notifies the HSS of the terminal activity time parameter, and the HSS saves the terminal activity time, and can save the subscription information or the terminal context information of the terminal. in.
  • Step 903 After receiving the downlink request of the application server, the MTC Server initiates a terminal activation request to the network, and activates the terminal to perform the terminal call service.
  • Step 904 After receiving the activation request, the MTC IWF needs to query the HSS for the address of the SGSN/MME where the terminal resides according to the terminal identifier in the activation request.
  • the MTC IWF initiates a service route query request to the HSS.
  • Step 906 The MTC IWF determines whether the terminal is in a dormant state. If the terminal is in the dormant state, the MTC IWF rejects the activation request and can send the terminal active time parameter to the MTC Server in the activation request response message.
  • Step 907 After obtaining the active time parameter of the terminal, the MTC IWF continues to receive the downlink signaling from the MTC Server, such as the terminal activation request signaling, and the MTC IWF determines whether the active time period or the sleep time period is at this time. If it is a sleep time period, the MTC IWF rejects the request for downlink signaling, and prevents the signaling from being sent to the core network element, resulting in consumption of signaling and user plane resources.
  • the MTC IWF After obtaining the active time parameter of the terminal, the MTC IWF continues to receive the downlink signaling from the MTC Server, such as the terminal activation request signaling, and the MTC IWF determines whether the active time period or the sleep time period is at this time. If it is a sleep time period, the MTC IWF rejects the request for downlink signaling, and prevents the signaling from being sent to the core network element, resulting in consumption of signaling and user plane resources.
  • Step 908 The MTC Server may try to initiate an activation request to the MTC IWF again after a period of time, or initiate an activation request during the terminal activity period.
  • Step 909 During the terminal active time period, the MTC IWF encapsulates the activation request in the T4 interface to the SMSC through the T4 interface of the SMSC, and the SMSC encapsulates the activation request in the short message to the terminal through the short message mechanism.
  • FIG. 14 is a schematic flowchart of a tenth embodiment.
  • the SGSN/MME After the GPP and the MME of the 3GPP network side mobility management network element acquire the terminal activity time parameter, the SGSN/MME carries the time parameter to the HSS in the UE reachable message, and the HSS saves .
  • the MTC IWF initiates a service route query request to the HSS, the HSS carries the time parameter to the MTC IWF in the service route query response message, and the MTC IWF executes the corresponding power saving policy. Specifically, it includes steps 1001-1014:
  • Step 1001 The terminal requests access to the 3GPP network, and after the terminal is attached to the network, the SGSN/MME obtains an active time parameter of the terminal.
  • the active time parameter may be notified to the SGSN/MME after the terminal determines, or may be notified to the terminal after the network side determines.
  • Step 1002 After receiving the downlink request of the application server, the MTC Server initiates a terminal activation request to the network, and activates the terminal to perform the terminal call service.
  • Step 1003 The MTC IWF sends an activation request to the SMSC through the T4 interface.
  • Step 1004 The SMSC performs an SMS mechanism, and the activation request is encapsulated and sent in an SMS message.
  • SMSC performs an SMS mechanism, and the activation request is encapsulated and sent in an SMS message.
  • Step 1005 The SGSN/MME determines whether the terminal is in a dormant state. If the terminal is in a dormant state, the MTC IWF will drop the SMS message and return a notification that the SMS message failed to be sent to the SMSC.
  • Step 1006 The terminal sleep period of the SGSN/MME ends, the sleep timer overflows, and the active time period is entered.
  • Step 1007 The SGSN/MME notifies the HSS of the UE reachable message, where the message carries the terminal active time parameter to the HSS.
  • Step 1008 After receiving the UE reachable message, the HSS obtains the carried the terminal activity time parameter and saves it, and may save the information in the subscription information or the terminal context information of the terminal. The HSS then sends a UE reachable message notification to the SMSC;
  • Step 1009 The SMSC sends an SMS message to the terminal, carrying the activation request information.
  • Step 1010 After the MTC Server receives the downlink request from the application server again, if the terminal is in the Idle mode, the MTC Server needs to initiate a terminal activation request to the network to activate the terminal to perform the terminal call service.
  • Step 1011 After receiving the terminal activation request, the MTC IWF needs to query the HSS for the address of the SGSN/MME where the terminal resides according to the terminal identifier in the activation request. The MTC IWF initiates a service routing query request to the HSS.
  • Step 1012 The HSS returns a service route query response message to the MTC IWF, and carries the SGSN/MME address attached to the terminal, and notifies the MTC IWF of the terminal activity time parameter saved by the HSS.
  • Step 1013 The MTC IWF determines whether the terminal is in a dormant state. If the terminal is in the dormant state, the MTC IWF rejects the activation request and can send the terminal active time parameter to the MTC Server in the activation request response message.
  • Step 1014 After the MTC IWF obtains the terminal activity time parameter, when it continues to receive from
  • the MTC IWF determines whether it is in the active time period or the sleep time period at this time. If it is a sleep time period, the MTC IWF rejects the request for downlink signaling, and prevents the signaling from being sent to the core network element, resulting in consumption of signaling and user plane resources.
  • the 3GPP network side mobility management network element SGSN/MME obtains the terminal activity time parameter
  • the SGSN/MME notifies the user plane network element GGSN/PGW, and the GGSN/PGW performs corresponding Power saving strategy.
  • the steps include: 1101-1109:
  • Step 1101 The terminal requests access to the 3GPP network, and after the terminal is attached to the network, the SGSN/MME obtains an active time parameter of the terminal.
  • the active time parameter may be notified to the SGSN/MME after the terminal determines, or may be notified to the terminal after the network side determines.
  • Step 1102 After receiving the downlink data of the application server, the MTC server forwards the downlink IP data packet of the terminal to the user plane network element GGSN/PGW, or the application server directly sends the downlink IP data of the terminal to the user plane network element GGSN/PGW. package.
  • Step 1103 The user plane network element GGSN/PGW sends a downlink data notification (DDN) message to the SGSN/MME, requesting to establish a user plane connection with the terminal, because the terminal is in the Idle state.
  • DDN downlink data notification
  • Step 1104 The SGSN/MME determines whether the terminal is in a dormant state. If the terminal is in the sleep state, the MTC IWF rejects the DDN message and carries the terminal activity time parameter and the reason value of the rejection in the reject message: The terminal sleeps.
  • the GGSN/PGW In the sleep state, the GGSN/PGW returns a user inaccessible message to the MTC Server or the application server.
  • Step 1106 After the MTC Server or the application server knows that the user is out of reach, it will delay for a period of time, and then try to initiate a downlink IP packet to the terminal again.
  • Step 1107 After receiving the downlink IP data packet, the GGSN/PGW determines whether the terminal is in the active time period or the sleep time period. If the GGSN/PGW refuses to initiate a DDN request to the SGSN/MME during the sleep period, the signaling and user plane resources are avoided. At the same time, the user will be returned again.
  • Step 1108 After the GGSN/PGW receives the downlink IP data packet, if the terminal is in the active time period, the GGSN/PGW sends a DDN notification message to the SGSN/MME.
  • Step 1109 The SGSN/MME determines that the terminal is in an active time period, and initiates a search to the terminal. After the call is received, the terminal actively establishes a user plane connection with the GGSN/PGW after receiving the paging message.
  • the user plane network element GGSN/PGW determines the terminal activity time parameter and sends the terminal activity time parameter to the terminal.
  • the GGSN/PGW notifies the SGSN/MME network element of the terminal activity time parameter in the downlink data notification message, and the SGSN/MME may further notify the MTC IWF of the terminal activity time parameter according to the scheme of the foregoing embodiment, and the MTC IWF performs the corresponding Power saving strategy.
  • the steps include: 1201-1208:
  • Step 1201 The terminal requests access to the 3GPP network, and after the terminal attaches to the network, the request is established.
  • Step 1202 After receiving the downlink data of the application server, the MTC server forwards the downlink IP data packet of the terminal to the user plane network element GGSN/PGW. Or the application server directly sends the downlink IP data packet of the terminal to the user plane network element GGSN/PGW.
  • Step 1203 The user plane network element GGSN/PGW determines, according to the SGSN/MME, that the terminal is in an active state, and sends a downlink data notification (DDN) message to the SGSN/MME to request to establish a user plane connection with the terminal. .
  • DDN downlink data notification
  • the terminal activity time parameter is carried in the downlink data notification message and sent to the SGSN/MME.
  • Step 1204 The SGSN/MME sends a paging message to the terminal, and after receiving the paging message, the terminal actively establishes a user plane connection with the GGSN/PGW. In the sleep state, the GGSN/PGW returns a user inaccessible message to the MTC Server or the application server.
  • Step 1206 The SGSN/MME may send a notification message to the HSS at the same time, and notify the HSS of the terminal activity time parameter, and the HSS saves the terminal activity time, and may be saved in the subscription information of the terminal or the context information of the terminal.
  • Step 1207 After receiving the downlink request of the application server, the MTC Server initiates a terminal activation request to the network, and activates the terminal to perform the terminal call service.
  • the MTC IWF After receiving the activation request, the MTC IWF needs to follow the terminal identifier in the activation request to the HSS. Query the address of the SGSN/MME where the terminal resides. The MTC IWF initiates a service route query request to the HSS.
  • Step 1208 The HSS returns a service route query response message to the MTC IWF, and carries the SGSN/MME address attached to the terminal, and notifies the MTC IWF of the terminal activity time parameter saved by the HSS.
  • the MTC IWF can perform power saving control according to the terminal activity time parameter.
  • the above system of the embodiment of the present invention can enable the network side to formulate power saving parameters for the terminal, and notify the MTC IWF or GGSN/PGW of the power saving parameter, so as to optimize the power saving effect of the terminal and avoid unnecessary consumption on the network side.
  • the signaling surface and user plane resources achieve better application results.
  • the 3GPP network side network element determines the final terminal activity time parameter, the long TAU time, and the long DRX parameter for the terminal according to the operator policy and the reference power saving parameter. And other power saving parameters.
  • the terminal can perform more optimized power saving control through the long DRX parameter; in the idle mode, the terminal can receive the paging message during the active window period, and close the wireless transceiver system during the sleep period, thereby greatly reducing the terminal's Power consumption, to achieve the purpose of saving electricity.
  • the terminal can still be triggered by the active time period to trigger the terminal to receive downlink data, so the user experience is not reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种终端的节电方法及终端节电装置及网络侧节电装置,所述终端节电装置包括节电参数接收模块,节电执行模块;所述节电参数接收模块设置成从网络侧接收空闲模式节电参数;所述节电执行模块设置成在所述终端进入空闲模式后根据所述空闲模式节电参数执行节电操作。通过本发明,当接入到3GPP网络的终端有节电需求时,在连接模式下,终端可通过长DRX参数进行更优化的节电控制;在空闲模式下,终端可在活动窗口时间段接收寻呼消息,在休眠时间段关闭无线收发系统,大大减少了终端的电源消耗,达到了节电的目的。

