WO2014003607A1 - Батарея электрических накопителей энергии с распределенной аналитической системой управления - Google Patents

Батарея электрических накопителей энергии с распределенной аналитической системой управления Download PDF

Info

Publication number
WO2014003607A1
WO2014003607A1 PCT/RU2013/000597 RU2013000597W WO2014003607A1 WO 2014003607 A1 WO2014003607 A1 WO 2014003607A1 RU 2013000597 W RU2013000597 W RU 2013000597W WO 2014003607 A1 WO2014003607 A1 WO 2014003607A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
module
control system
microprocessor
modules
Prior art date
Application number
PCT/RU2013/000597
Other languages
English (en)
French (fr)
Inventor
Олег Иванович СИДОРЕНКО
Владимир Александрович ПОДЛИПАЛИН
Алексей Александрович ЕВСЕЙКИН
Светлана Владимировна БУЗАДЖИ
Наталия Андреевна ПОЛУЛЯХ
Константин Сергеевич ДИСТРАНОВ
Эдуард Евгеньевич ДАНИЛОВ
Original Assignee
Общество С Ограниченной Ответственностью "Системы Управления Хранением Энергии"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество С Ограниченной Ответственностью "Системы Управления Хранением Энергии" filed Critical Общество С Ограниченной Ответственностью "Системы Управления Хранением Энергии"
Publication of WO2014003607A1 publication Critical patent/WO2014003607A1/ru

