WO2014003223A1 - Pwm control apparatus for sequential motor start-up - Google Patents

Pwm control apparatus for sequential motor start-up Download PDF

Info

Publication number
WO2014003223A1
WO2014003223A1 PCT/KR2012/005184 KR2012005184W WO2014003223A1 WO 2014003223 A1 WO2014003223 A1 WO 2014003223A1 KR 2012005184 W KR2012005184 W KR 2012005184W WO 2014003223 A1 WO2014003223 A1 WO 2014003223A1
Authority
WO
WIPO (PCT)
Prior art keywords
slave
motor
control unit
signal
starting
Prior art date
Application number
PCT/KR2012/005184
Other languages
French (fr)
Korean (ko)
Inventor
최윤식
명기성
서성규
김상곤
Original Assignee
휴먼전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 휴먼전자 주식회사 filed Critical 휴먼전자 주식회사
Publication of WO2014003223A1 publication Critical patent/WO2014003223A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/42Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual single-phase induction motor
    • H02P1/423Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual single-phase induction motor by using means to limit the current in the main winding
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/42Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual single-phase induction motor
    • H02P1/44Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual single-phase induction motor by phase-splitting with a capacitor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/16Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using ac to ac converters without intermediate conversion to dc
    • H02P27/18Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using ac to ac converters without intermediate conversion to dc varying the frequency by omitting half waves

