WO2014002957A1 - Fuel supply device for engine, and portable working machine - Google Patents

Fuel supply device for engine, and portable working machine Download PDF

Info

Publication number
WO2014002957A1
WO2014002957A1 PCT/JP2013/067264 JP2013067264W WO2014002957A1 WO 2014002957 A1 WO2014002957 A1 WO 2014002957A1 JP 2013067264 W JP2013067264 W JP 2013067264W WO 2014002957 A1 WO2014002957 A1 WO 2014002957A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
fuel
crankshaft
fuel supply
supply device
Prior art date
Application number
PCT/JP2013/067264
Other languages
French (fr)
Japanese (ja)
Inventor
秀夫 川嶌
Original Assignee
株式会社マキタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社マキタ filed Critical 株式会社マキタ
Publication of WO2014002957A1 publication Critical patent/WO2014002957A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M17/00Carburettors having pertinent characteristics not provided for in, or of interest apart from, the apparatus of preceding main groups F02M1/00 - F02M15/00
    • F02M17/02Floatless carburettors
    • F02M17/04Floatless carburettors having fuel inlet valve controlled by diaphragm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B63/00Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices
    • F02B63/02Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices for hand-held tools
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/0015Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for using exhaust gas sensors
    • F02D35/0046Controlling fuel supply
    • F02D35/0053Controlling fuel supply by means of a carburettor
    • F02D35/0069Controlling the fuel flow only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M1/00Carburettors with means for facilitating engine's starting or its idling below operational temperatures
    • F02M1/16Other means for enriching fuel-air mixture during starting; Priming cups; using different fuels for starting and normal operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/04Feeding by means of driven pumps
    • F02M37/046Arrangements for driving diaphragm-type pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/003Starting of engines by means of electric motors said electric motor being also used as a drive for auxiliaries, e.g. for driving transmission pumps or fuel pumps during engine stop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • F02N19/001Arrangements thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2400/00Control systems adapted for specific engine types; Special features of engine control systems not otherwise provided for; Power supply, connectors or cabling for engine control systems
    • F02D2400/06Small engines with electronic control, e.g. for hand held tools
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • F02N2019/002Aiding engine start by acting on fuel

Definitions

  • the present invention relates to an engine fuel supply device, and more particularly to an engine equipped with a diaphragm pump type carburetor, a technique for supplying fuel used for starting the engine, and a portable work machine using the engine equipped with the fuel supply device as a drive source.
  • a diaphragm pump type carburetor a technique for supplying fuel used for starting the engine
  • a portable work machine using the engine equipped with the fuel supply device as a drive source.
  • Patent Document 1 discloses the following fuel supply device.
  • the fuel storage part of the carburetor and the inside of the crankcase are always communicated via the starting fuel supply flow path regardless of the vertical position of the piston.
  • a pulsation transmission passage is formed to cause pressure fluctuations in the crankcase to act on the diaphragm pump of the carburetor, and a start-up fuel supply passage that branches from the pulsation transmission passage and leads to the fuel storage section is formed.
  • a groove is formed in the inner peripheral wall of the cylinder for communicating the opening on the crankcase side of the pulsation transmission passage with the inside of the crankcase.
  • the opening of the pulsation transmission passage also serves as an opening on the crankcase side of the starting fuel supply passage.
  • JP 2007-239545 A (paragraph number 0027)
  • a starting fuel supply flow path that branches from the pulsation transmission passage is formed, and a groove that communicates the opening of the pulsation transmission passage and the inside of the crankcase with the inner peripheral wall of the cylinder.
  • the piston is at or near the bottom dead center, and the opening of the pulsation transmission passage (also serving as the opening of the starting fuel supply passage) is blocked by the peripheral side surface of the piston. Even if it is, the fuel storage part of the carburetor and the inside of the crankcase communicate with each other via the groove and the starting fuel supply flow path, so that cranking starts without waiting for the piston to rise and the intake port to be opened.