Description

一种终端节电方法及终端节电装置及网络侧节电装置
技术领域
本发明涉及通信领域, 具体而言, 涉及 3GPP 网络中终端的一种终端节 电方法及终端节电装置及网络侧节电装置。
背景技术
目前, 机器到机器(Machine to Machine, 简称为 M2M ) 的通信业务已 逐渐得到广泛应用, 例如, 在物流系统、 远程抄表、 智能家居等应用。 M2M 服务商主要使用现有的无线网络开展 M2M业务, 例如, 通用分组无线业务 ( General Packet Radio Service, 简称为 GPRS )网络、演进分组系统( Evolved Packet System, 简称为 EPS ) 网络等 PS网络。
在第三代移动通信系统中 GPRS 演进为通用移动通信系统分组交换 ( Universal Mobile Telecommunication System Packet Switch, 简称为 UMTS PS )域。 图 1为 UMTS PS的网络架构, 如图 1所示, 该网络架构中包含如下 网元:
无线网络系统( Radio Network System,简称为 RNS ) , RNS中包含 NodeB 与无线网络控制器( Radio Network Controller, 简称为 RNC ) , 其中, NodeB 为终端提供空口连接; RNC 主要用于管理无线资源以及控制 NodeB。 RNC 与 NodeB之间通过 Iub口连接 , 终端通过 RNS接入 UMTS的分组域核心网 ( Packet Core );
服务 GPRS支持节点(Serving GPRS Support Node, 简称为 SGSN ) , 通 过 Iu口与 RNS相连, 用于保存用户的路由区位置信息, 负责安全和接入控 制;
网关 GPRS支持节点 ( Gateway GPRS Support Node, 简称为 GGSN ) , 在内部通过 Gn口与 SGSN相连, 用于负责分配终端的 IP地址和实现到外部 网络的网关功能;
归属位置寄存器(Home Location Register, 简称为 HLR ) , 通过 Gr口与 SGSN相连,通过 Gc口与 GGSN相连,用于保存用户的签约数据和当前所在 的 SGSN地址;
分组数据网络( Packet Data Network,简称为 PDN ) ,通过 Gi 口与 GGSN 相连, 用于为用户提供基于分组的业务网。
在图 1中, 机器类型通信 ( Machine Type Communication, 简称为 MTC )
UE需要通过 GPRS网络传输向 MTC Server或其它的 MTC UE传输数据信息。 GPRS网络为此次传输建立 RNC-SGSN - GGSN之间的隧道,隧道基于 GPRS 隧道协议(GPRS Tunneling Protocol, 简称为 GTP ) , 数据信息通过 GTP隧 道实现可靠传输。
系统架构演进( System Architecture Evolution , 简称 SAE )的提出是为了 使得演进的分组系统(Evolved Packet System, 简称 EPS ) 网络可提供更高的 传输速率、 更短的传输延时、 优化分组, 及支持演进的 UTRAN ( Evolved Universal Terrestrial Radio Access Network, 简称为 E-UTRAN ) 、 UTRAN ( Universal Terrestrial Radio Access Network ) 、 无线局域网 ( Wireless Local Area Network, 简称为 WLAN )及其他非 3GPP的接入网络之间的移动性管 理。
图 2为 EPS的架构图, 如图 2所示, 其中, 演进的无线接入网 (Evolved Radio Access Network, 简称为 E-RAN )中包含的网元是演进节点 B ( Evolved NodeB , 简称为 eNodeB ) , 用于为用户的接入提供无线资源; 分组数据网 ( Packet Data Network, 简称为 PDN )是为用户提供业务的网络; EPC提供 了更低的延迟, 并允许更多的无线接入系统接入, 其包括如下网元:
移动管理实体 ( Mobility Management Entity, 简称为 MME ) , 是控制面 功能实体, 临时存储用户数据的服务器, 负责管理和存储 UE的上下文(例 如, 用户标识、 移动性管理状态、 用户安全参数等) , 为用户分配临时标识, 当 UE驻扎在该跟踪区域或者该网络时, 负责对该用户进行鉴权。
服务网关(Serving Gateway, 简称为 SGW或 S-GW ) , 是一个用户面实 体, 负责用户面数据路由处理, 终结处于空闲 (ECM— IDLE )状态的 UE 的 下行数据。 管理和存储 UE的 SAE承载(bearer )上下文, 例如 IP承载业务 参数和网络内部路由信息等。 SGW是 3GPP系统内部用户面的锚点, 一个用 户在一个时刻只能有一个 SGW。
分组数据网网关 ( PDN Gateway, 简称为 PGW或 P-GW ) , 是负责 UE 接入 PDN的网关, 分配用户 IP地址, 也是 3GPP和非 3GPP接入系统的移动 性锚点, PGW的功能还包括策略实施、 计费支持。 用户在同一时刻能够接入 多个 PGW。 策略与计费实施功能实体 ( Policy and Charging Enforcement Function, 简称为 PCEF )也位于 PGW中;
在物理上 ,上述 SGW和 PGW可能合一 , EPC系统用户面网元包括 SGW 和 PGW。
策略与计费规则功能实体(Policy and Charging Rules Function, 简称为 PCRF ) , 负责向 PCEF提供策略控制与计费规则;
归属用户服务器(Home Subscriber Server, 简称为 HSS ) , 负责永久存 储用户签约数据, HSS 存储的内容包括 UE 的国际移动用户识别码 ( International Mobile Subscriber Identification, 简称为 IMSI ) 、 PGW的 IP地 址。
MTC服务器主要负责对 MTC用户设备 ( MTC UE ) 的信息釆集和数据 存储 /处理等工作, 并可对 MTC UE进行必要的管理。
MTC UE通常负责收集若干釆集器的信息, 并通过 RAN节点接入核心 网, 与 MTC Server交互数据。
在图 2 中, MTC UE需要通过 EPS网络向 MTC Server或其它的 MTC UE 传输数据信息。 SAE网络为此次传输建立 SGW-PGW之间的 GTP隧道, 数 据信息通过 GTP隧道实现可靠传输。
根据 M2M业务需求, 需要网络实现对终端进行激活、 小数据量传输的 各类需求, 因此对 PS分组网络架构进行了增强, PS网络的 MTC增强架构如 图 3所示,在 PS网络架构中引入了 MTC互通功能( Interworking Function, 简 称 IWF ) 网元及相关接口。 图中, MTC Server用于为用户提供 M2M应用控 制, MTC Server主要负责对 MTC设备的信息釆集和数据存储 /处理等工作, 并可对 MTC设备 ( MTC UE )进行必要的管理。 MTC IWF网元负责进行网 络拓朴隐藏及应用层、 承载层协议转换, 釆用 MTCsp接口与 MTC Server连 接, 釆用 S6m接口与 HSS/HLR连接, 釆用 T5a/d与 SGSN/MME连接。 并通 过 MTCi接口与 PGW相连, 为 M2M业务实现进行服务。 现有 MTC IWF的 功能主要是接收 MTC Server的激活消息, 并通过 3GPP网络相关网元将激活 消息下发给 MTC终端。
由于在当前网络中,很多 MTC终端都需要釆用电池供电的方式,如铁路 桥的压力传感器、 水位监测传感器、 空气质量监测传感器、 水表抄表终端等 等, 它们釆集相关的监测数据后在允许的时间传输给相关数据处理的 MTC 服务器, 然后需要进入节电模式进行节电。 目前, 终端节电一般有两种模式: 一种是在连接( Connected )状态下釆用非连续接收( Discontinuous Reception , 简称 DRX )参数控制间歇工作以达到节电目的, 在 DRX参数使能的时间段 终端收发 IP数据包, 在 DRX参数非使能的时间段不进行收发数据包处理。 另一种为空闲(Idle )模式下, 在此模式下, 现有技术是终端保证通信模块工 作, 用以监听网络的广播信道, 其它不必要的应用软件, 如屏幕显示、 键盘 等可以关闭。 当网络发起寻呼时, 终端需要激活所有的模块并进入正常工作, 终端可以建立无线连接并发起数据业务; 更优化的节电方式是: 当在终端处 于空闲模式下可以进入休眠状态, 终端可以关闭无线通信模块及其它不必要 的应用软件, 最大限度地减少电能消耗, 当终端需要发起业务时再进行激活 并进入正常工作, 可以向网络发起接入请求并发起数据业务。
在现有技术中, 在 EPS网络或 GPRS网络中, 目前节电方案都是终端控 制的, 在终端不进行业务时, 可以釆用降频或关闭应用程序以节省功耗, 例 如, 关闭输入 /输出模块、 显示模块, 使处理器切换到节电模式等方式, 但不 会通知网络侧。 上述终端在空闲模式下只釆用终端关闭屏幕等方式节电, 由于网络侧没 有为终端制定节电策略, 因此, 即使终端有节电的需求, 网络侧仍将按正常 的流程进行位置更新、 无线寻呼等操作, 使处于节电模式的终端频繁接收无 线信号并进行数据处理, 无法达到终端节电的最优效果。
上述终端在空闲模式进入休眠状态虽然节电效果很好, 但问题是 3GPP 网络没有对休眠时间段内终端如何接收寻呼进行策略控制 , 导致终端自己进 入休眠状态后, 3GPP网络无法在休眠时间段内寻呼终端, 因此无法实现终呼 业务。 另外, 如果休眠时间超出了终端的周期性位置更新的时间, 可能导致
3GPP网络侧发起对终端的隐式去激活,终端需要退出休眠状态后再次附着到 网络才能发起上下业务, 导致网络的信令资源消耗, 并降低了用户体验。
因此, 当终端接入到 3GPP网络后, 终端有节电需求, 3GPP网络应能为 终端制定相应的节电策略, 并通知终端及各个需要的网络侧网元。 保证终端 既可以实现节电的目的, 也不影响网络侧对终端的移动性管理及下行业务, 同时避免网络侧不必要的信令面及用户面资源消耗, 既保证终端的节电最优 化, 也不降低 3GPP用户体验。 发明内容
本发明要解决的技术问题是提供一种终端节电方法及终端节电装置及网 络侧节电装置, 解决现有技术中终端节电过程中网络侧控制能力欠缺的问题 并为终端的节电问题提供新的解决方案。
为了解决上述技术问题, 本发明提供了一种终端节电方法, 包括: 终端 接入网络, 网络侧网元确定所述终端的空闲模式节电参数并通知所述空闲模 式节电参数至所述终端, 所述终端进入空闲模式后根据所述空闲模式节电参 数执行节电操作。
上述方法还可以具有以下特点:
所述空闲模式节电参数包括终端活动时间参数, 所述活动时间参数包括 活动窗口时间段和休眠时间段, 所述终端进入空闲模式后, 在活动窗口时间 段内接收网络侧的寻呼消息, 在休眠时间段内不接收网络侧的寻呼消息。
上述方法还可以具有以下特点:
所述终端活动时间参数包括睡眠时间段参数, 睡眠时间段内包括一个或 多个所述活动窗口时间段和所述休眠时间段, 所述终端进入空闲模式后在睡 眠时间段内执行节电操作; 所述睡眠时间段的值默认为长周期性位置区域更 新时间 (TAU )参数或普通周期性位置区域更新时间参数。