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the proposed solution relates to the field of electrical engineering and can be used to create batteries of electric energy storage devices of various nature: from Li-ion batteries to ionistors and chemical current sources as part of autonomous power supply systems, including transport, uninterruptible power supplies, systems operational direct current and network drives of electricity.
  • a known battery of electrical energy storage containing many single elements or modules connected in a serial electric circuit, a battery monitoring and control system, as well as electronic units, providing voltage equalization on individual storage elements, the power of which is provided from an additional energy source [see RF patent N ° 2230418, publ. 06/10/2004].
  • a disadvantage of the known battery is the difficulty of its operation due to the presence of an external energy source that requires additional maintenance, and in the case of using a stationary energy source - loss of battery autonomy (mobility).
  • the closest solution to the claimed solution is a battery of electrical energy storage devices, divided into modules, containing unit storage units connected to a serial electric circuit, an electronic equalization device that provides voltage equalization on individual module storage devices and connected to each module storage unit using an electric the harness and through it to the microprocessor-based monitoring and control system, powered like electronic alignment ivayuschee storage device from the module, as well as additional constant current source, which is used as a device for charging the battery module.
  • a switch that allows it to be disconnected from the device to charge the battery or load, as well as a current sensor, for example, on the Hall effect, the output signal of which is transmitted to the microprocessor control and management system, which is connected to the same systems of other modules and to an external computer via a serial multiplex communication channel of the RS485 or CAN type with galvanic isolation [see RF patent Ka53818, publ. May 27, 2006].
  • active voltage equalization is performed on individual drives in order to extend the life of the entire battery and protect each storage element from overcharging, overdischarge and overcurrent by measuring current and voltage on a separate drive and automatically disconnecting the battery from the charger or load when the specified values are exceeded parameters.
  • the leveling device is not controlled by a microprocessor-based monitoring and control system in terms of the amount of energy pumped between the energy storage devices and time parameters.
  • the DC source in the module is not controlled from the corresponding microprocessor-based monitoring and control system and is disconnected after charging from the module, which makes inter-module alignment impossible in all battery operation modes.
  • Intra-module alignment in the prototype during storage and battery discharge is not performed and is possible only when the leveling device and the microprocessor control control system are powered by an additional electric drive.
  • the microprocessor-based monitoring and control system does not solve the problems of maintaining an electronic archive of events, accumulating statistical data on battery cells and expert analysis for the purpose of diagnosing, assessing the remaining battery life and optimizing the charge depending on the condition of individual drives and external conditions, as well as ensuring tolerance to the type of electric drives needed to use the battery in transport and in various fields of energy, which requires a special choice of processor modules th in terms of performance and memory size.
  • the claimed device has the task of creating a battery of electrical energy storage with a distributed analytical control system, devoid of the above disadvantages.
  • the technical result of the claimed device consists in activating a distributed microprocessor-based battery monitoring and control system and entrusting it not only with the tasks of efficiently managing the charging processes of individual drives and inside and intermodular voltage equalization, requiring expert analysis based on accumulated statistical data, but also providing the required reliable battery operation temperature and noise-resistant conditions of its operation.
  • the proposed battery of electric energy storage with a distributed analytical control system divided into modules containing blocks of energy storage from connected in a serial electrical circuit of individual drives, an electronic equalization device that provides active voltage equalization on single drives of the module and is connected to each drive of the module using an electric harness, which also provides connection of the drives of the module to the microprocessor-based monitoring and control system of the drives in the module.
  • the electronic leveling device and microprocessor-based monitoring and control system are powered from the module drives.
  • the battery also contains an additional direct current source, which is used to recharge the module drive unit.
  • a switch is installed in the battery power circuit, made in the form of a relay or an electronic key with a fuse, which allows it to be disconnected from the battery or load device, as well as a current sensor in each module, the output signal of which is supplied to the microprocessor monitoring and control system, which by the same systems of other modules and with an external computer via a serial multiplex communication channel of the RS485 or CAN type with galvanic isolation.
  • each module contains a temperature sensor connected to a microprocessor-based monitoring and control system, which is connected to the climate control unit with actuators in the form of dampers, electric heaters and fans, a DC power supply with galvanic isolation from drives, electronic equalization device and to an additional source of direct current, which is used as a DC-DC voltage converter connected to DC voltage buses ki and to an AC-DC battery voltage converter connected to an external AC network via a plug connection.
  • a temperature sensor connected to a microprocessor-based monitoring and control system, which is connected to the climate control unit with actuators in the form of dampers, electric heaters and fans, a DC power supply with galvanic isolation from drives, electronic equalization device and to an additional source of direct current, which is used as a DC-DC voltage converter connected to DC voltage buses ki and to an AC-DC battery voltage converter connected to an external AC network via a plug connection.
  • the bus for the positive voltage for recharging the modules is connected to the battery switch through the diode, the bus for the negative voltage for recharging the modules is connected to the “-” terminal of the battery, and the processor modules of the microprocessor monitoring system for performance and memory are selected sufficient to perform expert analysis to assess the residual life of individual drives and charge optimization based on statistics obtained during battery operation.
  • the figure shows a functional block diagram of the claimed battery.