Definitions

  • the present invention relates to a sequential start PWM control apparatus for a motor for detecting and protecting abnormal operation of a device while starting and limiting a starting current during starting and driving of an electric motor used in an air conditioner or a refrigerator.
  • This inductive load consumes 5-10 times higher starting current than the rated current during start-up, which induces instantaneous voltage drop in the power system using the same switchboard, resulting in malfunction or failure of various electrical and electronic devices. May result.
  • the high starting current of the inductive load may result in the destruction of the motor itself and the decrease of the reserve ratio of the transformer in the switchboard, or in severe cases, may cause the transformer to fail.
  • the IEC 61000-3-3 international standard has been applied only to European countries, mainly in 230 V, 50 Hz electrical environments (EN 61000-3-3), but the adverse effects of momentary voltage fluctuations on the power system due to the activation of inductive loads are gradually increasing. Due to the growing global trend, recently, China (GB 17625-2), Japan (C61000-3-3), Australia / New Zealand (AS / NZS 61000-3-3), Korea (K 61000-3-3) It is adopted as a new electrical safety standard in many countries of the world. In Australia and New Zealand, in addition to limiting the voltage fluctuation allowance, the current value limit is also simultaneously implemented such as limiting the starting current of the inductive load to 45A or less in each region.
  • Such transient voltage fluctuation or limit of starting current is mainly required in loads using single-phase induction motors such as air conditioners, refrigerators, and vacuum cleaners.
  • resistive loads resistance or thermistors
  • the instantaneous voltage drop of the inductive load can be alleviated to some extent by the insertion of a low-cost resistive load, the relaxation rate is not high as the load capacity increases, and the ambient temperature is accompanied by high heat generation due to the characteristic of the resistive load. Continuous operation of inductive loads in high-temperature environments was not an ideal solution because its performance drastically degraded or even resistive loads were destroyed.
  • the present invention was devised to improve the above problems, and provides a sequential starting PWM control apparatus for an electric motor for instantaneous voltage drop and starting current attenuation, which can prevent the instantaneous voltage drop and the inrush current from flowing when the inductive load is started. Its purpose is to.
  • a sequential starting PWM control device of an electric motor for instantaneous voltage drop and starting current attenuation caused by inductive load starting is a control device for controlling an electric motor, comprising: a power supply unit supplying electric power to the electric motor, the power supply unit A current limiter which is connected in series with the main coil of the motor operated by the switch to perform the current attenuation function by switching on / off, and controls the current limiter to be switched on / off to start a plurality of inductive loads A plurality of subordinate control unit for limiting the incoming inrush current generated by the; And a main controller to control each of the plurality of subordinate control units to sequentially start the plurality of inductive loads in a time division multiple manner such that the plurality of inductive loads are not simultaneously started.
  • the main controller may control the plurality of slave controllers using power line communication.
  • the main controller may be configured to sequentially start the plurality of subordinate control units in a time division multiple access manner so that the plurality of subordinate control units are not simultaneously activated by receiving a start signal from the subordinate control unit.
  • the method may further include: setting a number of slave controllers, generating a synchronization indicator signal in which the slave controllers start sequentially, and receiving a start request from the slave controller according to the synchronization indicator signal; Including the step of sending a start response signal to start the slave control unit, characterized in that for starting the plurality of slave control units sequentially in a time division multiple access method.
  • the plurality of subordinate control units respectively receiving a synchronization indicator signal from the main control unit, transmitting a start request signal to the main control unit after the time set by the synchronization indicator signal, receiving the start response signal from the main control unit And controlling the inductive load to start up during the start time set by the synchronization indicator signal.
  • Figure 1a is a view showing a sequential start PWM control apparatus of the motor according to the present invention
  • Figure 1b is an enlarged view of portion A of Figure 1a.
  • FIG. 2 is a graph showing the voltage variation of the main coil when the above-mentioned PWM control is not used when the air conditioner compressor is started.
  • FIG. 3 is a graph illustrating the voltage variation of the main coil when the PWM control is used.
  • Figure 4 is a flow chart illustrating a control process of the sequential start PWM control apparatus of the motor according to the present invention.
  • FIG. 5 is a diagram illustrating a control relationship between a main controller and a slave controller of a sequential start PWM control apparatus of an electric motor according to the present invention.
  • FIG. 6 is a diagram illustrating the detailed protocol of FIG. 5.
  • FIG. 7A is a diagram illustrating the starting current characteristics of the air conditioner compressor when the TRIAC PWM module is not applied
  • FIG. 7B is a diagram illustrating the starting current characteristics of the air conditioner compressor when the TRIAC PWM module is applied.
  • FIG. 8 is a flowchart illustrating an operation sequence of the main control unit in the case where the slave control unit of N exists.
  • 9 is a diagram illustrating an operation flowchart of the slave controller.
  • Figure 1a is a view showing a sequential start PWM control apparatus of the motor according to the present invention
  • Figure 1b is an enlarged view of portion A of Figure 1a.
  • the control device 100 includes a power supply unit 110, an electric motor 120, a current limiting unit 131, a first relay RY1 141, and a second relay RY2 ( 142, the third relay (RY3) 143, the first signal detector 150, the second signal detector 160, the supporter 170, the main controller 181, the slave controller 183, and the display unit ( 185).
  • the power supply unit 110 supplies AC power.
  • One end of the electric motor 120 is connected to be supplied with power to the power supply unit 110 through the first relay 141, and is branched into the main coil 121 and the auxiliary coil 122.
  • the electric motor 120 will be described as driving a compressor.
  • the current limiting unit 131 is connected in series with the main coil 121 of the motor 120 and is controlled by the subordinate control unit 183 at the start so that the power attenuating function to the main coil 121 can be performed.
  • a triac (TRIAC) is described as a reference, and the triac is driven by pulse width modulation (PWM) control to reduce an instantaneous voltage drop or starting current of an inductive load. .
  • FIG. 2 is a graph showing the voltage variation of the main coil when the above-mentioned PWM control is not used when the air conditioner compressor is started.
  • FIG. 3 is a graph illustrating the voltage variation of the main coil when the PWM control is used.
  • the inductive load starts at the upper end of the supplied AC voltage, thereby causing a relatively large instantaneous voltage drop.
  • the phase of the supply voltage for power delivery can be controlled to start from zero, and the voltage supply of the initial starting current generation section can be gradually increased, thereby providing an instantaneous voltage. Soft start with strong but minimal generation of starting current is possible.
  • Figure 3 shows the voltage fluctuations of the main coil when starting the air conditioner compressor (rated drive power of the WHS-302BD model of Mandowinia Co., Ltd.) of rated power consumption 3kW applied TRIAC PWM module according to the present invention.
  • the measured results show that the voltage phase for starting the inductive load is not only zero-crossed, but the voltage supply of the starting current generation section is properly controlled by the PWM method.
  • the first relay 141 is installed on the power supply path between the power supply unit 110 and the motor 120 so as to be controlled by the subordinate control unit 183 to control the supply of power to the motor 120.
  • the second relay 142 is connected in parallel with the current limiting unit 131 so that the current control path of the main coil 121 can be controlled and handled by the slave control unit 183 when the motor 120 is started. .
  • the support unit 170 is connected to the auxiliary coil 123 of the motor 120 to support starting compensation and driving.
  • the support unit 170 is connected to the auxiliary coil 123 of the motor 120 to be driven as a driving support unit to support driving.
  • the driving condenser 171 is connected to the auxiliary coil 123 of the motor 120 in parallel with the condenser 171 and the driving capacitor 171 as a starting compensation support unit for compensating starting torque of the motor 120 at startup.
  • a third relay 143 connected in series with the start compensating capacitor 173 and the start compensating capacitor 173 connected in parallel with each other.
  • the first signal detector 150 is connected to the input / output terminal of the current limiting unit 131 to detect the voltage change signal of the main coil 121 of the motor 120 and provide it to the slave controller 183.
  • the first signal detector 150 is connected to the input / output terminal of the current limiter 121, that is, connected in parallel with the current limiter 131 to rectify the voltage change signal of the main coil 121 of the motor 120.
  • a rectifier element 151 for outputting and a first port coupler 153 for outputting a voltage output from the rectifier element 151 to the slave controller 183 are applied.
  • the second signal detector 160 is connected in parallel with the starting compensation capacitor 173 to provide the slave controller 183 with a voltage change signal of the auxiliary coil 123 of the motor 120.
  • a second port coupler 163 is also applied to the second signal detector 150.
  • the main controller 181 controls the slave control unit 183 to reduce the instantaneous voltage drop and the starting current rise width by a plurality of inductive loads, which will be described in detail later.
  • the display unit 185 is controlled by the slave controller 183 to display driving state information of the electric motor 120.
  • the slave control unit 183 performs a control function for the start of the motor 120 and the driving after the start, and the motor 120 from each voltage change signal provided from the first and second signal detection units 150 and 160. Determine the operation and abnormality, and receive the operation signal for the motor 120 to apply a pulse signal with the duty set for the current limiter 131 at the time of starting the motor 120 current limiter 131 Limits the inrush current by controlling the switching to on / off duty for on-drive ratio for the set period.
  • the duty value may be appropriately set in such a way that the current can be minimized without disturbing the starting of the motor 120.
  • the drive duty set by the slave control unit 183 may be set within a range capable of increasing the starting efficiency while limiting the inrush current by the current limiting unit 131, preferably set within a duty range of 30 to 50%. do.
  • the slave controller 183 first turns on the third relay 143 when the electric motor 120 is driven, and then turns on the first relay 141 after a predetermined time is delayed.
  • the discharge phenomenon of the driving capacitor 171 is eliminated and the overcurrent charged in the starting capacitor 171 during the operation of the first relay 141 is largely canceled by the auxiliary coil 123 of the electric motor 120,
  • cost increases are suppressed and structurally simple.
  • the size of the current and voltage of the main coil 121 and the auxiliary coil 123 varies depending on whether the rotor of the motor 120 is driven when the motor 120 is started and driven.
  • voltages at both ends of the current limiting unit 131 connected in series with the main coil 121 and voltages at both ends of the starting capacitor 173 connected in series with the auxiliary coil 123 are also varied.
  • the units 140 and 150 are responsible for detecting the changed signal and providing the changed signal to the slave controller 183.
  • the voltage change signal generated by the main coil 121 of the motor 120 is rectified by the rectifying element 151 connected to both ends of the current limiting unit 131, and then the subordinate control unit 183 through the first port coupler 153. Is provided.
  • the voltage change signal generated by the auxiliary coil 123 of the motor 120 is detected by the second signal detector 160 and provided to the slave controller 183.
  • the slave controller 183 compares the signals received through the first and second signal detectors 150 and 160 to determine whether the electric motor 120 is rotated, and if the rotation is detected as a result of the determination, the third By turning off the relay 143, the starting capacitor 173 is separated from the driving circuit.
  • the slave control unit 183 compares and determines the signals provided from the first and second signal detection units 150 and 160 to determine whether the motor 120 is operating.
  • the main coil 121 and the main coil 121 of the electric motor 120 using the first and second port coupler (153, 163) electrically isolated from each other
  • the rectifying element 151 is used to rectify the voltage change signal generated on the main coil 121 side for each half cycle of the commercial frequency and provide the slave control unit 183 with accurate control in a short time. It is possible to achieve cost reduction and miniaturization of equipment by quickly blocking the voltage rise of the capacitor 173 to prevent component damage due to the instantaneous voltage rise and enabling the use of the starting capacitor 173 having a low withstand voltage.
  • Each signal from the first and second signal detectors 150 and 160 is used by the slave controller 183 to detect a failure of the overall circuit during the start and drive sections of the device.
  • the signals from the first and second signal detectors 150 and 160 are all low during the first period until power is supplied to the slave controller 183 and the operation signal is input to the motor 120. If the output is normal, if the operating signal is input to the motor 120 and the low signal is output during the second interval until the third relay 143 is switched on, the output is normal, the third relay 143 After the first relay 141 is switched on and the high signal is all output during the third period after the operation is switched on, the third relay after the first relay 109 is operated to be switched on When the first signal detector 150 is high and the second signal detector 160 is low during the fourth period until the 135 is turned off, the third signal 135 is turned off. During the fifth period until the first relay 141 is turned off, the first signal detection unit 150 senses a high second signal. Unit 160 determines as normal if a low signal is output.
  • the slave control unit 183 determines that a failure occurs when a signal other than the normal signal for each section described above occurs and turns off the first and third relays 141 and 143 to cut off the power input to the motor 120. The additional failure of the device due to prevent in advance, and displays the failure information through the display unit 185.
  • the slave control unit 183 controls the power to the motor 120 is cut off when the failure is detected, when the motor 120 is stopped, the display unit 185 continues to display the failure state until the pressure balance of the refrigerant is maintained When the balance of pressure is set after a set time, for example, the motor 120 is attempted to start again.
  • step S111 when power is input through the power supply unit 110 (step S111), when power is applied to the slave controller 181, the device is initialized immediately (step S113), and the slave controller 181 detects a power supply voltage.
  • the display unit 185 indicates that the normal voltage is input, and checks whether an operation signal for driving the motor 120 is input from the main controller (not shown) (step S115).
  • the slave controller 181 determines whether the power supply voltage is normally input (step S117), and when it is determined that the voltage of the operable voltage region is not input, the power supply voltage can be operated without starting the motor 120. Wait until you are in the voltage range.
  • the operating voltage range is 187 to 276V at 50 Hz power, and 187 to 254 V at 60 Hz power.
  • step S117 If it is determined in step S117 that the power supply voltage is normal, the slave control unit 181 compares the signals from the first and second detection signal units 150 and 160 with each other as described above, so that the first relay 141 or It is determined whether the abnormal voltage has flowed into the circuit due to the failure of the second relay 142 (step S119). If it is determined in step S119 that an abnormal voltage has flowed into the circuit, the abnormal state information is displayed on the display unit 185. In contrast, if it is determined that the operation is normal in step S119, the third relay RY3 143 for connecting the starting capacitor 173 is operated to be switched on before the first relay 141, and then after several hundred ms, The relay RY1 141 is switched on (step S121). In this case, the charging current of the driving capacitor 171 does not occur until the first relay 141 operates so that the third relay 143 is not fused by the discharge current from the driving capacitor 171.
  • the current limiting unit 131 is switched on / off with a set duty to control the conduction current of the electric motor 120 to the main coil 121. In this way, the starting current is controlled (step S123).
  • the slave control unit 181 compares the signals output from the first and second detection signal units 150 and 160 with each other to determine whether the electric motor 120 is normally operated and detects whether or not a failure occurs (step S125). ). As a result of the determination, if a failure is detected, the first relay 141 is turned off to stop the motor 120, and the failure state is displayed on the display unit 185 (step S127), and a time example designated as the maximum starting time of the motor 120 is shown. For example, after 3 minutes have elapsed, the operation is returned to step S119.
  • the driving time of the electric motor 120 is determined before the time designated as the maximum driving time from the operation time of the first relay 141, it is determined as normal system operation.
  • step S125 If it is determined in step S125 that is normal, in order to disconnect the starting capacitor 173 from the circuit and to energize the current on the main coil 121 side of the motor 120 to the second relay 142, the slave control unit 181 is a third control unit.
  • the relay 143 is turned off, the second relay 142 is turned on, and the current limiting part 131 is turned off (step S129).
  • the slave controller 181 compares the signals input from the first and second signal detectors 150 and 160 to each other to compare the signals of the second and third relays 142 and 143 and the current limiter 131. After checking whether there is a failure and determining whether normal operation proceeds (step S131), if the result of the determination is a failure, the process after step 219 is performed through step S127, and when it is determined that it is operating normally, the motor 120 is continuously Detecting whether the stop signal is received from the main controller (step S133), and when the stop signal is detected, stopping the motor 120 (step S135), and detecting the inflow of the operation signal of the motor 120 (step S115). Return to.
  • a plurality of subordinate control units 183 inside a management area use communication with each other around the main control unit 181 in a central control manner. Is activated. This prevents a plurality of inductive loads from starting, thereby more efficiently improving the power quality and reducing the maximum power requirement, thereby ensuring energy saving and safety of the power grid.
  • a wired / wireless LAN Various types of communication methods, such as various types of serial communication, may be used.
  • the power line communication method is preferable in consideration of the communication distance, the communication application cost, the presence or absence of communication equipment and line facilities, and the configuration environment of the inductive load machine.
  • the slave controller 183 has a network configuration in the form of a bus around the main controller 181.
  • the sequential control network is composed of one main controller 181 (Master), which will act as an internal controller, and a plurality of subordinate controllers 183-1, 183-2, ..., 183-N for controlling the starting of a plurality of inductive loads. It consists of Slaves.
  • the sequential start algorithm uses time division multiple access (TDMA) method in the media access control (MAC) method in the communication field, when request loads are concentrated on power line communication. Collision to solve the problem that all the slave control unit 183 is not activated.
  • TDMA time division multiple access
  • MAC media access control
  • the sequential startup basically sends a request message that the slave controller 183 which controls the inductive load that is desired to be started is started by the main controller 181, and sends a corresponding reply message to the main controller 181. It is designed to start only when received from Detailed control methods will be described later.
  • the sequential start algorithm using the media access control method is a time division multiple access method as shown in FIG. 5, so that a collision does not occur using a device-specific identification number assigned to each slave control unit 183.
  • the sequential start method is a time division multiple access method as described above.
  • the slave control unit 183 makes a start request at a time zone assigned to the slave controller 181 based on the synchronization indicator signal generated by the main control unit 181, and responds accordingly. Start sequentially by receiving a signal.
  • the main control unit 181 transmits the synchronization indicator signals to all the slave control units 183-1, 183-2,... At a period determined according to the number N of the plurality of slave control units 183-1, 183-2, ..., 183-N. , 183-N), so that the slave control units 183-1, 183-2, ..., 183-N operate in synchronization.
  • the slave control unit 183-1, 183-2, ..., 183-N is prioritized by the identifier number set therein, and the starting request is made only in the time zone of the sequence corresponding to its identifier number as shown in FIG. can do.
  • the detailed protocol configuration regarding time setting is shown in FIG. As shown in FIG. 6, when the slave control unit 183 starts up, the slave control unit 183 must start up through the above-described time division sequential start control protocol.
  • the following describes a process and results of implementing, verifying and analyzing the instantaneous voltage drop and the starting current attenuation method by the sequential starting PWM control device of the motor according to the present invention and the sequential starting control method for preventing simultaneous starting.
  • FIG. 7A shows the starting current characteristics of the air conditioner compressor when the TRIAC PWM module is not applied.
  • the peak value larger than the effective load starting current of 88.99 Arms shown in the general load shown in Table 1 does not satisfy the international standard.
  • the TRIAC PWM module is applied as in the present invention, it can be seen that the effective starting current (37.46 Arms) and the peak value are attenuated and smoothly started, as shown in FIG. 7B and (Table 1).
  • TRIAC Model BTA41
  • STMicroelectronics having a rated current of 41 Arms
  • the flicker test item associated with the flicker voltage drop Pst (short term flicker value) Dc, (relative steady-state voltage change), Dmax (maximum relative voltage change) and D (t) (instant voltage change for more than 500 ms) provide sufficient reserve ratio for all items and satisfy international standard. You can check it. Voltech's PM3000A general purpose power analyzer and IEC Standard 555 reference impedance network were used to test the flicker, the international standard (IEC 61000-3-3). To measure this, Yokogawa's DL1740 digital oscilloscope connected to Tektronix's A621 AC current probe was used.
  • the main controller 181 uses power line communication to control the slave loads controlled by the slave control unit 183, and the power line communication has an Infrasys company having a communication speed of 9,600 bps. It is preferable to select the APLC-485MA power line communication module. The reason for choosing such an environment is that the sequential start control method can be applied even in a low speed communication environment.
  • the sequential control method was implemented using a microcontroller with an 8-bit processor according to the actual product environment.
  • the resources and communication environment are as follows.
  • the main control unit 181 and the subordinate control unit 183 are implemented and implemented, and the subordinate control unit 183 sets each unique identification number. It was designed to be.
  • FIG. 8 is a diagram illustrating an operation flowchart of the main controller 181 for the case where the slave control unit 183 of N exists.
  • the main controller 181 synchronizes all slave controllers 183 in the network, responds to a start request, and transmits a synchronization indicator signal at a predetermined time.
  • the main control unit 181 first sets the number of subordinate control units 183 to be controlled, generates and transmits a synchronization indicator signal for sequential start control (S211, S213). Upon receiving the synchronization indicator signal, the slave control unit 183 may operate the start request only in a time zone allocated by its unique identification number. When the main controller 181 receives the start request signal from the slave controller 183, the main controller 181 transmits a response signal corresponding thereto (S215). After a time period equal to the number of slave controllers 183 in the network, the main controller 181 generates and transmits a synchronization indicator signal again (S231).
  • the slave control unit 183 recognizes and stores the unique identification number set in the initialization process after powering on and initializes other necessary variables (S311).
  • the operation of the slave controller 183 starts in accordance with the synchronization indicator signal from the main controller 181 (S313).
  • the user After receiving the synchronization indicator signal (S321), the user waits until the time zone assigned by the identification number (S323).
  • the main control unit 181 receives the start request signal. Transfer to (S325).
  • a start signal is output and start operation is performed (S331 and S333). Otherwise, the above operation is repeatedly performed in the next synchronization indicator signal section (S335).
  • the inductive load is prevented from being instantaneously started by using the medium access control method.
  • the slave controller 183 normally started all of its own start times by assigning a unique identification number to all slave controllers 183 in the sequential start-up system. Was confirmed not to occur.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor And Converter Starters (AREA)

Abstract

The present invention relates to a PWM control apparatus for the sequential start-up of a motor, in which a motor is started and driven while limiting the starting current, and in which abnormal operations of a device are detected and the device is protected. The apparatus has the effect of greatly reducing the instantaneous voltage drop and the starting current and of stabilizing power quality in a distribution system through the adoption of a PWM sequential start-up control scheme which prevents a plurality of inductive loads from being instantly and simultaneously started.