上述方法还可以具有以下特点:
所述空闲模式节电参数还包括长周期性位置区域更新时间(TAU )参数, 所述长周期性 TAU参数的值大于普通周期性位置区域更新时间参数的值。 上述方法还可以具有以下特点:
所述网络侧网元还确定所述终端的连接模式节电参数并通知所述连接模 式节电参数至所述终端, 所述连接模式节电参数包括长非连续接收参数, 所 述长非连续接收参数中数据收发关闭时间的值大于普通非连续接收参数中数 据收发关闭时间的值。
上述方法还可以具有以下特点:
所述网络侧网元根据所述终端发送的节电指示确定所述终端为节电终 端, 或者,
所述网络侧网元根据所述终端的国际移动用户识别码( IMSI )标识、 接 入点名称(APN )确定所述终端为节电终端。
上述方法还可以具有以下特点:
当所述网络侧网元是网络侧移动性管理网元时, 根据签约的终端活动时 间参数、 用户面网元的参考终端活动时间参数、 终端侧的参考终端活动时间 参数,以及运营商策略中的至少一种确定所述终端的所述终端活动时间参数。
上述方法还可以具有以下特点:
当所述网络侧网元是网络侧用户面网元时, 根据用户面网元的参考终端 活动时间参数、 终端侧的参考终端活动时间参数、 运营商策略中的至少一种 确定所述终端的所述终端活动时间参数。
上述方法还可以具有以下特点:
所述网络侧移动性管理网元根据运营商策略为节电终端确定用于空闲模 式的长周期性位置区域更新时间参数的值以及用于连接模式的长非连续接收 参数的值。
上述方法还可以具有以下特点:
的下行寻呼; 网络侧用户面网元在所述终端的休眠时间段, 不发送针对所述 终端的下行数据包。 为了解决上述技术问题, 本发明还提供了一种终端节电装置, 包括: 节 电参数接收模块和节电执行模块;
所述节电参数接收模块设置成: 从网络侧接收空闲模式节电参数; 所述节电执行模块设置成: 在所述终端进入空闲模式后根据所述空闲模 式节电参数执行节电操作。
上述终端节电装置还可以具有以下特点:
所述节电执行模块是设置成: 在所述终端进入空闲模式后, 在所述空闲 模式节电参数中的活动窗口时间段内接收网络侧的寻呼消息, 在所述空闲模 式节电参数中的休眠时间段内不接收网络侧的寻呼消息。
上述终端节电装置还可以具有以下特点:
所述节电执行模块是设置成: 在所述终端进入空闲模式后, 在所述空闲 模式节电参数中的睡眠时间段内执行节电操作, 在睡眠时间段的活动窗口时 间段内接收网络侧的寻呼消息, 在睡眠时间段的休眠时间段内不接收网络侧 的寻呼消息。
上述终端节电装置还可以具有以下特点:
所述终端节电装置还包括参考节电参数发送模块, 其设置成根据终端的 静态配置和 /或运营商策略, 将节电指示或参考终端活动时间参数向网络侧发 送。
为了解决上述技术问题, 本发明还提供了一种网络侧节电装置, 包括: 节电参数确定模块和节电参数发送模块;
所述节电参数确定模块设置成: 确定终端的空闲模式节电参数; 所述节电参数发送模块设置成: 将所述空闲模式节电参数向所述终端发 送。
上述网络侧节电装置还可以具有以下特点:
所述网络侧节电装置还包括参考节电参数接收模块;
所述参考节电参数接收模块设置成: 接收签约的终端活动时间参数、 用 户面网元的参考终端活动时间参数、 终端侧的参考终端活动时间参数中的至 少一种; 以及
所述节电参数确定模块设置成: 根据签约的终端活动时间参数、 用户面 网元的参考终端活动时间参数、 终端侧的参考终端活动时间参数、 运营商策 略中的至少一种确定终端的所述空闲模式节电参数中的终端活动时间参数; 所述活动时间参数包括活动窗口时间段和休眠时间段, 所述活动窗口时间段 内的操作对应处于空闲模式的终端接收网络侧的寻呼消息的操作, 所述休眠 时间段内的操作对应处于空闲模式的终端不接收网络侧的寻呼消息的操作。
上述网络侧节电装置还可以具有以下特点:
所述节电参数确定模块还设置成: 确定所述空闲模式节电参数中的长周 期性位置区域更新时间 (TAU )参数, 所述长周期性位置区域更新时间参数 的值大于普通周期性位置区域更新时间参数的值。
上述网络侧节电装置还可以具有以下特点:
所述节电参数确定模块还设置成: 确定所述终端的连接模式节电参数, 所述连接模式节电参数包括长非连续接收参数, 所述长非连续接收参数中数 据收发关闭时间的值大于普通非连续接收参数中数据收发关闭时间的值。
上述网络侧节电装置还可以具有以下特点:
所述网络侧节电装置还包括节电执行模块;
所述节电执行模块设置成: 当所属网络侧网元是移动性管理网元时, 在 终端的休眠时间段内, 不执行针对所述终端的下行寻呼; 当所属网络侧网元 是网络侧用户面网元时, 在终端的休眠时间段内, 不发送针对所述终端的下 行数据包; 当所属网络侧网元是机器类型通信互通功能网元时, 在终端的休 眠时间段内, 不执行针对所述终端的下行终端激活请求。
为了解决上述技术问题, 本发明还提供了一种终端节电方法, 包括: 网 络侧移动性管理网元将终端的终端活动时间参数通知至网络侧机器类型通信 互通功能网元( MTC IWF )或网络侧用户面网元, 所述活动时间参数包括活 动窗口时间段和休眠时间段; 以及
所述 MTC IWF或所述网络侧用户面网元在终端的休眠时间段内, 不执 行对所述终端的下行信令或下行数据的发送。 上述终端节电方法还可以具有以下特点:
所述网络侧移动性管理网元通过 T5接口将所述终端的终端活动时间参 数直接通知至所述 MTC IWF。
上述终端节电方法还可以具有以下特点: 服务器, 所述归属用户服务器将所述终端活动时间参数保存在签约数据或终 端上下文信息中, 当所述网络侧移动性管理网元收到所述 MTC IWF的针对 所述终端的终端路由查询信息时, 将所保存的所述终端的终端活动时间参数 通知给所述 MTC IWF。
上述终端节电方法还可以具有以下特点:
所述网络侧移动性管理网元收到所述网络侧用户面网元发送的下行数据 通知消息后, 在向所述网络侧用户面网元发送的拒绝消息中携带所述终端的 终端活动时间参数。
通过本发明, 当接入到 3GPP网络的终端有节电需求时, 3GPP网络侧网 元根据运营商策略及参考的节电参数为终端确定最终的终端活动时间参数及 长 TAU时间、 长 DRX参数等节电参数。 在连接模式下, 终端可通过长 DRX 参数进行更优化的节电控制; 在空闲模式下, 终端可在活动窗口时间段接收 寻呼消息, 在休眠时间段关闭无线收发系统, 大大减少了终端的电源消耗, 达到了节电的目的。 同时, 若有下行数据业务, 仍可通过活动时间段对终端 进行寻呼来触发终端接收下行数据, 因此并没有降低用户体验。
另外, 网络侧获取到终端活动时间参数后, 可进一步通知给 MTC IWF 及用户面网元 GGSN/PGW,保证在活动时间窗口外不接受任何下行数据或下 行激活, 尽量减轻网络的负荷压力, 节省网络资源。 该发明的各优化节电流 程使终端明显达到节电的效果。 附图概述
图 1是现有技术中 GPRS网络系统架构示意图;
图 2是现有技术中 EPS网络系统架构示意图; 图 3是为满足 M2M需求, 增强的 PS网络系统架构示意图; 图 4是实施例中终端节电方法的示意图;
图 5至图 11分别是 GPP网络侧进行节电参数决策的具体实施方式一至 七的流程图;
图 12至图 16分别是 GPP网络侧进行节电参数通知的具体实施例八至十 二的流程图。
本发明的较佳实施方式
下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是, 在附图的流程图示出的步骤可以在诸如一组计算机可执 行指令的计算机系统中执行, 并且, 虽然在流程图中示出了逻辑顺序, 但是 在某些情况下, 可以以不同于此处的顺序执行所示出或描述的步骤。
在该发明方案中, 主要为了解决网络侧对终端的节电优化控制问题, 使 终端节电效果最优化, 同时对终端业务不产生明显影响。
如图 4所示, 终端节电方法包括: 终端接入网络, 网络侧网元确定所述 终端的空闲模式节电参数并通知所述空闲模式节电参数至所述终端, 所述终 端进入空闲模式后根据所述空闲模式节电参数执行节电操作。
所述空闲模式节电参数包括终端活动时间参数, 所述活动时间参数包括 活动窗口时间段和休眠时间段, 所述终端进入空闲模式后, 在活动窗口时间 段内接收网络侧的寻呼消息, 在休眠时间段内不接收网络侧的寻呼消息。
所述终端活动时间参数还包括睡眠时间段参数, 睡眠时间段内包括一个 或多个所述活动窗口时间段和所述休眠时间段, 终端进行空闲模式后需要在 此睡眠时间段内执行节电操作。 所述睡眠时间段的值可默认为长周期性位置 区域更新时间 (TAU )参数或普通周期性位置区域更新时间参数, 所述长周 期性 TAU参数的值大于普通周期性 TAU参数的值(普通周期性 TAU参数的 值是指已有标准中定义的值或具体通信系统应用中普遍使用的值) , 这样终 端进入 Connected模式的时间周期大大的延长, 有利于终端节电。 睡眠时间段的值默认为周期性 TAU的值时,终端活动时间参数中无需携 带此睡眠时间段的值。 睡眠时间段的值是其它值时, 终端活动时间参数中需 携带此睡眠时间段的值。
所述空闲模式节电参数还包括长周期性位置区域更新时间(TAU )参数, 所述长周期性 TAU参数的值大于普通周期性位置区域更新时间参数的值。
所述网络侧网元还确定所述终端的连接模式节电参数并通知所述连接模 式节电参数至所述终端, 所述连接模式节电参数包括长非连续接收参数, 所 述长非连续接收参数中数据收发关闭时间的值大于普通非连续接收参数中数 据收发关闭时间的值 (普通非连续接收参数的值是指已有标准中定义的值或 具体通信系统应用中普遍使用的值) , 这样终端非工作时间可以更长一些, 有利于节电。
所述网络侧网元根据所述终端发送的节电指示确定所述终端为节电终 端, 或者, 所述网络侧网元才艮据所述终端的国际移动用户识别码(IMSI )标 识、 接入点名称 (APN )确定所述终端为节电终端, 从而方便确定终端是需 要节电的终端, 从而为终端制定节电策略, 并进行节电控制。
当所述网络侧网元是网络侧移动性管理网元( SGSN/MME ) 时, 根据签 约的终端活动时间参数、 用户面网元的参考终端活动时间参数、 终端侧的参 考终端活动时间参数, 以及运营商策略中的至少一种确定所述终端的所述终 端活动时间参数。
当所述网络侧网元是网络侧用户面网元(GGSN/PGW ) 时, 根据用户面 网元的参考终端活动时间参数、 终端侧的参考终端活动时间参数、 运营商策 略中的至少一种确定所述终端的所述终端活动时间参数。
所述网络侧移动性管理网元(SGSN/MME )根据运营商策略为节电终端 确定用于空闲模式的长周期性位置区域更新时间参数的值及用于连接模式的 长非连续接收参数的值。
网络侧移动性管理网元(SGSN/MME )在所述终端的休眠时间段, 不执 行针对所述终端的下行寻呼; 网络侧用户面网元( GGSN/PGW )在所述终端 的休眠时间段, 不发送针对所述终端的下行数据包。
本方案中的终端节电装置包括: 节电参数接收模块和节电执行模块。 所述节电参数接收模块设置成: 从网络侧接收空闲模式节电参数; 所述节电执行模块设置成: 在所述终端进入空闲模式后根据所述空闲模 式节电参数执行节电操作。
所述节电执行模块是设置成: 在所述终端进入空闲模式后, 在所述空闲 模式节电参数中的活动窗口时间段内接收网络侧的寻呼消息, 在在所述空闲 模式节电参数中的休眠时间段内不接收网络侧的寻呼消息。
所述节电执行模块是设置成: 在终端进入空闲模式后在所述空闲模式节 电参数中的睡眠时间段内执行节电操作, 在睡眠时间段的活动窗口时间段内 接收网络侧的寻呼消息, 在睡眠时间段的休眠时间段内不接收网络侧的寻呼 消息。
