WO2014005390A1 - 一种高精度天线反射面及其成型工艺以及设置有该反射面的卫星接收天线 - Google Patents

一种高精度天线反射面及其成型工艺以及设置有该反射面的卫星接收天线 Download PDF

Info

Publication number
WO2014005390A1
WO2014005390A1 PCT/CN2012/084882 CN2012084882W WO2014005390A1 WO 2014005390 A1 WO2014005390 A1 WO 2014005390A1 CN 2012084882 W CN2012084882 W CN 2012084882W WO 2014005390 A1 WO2014005390 A1 WO 2014005390A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflective surface
reflecting surface
layer
antenna
outer layer
Prior art date
Application number
PCT/CN2012/084882
Other languages
English (en)
French (fr)
Inventor
苏承松
Original Assignee
四川省视频电子有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN 201220319761 external-priority patent/CN202651360U/zh
Priority claimed from CN201210228699.8A external-priority patent/CN102738593B/zh
Application filed by 四川省视频电子有限责任公司 filed Critical 四川省视频电子有限责任公司
Publication of WO2014005390A1 publication Critical patent/WO2014005390A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/16Reflecting surfaces; Equivalent structures curved in two dimensions, e.g. paraboloidal

Definitions

  • the invention relates to a satellite television ground receiving device, in particular to a high-precision antenna reflecting surface and a forming process thereof, and a satellite receiving antenna provided with the reflecting surface.
  • the gain is the main performance index.
  • the wavelength of the received signal. The higher the frequency, the shorter the wavelength.
  • the surface error efficiency of the reflecting surface is the key to reduce the accuracy of surface springback.
  • is the root mean square value of the random surface error weighted by the aperture field distribution
  • Equation 4 among the factors that affect the gain of the antenna's reflecting surface, the higher the frequency, the shorter the wavelength. The gain loss is also greater; the larger the surface error, the greater the gain loss; the product operating under high frequency KU band and Ka band conditions will have a very large impact on the antenna's main electrical performance index due to the accuracy of the surface error. Therefore, how to reduce the surface error of the antenna reflection surface is the key to effectively improve the antenna gain.
  • the commercially available satellite television receiving equipment because the existing high-precision antenna reflecting surface is mainly a single-layer metal sheet in the structure, the existing reflecting surface forming process does not adopt the stamping forming method, and the aluminum plate is matched with the angle steel.
  • these methods have high material cost, long production cycle, high production cost, and are not conducive to mass production.
  • the steel plate material adopts the spinning process and is limited by the shape of the product.
  • Stamping is a common molding method in industrial design, which can effectively solve the problems of the above molding process, but almost all metal materials have the problem of rebound after stamping, and the rebound of the reflecting surface will cause the antenna.
  • the gain of the reflecting surface is lowered, and the noise figure is increased, which is not conducive to the problem of signal reception and transmission. If the rebound shape variable is too large, it cannot be used as a high-precision level transmitting and receiving antenna.
  • the existing high-precision antenna reflecting surface forming process also adopts different methods: For example, method 1: trimming the theoretical curve/face of the mold, taking the error of the rebound into consideration of the molding process of the mold, and letting the parts be The stamping deformation surface in the production process is larger than the theoretical surface of the part.
  • method 1 trimming the theoretical curve/face of the mold, taking the error of the rebound into consideration of the molding process of the mold, and letting the parts be The stamping deformation surface in the production process is larger than the theoretical surface of the part.
  • This method is only suitable for high-quality materials with good tensile properties.
  • the disadvantage is that the mold has poor versatility to the material, and because there is only one layer of metal sheet, the product Poor strength, less suitable for 1.
  • the second disadvantage is that it is not suitable for irregularly shaped parts, the deformation of irregularly shaped parts is irregular, and the raw materials of different manufacturers are rebounding and There is a slight difference in stress, and it is impossible to achieve the desired accuracy.
  • Method 2 The spinning method is suitable for parts with a symmetrical center of rotation, such as the reflection surface of a feedforward antenna. Therefore, this method is also limited by the shape factor of the part, and it is not suitable for large split antennas.
  • the reflecting surface is composed of a skin curved panel, a supporting bone curved panel and a honeycomb sandwich material.
  • the reflecting surface is formed.
  • the skin curved panel and the supporting bone curved panel are formed by a stretching process, and the problems indicated in the above method 1 exist.
  • the material of the reflective surface of the patent is limited to the aluminum alloy material and passes the quenching process.
  • This material has the disadvantages of high cost and low strength compared with ordinary carbon structural steel, and has no price in the fierce market competition. Advantage.
  • the Z-shaped rib beam of the aluminum alloy material is formed by the stretching process to support the curved surface design of the back surface of the bone curved panel, and the Z-shaped material of the processing technology needs to be in the stretching process during the stretching process.
  • the processing points of the two ends are increased by about 100 ⁇ , so the utilization rate of the material is not high.
  • the tensile force of the Z-shaped material during the stretching process is also asymmetrical due to the asymmetrical shape of the profile. Therefore, there is a difference between the actual arc surface and the theoretical arc surface after stretching.
  • a correction process is usually added, so the production efficiency is low, and the accuracy of the arc surface is greatly affected by human operation factors, which is not conducive to Product quality stability.
  • the patent mounts the reflective surface in a sealed negative pressure belt to evacuate the antenna reflective surface unit film. Therefore, in this high-precision molding process, a corresponding supporting facility for providing vacuum negative pressure is needed to support In the mass production, the products need to be equipped with more supporting facilities. The corresponding maintenance and maintenance costs are high and energy consumption, which reduces the market competitiveness of the products.
  • An object of the present invention is to provide a high-precision antenna reflecting surface for producing a cartridge, a high arc surface precision, and a high overall strength, a molding process thereof, and a satellite receiving antenna provided with the reflecting surface.
  • a high-precision antenna reflecting surface includes an inner layer of a reflecting surface and an outer layer of a reflecting surface, wherein the inner layer of the reflecting surface is connected to the outer layer of the reflecting surface by an adhesive, and the outer surface of the reflecting surface is spaced apart
  • the concave portion is formed, the outer shape of the outer surface of the reflective surface is matched with the inner layer of the reflective surface, and the concave portion of the outer layer of the reflective surface is connected to the inner layer of the reflective surface by an adhesive.
  • the concave portion formed on the outer surface of the reflecting surface is respectively matched with the shape of the corresponding portion of the inner layer of the reflecting surface.
  • the high-precision antenna reflecting surface of the present invention is provided with at least one reflective surface intermediate layer matching the shape of the inner layer of the reflecting surface between the inner layer of the reflecting surface and the outer layer of the reflecting surface, wherein the reflecting surface is intermediate
  • the layers are respectively connected to the inner surface of the reflective surface and the outer layer of the reflective surface by an adhesive, and the intermediate layers of the adjacent reflective surfaces are connected by an adhesive.
  • the concave portion formed on the outer layer of the reflecting surface is connected to the adjacent reflective surface intermediate layer by an adhesive.
  • the reflecting surface is made of a metal conductive material, and the outer surface of the reflecting surface is a metal material.
  • the high-precision antenna reflecting surface of the present invention has an inner metal conductive material on the reflective surface, and at least one reflective surface intermediate layer between the inner surface of the reflective surface and the outer surface of the reflective surface is a metal material, and the reverse
  • the outer surface of the surface is made of a metallic material or a non-metallic material.
  • the high-precision antenna reflecting surface of the present invention is provided with a non-metallic filler between the above layers, and the non-metallic filler is respectively connected to its corresponding layer by an adhesive.
  • the reflecting surface formed by the above structure is formed by splicing at least two parts to form a unitary structure.
  • a molding process for a high-precision antenna reflecting surface comprising: the following steps:
  • the mold is closed by the overmolding mold and held for a certain period of time until the binder is solidified, and the high-precision antenna reflection surface is pressed.
  • the molding process of the high-precision antenna reflecting surface according to the present invention is formed by the outer surface of the reflecting surface formed by one stamping, and the overall shape of the outer surface of the reflecting surface and the reflecting surface Layer matching,