  • the present invention drives an engine fuel supply device capable of accurately supplying the fuel used for starting the engine with a diaphragm pump type carburetor without variation, and the engine equipped with the fuel supply device.
  • An object is to provide a portable work machine as a source.
  • a fuel tank a carburetor including a diaphragm pump that is driven by pressure fluctuation generated in an engine crankcase, an electric motor connected to an engine crankshaft, A starting fuel supply that rotates the crankshaft alternately in the forward and reverse directions by a motor to cause pressure fluctuations in the crankcase, and supplies the fuel stored in the fuel tank to the engine via the carburetor A fuel supply device for the engine.
  • a portable work machine including an engine including the fuel supply device and using the engine as a drive source is configured.
  • the crankshaft is alternately rotated in the normal rotation direction and the reverse rotation direction by the electric motor, thereby causing pressure fluctuation in the crankcase.
  • the diaphragm pump provided in the carburetor is operated by this pressure fluctuation, and fuel can be supplied from the fuel tank to the carburetor. Therefore, a sufficient amount of fuel can be secured in the carburetor, and the fuel can be accurately supplied to the engine.
  • the portable work machine includes an engine including the fuel supply device, and the engine can be provided as a drive source.
  • SYMBOLS 10 Internal combustion engine (engine), 12 ... Crankshaft, 14 ... Cylinder, 16 ... Crankcase, 22 ... Piston, 40 ... Electric motor, 42 ... Rotary shaft, 44 ... Electromagnetic coil, 46 ... Permanent magnet, 48 ... Rotor 60 ... carburetor, 68 ... diaphragm, 90 ... priming pump, 98 ... fuel tank, 150 ... control unit, 152 ... ignition circuit, 154 ... motor control circuit, P1 ... intake port, P22 ... scavenging port, P3 ... exhaust port, v1, v2 ... check valves.
  • FIG. 1 shows a configuration of an internal combustion engine (engine) 10 according to an embodiment of the present invention by a longitudinal section parallel to a central axis Ctr of a crankshaft 12.
  • An engine (hereinafter simply referred to as “engine”) 10 according to the present embodiment is provided in a horticultural portable work machine, such as a brush cutter, and constitutes a drive source thereof.
  • the output of the engine 10 is transmitted to the rotary blade via the drive shaft of the brush cutter and rotates it.
  • it is not limited to brush cutters, but can be provided as a drive source for any portable work machine such as mowers, chainsaws, circular cutters (cut-off saws), sprayers, spreaders, blowers (blowers), and dust collectors. is there.
  • the engine 10 includes an electric motor 40, and the crankshaft 12 of the engine 10 and the rotating shaft 42 of the electric motor 40 are directly connected, and the output torque of the electric motor 40 is transmitted via the crankshaft 12 to a drive shaft (see FIG. (Not shown), and the output torque of the engine 10 can be transmitted to the rotating shaft 42 of the electric motor 40.
  • the electric motor 40 is not only connected to the crankshaft 12 coaxially with the rotary shaft 42 but also connected via a power transmission medium such as a gear or a chain mechanism, and can be interrupted via a clutch. You may connect to.
  • the engine 10 is a two-stroke engine. In this embodiment, a single-cylinder small two-stroke engine is adopted.
  • the engine 10 is roughly divided into a cylinder 14 and a crankcase 16, and the crankshaft 12 is pivotally supported by a bearing 18 with respect to the crankcase 16.
  • An oil seal 20 is installed inside the bearing 18.
  • the piston 22 is inserted into the cylinder 14 so as to be movable up and down, and is connected to the crankshaft 12 via a connecting rod 24.
  • the piston 22 is connected to one end portion of a connecting rod 24 by a piston pin 26, and the connecting rod 24 is connected to a crank pin 28 at the other end portion and cranked via a crank arm 30 that holds the crank pin 28.
  • the crank arm 30 includes a counterweight 32 on the side opposite to the holding portion of the crankpin 28.
  • a combustion chamber C is formed above the piston 22, and an ignition plug 34 is installed so as to face the combustion chamber C.
  • the spark plug 34 operates in response to a command signal from the control unit 150 and ignites the compressed mixture formed in the combustion chamber C.
  • the cylinder 14 has a plurality of heat radiating fins 36 protruding from the outer surface thereof.
  • the electric motor 40 is a three-phase induction type electric motor (brushless motor), and can function not only as a motor (motor) but also as a generator (generator).
  • the electromagnetic coil 44 is placed on the stationary side, the permanent magnet 46 is placed on the movable side, and the rotor (rotor) 48 that holds the permanent magnet 46 is placed outside the electromagnetic coil 44.
  • the electromagnetic coil 44 is fixed to the crankcase 16.
  • the permanent magnet 46 is fixed to an inner peripheral portion of a rotor 48 formed in a bottomed cylindrical shape, and the rotor 48 is extended to an extended portion of the crankshaft 12 extending outside the crankcase 16.
  • the crankshaft 12 is rotatably mounted on the same axis. In other words, in this embodiment, the extending portion of the crankshaft 12 also functions as the rotating shaft 42 of the electric motor 40.
  • a cooling fan 50 is formed on the outer peripheral surface of the rotor 48.
  • the control unit 150 includes an ignition circuit 152 and a motor control circuit 154, and also includes an ignition timing detection circuit, a throttle opening detection circuit, and a rotor position detection circuit (not shown) as a configuration for detecting the operating state of the engine 10. .
  • the ignition circuit 152 calculates an ignition timing Tig corresponding to the operating condition of the engine 10 and outputs a command signal corresponding to the ignition timing Tig to the ignition plug 34.
  • the motor control circuit 154 calculates an operating condition of the electric motor 40 and outputs a command signal corresponding to the operating condition to the electric motor 40. Specifically, during normal operation of the engine 10, when the output torque of the engine 10 is insufficient with respect to the required torque, a command signal for operating the electric motor 40 as a motor is output, while the output torque of the engine 10 is When there is a margin for the required torque, a command signal for operating this as a generator is output. In addition to this, in the present embodiment, when the engine 10 is started, fuel supply control described later is executed.
  • the motor control circuit 154 converts a direct current from the power storage device (for example, a battery or a capacitor) 160 into a three-phase alternating current, and corresponds a current component of each phase.
  • the electromagnetic coil 44 is supplied.
  • the three-phase alternating current generated by the electromagnetic coil 44 is converted into a direct current and supplied to the power storage device 160.
  • FIG. 2 shows a schematic configuration of the carburetor 60 provided in the engine 10 by a longitudinal section parallel to the central axis of the intake passage.
  • FIG. 3 shows a schematic configuration of the engine 10 by a longitudinal section perpendicular to the central axis Ctr of the crankshaft 12.
  • an air supply passage 102, a scavenging passage 104, and an exhaust passage 106 are formed in the engine 10.
  • one end of each of these passages 102 to 106 communicates with the inside of the cylinder 14 and is opened and closed by the circumferential side surface according to the reciprocating movement of the piston 22.
  • the air supply passage 102 communicates with the cylinder 14 at the intake port P1, and the intake port P1 is positioned below the upper surface of the piston 22 whose upper edge is at the bottom dead center, and the lower edge is at the top dead center. It is set so that it may be located below the lower surface of the piston 22 in the above. As a result, the air supply passage 102 is blocked by the peripheral side surface of the piston 22 when the piston 22 is at the bottom dead center, while the supply passage 102 is below the piston 22 in the process of transition from the middle stroke of the piston 22 to the middle stroke of the lower stroke. Opened, the negative pressure generated in the crankcase 16 is introduced, and the air-fuel mixture is sucked into the crankcase 16.
  • the upward stroke refers to a stroke in which the piston 22 moves from the bottom dead center farthest away from the combustion chamber C to the top dead center closest to the piston 22, and the downward stroke refers to a stroke in which the piston 22 is bottom dead from the top dead center. The process of moving toward a point.
  • the scavenging passage 104 communicates with the crankcase 16 at the scavenging air inlet P21 at one end, and communicates with the cylinder 14 at the scavenging port P22 at the other end to spatially connect the crankcase 16 and the cylinder 14 with each other. ing.
  • the scavenging port P22 is set such that its upper edge is located above the upper surface of the piston 22 at the bottom dead center and its lower edge is located above the lower surface of the piston 22 at the top dead center.
  • the scavenging passage 104 allows the scavenging port P22 to open above the piston 22 at the end of the downward stroke of the piston 22 so that the crankcase 16 and the cylinder 14 communicate with each other.
  • a passage for feeding into the cylinder 14 is formed.
  • the exhaust passage 106 communicates with the inside of the cylinder 14 at the exhaust port P3.
  • the exhaust port P3 is located above the upper surface of the piston 22 whose upper edge is at the bottom dead center, and the lower edge is at the top dead center. It is set to be located above the lower surface of a certain piston 22.
  • the exhaust passage 106 is closed by the peripheral side surface of the piston 22 when the piston 22 is at the top dead center, while in the cylinder 14 before the scavenging port P22 in the period after the middle of the downward stroke of the piston 22. Opening and exhausting the exhaust gas to lower the pressure in the cylinder 14.
  • the crankcase 16 is formed with a pressure transmission passage 16a for introducing the pressure fluctuation generated in the crankcase 16 into the pump drive pressure chamber 72 of the carburetor 60 described below.
  • the pressure transmission passage 16a is formed so as to penetrate the crankcase 16 in a direction perpendicular to the central axis Ctr of the crankshaft 12, and the inside of the crankcase 16 and the pump drive pressure chamber 72 are connected to this pressure. It communicates via the transmission path 16a.
  • the carburetor 60 is formed with a venturi section 62, and the cylinder 14 of the engine 10 is connected to the carburetor 60 on the downstream side of the venturi section 62.
  • An air cleaner (not shown) is attached on the upstream side of the venturi 62.
  • a choke valve 64 is disposed upstream of the venturi section 62, and an air metering valve 66 is rotatably disposed downstream.
  • a pump chamber 70 and a pump drive pressure chamber 72 defined by a diaphragm 68 are formed in the main body wall portion above the venturi portion 62.
  • a fuel storage chamber 76 and an atmospheric chamber 78 defined by a diaphragm 74 are formed in the main body wall portion below the venturi 62, and the pump chamber 70 has an inlet passage 60a in which a check valve v1 is interposed. And communicates with the fuel storage chamber 76 via an intermediate passage 60b in which a check valve v2 is interposed.
  • the pump drive pressure chamber 72 is connected to the pressure transmission passage 16 a of the crankcase 16 through the pressure introduction passage 60 d and communicates with the crankcase 16.
  • the atmospheric chamber 78 is open to the atmosphere.
  • An inflow restricting valve 80 is interposed in the intermediate passage 60b between the pump chamber 70 and the fuel storage chamber 76.
  • the inflow regulating valve 80 is coupled to one side of a lever member 82 that is supported so as to be rotatable about a shaft 82 a with respect to the main body of the carburetor 60.
  • a spring 84 is interposed between the main body of the carburetor 60 and the lever member 82 in a compressed state, and the lever member 82 is biased by the inflow regulating valve 80 so as to close the intermediate passage 60b.
  • the other side of the lever member 82 is coupled to the central portion of the diaphragm 74.
  • the fuel storage chamber 76 communicates with the venturi portion 62 via the outlet passage 60c, and a metering hole h1 for regulating the maximum flow rate of the fuel flowing through the passage 60c is formed at the inlet portion of the outlet passage 60c.
  • a jet hole h2 is formed at the outlet.
  • a fuel control valve 86 is installed in the middle of the outlet passage 60c. The fuel adjustment valve 86 is manually operated by an operator and adjusts the amount of fuel supplied to the engine 10 by the carburetor 60.
  • the diaphragm 68 When the pressure fluctuation in the crankcase 16 is introduced into the pump drive pressure chamber 72 through the pressure passages 16a and 60d, the diaphragm 68 is operated by this pressure fluctuation, and the fuel is sucked into the pump chamber 70 from the fuel tank 98.
  • the fuel in the fuel storage chamber 76 is sucked out of the fuel storage chamber 76 by the negative pressure generated in the venturi section 62, supplied to the venturi section 62 through the outlet passage 60c, and added to the air that has passed through the air cleaner.
  • the amount of fuel added to the air is adjusted by the fuel adjustment valve 86, and the maximum flow rate is regulated by the metering hole h1.
  • the “diaphragm pump” of the carburetor 60 includes a main body upper side wall portion of the carburetor 60 that forms the pump chamber 70, the pump drive pressure chamber 72, the inlet passage 60a, the intermediate passage 60b, and the pressure introduction passage 60d, and the diaphragm 68. And check valves v1 and v2.
  • 3 to 6 show the operation of the engine 10 during normal operation in time series.
  • the piston 22 passes through the bottom dead center and starts moving toward the top dead center (FIG. 3)
  • the scavenging port P22 is closed by the peripheral side surface of the piston 22
  • the inside of the crankcase 16 is exposed to the outside. It becomes a sealed state, and a negative pressure develops in the crankcase 16.
  • the spark plug 34 When reaching the end of the ascending stroke, the spark plug 34 operates near the top dead center, and the compressed air-fuel mixture in the combustion chamber C is ignited.
  • the piston 22 When passing through the top dead center and proceeding to the lowering stroke, the piston 22 is pushed down by the volume expansion of the fuel and rotates the crankshaft 12 via the connecting rod 24. The rotational movement of the crankshaft 12 is transmitted to the drive shaft of the portable work machine, and rotates the cutting blade.
  • FIGS. 7 to 11 show the operation when the engine 10 is started.
  • 7 and 8 show the control for supplying fuel from the fuel tank 98 to the carburetor 60 (hereinafter referred to as “fuel filling control”)
  • FIGS. 9 and 10 show the fuel supply from the carburetor 60 to the engine 10 to form an air-fuel mixture.
  • FIG. 11 shows the control (hereinafter referred to as “starting fuel supply control”) and the control for igniting the air-fuel mixture and starting the engine 10 (hereinafter referred to as “ignition start control”).
  • starting fuel supply control the control for igniting the air-fuel mixture and starting the engine 10
  • a series of controls shown in FIGS. 7 to 11 are executed by the control unit 150 in accordance with the start operation of the portable work machine performed by the worker. Therefore, in this embodiment, the “starting fuel supply device” is configured by the control unit 150.
  • the electric motor 40 that receives the command signal from the control unit 150 rotates the crankshaft 12 alternately in the normal rotation direction and the reverse rotation direction, thereby causing pressure fluctuation in the crankcase 16.
  • the pressure fluctuation is propagated to the pump drive pressure chamber 72 of the carburetor 60, and the diaphragm 68 is operated. As a result, fuel is sucked out of the fuel tank 98 and supplied to the pump chamber 70.
  • crankshaft 12 is rotated in the forward and reverse directions in the range of crank angles Cr1 to Cr2 in which the scavenging port P22 is closed by the peripheral side surface of the piston 22.
  • reciprocation is made between the position of the crank angle Cr1 that brings the piston 22 close to top dead center and the position of the crank angle Cr2 that moves the piston 22 away from top dead center (corresponding to the “first position”).
  • the crank angle Cr2 the crown surface of the piston 22 is located on the top dead center side with respect to the upper edge of the scavenging port P22, and at the crank angle Cr1, the lower surface of the piston 22 is dead with respect to the lower edge of the intake port P1. Located on the point side.
  • the diaphragm 68 of the carburetor 60 is operated by the pressure fluctuation in the crankcase 16 by rotating the crankshaft 12 alternately in the forward and reverse directions within the range of the crank angle Cr1 to Cr2 that closes the scavenging port P22.