所述终端节电装置还包括参考节电参数发送模块, 其设置成根据终端的 静态配置和 /或运营商策略, 将节电指示或参考终端活动时间参数向网络侧发 送。
本方案中的网络侧节电装置包括: 节电参数确定模块和节电参数发送模 块。
所述节电参数确定模块设置成: 确定终端的空闲模式节电参数; 所述节电参数发送模块设置成: 将所述空闲模式节电参数向所述终端发 送。
所述网络侧节电装置还包括参考节电参数接收模块。
所述参考节电参数接收模块设置成: 接收签约的终端活动时间参数、 用 户面网元的参考终端活动时间参数、 终端侧的参考终端活动时间参数中的至 少一种; 以及
所述节电参数确定模块设置成: 根据签约的终端活动时间参数、 用户面 网元的参考终端活动时间参数、 终端侧的参考终端活动时间参数、 运营商策 略中的至少一种确定终端的所述空闲模式节电参数中的终端活动时间参数; 所述活动时间参数包括活动窗口时间段和休眠时间段, 所述活动窗口时间段 内的操作对应处于空闲模式的终端接收网络侧的寻呼消息的操作, 所述休眠 时间段内的操作对应处于空闲模式的终端不接收网络侧的寻呼消息的操作。
所述节电参数确定模块还设置成: 确定所述空闲模式节电参数中的长周 期性位置区域更新时间 (TAU )参数, 所述长周期性位置区域更新时间参数 的值大于普通周期性位置区域更新时间参数的值。
所述节电参数确定模块还设置成: 确定所述终端的连接模式节电参数, 所述连接模式节电参数包括长非连续接收参数, 所述长非连续接收参数中数 据收发关闭时间的值大于普通非连续接收参数中数据收发关闭时间的值。
所述网络侧节电装置还包括节电执行模块。
所述节电执行模块设置成: 当在所属网络侧网元是移动性管理网元时, 在终端的休眠时间段内, 不执行针对所述终端的下行寻呼 ; 当所属网络侧网 元是网络侧用户面网元时, 在终端的休眠时间段内, 不发送针对所述终端的 下行数据包; 当所属网络侧网元是机器类型通信互通功能网元时, 在终端的 休眠时间段内, 不执行针对所述终端的下行终端激活请求。
下面通过具体实施例进行详细说明。
具体实施例一:
图 5为具体实施例一的流程示意图, 终端是具有节电需求的终端, 当终 端正常请求接入到网络时, 网络侧移动性管理网元 SGSN/MME 可以根据接 入的 IMSI标识, 或根据签约中的特定 APN, 来识别该终端需要进行节电。 SGSN/MME根据运营商的策略, 为终端确定一个终端活动时间参数, 同时可 制定节电策略, 如为节电需求的终端制定一个长周期性位置区域更新时间参 数, 调整 Connected模式下使用的 DRX参数为长 DRX参数等。 SGSN/MME 制定相关节电参数后, 需要及时通知给终端, 终端根据节电参数执行节电操 作。 具体包括步骤 101-106如下: 步骤 101 : 3GPP终端向 3GPP网络的 RAN接入网络发起附着或位置更 新请求, RAN选择一个服务 SGSN/MME, 并将该请求发给 SGSN/MME。
步骤 102: 所述 SGSN/MME向 HSS发送位置更新请求, HSS根据 IMSI 标识, 识别终端为非限制终端, 并查找该终端的签约数据。
步骤 103: HSS将该终端的签约信息发给所述 SGSN/MME, SGSN/MME 对该终端进行接入认证。
步骤 104: 所述 SGSN/MME根据接入的 IMSI标识 (在 IMSI规划中, 可 为节电终端规划专用的 IMSI标识区间), 或根据签约中的特定 APN ( APN特 定用于节电),来识别该终端需要进行节电。 SGSN/MME根据运营商的策略, 为终端确定一个终端活动时间参数, 同时可制定节电策略, 如为节电需求的 终端制定一个长周期性位置区域更新时间参数, 调整 Connected模式下使用 的 DRX参数为长 DRX参数等。
长周期性位置区域更新时间参数的时间周期比普通周期性位置区域更新 时间参数的时间周期要更长, 这样终端进入 Connected模式的时间周期大大 的延长, 有利于终端节电。
长非连续接收参数中数据收发关闭时间的值要比普通非连续接收参数中 数据收发关闭时间的值更大, 这样终端非工作时间可以更长一些, 有利于节 电。
步骤 105: SGSN/MME制定相关节电参数后, 在接入的请求响应消息中 携带上述节电参数并及时通知给终端, 终端根据节电参数执行节电操作, 节 电参数至少包括终端活动时间参数, 也可以包含长 TAU时间参数, 长 DRX 参数等。
步骤 106: 终端活动时间参数可以包含一个睡眠时间, 及在睡眠时间段 内的一个或多个活动窗口时间周期 (称为活动时间段, 下同)及休眠时间段 (在睡眠时间的活动时间段外的时间侧面称为休眠时间段) 。 如果睡眠时间 默认是 TAU时间, 可以不包含在终端活动时间参数内, 系统默认睡眠时间就 是 TAU时间。
终端活动时间参数应该至少包含一个或多个活动窗口周期及休眠时间 段。 终端在活动窗口时间段内可接收寻呼 (Paging ) 消息, 在休眠时间段内 无法接收无线信号, 不能接收 Paging消息。
终端在 Connected模式时, 可根据调整的长 DRX参数实现节电控制。 在 DRX on周期收发 IP数据包, 在 DRX off周期停止收发 IP数据包。 节电的 DRX参数与普通的 DRX参数相比 ,其 DRX on时间更短 , DRX off时间更长。
终端进入 Idle模式时, 釆用终端活动时间参数进行节电控制, 在活动时 间段内打开无线系统接收 Paging 消息, 如果有 Paging 消息就重新进入 Connected模式。在休眠时间段内关闭无线系统, 不接收 Paging消息。 为避免 在睡眠时间内因时间太长可能导致的终呼业务不能实现的问题, 可以在长的 睡眠时间定义多个活动时间段, 平均分布在睡眠时间段来解决。 同时长的睡 眠时间需要小于或等于长的 TAU时间段, 防止 SGSN/MME因为终端没有及 时发起周期性位置区域更新, 对该终端进行隐式 Detach操作。
具体实施例二:
图 6为具体实施例二的流程示意图, 终端是具有节电需求的终端, 当终 端请求接入到网络时, 在请求消息中携带节电指示给网络侧, 通知是一个节 电终端。 网络侧移动性管理网元 SGSN/MME根据节电指示, 来识别该终端 需要进行节电。 SGSN/MME根据运营商的策略, 为终端确定一个终端活动时 间参数, 同时可制定节电策略, 如为节电需求的终端制定一个长周期性位置 区域更新时间参数, 调整 Connected模式下使用的 DRX参数为长 DRX参数 等。 SGSN/MME制定相关节电参数后, 需要及时通知给终端, 终端根据节电 参数执行节电操作。 具体包括步骤 201-206:
步骤 201 : 3GPP终端向 3GPP网络的 RAN接入网络发起附着或位置更 新请求, 携带节电指示。 RAN选择一个服务 SGSN/MME, 并将该携带节电 指示的接入请求发给 SGSN/MME。
终端具有有源终端与无源终端两种, 无源终端是否需要网络进行优化节 电, 可以作为终端的一个特性静态配置在终端上, 终端接入时可携带这个节 电指示。 步骤 202: 所述 SGSN/MME向 HSS发送位置更新请求, HSS根据 IMSI 标识, 识别终端为非限制终端, 并查找该终端的签约数据。
步骤 203: HSS将该终端的签约信息发给所述 SGSN/MME, SGSN/MME 对该终端进行接入认证。
步骤 204:所述 SGSN/MME根据节电指示来识别该终端是否需要进行节 电。 SGSN/MME根据运营商的策略, 为终端确定一个终端活动时间参数, 同 时可制定节电策略, 如为节电需求的终端制定一个长周期性位置区域更新时 间参数, 调整 Connected模式下使用的 DRX参数为长 DRX参数等。
步骤 205: SGSN/MME制定相关节电参数后, 在接入请求响应消息中携 带上述节电参数并及时通知给终端, 终端根据节电参数执行节电操作, 节电 参数至少包括终端活动时间参数, 也可以包含长的 TAU时间参数, DRX参 数等。
步骤 206: 终端收到节电参数后进行节电操作, 具体节电操作方案见步 骤 106相关描述。
具体实施例三:
图 7为具体实施例三的流程示意图, 终端是具有节电需求的终端, 当终 端请求接入到网络时, 在请求消息中携带参考终端活动时间参数给网络侧, 通知网络侧终端需要定义一个睡眠时间段进行节电。 网络侧移动性管理网元 SGSN/MME根据参考终端活动时间参数及运营商的策略,为终端确定一个终 端活动时间参数, 同时可制定节电策略, 如为节电需求的终端制定一个长周 期性位置区域更新时间参数, 调整 Connected模式下使用的 DRX参数为长 DRX参数等。 SGSN/MME制定相关节电参数后, 需要及时通知给终端, 终 端根据节电参数执行节电操作。 具体包括步骤 301-306:
步骤 301 : 3GPP终端向 3GPP网络的 RAN接入网络发起附着或位置更 新请求, 携带参考终端活动时间参数。 RAN选择一个服务 SGSN/MME, 并 将该携带参考终端活动时间参数的接入请求发给 SGSN/MME,指示网络侧终 端需要定义一个睡眠时间段进行节电。 步骤 302: 所述 SGSN/MME向 HSS发送位置更新请求, HSS根据 IMSI 标识, 识别终端为非限制终端, 并查找该终端的签约数据。
步骤 303: HSS将该终端的签约信息发给所述 SGSN/MME, SGSN/MME 对该终端进行接入认证。
步骤 304:所述 SGSN/MME根据参考终端活动时间参数及运营商的策略, 为终端确定一个终端活动时间参数, 同时可制定节电策略, 如为节电需求的 终端制定一个长周期性位置区域更新时间参数, 调整 Connected模式下使用 的 DRX参数为长 DRX参数等。
步骤 305: SGSN/MME制定相关节电参数后, 在接入请求响应消息中携 带上述节电参数并及时通知给终端, 终端根据节电参数执行节电操作, 节电 参数至少包括终端活动时间参数, 也可以包含长 TAU时间参数, 长 DRX参 数等。
步骤 306: 终端收到节电参数后进行节电操作, 具体节电操作方案见步 骤 106相关描述。
具体实施例四:
图 8为具体实施例四的流程示意图, 终端是具有节电需求的终端, 当终 端请求接入到网络时, 在请求消息中携带参考终端活动时间参数给网络侧, 通知网络侧终端需要定义一个睡眠时间段进行节电, 同时在 HSS的签约信息 中也签约有终端活动时间参数。 网络侧移动性管理网元 SGSN/MME根据参 考终端活动时间参数、 运营商的策略及签约终端活动时间参数, 为终端确定 一个终端活动时间参数, 同时可制定节电策略, 如为节电需求的终端制定一 个长周期性位置区域更新时间参数, 调整 Connected模式下使用的 DRX参数 为长 DRX参数等。 SGSN/MME制定相关节电参数后, 需要及时通知给终端, 终端根据节电参数执行节电操作。 具体包括步骤 401-406:
步骤 401 : 3GPP终端向 3GPP网络的 RAN接入网络发起附着或位置更 新请求, 携带参考终端活动时间参数。 RAN选择一个服务 SGSN/MME, 并 将该携带参考终端活动时间参数的接入请求发给 SGSN/MME,指示网络侧终 端需要定义一个睡眠时间段进行节电。
步骤 402: 所述 SGSN/MME向 HSS发送位置更新请求, HSS根据 IMSI 标识, 识别终端为非限制终端, 并查找该终端的签约数据, 签约信息中包含 有签约终端活动时间参数。
步骤 403: HSS将该终端的签约信息发给所述 SGSN/MME, SGSN/MME 从签约信息中获取到签约终端活动时间参数, 并对该终端进行接入认证。