  • the positions in the drawing indicate: 1 - module of electrical energy storage with a control system; 2 - block storage energy; 3 - single energy storage device; 4 - electronic leveling device; 5 - electric harness; 6 - microprocessor control and management system; 7 - power source with galvanic isolation; 8 - an additional source of direct current type DC-DC; 9, 10 - busbar constant voltage recharging; 1 1 - voltage converter AC-DC; 12 - switch with fuse; 13 - diode; 14 - current sensor; 15 - climate unit; 16 - executive bodies of the climate unit; 1 7 - temperature sensor; 1 8 - bus measuring signals; 19 - bus control signals; 20 - multicomplex serial communication channel with galvanic isolation.
  • the claimed battery consists of a module 1 with a distributed analytical control system, each of which contains drives 3 grouped in blocks 2 and connected into a serial electric circuit, an electronic equalization device 4, powered from drives 3 of block 2 and connected to each individual drive 3 by an electric harness 5, which also provides the connection of single drives 3 to the microprocessor control control system 6, powered from drive 3 of block 2 through a power source 7 s Galvanic separation.
  • the claimed battery also contains in each module 1 a direct current source 8 in the form of a DC-DC voltage converter connected to the drive unit 2 at the output 3, at the input to the recharging busbars 9, 10 and to the battery AC-DC voltage converter connected to external AC power through a detachable connection (not shown in the drawing).
  • the recharge voltage bus 9 is connected to the battery switch 12, made in the form of a relay or an electronic key with a fuse through a diode 13, the anode of which is connected to the current sensor 14 installed in the power circuit of module 1, and the recharge voltage bus 10 is connected to the battery “-” terminal .
  • the claimed battery also contains in each module 1 a climate unit 15 with actuators 16 made in the form of dampers, electric heaters and fans, and a temperature sensor 17 connected via a bus 18 of measuring signals with a current sensor 14 to a microprocessor control and control system 6 connected through the bus 19 of the control signals to the control inputs of the electronic equalizing device 4, a constant current source 8, an air conditioning unit 15, and through a serial multiplex communication channel 20 of the type RS 485 or CAN with galvanic isolation to other modules and battery 1 to the external computer.
  • the claimed battery operates as follows.
  • a charging current of up to several hundred amperes passes through everything in series connected drives 3 blocks 2 modules 1 from the terminals "+” to the terminals "-", which is recognized by microprocessor control systems 6 modules 1 using current sensors 14, made, for example, based on the Hall effect.
  • the microprocessor monitoring and control system 6 measures the current of unit 2 of module 1 in magnitude and direction, and also measures and constantly monitors the voltage value on each drive 3 of module 1 connected to the built-in ADC of the microprocessor control control system 6 using an electric harness 5.
  • the electron An equalizing device 4 under the control of a microprocessor system 6 can carry out intramodular voltage equalization in the battery, redistributing energy between individual drives 3 according to the results of current measurements, taking into account the accumulated statistical data.
  • selective inter-module voltage equalization in the battery can also be carried out by recharging the “lagged” units 2 from the external AC network via an AC-DC converter 1 1 with currents of up to several tens of amperes, with diode 13 is in a closed state.
  • the battery After the end of charge and recharging and disconnection with the help of plug-in connection of external charging networks of direct and alternating current, the battery is either connected to the load through the terminals “U +” and “U-”, and goes into discharge mode, or it does not connect anywhere and is in storage mode energy. In the battery discharge mode, a current of up to several hundred amperes flows through the battery in the opposite direction to the charge, transferring the stored energy to the load.
  • the electronic equalizing device 4 continues to operate in each battery module 1, performing selective intra-module voltage equalization according to the measurement results and continuous monitoring of voltages on individual drives using a microprocessor system 6, which, when the discharge is exceeded, is permissible the values on any of the individual drives breaks the load power circuit using the switch 12.
  • the diode 13 is in the open state and the charging buses 9 and 10 are connected to the battery, which makes it possible to carry out inter-module selective voltage equalization on blocks 2 of drives 3 using DC sources 8 by turning them on and off with a microprocessor system 6 according to the measurement results and taking into account the accumulated statistical data.
  • the energy storage mode there is no large current in the battery power circuit.
  • both intra-module alignment using an electronic equalization device 4 and inter-module alignment using direct current sources 8 can be performed due to the energy of the entire battery with relatively small currents (units and tens of amperes) under the control of microprocessor system 6 taking into account the statistical information about the module storage 1.
  • the microprocessor system 6 measures the temperature inside the unit 2 of the drives 3 using a temperature sensor 17 on the bus measure alarms 18 and maintaining the temperature inside the battery blocks 2 within the specified limits by turning on or off using the climate unit 15 of the executive bodies 1 6 (dampers, heaters and fans). In the event of overheating or supercooling, the microprocessor system 6 provides the corresponding information via the serial multiplex communication channel 20 to an external computer. This information also contains the state of the drives (their state of charge) and the presence of emergency situations in the battery.
  • climate control unit 15 represents power amplifiers according to the number of executive bodies 16.
  • the equalizing device 4 in the claimed utility model for example, the voltage equalization device in the battery according to the utility model patent ⁇ > 37884, publ. 05/10/2004, or stress balancer according to the patent for utility model N ° 75797, publ. 08/20/2008, in which it is possible to control the amount of energy pumped between energy storage devices by the opening time of key elements.
  • the essence of the implemented technical solution consists essentially in the activation of a distributed microprocessor-based battery monitoring and control system to increase the efficiency of its traditional monitoring, balancing and protection functions related to maintaining an electronic archive of events, ensuring tolerance to the type of drives, by conducting an expert analysis on charge optimization, assessing the remaining life of drives and diagnosing them, as well as creating the temperature and noise-resistant operating conditions required for reliable battery operation.