  • a negative pressure is applied to the fuel storage chamber 76 through the ejection hole h2, the outlet passage 60c, and the metering hole h1, and the inflow regulating valve 80 is opened.
  • the fuel can be supplied from the fuel tank 98 to the carburetor 60.
  • the supplied fuel is supplied to the fuel storage chamber 76 according to the remaining state of the fuel.
  • the number of reciprocations of the crankshaft 12 in the fuel filling control can be appropriately set according to the residual state of fuel in the carburetor 60. For example, it is adapted to the condition in which the remaining amount of fuel is the smallest in the interior of the carburetor 60 (for example, the fuel storage chamber 76) and the fuel piping from the fuel tank 98 to the carburetor 60.
  • crankshaft 12 when the crankshaft 12 is rotated from the crank angle Cr1 to the position of Cr2, it is rotated until the crown surface of the piston 22 is positioned below the upper edge of the exhaust port P3, and a part of the exhaust port P3 is rotated. Is open.
  • the crankshaft 12 may be rotated in a range up to the crank angle Cr2 'where the crown surface of the piston 22 is located above the upper edge of the exhaust port P3.
  • FIG. 8 shows the piston 22 by a two-dot chain line when the crankshaft 12 is at the crank angle Cr2 '.
  • the electric motor 40 rotates the crankshaft 12 alternately in the forward and reverse directions over the range of the crank angles Cr3 to Cr4 wider than the crank angles Cr1 to Cr2. Then, the pressure fluctuation generated in the crankcase 16 is propagated to the pump drive pressure chamber 72 of the carburetor 60 and is also propagated to the intake passage 102. As a result, the air-fuel mixture that has passed through the carburetor 60 is supplied into the crankcase 16.
  • crankshaft 12 is rotated in the reverse direction to the crank angle Cr3 where the lower surface of the piston 22 is positioned above the lower edge of the intake port P1 and a part of the intake port P1 opens into the crankcase 16.
  • a forward rotation, and the crown surface of the piston 22 is located below the upper edge of the scavenging port P22, and a crank angle Cr4 at which a part of the scavenging port P22 opens into the cylinder 14 is provided.
  • the position of the crank angle Cr4 that opens the scavenging port P22 corresponds to the “third position”, and brings the piston 22 closer to the bottom dead center than at the crank angle Cr2 (first position).
  • the position of the crank angle Cr3 that opens the intake port P1 corresponds to a “second position”, and brings the piston 22 closer to the top dead center than at the crank angle Cr1.
  • crankshaft 12 is rotated in one direction until the intake port P1 is opened, and then rotated in the opposite direction until the scavenging port P22 is opened, whereby the air-fuel mixture is sucked into the crankcase 16.
  • the air-fuel mixture can be supplied from the crankcase 16 into the cylinder 14 through the scavenging passage 104.
  • the electric motor 40 rotates the crankshaft 12 in the reverse direction to the position of the crank angle Cr5 at which the piston 22 reaches a predetermined position before the top dead center.
  • the scavenging port P22 and the exhaust port P3 are closed by the peripheral side surface of the piston 22, and a compressed mixture is formed in the combustion chamber C.
  • the crank angle Cr5 is set to an angle that determines the ignition timing at the start of the engine 10, and when the crankshaft 12 reaches the position of the crank angle Cr5, the spark plug 34 is activated, and the combustion chamber Ignition of the C compressed mixture is performed.
  • the electric motor 40 stops the rotational drive of the crankshaft 12 in synchronization with the ignition.
  • the piston 22 is pushed down from the predetermined position by the volume expansion of the fuel, and the crankshaft 12 starts to rotate forward from the position of the crank angle Cr5 and starts rotating in the forward rotation direction.
  • the electric motor 40 is driven again before the top dead center, and assist torque in the forward direction is generated with respect to the crankshaft 12. You may make it make it. Thereby, the function of the flywheel can be shared by the electric motor 40.
  • the position Cr5 before the top dead center at which the crankshaft 12 is reached is set in correspondence with the ignition timing, and the rotational drive of the electric motor 40 is stopped in synchronization with the ignition.