步骤 404: 所述 SGSN/MME根据参考终端活动时间参数、运营商的策略 及签约终端活动时间参数, 为终端决策一个终端活动时间参数, 同时可制定 节电策略, 如为节电需求的终端制定一个长周期性位置区域更新时间参数, 调整 Connected模式下使用的 DRX参数为长 DRX参数等。
步骤 405: SGSN/MME制定相关节电参数后, 在接入请求响应消息中携 带上述节电参数并及时通知给终端, 终端根据节电参数执行节电操作, 节电 参数至少包括终端活动时间参数,也可以包含长的 TAU时间参数,长的 DRX 参数等。
步骤 406: 终端收到节电参数后进行节电操作, 具体节电操作方案见步 骤 106相关描述。
具体实施例五:
图 9为具体实施例五的流程示意图, 终端是具有节电需求的终端, 当终 端请求接入到网络时, 在请求消息中携带节电指示给网络侧, 指示网络侧终 端需要节电, 同时在 HSS的签约信息中也签约有终端活动时间参数, 另外在 网络侧移动性管理网元 SGSN/MME根据运营商的策略、 签约终端活动时间 参数及用户面的参数终端活动时间参数,为终端确定一个终端活动时间参数, 同时可制定节电策略, 如为节电需求的终端制定一个长周期性位置区域更新 时间参数, 调整 Connected模式下使用的 DRX 参数为长 DRX 参数等。 SGSN/MME制定相关节电参数后, 需要及时通知给终端, 终端根据节电参数 执行节电操作。 具体包括步骤 501-508: 步骤 501 : 3GPP终端向 3GPP网络的 RAN接入网络发起附着或位置更 新请求, 携带节电指示。 RAN选择一个服务 SGSN/MME, 并将该携带节电 指示的接入请求发给 SGSN/MME, 指示网络侧终端需要进行节电。
步骤 502: 所述 SGSN/MME向 HSS发送位置更新请求, HSS根据 IMSI 标识, 识别终端为非限制终端, 并查找该终端的签约数据, 签约信息中包含 有签约终端活动时间参数。
步骤 503: HSS将该终端的签约信息发给所述 SGSN/MME, SGSN/MME 从签约信息中获取到签约终端活动时间参数, 并对该终端进行接入认证。
步骤 504: SGSN/MME向用户面网元 GGSN/PGW发送承载建立或承载 修改请求, 请求为该终端建立用户面承载。
步骤 505: GGSN/PGW在承载建立 /承载修改响应消息中, 将用户面侧的 参考终端活动时间参数发送给所述 SGSN/MME。 给 GGSN/PGW, 也可以由 GGSN/PGW根据用户面承载数据包流量监控的历 史数据确定一个参考终端活动时间参数。
步骤 506: 所述 SGSN/MME根据运营商的策略、签约终端活动时间参数 及用户面的参考终端活动时间参数, 为终端确定一个终端活动时间参数, 同 时可制定节电策略, 如为节电需求的终端制定一个长周期性位置区域更新时 间参数, 调整 Connected模式下使用的 DRX参数为长 DRX参数等。
步骤 507: SGSN/MME制定相关节电参数后, 在接入请求响应消息中携 带上述节电参数并及时通知给终端, 终端根据节电参数执行节电操作, 节电 参数至少包括终端活动时间参数,也可以包含长的 TAU时间参数,长的 DRX 参数等。
步骤 508: 终端收到节电参数后进行节电操作, 具体节电操作方案见步 骤 106相关描述。
具体实施例六:
图 10为具体实施例六的流程示意图, 终端是具有节电需求的终端, 当终 端请求接入到网络时, 在请求消息中携带参考终端活动时间参数给网络侧, 通知网络侧终端需要定义一个睡眠时间段进行节电, 同时在 HSS的签约信息 中也签约有终端活动时间参数, 另外在用户面网元 GGSN/PGW也可以提供 参考终端活动时间参数给 SGSN/MME。 网络侧移动性管理网元 SGSN/MME 根据参考终端活动时间参数、 运营商的策略、 签约终端活动时间参数及用户 面的参数终端活动时间参数, 为终端确定一个终端活动时间参数, 同时可制 定节电策略,如为节电需求的终端制定一个长周期性位置区域更新时间参数, 调整 Connected模式下使用的 DRX参数为长 DRX参数等。 SGSN/MME制定 相关节电参数后, 需要及时通知给终端, 终端根据节电参数执行节电操作。 具体包括步骤 601-608:
步骤 601 : 3GPP终端向 3GPP网络的 RAN接入网络发起附着或位置更 新请求, 携带参考终端活动时间参数。 RAN选择一个服务 SGSN/MME, 并 将该携带参考终端活动时间参数的接入请求发给 SGSN/MME,指示网络侧终 端需要定义一个睡眠时间段进行节电。
步骤 602: 所述 SGSN/MME向 HSS发送位置更新请求, HSS根据 IMSI 标识, 识别终端为非限制终端, 并查找该终端的签约数据, 签约信息中包含 有签约终端活动时间参数。
步骤 603: HSS将该终端的签约信息发给所述 SGSN/MME, SGSN/MME 从签约信息中获取到签约终端活动时间参数, 并对该终端进行接入认证。
步骤 604: SGSN/MME向用户面网元 GGSN/PGW发送承载建立或承载 修改请求, 请求为该终端建立用户面承载。
步骤 605: GGSN/PGW在承载建立 /承载修改响应消息中, 将用户面侧的 参考终端活动时间参数发送给所述 SGSN/MME。 给 GGSN/PGW, 也可以由 GGSN/PGW根据用户面承载数据包流量监控的历 史数据确定一个参考终端活动时间参数。
步骤 606:所述 SGSN/MME根据参考终端活动时间参数、运营商的策略、 签约终端活动时间参数及用户面的参考终端活动时间参数, 为终端确定一个 终端活动时间参数, 同时可制定节电策略, 如为节电需求的终端制定一个长 周期性位置区域更新时间参数, 调整 Connected模式下使用的 DRX参数为长 DRX参数等。
步骤 607: SGSN/MME制定相关节电参数后, 在接入请求响应消息中携 带上述节电参数并及时通知给终端, 终端根据节电参数执行节电操作, 节电 参数至少包括终端活动时间参数, 也可以包含长的 TAU时间参数, 长 DRX 参数等。
步骤 608: 终端收到节电参数后进行节电操作, 具体节电操作方案见步 骤 106相关描述。
具体实施例七:
图 11为具体实施例七的流程示意图, 终端是具有节电需求的终端, 当终 端请求接入到网络时, 在请求消息中携带参考终端活动时间参数给网络侧, 通知网络侧终端需要定义一个睡眠时间段进行节电, 也可以携带节电指示。 为终端确定一个终端活动时间参数, 并将该终端活动时间参数及时通知给终 端, 终端根据终端活动时间参数执行节电操作。 具体包括步骤 701-708:
步骤 701 : 3GPP终端向 3GPP网络的 RAN接入网络发起附着或位置更 新请求,携带参考终端活动时间参数或节电指示,可以放在 PCO参数中携带。 RAN选择一个服务 SGSN/MME, 并将该携带参考终端活动时间参数或节电 指示的接入请求发给 SGSN/MME,指示网络侧终端需要定义一个睡眠时间段 进行节电。
步骤 702: 所述 SGSN/MME向 HSS发送位置更新请求, HSS根据 IMSI 标识, 识别终端为非限制终端, 并查找该终端的签约数据。
步骤 703: HSS将该终端的签约信息发给所述 SGSN/MME, SGSN/MME 对该终端进行接入认证。
步骤 704: SGSN/MME向用户面网元 GGSN/PGW发送承载建立或承载 修改请求, 请求为该终端建立用户面承载, 请求消息中包含参考终端活动时 间参数或节电指示, 可以放在 PCO参数中。
步骤 705: 所述 SGSN/MME根据参考终端活动时间参数、运营商的策略 及用户面的参考终端活动时间参数, 为终端确定一个终端活动时间参数。 给 GGSN/PGW, 也可以由 GGSN/PGW根据用户面承载数据包流量监控的历 史数据确定一个参考终端活动时间参数。
步骤 706: GGSN/PGW在承载建立 /承载修改响应消息中, 将终端活动时 间参数发送给所述 SGSN/MME,终端活动时间参数可以包含在 PCO参数中。
步骤 707: SGSN/MME在接入请求响应消息中携带终端活动时间参数通 知给终端, 终端活动时间参数可包含在 PCO参数中。 终端根据终端活动时间 参数执行节电操作。
步骤 708: 终端收到终端活动时间参数后进行节电操作, 具体节电操作 方案见步骤 106相关描述。需要说明的是,为防止 SGSN/MME不知道终端的 睡眠时间, 当睡眠时间超过 TAU时间时, 有隐式 Detach的风险, 在实际时 间参数制定中, 可将 TAU时间默认为终端睡眠时间, GGSN/MME只需要制 定终端活动时间窗口周期就可以了。
网络侧网元获取到终端活动时间参数后 , 可釆用多种方式通知给 MTC IWF或用户面网元 GGSN/PGW, 如釆用 T5接口通知, 或釆用 HSS保存及查 询的方法, 或是在用户面网元发送的下行数据通知响应消息中携带该时间参 数。 MTC IWF在终端休眠时间段不再接收 MTC Server的下行信令, 如终端 激活请求消息, 从而, 避免对网络侧信令面资源造成资源消耗; 用户面网元 GGSN/PGW在终端休眠时间段不再接收下行数据包的发送, 从而, 避免对网 络侧用户面资源造成资源消耗。
本方案提供了网络侧控制的终端节电方法包括: 网络侧移动性管理网元
( SGSN/MME )将终端的终端活动时间参数通知至网络侧机器类型通信互通 功能网元(MTC IWF )或网络侧用户面网元, 所述活动时间参数包括活动窗 口时间段和休眠时间段; 所述 MTC IWF或所述网络侧用户面网元在终端的 休眠时间段内, 不执行对所述终端的下行信令或下行数据的发送。
可釆用以下通知方法:
所述网络侧移动性管理网元通过 Τ5接口将终端的终端活动时间参数直 接通知至所述 MTC IWF; 服务器, 所述归属用户服务器将所述终端活动时间参数保存在签约数据或终 端上下文信息中, 收到所述 MTC IWF的针对所述终端的终端路由查询信息 时, 将所保存的所述终端的终端活动时间参数通知给所述 MTC IWF。
所述网络侧移动性管理网元收到所述网络侧用户面网元发送的下行数据 通知消息后, 在向所述网络侧用户面网元发送的拒绝消息中携带所述终端的 终端活动时间参数。
釆用上述网络控制的节能方法, 可以达到网络侧优化的节能效果, 具体 实施例如下所述。
具体实施例八
图 12 为具体实施例八的流程示意图, 当 3GPP 网络侧移动性管理网元 SGSN/MME获取到终端活动时间参数后, SGSN/MME通过与 MTC IWF的 T5接口, 将该时间参数及时通知给 MTC IWF , MTC IWF执行相应的节电策 略。 具体步骤包括 801-807:
步骤 801:终端请求接入到 3GPP网络,终端附着到网络后, SGSN/MME 获得该终端的活动时间参数。 该活动时间参数既可以是终端确定后通知给 SGSN/MME, 也可以是网络侧确定后通知给所述终端。
步骤 802: 若网络侧 SGSN/MME已与 MTC IWF建立了 T5接口连接, MSC/SGSN通过 T5接口,釆用特定的信令,将终端活动时间参数通知给 MTC IWF。
步骤 803: MTC IWF获取到该终端活动时间参数后, 当收到来自 MTC Server的下行信令时, 如终端激活请求信令, MTC IWF或判断此时是否在活 动时间段还是休眠时间段。 如果是休眠时间段, MTC IWF会拒绝下行信令的 请求, 避免该信令发往核心网网元, 造成信令与用户面资源的消耗。
步骤 804: MTC Server收到应用服务器的下行请求后, 或向网络发起终 端激活请求, 激活终端进行终呼业务。