Abstract

Устройство относится к области электротехники и может быть использовано при создании батарей электрических накопителей энергии различного типа: от Li-ионных аккумуляторов до ионисторов и химических источников тока для нужд транспорта и энергетики. Сущность устройства состоит в том, что каждый из батарейных модулей содержит блок последовательно соединенных накопителей, подключенных к электронному выравнивающему устройству и микропроцессорной системе контроля и управления с увеличенной производительностью и объемом памяти для выполнения функции эффективного управления внутримодульным активным выравниванием напряжения на единичных накопителях с помощью электронного выравнивающего устройства, управления межмодульным выравниванием напряжения на отдельных модулях с помощью дополнительного источника постоянного тока, подключаемого к шинам постоянного напряжения дозарядки от введенного в батарею преобразователя напряжения AC-DC или к выходным клеммам батареи, регулирования температурного режима накопителей с помощью датчика температуры и блока климатики с исполнительными органами в виде заслонок, ТЭНов и вентиляторов, а также оптимизации заряда накопителей с помощью экспертного анализа на основе статистических данных, полученных при эксплуатации батареи.

Description

БАТАРЕЯ ЭЛЕКТРИЧЕСКИХ НАКОПИТЕЛЕЙ ЭНЕРГИИ С
РАСПРЕДЕЛЕННОЙ АНАЛИТИЧЕСКОЙ СИСТЕМОЙ УПРАВЛЕНИЯ
Предлагаемое техническое решение относится к области электротехники и может быть использовано при создании батарей электрических накопителей энергии различной природы: от Li-ионных аккумуляторов до ионисторов и химических источников тока в составе автономных систем электроснабжения, в том числе на транспорте, в устройствах бесперебойного питания, в системах оперативного постоянного тока и сетевых накопителях электроэнергии.
Проблема обеспечения длительного срока службы высоковольтных аккумуляторных батарей, состоящих из последовательно соединенных аккумуляторов, является актуальной, поскольку даже небольшие различия в характеристиках отдельных аккумуляторов (единицы процентов от номинальных параметров), имеющие место при комплектовании батарей (по емкости, токам утечки, внутреннему сопротивлению и т.д.) в процессе эксплуатации приводят к значительному разбалансу в степени заряженности отдельных аккумуляторов (более десяти процентов). Следствием этого являются снижение уровня отдаваемой емкости батарей в нагрузку, перезаряд и недопустимо глубокий разряд отдельных элементов с возможностью их переполюсовки, разгерметизации и других необратимых и нежелательных явлений, что в итоге приводит к сокращению срока службы батарей. Одним из решений указанной проблемы является выравнивание (нивелирование) разбаланса напряжений между отдельными элементами батареи путем селективного шунтирования избыточного напряжения отдельных элементов с помощью резисторов методом пассивной балансировки [см. патент CN 201623235 фирмы SHANDONG SHAHGCUN ENERGY СО LTD, опубл. 1 1.03.2010 г., а также патент РФ М>2324263, опубл. 27.01.2008 г.].
Однако данное техническое решение энергетически не эффективно, так как приводит к непроизводительным потерям энергии, а также вызывает нежелательный перегрев всей батареи, так как выравнивающая электрическая цепь, как правило, локализована в корпусе батареи. Кроме того, скорость и энергия выравнивания ограничены количеством рассеиваемой при этом энергии.
Известна батарея электрических накопителей энергии, содержащая множество единичных элементов или модулей, соединенных в последовательную электрическую цепь, систему контроля и управления батареей, а также электронные блоки, обеспечивающее выравнивание напряжений на отдельных накопительных элементах, питание которых обеспечивается от дополнительного источника энергии [см. патент РФ N°2230418, опубл. 10.06.2004 г.].
Недостатком известной батареи является сложность ее эксплуатации из-за наличия внешнего источника энергии, требующего дополнительного обслуживания, а в случае использования стационарного источника энергии - потеря автономности (мобильности) батареи.
По совокупности сходных существенных признаков наиболее близкой к заявляемому решению является батарея электрических накопителей энергии, разделенная на модули, содержащие соединенные в последовательную электрическую цепь блоки единичных накопителей, электронное выравнивающее устройство, обеспечивающее выравнивание напряжений на отдельных накопителях модуля и подключенное к каждому накопителю модуля с помощью электрического жгута и через него к микропроцессорной системе контроля и управления, запитанной как и электронное выравнивающее устройство от накопителей данного модуля, а также дополнительной источник постоянного тока, использующийся в качестве устройства для заряда батарейного модуля. Кроме того, в силовой цепи батареи имеется коммутатор (реле или электронный ключ), обеспечивающий возможность ее отключения от устройства для заряда батареи или нагрузки, а также датчик тока, например, на эффекте Холла, выходной сигнал которого поступает в микропроцессорную систему контроля и управления, которая связана с такими же системами других модулей и с внешней ЭВМ через последовательный мультиплексный канал связи типа RS485 или CAN с гальванической развязкой [см. патент РФ Ка53818, опубл. 27.05.2006].
В известном устройстве осуществляется активное выравнивание напряжений на отдельных накопителях с целью продления ресурса всей батареи и защита каждого накопительного элемента от перезаряда, переразряда и перегрузки по току за счет измерения тока и напряжения на отдельном накопителе и автоматического отключения батареи от зарядного устройства или нагрузки при превышении заданных параметров.
Однако, известная батарея имеет следующие недостатки:
1. При питании микропроцессорной системы контроля и управления непосредственно от элементов батареи отсутствует гальваническая развязка между цепями управления и силовыми цепями, что не всегда является допустимым по условиям безопасности, электромагнитной совместимости и помехоустойчивости. 2. Отсутствует управление температурными условиями работы накопителей, что сужает допустимый температурный диапазон эксплуатации батареи и не обеспечивает защиту от перегрева накопителей.