Description

전동기의 순차기동 PWM 제어장치Sequential start PWM control device of motor
본 발명은 에어컨이나 냉장고 등에서 사용되는 전동기의 기동 및 구동시 기동전류를 제한하며 기동하면서 기기의 이상동작을 감지하여 보호하기 위한 전동기의 순차기동 PWM 제어장치에 관한 것이다.The present invention relates to a sequential start PWM control apparatus for a motor for detecting and protecting abnormal operation of a device while starting and limiting a starting current during starting and driving of an electric motor used in an air conditioner or a refrigerator.
최근 들어 혹서기를 중심으로 에어컨, 냉장고 등의 유도성 부하 사용의 급증으로 인해 전력공급에 차질이 발생하는 경우가 종종 발생하고 있다. Recently, there has been a frequent occurrence of disruption in power supply due to the surge in the use of inductive loads such as air conditioners and refrigerators.
통상적으로 유도성 부하가 교류전원에 연결될 때에는 서지전류(Surge Current) 혹은 기동전류(Inrush Current)가 발생한다. 정상적인 유도성 부하의 운전 상태에서는 유도성 부하에 연결된 전원의 전압과 전류의 위상차이가 90°를 이루게 되고, 이는 유도부하의 순간자속 변화율이 순간전압강하와 동시에 일어남으로 서지전류나 기동전류(향후 기동전류로 통칭함)를 동반하지 않는다. 하지만, 유도성 부하에 전원이 연결되지 않은 상태에서 급작스러운 전압변동이 발생하면 전압과 전류의 위상이 일치하게 됨으로써 부하 내 자속의 변화율이 순간적으로 커지게 되고 이는 곧 기동전류의 급상승으로 이어진다.In general, when an inductive load is connected to an AC power source, surge current or inrush current is generated. Under normal operating conditions of inductive loads, the phase difference between the voltage and current of the power source connected to the inductive load is 90 °. This is because the instantaneous flux change rate of the inductive load occurs at the same time as the instantaneous voltage drop. Collectively referred to as starting current). However, if a sudden voltage change occurs when a power source is not connected to an inductive load, the voltage and current phases coincide, and the rate of change of the magnetic flux in the load increases momentarily, which leads to a sudden rise in starting current.
이러한 유도성 부하는 통상 기동시 정격 전류의 5~10배 이상의 높은 기동전류를 소모하고, 이는 동일 배전반을 사용하는 전력계통에 순간적인 전압의 강하를 유도하여, 각종 전기, 전자기기의 오작동이나 고장을 초래할 수 있다. 또한, 유도성 부하의 높은 기동전류는 모터 자체의 파괴 및 배전반에서 변압기의 예비율 저하를 가져오거나, 심할 경우 변압기의 고장사고로 이어질 수 있다. This inductive load consumes 5-10 times higher starting current than the rated current during start-up, which induces instantaneous voltage drop in the power system using the same switchboard, resulting in malfunction or failure of various electrical and electronic devices. May result. In addition, the high starting current of the inductive load may result in the destruction of the motor itself and the decrease of the reserve ratio of the transformer in the switchboard, or in severe cases, may cause the transformer to fail.
이러한 유도성 부하의 기동특성이 전력계통에 미치는 영향을 최소화하기 위해 국제전기방법위원회(International Electrotechnical Commissi-on)에서는 1994년 전자기 적합성 표준의 일환으로 IEC 61000-3-3 규격을 제정하여 16A 이하의 정격전류를 가지는 전기, 전자 제품에 대해 순간전압변동 허용치를 제한하기 시작하였다. In order to minimize the effect of these inductive loads on the power system, the International Electrotechnical Commissi-on established the IEC 61000-3-3 standard as part of the electromagnetic compatibility standard in 1994, Limits of voltage transients have begun for electrical and electronic products with rated current.
IEC 61000-3-3 국제규격은 주로 230V, 50Hz 전기환경의 유럽 국가들에만 적용되어 왔으나(EN 61000-3-3), 유도성 부하들의 기동으로 인한 순간전압변동이 전력계통에 미치는 악영향이 점차 심각해지는 세계적 추세 때문에, 최근에는 중국(GB 17625-2), 일본(C61000-3-3), 호주/뉴질랜드(AS/NZS 61000-3-3 ), 한국(K 61000-3-3) 등의 세계 여러 나라에서 새로운 전기안전규격으로 채택되고 있다. 호주/뉴질랜드의 경우 순간전압변동 허용치를 제한하는 규격에 부가하여 지역별로 유도성 부하의 기동전류를 45A 이하로 제한하는 등의 전류치 제한도 동시에 실시되고 있다. The IEC 61000-3-3 international standard has been applied only to European countries, mainly in 230 V, 50 Hz electrical environments (EN 61000-3-3), but the adverse effects of momentary voltage fluctuations on the power system due to the activation of inductive loads are gradually increasing. Due to the growing global trend, recently, China (GB 17625-2), Japan (C61000-3-3), Australia / New Zealand (AS / NZS 61000-3-3), Korea (K 61000-3-3) It is adopted as a new electrical safety standard in many countries of the world. In Australia and New Zealand, in addition to limiting the voltage fluctuation allowance, the current value limit is also simultaneously implemented such as limiting the starting current of the inductive load to 45A or less in each region.
이러한 순간전압변동이나 기동전류의 제한은 주로 에어컨, 냉장고, 진공청소기 등의 단상 유도전동기를 사용하는 부하들에서 주로 필요로 하는데, 이를 해결하기 위한 방법으로는 기동코일에 저항성 부하(저항 혹은 써미스터)를 부하의 기동시에만 부가하여 기동전류 및 전압강하를 감소시키는 방법이 있다. Such transient voltage fluctuation or limit of starting current is mainly required in loads using single-phase induction motors such as air conditioners, refrigerators, and vacuum cleaners. As a way to solve this problem, resistive loads (resistance or thermistors) on the starting coils are solved. Is added only at the start of the load to reduce the starting current and voltage drop.
저비용의 저항성 부하의 삽입만으로 유도성 부하의 순간전압강하나 기동전류를 어느 정도 완화할 수는 있지만, 부하의 용량이 커짐에 따라 그 완화율이 높지 않으며, 저항성 부하의 특성상 높은 발열을 동반하므로 주변 온도가 높은 환경에서 유도성 부하를 연속하여 기동하면 그 성능이 급격하게 저하되거나, 심지어 저항성 부하가 파괴되기도 하므로 이상적인 해결책이 되지 못하였다. Although the instantaneous voltage drop of the inductive load can be alleviated to some extent by the insertion of a low-cost resistive load, the relaxation rate is not high as the load capacity increases, and the ambient temperature is accompanied by high heat generation due to the characteristic of the resistive load. Continuous operation of inductive loads in high-temperature environments was not an ideal solution because its performance drastically degraded or even resistive loads were destroyed.
본 발명은 상기와 같은 문제점을 개선하기 위하여 창안된 것으로서, 유도부하의 기동 시 순간전압강하 및 돌입전류의 유입을 방지할 수 있는 순간전압강하 및 기동전류 감쇄를 위한 전동기의 순차기동 PWM 제어장치을 제공하는데 그 목적이 있다.The present invention was devised to improve the above problems, and provides a sequential starting PWM control apparatus for an electric motor for instantaneous voltage drop and starting current attenuation, which can prevent the instantaneous voltage drop and the inrush current from flowing when the inductive load is started. Its purpose is to.
본 발명에 따른 유도성 부하 기동에 의하여 발생되는 순간전압강하 및 기동전류 감쇄를 위한 전동기의 순차기동 PWM 제어장치는, 전동기를 제어하는 제어장치에 있어서, 상기 전동기에 전력을 공급하는 전원부, 상기 전원부에 의해 작동되는 상기 전동기의 주코일에 직렬 연결되어 스위칭 온/오프에 의해 전류의 감쇄기능을 수행할 수 있도록 된 전류제한부, 상기 전류제한부를 스위칭 온/오프 되게 제어하여 다수의 유도성 부하 기동으로 인하여 발생되는 유입되는 돌입전류를 제한하는 다수의 종속제어부; 및 상기 다수의 유도성 부하가 동시에 기동되지 않도록 상기 다수의 종속제어부 각각이 시분할 다중 방식으로 상기 다수의 유도성 부하를 순차 기동하도록 제어하는 주제어부로 구성된 것을 특징으로 한다.A sequential starting PWM control device of an electric motor for instantaneous voltage drop and starting current attenuation caused by inductive load starting according to the present invention is a control device for controlling an electric motor, comprising: a power supply unit supplying electric power to the electric motor, the power supply unit A current limiter which is connected in series with the main coil of the motor operated by the switch to perform the current attenuation function by switching on / off, and controls the current limiter to be switched on / off to start a plurality of inductive loads A plurality of subordinate control unit for limiting the incoming inrush current generated by the; And a main controller to control each of the plurality of subordinate control units to sequentially start the plurality of inductive loads in a time division multiple manner such that the plurality of inductive loads are not simultaneously started.
또한, 상기 주제어부는, 전력선 통신을 이용하여 상기 다수의 종속제어부를 제어하는 것을 특징으로 한다.The main controller may control the plurality of slave controllers using power line communication.
또한, 상기 주제어부는, 상기 종속제어부로부터 기동을 요청신호를 받아 상기 다수의 종속제어부가 동시에 기동되지 않도록 상기 다수의 종속제어부가 시분할 다중 접속방식으로 순차 기동되도록 하는 것을 특징으로 한다.The main controller may be configured to sequentially start the plurality of subordinate control units in a time division multiple access manner so that the plurality of subordinate control units are not simultaneously activated by receiving a start signal from the subordinate control unit.
또한, 종속제어부들의 수를 설정하고 상기 종속제어부들이 순차로 기동할 수 있도록 상기 종속제어부의 기동순서를 정한 동기지표신호를 발생시키는 단계 및 상기 동기지표신호에 따라 상기 종속제어부로부터 기동요청을 받으면 상기 종속제어부로 기동하라는 기동응답신호를 보내는 단계를 포함하여 상기 다수의 종속제어부를 시분할 다중 접속방식으로 순차 기동하는 것을 특징으로 한다.The method may further include: setting a number of slave controllers, generating a synchronization indicator signal in which the slave controllers start sequentially, and receiving a start request from the slave controller according to the synchronization indicator signal; Including the step of sending a start response signal to start the slave control unit, characterized in that for starting the plurality of slave control units sequentially in a time division multiple access method.
또한, 상기 다수의 종속제어부는, 상기 주제어부로부터 각각 동기지표신호를 받는 단계, 상기 동기지표신호에서 설정된 시간 경과 후에 상기 주제어부로 기동요청신호를 송신하는 단계, 상기 주제어부로부터 기동응답신호를 수신하면 상기 동기지표신호에서 설정된 기동시간동안 상기 유도성 부하가 기동하도록 제어하는 단계를 포함하여 시분할 다중 접속방식으로 순차 기동하는 것을 특징으로 한다.In addition, the plurality of subordinate control units, respectively receiving a synchronization indicator signal from the main control unit, transmitting a start request signal to the main control unit after the time set by the synchronization indicator signal, receiving the start response signal from the main control unit And controlling the inductive load to start up during the start time set by the synchronization indicator signal.
상기와 같이 구성된 본 발명에 따르면, 배전반 내에서 네트워크를 형성하는 유도성 부하 사용의 증가로 야기되는 순간전압강하 및 기동전류의 급상승 문제를 최소화하기 위해, TRIAC을 이용한 PWM 제어방법을 사용함으로써 소프트 스위칭이 가능한 효과가 있다. According to the present invention configured as described above, soft switching by using a PWM control method using TRIAC in order to minimize the voltage drop and the sudden rise of the starting current caused by the increase in the use of the inductive load forming the network in the switchboard This has a possible effect.
또한, 다수의 유도성 부하를 순간적으로 동시에 기동하지 못하게 하는 순차기동제어방법을 적용함으로써, 순간전압강하와 기동전류를 크게 감쇄시켜, 최대전력소모량에 근거하여 부과되는 전력비용을 절감하거나, 유도성 부하 네트워크가 연결된 동일 배전계통의 전력품질을 안정시킬 수 있는 효과가 있다.In addition, by applying a sequential start control method that prevents a large number of inductive loads from starting simultaneously at the same time, it greatly reduces the instantaneous voltage drop and starting current, thereby reducing the power cost imposed on the maximum power consumption or inductive There is an effect that can stabilize the power quality of the same distribution system connected to the load network.
도 1a는 본 발명에 따른 전동기의 순차기동 PWM 제어장치를 도시한 도면이며, 도 1b는 도 1a의 A부분을 확대한 도면이다.Figure 1a is a view showing a sequential start PWM control apparatus of the motor according to the present invention, Figure 1b is an enlarged view of portion A of Figure 1a.
도 2는 에어컨 컴프레서의 기동 시 전술한 PWM 제어를 사용하지 않은 경우의 주코일의 전압변동을 도시한 그래프이며, 도 3은 PWM 제어를 사용한 경우의 주코일의 전압변동을 도시한 그래프이다.FIG. 2 is a graph showing the voltage variation of the main coil when the above-mentioned PWM control is not used when the air conditioner compressor is started. FIG. 3 is a graph illustrating the voltage variation of the main coil when the PWM control is used.
도 4는 본 발명에 따른 본 발명에 따른 전동기의 순차기동 PWM 제어장치의 제어과정을 도시한 순서도이다.Figure 4 is a flow chart illustrating a control process of the sequential start PWM control apparatus of the motor according to the present invention.
도 5는 본 발명에 따른 본 발명에 따른 전동기의 순차기동 PWM 제어장치의 주제어부와 종속제어부 간의 제어관계를 도시한 도면이다.5 is a diagram illustrating a control relationship between a main controller and a slave controller of a sequential start PWM control apparatus of an electric motor according to the present invention.
도 6은 도 5의 상세 프로토콜을 도시한 도면이다.FIG. 6 is a diagram illustrating the detailed protocol of FIG. 5.
도 7a는 TRIAC PWM 모듈이 적용되지 않은 경우, 에어컨 컴프레서의 기동전류 특성을 도시한 도면이며, 도 7b는 TRIAC PWM 모듈이 적용된 경우, 에어컨 컴프레서의 기동전류 특성을 도시한 도면이다.7A is a diagram illustrating the starting current characteristics of the air conditioner compressor when the TRIAC PWM module is not applied, and FIG. 7B is a diagram illustrating the starting current characteristics of the air conditioner compressor when the TRIAC PWM module is applied.
도 8은 N의 종속제어부가 존재하는 경우에 대한 주제어부의 동작순서도를 도시한 도면이다.8 is a flowchart illustrating an operation sequence of the main control unit in the case where the slave control unit of N exists.
도 9는 종속제어부에 대한 동작순서도를 도시한 도면이다.9 is a diagram illustrating an operation flowchart of the slave controller.
이하, 첨부된 도면을 참조하면서 본 발명의 바람직한 실시 예에 따른 전동기의 순차기동 PWM 제어장치을 더욱 상세하게 설명한다.Hereinafter, a sequential start PWM control apparatus of an electric motor according to an exemplary embodiment of the present invention will be described in detail with reference to the accompanying drawings.
도 1a는 본 발명에 따른 전동기의 순차기동 PWM 제어장치를 도시한 도면이며, 도 1b는 도 1a의 A부분을 확대한 도면이다.Figure 1a is a view showing a sequential start PWM control apparatus of the motor according to the present invention, Figure 1b is an enlarged view of portion A of Figure 1a.