步骤 805: 若终端处于休眠状态, MTC IWF会拒绝该激活请求, 并可将 终端活动时间参数携带在激活请求响应消息中发给 MTC Server。
步骤 806: MTC Server可在一段时间后尝试再次向 MTC IWF发起激活 请求, 或是在终端活动时间段发起激活请求。
步骤 807: 在终端活动时间段, MTC IWF通过与 SMSC的 T4接口, 将 该激活请求封装在 T4接口中发给 SMSC, SMSC通过短消息机制, 将激活请 求封装在短消息中发给终端。
具体实施例九
图 13 为具体实施例九的流程示意图, 当 3GPP 网络侧移动性管理网元 SGSN/MME获取到终端活动时间参数后, SGSN/MME通知 HSS进行保存。 当 MTC IWF向 HSS发起业务路由查询请求时, HSS将该时间参数在业务路 由查询响应消息中携带给 MTC IWF , MTC IWF执行相应的节电策略。 具体 包括步骤 901-909:
步骤 901:终端请求接入到 3GPP网络,终端附着到网络后, SGSN/MME 获得该终端的活动时间参数。 该活动时间参数既可以是终端确定后通知给 SGSN/MME, 也可以是网络侧确定后通知给所述终端。
步骤 902: 当终端附着完成后, 网络侧 SGSN/MME向 HSS发送通知消 息, 将终端活动时间参数通知给 HSS, HSS将该终端活动时间进行保存, 可 保存在该终端的签约信息或终端上下文信息中。
步骤 903: MTC Server收到应用服务器的下行请求后, 或向网络发起终 端激活请求, 激活终端进行终呼业务。
步骤 904: MTC IWF收到激活请求后,需要根据激活请求中的终端标识, 向 HSS查询该终端驻留的 SGSN/MME的地址。 MTC IWF向 HSS发起业务 路由查询请求。 步骤 905: HSS向 MTC IWF返回业务路由查询响应消息,携带终端附着 的 SGSN/MME地址,同时将 HSS保存的终端活动时间参数通知给 MTC IWF。
步骤 906: MTC IWF判断终端是否处于休眠状态。若终端处于休眠状态, MTC IWF会拒绝该激活请求,并可将终端活动时间参数携带在激活请求响应 消息中发给 MTC Server。
步骤 907: MTC IWF 获取到该终端活动时间参数后, 当继续收到来自 MTC Server的下行信令时, 如终端激活请求信令, MTC IWF或判断此时是 否在活动时间段还是休眠时间段。 如果是休眠时间段, MTC IWF会拒绝下行 信令的请求, 避免该信令发往核心网网元, 造成信令与用户面资源的消耗。
步骤 908: MTC Server可在一段时间后尝试再次向 MTC IWF发起激活 请求, 或是在终端活动时间段发起激活请求。
步骤 909: 在终端活动时间段, MTC IWF通过与 SMSC的 T4接口, 将 该激活请求封装在 T4接口中发给 SMSC, SMSC通过短消息机制, 将激活请 求封装在短消息中发给终端。
具体实施例十
图 14 为具体实施例十的流程示意图, 当 3GPP 网络侧移动性管理网元 SGSN/MME获取到终端活动时间参数后, SGSN/MME在 UE可达消息中携 带该时间参数给 HSS, HSS进行保存。 当 MTC IWF向 HSS发起业务路由查 询请求时, HSS将该时间参数在业务路由查询响应消息中携带给 MTC IWF , MTC IWF执行相应的节电策略。 具体包括步骤 1001-1014:
步骤 1001:终端请求接入到 3GPP网络,终端附着到网络后, SGSN/MME 获得该终端的活动时间参数。 该活动时间参数既可以是终端确定后通知给 SGSN/MME, 也可以是网络侧确定后通知给所述终端。
步骤 1002: MTC Server收到应用服务器的下行请求后, 或向网络发起终 端激活请求, 激活终端进行终呼业务。
步骤 1003: MTC IWF通过 T4接口, 将激活请求发送给 SMSC。
步骤 1004: SMSC执行 SMS机制, 将激活请求封装在 SMS消息中发送 给 SGSN/MME0
步骤 1005: SGSN/MME判断终端是否处于休眠状态。 若终端处于休眠 状态, MTC IWF会丟弃 SMS消息, 并向 SMSC返回 SMS消息发送失败的通 知。
步骤 1006: SGSN/MME 的终端休眠时间段结束, 休眠定时器溢出, 进 入活动时间段。
步骤 1007: SGSN/MME向 HSS通知 UE可达消息, 该消息中携带终端 活动时间参数给 HSS。
步骤 1008: HSS收到 UE可达消息后, 获取所携带的终端活动时间参数 进行保存, 可保存在该终端的签约信息或终端上下文信息中。 然后 HSS 向 SMSC发送 UE可达消息通知;
步骤 1009: SMSC将 SMS消息发给终端, 携带激活请求信息。
步骤 1010: MTC Server再次收到应用服务器的下行请求后, 若终端已处 于 Idle模式, MTC Server需要向网络发起终端激活请求, 激活终端进行终呼 业务。
步骤 1011 : MTC IWF再次收到该终端激活请求后, 需要根据激活请求 中的终端标识, 向 HSS查询该终端驻留的 SGSN/MME的地址。 MTC IWF向 HSS发起业务路由查询请求。
步骤 1012: HSS向 MTC IWF返回业务路由查询响应消息, 携带终端附 着的 SGSN/MME地址, 同时将 HSS保存的终端活动时间参数通知给 MTC IWF。
步骤 1013: MTC IWF判断终端是否处于休眠状态。 若终端处于休眠状 态, MTC IWF会拒绝该激活请求, 并可将终端活动时间参数携带在激活请求 响应消息中发给 MTC Server。
步骤 1014: MTC IWF获取到该终端活动时间参数后, 当继续收到来自
MTC Server的下行信令时, 如终端激活请求信令, MTC IWF判断此时是否 在活动时间段还是休眠时间段。 如果是休眠时间段, MTC IWF拒绝下行信令 的请求, 避免该信令发往核心网网元, 造成信令与用户面资源的消耗。 具体实施例十一
图 15为具体实施例十一的流程示意图, 当 3GPP网络侧移动性管理网元 SGSN/MME 获取到终端活动时间参数后, SGSN/MME通知给用户面网元 GGSN/PGW, GGSN/PGW执行相应的节电策略。 具体包括步骤 1101-1109:
步骤 1101 :终端请求接入到 3GPP网络,终端附着到网络后, SGSN/MME 获得该终端的活动时间参数。 该活动时间参数既可以是终端确定后通知给 SGSN/MME, 也可以是网络侧确定后通知给所述终端。
步骤 1102: MTC Server收到应用服务器的下行数据后, 向用户面网元 GGSN/PGW转发该终端的下行 IP数据包, 或应用服务器直接向用户面网元 GGSN/PGW发送该终端的下行 IP数据包。
步骤 1103:因终端处于 Idle状态,用户面网元 GGSN/PGW向 SGSN/MME 发送下行数据通知(DDN ) 消息, 请求建立与终端的用户面连接。
步骤 1104: SGSN/MME判断终端是否处于休眠状态。 若终端处于休眠 状态, MTC IWF会拒绝 DDN消息, 并在拒绝消息中携带终端活动时间参数 和拒绝的原因值: 终端休眠。
处于休眠状态, GGSN/PGW向 MTC Server或应用服务器返回用户不可及消 息。
步骤 1106: MTC Server或应用服务器得知用户不可及后, 会延迟一段时 间, 然后再次尝试发起下行的 IP数据包给终端。
步骤 1107: GGSN/PGW收到下行的 IP数据包后, 判断此时终端是否在 活动时间段还是休眠时间段。 如果在休眠时间段, GGSN/PGW会拒绝向 SGSN/MME发起 DDN请求, 避免造成信令与用户面资源的消耗。 同时会再 次返回用户不可及消息。
步骤 1108: GGSN/PGW收到下行的 IP数据包后, 如果终端是在活动时 间段, GGSN/PGW会向 SGSN/MME发送 DDN通知消息。
步骤 1109: SGSN/MME判断终端是处于活动时间段, 会向终端发起寻 呼请求, 终端收到寻呼消息后, 会主动建立与 GGSN/PGW的用户面连接。
具体实施例十二
图 16为具体实施例十二的流程示意图, 终端附着到 3GPP网络后, 由用 户面网元 GGSN/PGW来确定终端活动时间参数并发送给终端。 GGSN/PGW 在下行数据通知消息中将该终端活动时间参数通知给 SGSN/MME 网元, SGSN/MME 可根据上述实施例的方案进一步将该终端活动时间参数通知给 MTC IWF, MTC IWF执行相应的节电策略。 具体包括步骤 1201-1208:
步骤 1201 : 终端请求接入到 3GPP网络, 终端附着到网络后请求建立用 步骤 1202: MTC Server收到应用服务器的下行数据后, 向用户面网元 GGSN/PGW转发该终端的下行 IP数据包, 或应用服务器直接向用户面网元 GGSN/PGW发送该终端的下行 IP数据包。
步骤 1203:因终端处于 Idle状态,用户面网元 GGSN/PGW向 SGSN/MME 判断此时终端处于活动状态, 就发送下行数据通知 (DDN ) 消息给 SGSN/MME, 请求建立与终端的用户面连接。 在下行数据通知消息中携带终 端活动时间参数并发给 SGSN/MME。
步骤 1204: SGSN/MME 向终端发送寻呼消息, 终端收到寻呼消息后, 会主动建立与 GGSN/PGW的用户面连接。 处于休眠状态, GGSN/PGW向 MTC Server或应用服务器返回用户不可及消 息。
步骤 1206: SGSN/MME可同时向 HSS发送通知消息, 将终端活动时间 参数通知给 HSS, HSS将该终端活动时间进行保存, 可保存在该终端的签约 信息或终端的上下文信息中。
步骤 1207: MTC Server收到应用服务器的下行请求后, 会向网络发起终 端激活请求, 激活终端进行终呼业务。
MTC IWF收到激活请求后, 需要根据激活请求中的终端标识, 向 HSS 查询该终端驻留的 SGSN/MME的地址。 MTC IWF向 HSS发起业务路由查询 请求。
步骤 1208: HSS向 MTC IWF返回业务路由查询响应消息, 携带终端附 着的 SGSN/MME地址, 同时将 HSS保存的终端活动时间参数通知给 MTC IWF。 MTC IWF可根据该终端活动时间参数进行节电控制。
通过本发明实施例的上述系统, 可以使得网络侧为终端制定节电参数, 并将节电参数通知给 MTC IWF或 GGSN/PGW, 既使终端节电效果最优化, 也避免消耗网络侧不必要的信令面及用户面资源, 达到较好的应用效果。
需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特 征可以相互任意组合。
当然, 本发明还可有其他多种实施例, 在不背离本发明精神及其实质的 但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
工业实用性
通过本发明, 当接入到 3GPP网络的终端有节电需求时, 3GPP网络侧网 元根据运营商策略及参考的节电参数为终端确定最终的终端活动时间参数及 长 TAU时间、 长 DRX参数等节电参数。 在连接模式下, 终端可通过长 DRX 参数进行更优化的节电控制; 在空闲模式下, 终端可在活动窗口时间段接收 寻呼消息, 在休眠时间段关闭无线收发系统, 大大减少了终端的电源消耗, 达到了节电的目的。 同时, 若有下行数据业务, 仍可通过活动时间段对终端 进行寻呼来触发终端接收下行数据, 因此并没有降低用户体验。