3. Выравнивающее устройство не управляется от микропроцессорной системы контроля и управления по величине перекачиваемой между накопителями энергии и временным параметрам.
4. Источник постоянного тока в модуле не управляется от соответствующей микропроцессорной системы контроля и управления и отключается после заряда от модуля, что делает не возможным межмодульное выравнивание во всех режимах работы батареи.
5. Внутримодульное выравнивание в прототипе при хранении и разряде батареи не производится и оказывается возможным только при питании выравнивающего устройства и микропроцессорной системы контроля управления от дополнительного электрического накопителя.
6. Микропроцессорная система контроля и управления не решает задач ведения электронного архива событий, накопления статистических данных об элементах батареи и экспертного анализа с целью диагностирования, оценки остаточного ресурса батареи и оптимизации заряда в зависимости от состояния единичных накопителей и внешних условий, а также обеспечения толерантности к типу электрических накопителей, необходимой для использования батареи на транспорте и в различных областях энергетики, что требует специального выбора процессорных модулей по производительности и объему памяти.
Перед заявляемым устройством поставлена задача создания батареи электрических накопителей энергии с распределенной аналитической системой управления, лишенной перечисленных недостатков.
Технический результат заявляемого устройства состоит в активизации распределенной микропроцессорной системы контроля и управления батареи и возложении на нее не только задач эффективного управления процессами зарядки отдельных накопителей и внутри и межмодульного выравнивания напряжения, требующих проведения экспертного анализа на основе накопленных статистических данных, но и обеспечения требуемых для надежной эксплуатации батареи температурных и помехоустойчивых условий ее работы.
Поставленная задача решается тем, что предложена батарея электрических накопителей энергии с распределенной аналитической системой управления, разделенной на модули, содержащие блоки накопителей энергии из соединенных в последовательную электрическую цепь единичных накопителей, электронное выравнивающее устройство, обеспечивающее активное выравнивание напряжений на единичных накопителях модуля и подключенное к каждому накопителю модуля с помощью электрического жгута, который обеспечивает также подключение накопителей модуля к микропроцессорной системе контроля и управления работой накопителей в модуле. Электронное выравнивающее устройство и микропроцессорная система контроля и управления запитана от накопителей модуля. Батарея содержит также дополнительный источник постоянного тока, использующийся для дозарядки блока накопителей модуля. В силовой цепи батареи установлен коммутатор, выполненный в виде реле или электронного ключа с предохранителем, обеспечивающий возможность ее отключения от устройства заряда батареи или нагрузки, а также датчик тока в каждом модуле, выходной сигнал которого поступает в микропроцессорную систему контроля и управления, которая связана с такими же системами других модулей и с внешней ЭВМ посредством последовательного мультиплексного канала связи типа RS485 или CAN с гальванической развязкой.
Новым в предложенной батарее является то, что каждый модуль содержит датчик температуры, подключенный к микропроцессорной системе контроля и управления, которая подключена к блоку климатики с исполнительными органами в виде заслонок, ТЭНов и вентиляторов, источнику питания постоянного тока с гальванической развязкой от накопителей, электронному выравнивающему устройству и к дополнительному источнику постоянного тока, в качестве которого использован преобразователь напряжения DC-DC, подключенный к шинам постоянного напряжения дозарядки и к преобразователю напряжению AC-DC батареи, подключенному к внешней сети переменного тока через разъемное соединение. Шина положительного напряжения дозарядки модулей подключена к коммутатору батареи через диод, шина отрицательного напряжения дозарядки модулей соединена с клеммой «-» батареи, а процессорные модули микропроцессорной системы контроля и управления по производительности и объему памяти выбраны достаточными для выполнения экспертного анализа по оценке остаточного ресурса отдельных накопителей и оптимизации заряда на основе статистических данных, полученных в процессе эксплуатации батареи.
На фигуре представлена функциональная блок-схема заявленной батареи. Позициями на чертеже обозначены: 1 - модуль электрических накопителей энергии с системой управления; 2 - блок накопительной энергии; 3 - единичный накопитель энергии; 4 - электронное выравнивающее устройство; 5 - электрический жгут; 6 - микропроцессорная система контроля и управления; 7 - источник питания с гальванической развязкой; 8 - дополнительный источник постоянного тока типа DC-DC; 9, 10 - шины постоянного напряжения дозарядки; 1 1 - преобразователь напряжения AC-DC; 12 - коммутатор с предохранителем; 13 - диод; 14 - датчик тока; 15 - блок климатики; 16 - исполнительные органы блока климатики; 1 7 - датчик температуры; 1 8 - шина измерительных сигналов; 19 - шина сигналов управления; 20 - мультикомплексный канал последовательной связи с гальванической развязкой.
Заявленная батарея состоит из модуля 1 с распределенной аналитической системой управления, каждый из которых содержит сгруппированные в блоки 2 и соединенные в последовательную электрическую цепь накопители 3, электронное выравнивающее устройство 4, запитанное от накопителей 3 блока 2 и подключенное к каждому единичному накопителю 3 с помощью электрического жгута 5, который обеспечивает также подключение единичных накопителей 3 к микропроцессорной системе контроля управления 6, запитанной от накопителя 3 блока 2 через источник питания 7 с гальванической развязкой. Заявленная батарея содержит также в каждом модуле 1 источник постоянного тока 8 в виде преобразователя напряжения DC-DC, подключенного по выходу к блоку 2 накопителей 3, по входу к шинам 9, 10 постоянного напряжения дозарядки и к преобразователю напряжения AC-DC батареи, подключенному к внешней сети переменного тока через разъемное соединение (на чертеже не показано). Шина 9 напряжения дозарядки подключена к коммутатору 12 батареи, выполненному в виде реле или электронного ключа с предохранителем через диод 13, анод которого соединен с датчиком тока 14, установленным в силовой цепи модуля 1 , а шина 10 напряжения дозарядки подключена к клемме «-» батареи. Заявленная батарея содержит также в каждом модуле 1 блок климатики 15 с исполнительными органами 16, выполненными в виде заслонок, ТЭНов и вентиляторов, и датчик температуры 17, подключенный через шину 18 измерительных сигналов вместе с датчиком тока 14 к микропроцессорной системе контроля и управления 6, подключенной через шину 19 сигналов управления к входам управления электронного выравнивающего устройства 4, источника постоянного тока 8, блока климатики 15, и через последовательный мультиплексный канал связи 20 типа R.S 485 или CAN с гальванической развязкой к другим модулям 1 батареи и к внешней ЭВМ. Заявленная батарея работает следующим образом. В режиме заряда батареи от высоковольтного внешнего зарядного источника постоянного тока, подключенного к внешним клеммам батареи «+» и «-», либо при рекуперации энергии по цепи нагрузки, подключенной к этим же клеммам, зарядный ток величиной до нескольких сотен ампер проходит через все последовательно соединенные накопители 3 блоков 2 модулей 1 от клемм «+» до клемм «-», что распознается микропроцессорными системами контроля и управления 6 модулей 1 с помощью датчиков тока 14, выполненных, например, на основе эффекта Холла. Микропроцессорная система контроля и управления 6 измеряет ток блока 2 модуля 1 по величине и направлению, а также измеряет и постоянно контролирует величину напряжения на каждом накопителе 3 модуля 1 , подключенному к встроенному АЦП микропроцессорной системы контроля управления 6 с помощью электрического жгута 5. При превышении величины тока или напряжения на любом единичном накопителе 3 заданных значений, хранящихся в памяти микропроцессорной системы 6, последняя разрывает зарядную цепь батареи с помощью коммутатора 12. При этом электронные выравнивающее устройство 4 под управлением микропроцессорной системы 6 может осуществлять внутримодульное выравнивание напряжения в батарее, перераспределяя энергию между единичными накопителями 3 по результатам текущих измерений с учетом накопленных статистических данных. С помощью источников постоянного тока 8 под управлением микропроцессорной системы 6 может осуществляться также селективное межмодульное выравнивание напряжения в батарее за счет дозаряда «отставших» блоков 2 от внешней сети переменного тока через преобразователь AC-DC 1 1 токами до нескольких десятков ампер, при этом диод 13 находится в закрытом состоянии. После окончания заряда и дозаряда и отключения с помощью разъемного соединения внешних зарядных сетей постоянного и переменного тока, батарея или подключается к нагрузке через клеммы «U+» и «U-», и переходит в режим разряда, или никуда не подключается и находится в режиме хранения энергии. В режиме разряда батареи ток величиной до нескольких сотен ампер течет через батарею в противоположном заряду направлении, отдавая накопленную энергию в нагрузку. При этом продолжает работать электронное выравнивающее устройство 4 в каждом модуле 1 батареи, осуществляя селективное внутримодульное выравнивание напряжения по результатам измерений и непрерывный контроль за напряжениями на единичных накопителях с помощью микропроцессорной системы 6, которая при превышении разряда допустимых значений на любом из единичных накопителей разрывает силовую цепь нагрузки с помощью коммутатора 12. При этом диод 13 находится в открытом состоянии и шины 9 и 10 напряжения дозарядки оказываются подключенными к батарее, что дает возможность осуществлять межмодульное селективное выравнивание напряжений на блоках 2 накопителей 3 с помощью источников постоянного тока 8 путем их включения и отключения микропроцессорной системой 6 по результатам измерений и с учетом накопленных статистических данных. В режиме хранения энергии большой ток в силовой цепи батареи отсутствует. При этом может производиться как внутримодульное выравнивание с помощью электронного выравнивающего устройства 4, так и межмодульное выравнивание с помощью источников постоянного тока 8 за счет энергии всей батареи сравнительно небольшими токами (единицы и десятки ампер) под управлением микропроцессорной системы 6 с учетом статистической информации о накопителях модуля 1. В любом из режимов работы микропроцессорная система 6 осуществляет измерение температуры внутри блока 2 накопителей 3 с помощью датчика температуры 17 по шине измерительных сигналов 18 и поддержание температуры внутри батарейных блоков 2 в заданных пределах путем включения или отключения с помощью блока климатики 15 исполнительных органов 1 6 (заслонок, ТЭНов и вентиляторов). В случае перегрева или переохлаждения микропроцессорная система 6 выдает соответствующую информацию по последовательному мультиплексному каналу связи 20 во внешнюю ЭВМ. Эта информация содержит также состояние накопителей (степень их заряженности) и наличие аварийных ситуаций в батарее. Блок климатики 15 представляет собой усилители мощности по числу исполнительных органов 16. В качестве выравнивающего устройства 4 в заявленной полезной модели может использоваться, например, устройство выравнивания напряжения в батарее по патенту на полезную модель Νί>37884, опубл. 10.05.2004 г. или балансир напряжений по патенту на полезную модель N°75797, опубл. 20.08.2008 г., в которых имеется возможность управлять величиной перекачиваемой между накопителями энергии по времени открывания ключевых элементов.
Таким образом, суть реализованного технического решения заключается, по- существу, в активизации распределенной микропроцессорной системы контроля и управления батареи по повышению эффективности выполнения ее традиционных функций по мониторингу, балансировке и защите, связанных с ведением электронного архива событий, обеспечением толерантности к типу накопителей, проведением экспертного анализа по оптимизации заряда, оценки остаточного ресурса накопителей и их диагностированию, а также созданием требуемых для надежной эксплуатации батареи температурных и помехоустойчивых условий ее работы.

Claims

ФОРМУЛА
Батарея электрических накопителей энергии с распределенной аналитической системой управления, разделенная на модули, содержащие блоки из соединенных в последовательную электрическую цепь единичных накопителей, электронное выравнивающее устройство, обеспечивающее активное выравнивание напряжений на единичных накопителях модуля и подключенное к каждому накопителю модуля с помощью электрического жгута, который обеспечивает подключение накопителей модуля к микропроцессорной системе контроля и управления, которая также как и электронное выравнивающее устройство запитано от накопителей модуля, который содержит дополнительный источник постоянного тока, использующийся для дозарядки батарейного блока, в силовой цепи которого установлен датчик тока, выходной сигнал которого поступает в микропроцессорную систему контроля и управления, связанную с такими же системами других модулей и с внешней ЭВМ через гальванически развязанный последовательный мультиплексный канал связи, а в силовой цепи батареи установлен коммутатор, выполненный в виде реле или электронного ключа с предохранителем, обеспечивающий возможность ее отключения от внешних зарядного устройства или нагрузки, подключаемых к клеммам «+» и «-» батареи, отличающаяся тем, что каждый модуль содержит датчик температуры, подключенный к микропроцессорной системе контроля и управления, которая подключена к блоку климатики с исполнительными органами в виде заслонок, ТЭНов и вентиляторов, источнику питания с гальванической развязкой от батарейных накопителей, электронному выравнивающему устройству и дополнительному источнику постоянного тока, выполненному в виде преобразователя DC-DC, подключенного к шинам постоянного напряжения дозарядки модулей и к преобразователю напряжения AC-DC батареи, подключаемому к внешней сети переменного тока через разъемное соединение; шина положительного напряжения дозарядки модулей подключена к коммутатору батареи через диод, шина отрицательного напряжения дозарядки модулей соединена с клеммой «-» батареи, а процессорные модули микропроцессорной системы контроля и управления по производительности и объему памяти выбраны достаточными для выполнения экспертного анализа по оценке остаточного ресурса накопителей, их диагностики и оптимизации заряда на основе статистических данных, полученных при эксплуатации батареи.
PCT/RU2013/000597 2012-06-29 2013-07-11 Батарея электрических накопителей энергии с распределенной аналитической системой управления WO2014003607A1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2012127398 2012-06-29
RU2012127398 2012-06-29

Publications (1)

Publication Number Publication Date
WO2014003607A1 true WO2014003607A1 (ru) 2014-01-03

Family

ID=49783593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2013/000597 WO2014003607A1 (ru) 2012-06-29 2013-07-11 Батарея электрических накопителей энергии с распределенной аналитической системой управления

Country Status (1)

Country Link
WO (1) WO2014003607A1 (ru)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016165457A1 (zh) * 2015-09-23 2016-10-20 中兴通讯股份有限公司 一种充电器
CN107618376A (zh) * 2017-08-28 2018-01-23 长兴遥米新能源科技有限公司 一种风能锂电池自动均衡系统
CN109755676A (zh) * 2019-03-07 2019-05-14 福建易动力电子科技股份有限公司 一种蓄电池的均衡与加热集成系统
CN110474390A (zh) * 2019-08-06 2019-11-19 费县瑞昊机械制造有限公司 电池均衡装置
CN114079298A (zh) * 2020-08-10 2022-02-22 周锡卫 一种电池储能系统均衡控制及异常快速保护的安全bms系统
CN117347888A (zh) * 2023-12-05 2024-01-05 深圳市易检车服科技有限公司 电池均衡仪载荷测量方法、装置、计算机设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003346922A (ja) * 2002-05-28 2003-12-05 Mitsubishi Heavy Ind Ltd 蓄電装置の温度調整装置及びその方法並びに蓄電装置
RU53818U1 (ru) * 2005-02-14 2006-05-27 Александр Иванович Груздев Батарея электрических накопителей энергии
JP2007250484A (ja) * 2006-03-20 2007-09-27 Fujitsu Ten Ltd バッテリ温度調整装置
RU2313168C1 (ru) * 2005-04-04 2007-12-20 Хитачи Коки Ко., Лтд. Зарядное устройство для литий-ионной аккумуляторной батареи (варианты)
RU2399123C2 (ru) * 2006-03-06 2010-09-10 Абб Рисерч Лтд Контроллер температуры
EP2237361A1 (en) * 2008-10-08 2010-10-06 Makita Corporation Battery pack for power tool, and power tool

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003346922A (ja) * 2002-05-28 2003-12-05 Mitsubishi Heavy Ind Ltd 蓄電装置の温度調整装置及びその方法並びに蓄電装置
RU53818U1 (ru) * 2005-02-14 2006-05-27 Александр Иванович Груздев Батарея электрических накопителей энергии
RU2313168C1 (ru) * 2005-04-04 2007-12-20 Хитачи Коки Ко., Лтд. Зарядное устройство для литий-ионной аккумуляторной батареи (варианты)
RU2399123C2 (ru) * 2006-03-06 2010-09-10 Абб Рисерч Лтд Контроллер температуры
JP2007250484A (ja) * 2006-03-20 2007-09-27 Fujitsu Ten Ltd バッテリ温度調整装置
EP2237361A1 (en) * 2008-10-08 2010-10-06 Makita Corporation Battery pack for power tool, and power tool

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016165457A1 (zh) * 2015-09-23 2016-10-20 中兴通讯股份有限公司 一种充电器
CN106558904A (zh) * 2015-09-23 2017-04-05 中兴通讯股份有限公司 一种充电器
CN107618376A (zh) * 2017-08-28 2018-01-23 长兴遥米新能源科技有限公司 一种风能锂电池自动均衡系统
CN107618376B (zh) * 2017-08-28 2023-08-29 山东遥米新能源科技有限公司 一种风能锂电池自动均衡系统
CN109755676A (zh) * 2019-03-07 2019-05-14 福建易动力电子科技股份有限公司 一种蓄电池的均衡与加热集成系统
CN109755676B (zh) * 2019-03-07 2024-04-12 福建易动力电子科技股份有限公司 一种蓄电池的均衡与加热集成系统
CN110474390A (zh) * 2019-08-06 2019-11-19 费县瑞昊机械制造有限公司 电池均衡装置
CN114079298A (zh) * 2020-08-10 2022-02-22 周锡卫 一种电池储能系统均衡控制及异常快速保护的安全bms系统
CN117347888A (zh) * 2023-12-05 2024-01-05 深圳市易检车服科技有限公司 电池均衡仪载荷测量方法、装置、计算机设备及存储介质
CN117347888B (zh) * 2023-12-05 2024-02-13 深圳市易检车服科技有限公司 电池均衡仪载荷测量方法、装置、计算机设备及存储介质

Similar Documents

Publication Publication Date Title
EP3183791B1 (en) Electric storage system
JP6225986B2 (ja) 蓄電装置および蓄電装置の制御方法
CN103168406B (zh) 电池组、用于对电池组充电/放电的方法以及功耗装置
TWI573370B (zh) 車輛應用的高電壓蓄電池管理系統與方法
JP3196144U (ja) 電気エネルギーストレージバッテリの階層的制御システム
US20110234165A1 (en) Modular Charging System for Multi-Cell Series-Connected Battery Packs
WO2014003607A1 (ru) Батарея электрических накопителей энергии с распределенной аналитической системой управления
US20100174417A1 (en) Power supply system, and power supply control method and power supply control program employed in power supply system
KR102415123B1 (ko) 배터리 팩 및 이를 포함하는 에너지 저장 시스템
JP2012505628A (ja) 車両および他の大容量適用のためのLiイオン電池アレイ
CN111129619A (zh) 一种动力电池簇管理系统
RU53818U1 (ru) Батарея электрических накопителей энергии
JP5361594B2 (ja) リチウムイオン二次電池システムおよび管理装置への電力供給方法
RU121970U1 (ru) Батарея электрических накопителей энергии с распределенной аналитической системой управления
RU123251U1 (ru) Иерархическая система управления батареей электрических накопителей энергии
CN104882936B (zh) 一种通信储能电源系统
RU2518453C2 (ru) Иерархическая система управления батареей электрических накопителей энергии
JP2007166747A (ja) 組電池および組電池の充電方法
JP5366641B2 (ja) リチウムイオン組電池管理装置およびリチウムイオン組電池システム
RU2561826C2 (ru) Батарея электрических накопителей энергии с распределенной аналитической системой управления
JP6853566B2 (ja) 電池システム
KR20180126168A (ko) 에너지 저장 시스템의 안정화 및 효율적 관리를 위하여 배터리의 상태를 주기적으로 모니터링 및 제어하는 시스템
KR20200088524A (ko) 통합커넥터가 구비된 그리드 참여형 전기자동차 충전시스템
CN220492663U (zh) 一种电池单元、电池模块、电池簇和电池包
RU123604U1 (ru) Балансир напряжений для батареи электрических накопителей энергии

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13809377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC DATED 20.05.2015

122 Ep: pct application non-entry in european phase

Ref document number: 13809377

Country of ref document: EP

Kind code of ref document: A1