  • the molding process of the high-precision antenna reflecting surface of the present invention in the step a), the intermediate layer of the reflecting surface is formed by one stamping, and the intermediate layer of the reflecting surface is disposed on the inner surface of the reflecting surface and the outer surface of the reflecting surface.
  • the molding process of the high-precision antenna reflecting surface of the invention is characterized in that at least one reflective surface intermediate layer is disposed between the inner surface of the reflective surface and the outer layer of the reflective surface, and the intermediate layer of the adjacent reflective surface is adhered The junction is connected.
  • the molding process of the high-precision antenna reflecting surface of the present invention is provided between the above layers A non-metallic filler, the non-metallic filler being respectively connected to the corresponding layer by a binder.
  • the reflecting surface is formed by at least two parts being joined together, and the forming process of the respective parts is the same as the above forming process.
  • a satellite receiving antenna provided with the high-precision antenna reflecting surface is characterized in that: the reflecting surface is fixed on the antenna back bracket, and the antenna back bracket is connected with the horizontal adjusting bracket by bolts to realize the antenna pitch angle adjustment
  • the horizontal adjustment bracket mounts the antenna on the support mechanism through the clamping structure thereof, and adjusts the azimuth angle of the antenna by rotating the horizontal adjustment bracket;
  • the reflective surface is connected with the feed rod through the antenna back bracket or directly fed through the bolt
  • the source rod is connected, and the feed rod is connected with a feed connection seat, and the feed connection seat locks the satellite signal receiving source or the satellite signal receiving and transmitting transceiver dual-purpose duplexer to the reflection through the bolt
  • the satellite signal is transmitted through a feeder connected to one end of the feed.
  • the supporting mechanism includes a column, a base and a tie rod, and the base and the tie rod are connected to the column by bolts, and the base and the tie rod are connected to the mounting base by an expansion bolt or a ground bolt.
  • the stress interaction reduces the springback problem of the inner layer of the reflecting surface, and effectively improves the arc surface precision of the reflecting surface.
  • the structural design of the outer layer of the reflecting surface can effectively enhance the supporting rigidity of the outer layer of the reflecting surface to the inner layer of the reflecting surface, ensuring The precision of the inner layer of the reflecting surface and the strength of the integral reflecting surface enhance the environmental adaptability of the product, and it is no longer necessary to add additional components for reinforcing the rigidity on the outer layer of the reflecting surface, thereby making the structure of the reflecting surface simple and more complicated.
  • the cylinder is quick and easy, and effectively solves the problems that the existing reflective surface has a long production cycle, high production cost, and is not conducive to mass production.
  • the beneficial effects of the present invention are: 1. After adopting the invention, the selection range of the material of the reflecting surface is large, and steel is used according to the performance of the product, and high-quality metal materials such as stainless steel or aluminum alloy can also be used.
  • the material wasted is mainly auxiliary edging residual material, and its size is within 15 ,, through reasonable layout. , the material utilization rate of the product is high.
  • the aluminum alloy sheet usually used in other processes to improve the forming precision mainly adopts the drawing and bending forming process, wherein the process-assisted edge material is about 30-50 ,, and the aluminum alloy angle steel or the Z-shaped steel is in the bending process. Auxiliary residual material of about 100 mm length is required.
  • the mold tool used in the processing of the forming die or the secondary molding bonding used in the stamping forming can adopt a high-precision numerical control device to realize the one-time clamping process, and the advantage is accurate positioning and processing. High precision.
  • it can be considered as a split-type assembling structure to reduce the corresponding mold tooling size, so as to facilitate the machining accuracy of the mold tooling.
  • the rebound precision and product strength of the product made by the invention can be easily controlled. When the material with large resilience is used, the rebound can be reduced by increasing the number of layers of bonding, and the product strength can also be passed. Adjust the number of layers to be bonded or change the size of the upper and lower concave portions of the outer surface of the reflecting surface to adjust the strength of the reflecting surface.
  • the equipment used in one stamping and secondary forming bonding of the present invention is a general-purpose equipment used in the processing of metal sheets, so that the molding is reliable, the quality is stable, and it is easy to realize.
  • the invention can be considered according to the input situation of the production.
  • the secondary bonding mold of the secondary molding process can be technically modified, and the opening and closing mold mechanism is added to realize the manual molding. Bond forming, the result of this molding method and processing with hydraulic equipment The results of the product are identical, with almost no energy loss, with the advantages of equipment investment and low energy consumption.
  • FIG. 1 is a flow chart showing a molding process of a high-precision antenna reflecting surface of the present invention.
  • Fig. 2 is a front elevational view showing a high-precision antenna reflecting surface in the first embodiment.
  • Figure 3 is a plan view of Figure 2.
  • Figure 4 is a cross-sectional view of Figure 2.
  • Fig. 5 is an enlarged view of a portion I in Fig. 4.
  • Fig. 6 is a view showing the structure of the high-precision antenna reflecting surface in which the intermediate layer of the reflecting surface is provided in the embodiment 1.
  • Figure 7 is a graph showing the internal stress of the high-precision antenna reflecting surface during the secondary molding process.
  • Figure 8 is a graph showing the internal stress of the high-precision antenna reflecting surface in an outdoor working state.
  • Figure 9 is an enlarged view of a portion I in Figure 8.
  • Fig. 10 is a schematic view showing the rebound of the high-precision antenna reflecting surface after one press forming.
  • Fig. 11 is a schematic view showing the rebound of the high-precision antenna reflecting surface after secondary molding.
  • Figure 12 is a front cross-sectional view showing a high-precision antenna reflecting surface in the second embodiment.
  • Figure 13 is a plan view of Figure 12.
  • Figure 14 is a bottom view of Figure 12 .
  • Figure 15 is a left side view of Figure 12.
  • Figure 16 is a right side view of Figure 12.
  • Fig. 17 is a view showing the structure of a satellite receiving antenna provided with a high-precision antenna reflecting surface.
  • Figure 18 is a front elevational view of Figure 17.
  • Figure 19 is a right side view of Figure 17.
  • Figure 20 is a plan view of Figure 17.
  • 1 is the inner layer of the reflective surface
  • 2 is the outer layer of the reflective surface
  • 3 is the lower layer formed on the outer layer of the reflective surface.
  • the concave section 4 is the reflective layer intermediate layer
  • 5 is the non-metallic filler
  • 6 is the tensile stress
  • 7 is the compressive stress
  • 8 is the feed source
  • 9 is the feed connection seat
  • 10 is the feed rod
  • 11 is the feeder line
  • 12 is the reflecting surface
  • 13 is the antenna back bracket
  • 14 is the horizontal adjusting bracket
  • 15 is the column
  • 16 is the tie rod
  • 17 is the base
  • 18 is the installation foundation
  • a is the actual contour curve after a stamping and forming rebound
  • b is the theoretical standard Contour curve
  • c is the actual contour curve after secondary molding
  • XI is the error value of the first point theory and the size of one stamping contour curve
  • X2 is the error value of the second point theory and the size of one stamping contour curve
  • Xn is The error
  • a high-precision antenna reflecting surface forming process includes the following steps: a) forming a reflective surface inner layer 1 and a reflective surface outer layer 2 by one stamping, wherein, by one stamping The formed outer surface 2 of the reflecting surface is formed with a concave portion 3 spaced apart, and the outer shape of the outer surface 2 of the reflecting surface is matched with the inner layer 1 of the reflecting surface, and the concave portion 3 of the outer layer 2 of the reflecting surface is adhered
  • the junction is connected to the inner layer 1 of the reflective surface; the structural design of the outer layer of the reflective surface can effectively enhance the outer layer of the reflective surface and the inner layer of the reflective surface Supporting rigidity, ensuring the accuracy of the inner layer of the reflecting surface and the strength of the overall reflecting surface, enhancing the environmental adaptability of the product, and the outer layer of the reflecting surface can be formed by one stamping and forming a process cartridge, which can effectively overcome the existing existing molding processes. problem.
  • the mold is closed by the overmolding mold and held for a certain period of time until the binder is solidified, and the high-precision antenna reflection surface is pressed.