도 1a를 참조하면, 본 발명에 따른 제어장치(100)는 전원부(110), 전동기(120), 전류제한부(131), 제1릴레이(RY1)(141), 제2릴레이(RY2)(142), 제3릴레이(RY3)(143), 제1신호 감지부(150), 제2신호 감지부(160), 지원부(170), 주제어부(181), 종속제어부(183) 및 표시부(185)를 구비한다.Referring to FIG. 1A, the control device 100 according to the present invention includes a power supply unit 110, an electric motor 120, a current limiting unit 131, a first relay RY1 141, and a second relay RY2 ( 142, the third relay (RY3) 143, the first signal detector 150, the second signal detector 160, the supporter 170, the main controller 181, the slave controller 183, and the display unit ( 185).
전원부(110)는 교류전력을 공급한다.The power supply unit 110 supplies AC power.
전동기(120)는 일단이 제1릴레이(141)를 통해 전원부(110)로 전력을 공급받을 수 있게 접속되어 있고, 주코일(121)과 보조코일(122)로 분기되어 있다. 본 발명에서는 설명의 편의상 상기 전동기(120)는 압축기를 구동하는 것으로 설명한다.One end of the electric motor 120 is connected to be supplied with power to the power supply unit 110 through the first relay 141, and is branched into the main coil 121 and the auxiliary coil 122. In the present invention, for convenience of description, the electric motor 120 will be described as driving a compressor.
전류제한부(131)는 전동기(120)의 주코일(121)과 직렬로 접속되어 기동시 종속제어부(183)에 제어되어 주코일(121)로의 전류감쇄기능을 수행할 수 있도록 전력용 반도체 소자가 사용될 수 있으며, 본 발명에서는 트라이악(TRIAC)을 기준으로 설명하며, 상기 트라이악은 유도성 부하의 순간전압강하나 기동전류 감소를 위하여 펄스폭변조(Pulse Width Modulation, PWM) 제어에 의하여 구동된다.The current limiting unit 131 is connected in series with the main coil 121 of the motor 120 and is controlled by the subordinate control unit 183 at the start so that the power attenuating function to the main coil 121 can be performed. In the present invention, a triac (TRIAC) is described as a reference, and the triac is driven by pulse width modulation (PWM) control to reduce an instantaneous voltage drop or starting current of an inductive load. .
이는 부하의 주파수보다 훨씬 빠른 전자 스위칭 소자를 이용하여 유도성 부하의 기동시 전력공급을 적절히 나누어서 공급할 수 있게 하는 소프트 스위칭이 가능한 방법로서, 수동소자만을 이용하는 저항성 부하의 부가 방식에 비해 주변 환경 영향에 따른 오작동 가능성이 감소한다. 또한, 전압과 전류의 위상을 동기화하여 순간전압강하와 기동전류를 효과적으로 감쇄시킬 수 있다.This is a soft switching method that enables the proper distribution of power supply when starting an inductive load by using an electronic switching element that is much faster than the frequency of the load. The likelihood of malfunctions is reduced. In addition, it is possible to effectively attenuate the instantaneous voltage drop and the starting current by synchronizing the phases of voltage and current.
도 2는 에어컨 컴프레서의 기동 시 전술한 PWM 제어를 사용하지 않은 경우의 주코일의 전압변동을 도시한 그래프이며, 도 3은 PWM 제어를 사용한 경우의 주코일의 전압변동을 도시한 그래프이다.FIG. 2 is a graph showing the voltage variation of the main coil when the above-mentioned PWM control is not used when the air conditioner compressor is started. FIG. 3 is a graph illustrating the voltage variation of the main coil when the PWM control is used.
상기 도 2에 도시한 바와 같이, 위상을 제어하지 않은 유도성 부하의 경우 공급된 교류 전압의 상단에서 유도성 부하의 작동이 시작되므로, 상대적으로 큰 순간전압강하를 유발하게 된다. As shown in FIG. 2, in the case of the inductive load not controlling the phase, the inductive load starts at the upper end of the supplied AC voltage, thereby causing a relatively large instantaneous voltage drop.
반면, 도 3에 도시한 바와 같이 PWM 방법을 적용한 경우, 전력전달을 위한 공급전압의 위상을 영점에서부터 시작하도록 제어할 수 있고, 초기 기동전류 발생구간의 전압 공급을 점진적으로 증가시킬 수 있어 순간전압강하나 기동전류의 발생을 최소화한 부드러운 기동(Soft start)이 가능해 진다. On the other hand, when the PWM method is applied as shown in FIG. 3, the phase of the supply voltage for power delivery can be controlled to start from zero, and the voltage supply of the initial starting current generation section can be gradually increased, thereby providing an instantaneous voltage. Soft start with strong but minimal generation of starting current is possible.
도 3은 본 발명에 따른 TRIAC PWM 모듈을 적용한 정격소비전력 3kW급의 에어컨 컴프레서(예시적으로 만도위니아(주)의 WHS- 302BD모델의 구동 특성을 나타낸다.)의 기동 시 주코일의 전압변동을 측정한 결과로 유도성 부하의 기동을 위한 전압위상이 영점교차(Zero Cross)될 뿐 아니라 기동전류 발생구간의 전압 공급이 PWM 방식으로 적절히 제어되고 있음을 보여준다. Figure 3 shows the voltage fluctuations of the main coil when starting the air conditioner compressor (rated drive power of the WHS-302BD model of Mandowinia Co., Ltd.) of rated power consumption 3kW applied TRIAC PWM module according to the present invention. The measured results show that the voltage phase for starting the inductive load is not only zero-crossed, but the voltage supply of the starting current generation section is properly controlled by the PWM method.
제1릴레이(141)는 종속제어부(183)에 제어되어 전동기(120)로의 전원 공급을 단속할 수 있도록 전원부(110)와 전동기(120) 사이의 전원 공급경로 상에 설치되어 있다.The first relay 141 is installed on the power supply path between the power supply unit 110 and the motor 120 so as to be controlled by the subordinate control unit 183 to control the supply of power to the motor 120.
제2릴레이(142)는 전동기(120)의 기동 완료후 운전시 주코일(121)의 전류패스경로를 종속제어부(183)에 제어되어 담당할 수 있도록 전류제한부(131)와 병렬접속되어 있다.The second relay 142 is connected in parallel with the current limiting unit 131 so that the current control path of the main coil 121 can be controlled and handled by the slave control unit 183 when the motor 120 is started. .
지원부(170)는 전동기(120)의 보조코일(123)에 연결되어 기동 보상 및 구동을 지원하도록 된 것으로 전동기(120)의 보조코일(123)에 직렬 연결되어 구동을 지원하기 위한 구동지원부로서 구동콘덴서(171)와, 구동콘덴서(171)와 병렬이 되게 전동기(120)의 보조코일(123)에 연결되어 기동시 전동기(120)의 기동토크를 보상하기 위한 기동보상 지원부로서 구동 콘덴서(171)와 병렬 연결된 기동보상용 콘덴터(173) 및 기동 보상용 콘덴서(173)와 직렬연결된 제3릴레이(143)로 되어 있다.The support unit 170 is connected to the auxiliary coil 123 of the motor 120 to support starting compensation and driving. The support unit 170 is connected to the auxiliary coil 123 of the motor 120 to be driven as a driving support unit to support driving. The driving condenser 171 is connected to the auxiliary coil 123 of the motor 120 in parallel with the condenser 171 and the driving capacitor 171 as a starting compensation support unit for compensating starting torque of the motor 120 at startup. And a third relay 143 connected in series with the start compensating capacitor 173 and the start compensating capacitor 173 connected in parallel with each other.
제1신호 감지부(150)는 전류제한부(131)의 입출력단에 연결되어 전동기(120)의 주코일(121)의 전압변동신호를 검출하여 종속제어부(183)에 제공한다.The first signal detector 150 is connected to the input / output terminal of the current limiting unit 131 to detect the voltage change signal of the main coil 121 of the motor 120 and provide it to the slave controller 183.
제1신호감지부(150)는 전류제한부(121)의 입출력단에 연결되어 즉, 전류 제한부(131)와 병렬 연결되어 전동기(120)의 주코일(121)의 전압변동신호를 정류하여 출력하기 위한 정류소자(151)와, 정류소자(151)로부터 출력되는 전압을 종속제어부(183)에 출력하기 위한 제1포터커플러(153)가 적용되었다.The first signal detector 150 is connected to the input / output terminal of the current limiter 121, that is, connected in parallel with the current limiter 131 to rectify the voltage change signal of the main coil 121 of the motor 120. A rectifier element 151 for outputting and a first port coupler 153 for outputting a voltage output from the rectifier element 151 to the slave controller 183 are applied.
정류소자(151)는 브릿지 다이오드가 적용되었다.As the rectifier 151, a bridge diode is applied.
제2신호 감지부(160)는 기동보상용 콘덴서(173)와 병렬로 연결되어 전동기(120)의 보조코일(123)의 전압변동신호를 종속제어부(183)에 제공한다.The second signal detector 160 is connected in parallel with the starting compensation capacitor 173 to provide the slave controller 183 with a voltage change signal of the auxiliary coil 123 of the motor 120.
제2신호감지부(150)도 제2포터커플러(163)이 적용되었다.A second port coupler 163 is also applied to the second signal detector 150.
주제어부(181)는 다수의 유도성 부하에 의하여 순간적으로 순간전압강하 및 기동전류상승 폭을 감소시키기 위하여 종속제어부(183)를 제어하는 것으로 상세한 작용에 대하여는 후술한다.The main controller 181 controls the slave control unit 183 to reduce the instantaneous voltage drop and the starting current rise width by a plurality of inductive loads, which will be described in detail later.
표시부(185)는 종속제어부(183)에 제어되어 전동기(120)의 구동상태정보를 표시한다.The display unit 185 is controlled by the slave controller 183 to display driving state information of the electric motor 120.
종속제어부(183)는 전동기(120)의 기동 및 기동 이후의 구동에 대한 제어기능을 수행함과 아울러 제1 및 제2신호감지부(150)(160)로부터 제공되는 각 전압변동 신호로부터 전동기(120)의 작동 및 이상유무를 판단하고, 전동기(120)에 대한 동작신호를 수신하여 전동기(120)의 기동시 전류제한부(131)에 대해 설정된 듀티로 펄스신호를 인가하여 전류제한부(131)가 설정된 주기동안 온구동비인 듀티로 스위칭 온/오프 되게 제어하여 돌입전류를 제한한다.The slave control unit 183 performs a control function for the start of the motor 120 and the driving after the start, and the motor 120 from each voltage change signal provided from the first and second signal detection units 150 and 160. Determine the operation and abnormality, and receive the operation signal for the motor 120 to apply a pulse signal with the duty set for the current limiter 131 at the time of starting the motor 120 current limiter 131 Limits the inrush current by controlling the switching to on / off duty for on-drive ratio for the set period.
여기서, 설정된 튜티값이 증가할수록 전류제한부(131)를 통해 흐르는 전류는 증가하고, 반대로 듀티값이 감소할 수록 전류는 감소하게 된다.Here, as the set duty value increases, the current flowing through the current limiting unit 131 increases. On the contrary, as the duty value decreases, the current decreases.
바람직하게는 듀티값은 전동기(120)의 기동에 지장이 없으면서 전류를 최소화 할 수 있는 정도에서 적절하게 설정하면 된다.Preferably, the duty value may be appropriately set in such a way that the current can be minimized without disturbing the starting of the motor 120.
여기서 종속제어부(183)에 의해 설정되는 구동튜티는 전류 제한부(131)에 의한 돌입전류를 제한하면서 기동 효율을 높일 수 있는 범위에서 설정되면 되고 바람직하게는 30 내지 50%의 듀티범위내에서 설정한다.Here, the drive duty set by the slave control unit 183 may be set within a range capable of increasing the starting efficiency while limiting the inrush current by the current limiting unit 131, preferably set within a duty range of 30 to 50%. do.
한편, 종속제어부(183)는 전동기(120)의 구동시 제3릴레이(143)를 먼저 온시키고, 일정 시간이 지연된 다음 제1릴레이(141)를 온시킨다. 이 경우 구동 콘덴서(171)의 방전현상이 없어지고, 제1릴레이(141)의 동작시 기동콘덴서(171)에 충전되는 과전류가 전동기(120)의 보조코일(123)에 의해 크게 상쇄되기 때문에, 기존과 같은 NTC 저항소자 또는 고정소자의 사용을 없게 하여 원가 상승이 억제되고 구조적으로 간단해 진다.Meanwhile, the slave controller 183 first turns on the third relay 143 when the electric motor 120 is driven, and then turns on the first relay 141 after a predetermined time is delayed. In this case, since the discharge phenomenon of the driving capacitor 171 is eliminated and the overcurrent charged in the starting capacitor 171 during the operation of the first relay 141 is largely canceled by the auxiliary coil 123 of the electric motor 120, By eliminating the use of conventional NTC resistors or fixed devices, cost increases are suppressed and structurally simple.
또한, 전동기(120)의 기동 및 구동시 전동기(120) 회전자의 구동여부에 따라 주코일(121) 및 보조코일(123)의 전류와 전압의 크기가 변동된다. 이와 동시에 주코일(121)과 직렬로 연결된 전류제한부(131)의 양단 전압과 보조코일(123)에 직렬로 연결된 기동 콘덴서(173)의 양단의 전압도 변동되는데, 제1 및 제2신호감지부(140,150)는 그 변동되는 신호를 감지하여 종속제어부(183)에 제공하는 기능을 담당한다. In addition, the size of the current and voltage of the main coil 121 and the auxiliary coil 123 varies depending on whether the rotor of the motor 120 is driven when the motor 120 is started and driven. At the same time, voltages at both ends of the current limiting unit 131 connected in series with the main coil 121 and voltages at both ends of the starting capacitor 173 connected in series with the auxiliary coil 123 are also varied. The units 140 and 150 are responsible for detecting the changed signal and providing the changed signal to the slave controller 183.
전동기(120)의 주코일(121)에서 발생되는 전압변동신호는 전류제한부(131)의 양단에 연결된 정류소자(151)에서 정류된 후 제1포터커플러(153)를 통해서 종속제어부(183)에 제공된다. The voltage change signal generated by the main coil 121 of the motor 120 is rectified by the rectifying element 151 connected to both ends of the current limiting unit 131, and then the subordinate control unit 183 through the first port coupler 153. Is provided.
전동기(120)의 보조코일(123)에서 발생되는 전압변동신호는 제2신호감지부(160)가 감지하여 종속제어부(183)에 제공된다. The voltage change signal generated by the auxiliary coil 123 of the motor 120 is detected by the second signal detector 160 and provided to the slave controller 183.
종속제어부(183)는 제1 및 제2 신호 감지부(150)(160)를 통해 수신된 신호들을 상호 비교하여 전동기(120)의 회전유무를 판단하고, 판단결과 회전이 감지되면, 즉시 제3릴레이(143)를 오프 시킴으로써 기동콘덴서(173)를 구동회로로부터 분리시킨다.The slave controller 183 compares the signals received through the first and second signal detectors 150 and 160 to determine whether the electric motor 120 is rotated, and if the rotation is detected as a result of the determination, the third By turning off the relay 143, the starting capacitor 173 is separated from the driving circuit.
또한 종속제어부(183)는 제1 및 제2신호감지부(150)(160)로부터 제공되는 각 신호들을 비교 판단하여 전동기(120)의 동작유무를 판단한다.In addition, the slave control unit 183 compares and determines the signals provided from the first and second signal detection units 150 and 160 to determine whether the motor 120 is operating.
전동기(120)의 동작유무를 판단하는데 있어서, 1차와 2차단이 전기적으로 서로 분리된 제1 및 제2 포터커플러(153)(163)를 사용하여 전동기(120)의 주코일(121)과 보조코일(123) 측에서 발생되는 전압변동신호를 종속제어부(183)에 제공하게 함으로써, 회로의 안정성이 확보된다. 또한 정류소자(151)를 사용하여 상용주파수 반사이클 마다 주코일(121) 측에서 발생되는 전압변동신호를 정류하여 종속제어부(183)에 제공하게 함으로써, 짧은 시간안에 정확한 제어를 가능하게 하여, 기동 콘덴서(173)의 전압 상승을 신속히 차단하여 순간전압 상승에 의한 부품손상을 방지하고, 내전압이 낮은 기동콘덴서(173)의 사용을 가능하게 함으로써 원가 절감 및 기기의 소형화를 달성할 수 있다.In determining the operation of the motor 120, the main coil 121 and the main coil 121 of the electric motor 120 using the first and second port coupler (153, 163) electrically isolated from each other By providing the slave control unit 183 with the voltage change signal generated at the auxiliary coil 123 side, the stability of the circuit is secured. In addition, the rectifying element 151 is used to rectify the voltage change signal generated on the main coil 121 side for each half cycle of the commercial frequency and provide the slave control unit 183 with accurate control in a short time. It is possible to achieve cost reduction and miniaturization of equipment by quickly blocking the voltage rise of the capacitor 173 to prevent component damage due to the instantaneous voltage rise and enabling the use of the starting capacitor 173 having a low withstand voltage.
제1 및 제2신호감지부(150)(160)로부터의 각 신호는 종속제어부(183)에 의해 기기의 기동구간과 구동구간 동안 전반적인 회로의 고장을 감지하는데 이용된다.Each signal from the first and second signal detectors 150 and 160 is used by the slave controller 183 to detect a failure of the overall circuit during the start and drive sections of the device.
즉, 제1 및 제2신호감지부(150)(160)로부터의 신호가 종속제어부(183)에 전원이 투입되고 전동기(120)에 동작신호가 입력되기까지의 제1구간 동안 모두 로우 신호가 출력되면 정상이고, 전동기(120)에 동작신호가 입력되고 제3릴레이(143)가 스위치 온되게 동작한 이후까지의 제2구간 동안에도 모두 로우 신호가 출력되면 정상이고, 제3릴레이(143)가 스위치 온되게 동작한 후 제1릴레이(141)가 스위치 온되게 동작한 이후의 제3구간 동안에는 모두 하이신호가 출력되면 정상이고, 제1릴레이(109)가 스위치 온되게 동작된 이후 제3릴레이(135)가 오프될 때까지의 제4구간동안 제1신호감지부(150)는 하이, 제2신호감지부(160)는 로우 신호가 출력되면 정상이고, 제3릴레이(135)가 오프되고 제1릴레이(141)가 오프될 까지의 제5구간동안 모두 제1신호감지부(150)는 하이 제2신호감지부(160)는 로우 신호가 출력되면 정상으로 판단한다.That is, the signals from the first and second signal detectors 150 and 160 are all low during the first period until power is supplied to the slave controller 183 and the operation signal is input to the motor 120. If the output is normal, if the operating signal is input to the motor 120 and the low signal is output during the second interval until the third relay 143 is switched on, the output is normal, the third relay 143 After the first relay 141 is switched on and the high signal is all output during the third period after the operation is switched on, the third relay after the first relay 109 is operated to be switched on When the first signal detector 150 is high and the second signal detector 160 is low during the fourth period until the 135 is turned off, the third signal 135 is turned off. During the fifth period until the first relay 141 is turned off, the first signal detection unit 150 senses a high second signal. Unit 160 determines as normal if a low signal is output.
종속제어부(183)는 위에서 설명된 구간별 정상신호 이외의 신호가 발생되면 고장으로 판단하여 제1 및 제3릴레이(141)(143)를 오프 시켜 전동기(120)로의 전원입력을 차단함으로써 고장으로 인한 기기의 추가 고장을 미연에 방지하고, 표시부(185)를 통해 고장정보를 표시한다.The slave control unit 183 determines that a failure occurs when a signal other than the normal signal for each section described above occurs and turns off the first and third relays 141 and 143 to cut off the power input to the motor 120. The additional failure of the device due to prevent in advance, and displays the failure information through the display unit 185.
한편, 종속제어부(183)는 고장 감지시 전동기(120)로의 전원이 차단되게 제어하여 전동기(120)가 정지되면, 냉매의 압평형이 유지될 때까지 표시부(185)는 고장상태를 계속 표시하며, 설정된 시간 예를 들면 수분 후 압평형이 이루어질 때 다시 전동기(120)의 기동을 시도하게 된다. On the other hand, the slave control unit 183 controls the power to the motor 120 is cut off when the failure is detected, when the motor 120 is stopped, the display unit 185 continues to display the failure state until the pressure balance of the refrigerant is maintained When the balance of pressure is set after a set time, for example, the motor 120 is attempted to start again.
다음은 전술한 제어장치의 제어과정을 도 4를 참조하여 설명한다.Next, a control process of the above-described control apparatus will be described with reference to FIG. 4.
먼저, 전원부(110)를 통하여 전원이 입력되어(단계 S111), 종속제어부(181)에 전원이 인가되면 바로 기기의 초기화가 이루어지고(단계 S113), 종속제어부(181)는 전원전압이 감지되면 표시부(185)를 통해 정상 전압이 입력되었음을 표시하고, 전동기(120)를 구동하라는 동작신호가 메인 제어기(미도시)로부터 입력되는지를 체크한다(단계 S115).First, when power is input through the power supply unit 110 (step S111), when power is applied to the slave controller 181, the device is initialized immediately (step S113), and the slave controller 181 detects a power supply voltage. The display unit 185 indicates that the normal voltage is input, and checks whether an operation signal for driving the motor 120 is input from the main controller (not shown) (step S115).
또한, 종속제어부(181)는 전원전압이 정상으로 투입되었는지를 판단하고(단계 S117), 판단결과 운전가능 전압영역의 전압이 투입되지 않았다고 판단되면 전동기(120)를 기동하지 않고 전원전압이 운전가능전압영역에 있을 때까지 대기한다. 여기서, 운전가능전압영역은 50Hz 전원에서 187 내지 276V이고, 60Hz 전원에서는 187 내지 254V가 적용될 수 있다.In addition, the slave controller 181 determines whether the power supply voltage is normally input (step S117), and when it is determined that the voltage of the operable voltage region is not input, the power supply voltage can be operated without starting the motor 120. Wait until you are in the voltage range. Herein, the operating voltage range is 187 to 276V at 50 Hz power, and 187 to 254 V at 60 Hz power.
단계 S117에서 전원 전압이 정상으로 판단되면, 종속제어부(181)는 앞서 설명된 것 처럼 제1 및 제2감지신호부(150)(160)로부터의 신호를 상호 비교하여 제1릴레이(141) 또는 제2릴레이(142)의 고장 발생으로 회로 내로 이상전압이 유입되었는지에 대한 정상여부를 판단한다(단계 S119). 단계 S119에서 회로내로 이상전압이 유입되었음이 판단되면 표시부(185)에 이상 상태정보를 표시한다. 이와는 다르게 단계 S119에서 정상으로 판단되면 기동용 콘덴서(173)를 연결하기 위한 제3릴레이(RY3)(143)를 제1릴레이(141)보다 먼저 스위치온되게 동작시킨 다음 수백 ms 정도 경과 후에 제1릴레이(RY1)(141)를 스위치 온시킨다(단계 S121). 이 경우 구동 콘덴서(171)의 충전전류가 제1릴레이(141)가 동작할 때까지 발생하지 않음으로서 구동 콘덴서(171)로부터의 방전전류에 의한 제3릴레이(143)의 융착이 없게 된다.If it is determined in step S117 that the power supply voltage is normal, the slave control unit 181 compares the signals from the first and second detection signal units 150 and 160 with each other as described above, so that the first relay 141 or It is determined whether the abnormal voltage has flowed into the circuit due to the failure of the second relay 142 (step S119). If it is determined in step S119 that an abnormal voltage has flowed into the circuit, the abnormal state information is displayed on the display unit 185. In contrast, if it is determined that the operation is normal in step S119, the third relay RY3 143 for connecting the starting capacitor 173 is operated to be switched on before the first relay 141, and then after several hundred ms, The relay RY1 141 is switched on (step S121). In this case, the charging current of the driving capacitor 171 does not occur until the first relay 141 operates so that the third relay 143 is not fused by the discharge current from the driving capacitor 171.
이후, 제1릴레이(141)가 동작 즉, 온(on)되는 시점에서 설정된 듀티로 전류제한부(131)를 스위칭 온/오프 제어하여 전동기(120)의 주코일(121)로의 도통 전류를 제어함으로써 기동전류를 제어한다(단계 S123).Thereafter, when the first relay 141 is operated, that is, turned on, the current limiting unit 131 is switched on / off with a set duty to control the conduction current of the electric motor 120 to the main coil 121. In this way, the starting current is controlled (step S123).
다음은 종속제어부(181)가 제1 및 제2감지신호부(150)(160)에서 출력되는 각 신호를 상호 비교하여 전동기(120)의 정상 가동여부를 판단하여 고장여부를 검출한다(단계 S125). 판단결과 고장이 검출되면 제1릴레이(141)를 오프 하여 전동기(120)를 정지시키고 표시부(185)에 그 고장 상태를 표시하며(단계 S127), 전동기(120)의 최대기동시간으로 지정된 시간 예를 들면 3분 경과 후에 재실행을 하여 단계 S119로 복귀한다. 여기서, 전동기(120)의 구동시점이 제1릴레이(141)의 동작시점으로부터 최대구동시간으로 지정된 시간 이전에 결정되면 정상적인 시스템 운전으로 판단한다.Next, the slave control unit 181 compares the signals output from the first and second detection signal units 150 and 160 with each other to determine whether the electric motor 120 is normally operated and detects whether or not a failure occurs (step S125). ). As a result of the determination, if a failure is detected, the first relay 141 is turned off to stop the motor 120, and the failure state is displayed on the display unit 185 (step S127), and a time example designated as the maximum starting time of the motor 120 is shown. For example, after 3 minutes have elapsed, the operation is returned to step S119. Here, when the driving time of the electric motor 120 is determined before the time designated as the maximum driving time from the operation time of the first relay 141, it is determined as normal system operation.
단계 S125에서 정상으로 판단되면 기동 콘덴서(173)를 회로로부터 분리시키고 전동기(120)의 주코일(121) 측의 전류를 제2릴레이(142)로 통전시키기 위해, 종속제어부(181)는 제3릴레이(143)를 오프 시키고 제2릴레이(142)는 온 시키며 전류제한부(131)를 오프 시킨다(단계 S129).If it is determined in step S125 that is normal, in order to disconnect the starting capacitor 173 from the circuit and to energize the current on the main coil 121 side of the motor 120 to the second relay 142, the slave control unit 181 is a third control unit. The relay 143 is turned off, the second relay 142 is turned on, and the current limiting part 131 is turned off (step S129).
이후, 종속제어부(181)는 제1 및 제2신호감지부(150)(160)로부터 입력되는 신호를 상호 비교하여 제2 및 제3릴레이(142)(143) 및 전류제한부(131)의 고장유무를 확인하고 정상적인 운전이 진행되는지를 판단하여(단계 S131), 판단결과 고장이면 단계 S127을 거쳐 단계219 이후의 과정을 수행하게 하고, 정상적으로 동작하고 있음을 판단하면 지속적으로 전동기(120)의 정지신호가 메인 제어기로부터 수신되는지를 감지하고(단계 S133), 정지신호가 감지되면 전동기(120)를 정지시키고(단계 S135), 전동기(120)의 동작신호의 유입을 감지하는 단계(단계 S115)로 복귀한다.Subsequently, the slave controller 181 compares the signals input from the first and second signal detectors 150 and 160 to each other to compare the signals of the second and third relays 142 and 143 and the current limiter 131. After checking whether there is a failure and determining whether normal operation proceeds (step S131), if the result of the determination is a failure, the process after step 219 is performed through step S127, and when it is determined that it is operating normally, the motor 120 is continuously Detecting whether the stop signal is received from the main controller (step S133), and when the stop signal is detected, stopping the motor 120 (step S135), and detecting the inflow of the operation signal of the motor 120 (step S115). Return to.
다음은 주제어부(181) 및 종속제어부(183)의 제어작용에 대하여 설명한다. Next, the control operation of the main controller 181 and the slave control unit 183 will be described.
유도성 부하에 의한 전력사용이 집중되는 시간대나 정전 후 전력의 일시 복귀 등과 같은 특수한 상황의 경우, PWM 방식으로 제어된 유도성 부하들이라 할지라도 동시 기동시에는, 배전반에 순간적으로 높은 전압강하 및 기동전류 상승 폭 증가가 발생된다.In special situations, such as during periods when power usage by inductive loads is concentrated, or in the case of temporary recovery of power after a power outage, even with inductive loads controlled by the PWM method, at the same time, a high voltage drop and start-up are instantaneously at the switchboard. An increase in current rise is caused.
이와 같은 문제를 해결하기 위해 주어진 환경에 속하는 유도성부하기기의 기동을 통신네트워크를 이용하여 시분할 방식으로 순차로 기동되도록 제어하여 특정 순간에 다수의 유도성부하가 기동되지 않도록 제공하는 것이 필요하다.In order to solve such a problem, it is necessary to control the start of the inductive load device belonging to a given environment to be sequentially started in a time division manner using a communication network, so that a plurality of inductive loads are not started at a specific moment.
다수의 유도성부하기기를 순차적으로 기동되도록 제어하기 위해, 도 1b에 도시한 바와 같이 중앙제어 방식으로 주제어부(181)를 중심으로 관리 구역 내부의 다수의 종속제어부(183)가 상호간의 통신을 이용하여 기동된다. 이를 통하여 다수의 유도성부하기기가 기동하는 것을 방지함으로써, 보다 효율적으로 전력 품질을 향상시키고, 최대전력 요구량을 감소시켜 에너지 절감 및 전력망의 안전성을 확보할 수 있다.In order to control a plurality of inductive loads to be sequentially started, as shown in FIG. 1B, a plurality of subordinate control units 183 inside a management area use communication with each other around the main control unit 181 in a central control manner. Is activated. This prevents a plurality of inductive loads from starting, thereby more efficiently improving the power quality and reducing the maximum power requirement, thereby ensuring energy saving and safety of the power grid.
주제어부(181)가 다수의 종속제어부(183-1, 183-2, …, 183-N)에 의하여 구동되는 유도성부하기기를 통신망을 이용하여 순차적으로 제어하기 위해, 유·무선 랜(LAN), 여러 가지 형태의 직렬통신 등 다양한 형태의 통신방식이 사용될 수 있다. 이들 중 통신거리, 통신적용 비용, 통신 장비 및 선로 설비의 추가 유무, 유도성부하기기의 구성 환경 등을 고려하면 전력선 통신 방식이 바람직하다. In order for the main controller 181 to sequentially control the inductive load driven by the plurality of slave controllers 183-1, 183-2, ..., 183-N using a communication network, a wired / wireless LAN Various types of communication methods, such as various types of serial communication, may be used. Among these, the power line communication method is preferable in consideration of the communication distance, the communication application cost, the presence or absence of communication equipment and line facilities, and the configuration environment of the inductive load machine.
전력선 통신을 기반으로 도 1b에 도시한 바와 같이, 주제어부(181)를 중심으로 종속제어부(183)이 버스 형태의 네트워크 구성을 가진다. 순차제어 네트워크는 내부의 제어기 역할을 담당할 주제어부(181)(Master) 한 개와 다수의 유도성부하기기의 기동을 제어할 다수의 종속제어부(183-1, 183-2, …, 183-N)(Slave)들로 구성된다.As shown in FIG. 1B based on power line communication, the slave controller 183 has a network configuration in the form of a bus around the main controller 181. The sequential control network is composed of one main controller 181 (Master), which will act as an internal controller, and a plurality of subordinate controllers 183-1, 183-2, ..., 183-N for controlling the starting of a plurality of inductive loads. It consists of Slaves.
순차기동 알고리즘은 통신 분야에서의 매체 액세스 제어(Media Access Control, MAC) 방법 중 시분할 다중 접속(Time Division Multiple Access, TDMA) 방식을 사용함으로써 기동부하가 집중되었을 경우, 요청 메시지들이 전력선 통신상에서 충돌(Collision)하여 모든 종속제어부(183)가 기동되지 못하는 문제점을 해결할 수 있다. The sequential start algorithm uses time division multiple access (TDMA) method in the media access control (MAC) method in the communication field, when request loads are concentrated on power line communication. Collision to solve the problem that all the slave control unit 183 is not activated.
순차기동은 기본적으로 기동을 원하는 유도성부하를 제어하는 종속제어부(183)가 주제어부(181)로 기동하기를 원한다는 요청(Request) 메시지를 보내고 그에 상응하는 응답(Reply) 메시지를 주제어부(181)로부터 수신했을 경우에 한하여 기동하도록 설계하였다. 자세한 제어방법은 후술한다.The sequential startup basically sends a request message that the slave controller 183 which controls the inductive load that is desired to be started is started by the main controller 181, and sends a corresponding reply message to the main controller 181. It is designed to start only when received from Detailed control methods will be described later.
매체 액세스 제어방법을 응용한 순차기동 알고리즘은 도 5와 같이 시분할 다중 접속방식을 적용한 것으로 각 종속제어부(183)에 할당된 기기 고유의 식별번호를 이용해 충돌이 발생하지 않도록 하였다.The sequential start algorithm using the media access control method is a time division multiple access method as shown in FIG. 5, so that a collision does not occur using a device-specific identification number assigned to each slave control unit 183.
순차기동 방법은 앞서 언급한 것과 같이 시분할 다중 접속방식을 적용한 것으로 주제어부(181)가 발생시키는 동기지표신호를 중심으로 종속제어부(183)들이 자신에게 할당된 시간대에 기동요청을 하고 그에 상응하는 응답신호를 받아 순차적으로 기동한다. The sequential start method is a time division multiple access method as described above. The slave control unit 183 makes a start request at a time zone assigned to the slave controller 181 based on the synchronization indicator signal generated by the main control unit 181, and responds accordingly. Start sequentially by receiving a signal.
주제어부(181)는 다수의 종속제어부(183-1, 183-2, …, 183-N)의 개수 N에 따라 결정되는 주기로 동기지표신호를 모든 종속제어부(183-1, 183-2, …, 183-N)로 전송하여, 상기 종속제어부(183-1, 183-2, …, 183-N)들이 동기에 맞춰 동작하도록 한다.The main control unit 181 transmits the synchronization indicator signals to all the slave control units 183-1, 183-2,... At a period determined according to the number N of the plurality of slave control units 183-1, 183-2, ..., 183-N. , 183-N), so that the slave control units 183-1, 183-2, ..., 183-N operate in synchronization.
종속제어부(183-1, 183-2, …, 183-N)는 내부에 설정된 식별자 번호에 의해 우선순위가 정해지며 도 5에 도시한 바와 같이 자신의 식별자번호에 해당하는 순서의 시간대에서만 기동요청을 할 수 있다. 시간 설정에 대하여 상세한 프로토콜 구성은 도 6과 같다. 도 6에 도시한 바와 같이 종속제어부(183)가 기동 시, 전술한 시분할 순차기동제어 프로토콜을 통해 기동하여야 하며, 반드시 기기 고유의 식별번호에 맞춰 기동한다.The slave control unit 183-1, 183-2, ..., 183-N is prioritized by the identifier number set therein, and the starting request is made only in the time zone of the sequence corresponding to its identifier number as shown in FIG. can do. The detailed protocol configuration regarding time setting is shown in FIG. As shown in FIG. 6, when the slave control unit 183 starts up, the slave control unit 183 must start up through the above-described time division sequential start control protocol.
다음은 본 발명에 따른 전동기의 순차기동 PWM 제어장치에 의한 순간전압강하 및 기동전류 감쇄방법 그리고 동시기동방지를 위한 순차기동제어 방법을 구현하여 검증하고 분석한 과정과 그 결과에 대하여 설명한다.The following describes a process and results of implementing, verifying and analyzing the instantaneous voltage drop and the starting current attenuation method by the sequential starting PWM control device of the motor according to the present invention and the sequential starting control method for preventing simultaneous starting.
도 7a는 TRIAC PWM 모듈이 적용되지 않은 경우, 에어컨 컴프레서의 기동전류 특성을 보인 것으로 (표 1)에 나타난 일반부하의 실효치 기동전류인 88.99 Arms보다 큰 첨두치를 확인할 수 있으며 국제규격을 만족시키지 못한다. 그러나 본 발명과 같이 TRIAC PWM 모듈을 적용한 경우, 도 7b 및 (표 1)에 나타난 것과 같이 실효치 기동전류(37.46 Arms) 및 첨두치가 감쇄되고 부드러운 기동이 이뤄졌음을 확인할 수 있다. 파형 분할 제어를 위한 전력용 반도체 소자는 정격전류 41 Arms를 가지는 STMicroelectronics사의 TRIAC (Model BTA41)을 사용하는 것이 바람직하다.FIG. 7A shows the starting current characteristics of the air conditioner compressor when the TRIAC PWM module is not applied. The peak value larger than the effective load starting current of 88.99 Arms shown in the general load shown in Table 1 does not satisfy the international standard. However, when the TRIAC PWM module is applied as in the present invention, it can be seen that the effective starting current (37.46 Arms) and the peak value are attenuated and smoothly started, as shown in FIG. 7B and (Table 1). It is preferable to use TRIAC (Model BTA41) of STMicroelectronics having a rated current of 41 Arms as the power semiconductor device for waveform division control.
표 1
Test Item NormalLoad TRIAC PWM Limit
Inrush Current 88.99 Arms 37.46 Arms 45.0 Arms
Flicker Pst 2.391 0.667 1.0
Dc 3.085 % 2.214 % 3.3 %
Dmax 14.698 % 4.017 % 6.0 %
D(t) 190 ms 130 ms 500 ms
Table 1
Test item Normalload TRIAC PWM Limit
Inrush current 88.99 A rms 37.46 A rms 45.0 A rms
Flicker P st 2.391 0.667 1.0
D c 3.085% 2.214% 3.3%
D max 14.698% 4.017% 6.0%
D (t) 190 ms 130 ms 500 ms
이와 더불어 (표 1)에 나타난 시험결과에 따르면 플리커 순간전압강하와 연관된 플리커 시험 항목인 Pst(단기 플리커 값, short term flicker value) Dc,(상대 정상상태 전압변동, relative steady-state voltage change), Dmax(최대상대 전압변동, maximum relative voltage change) 및 D(t)(500ms 이상 구간에 대한 순간 전압변동, instant voltage change for more than 500ms)순간 모든 항목에 대해 충분한 예비율을 가지며 국제규격을 만족시킴을 확인할 수 있다. (표 1)의 플리커(Flicker) 항목인 국제규격(IEC 61000-3-3)의 시험을 위해서는 Voltech사의 PM3000A라는 범용 전력 분석기 및 IEC Standard 555라는 기준 임피던스 네트워크를 이용하였고, 순간전압 강하 및 기동전류를 측정하기 위해서는 Tektronix사의 A621 교류 전류 프루브와 연결된 Yokogawa사의 DL1740 디지털 오실로스코프가 사용되었다.In addition, according to the test results shown in (Table 1), the flicker test item associated with the flicker voltage drop, Pst (short term flicker value) Dc, (relative steady-state voltage change), Dmax (maximum relative voltage change) and D (t) (instant voltage change for more than 500 ms) provide sufficient reserve ratio for all items and satisfy international standard. You can check it. Voltech's PM3000A general purpose power analyzer and IEC Standard 555 reference impedance network were used to test the flicker, the international standard (IEC 61000-3-3). To measure this, Yokogawa's DL1740 digital oscilloscope connected to Tektronix's A621 AC current probe was used.
이상의 시험결과를 요약하자면, 본 발명에 따른 전동기의 순차기동 PWM 제어장치에 따르면, 유도성 부하의 기동시 발생하는 순간전압강하 및 기동전류를 국제규격 미만으로 효과적으로 감쇄시킬 수 있음이 기동전류 및 플리커 국제규격 측정결과를 통하여 검증되었다.In summary, according to the sequential starting PWM control apparatus of the motor according to the present invention, it is possible to effectively attenuate the instantaneous voltage drop and the starting current generated when the inductive load is started below the international standard. Verified by international standard measurement result.
다음은 본 발명에 따른 전동기의 순차기동 PWM 제어장치에서 순차기동제어에 대하여 설명한다.Next, the sequential start control in the sequential start PWM control apparatus of the motor according to the present invention will be described.
본 발명에 따른 전동기의 순차기동 PWM 제어장치에서 주제어부(181)가 종속제어부(183)가 제어하는 종속 부하들을 제어하기 위하여 전력선 통신을 사용하며, 상기 전력선 통신은 9,600bps 통신속도를 가지는 Infrasys사의 APLC-485MA 전력선 통신 모듈을 선택하는 것이 바람직하다. 상기와 같은 환경을 택하는 이유는 저속도 통신환경에서도 순차기동제어방법을 적용 가능하기 때문이다.In the sequential start PWM control apparatus of the motor according to the present invention, the main controller 181 uses power line communication to control the slave loads controlled by the slave control unit 183, and the power line communication has an Infrasys company having a communication speed of 9,600 bps. It is preferable to select the APLC-485MA power line communication module. The reason for choosing such an environment is that the sequential start control method can be applied even in a low speed communication environment.
순차제어방법은 실제의 제품 환경에 맞춰 8-bit 프로세서가 적용된 마이크로컨트롤러를 이용하여 구현하였으며 재원 및 통신환경은 아래와 같다.The sequential control method was implemented using a microcontroller with an 8-bit processor according to the actual product environment. The resources and communication environment are as follows.
- 20MHz System Clock  20MHz System Clock
- 1024 bytes SRAM  1024 bytes SRAM
- 256 bytes Data EEPROM  256 bytes Data EEPROM
- 14Kbytes Program Memory  -14Kbytes Program Memory
- 4 8-bit Timers & 1 16-bit Timer  -4 8-bit Timers & 1 16-bit Timer
- 1 UART  -1 UART
- 16 GPIOs  -16 GPIOs
- Bus type 9600bps 전력선 통신  -Bus type 9600bps power line communication
본 발명에 따른 전동기의 순차기동 PWM 제어장치에서 순차기동제어방법을 적용하기 위하여 주제어부(181)와 종속제어부(183)로 나누어 구현되었으며, 종속제어부(183)는 각각의 고유한 식별번호를 설정할 수 있도록 설계되었다.In order to apply the sequential start control method in the sequential start PWM control apparatus of the motor according to the present invention, the main control unit 181 and the subordinate control unit 183 are implemented and implemented, and the subordinate control unit 183 sets each unique identification number. It was designed to be.
도 8은 N의 종속제어부(183)가 존재하는 경우에 대한 주제어부(181)의 동작순서도를 도시한 도면이다. 주제어부(181)는 네트워크 내부의 모든 종속제어부(183)에 대한 동기화를 수행하고 기동요청에 응답하고 정해진 시간에 맞춰 동기지표신호를 전송한다. FIG. 8 is a diagram illustrating an operation flowchart of the main controller 181 for the case where the slave control unit 183 of N exists. The main controller 181 synchronizes all slave controllers 183 in the network, responds to a start request, and transmits a synchronization indicator signal at a predetermined time.
주제어부(181)는 우선 제어대상 종속제어부(183)의 수를 설정하고 순차기동제어를 위한 동기지표신호를 발생시켜 전송한다(S211, S213). 동기지표신호를 수신한 종속제어부(183)는 자신의 고유한 식별번호에 의해 할당된 시간대에서만 기동요청 동작을 할 수 있다. 주제어부(181)는 종속제어부(183)로부터의 기동요청신호를 수신했을 때, 그에 상응하는 응답신호를 전송한다(S215). 네트워크 내의 종속제어부(183) 수만큼의 시간대가 지난 후, 주제어부(181)는 다시 동기지표신호를 발생시켜 전송한다(S231). The main control unit 181 first sets the number of subordinate control units 183 to be controlled, generates and transmits a synchronization indicator signal for sequential start control (S211, S213). Upon receiving the synchronization indicator signal, the slave control unit 183 may operate the start request only in a time zone allocated by its unique identification number. When the main controller 181 receives the start request signal from the slave controller 183, the main controller 181 transmits a response signal corresponding thereto (S215). After a time period equal to the number of slave controllers 183 in the network, the main controller 181 generates and transmits a synchronization indicator signal again (S231).
도 9는 종속제어부(183)에 대한 동작순서도를 도시한 도면이다. 종속제어부(183)는 전원인가 후 초기화 과정에서 설정된 고유한 식별번호를 인식하여 저장하고 기타 필요한 변수들을 초기화한다(S311). 종속제어부(183)의 동작은 주제어부(181)로부터의 동기지표신호에 맞춰 시작된다(S313). 9 is a flowchart illustrating an operation of the slave controller 183. The slave control unit 183 recognizes and stores the unique identification number set in the initialization process after powering on and initializes other necessary variables (S311). The operation of the slave controller 183 starts in accordance with the synchronization indicator signal from the main controller 181 (S313).
동기지표신호 수신 후(S321), 식별번호에 의해 할당된 자신의 시간대가 될 때까지 대기하고 있다가(S323) 자신의 시간대에 기동신호 입력이 활성화된 경우, 기동요청신호를 주제어부(181)로 전송한다(S325). 일정시간(본 발명의 경우, 10ms로 설정) 내에 주제어부(181)로부터 상응하는 응답신호를 수신한 경우 기동신호를 출력하여 기동동작을 한다(S331, S333). 그렇지 않은 경우, 상기의 동작을 다음의 동기지표신호 구간에 반복하여 수행한다(S335).After receiving the synchronization indicator signal (S321), the user waits until the time zone assigned by the identification number (S323). When the start signal input is activated in the time zone, the main control unit 181 receives the start request signal. Transfer to (S325). When a corresponding response signal is received from the main controller 181 within a predetermined time (in the case of the present invention, set to 10ms), a start signal is output and start operation is performed (S331 and S333). Otherwise, the above operation is repeatedly performed in the next synchronization indicator signal section (S335).
본 발명에 따른 전동기의 순차기동 PWM 제어장치에 의하면, 매체 액세스 제어방법을 이용하여 유도성 부하가 순간적으로 동시기동되는 것을 방지한다. 실제의 동작 환경에 맞춰 구현하고 검증한 결과에 따르면 순차기동시스템내의 모든 종속제어부(183)에 유일무이한 식별번호를 할당하여 종속제어부(183)는 자신만의 기동 시간대에 모두 정상적으로 기동하였으며, 동기기동은 발생하지 않음을 확인하였다. According to the sequential starting PWM control apparatus of the motor according to the present invention, the inductive load is prevented from being instantaneously started by using the medium access control method. According to the results of the implementation and verification according to the actual operating environment, the slave controller 183 normally started all of its own start times by assigning a unique identification number to all slave controllers 183 in the sequential start-up system. Was confirmed not to occur.