Claims

权 利 要 求 书
1、 一种终端节电方法, 包括:
终端接入网络, 网络侧网元确定所述终端的空闲模式节电参数并通知所 述空闲模式节电参数至所述终端, 所述终端进入空闲模式后根据所述空闲模 式节电参数执行节电操作。
2、 如权利要求 1所述的方法, 其中,
所述空闲模式节电参数包括终端活动时间参数, 所述活动时间参数包括 活动窗口时间段和休眠时间段, 所述终端进入空闲模式后, 在活动窗口时间 段内接收网络侧的寻呼消息, 在休眠时间段内不接收网络侧的寻呼消息。
3、 如权利要求 2所述的方法, 其中,
所述终端活动时间参数包括睡眠时间段参数, 睡眠时间段内包括一个或 多个所述活动窗口时间段和所述休眠时间段, 所述终端进入空闲模式后在睡 眠时间段内执行节电操作; 所述睡眠时间段的值默认为长周期性位置区域更 新时间 (TAU )参数或普通周期性位置区域更新时间参数。
4、 如权利要求 1所述的方法, 其中,
所述空闲模式节电参数还包括长周期性位置区域更新时间(TAU )参数, 所述长周期性 TAU参数的值大于普通周期性位置区域更新时间参数的值。
5、 如权利要求 1所述的方法, 其中,
所述网络侧网元还确定所述终端的连接模式节电参数并通知所述连接模 式节电参数至所述终端, 所述连接模式节电参数包括长非连续接收参数, 所 述长非连续接收参数中数据收发关闭时间的值大于普通非连续接收参数中数 据收发关闭时间的值。
6、 如权利要求 1所述的方法, 其中,
所述网络侧网元根据所述终端发送的节电指示确定所述终端为节电终 端, 或者,
所述网络侧网元根据所述终端的国际移动用户识别码(IMSI )标识、 接 入点名称(APN )确定所述终端为节电终端。
7、 如权利要求 2所述的方法, 其中,
当所述网络侧网元是网络侧移动性管理网元时, 根据签约的终端活动时 间参数、 用户面网元的参考终端活动时间参数、 终端侧的参考终端活动时间 参数 ,以及运营商策略中的至少一种确定所述终端的所述终端活动时间参数。
8、 如权利要求 2所述的方法, 其中,
当所述网络侧网元是网络侧用户面网元时, 根据用户面网元的参考终端 活动时间参数、 终端侧的参考终端活动时间参数、 运营商策略中的至少一种 确定所述终端的所述终端活动时间参数。
9、 如权利要求 3或 5所述的方法, 其中,
所述网络侧移动性管理网元根据运营商策略为节电终端确定用于空闲模 式的长周期性位置区域更新时间参数的值以及用于连接模式的长非连续接收 参数的值。
10、 如权利要求 1所述的方法, 其中,
的下行寻呼; 网络侧用户面网元在所述终端的休眠时间段, 不发送针对所述 终端的下行数据包。
11、 一种终端节电装置, 包括: 节电参数接收模块和节电执行模块; 所述节电参数接收模块设置成: 从网络侧接收空闲模式节电参数; 所述节电执行模块设置成: 在所述终端进入空闲模式后根据所述空闲模 式节电参数执行节电操作。
12、 如权利要求 11所述的终端节电装置, 其中,
所述节电执行模块是设置成: 在所述终端进入空闲模式后, 在所述空闲 模式节电参数中的活动窗口时间段内接收网络侧的寻呼消息, 在所述空闲模 式节电参数中的休眠时间段内不接收网络侧的寻呼消息。
13、 如权利要求 11所述的终端节电装置, 其中,
所述节电执行模块是设置成: 在所述终端进入空闲模式后, 在所述空闲 模式节电参数中的睡眠时间段内执行节电操作, 在睡眠时间段的活动窗口时 间段内接收网络侧的寻呼消息, 在睡眠时间段的休眠时间段内不接收网络侧 的寻呼消息。
14、 如权利要求 11所述的终端节电装置, 其中,
所述终端节电装置还包括参考节电参数发送模块, 其设置成根据终端的 静态配置和 /或运营商策略, 将节电指示或参考终端活动时间参数向网络侧发 送。
15、 一种网络侧节电装置, 包括: 节电参数确定模块和节电参数发送模 块;
所述节电参数确定模块设置成: 确定终端的空闲模式节电参数; 所述节电参数发送模块设置成: 将所述空闲模式节电参数向所述终端发 送。
16、 如权利要求 15所述的网络侧节电装置, 其中,
所述网络侧节电装置还包括参考节电参数接收模块;
所述参考节电参数接收模块设置成: 接收签约的终端活动时间参数、 用 户面网元的参考终端活动时间参数、 终端侧的参考终端活动时间参数中的至 少一种; 以及
所述节电参数确定模块设置成: 根据签约的终端活动时间参数、 用户面 网元的参考终端活动时间参数、 终端侧的参考终端活动时间参数、 运营商策 略中的至少一种确定终端的所述空闲模式节电参数中的终端活动时间参数; 所述活动时间参数包括活动窗口时间段和休眠时间段, 所述活动窗口时间段 内的操作对应处于空闲模式的终端接收网络侧的寻呼消息的操作, 所述休眠 时间段内的操作对应处于空闲模式的终端不接收网络侧的寻呼消息的操作。
17、 如权利要求 15所述的网络侧节电装置, 其中,
所述节电参数确定模块还设置成: 确定所述空闲模式节电参数中的长周 期性位置区域更新时间 (TAU )参数, 所述长周期性位置区域更新时间参数 的值大于普通周期性位置区域更新时间参数的值。
18、 如权利要求 15所述的网络侧节电装置, 其中,
所述节电参数确定模块还设置成: 确定所述终端的连接模式节电参数, 所述连接模式节电参数包括长非连续接收参数, 所述长非连续接收参数中数 据收发关闭时间的值大于普通非连续接收参数中数据收发关闭时间的值。
19、 如权利要求 15所述的网络侧节电装置, 其中,
所述网络侧节电装置还包括节电执行模块;
所述节电执行模块设置成: 当所属网络侧网元是移动性管理网元时, 在 终端的休眠时间段内, 不执行针对所述终端的下行寻呼; 当所属网络侧网元 是网络侧用户面网元时, 在终端的休眠时间段内, 不发送针对所述终端的下 行数据包; 当所属网络侧网元是机器类型通信互通功能网元时, 在终端的休 眠时间段内, 不执行针对所述终端的下行终端激活请求。
20、 一种终端节电方法, 包括: 型通信互通功能网元( MTC IWF )或网络侧用户面网元, 所述活动时间参数 包括活动窗口时间段和休眠时间段; 以及
所述 MTC IWF或所述网络侧用户面网元在终端的休眠时间段内, 不执 行对所述终端的下行信令或下行数据的发送。
21、 如权利要求 20所述的终端节电方法, 其中,
所述网络侧移动性管理网元通过 T5接口将所述终端的终端活动时间参 数直接通知至所述 MTC IWF。
22、 如权利要求 20所述的终端节电方法, 其中, 服务器, 所述归属用户服务器将所述终端活动时间参数保存在签约数据或终 端上下文信息中, 当所述网络侧移动性管理网元收到所述 MTC IWF的针对 所述终端的终端路由查询信息时, 将所保存的所述终端的终端活动时间参数 通知给所述 MTC IWF。
23、 如权利要求 20所述的终端节电方法, 其中,
所述网络侧移动性管理网元收到所述网络侧用户面网元发送的下行数据 通知消息后, 在向所述网络侧用户面网元发送的拒绝消息中携带所述终端的 终端活动时间参数。
PCT/CN2013/074059 2012-04-26 2013-04-11 一种终端节电方法及终端节电装置及网络侧节电装置 WO2014005452A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13813924.1A EP2830367B1 (en) 2012-04-26 2013-04-11 Terminal power-saving method and terminal power-saving device, and network-side power-saving device
ES13813924.1T ES2690316T3 (es) 2012-04-26 2013-04-11 Procedimiento de ahorro de energía de terminal y dispositivo de ahorro de energía de terminal, y dispositivo de ahorro de energía del lado de la red
US14/396,813 US9615327B2 (en) 2012-04-26 2013-04-11 Terminal power-saving method and terminal power-saving device, and network-side power-saving device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210126666.2 2012-04-26
CN201210126666.2A CN103379593B (zh) 2012-04-26 2012-04-26 一种终端节电方法及终端节电装置及网络侧节电装置

Publications (1)

Publication Number Publication Date
WO2014005452A1 true WO2014005452A1 (zh) 2014-01-09

Family

ID=49464027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/074059 WO2014005452A1 (zh) 2012-04-26 2013-04-11 一种终端节电方法及终端节电装置及网络侧节电装置

Country Status (5)

Country Link
US (1) US9615327B2 (zh)
EP (1) EP2830367B1 (zh)
CN (1) CN103379593B (zh)
ES (1) ES2690316T3 (zh)
WO (1) WO2014005452A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3018946A1 (en) * 2014-11-07 2016-05-11 Cisco Technology, Inc. System and method for providing power saving mode enhancements in a network environment
KR20160086353A (ko) * 2014-01-19 2016-07-19 엘지전자 주식회사 파워 세이빙 모드를 지원하기 위한 방법 및 그 무선 기기
JP2016526843A (ja) * 2014-01-10 2016-09-05 エルジー エレクトロニクス インコーポレイティド 節電モードをサポートするための方法及び無線機器
EP3046381A4 (en) * 2013-09-10 2016-09-28 Zte Corp METHOD AND DEVICE FOR RADIO CALL TO A TERMINAL
US9693205B2 (en) 2014-07-03 2017-06-27 Cisco Technology, Inc. System and method for providing message delivery and paging to a group of users in a network environment
US9699725B1 (en) 2014-11-07 2017-07-04 Cisco Technology, Inc. System and method for providing power saving mode enhancements in a network environment
CN107925965A (zh) * 2016-05-16 2018-04-17 株式会社Ntt都科摩 交换机、管理服务器以及通信方法
CN109429218A (zh) * 2017-06-28 2019-03-05 展讯通信(上海)有限公司 用户设备及其配置方法、网络侧设备、计算机可读介质
CN112752332A (zh) * 2021-03-09 2021-05-04 华畅科技(大连)股份有限公司 基于NB-IoT通信协议栈的物联网系统休眠控制方法
CN114364001A (zh) * 2021-12-29 2022-04-15 天翼物联科技有限公司 基于NB-IoT的省电参数配置方法、系统、装置及存储介质