  • a reflective surface intermediate layer 4 is formed by one stamping. As shown in FIG. 6, a reflective surface intermediate layer 4 is disposed between the reflective surface inner layer 1 and the reflective surface outer layer 2, The reflective surface intermediate layer 4 is respectively connected to the reflective surface inner layer 1 and the reflective surface outer layer 2 by an adhesive; if the reflective surface intermediate layer 4 is two or more layers, the reflective surface inner layer 1 and the reflective surface are outside The layers 1 are respectively connected to their adjacent reflective surface intermediate layers 4 by an adhesive, and the adjacent reflective surface intermediate layers 4 are connected to each other by an adhesive.
  • a non-metallic filler is disposed between the respective layers, and the non-metallic filler is respectively connected to the corresponding layer by a binder.
  • the high-precision antenna reflective surface structure is formed by using the above-mentioned process steps, and the high-precision antenna reflective surface includes a reflective surface inner layer 1 and a reflective surface outer layer 2, and the reflective surface inner layer 1
  • the outer surface 2 of the reflective surface is connected by an adhesive, and the outer surface 2 of the reflective surface is formed with a concave portion 3 at intervals.
  • the overall shape of the outer surface 2 of the reflective surface matches the inner layer 1 of the reflective surface.
  • the concave portion 3 formed on the outer surface 2 of the reflecting surface is respectively matched with the shape of the corresponding portion of the inner layer 1 of the reflecting surface, and the concave portion 3 of the outer layer 2 of the reflecting surface passes through the adhesive and the inner layer of the reflecting surface 1 Connection, the non-recessed portion of the outer surface of the reflecting surface forms a certain gap with the inner layer of the reflecting surface.
  • the structural design of the outer layer of the reflecting surface can effectively enhance the supporting rigidity of the outer layer of the reflecting surface to the inner layer of the reflecting surface, and ensure the precision of the inner layer of the reflecting surface and the strength of the overall reflecting surface. Enhance the environmental adaptability of the product, and the outer layer of the reflective surface can be formed by one-time stamping and manufacturing process, which can effectively overcome the problems existing in other existing molding processes.
  • the inner surface of the reflective surface is used for reflection of electromagnetic waves, the surface is required to be smooth and flat, and the rebound is small, which is consistent with the theoretical surface, and is mainly represented by a small ⁇ value error of the root mean square error RMS of the curved surface; If necessary, the same flat plate structure as the inner surface of the reflective surface may be used, or other structures capable of functioning like ribs may be formed on the structure of the flat plate to increase the strength of the reflective surface;
  • the metal filler has the characteristics of high bonding strength, high adaptability to high and low temperature, and short bonding curing time, and the adjacent two layers are bonded together.
  • a non-metallic filler 5 is disposed between each of the above layers, and the non-metallic filler 5 is respectively connected to the corresponding layer by an adhesive, and the non-metallic filler with a binder firmly bonds the inner layer of the reflective surface and the outer layer of the reflective surface. Bonding together allows the inner layer of the reflective surface and the outer layer of the reflective surface to perform corresponding functions, which improves the shock resistance of the product while reducing the weight of the product.
  • At least one reflective surface intermediate layer 4 matching the shape of the inner layer 1 of the reflective surface is disposed between the inner surface 1 of the reflective surface and the outer layer 1 of the reflective surface, and the intermediate layer 4 of the reflective surface
  • the inner layer 1 and the outer surface 2 of the reflecting surface are respectively connected by an adhesive, and the intermediate layers of the adjacent reflecting surfaces are connected by an adhesive, and the concave portion 3 formed on the outer layer 2 of the reflecting surface It is connected to its adjacent reflective surface intermediate layer by an adhesive.
  • the inner surface of the reflective surface is a metal conductive material.
  • the outer layer of the reflective surface is also made of a metal material; when at least one intermediate layer of the reflective surface is used, If at least one layer of the reflective layer intermediate layer is a metal material, the outer surface of the reflective surface is made of a metal material or a non-metal material.
  • the outer layer of the reflective surface is made of an insulating material having a heat insulating function.
  • the secondary molding is caused by the springback of the product itself after one stamping.
  • the inner layer 1 of the reflective surface will generate a compressive stress 7 with a stress symbol of "-”
  • the outer layer 2 of the reflective surface will produce a tensile stress of 6, and the stress symbol is "+”, wherein the non-metallic filler layer is less stressed.
  • Figure 8 is a working state diagram of the high-precision antenna reflection surface in the outdoor, where the e point and the f point are used as the fixed points of the reflection surface in the working state, and then the reflection surface is under the action of the uniform load wind force q, as shown in Fig. 8.
  • the anti-rebound principle of the present invention is a schematic diagram of the rebound of the high-precision antenna reflecting surface prepared by the process of the present invention after one stamping, and usually cannot be regarded as high precision when the rebound deformation amount Xl-Xn is large. Levels of transceiver antennas are used. As shown in Fig. 11, it is a schematic diagram of the rebound of the high-precision antenna reflecting surface produced by the process of the present invention after secondary molding.
  • ⁇ _ ⁇
  • reduces the rebound error value of ⁇ on the basis of one stamping precision
  • the factors affecting the ⁇ value mainly include: How much the number of bonding layers, secondary molding Machining accuracy of the mold, accuracy of the pressure equipment, mold pressure given during the processing of the product parts, etc. In principle, the more the number of bonding layers, the closer the springback of the part is to the theoretical surface, and the better the wind resistance and vibration resistance.
  • the anti-rebound method adopted by the invention is to superimpose the multi-layer metal materials according to the precision of the arc surface of the secondary press molding die and the different functions of the pressed metal material in different position layers (the tensile stress in the material) And the compressive stress mutually restricts) to achieve the balance of internal tensile and compressive stress to achieve the purpose of small rebound and high precision, to improve the precision of the product of the reflective surface press forming.
  • the structure of the satellite receiving antenna is provided with the above-mentioned high-precision antenna reflecting surface.
  • the reflector surface 12 is fixed on the antenna back bracket 13.
  • the antenna back bracket 13 is connected to the horizontal adjustment bracket 14 by bolts to adjust the pitch angle of the antenna.
  • the horizontal adjustment bracket 14 is mounted on the antenna through the holding structure.
  • the azimuth angle adjustment of the antenna is realized by rotating the horizontal adjustment bracket 14;
  • the support mechanism comprises: a column 15, a base 17 and a tie rod 16, and the base 17 and the tie rod 16 are connected to the column 15 by bolts, the base 17 and the tie rod 16 is connected to the mounting base 18 by an expansion bolt or a ground bolt;
  • the antenna reflection surface 12 is connected to the feed rod 10 via the antenna back bracket 13 or directly connected to the feed rod 10 by a bolt, the feed rod 10 is connected with a feed connection seat 9 for locking the satellite signal receiving source 8 or the satellite signal receiving and transmitting common transceiver duplexer to the focus of the reflecting surface by bolts.
  • the satellite signal is transmitted by a feeder 11 connected to the feed 8 end.
  • the high-precision antenna reflection surface is used in the process of parabola rotation to have a principle that the reflection of parallel light and high-frequency electromagnetic wave signals can be concentrated on the focus through the curved surface, and the weak satellite electromagnetic wave signal can be concentrated to the focal point.
  • the feed and feeder that are clamped at the focus transmit the signal to the receiving system. Therefore, the high-precision antenna reflecting surface produced by the molding process of the present invention aims to converge the electrical signal at one point. If the rebound is large and the precision is low, the electrical signal cannot be concentrated at the focus and the scattering is generated, so that the gain of the antenna is lowered. The noise figure rises, which is not conducive to signal reception and transmission.
  • the high-precision antenna reflecting surface is a unitary structure.
  • Embodiment 2 As shown in FIG. 12-16, the reflecting surface is composed of at least two parts, and each part is assembled into a whole structure by bolts and fasteners, and the forming process of the parts is the same as the above forming process, and other structures are The same as in the first embodiment.
  • This embodiment is mainly used for the processing of a large-diameter reflective surface.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

本发明公开了一种高精度天线反射面及其成型工艺以及设置有该反射面的卫星接收天线,采用反射面内层和反射面外层结合的层状结构,通过一次冲压成型反射面内层和反射面外层,再通过二次成型模将反射面内层和反射面外层模压成型为高精度天线反射面。本发明利用二次模压成型模具的精度和成型过程中同时产生的拉伸和压缩应力相互作用来提高反射面的弧面精度,对产品的不同使用要求而采用不同的背面加强结构形式,既减少反射面的回弹,也提高了反射面的强度,使天线反射面增益提高,噪声系数下降,有利于信号的接收和传输。

Description

一种高精度天线反射面及其成型工艺以及设置有该反射面的卫星接收天线 技术领域
本发明涉及一种卫星电视地面接收设备, 特别涉及一种高精度天线反射面 及其成型工艺以及设置有该反射面的卫星接收天线。
背景技术
目前, 对于高精度天线反射面, 其增益的高低是主要性能指标。
增益 ί?=^Α(^Α 公式 1
λ2
G:增益
λ : 接收信号的波长, 频率越高波长越短
Α0: 天线口面的有效面积
eA: 天线效率
其中天线效率 公式 2
ei: 振幅照射效率
eb: 口径遮挡效率
ex: 交叉极化效率
eph: 相位误差效率
es: 漏溢效率
βδ: 反射面表面误差效率
其中, 反射面表面误差效率是减小表面回弹提高精度的关键
反射面表面误差效率 e 5= —(4?rc7/A) 公式 3
用分贝计算 e5 (dB) =-685.8 ( σ/ λ ) 2 公式 4
其中 σ是随机表面误差在口径场分布加权后的均方根值
根据公式 4可知, 影响天线反射面增益的因素中, 频率越高, 波长越短, 则增益的损失也就越大; 曲面误差越大, 增益损失也越大; 产品在高频 KU频段 和 Ka频段条件下工作会因曲面误差精度对天线的主要电性能指标造成非常大的 影响。 因此, 如何减小天线反射面的曲面误差, 是有效提高天线增益的关键。
目前市售的卫星电视接收设备, 由于现有高精度天线反射面在结构上主要 为单层结构的金属板材, 因此现有反射面成型工艺中不采用沖压成型的方式, 而采用铝板与角钢配合使用、 玻璃钢材料、 碳纤维材料、 钢板材料用旋压工艺 等。 但是, 这些方法对产品零件的加工均存在材料成本高、 生产制作周期长、 生产成本高, 不利于大批量生产等缺陷; 其中钢板材料采用旋压工艺还受产品 形状的局限性, 仅适用于对称回转轴的正馈反射面。
采用沖压成型是工业设计中比较常见的成型方式, 其能够有效解决上述成 型工艺存在的问题, 但是几乎所有的金属材料在沖压成型后都存在回弹的问题, 而反射面的回弹会造成天线反射面增益下降, 噪声系数上升, 不利于信号的接 收和传输等问题, 若回弹形变量过大, 则不能作为高精度级别的收发天线使用。
为了解决回弹的问题, 现有的高精度天线反射面成型工艺也采用了不同的 方法: 如方法 1 : 修整模具理论曲线 /面, 将回弹的误差考虑到模具的成型工序, 让零件在制作过程中的沖压变形曲面大于零件的理论曲面, 本方法仅适用于拉 伸性能好的优质材料, 其缺点一是一套模具对材料的通用性差, 同时由于只有 一层金属板材, 故产品的强度差, 更不适用 1. Q米及以上口径尺寸反射面的制 作; 缺点二是不适用于形状不规则零件, 对形状不规则的零件其变形无规律, 加之不同厂家的原材料在回弹及应力方面有轻微不同, 更无法达到理想的精度 要求。 方法 2 : 旋压法,适用于具有对称回转中心的零件, 如正馈天线的反射面, 所以本方法也受到零件形状因素影响的局限性, 对于大型分瓣式天线更无法采 用。 为了解决上述问题, 在中国专利 CN200510012407. 7名称为 《一种高精度天 线反射面制造方法》公开了一种采用真空负压工艺将肤曲面吸附到支撑骨架面 板的支持骨曲面上成型制造成高精度反射面。 该反射面由肤曲面板、 支撑骨曲 面板和蜂窝夹层材料构成层状结构, 在该反射面的结构中由于肤曲面板和支撑 骨曲面板采用相同形状的弧面板结构, 以至于反射面成型后整体强度不高, 还 需要在支撑骨曲面板上设置 Z型材筋梁来加强反射面成型后整体刚度, 因此在 反射面的成型上更加复杂, 仍然存在生产制作周期长、 生产成本高, 不利于大 批量生产等缺陷。 该方法虽然能够制造出较大口径的高精度反射面, 但反射面 的制造工艺还存在以下的不足:
1、 肤曲面板和支撑骨曲面板采用拉伸工艺成型, 存在上述方法 1中指出的 问题。
2、 该专利中反射面的材料局限于铝合金材质并通过淬火工艺, 本材料与普 通碳素结构钢相比具有成本高的, 强度较低的缺点, 在激烈的市场竟争中不具 有价格优势。
3、 该专利中为了增加反射面的刚度, 以支撑骨曲面板背面曲面设计的采用 铝合金材质的 Z型材筋梁通过拉伸工艺成型, 本加工工艺的 Z型材在拉伸过程 中需要在型材两端的夹持部位各增加 100匪左右的加工辅助材料, 所以材料的 利用率不高; 另外因 Z型材由于其型材的形状左右不对称的原因在拉伸过程中 所受到的拉力左右也不对称, 所以拉伸后实际弧面与理论弧面存在差异, 为了 提高弧面精度通常情况下会增加一道矫正工序, 因此生产效率较低, 弧面的精 度受人为操作因素的影响较大, 不利于产品质量的稳定性。
4、 该专利将反射面装在密封负压带内抽真空使天线反射面单元贴膜粘接。 因此在这高精度成型的工序中需要有提供真空负压的相应配套设施来支撑, 产 品在大批量的生产中需要配置较多的配套设施, 相应维护、 保养相关费用高能 耗高, 降低了产品的市场竟争力。
发明内容
本发明的发明目的在于: 针对上述存在的问题, 提供一种制作筒单、 弧面 精度高、 整体强度高的高精度天线反射面及其成型工艺以及设置有该反射面的 卫星接收天线。
本发明的技术方案是这样实现的:
一种高精度天线反射面, 包括反射面内层和反射面外层, 所述反射面内层 通过粘结剂与反射面外层连接在一起, 其特征在于: 所述反射面外层上间隔地 成型有下凹段部分, 所述反射面外层整体形状与反射面内层匹配, 所述反射面 外层的下凹段部分通过粘结剂与反射面内层连接。
本发明所述的高精度天线反射面, 其所述反射面外层上成型的下凹段部分 分别与反射面内层对应部分形状相匹配。
本发明所述的高精度天线反射面, 其在所述反射面内层和反射面外层之间 设置有至少一层与反射面内层形状相匹配的反射面中间层, 所述反射面中间层 通过粘结剂分别与反射面内层和反射面外层连接, 所述相邻反射面中间层之间 通过粘结剂连接。
本发明所述的高精度天线反射面, 其所述反射面外层上成型的下凹段部分 通过粘结剂与其相邻的反射面中间层连接。
本发明所述的高精度天线反射面, 其所述反射面内层金属导电材料, 所述 反射面外层为金属材料。
本发明所述的高精度天线反射面, 其所述反射面内层金属导电材料, 在所 述反射面内层和反射面外层之间至少有一层反射面中间层为金属材料, 所述反 射面外层为金属材料或非金属材料。
本发明所述的高精度天线反射面, 其在上述各层之间均设置有非金属填料, 所述非金属填料通过粘结剂分别与其对应层连接。
本发明所述的高精度天线反射面, 其上述结构构成的反射面由至少两部分 拼接而成构成一整体结构。
一种如上述权利要求所述的高精度天线反射面的成型工艺, 其特征在于: 包括以下步骤:
a )、 通过一次沖压成型反射面内层和反射面外层;
b )、 将反射面内层放置在二次成型模上, 在反射面内层上涂粘结剂; c )、 将反射面外层放置在涂有粘结剂的反射面内层上;
d )、 通过二次成型模合模并保压一段时间到粘结剂固化, 完成高精度天线 反射面的压制。
本发明所述的高精度天线反射面的成型工艺, 其在所述步骤 a )中, 通过一 次沖压成型的反射面外层上间隔地成型 ·, 所述反射面外层整体形 状与反射面内层匹配,
连接。
本发明所述的高精度天线反射面的成型工艺, 其在所述步骤 a )中, 通过一 次沖压成型有反射面中间层, 所述反射面中间层设置在反射面内层和反射面外 本发明所述的高精度天线反射面的成型工艺, 其在所述反射面内层和反射 面外层之间设置有至少一层反射面中间层, 所述相邻反射面中间层之间通过粘 结剂连接。
本发明所述的高精度天线反射面的成型工艺, 其在上述各层之间均设置有 非金属填料, 所述非金属填料通过粘结剂分别与对应层连接。
本发明所述的高精度天线反射面成型工艺, 其所述反射面由至少两部分拼 接而成构成一整体, 所述各部分的成型工艺与上述成型工艺相同。
一种设置有所述高精度天线反射面的卫星接收天线, 其特征在于: 所述反 射面固定在天线背部支架上, 所述天线背部支架通过螺栓与水平调节支架连接 后实现天线的俯仰角度调节, 所述水平调节支架通过其抱紧结构将天线装在支 撑机构上, 通过转动水平调节支架实现天线的方位角度调节; 所述反射面通过 天线背部支架连接有馈源杆或通过螺栓直接与馈源杆连接, 所述馈源杆连接有 馈源连接座, 所述馈源连接座通过螺栓将卫星信号接收用的馈源或卫星信号接 收、 发射用的收发两用双工器锁紧在反射面的焦点上, 卫星信号通过连接在馈 源一端的馈线进行信号的传输。
本发明所述的卫星接收天线, 其所述支撑机构包括立柱、 底座和拉杆, 所 述底座和拉杆通过螺栓与立柱连接, 所述底座和拉杆通过膨胀螺栓或地脚螺栓 与安装基础连接。
Figure imgf000008_0001
应力相互作用来减小反射面内层的回弹问题, 有效提高反射面的弧面精度, 同 时, 反射面外层的结构设计能够有效加强反射面外层对反射面内层的支撑刚度, 确保反射面内层的精度和整体反射面的强度, 增强产品的环境适应性, 无需再 在反射面外层上增加额外的起加强刚度作用的部件, 从而使反射面的结构筒单, 成型工艺更加筒便、 快捷, 有效解决了现有反射面生产制作周期长、 生产成本 高, 不利于大批量生产等的问题。
由于采用了上述技术方案, 本发明的有益效果是: 1.采用本发明后, 对反射面材质的选择范围较大, 根据产品的使用性能要 钢, 也可采用不锈钢或铝合金等优质金属材料。
2.采用本发明时, 在一次成型工序中不管是对反射面内层的加工还是反射 制, 其中所浪费的材料主要是辅助搭边余料, 其尺寸在 15匪以内, 通过合理的 排样, 产品的材料利用率高。 通常采用其它工艺为提高成型精度而用的铝合金 板材主要采用拉弯成型工艺, 其中工艺辅助的搭边余料在 30-50匪左右, 对于 铝合金角钢或 Z型钢在拉弯过程中更是需要 100mm左右长度的辅助余料。
3.采用本发明时, 在加工一次沖压成型所用的成型模具或二次成型粘结时 所采用的模具工装都可以采用高精度的数控设备来实现一次装夹加工, 其优点 是定位准确, 加工精度高。 当用于大尺寸的天线反射面的设计加工时、 可以考 虑为分瓣式拼装的结构来减小相应的模具工装尺寸, 以利于模具工装加工精度 的保证。
4.采用本发明制作的产品的回弹精度和产品的强度容易控制, 当采用回弹 性大的材料时可以通过增加粘结的层数来降低回弹提高产品精度, 同时产品的 强度也可以通过调整粘结的层数或改变反射面外层上下凹段部分的尺寸形状来 调整反射面的强度。
5. 本发明在一次沖压成型和二次成型粘结所采用的设备均是金属板料加工 过程中所用到的通用设备, 所以成型可靠, 质量稳定, 易于实现。
6.采用本发明可以根据生产的投入情况来考虑, 为了降低生产设备一次性 的投入成本, 可以对二次模压工序的二次粘结模具进行技术改造, 增加开合模 机构来实现手动式模压粘结成型, 本成型方式实现的结果与采用液压设备加工 产品的结果完全相同, 几乎无能源的损耗, 具有设备的投入和能耗少的优点。 附图说明
图 1是本发明高精度天线反射面的成型工艺流程图。
图 2是实施例 1中高精度天线反射面的主视图。
图 3是图 2的俯视图。
图 4是图 2中剖面图。
图 5是图 4中 I部放大图。
图 6是实施例 1中高精度天线反射面设置有反射面中间层的结构示意图。 图 7是高精度天线反射面在二次模压过程中内部应力图。
图 8是高精度天线反射面在室外工作状态内部应力图。
图 9是图 8中 I I部放大图。
图 10是高精度天线反射面在一次沖压成型后回弹示意图。
图 11是高精度天线反射面通过二次模压成形后回弹示意图。
图 12是实施例 2中高精度天线反射面的主视剖面图。
图 13是图 12的俯视图。
图 14是图 12的仰视图。
图 15是图 12的左视图。
图 16是图 12的右视图。
图 17是设置有高精度天线反射面的卫星接收天线的结构示意图。
图 18是图 17的主视图。
图 19是图 17的右视图。
图 20是图 17的俯视图。
图中标记: 1为反射面内层, 2为反射面外层, 3为反射面外层上成型的下 凹段部分, 4为反射面中间层, 5为非金属填料, 6为拉伸应力, 7为压缩应力, 8为馈源, 9为馈源连接座, 10为馈源杆, 11为馈线, 12为反射面, 13为天线 背部支架, 14为水平调节支架, 15为立柱, 16为拉杆, 17为底座, 18为安装 基础, a为一次沖压成型回弹后实际轮廓曲线, b为理论标准轮廓曲线, c为二 次模压成型后实际轮廓曲线, XI为第 1点理论与一次沖压成型轮廓曲线尺寸的 误差值, X2为第 2点理论与一次沖压成型轮廓曲线尺寸的误差值, Xn为第 n点 理论与一次沖压成型轮廓曲线尺寸的误差值, Ml为第 1点一次沖压成型与二次 模压成型轮廓曲线尺寸的误差值, M2为为第 2点一次沖压成型与二次模压成型 轮廓曲线尺寸的误差值, Mn为第 n点一次沖压成型与二次模压成型轮廓曲线尺 寸的误差值, Δ 1为第 1点理论与二次模压成型轮廓曲线尺寸的误差值, Δ 2为 第 2点理论与二次模压成型轮廓曲线尺寸的误差值, Δ η为第 η点理论与二次模 压成型轮廓曲线尺寸的误差值, e和 f 为反射面在使用工作状态的固定点, q为 反射面在使用中受外界均布载荷风力。
具体实施方式
下面结合附图, 对本发明作详细的说明。
为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实 施例, 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅 仅用以解释本发明, 并不用于限定本发明。
实施例 1 :如图 1-5所示,一种高精度天线反射面成型工艺, 包括以下步驟: a )、 通过一次沖压成型反射面内层 1和反射面外层 2 , 其中, 通过一次沖压 成型的反射面外层 2上间隔地成型有下凹段部分 3 ,所述反射面外层 2整体形状 与反射面内层 1 匹配, 所述反射面外层 2的下凹段部分 3通过粘结剂与反射面 内层 1连接; 反射面外层的结构设计能够有效加强反射面外层对反射面内层的 支撑刚度, 确保反射面内层的精度和整体反射面的强度, 增强产品的环境适应 性, 而且反射面外层能够通过一次沖压成型, 制作工艺筒单, 能够有效克服现 有其他成型工艺存在的问题。
b )、 将反射面内层放置在二次成型模上, 在反射面内层上涂粘结剂。
c )、 将反射面外层放置在涂有粘结剂的反射面内层上。
d )、 通过二次成型模合模并保压一段时间到粘结剂固化, 完成高精度天线 反射面的压制。
在所述步骤 a ) 中, 通过一次沖压成型有反射面中间层 4 , 如图 6所示, 在 所述反射面内层 1和反射面外层 2之间设置有一层反射面中间层 4 ,所述反射面 中间层 4通过粘结剂分别与反射面内层 1和反射面外层 2连接; 若反射面中间 层 4为两层或两层以上时, 反射面内层 1和反射面外层 1通过粘结剂分别与其 相邻的反射面中间层 4连接, 而相邻的反射面中间层 4之间通过粘结剂相互连 接。
在上述各层之间均设置有非金属填料, 所述非金属填料通过粘结剂分别与 对应层连接。
如图 2-5所示, 为采用上述工艺步骤制作的高精度天线反射面结构示意图, 所述高精度天线反射面包括反射面内层 1和反射面外层 2 ,所述反射面内层 1通 过粘结剂与反射面外层 2连接在一起, 所述反射面外层 2上间隔地成型有下凹 段部分 3 , 所述反射面外层 2整体形状与反射面内层 1 匹配, 所述反射面外层 2 上成型的下凹段部分 3分别与反射面内层 1对应部分形状相匹配, 所述反射面 外层 2的下凹段部分 3通过粘结剂与反射面内层 1连接, 反射面外层未下凹段 部分与反射面内层形成一定间隙。 反射面外层的结构设计能够有效加强反射面 外层对反射面内层的支撑刚度, 确保反射面内层的精度和整体反射面的强度, 增强产品的环境适应性, 而且反射面外层能够通过一次沖压成型, 制作工艺筒 单, 能够有效克服现有其他成型工艺存在的问题。
其中, 所述反射面内层用于对电磁波的反射, 表面要求光滑平整, 回弹小, 与理论曲面相符, 主要表现在曲面均方根误 RMS的 σ值误差小; 所述反射面外 层根据需要可以采用与反射面内层弧面相同的平板结构, 也可以在平板的结构 上面成型能够起到类似加强筋作用的其他结构来提高反射面的强度; 所述带有 粘结剂的非金属填料具有粘结强度高, 高低温适应能力强, 粘结固化时间短的 特点, 将相邻两层结构粘接在一起。
在上述各层之间均设置有非金属填料 5 ,所述非金属填料 5通过粘结剂分别 与对应层连接, 带粘结剂的非金属填料将反射面内层和反射面外层牢固的粘结 在一起, 让反射面内层和反射面外层发挥相应的功能, 在提高了产品抗震性的 同时降低了产品的重量。
如图 6所示, 在所述反射面内层 1和反射面外层 1之间设置有至少一层与 反射面内层 1形状相匹配的反射面中间层 4 ,所述反射面中间层 4通过粘结剂分 别与反射面内层 1和反射面外层 2连接, 所述相邻反射面中间层之间通过粘结 剂连接, 所述反射面外层 2上成型的下凹段部分 3通过粘结剂与其相邻的反射 面中间层连接。
其中, 所述反射面内层为金属导电材料, 当没有设置反射面中间层时, 为 了保证反射面整体强度, 反射面外层也采用金属材料; 当采用了至少一层反射 面中间层时, 若反射面中间层中有至少一层为金属材料时, 所述反射面外层为 金属材料或非金属材料, 比如为了适应使用环境, 反射面外层采用具有保温功 能的保温材料。 态原理: 图 7是采用本发明工艺制作高精度天线反射面中, 在二次模压过程中 反射面内部应力图, 由于一次沖压后的产品本身会产生回弹的原因, 在二次模 压粘结过程中其反射面内层 1会产生压缩应力 7 , 应力符号为 " -", 而反射面外 层 2会产生拉伸应力 6 , 应力符号为 "+" , 其中非金属填料层受应力较小。 图 8 是高精度天线反射面在室外的工作状态图, 其中 e点和 f 点作为反射面在使用 工作状态的固定点, 那么反射面在外界均布载荷风力 q的作用下, 如图 8所示, 将会在反射面内层产生拉伸应力 6 , 应力符号为 "+" , 而在反射面外层产生压缩 应力 7 , 应力符号为 其中非金属填料层受应力较小。 这样, 反射面在使 用过程中与反射面在二次模压过程时内部应力状态刚好相反, 相互抵消, 有利 于产品曲面精度在使用过程中的保证。
本发明防回弹原理: 如图 10所示, 是采用本发明工艺制作的高精度天线反 射面在一次沖压成型后回弹示意图, 通常回弹变形量 Xl-Xn较大时, 不能作为 高精度级别的收发天线使用。 如图 11所示, 是采用本发明工艺制作的高精度天 线反射面通过二次模压成型后回弹示意图。 在二次模压成型后其回弹 Δ =Χ_Μ, 那么 Δ在一次沖压精度的基础上减少 Μ的回弹误差值, 其中 Μ值的影响因素主 要包括: 粘结层数的多少, 二次模压成型模具的加工精度, 压力设备的精度, 在产品零件加工过程中给定的模具压力等。 原则上粘结层数越多零件的回弹越 趋近于理论曲面, 其抗风强度和抗震动性能也越好。
本发明所采用的防回弹的方法是通过多层金属材料叠加在一起, 依照二次 压制成型模具弧面的精度以及所压制的金属材料在不同位置层发挥的不同功能 (材料内的拉应力和压应力相互制约)达到内部拉压应力的平衡来实现回弹小、 精度高的目的, 来提高反射面压制成型的产品精度。
如图 17-20所示, 为设置有上述高精度天线反射面的卫星接收天线的结构 示意图, 反射面 12固定在天线背部支架 13上, 所述天线背部支架 1 3通过螺栓 与水平调节支架 14连接后实现天线的俯仰角度调节, 所述水平调节支架 14通 过其抱紧结构将天线装在支撑机构上, 通过转动水平调节支架 14实现天线的方 位角度调节; 所述支撑机构包括: 立柱 15、 底座 17和拉杆 16 , 所述底座 17和 拉杆 16通过螺栓与立柱 15连接, 所述底座 17和拉杆 16通过膨胀螺栓或地脚 螺栓与安装基础 18连接; 所述天线反射面 12通过天线背部支架 13连接有馈源 杆 10或通过螺栓直接与馈源杆 10连接, 所述馈源杆 10连接有馈源连接座 9 , 所述馈源连接座 9通过螺栓将卫星信号接收用的馈源 8或卫星信号接收、 发射 共用的收发两用双工器锁紧在反射面的焦点上, 卫星信号通过连接在馈源 8— 端的馈线 11进行信号的传输。
高精度天线反射面在使用过程中目的是通过抛物线旋转产生的曲面具有能 将平行光和高频电磁波信号通过曲面的反射汇聚于焦点的原理, 能将微弱的卫 星电磁波信号汇聚到焦点处, 通过夹持在焦点的馈源、 馈线将信号传递给接收 系统。 所以采用本发明的成型工艺制作的高精度天线反射面目的在于将电信号 汇聚在一点, 如果回弹大、 精度低, 则不能将电信号汇聚在焦点处而产生散射, 使天线的增益下降, 噪声系数上升, 不利于信号的接收和传输。
其中所述高精度天线反射面为一整体结构。
实施例 2 : 如图 12-16所示, 所述反射面由至少两部分组成, 各部分采用螺 栓和扣件拼装为一整体结构, 所述各部分的成型工艺与上述成型工艺相同, 其 他结构与实施例 1相同。 本实施例主要用于口径尺寸较大反射面的加工。
以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发明的 精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明的保 护范围之内。

Claims

权 利 要 求 书
1、 一种高精度天线反射面, 包括反射面内层 (1) 和反射面外层 (2), 所述反射面内层 (1)通过粘结剂与反射面外层 (2)连接在一起, 其特征在于: 所述反射面外层 (2) 上间隔 地成型有下凹段部分 (3), 所述反射面外层 (2) 整体形状与反射面内层 (1) 匹配, 所述反 射面外层 (2) 的下凹段部分 (3) 通过粘结剂与反射面内层 (1) 连接。
2、 根据权利要求 1所述的高精度天线反射面, 其特征在于: 所述反射面外层 (2) 上成 型的下凹段部分 (3) 分别与反射面内层 (1) 对应部分形状相匹配。
3、 根据权利要求 2所述的高精度天线反射面, 其特征在于: 在所述反射面内层 (1) 和 反射面外层 (2) 之间设置有至少一层与反射面内层 (1) 形状相匹配的反射面中间层 (4), 所述反射面中间层 (4)通过粘结剂分别与反射面内层 (1)和反射面外层 (2)连接, 所述相 邻反射面中间层之间通过粘结剂连接。
4、 根据权利要求 3所述的高精度天线反射面, 其特征在于: 所述反射面外层 (2) 上成 型的下凹段部分 (3) 通过粘结剂与其相邻的反射面中间层连接。
5、 根据权利要求 2所述的高精度天线反射面, 其特征在于: 所述反射面内层 (1) 金属 导电材料, 所述反射面外层 (2) 为金属材料。
6、 根据权利要求 4所述的高精度天线反射面, 其特征在于: 所述反射面内层 (1) 金属 导电材料, 在所述反射面内层 (1)和反射面外层 (2)之间至少有一层反射面中间层 (4) 为 金属材料, 所述反射面外层 (2) 为金属材料或非金属材料。
7、根据权利要求 1至 6中任意一项所述的高精度天线反射面, 其特征在于: 在上述各层 之间均设置有非金属填料 (5), 所述非金属填料 (5) 通过粘结剂分别与其对应层连接。
8、根据权利要求 7所述的高精度天线反射面, 其特征在于: 上述结构构成的反射面由至 少两部分拼接而成构成一整体结构。
9、 一种如上述权利要求所述的高精度天线反射面的成型工艺, 其特征在于: 包括以下步 骤:
a)、 通过一次冲压成型反射面内层和反射面外层;
b)、 将反射面内层放置在二次成型模上, 在反射面内层上涂粘结剂;
c)、 将反射面外层放置在涂有粘结剂的反射面内层上;
d)、通过二次成型模合模并保压一段时间到粘结剂固化, 完成高精度天线反射面的压制。
10、 根据权利要求 9所述的高精度天线反射面的成型工艺, 其特征在于: 在所述步骤 a) 中, 通过一次冲压成型的反射面外层上间隔地成型有下凹段部分, 所述反射面外层整体形状 与反射面内层匹配, 所述反射面外层的下凹段部分通过粘结剂与反射面内层连接。
11、根据权利要求 10所述的高精度天线反射面的成型工艺, 其特征在于: 在所述步骤 a) 中, 通过一次冲压成型有反射面中间层, 所述反射面中间层设置在反射面内层和反射面外层 之间, 并通过粘结剂分别与反射面内层和反射面外层连接。
12、根据权利要求 11所述的高精度天线反射面的成型工艺, 其特征在于: 在所述反射面 内层和反射面外层之间设置有至少一层反射面中间层, 所述相邻反射面中间层之间通过粘结 剂连接。
13、根据权利要求 9至 12中任意一项所述的高精度天线反射面的成型工艺,其特征在于: 在上述各层之间均设置有非金属填料, 所述非金属填料通过粘结剂分别与对应层连接。
14、根据权利要求 13所述的高精度天线反射面成型工艺, 其特征在于: 所述反射面由至 少两部分拼接而成构成一整体, 所述各部分的成型工艺与上述成型工艺相同。
15、 一种设置有如权利要求 1至 8中所述的高精度天线反射面的卫星接收天线, 其特征 在于: 所述反射面 (12 ) 固定在天线背部支架 (13 ) 上, 所述天线背部支架 (13 ) 通过螺栓 与水平调节支架 (14) 连接后实现天线的俯仰角度调节, 所述水平调节支架 (14) 通过其抱 紧结构将天线装在支撑机构上, 通过转动水平调节支架 (14) 实现天线的方位角度调节; 所 述反射面 (12)通过天线背部支架 (13)连接有馈源杆 (10) 或通过螺栓直接与馈源杆 (10) 连接, 所述馈源杆 (10)连接有馈源连接座 (9), 所述馈源连接座 (9)通过螺栓将卫星信号 接收用的馈源(8)或卫星信号接收、 发射用的收发两用双工器锁紧在反射面的焦点上, 卫星 信号通过连接在馈源 (8) —端的馈线 (11 ) 进行信号的传输。
16、 根据权利要求 15所述的卫星接收天线, 其特征在于: 所述支撑机构包括立柱 (15)、 底座 (17) 和拉杆 (16 ), 所述底座 (17) 和拉杆 (16) 通过螺栓与立柱 (15 )连接, 所述底 座 (17 ) 和拉杆 (16 ) 通过膨胀螺栓或地脚螺栓与安装基础 (18 ) 连接。
PCT/CN2012/084882 2012-07-04 2012-11-20 一种高精度天线反射面及其成型工艺以及设置有该反射面的卫星接收天线 WO2014005390A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN 201220319761 CN202651360U (zh) 2012-07-04 2012-07-04 一种高精度天线反射面及设置有该反射面的卫星接收天线
CN201210228699.8 2012-07-04
CN201210228699.8A CN102738593B (zh) 2012-07-04 2012-07-04 一种高精度天线反射面成型工艺
CN201220319761.X 2012-07-04

Publications (1)

Publication Number Publication Date
WO2014005390A1 true WO2014005390A1 (zh) 2014-01-09

Family

ID=49881290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/084882 WO2014005390A1 (zh) 2012-07-04 2012-11-20 一种高精度天线反射面及其成型工艺以及设置有该反射面的卫星接收天线

Country Status (1)

Country Link
WO (1) WO2014005390A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02192302A (ja) * 1989-01-20 1990-07-30 Nec Corp パラボラアンテナ反射体の製造方法
JPH03218809A (ja) * 1990-01-24 1991-09-26 Bridgestone Corp 樹脂製アンテナリフレクター
CN2508415Y (zh) * 2001-11-15 2002-08-28 钟太华 一种抛物面卫星接收天线
CN201655975U (zh) * 2009-10-21 2010-11-24 中国电子科技集团公司第五十四研究所 一种轻型高刚度结构的高精度天线反射面面板
CN102738593A (zh) * 2012-07-04 2012-10-17 四川省视频电子有限责任公司 一种高精度天线反射面成型工艺
CN202651360U (zh) * 2012-07-04 2013-01-02 四川省视频电子有限责任公司 一种高精度天线反射面及设置有该反射面的卫星接收天线

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02192302A (ja) * 1989-01-20 1990-07-30 Nec Corp パラボラアンテナ反射体の製造方法
JPH03218809A (ja) * 1990-01-24 1991-09-26 Bridgestone Corp 樹脂製アンテナリフレクター
CN2508415Y (zh) * 2001-11-15 2002-08-28 钟太华 一种抛物面卫星接收天线
CN201655975U (zh) * 2009-10-21 2010-11-24 中国电子科技集团公司第五十四研究所 一种轻型高刚度结构的高精度天线反射面面板
CN102738593A (zh) * 2012-07-04 2012-10-17 四川省视频电子有限责任公司 一种高精度天线反射面成型工艺
CN202651360U (zh) * 2012-07-04 2013-01-02 四川省视频电子有限责任公司 一种高精度天线反射面及设置有该反射面的卫星接收天线

Similar Documents

Publication Publication Date Title
CN102738593B (zh) 一种高精度天线反射面成型工艺
CN101673880B (zh) 一种铝蒙皮蜂窝夹层结构天线反射面的制造方法
US9470821B2 (en) Reflector element and method and system for the production thereof
RU2385225C2 (ru) Гибридная оснастка для отверждения композитных деталей
CN102544686B (zh) 一种大型双曲率天线的制造方法
CN103560331B (zh) 大口径高精度副反射面的制造方法
EP2406048A1 (en) Wind turbine blade mould
CN101872905A (zh) 一种具有双层壳结构的反射面天线
WO2014005390A1 (zh) 一种高精度天线反射面及其成型工艺以及设置有该反射面的卫星接收天线
CN202651360U (zh) 一种高精度天线反射面及设置有该反射面的卫星接收天线
WO2014183607A1 (zh) 防暴透明隔断安装结构及其安装方法
CN201655975U (zh) 一种轻型高刚度结构的高精度天线反射面面板
CN204156077U (zh) 一种三棱柱型天线支承结构
EP2478308A2 (en) A reflecting- panel having a thin mirror and a support made of composite material smc (sheet moulding compound) for linear parabolic solar concentrators
CN209799109U (zh) 一种可以实现不同角度的幕墙安装结构
CN101812959A (zh) 一种加强型玻璃钢汽车门板
KR101925258B1 (ko) 금속박막과 라이너를 갖는 전자파 차폐재 및 그 제조방법
CN106887713B (zh) 一种环焦天线副面旋压成型的加工方法
CN201539485U (zh) 玻璃钢雷达天线罩用低反射系数连接螺栓
JPS59167103A (ja) アンテナ用パラボラ形反射板
CN204516903U (zh) 一种新型高精度碳纤维副反射面
CN116290564B (zh) 一种轻质桁架式钢骨混凝土梁结构构件
CN110145678B (zh) 一种大尺寸复杂蜂窝夹层结构复合壳片以及整体成型方法
JPH01238203A (ja) パラボラアンテナの鏡面構造
CN202737087U (zh) 大型高精度抛物面偏馈天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12880503

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12880503

Country of ref document: EP

Kind code of ref document: A1