Claims (5)

  1. 열냉동장치에서 전동기를 제어하는 제어장치에 있어서,In the control device for controlling the electric motor in the thermal freezer,
    상기 전동기에 전력을 공급하는 전원부;A power supply unit supplying power to the electric motor;
    상기 전원부에 의해 작동되는 전동기의 주코일에 직렬 연결되어 스위칭 온/오프에 의해 전류의 감쇄기능을 수행하는 전류제한부;A current limiting unit connected to the main coil of the motor operated by the power supply unit in series to perform attenuation function of the current by switching on / off;
    상기 전류제한부를 스위칭 온/오프 되도록 제어하여 다수의 유도성 부하 기동으로 인하여 발생되는 유입되는 돌입전류를 제한하는 다수의 종속제어부; 및A plurality of subordinate control units controlling the current limiting unit to be switched on / off to limit the inrush current which is generated due to a plurality of inductive loads; And
    상기 다수의 유도성 부하가 동시에 기동되지 않도록 상기 다수의 종속제어부 각각이 시분할 다중 방식으로 상기 다수의 유도성 부하를 순차 기동하도록 제어하는 주제어부;A main control unit controlling each of the plurality of subordinate control units to sequentially start the plurality of inductive loads in a time division multiple manner such that the plurality of inductive loads are not simultaneously started;
    로 구성된 것을 특징으로 하는 전동기의 순차기동 PWM 제어장치.Sequentially starting PWM control device of the motor, characterized in that consisting of.
  2. 제1항에 있어서,The method of claim 1,
    상기 주제어부는, The main fisherman,
    전력선 통신을 이용하여 상기 다수의 종속제어부를 제어하는 것을 특징으로 하는 전동기의 순차기동 PWM 제어장치.And a plurality of subordinate control units using power line communication.
  3. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 주제어부는, The main fisherman,
    상기 종속제어부로부터 기동을 요청신호를 받아 상기 다수의 종속제어부가 동시에 기동되지 않도록 상기 다수의 종속제어부가 시분할 다중 접속방식으로 순차 기동되도록 하는 것을 특징으로 하는 전동기의 순차기동 PWM 제어장치.And a plurality of slave controllers are sequentially started in a time-division multiple access manner so that the slave controllers are not started at the same time by receiving a start request signal from the slave controller.
  4. 제3항에 있어서,The method of claim 3,
    상기 주제어부는,The main fisherman,
    종속제어부들의 수를 설정하고 상기 종속제어부들이 순차로 기동할 수 있도록 상기 종속제어부의 기동순서를 정한 동기지표신호를 발생시키는 단계; 및Setting the number of slave controllers and generating a synchronization indicator signal that defines the startup sequence of the slave controllers so that the slave controllers can start sequentially; And
    상기 동기지표신호에 따라 상기 종속제어부로부터 기동요청을 받으면 상기 종속제어부로 기동하라는 기동응답신호를 보내는 단계;Sending a start response signal to start the slave control unit upon receiving a start request from the slave control unit according to the synchronization indicator signal;
    를 포함하여 상기 다수의 종속제어부를 시분할 다중 접속방식으로 순차 기동하는 것을 특징으로 하는 전동기의 순차기동 PWM 제어장치.Sequential start PWM control apparatus of the electric motor, characterized in that for sequentially starting the plurality of slave control unit in a time division multiple access method.
  5. 제3항에 있어서,The method of claim 3,
    상기 다수의 종속제어부는,The plurality of subordinate control unit,
    상기 주제어부로부터 각각 동기지표신호를 받는 단계;Receiving synchronization indicator signals from the main controller;
    상기 동기지표신호에서 설정된 시간 경과 후에 상기 주제어부로 기동요청신호를 송신하는 단계;Transmitting a start request signal to the main control unit after a time set by the synchronization indicator signal;
    상기 주제어부로부터 기동응답신호를 수신하면 상기 동기지표신호에서 설정된 기동시간동안 상기 유도성 부하가 기동하도록 제어하는 단계;Controlling the inductive load to start up during the start time set by the synchronization indicator signal when receiving the start response signal from the main controller;
    를 포함하여 시분할 다중 접속방식으로 순차 기동하는 것을 특징으로 하는 전동기의 순차기동 PWM 제어장치.Sequential start PWM control device of the motor, characterized in that for starting sequentially by the time division multiple access method.
PCT/KR2012/005184 2012-06-27 2012-06-29 Pwm control apparatus for sequential motor start-up WO2014003223A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0069337 2012-06-27
KR20120069337 2012-06-27

Publications (1)

Publication Number Publication Date
WO2014003223A1 true WO2014003223A1 (en) 2014-01-03

Family

ID=49783345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/005184 WO2014003223A1 (en) 2012-06-27 2012-06-29 Pwm control apparatus for sequential motor start-up

Country Status (1)

Country Link
WO (1) WO2014003223A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112454700A (en) * 2020-09-30 2021-03-09 青岛高测科技股份有限公司 Multi-slicer system and control method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11173734A (en) * 1997-12-12 1999-07-02 Mitsubishi Electric Corp Operation control method for refrigerator and operation controller
KR20010047455A (en) * 1999-11-20 2001-06-15 김인태 control module for power supply of multiple motor
KR20020003734A (en) * 2000-07-01 2002-01-15 구자홍 Method for start-current controlling of compressor
JP2005094933A (en) * 2003-09-18 2005-04-07 Fuji Electric Fa Components & Systems Co Ltd Motor driving device
KR20060106068A (en) * 2005-04-06 2006-10-12 (주)테크노비전 Control device of plurality of servo motors using time-division pulses

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11173734A (en) * 1997-12-12 1999-07-02 Mitsubishi Electric Corp Operation control method for refrigerator and operation controller
KR20010047455A (en) * 1999-11-20 2001-06-15 김인태 control module for power supply of multiple motor
KR20020003734A (en) * 2000-07-01 2002-01-15 구자홍 Method for start-current controlling of compressor
JP2005094933A (en) * 2003-09-18 2005-04-07 Fuji Electric Fa Components & Systems Co Ltd Motor driving device
KR20060106068A (en) * 2005-04-06 2006-10-12 (주)테크노비전 Control device of plurality of servo motors using time-division pulses

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112454700A (en) * 2020-09-30 2021-03-09 青岛高测科技股份有限公司 Multi-slicer system and control method

Similar Documents

Publication Publication Date Title
US7940506B2 (en) Automated AC line filter and surge suppression apparatus and method
TWI547058B (en) Charger, battery module, method and system for identifying and monitoring a charger
CN110679054B (en) Power storage system
CN110348354B (en) Power utilization load identification system, method and dormitory power utilization management system
JP6571114B2 (en) High voltage intelligent switch AC capacitor
US9692314B2 (en) Detection circuit and three-phase AC-to-AC power converting apparatus incorporating the same
CN104466736A (en) Intelligent domestic power distribution device with various electricity protection functions
CN103378720A (en) Compressor capacitor charging control device and control method and compressor
CN114498907B (en) Direct-current brushless motor used for dual-power-supply electrical equipment and control method
US6992873B2 (en) Automated AC line filter and surge suppression apparatus and method
CN102901883B (en) Trigger test device for thyristor unit of converter valve
US20210219397A1 (en) Input detection an protection circuit an ac electronic ballast for hid lamps
CN102428619B (en) Incorrect connection detecting device
WO2014003223A1 (en) Pwm control apparatus for sequential motor start-up
WO2016060319A1 (en) Reactive power compensation apparatus and reactive power compensation method
KR870001584B1 (en) The safety device for temperature control circuit
CN102832798B (en) One powers on buffer control circuit and control method thereof
CN209217700U (en) A kind of low-voltage motor protection device
CN207585017U (en) Control circuit and air conditioner
CN202602536U (en) Compressor capacitor charging control device and compressor
CN215498271U (en) Control device of direct-current power supply and air conditioner
US11894638B2 (en) Solid state protective smart plug device
CN214412619U (en) Controller and air conditioning device
CN221103011U (en) Power supply circuit for drying chamber electric box
KR20130104332A (en) Energy conservation high and low voltage switchgear

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12880084

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12880084

Country of ref document: EP

Kind code of ref document: A1