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3042539B1 (en) * 2013-09-03 2018-11-07 Telefonaktiebolaget LM Ericsson (publ) Radio base station and method therein
EP3306988B1 (en) * 2013-09-27 2019-11-06 Telefonaktiebolaget LM Ericsson (publ) Epc enhancement for long drx and power saving state
CN104754703B (zh) * 2013-12-26 2018-06-22 上海科勒电子科技有限公司 一种配对无线通信装置主端设备的通信方法及主端设备
CN105900504B (zh) * 2014-01-13 2019-06-11 Lg电子株式会社 下行链路数据传输方法和服务网关
CN104812031A (zh) * 2014-01-26 2015-07-29 中兴通讯股份有限公司 Mtc用户设备的节能方法及系统、用户设备、rnc
WO2015167722A1 (en) * 2014-04-28 2015-11-05 Intel IP Corporation Communication via dedicated network nodes
WO2015197431A1 (en) 2014-06-25 2015-12-30 Telefonaktiebolaget L M Ericsson (Publ) Node and method for buffering downlink data
EP3162091B1 (en) 2014-06-26 2020-12-30 IOT Holdings, Inc. Application layer group services for machine type communications
CN105282832A (zh) * 2014-07-09 2016-01-27 中兴通讯股份有限公司 一种终端节电方法及装置
EP3001702B1 (en) * 2014-09-26 2021-02-24 Alcatel Lucent Support of mobile-terminated application services in a mobile system
WO2016145635A1 (zh) * 2015-03-18 2016-09-22 华为技术有限公司 一种接收组业务数据的方法及装置
CN106028427A (zh) * 2015-04-03 2016-10-12 中兴通讯股份有限公司 终端节电方法及装置
KR102611234B1 (ko) 2015-04-03 2023-12-06 인터디지탈 패튼 홀딩스, 인크 연장된 drx 사용을 위한 시스템 향상
US10051566B2 (en) * 2015-04-30 2018-08-14 Futurewei Technologies, Inc. System and method for data communication in a decentralized and power efficient manner
WO2016179764A1 (zh) 2015-05-08 2016-11-17 华为技术有限公司 设置信息的配置方法、终端及服务器
US10165046B2 (en) 2015-05-22 2018-12-25 Futurewei Technologies, Inc. Method and system for transmitting data among peer stations in a decentralized manner with high channel efficiency
CN106332133B (zh) * 2015-07-03 2020-12-11 上海中兴软件有限责任公司 精确寻呼设置方法及装置
US10285129B2 (en) * 2015-07-09 2019-05-07 Verizon Patent And Licensing Inc. Wakeup system and method for devices in power saving mode
US9998989B2 (en) * 2015-07-09 2018-06-12 Verizon Patent And Licensing Inc. Wakeup method for devices in power saving mode
CN106412845B (zh) * 2015-08-03 2021-06-15 中兴通讯股份有限公司 无线保真Wi-Fi设备的休眠方法及装置
US9699728B2 (en) * 2015-09-30 2017-07-04 Mediatek Singapore Pte. Ltd. Method and apparatus for power saving
JP6518010B2 (ja) * 2015-10-28 2019-05-22 ホアウェイ・テクノロジーズ・カンパニー・リミテッド データ伝送の方法および装置
US20170290067A1 (en) * 2016-03-29 2017-10-05 Intel IP Corporation Apparatus, system and method of establishing a session
KR102490415B1 (ko) 2016-08-02 2023-01-19 삼성전자주식회사 전자 장치 및 전자 장치의 전력 제어 방법
CN108307495B (zh) * 2016-08-11 2020-12-04 华为技术有限公司 低功耗模式下的ue的跟踪处理方法和设备
CN107872774A (zh) * 2016-09-23 2018-04-03 中国电信股份有限公司 物联网终端参数配置方法、系统和移动性管理实体
CN108307381A (zh) * 2016-09-23 2018-07-20 中国电信股份有限公司 物联网终端参数配置方法、系统和移动性管理实体
US10433129B2 (en) 2016-11-01 2019-10-01 At&T Intellectual Property I, L.P. Enhanced data download mechanism for power constrained internet of things devices
US10321397B2 (en) 2016-11-09 2019-06-11 Cisco Technology, Inc. System and method to facilitate power management in a long range radio network environment
CN108347785B (zh) * 2017-01-25 2021-06-04 展讯通信(上海)有限公司 一种用户设备的资源请求方法及装置
CN109246819B (zh) * 2017-05-24 2021-05-11 华为技术有限公司 一种通信方法和装置
CN109429238B (zh) * 2017-06-28 2022-08-12 展讯通信(上海)有限公司 eDRX模式的配置方法、网络侧设备、用户设备及可读介质
US20190053157A1 (en) * 2017-08-11 2019-02-14 Mediatek Inc. NB-IoT UE Differentiation
CN117082601A (zh) 2017-09-27 2023-11-17 瑞典爱立信有限公司 用于网络节点功率控制的方法和装置
CN108174462B (zh) * 2017-12-26 2020-07-24 Oppo广东移动通信有限公司 数据传输方法及装置
WO2019136645A1 (zh) 2018-01-10 2019-07-18 Oppo广东移动通信有限公司 用于确定终端设备状态的方法、终端设备和接入网设备
CN110072272A (zh) * 2018-01-24 2019-07-30 高新兴物联科技有限公司 一种功耗控制的方法、无线终端及无线通信网络设备
CN108260194A (zh) * 2018-02-23 2018-07-06 中兴通讯股份有限公司 业务的休眠周期的设置方法及装置
WO2020024278A1 (en) * 2018-08-03 2020-02-06 Apple Inc. Device-capability-based and standalone paging in new radio unlicensed band
CN109257808B (zh) * 2018-10-29 2021-06-04 中国联合网络通信集团有限公司 一种tau周期配置方法和装置
CN110267296B (zh) * 2019-05-17 2023-03-24 中国联合网络通信集团有限公司 一种状态检测方法及设备
CN110703897B (zh) * 2019-08-29 2022-01-07 荣耀终端有限公司 控制方法、装置、芯片与设备
WO2021077298A1 (en) * 2019-10-22 2021-04-29 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for stopping delayed service
CN111065073B (zh) * 2019-12-13 2023-02-24 中国联合网络通信集团有限公司 一种epc承载建立方法、移动管理实体及物联网终端
WO2024035458A1 (en) * 2022-08-11 2024-02-15 Qualcomm Incorporated Network transmit inactivity time
WO2024031642A1 (zh) * 2022-08-12 2024-02-15 Oppo广东移动通信有限公司 用于信道传输处理的方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102111856A (zh) * 2009-12-24 2011-06-29 中兴通讯股份有限公司 Mtc终端的节电方法及系统、mtc终端
CN102118739A (zh) * 2009-12-30 2011-07-06 中兴通讯股份有限公司 一种mtc设备、更新mtc设备上报周期的方法和系统
CN102143562A (zh) * 2010-02-01 2011-08-03 中兴通讯股份有限公司 一种基于机器到机器的省电方法及装置
EP2385734A1 (en) * 2010-05-03 2011-11-09 Alcatel Lucent Managing the operation of a machine type communication device in a mobile communication system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2077690B1 (en) * 2008-01-07 2015-03-18 LG Electronics Inc. Method of reselecting a cell based on priorities
US8477811B2 (en) * 2008-02-02 2013-07-02 Qualcomm Incorporated Radio access network (RAN) level keep alive signaling
JP5683474B2 (ja) * 2009-10-02 2015-03-11 三菱電機株式会社 移動体通信システム
KR101617888B1 (ko) * 2010-01-08 2016-05-04 삼성전자주식회사 이동통신 시스템에서 고절전 수신모드 디바이스 통신을 위한 페이징 방법 및 장치와 그 시스템
WO2012062766A1 (en) * 2010-11-08 2012-05-18 Research In Motion Limited Wireless resources
DE112012001163T5 (de) * 2011-04-03 2013-12-24 Lg Electronics Inc. Verfahren zum Senden von Positionsinformation und Nutzergerät

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102111856A (zh) * 2009-12-24 2011-06-29 中兴通讯股份有限公司 Mtc终端的节电方法及系统、mtc终端
CN102118739A (zh) * 2009-12-30 2011-07-06 中兴通讯股份有限公司 一种mtc设备、更新mtc设备上报周期的方法和系统
CN102143562A (zh) * 2010-02-01 2011-08-03 中兴通讯股份有限公司 一种基于机器到机器的省电方法及装置
EP2385734A1 (en) * 2010-05-03 2011-11-09 Alcatel Lucent Managing the operation of a machine type communication device in a mobile communication system

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3046381A4 (en) * 2013-09-10 2016-09-28 Zte Corp METHOD AND DEVICE FOR RADIO CALL TO A TERMINAL
US9769790B2 (en) 2013-09-10 2017-09-19 Xi'an Zhongxing New Software Co. Ltd Method and device for paging terminal
EP2991411A4 (en) * 2014-01-10 2016-12-07 Lg Electronics Inc METHOD FOR SUPPORTING AN ENERGY SAVING MODE AND RADIO DEVICE THEREFOR
US10034238B2 (en) 2014-01-10 2018-07-24 Lg Electronics Inc. Method for supporting power saving mode and radio device therefor
JP2016526843A (ja) * 2014-01-10 2016-09-05 エルジー エレクトロニクス インコーポレイティド 節電モードをサポートするための方法及び無線機器
US10172085B2 (en) 2014-01-19 2019-01-01 Lg Electronics Inc. Method for supporting power saving mode and wireless device thereof
KR20160086353A (ko) * 2014-01-19 2016-07-19 엘지전자 주식회사 파워 세이빙 모드를 지원하기 위한 방법 및 그 무선 기기
US10225698B2 (en) 2014-07-03 2019-03-05 Cisco Technology, Inc. System and method for providing message delivery and paging to a group of users in a network environment
US9693205B2 (en) 2014-07-03 2017-06-27 Cisco Technology, Inc. System and method for providing message delivery and paging to a group of users in a network environment
US9730156B1 (en) 2014-11-07 2017-08-08 Cisco Technology, Inc. System and method for providing power saving mode enhancements in a network environment
US9699725B1 (en) 2014-11-07 2017-07-04 Cisco Technology, Inc. System and method for providing power saving mode enhancements in a network environment
EP3018946A1 (en) * 2014-11-07 2016-05-11 Cisco Technology, Inc. System and method for providing power saving mode enhancements in a network environment
CN107925965A (zh) * 2016-05-16 2018-04-17 株式会社Ntt都科摩 交换机、管理服务器以及通信方法
CN109429218A (zh) * 2017-06-28 2019-03-05 展讯通信(上海)有限公司 用户设备及其配置方法、网络侧设备、计算机可读介质
CN109429218B (zh) * 2017-06-28 2021-09-03 展讯通信(上海)有限公司 用户设备及其配置方法、网络侧设备、计算机可读介质
CN112752332A (zh) * 2021-03-09 2021-05-04 华畅科技(大连)股份有限公司 基于NB-IoT通信协议栈的物联网系统休眠控制方法
CN112752332B (zh) * 2021-03-09 2024-03-08 华畅科技(大连)股份有限公司 基于NB-IoT通信协议栈的物联网系统休眠控制方法
CN114364001A (zh) * 2021-12-29 2022-04-15 天翼物联科技有限公司 基于NB-IoT的省电参数配置方法、系统、装置及存储介质
CN114364001B (zh) * 2021-12-29 2023-12-12 天翼物联科技有限公司 基于NB-IoT的省电参数配置方法、系统、装置及存储介质

Also Published As

Publication number Publication date
EP2830367B1 (en) 2018-08-01
US20150117285A1 (en) 2015-04-30
ES2690316T3 (es) 2018-11-20
CN103379593A (zh) 2013-10-30
US9615327B2 (en) 2017-04-04
CN103379593B (zh) 2019-08-23
EP2830367A1 (en) 2015-01-28
EP2830367A4 (en) 2015-06-03

Similar Documents

Publication Publication Date Title
WO2014005452A1 (zh) 一种终端节电方法及终端节电装置及网络侧节电装置
US11611949B2 (en) Keeping the UE awake
KR102023608B1 (ko) 단말의 휴면 모드 동작 방법 및 장치
US20210250857A1 (en) Service Capability Server / EPC Coordination For Power Savings Mode And Paging
EP4017041B1 (en) Service capability exposure at the user equipment
US20150358967A1 (en) Method and Device for Adjusting Radio Resource
US10863436B2 (en) Apparatus and method for transceiving data by user terminal
US8879413B2 (en) Method and system for controlling access of machine type communications devices
US10484864B2 (en) Subscriber server, monitoring server, mobile terminal, methods related thereto, and computer readable medium
US9380532B2 (en) User equipment and paging method and system using an extended paging period
US20150173013A1 (en) Method of determining expiration period of timer, network node, and non-transitory computer readable medium
WO2011134329A1 (zh) 一种小数据包传输的方法和系统
WO2014044101A1 (zh) 电能优化方法及系统
WO2014176883A1 (zh) 非连续接收周期同步方法、系统和设备
KR20110122643A (ko) 이동통신 시스템에서의 mtc 서비스 네트워크 오버로드의 제어 방법 및 그 장치
WO2011137801A1 (zh) 网关数据传输方法、装置和系统
WO2022226945A1 (zh) 信息处理方法及装置、通信设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13813924

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013813924

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14396813

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE