WO2021077298A1 - Method and apparatus for stopping delayed service - Google Patents

Method and apparatus for stopping delayed service Download PDF

Info

Publication number
WO2021077298A1
WO2021077298A1 PCT/CN2019/112581 CN2019112581W WO2021077298A1 WO 2021077298 A1 WO2021077298 A1 WO 2021077298A1 CN 2019112581 W CN2019112581 W CN 2019112581W WO 2021077298 A1 WO2021077298 A1 WO 2021077298A1
Authority
WO
WIPO (PCT)
Prior art keywords
service
entity
time period
predetermined time
location
Prior art date
Application number
PCT/CN2019/112581
Other languages
French (fr)
Inventor
Xiaoming Li
Xuemei Zhang
Hui GU
Original Assignee
Telefonaktiebolaget Lm Ericsson (Publ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefonaktiebolaget Lm Ericsson (Publ) filed Critical Telefonaktiebolaget Lm Ericsson (Publ)
Priority to PCT/CN2019/112581 priority Critical patent/WO2021077298A1/en
Publication of WO2021077298A1 publication Critical patent/WO2021077298A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • H04W76/38Connection release triggered by timers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • H04W60/04Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration using triggered events
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/08Mobility data transfer
    • H04W8/12Mobility data transfer between location registers or mobility servers

Definitions

  • the present disclosure relates generally to the technology of wireless communication, and in particular, to a method and an apparatus for stopping a delayed service.
  • a Control-Plane-Based Positioning for LTE enables external clients to get either user equipment (UE) location data or UE independent location information by using Location Services (LCS) .
  • UE location data contains the Evolved Universal Terrestrial Radio Access Network (EUTRAN) Cell Global Identifier (ECGI) and the geographical location of the UE device and is retrieved from the Public Land Mobile Network (PLMN) through a Gateway Mobile Location Center (GMLC) server.
  • EUTRAN Evolved Universal Terrestrial Radio Access Network
  • ECGI Cell Global Identifier
  • PLMN Public Land Mobile Network
  • GMLC Gateway Mobile Location Center
  • the Mobility Management Entity coordinates location requests between the GMLC and the eNodeB/Enhanced Serving Mobile Location Centre (E-SMLC) .
  • E-SMLC Enhanced Serving Mobile Location Centre
  • the MME transparently relays LTE Positioning Protocol (LPP) or LTE Positioning Protocol Annex (LPPa) signaling between the E-SMLC and the terminal device (such as UE) or the eNodeBs.
  • LTP LTE Positioning Protocol
  • LTPa LTE Positioning Protocol Annex
  • delayed service such as “delayed location reporting” may causes a meaningless waiting procedure, which is much longer than expected.
  • a first aspect of the present disclosure provides a method performed at a first entity, comprising: receiving, from a second entity, a message requesting a delayed service; and closing a procedure for the service, if the service remains not providable within a predetermined time period.
  • the method may further comprise: transmitting, to the second entity, a report for providing the service, if the service is providable within the predetermined time period.
  • the service may be related to a terminal device; and the service remains not providable, if the terminal device is using an enhanced Extended Idle Discontinuous Reception, eDRX or a Power Saving Mode, PSM.
  • eDRX enhanced Extended Idle Discontinuous Reception
  • PSM Power Saving Mode
  • the service may be providable, if the terminal device is in an idle mode, or a connected mode.
  • the service may comprise a provision of a location of the terminal device.
  • the first entity may comprise a Mobility Management Entity, MME, or an Access and Mobility Management Function, AMF; the second entity may comprise a Gateway Mobile Location Center, GMLC, or a Location Retrieval Function, LRF; and the message may be a Provide Subscriber Location Request message including a Delayed-Location-Reporting-Support-Indicator, or a Namf_Location_ProvidePositioningInfo Request message.
  • MME Mobility Management Entity
  • AMF Access and Mobility Management Function
  • the second entity may comprise a Gateway Mobile Location Center, GMLC, or a Location Retrieval Function, LRF
  • the message may be a Provide Subscriber Location Request message including a Delayed-Location-Reporting-Support-Indicator, or a Namf_Location_ProvidePositioningInfo Request message.
  • the message may include a value of the predetermined time period.
  • the method may further comprise: configuring the value of the predetermined time period.
  • the method may further comprise: starting a timer associated with the value of the predetermined time period.
  • the first entity closes the procedure for the service, if the service remains not providable after the timer expires over the value of the predetermined time period.
  • the method may further comprise: transmitting, to the second entity, an expiration message, if the service remains not providable within the predetermined time period.
  • a second aspect of the present disclosure provides a method performed at a second entity, comprising: transmitting, to a first entity, a message requesting a delayed service; and closing a procedure for accepting the service, if a report for providing the service is not received within a predetermined time period.
  • the method may further comprise: receiving, from the first entity, the report for providing the service, within the predetermined time period.
  • the service may be related to a terminal device; and the service remains not providable, if the terminal device is using an Extended Idle Discontinuous Reception, eDRX or a Power Saving Mode, PSM.
  • eDRX Extended Idle Discontinuous Reception
  • PSM Power Saving Mode
  • the service may be providable, if the terminal device is in an idle mode, or a connected mode.
  • the service may comprise a provision of a location of the terminal device.
  • the first entity may comprise a Mobility Management Entity, MME, or an Access and Mobility Management Function, AMF; the second entity may comprise a Gateway Mobile Location Center, GMLC, or a Location Retrieval Function, LRF; and the message is a Provide Subscriber Location Request message including a Delayed-Location-Reporting-Support-Indicator, or a Namf_Location_ProvidePositioningInfo Request message.
  • MME Mobility Management Entity
  • AMF Access and Mobility Management Function
  • the second entity may comprise a Gateway Mobile Location Center, GMLC, or a Location Retrieval Function, LRF
  • the message is a Provide Subscriber Location Request message including a Delayed-Location-Reporting-Support-Indicator, or a Namf_Location_ProvidePositioningInfo Request message.
  • the message may include a value of the predetermined time period.
  • the value of the predetermined time period may be configured by the first entity.
  • the method may further comprise: starting a timer associated with the value of the predetermined time period.
  • the second entity closes the procedure for accepting the service, if the report for providing the service is not received after the timer expires over the value of the predetermined time period.
  • the method may further comprise: receiving, from the second entity, an expiration message, if the service remains not providable within the predetermined time period.
  • the second entity closes the procedure for accepting the service after receiving the expiration message.
  • a third aspect of the present disclosure provides an apparatus for a first entity, comprising: a processor; and a memory, containing instructions executable by the processor.
  • the first entity is operative to: receive, from a second entity, a message requesting a delayed service; and close a procedure for the service, if the service remains not providable within a predetermined time period.
  • the first entity may be further operative to implement any of the method above described.
  • a fourth aspect of the present disclosure provides an apparatus for a second entity, comprising: a processor; and a memory, containing instructions executable by the processor.
  • the second entity may be operative to: transmit, to a first entity, a message requesting a delayed service; and close a procedure for accepting the service, if a report for providing the service is not received within a predetermined time period.
  • the second entity may be further operative to implement any of the methods above described.
  • a fifth aspect of the present disclosure provides an apparatus for a first entity, comprising: a reception unit, configured to receive, from a second entity, a message requesting a delayed service; and a close unit, configured to close a procedure for the service, if the service remains not providable within a predetermined time period.
  • the first entity may be further operative to implement any of the methods above described.
  • a sixth aspect of the present disclosure provides an apparatus for a second entity, comprising: a transmission unit, configured to transmit, to a first entity, a message requesting a delayed service; and a close unit, configured to close a procedure for accepting the service, if a report for providing the service is not received within a predetermined time period.
  • the second entity may be further operative to implement any of the methods above described.
  • a seventh aspect of the present disclosure provides a computer readable storage medium having a computer program stored thereon, wherein the computer program may be executable by an apparatus to cause the apparatus to carry out any of the methods above described.
  • the first entity and/or the second entity may be able to close a relating procedure for the service. Therefore, meaningless waiting procedure, which is longer than the predetermined time period for such delayed service, may be avoided.
  • the processing resource and/or communication resource in the system may be also saved.
  • FIG. 1 is an exemplary flowing chart showing methods for stopping a delayed service, according to embodiments of the present disclosure
  • FIG. 2 is an exemplary flowing chart showing additional steps for methods shown in FIG. 1, according to embodiments of the present disclosure
  • FIG. 3 is an exemplary flowing chart showing an additional step for the method shown in FIG. 1, according to embodiments of the present disclosure
  • FIG. 4 is another exemplary flowing chart showing an additional step for the method shown in FIG. 1, according to embodiments of the present disclosure
  • FIG. 5 is another exemplary flowing chart showing additional steps for methods shown in FIG. 1, according to embodiments of the present disclosure
  • FIG. 6 is an exemplary diagram showing procedures according to embodiments of the present disclosure.
  • FIG. 7 is another exemplary diagram showing procedures according to embodiments of the present disclosure.
  • FIG. 8 is a block diagram illustrating apparatuses for the first entity 100 and the second entity 200, according to embodiments of the present disclosure
  • FIG. 9 is a schematic showing units for apparatuses for the first entity 100 and the second entity 200, according to embodiments of the present disclosure.
  • FIG. 10 is a block diagram showing an apparatus/computer readable storage medium, according to embodiments of the present disclosure.
  • a wireless network refers to any wired or wireless network/system following any suitable communication standards.
  • a wireless network may include new radio (NR) , long term evolution (LTE) , LTE-Advanced, wideband code division multiple access (WCDMA) , high-speed packet access (HSPA) , Wireless Fidelity (Wi-Fi) , and so on.
  • NR new radio
  • LTE long term evolution
  • WCDMA wideband code division multiple access
  • HSPA high-speed packet access
  • Wi-Fi Wireless Fidelity
  • the communications between network node in the communication network may be performed according to any suitable generation communication protocols, including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , 4G, 4.5G, 5G communication protocols, internet protocol (IP) and/or any other protocols either currently known or to be developed in the future.
  • suitable generation communication protocols including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , 4G, 4.5G, 5G communication protocols, internet protocol (IP) and/or any other protocols either currently known or to be developed in the future.
  • entity may refer to a network device/apparatus/node with accessing capability in a communication network via which a terminal device accesses to the network and receives services therefrom.
  • entity/function may include a base station (BS) , an access point (AP) , a multi-cell/multicast coordination entity (MCE) , a server node/function (such as a service capability server/application server, SCS/AS, group communication service application server, GCS AS, application function, AF) , an exposure node (such as a service capability exposure function, SCEF, network exposure function, NEF) , a controller or any other suitable device in a wireless communication network.
  • BS base station
  • AP access point
  • MCE multi-cell/multicast coordination entity
  • server node/function such as a service capability server/application server, SCS/AS, group communication service application server, GCS AS, application function, AF
  • an exposure node such as a service capability exposure function, SCEF, network exposure function, NEF
  • the BS may be, for example, a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a next generation NodeB (gNodeB or gNB) , a remote radio unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, a low power node such as a femto, a pico, and so forth.
  • NodeB or NB node B
  • eNodeB or eNB evolved NodeB
  • gNodeB or gNB next generation NodeB
  • RRU remote radio unit
  • RH radio header
  • RRH remote radio head
  • relay a low power node such as a femto, a pico, and so forth.
  • Such entity may comprise specified physical apparatus/facility, and/or any kind of virtual apparatus.
  • entity may be virtual apparatus based on software defined network, SDN, or any kind of cloud-computation technology.
  • the network function/entity comprise multi-standard radio (MSR) radio equipment such as MSR BSs, network controllers such as radio network controllers (RNCs) or base station controllers (BSCs) , base transceiver stations (BTSs) , transmission points, transmission nodes, positioning nodes and/or the like.
  • MSR multi-standard radio
  • RNCs radio network controllers
  • BSCs base station controllers
  • BTSs base transceiver stations
  • transmission points transmission nodes
  • positioning nodes positioning nodes and/or the like.
  • the network node may represent any suitable device (or group of devices) capable, configured, arranged, and/or operable to enable and/or provide a terminal device access to a wireless communication network or to provide some service to a terminal device that has accessed to the wireless communication network.
  • terminal device encompasses a device which is able to communicate with a network function/node such as a base station, or with another wireless device by transmitting and/or receiving wireless signals.
  • a network function/node such as a base station
  • terminal device encompasses, but is not limited to: a mobile phone, a stationary or mobile wireless device for machine-to-machine communication, an integrated or embedded wireless card, an externally plugged in wireless card, a vehicle, etc.
  • a terminal device may also be called an IoT device and represent a machine or other device that performs monitoring, sensing and/or measurements etc., and transmits the results of such monitoring, sensing and/or measurements etc. to another terminal device and/or a network equipment.
  • the terminal device may in this case be a machine-to-machine (M2M) device, which may in a 3rd generation partnership project (3GPP) context be referred to as a machine-type communication (MTC) device.
  • M2M machine-to-machine
  • 3GPP 3rd generation partnership project
  • the terminal device may be a user equipment, UE, implementing the 3GPP narrow band Internet of things (NB-IoT) standard.
  • NB-IoT 3GPP narrow band Internet of things
  • machines or devices are sensors, metering devices such as power meters, industrial machinery, or home or personal appliances, e.g. refrigerators, televisions, personal wearables such as watches etc.
  • a terminal device may represent a vehicle or other equipment, for example, a medical instrument that is capable of monitoring, sensing and/or reporting etc. on its operational status or other functions associated with its operation.
  • the terms “first” , “second” and so forth refer to different elements.
  • the singular forms “a” and “an” are intended to include the plural forms as well, unless the context clearly indicates otherwise.
  • the term “based on” is to be read as “based at least in part on” .
  • the term “one embodiment” and “an embodiment” are to be read as “at least one embodiment” .
  • the term “another embodiment” is to be read as “at least one other embodiment” .
  • Other definitions, explicit and implicit, may be included below.
  • GMLC can indicate its support of delayed location reporting in Provide-Location-Request (PLR) Command, and if the MME supports delayed location reporting too, then for UEs transiently not reachable, the MME sends a Provide-Location-Answer (PLA) Command with a "UE transiently not reachable" indication first. Afterwards, MME will wait until the UE next becomes reachable and then performs a network triggered service request if needed to establish a signaling connection with the UE, or wait UE wakes up from sleeping mode and periodic TAU (tracking area update) is received. Then MME will send Location-Report-Request (LRR) Command to provide subscriber location data to the GMLC.
  • PLR Provide-Location-Request
  • LRR Location-Report-Request
  • UE can only be reachable after a quite long time, for example: if Periodic TAU timer, for the UE with Power saving mode function, is the maximum one as 3GPP defined, which may be more than one year (9920 hours) , then it means MME may only provide subscriber location data very late. The worst case is that such late location report may even not make sense any more for GMLC or related application server.
  • FIG. 1 is an exemplary flowing chart showing methods for stopping a delayed service, according to embodiments of the present disclosure.
  • a method M100 performed at a first entity 100 may comprise: step S101, receiving, from a second entity, a message requesting a delayed service; and step S102, closing a procedure for the service, if the service remains not providable within a predetermined time period.
  • a method M200 performed at a second entity 200 may comprise: step S201, transmitting, to a first entity, a message requesting a delayed service; and step S202, closing a procedure for accepting the service, if a report for providing the service is not received within a predetermined time period.
  • the first entity 100 and/or the second entity 200 may be able to close a relating procedure for the service. Therefore, meaningless waiting procedure, which is longer than the predetermined time period for such delayed service, may be avoided.
  • the processing resource and/or communication resource in the system may be also saved.
  • FIG. 2 is an exemplary flowing chart showing additional steps for methods shown in FIG. 1, according to embodiments of the present disclosure.
  • the method M100 may further comprise: step S103, transmitting, to the second entity, a report for providing the service, if the service is providable within the predetermined time period.
  • the method M200 may further comprise: step S203, receiving, from the first entity, the report for providing the service, within the predetermined time period.
  • the delayed service is providable within the predetermined time period, the service is stilled provided.
  • the normal functions of the communication system for providing such delayed service are not disturbed.
  • the service may be related to a terminal device (such as a user equipment, UE) ; and the service remains not providable, if the terminal device is using an enhanced Extended Idle Discontinuous Reception, eDRX or a Power Saving Mode, PSM.
  • a terminal device such as a user equipment, UE
  • PSM Power Saving Mode
  • the service is providable, if the terminal device is in an idle mode, or a connected mode.
  • the service comprises a provision of a location of the terminal device.
  • the service may be “delayed location reporting” about a UE.
  • the first entity 100 may comprise a Mobility Management Entity, MME, or an Access and Mobility Management Function, AMF; the second entity 200 may comprise a Gateway Mobile Location Center, GMLC, or a Location Retrieval Function, LRF; and the message is a Provide Subscriber Location Request message including a Delayed-Location-Reporting-Support-Indicator, or a Namf_Location_ProvidePositioningInfo Request message.
  • MME Mobility Management Entity
  • AMF Access and Mobility Management Function
  • the second entity 200 may comprise a Gateway Mobile Location Center, GMLC, or a Location Retrieval Function, LRF
  • the message is a Provide Subscriber Location Request message including a Delayed-Location-Reporting-Support-Indicator, or a Namf_Location_ProvidePositioningInfo Request message.
  • the second entity 200 may comprise any other network entity providing any other kind of “delayed service” .
  • the first entity 100 may comprise any other network entity accepting such “delayed service” .
  • the message may include a value of the predetermined time period, so as to explicitly indicate how long the first entity 100 want the second entity 200 to maintain such service.
  • FIG. 3 is an exemplary flowing chart showing an additional step for the method shown in FIG. 1, according to embodiments of the present disclosure.
  • the method M200 may further comprise: step S204, starting a timer associated with the value of the predetermined time period.
  • the second entity closes the procedure for accepting the service, if the report for providing the service is not received after the timer expires over the value of the predetermined time period.
  • the second entity 200 may use a timer to decide when to close the procedure for accepting the service. Thus, no extra message/report from the first entity 100 is necessary.
  • the communication resource (such as any kind of signalling or message) may be saved.
  • FIG. 4 is another exemplary flowing chart showing an additional step for the method shown in FIG. 1, according to embodiments of the present disclosure.
  • the method M100 may further comprise: step S104, configuring the value of the predetermined time period.
  • the first entity 100 may decide the predetermined time period by itself. Therefore, no amendment to any existing message (such as Provide Subscriber Location Request message, or a Namf_Location_ProvidePositioningInfo Request message) is needed.
  • the first entity 100 may decide the predetermined time period, under any local policy, which may be predetermined by any user or from any possible relating communication standards.
  • FIG. 5 is another exemplary flowing chart showing additional steps for methods shown in FIG. 1, according to embodiments of the present disclosure.
  • the method M100 may further comprise: step S105, starting a timer associated with the value of the predetermined time period.
  • the first entity closes the procedure for the service, if the service remains not providable after the timer expires over the value of the predetermined time period.
  • the first entity 100 may use any kind of local timer to decide how long to maintain the procedure for the service. As one example, after the timer expires over the value of the predetermined time period, the first entity 100 may close the procedure for the service directly, without notifying the second entity 200. Thus, any extra signalling or report message will be not needed.
  • the method M100 may further comprise: step S106, transmitting, to the second entity, an expiration message, if the service remains not providable within the predetermined time period.
  • the method M200 may further comprise: step S205, receiving, from the second entity, an expiration message, if the service remains not providable within the predetermined time period.
  • the second entity closes the procedure for accepting the service after receiving the expiration message.
  • the second entity 200 may close the procedure for accepting the service, based on a local timer and/or an expiration message from the first entity 100. Therefore, the reliability and the commutation resource may be flexibly balanced, according to practical configuration.
  • FIG. 6 is an exemplary diagram showing procedures according to embodiments of the present disclosure.
  • FIG. 6 is an improvement to part of “Figure 9.18: General Network Positioning for EPC-MT-LR” of 3GPP TS 23.271 V15.1.0.
  • MME receives Provide Subscriber Location Request from GMLC.
  • “delayed-Location-Reporting-Support-Indicator” is set and Maximum-Wait-Time is also included, to identify that the maximum wait time from GMLC for a delayed subscriber location report from MME.
  • step 2 Provide Subscriber Location Answer is received from MME, as the UE is transiently not reachable due to power saving functions, either eDRX or PSM.
  • GMLC starts a timer according to the value of “Maximum-Wait-Time” locally to expect to receive the delayed Subscriber Location Report from the MME. If GMLC doesn’t receive Subscriber Location Report from the MME before the expiry of the timer with timer length “Maximum-Wait-Time” , GMLC closes this delayed location reporting procedure.
  • step 3 MME starts a timer according to the value of “Maximum-Wait-Time” locally, to supervise the next time for UE being reachable. If timer expires but UE is not reachable yet, then MME closes this delayed location reporting procedure.
  • step 4 If UE becomes reachable before the timer expires in MME, MME sends a Location Request to E-SMLC and a timer T3x01 is started to wait for the Location Response from E-SMLC.
  • step 5 Positioning procedure is done between E-SMLC, RAN and UE.
  • step 6 Location Response is received from E-SMLC.
  • step 7 Subscriber Location Report is sent from MME to GMLC.
  • step 8 Subscriber Location Report Ack is received from GMLC.
  • Table 1 shows the proposed new IE ⁇ Maximum-Wait-Time> (underlined) in Provide Subscriber Location Request.
  • Table 1 is based on “Table 6.2.2-1 Provide Subscriber Location Request” of 3GPP TS 29.172 V15.0.0.
  • Table 1 Provide Subscriber Location Request with IE ⁇ Maximum-Wait-Time>
  • FIG. 7 is another exemplary diagram showing procedures according to embodiments of the present disclosure.
  • Deferred Location Reporting once UE is transiently not reachable in 5rd generation core network, 5GC is shown.
  • FIG. 7 is an improvement to part of “Figure 6.1.1-1: 5GC-MT-LR procedure for the regulatory location service” of 3GPP TS 23.273 V16.0.0.
  • step 1 the GMLC invokes the Namf_Location_ProvidePositioningInfo Request service operation to forward the location request to the serving AMF.
  • “Max-Wait-Time ” is included, to identify that the maximum wait time from GMLC for a deferred subscriber location report from AMF.
  • step 2 if the AMF supports a deferred location request, the AMF returns an acknowledgment to the external LCS client, via the GMLC.
  • GMLC starts a timer according to the value of “Maximum-Wait-Time” locally to expect to receive the delayed Namf_Location_EventNotify from the AMF. If GMLC doesn’t receive Namf_Location_EventNotify from the AMF before the expiry of the timer with timer length “Maximum-Wait-Time” , GMLC conclude this delayed location reporting procedure.
  • step 3 AMF will start a timer according to the value of “Maximum-Wait-Time” locally, to supervise the next time for UE being reachable. If timer expires but UE is not reachable yet, then AMF concludes the location reporting procedure.
  • step 4 if UE is expected to be reachable before the timer expires in AMF, if the UE is in CM (connection management) IDLE state, AMF goes to step5, otherwise AMF goes to step6 instead.
  • CM connection management
  • step 5 AMF initiates a network triggered Service Request procedure.
  • NG-RAN refers to next generation radio access network.
  • step 6 the AMF invokes the Nlmf_Location_DetermineLocation Request service operation towards the LMF to initiate a request for deferred UE location.
  • step 7 the LMF invokes the Nlmf_Location_DetermineLocation Response service operation towards the AMF to respond to the request at step 6.
  • step 8 the AMF invokes the Namf_Location_EventNotify service operation towards the GMLC, including any location received at step 7.
  • Table 2 shows the proposed new IE ⁇ Maximum-Wait-Time>(underlined) in Definition of type RequestPosInfo.
  • Table 2 is based on “Table 6.4.6.2.2-1 Definition of type RequestPosInfo” of 3GPP TS 29.518 V15.3.0.
  • “Maximum Wait time” is introduced to notify MME the maximum wait time from GMLC perspective for the delayed location report. So MME will not handle such delayed location request if the delay (time to next UE reachability after PLR is received from GMLC) is longer than GMLC or application server’s tolerance. Thus, signaling is reduced in both core network and RAN network. And it also helps to decrease the capacity/performance impacts on GMLC or application server due to the meaningless waiting for the location report.
  • the “delayed location Reporting” is optimized as much as possible, by avoiding unnecessary positioning signaling/procedure if it is too late for providing the service, which is even not expected from GMLC or application server perspective.
  • FIG. 8 is a block diagram illustrating apparatuses for the first entity 100 and the second entity 200, according to embodiments of the present disclosure.
  • a first entity 100 may comprise: a processor 110; and a memory 120, containing instructions executable by the processor.
  • the first entity 100 may be operative to: receive, from a second entity, a message requesting a delayed service; and close a procedure for the service, if the service remains not providable within a predetermined time period.
  • the first entity 100 is further operative to implement any of the methods above described, such as shown in FIG. 1 to 7.
  • a second entity 200 may comprise: a processor 210; and a memory 220, containing instructions executable by the processor.
  • the second entity 200 may be operative to: transmit, to a first entity, a message requesting a delayed service; and close a procedure for accepting the service, if a report for providing the service is not received within a predetermined time period.
  • the second entity 200 is further operative to implement any of the methods above described, such as shown in FIG. 1 to 7.
  • the processors 110, 210 may be any kind of processing component, such as one or more microprocessor or microcontrollers, as well as other digital hardware, which may include digital signal processors (DSPs) , special-purpose digital logic, and the like.
  • the memories 120, 220 may be any kind of storage component, such as read-only memory (ROM) , random-access memory, cache memory, flash memory devices, optical storage devices, etc.
  • FIG. 9 is a schematic showing units for apparatuses for the first entity 100 and the second entity 200, according to embodiments of the present disclosure.
  • a first entity 100 may comprise: a reception unit 111, configured to receive, from a second entity, a message requesting a delayed service; and a close unit 112, configured to close a procedure for the service, if the service remains not providable within a predetermined time period.
  • the first entity 100 is further operative to implement any of the methods above described, such as shown in FIG. 1 to 7.
  • a second entity 200 may comprise: a transmission unit 211, configured to transmit, to a first entity, a message requesting a delayed service; and a close unit 212, configured to close a procedure for accepting the service, if a report for providing the service is not received within a predetermined time period.
  • the second entity 200 is further operative to implement any of the methods above described, such as shown in FIG. 1 to 7.
  • unit may have conventional meaning in the field of electronics, electrical devices and/or electronic devices and may include, for example, electrical and/or electronic circuitry, devices, modules, processors, memories, logic solid state and/or discrete devices, computer programs or instructions for carrying out respective tasks, procedures, computations, outputs, and/or displaying functions, and so on, as such as those that are described herein.
  • the first entity 100 and the second entity 200 may not need a fixed processor or memory, any computing resource and storage resource may be arranged from at least one network node/device/entity/apparatus relating to the communication system.
  • the virtualization technology and network computing technology e.g. cloud computing
  • FIG. 10 is a block diagram showing an apparatus/computer readable storage medium, according to embodiments of the present disclosure.
  • an apparatus/computer readable storage medium 800 may have a program 801 stored thereon.
  • the program 801 may be executable by an apparatus to cause the apparatus to carry out any of the methods above described, such as shown in FIG. 1-7.
  • the apparatus/computer readable storage medium 800 may be configured to include memory such as RAM, ROM, programmable read-only memory (PROM) , erasable programmable read-only memory (EPROM) , electrically erasable programmable read-only memory (EEPROM) , magnetic disks, optical disks, floppy disks, hard disks, removable cartridges, or flash drives.
  • memory such as RAM, ROM, programmable read-only memory (PROM) , erasable programmable read-only memory (EPROM) , electrically erasable programmable read-only memory (EEPROM) , magnetic disks, optical disks, floppy disks, hard disks, removable cartridges, or flash drives.
  • the first entity and/or the second entity may be able to close a relating procedure for the service. Therefore, meaningless waiting procedure, which is longer than the predetermined time period for such delayed service, may be avoided.
  • the processing resource and/or communication resource in the system may be also saved.
  • “Maximum Wait time” is introduced to notify MME the maximum wait time from GMLC perspective for the delayed location report. So MME will not handle such delayed location request if the delay (time to next UE reachability after PLR is received from GMLC) is longer than GMLC or application server’s tolerance. Thus, signaling is reduced in both core network and RAN network. And it also helps to decrease the capacity/performance impacts on GMLC or application server due to the meaningless waiting for the location report.
  • the “delayed location Reporting” is optimized as much as possible, by avoiding unnecessary positioning signaling/procedure if it is too late for providing the service, which is even not expected from GMLC or application server perspective.
  • the various exemplary embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor or other computing device, although the disclosure is not limited thereto.
  • firmware or software may be executed by a controller, microprocessor or other computing device, although the disclosure is not limited thereto.
  • While various aspects of the exemplary embodiments of this disclosure may be illustrated and described as block diagrams, flow charts, or using some other pictorial representation, it is well understood that these blocks, apparatus, systems, techniques or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
  • the exemplary embodiments of the disclosure may be practiced in various components such as integrated circuit chips and modules. It should thus be appreciated that the exemplary embodiments of this disclosure may be realized in an apparatus that is embodied as an integrated circuit, where the integrated circuit may include circuitry (as well as possibly firmware) for embodying at least one or more of a data processor, a digital signal processor, baseband circuitry and radio frequency circuitry that are configurable so as to operate in accordance with the exemplary embodiments of this disclosure.
  • exemplary embodiments of the disclosure may be embodied in computer-executable instructions, such as in one or more program modules, executed by one or more computers or other devices.
  • program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types when executed by a processor in a computer or other device.
  • the computer executable instructions may be stored on a computer readable medium such as a hard disk, optical disk, removable storage media, solid state memory, RAM, etc.
  • the functionality of the program modules may be combined or distributed as desired in various embodiments.
  • the functionality may be embodied in whole or in part in firmware or hardware equivalents such as integrated circuits, field programmable gate arrays (FPGA) , and the like.
  • FPGA field programmable gate arrays

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Embodiments of the present disclosure relate to a method and an apparatus for stopping a delayed service. A method performed at a first entity may comprises: receiving (S101), from a second entity, a message requesting a delayable delayed service; and closing (S102) a procedure for the service, if the service remains not providable within a predetermined time period. A method performed at a second entity may comprises: transmitting (S201), to a first entity, a message requesting a delayable delayed service; and closing (S202) a procedure for accepting the service, if a report for providing the service is not received within a predetermined time period. According to embodiments of the present disclosure, meaningless waiting procedure, which is longer than the predetermined time period for such delayed service, may be avoided.

Description

METHOD AND APPARATUS FOR STOPPING DELAYED SERVICE TECHNICAL FIELD
The present disclosure relates generally to the technology of wireless communication, and in particular, to a method and an apparatus for stopping a delayed service.
BACKGROUND
This section introduces aspects that may facilitate better understanding of the present disclosure. Accordingly, the statements of this section are to be read in this light and are not to be understood as admissions about what is in the prior art or what is not in the prior art.
In a wireless communication system, many services may be provided by different network entities.
For example, in a Long Term Evolution (LTE) system, a Control-Plane-Based Positioning for LTE enables external clients to get either user equipment (UE) location data or UE independent location information by using Location Services (LCS) . UE location data contains the Evolved Universal Terrestrial Radio Access Network (EUTRAN) Cell Global Identifier (ECGI) and the geographical location of the UE device and is retrieved from the Public Land Mobile Network (PLMN) through a Gateway Mobile Location Center (GMLC) server.
To support LCS, the Mobility Management Entity (MME) coordinates location requests between the GMLC and the eNodeB/Enhanced Serving Mobile Location Centre (E-SMLC) .
By doing so, the MME transparently relays LTE Positioning Protocol (LPP) or LTE Positioning Protocol Annex (LPPa) signaling between the E-SMLC and the terminal device (such as UE) or the eNodeBs. With more and more IoT (internet of things) devices deployed in network, which may use PSM (Power Saving mode) or eDRX (enhanced Extended Idle Discontinuous Reception) to save battery, wherein “delayed location reporting” is introduced in 3 rd generation partnership project technical specification, 3GPP TS 23.271 V15.1.0.
However, delayed service, such as “delayed location reporting” may causes a meaningless waiting procedure, which is much longer than expected.
SUMMARY
This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the detailed description. This summary is not  intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
Certain aspects of the present disclosure and their embodiments may provide solutions to these or other challenges. There are, proposed herein, various embodiments which address one or more of the issues disclosed herein. Namely, the technical problem the invention attempts to solve at least comprises to avoid meaningless waiting procedure for a delayed service.
A first aspect of the present disclosure provides a method performed at a first entity, comprising: receiving, from a second entity, a message requesting a delayed service; and closing a procedure for the service, if the service remains not providable within a predetermined time period.
In embodiments of the present disclosure, the method may further comprise: transmitting, to the second entity, a report for providing the service, if the service is providable within the predetermined time period.
In embodiments of the present disclosure, the service may be related to a terminal device; and the service remains not providable, if the terminal device is using an enhanced Extended Idle Discontinuous Reception, eDRX or a Power Saving Mode, PSM.
In embodiments of the present disclosure, the service may be providable, if the terminal device is in an idle mode, or a connected mode.
In embodiments of the present disclosure, the service may comprise a provision of a location of the terminal device.
In embodiments of the present disclosure, the first entity may comprise a Mobility Management Entity, MME, or an Access and Mobility Management Function, AMF; the second entity may comprise a Gateway Mobile Location Center, GMLC, or a Location Retrieval Function, LRF; and the message may be a Provide Subscriber Location Request message including a Delayed-Location-Reporting-Support-Indicator, or a Namf_Location_ProvidePositioningInfo Request message.
In embodiments of the present disclosure, the message may include a value of the predetermined time period.
In embodiments of the present disclosure, the method may further comprise: configuring the value of the predetermined time period.
In embodiments of the present disclosure, the method may further comprise: starting a timer associated with the value of the predetermined time period. The first entity closes the procedure for the service, if the service remains not providable after the timer expires over the value of the predetermined time period.
In embodiments of the present disclosure, the method may further comprise: transmitting, to the second entity, an expiration message, if the service remains not providable within the predetermined time period.
A second aspect of the present disclosure provides a method performed at a second entity, comprising: transmitting, to a first entity, a message requesting a delayed service; and closing a procedure for accepting the service, if a report for providing the service is not received within a predetermined time period.
In embodiments of the present disclosure, the method may further comprise: receiving, from the first entity, the report for providing the service, within the predetermined time period.
In embodiments of the present disclosure, the service may be related to a terminal device; and the service remains not providable, if the terminal device is using an Extended Idle Discontinuous Reception, eDRX or a Power Saving Mode, PSM.
In embodiments of the present disclosure, the service may be providable, if the terminal device is in an idle mode, or a connected mode.
In embodiments of the present disclosure, the service may comprise a provision of a location of the terminal device.
In embodiments of the present disclosure, the first entity may comprise a Mobility Management Entity, MME, or an Access and Mobility Management Function, AMF; the second entity may comprise a Gateway Mobile Location Center, GMLC, or a Location Retrieval Function, LRF; and the message is a Provide Subscriber Location Request message including a Delayed-Location-Reporting-Support-Indicator, or a Namf_Location_ProvidePositioningInfo Request message.
In embodiments of the present disclosure, the message may include a value of the predetermined time period.
In embodiments of the present disclosure, the value of the predetermined time period may be configured by the first entity.
In embodiments of the present disclosure, the method may further comprise: starting a timer associated with the value of the predetermined time period. The second entity closes the procedure for accepting the service, if the report for providing the service is not received after the timer expires over the value of the predetermined time period.
In embodiments of the present disclosure, the method may further comprise: receiving, from the second entity, an expiration message, if the service remains not providable within the predetermined time period. The second entity closes the procedure for accepting the service after receiving the expiration message.
A third aspect of the present disclosure provides an apparatus for a first entity, comprising: a processor; and a memory, containing instructions executable by the processor. The first entity is operative to: receive, from a second entity, a message requesting a delayed service; and close a procedure for the service, if the service remains not providable within a predetermined time period.
In embodiments of the present disclosure, the first entity may be further  operative to implement any of the method above described.
A fourth aspect of the present disclosure provides an apparatus for a second entity, comprising: a processor; and a memory, containing instructions executable by the processor. The second entity may be operative to: transmit, to a first entity, a message requesting a delayed service; and close a procedure for accepting the service, if a report for providing the service is not received within a predetermined time period.
In embodiments of the present disclosure, the second entity may be further operative to implement any of the methods above described.
A fifth aspect of the present disclosure provides an apparatus for a first entity, comprising: a reception unit, configured to receive, from a second entity, a message requesting a delayed service; and a close unit, configured to close a procedure for the service, if the service remains not providable within a predetermined time period.
In embodiments of the present disclosure, the first entity may be further operative to implement any of the methods above described.
A sixth aspect of the present disclosure provides an apparatus for a second entity, comprising: a transmission unit, configured to transmit, to a first entity, a message requesting a delayed service; and a close unit, configured to close a procedure for accepting the service, if a report for providing the service is not received within a predetermined time period.
In embodiments of the present disclosure, the second entity may be further operative to implement any of the methods above described.
A seventh aspect of the present disclosure provides a computer readable storage medium having a computer program stored thereon, wherein the computer program may be executable by an apparatus to cause the apparatus to carry out any of the methods above described.
According to embodiments of the present disclosure, if a delayed service is not providable within a predetermined time period, the first entity and/or the second entity may be able to close a relating procedure for the service. Therefore, meaningless waiting procedure, which is longer than the predetermined time period for such delayed service, may be avoided. The processing resource and/or communication resource in the system may be also saved.
BRIEF DESCRIPTION OF DRAWINGS
Through the more detailed description of some embodiments of the present disclosure in the accompanying drawings, the above and other objects, features and advantages of the present disclosure will become more apparent, wherein the same reference generally refers to the same components in the embodiments of the present disclosure.
FIG. 1 is an exemplary flowing chart showing methods for stopping a delayed  service, according to embodiments of the present disclosure;
FIG. 2 is an exemplary flowing chart showing additional steps for methods shown in FIG. 1, according to embodiments of the present disclosure;
FIG. 3 is an exemplary flowing chart showing an additional step for the method shown in FIG. 1, according to embodiments of the present disclosure;
FIG. 4 is another exemplary flowing chart showing an additional step for the method shown in FIG. 1, according to embodiments of the present disclosure;
FIG. 5 is another exemplary flowing chart showing additional steps for methods shown in FIG. 1, according to embodiments of the present disclosure;
FIG. 6 is an exemplary diagram showing procedures according to embodiments of the present disclosure;
FIG. 7 is another exemplary diagram showing procedures according to embodiments of the present disclosure;
FIG. 8 is a block diagram illustrating apparatuses for the first entity 100 and the second entity 200, according to embodiments of the present disclosure;
FIG. 9 is a schematic showing units for apparatuses for the first entity 100 and the second entity 200, according to embodiments of the present disclosure; and
FIG. 10 is a block diagram showing an apparatus/computer readable storage medium, according to embodiments of the present disclosure.
DETAILED DESCRIPTION
Some of the embodiments contemplated herein will now be described more fully with reference to the accompanying drawings. Other embodiments, however, are contained within the scope of the subject matter disclosed herein, the disclosed subject matter should not be construed as limited to only the embodiments set forth herein; rather, these embodiments are provided by way of example to convey the scope of the subject matter to those skilled in the art.
Generally, all terms used herein are to be interpreted according to their ordinary meaning in the relevant technical field, unless a different meaning is clearly given and/or is implied from the context in which it is used. All references to a/an/the element, apparatus, component, means, step, etc. are to be interpreted openly as referring to at least one instance of the element, apparatus, component, means, step, etc., unless explicitly stated otherwise. The steps of any methods disclosed herein do not have to be performed in the exact order disclosed, unless a step is explicitly described as following or preceding another step and/or where it is implicit that a step must follow or precede another step. Any feature of any of the embodiments disclosed herein may be applied to any other embodiment, wherever appropriate. Likewise, any advantage of any of the embodiments may apply to any other embodiments, and vice versa. Other objectives, features and advantages of the enclosed embodiments will be apparent from  the following description.
Reference throughout this specification to features, advantages, or similar language does not imply that all of the features and advantages that may be realized with the present disclosure should be or are in any single embodiment of the disclosure. Rather, language referring to the features and advantages is understood to mean that a specific feature, advantage, or characteristic described in connection with an embodiment is included in at least one embodiment of the present disclosure. Furthermore, the described features, advantages, and characteristics of the disclosure may be combined in any suitable manner in one or more embodiments. One skilled in the relevant art will recognize that the disclosure may be practiced without one or more of the specific features or advantages of a particular embodiment. In other instances, additional features and advantages may be recognized in certain embodiments that may not be present in all embodiments of the disclosure.
As used herein, the term “network” , or “communication network/system” refers to any wired or wireless network/system following any suitable communication standards. A wireless network may include new radio (NR) , long term evolution (LTE) , LTE-Advanced, wideband code division multiple access (WCDMA) , high-speed packet access (HSPA) , Wireless Fidelity (Wi-Fi) , and so on. Furthermore, the communications between network node in the communication network may be performed according to any suitable generation communication protocols, including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , 4G, 4.5G, 5G communication protocols, internet protocol (IP) and/or any other protocols either currently known or to be developed in the future.
The term “entity” , “network entity” , “network function” may refer to a network device/apparatus/node with accessing capability in a communication network via which a terminal device accesses to the network and receives services therefrom. The entity/function may include a base station (BS) , an access point (AP) , a multi-cell/multicast coordination entity (MCE) , a server node/function (such as a service capability server/application server, SCS/AS, group communication service application server, GCS AS, application function, AF) , an exposure node (such as a service capability exposure function, SCEF, network exposure function, NEF) , a controller or any other suitable device in a wireless communication network. The BS may be, for example, a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a next generation NodeB (gNodeB or gNB) , a remote radio unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, a low power node such as a femto, a pico, and so forth.
Such entity may comprise specified physical apparatus/facility, and/or any kind of virtual apparatus. For example, such entity may be virtual apparatus based on software defined network, SDN, or any kind of cloud-computation technology.
Yet further examples of the network function/entity comprise multi-standard radio (MSR) radio equipment such as MSR BSs, network controllers such as radio network controllers (RNCs) or base station controllers (BSCs) , base transceiver stations (BTSs) , transmission points, transmission nodes, positioning nodes and/or the like. More generally, however, the network node may represent any suitable device (or group of devices) capable, configured, arranged, and/or operable to enable and/or provide a terminal device access to a wireless communication network or to provide some service to a terminal device that has accessed to the wireless communication network.
The term terminal device encompasses a device which is able to communicate with a network function/node such as a base station, or with another wireless device by transmitting and/or receiving wireless signals. Thus, the term terminal device encompasses, but is not limited to: a mobile phone, a stationary or mobile wireless device for machine-to-machine communication, an integrated or embedded wireless card, an externally plugged in wireless card, a vehicle, etc.
As yet another specific example, in an Internet of things (IoT) scenario, a terminal device may also be called an IoT device and represent a machine or other device that performs monitoring, sensing and/or measurements etc., and transmits the results of such monitoring, sensing and/or measurements etc. to another terminal device and/or a network equipment. The terminal device may in this case be a machine-to-machine (M2M) device, which may in a 3rd generation partnership project (3GPP) context be referred to as a machine-type communication (MTC) device.
As one particular example, the terminal device may be a user equipment, UE, implementing the 3GPP narrow band Internet of things (NB-IoT) standard. Particular examples of such machines or devices are sensors, metering devices such as power meters, industrial machinery, or home or personal appliances, e.g. refrigerators, televisions, personal wearables such as watches etc. In other scenarios, a terminal device may represent a vehicle or other equipment, for example, a medical instrument that is capable of monitoring, sensing and/or reporting etc. on its operational status or other functions associated with its operation.
As used herein, the terms “first” , “second” and so forth refer to different elements. The singular forms “a” and “an” are intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises” , “comprising” , “has” , “having” , “includes” and/or “including” as used herein, specify the presence of stated features, elements, and/or components and the like, but do not preclude the presence or addition of one or more other features, elements, components and/or combinations thereof. The term “based on” is to be read as “based at least in part on” . The term “one embodiment” and “an embodiment” are to be read as “at least one embodiment” . The term “another embodiment” is to be read as “at least one other embodiment” . Other definitions, explicit and implicit, may be included below.
As an example without limitation, for “delayed location reporting” , GMLC can indicate its support of delayed location reporting in Provide-Location-Request (PLR) Command, and if the MME supports delayed location reporting too, then for UEs transiently not reachable, the MME sends a Provide-Location-Answer (PLA) Command with a "UE transiently not reachable" indication first. Afterwards, MME will wait until the UE next becomes reachable and then performs a network triggered service request if needed to establish a signaling connection with the UE, or wait UE wakes up from sleeping mode and periodic TAU (tracking area update) is received. Then MME will send Location-Report-Request (LRR) Command to provide subscriber location data to the GMLC.
If UE can only be reachable after a quite long time, for example: if Periodic TAU timer, for the UE with Power saving mode function, is the maximum one as 3GPP defined, which may be more than one year (9920 hours) , then it means MME may only provide subscriber location data very late. The worst case is that such late location report may even not make sense any more for GMLC or related application server.
FIG. 1 is an exemplary flowing chart showing methods for stopping a delayed service, according to embodiments of the present disclosure.
As shown in FIG. 1, a method M100 performed at a first entity 100 may comprise: step S101, receiving, from a second entity, a message requesting a delayed service; and step S102, closing a procedure for the service, if the service remains not providable within a predetermined time period.
Further, a method M200 performed at a second entity 200 may comprise: step S201, transmitting, to a first entity, a message requesting a delayed service; and step S202, closing a procedure for accepting the service, if a report for providing the service is not received within a predetermined time period.
According to embodiments of the present disclosure, if a delayed service is not providable within a predetermined time period, the first entity 100 and/or the second entity 200 may be able to close a relating procedure for the service. Therefore, meaningless waiting procedure, which is longer than the predetermined time period for such delayed service, may be avoided. The processing resource and/or communication resource in the system may be also saved.
FIG. 2 is an exemplary flowing chart showing additional steps for methods shown in FIG. 1, according to embodiments of the present disclosure.
In embodiments of the present disclosure, the method M100 may further comprise: step S103, transmitting, to the second entity, a report for providing the service, if the service is providable within the predetermined time period.
In embodiments of the present disclosure, the method M200 may further comprise: step S203, receiving, from the first entity, the report for providing the service, within the predetermined time period.
According to embodiments of the present disclosure, if the delayed service is providable within the predetermined time period, the service is stilled provided. Thus, the normal functions of the communication system for providing such delayed service are not disturbed.
In embodiments of the present disclosure, the service may be related to a terminal device (such as a user equipment, UE) ; and the service remains not providable, if the terminal device is using an enhanced Extended Idle Discontinuous Reception, eDRX or a Power Saving Mode, PSM.
In embodiments of the present disclosure, the service is providable, if the terminal device is in an idle mode, or a connected mode.
In embodiments of the present disclosure, the service comprises a provision of a location of the terminal device. Particularly, the service may be “delayed location reporting” about a UE.
In embodiments of the present disclosure, the first entity 100 may comprise a Mobility Management Entity, MME, or an Access and Mobility Management Function, AMF; the second entity 200 may comprise a Gateway Mobile Location Center, GMLC, or a Location Retrieval Function, LRF; and the message is a Provide Subscriber Location Request message including a Delayed-Location-Reporting-Support-Indicator, or a Namf_Location_ProvidePositioningInfo Request message.
It should be understood, the second entity 200 may comprise any other network entity providing any other kind of “delayed service” . The first entity 100 may comprise any other network entity accepting such “delayed service” .
In embodiments of the present disclosure, as one example, the message may include a value of the predetermined time period, so as to explicitly indicate how long the first entity 100 want the second entity 200 to maintain such service.
FIG. 3 is an exemplary flowing chart showing an additional step for the method shown in FIG. 1, according to embodiments of the present disclosure.
In embodiments of the present disclosure, the method M200 may further comprise: step S204, starting a timer associated with the value of the predetermined time period. The second entity closes the procedure for accepting the service, if the report for providing the service is not received after the timer expires over the value of the predetermined time period.
According to embodiments of the present disclosure, the second entity 200 may use a timer to decide when to close the procedure for accepting the service. Thus, no extra message/report from the first entity 100 is necessary. The communication resource (such as any kind of signalling or message) may be saved.
FIG. 4 is another exemplary flowing chart showing an additional step for the method shown in FIG. 1, according to embodiments of the present disclosure.
In embodiments of the present disclosure, the method M100 may further  comprise: step S104, configuring the value of the predetermined time period.
According to embodiments of the present disclosure, as another option rather than including the value in a message from the second entity 200 to the first entity 100, the first entity 100 may decide the predetermined time period by itself. Therefore, no amendment to any existing message (such as Provide Subscriber Location Request message, or a Namf_Location_ProvidePositioningInfo Request message) is needed.
The first entity 100 may decide the predetermined time period, under any local policy, which may be predetermined by any user or from any possible relating communication standards.
FIG. 5 is another exemplary flowing chart showing additional steps for methods shown in FIG. 1, according to embodiments of the present disclosure.
In embodiments of the present disclosure, the method M100 may further comprise: step S105, starting a timer associated with the value of the predetermined time period. The first entity closes the procedure for the service, if the service remains not providable after the timer expires over the value of the predetermined time period.
According to embodiments of the present disclosure, the first entity 100 may use any kind of local timer to decide how long to maintain the procedure for the service. As one example, after the timer expires over the value of the predetermined time period, the first entity 100 may close the procedure for the service directly, without notifying the second entity 200. Thus, any extra signalling or report message will be not needed.
As another example, in embodiments of the present disclosure, the method M100 may further comprise: step S106, transmitting, to the second entity, an expiration message, if the service remains not providable within the predetermined time period.
In embodiments of the present disclosure, the method M200 may further comprise: step S205, receiving, from the second entity, an expiration message, if the service remains not providable within the predetermined time period. The second entity closes the procedure for accepting the service after receiving the expiration message.
According to embodiments of the present disclosure, the second entity 200 may close the procedure for accepting the service, based on a local timer and/or an expiration message from the first entity 100. Therefore, the reliability and the commutation resource may be flexibly balanced, according to practical configuration.
FIG. 6 is an exemplary diagram showing procedures according to embodiments of the present disclosure. FIG. 6 is an improvement to part of “Figure 9.18: General Network Positioning for EPC-MT-LR” of 3GPP TS 23.271 V15.1.0.
As shown in FIG. 6, in step 1, MME receives Provide Subscriber Location Request from GMLC. In this request message, “delayed-Location-Reporting-Support-Indicator” is set and  Maximum-Wait-Time is also included, to identify that the maximum wait time from GMLC for a delayed subscriber location report from MME.
In step 2, Provide Subscriber Location Answer is received from MME, as the  UE is transiently not reachable due to power saving functions, either eDRX or PSM. GMLC starts a timer according to the value of “Maximum-Wait-Time” locally to expect to receive the delayed Subscriber Location Report from the MME. If GMLC doesn’t receive Subscriber Location Report from the MME before the expiry of the timer with timer length “Maximum-Wait-Time” , GMLC closes this delayed location reporting procedure.
In step 3, MME starts a timer according to the value of “Maximum-Wait-Time” locally, to supervise the next time for UE being reachable. If timer expires but UE is not reachable yet, then MME closes this delayed location reporting procedure.
In step 4, If UE becomes reachable before the timer expires in MME, MME sends a Location Request to E-SMLC and a timer T3x01 is started to wait for the Location Response from E-SMLC.
In step 5, Positioning procedure is done between E-SMLC, RAN and UE.
In step 6, Location Response is received from E-SMLC.
In step 7, Subscriber Location Report is sent from MME to GMLC.
In step 8, Subscriber Location Report Ack is received from GMLC.
The following table 1 shows the proposed new IE <Maximum-Wait-Time> (underlined) in Provide Subscriber Location Request. Table 1 is based on “Table 6.2.2-1 Provide Subscriber Location Request” of 3GPP TS 29.172 V15.0.0.
Table 1: Provide Subscriber Location Request with IE <Maximum-Wait-Time>
Figure PCTCN2019112581-appb-000001
Figure PCTCN2019112581-appb-000002
Figure PCTCN2019112581-appb-000003
FIG. 7 is another exemplary diagram showing procedures according to embodiments of the present disclosure. In FIG. 7, Deferred Location Reporting once UE is transiently not reachable in 5rd generation core network, 5GC, is shown. FIG. 7 is an improvement to part of “Figure 6.1.1-1: 5GC-MT-LR procedure for the regulatory location service” of 3GPP TS 23.273 V16.0.0.
As shown in FIG. 7, in step 1, the GMLC invokes the Namf_Location_ProvidePositioningInfo Request service operation to forward the location request to the serving AMF. Here “ Maximum-Wait-Time” is included, to identify that the maximum wait time from GMLC for a deferred subscriber location report from AMF.
In step 2, if the AMF supports a deferred location request, the AMF returns an acknowledgment to the external LCS client, via the GMLC. GMLC starts a timer according to the value of “Maximum-Wait-Time” locally to expect to receive the delayed Namf_Location_EventNotify from the AMF. If GMLC doesn’t receive Namf_Location_EventNotify from the AMF before the expiry of the timer with timer length “Maximum-Wait-Time” , GMLC conclude this delayed location reporting procedure.
In step 3, AMF will start a timer according to the value of “Maximum-Wait-Time” locally, to supervise the next time for UE being reachable. If timer expires but UE is not reachable yet, then AMF concludes the location reporting procedure.
In step 4, if UE is expected to be reachable before the timer expires in AMF, if the UE is in CM (connection management) IDLE state, AMF goes to step5, otherwise AMF goes to step6 instead.
In step 5, AMF initiates a network triggered Service Request procedure. NG-RAN refers to next generation radio access network.
In step 6, the AMF invokes the Nlmf_Location_DetermineLocation Request service operation towards the LMF to initiate a request for deferred UE location.
In step 7, the LMF invokes the Nlmf_Location_DetermineLocation Response service operation towards the AMF to respond to the request at step 6.
In step 8, the AMF invokes the Namf_Location_EventNotify service operation towards the GMLC, including any location received at step 7.
The following table 2 shows the proposed new IE <Maximum-Wait-Time>(underlined) in Definition of type RequestPosInfo. Table 2 is based on “Table 6.4.6.2.2-1 Definition of type RequestPosInfo” of 3GPP TS 29.518 V15.3.0.
Table 2: Definition of type RequestPosInfo with IE <Maximum-Wait-Time>
Figure PCTCN2019112581-appb-000004
Figure PCTCN2019112581-appb-000005
In embodiments of the present disclosure, to avoid MME providing a too late and meaningless location report in “delayed location reporting” procedure, it’s proposed to introduce a “maximum wait time” in “Provide-Location-Request (PLR) Command” if “Delayed-Location-Reporting-Support-Indicator” is set in PLR-Flags, to indicate that MME doesn’t need to provide subscriber location report any more if it is later than “maximum wait time” .
In embodiments of the present disclosure, to avoid any unnecessary “delayed location reporting” , “Maximum Wait time” is introduced to notify MME the maximum wait time from GMLC perspective for the delayed location report. So MME will not handle such delayed location request if the delay (time to next UE reachability after PLR is received from GMLC) is longer than GMLC or application server’s tolerance. Thus, signaling is reduced in both core network and RAN network. And it also helps to decrease the capacity/performance impacts on GMLC or application server due to the meaningless waiting for the location report.
According to embodiments of the present disclosure, with introduction of “Maximum-Wait-Time” in PLR Command, the “delayed location Reporting” is optimized as much as possible, by avoiding unnecessary positioning signaling/procedure if it is too late for providing the service, which is even not expected from GMLC or application server perspective.
FIG. 8 is a block diagram illustrating apparatuses for the first entity 100 and the second entity 200, according to embodiments of the present disclosure.
As shown in FIG. 8, a first entity 100 may comprise: a processor 110; and a memory 120, containing instructions executable by the processor. The first entity 100 may be operative to: receive, from a second entity, a message requesting a delayed service; and close a procedure for the service, if the service remains not providable within a predetermined time period.
In embodiments of the present disclosure, the first entity 100 is further operative to implement any of the methods above described, such as shown in FIG. 1 to 7.
As shown in FIG. 8, a second entity 200 may comprise: a processor 210; and  a memory 220, containing instructions executable by the processor. The second entity 200 may be operative to: transmit, to a first entity, a message requesting a delayed service; and close a procedure for accepting the service, if a report for providing the service is not received within a predetermined time period.
In embodiments of the present disclosure, the second entity 200 is further operative to implement any of the methods above described, such as shown in FIG. 1 to 7.
The  processors  110, 210 may be any kind of processing component, such as one or more microprocessor or microcontrollers, as well as other digital hardware, which may include digital signal processors (DSPs) , special-purpose digital logic, and the like. The  memories  120, 220 may be any kind of storage component, such as read-only memory (ROM) , random-access memory, cache memory, flash memory devices, optical storage devices, etc.
FIG. 9 is a schematic showing units for apparatuses for the first entity 100 and the second entity 200, according to embodiments of the present disclosure.
As shown in FIG. 9, a first entity 100 may comprise: a reception unit 111, configured to receive, from a second entity, a message requesting a delayed service; and a close unit 112, configured to close a procedure for the service, if the service remains not providable within a predetermined time period.
In embodiments of the present disclosure, the first entity 100 is further operative to implement any of the methods above described, such as shown in FIG. 1 to 7.
As shown in FIG. 9, a second entity 200 may comprise: a transmission unit 211, configured to transmit, to a first entity, a message requesting a delayed service; and a close unit 212, configured to close a procedure for accepting the service, if a report for providing the service is not received within a predetermined time period.
In embodiments of the present disclosure, the second entity 200 is further operative to implement any of the methods above described, such as shown in FIG. 1 to 7.
The term ‘unit’ may have conventional meaning in the field of electronics, electrical devices and/or electronic devices and may include, for example, electrical and/or electronic circuitry, devices, modules, processors, memories, logic solid state and/or discrete devices, computer programs or instructions for carrying out respective tasks, procedures, computations, outputs, and/or displaying functions, and so on, as such as those that are described herein.
With these units, the first entity 100 and the second entity 200, may not need a fixed processor or memory, any computing resource and storage resource may be arranged from at least one network node/device/entity/apparatus relating to the communication system. The virtualization technology and network computing  technology (e.g. cloud computing) may be further introduced, so as to improve the usage efficiency of the network resources and the flexibility of the network.
FIG. 10 is a block diagram showing an apparatus/computer readable storage medium, according to embodiments of the present disclosure.
As shown in FIG. 10, an apparatus/computer readable storage medium 800 may have a program 801 stored thereon. The program 801 may be executable by an apparatus to cause the apparatus to carry out any of the methods above described, such as shown in FIG. 1-7.
The apparatus/computer readable storage medium 800 may be configured to include memory such as RAM, ROM, programmable read-only memory (PROM) , erasable programmable read-only memory (EPROM) , electrically erasable programmable read-only memory (EEPROM) , magnetic disks, optical disks, floppy disks, hard disks, removable cartridges, or flash drives.
According to embodiments of the present disclosure, if a delayed service is not providable within a predetermined time period, the first entity and/or the second entity may be able to close a relating procedure for the service. Therefore, meaningless waiting procedure, which is longer than the predetermined time period for such delayed service, may be avoided. The processing resource and/or communication resource in the system may be also saved.
Further, to avoid MME providing a too late and meaningless location report in “delayed location reporting” procedure, it’s proposed to introduce a “maximum wait time” in “Provide-Location-Request (PLR) Command” if “Delayed-Location-Reporting-Support-Indicator” is set in PLR-Flags, to indicate that MME doesn’t need to provide subscriber location report any more if it is later than “maximum wait time” .
Further, to avoid any unnecessary “delayed location reporting” , “Maximum Wait time” is introduced to notify MME the maximum wait time from GMLC perspective for the delayed location report. So MME will not handle such delayed location request if the delay (time to next UE reachability after PLR is received from GMLC) is longer than GMLC or application server’s tolerance. Thus, signaling is reduced in both core network and RAN network. And it also helps to decrease the capacity/performance impacts on GMLC or application server due to the meaningless waiting for the location report.
Particularly, according to embodiments of the present disclosure, with introduction of “Maximum-Wait-Time” in PLR Command, the “delayed location Reporting” is optimized as much as possible, by avoiding unnecessary positioning signaling/procedure if it is too late for providing the service, which is even not expected from GMLC or application server perspective.
In general, the various exemplary embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any  combination thereof. For example, some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor or other computing device, although the disclosure is not limited thereto. While various aspects of the exemplary embodiments of this disclosure may be illustrated and described as block diagrams, flow charts, or using some other pictorial representation, it is well understood that these blocks, apparatus, systems, techniques or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
As such, it should be appreciated that at least some aspects of the exemplary embodiments of the disclosure may be practiced in various components such as integrated circuit chips and modules. It should thus be appreciated that the exemplary embodiments of this disclosure may be realized in an apparatus that is embodied as an integrated circuit, where the integrated circuit may include circuitry (as well as possibly firmware) for embodying at least one or more of a data processor, a digital signal processor, baseband circuitry and radio frequency circuitry that are configurable so as to operate in accordance with the exemplary embodiments of this disclosure.
It should be appreciated that at least some aspects of the exemplary embodiments of the disclosure may be embodied in computer-executable instructions, such as in one or more program modules, executed by one or more computers or other devices. Generally, program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types when executed by a processor in a computer or other device. The computer executable instructions may be stored on a computer readable medium such as a hard disk, optical disk, removable storage media, solid state memory, RAM, etc. As will be appreciated by those skilled in the art, the functionality of the program modules may be combined or distributed as desired in various embodiments. In addition, the functionality may be embodied in whole or in part in firmware or hardware equivalents such as integrated circuits, field programmable gate arrays (FPGA) , and the like.
The present disclosure includes any novel feature or combination of features disclosed herein either explicitly or any generalization thereof. Various modifications and adaptations to the foregoing exemplary embodiments of this disclosure may become apparent to those skilled in the relevant arts in view of the foregoing description, when read in conjunction with the accompanying drawings. However, any and all modifications will still fall within the scope of the non-limiting and exemplary embodiments of this disclosure.

Claims (29)

  1. A method performed at a first entity, comprising:
    receiving (S101) , from a second entity, a message requesting a delayed service; and
    closing (S102) a procedure for the service, if the service remains not providable within a predetermined time period.
  2. The method according to claim 1, further comprising:
    transmitting (S103) , to the second entity, a report for providing the service, if the service is providable within the predetermined time period.
  3. The method according to claim 1 or 2,
    wherein the service is related to a terminal device; and
    wherein the service remains not providable, if the terminal device is using an enhanced Extended Idle Discontinuous Reception, eDRX or a Power Saving Mode, PSM.
  4. The method according to claim 3, wherein the service is providable, if the terminal device is in an idle mode, or a connected mode.
  5. The method according to claim 3, wherein the service comprises a provision of a location of the terminal device.
  6. The method according to any of claims 1 to 5,
    wherein the first entity comprises a Mobility Management Entity, MME, or an Access and Mobility Management Function, AMF;
    wherein the second entity comprises a Gateway Mobile Location Center, GMLC, or a Location Retrieval Function, LRF; and
    wherein the message is a Provide Subscriber Location Request message including a Delayed-Location-Reporting-Support-Indicator, or a Namf_Location_ProvidePositioningInfo Request message.
  7. The method according to any of claims 1 to 6, wherein the message includes a value of the predetermined time period.
  8. The method according to any of claims 1 to 6, further comprising: configuring (S104) the value of the predetermined time period.
  9. The method according to claim 7 or 8, further comprising:
    starting (S105) a timer associated with the value of the predetermined time period;
    wherein the first entity closes the procedure for the service, if the service remains not providable after the timer expires over the value of the predetermined time period.
  10. The method according to any of claims 1 to 9, further comprising:
    transmitting (S106) , to the second entity, an expiration message, if the service remains not providable within the predetermined time period.
  11. A method performed at a second entity, comprising:
    transmitting (S201) , to a first entity, a message requesting a delayed service; and
    closing (S202) a procedure for accepting the service, if a report for providing the service is not received within a predetermined time period.
  12. The method according to claim 11, further comprising:
    receiving (S203) , from the first entity, the report for providing the service, within the predetermined time period.
  13. The method according to claim 11 or 12,
    wherein the service is related to a terminal device; and
    wherein the service remains not providable, if the terminal device is using an Extended Idle Discontinuous Reception, eDRX or a Power Saving Mode, PSM.
  14. The method according to claim 13, wherein the service is providable, if the terminal device is in an idle mode, or a connected mode.
  15. The method according to claim 13, wherein the service comprises a provision of a location of the terminal device.
  16. The method according to any of claims 11 to 15,
    wherein the first entity comprises a Mobility Management Entity, MME, or an Access and Mobility Management Function, AMF;
    wherein the second entity comprises a Gateway Mobile Location Center, GMLC, or a Location Retrieval Function, LRF; and
    wherein the message is a Provide Subscriber Location Request message including a Delayed-Location-Reporting-Support-Indicator, or a Namf_Location_ProvidePositioningInfo Request message.
  17. The method according to any of claims 11 to 16, wherein the message includes  a value of the predetermined time period.
  18. The method according to any of claims 11 to 16, wherein the value of the predetermined time period is configured by the first entity.
  19. The method according to claim 17 or 18, further comprising:
    starting (S204) a timer associated with the value of the predetermined time period;
    wherein the second entity closes the procedure for accepting the service, if the report for providing the service is not received after the timer expires over the value of the predetermined time period.
  20. The method according to any of claims 11 to 19, further comprising:
    receiving (S205) , from the second entity, an expiration message, if the service remains not providable within the predetermined time period;
    wherein the second entity closes the procedure for accepting the service after receiving the expiration message.
  21. An apparatus for a first entity (100) , comprising:
    a processor (110) ; and
    a memory (120) , containing instructions executable by the processor (110) ;
    wherein the first entity (100) is operative to:
    receive, from a second entity, a message requesting a delayed service; and
    close a procedure for the service, if the service remains not providable within a predetermined time period.
  22. The apparatus according to claim 21, wherein the first entity (100) is further operative to implement the method according to any of claims 2 to 10.
  23. An apparatus for a second entity (200) , comprising:
    a processor (210) ; and
    a memory (220) , containing instructions executable by the processor (210) ;
    wherein the second entity (200) is operative to:
    transmit, to a first entity, a message requesting a delayed service; and
    close a procedure for accepting the service, if a report for providing the service is not received within a predetermined time period.
  24. The apparatus according to claim 23, wherein the second entity (200) is further operative to implement the method according to any of claims 12 to 20.
  25. An apparatus for a first entity (100) , comprising:
    a reception unit (111) , configured to receive, from a second entity, a message requesting a delayed service; and
    a close unit (112) , configured to close a procedure for the service, if the service remains not providable within a predetermined time period.
  26. The apparatus according to claim 25, wherein the first entity (100) is further operative to implement the method according to any of claims 2 to 10.
  27. An apparatus for a second entity (200) , comprising:
    a transmission unit (211) , configured to transmit, to a first entity, a message requesting a delayed service; and
    a close unit (212) , configured to close a procedure for accepting the service, if a report for providing the service is not received within a predetermined time period.
  28. The apparatus according to claim 27, wherein the second entity (200) is further operative to implement the method according to any of claims 12 to 20.
  29. A computer readable storage medium (800) having a computer program (801) stored thereon, wherein the computer program (801) is executable by an apparatus to cause the apparatus to carry out the method according to any of claims 1 to 20.
PCT/CN2019/112581 2019-10-22 2019-10-22 Method and apparatus for stopping delayed service WO2021077298A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/112581 WO2021077298A1 (en) 2019-10-22 2019-10-22 Method and apparatus for stopping delayed service

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/112581 WO2021077298A1 (en) 2019-10-22 2019-10-22 Method and apparatus for stopping delayed service

Publications (1)

Publication Number Publication Date
WO2021077298A1 true WO2021077298A1 (en) 2021-04-29

Family

ID=75619560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112581 WO2021077298A1 (en) 2019-10-22 2019-10-22 Method and apparatus for stopping delayed service

Country Status (1)

Country Link
WO (1) WO2021077298A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120264443A1 (en) * 2009-10-30 2012-10-18 Panasonic Corporation Communication system and apparatus for status dependent mobile services
CN103379593A (en) * 2012-04-26 2013-10-30 中兴通讯股份有限公司 Terminal electricity-saving method, terminal electricity-saving device and network side electricity-saving device
US20160323845A1 (en) * 2014-01-13 2016-11-03 Lg Electronics Inc. Downlink data transfer method and location update procedure execution method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120264443A1 (en) * 2009-10-30 2012-10-18 Panasonic Corporation Communication system and apparatus for status dependent mobile services
CN103379593A (en) * 2012-04-26 2013-10-30 中兴通讯股份有限公司 Terminal electricity-saving method, terminal electricity-saving device and network side electricity-saving device
US20160323845A1 (en) * 2014-01-13 2016-11-03 Lg Electronics Inc. Downlink data transfer method and location update procedure execution method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON LM, NOKIA: "Energy Efficient EC-CCCH/D Operation, clarifications and miscellaneous corrections to EC-GSM-IoT (including name change)", 3GPP DRAFT; GP-160474, CR 43064-0104 MISC CORR (REVISION OF GP-160378), 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG GERAN, no. Nanjing, P.R. China; 20160523 - 20160526, 26 May 2016 (2016-05-26), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051102016 *

Similar Documents

Publication Publication Date Title
CN107027095B (en) Machine-to-machine (M2M) terminal, base station and method
US11937324B2 (en) Data transmitting/receiving apparatuses and methods and communication system
US20220240173A1 (en) Method and apparatus for managing network slice for terminal device
US20220061023A1 (en) Wireless communication method, network device, and terminal device
US11277813B2 (en) Paging in a communication network
US11968729B2 (en) Method and apparatus for allocating PDU session ID for terminal device
WO2020228471A1 (en) Method and apparatus for restoration of proxy call session control function
WO2021077298A1 (en) Method and apparatus for stopping delayed service
US11930424B2 (en) Method and apparatus for location based group message delivery
CN113228762B (en) Method for managing node paging terminal device and managing node used in wireless communication network
US11985045B2 (en) Method and apparatus for subscribing change notification of network function
WO2020187184A1 (en) Method and apparatus for obtaining network slice information
US20220095148A1 (en) Methods and apparatuses for plmn rate control
US20210410101A1 (en) Systems, methods, and computer program products for delaying a user equipment paging operation in a network based on propagation channel characteristics
KR20170023517A (en) Method for controlling machine type device with backoff timer in wireless communication system and apparatus thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19950085

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19950085

Country of ref document: EP

Kind code of ref document: A1