  • a configuration for example, a rotor position detection circuit
  • a position for rotating the crankshaft 12 at the time of ignition is set in advance, and the electric motor 40 causes the crankshaft 12 to rotate.
  • the spark plug 34 may be operated in synchronization with the rotation of the crankshaft 12 being stopped.
  • the crankshaft 12 is alternately rotated in the forward and reverse directions by the electric motor 40 to cause pressure fluctuation in the crankcase 16, and this pressure fluctuation is applied to the carburetor 60.
  • the diaphragm 68 can be operated, and fuel can be supplied from the fuel tank 98 to the carburetor 60. Therefore, a sufficient amount of fuel can be secured in the carburetor 60 when the engine 10 is started.
  • the air-fuel mixture is supplied into the crankcase 16 through the carburetor 60 by rotating the crankshaft 12 back and forth alternately so that the intake ports P1 and the scavenging ports P22 open alternately. Further, this air-fuel mixture can be supplied into the cylinder 14 through the scavenging passage 104.
  • crankshaft 12 is rotated in the reverse direction to compress the air-fuel mixture in the cylinder 14 and ignited when the crankshaft 12 reaches a position before the top dead center. It becomes possible to utilize the volume expansion force. Therefore, the engine 10 can be reliably started, and the cranking that has been performed by the starter motor or the like is unnecessary, so that the electric motor 40 can be reduced in size and labor can be saved.
  • FIG. 12 shows a schematic configuration of a carburetor 60 that constitutes a fuel supply device according to another embodiment of the present invention, in the same longitudinal section as that of FIG.
  • the supply (filling) of fuel from the fuel tank 98 to the carburetor 60 is realized by the reciprocating rotation of the crankshaft 12, but in the present embodiment, this is realized by the priming pump 90.
  • the configuration other than the priming pump 90 and its periphery is the same as in the previous embodiment.
  • the check valve embodied by the umbrella portion 94a of the umbrella-type valve 94 is inhaled as the volume of the spoid increases. 90a is opened, and the fuel vapor and air in the fuel storage chamber 76 are caused to flow into the spoid 92 through the suction passage 90a. Then, when the operator next crushes the spoid 92, the check valve embodied by the shaft portion 94b of the umbrella valve 94 opens the discharge passage 90b, and the fuel vapor or the like in the spoid 92 is transferred to the fuel tank 98. Reflux. By repeating such an operation, a negative pressure develops in the fuel storage chamber 76, the inflow regulating valve 80 is opened, and fuel is supplied from the fuel tank 98 to the carburetor 60 (fuel storage chamber 76).
  • the control after filling the carburetor 60 with fuel may be the same as in the previous embodiment (starting fuel supply control, ignition starting control). Specifically, after the crankshaft 12 is reciprocated between the crank angle Cr3 position and the crank angle Cr4 position to supply the air-fuel mixture into the cylinder 14, the crankshaft 12 is moved to a position Cr5 before top dead center. Until the compression mixture in the combustion chamber C is ignited.
  • an air-fuel mixture is formed in advance in the cylinder 14 and can be started using the volume expansion force of the fuel. Cranking is not necessary, and the electric motor 40 can be reduced in size and labor.
  • a “diaphragm pump” of the carburetor 60 is configured by the main body upper side wall portion of the carburetor 60, the diaphragm 68, and the check valves v 1 and v 2, and “starting fuel supply” is performed by the control unit 150 and the priming pump 90.
  • Device is configured.
  • the rotation direction of the crankshaft 12 when the piston 22 is brought close to top dead center is defined as the reverse rotation direction
  • the rotation direction when the piston 22 is moved away from it is defined as the normal rotation direction.
  • the forward / reverse rotation direction may be the forward rotation direction when the piston 22 is brought close to the top dead center, and the reverse rotation direction when the piston 22 is moved away. In this case, for example, with respect to the example shown in FIG. 7, the crankshaft 12 reciprocates at a mirror-symmetrical position with respect to the central axis of the cylinder 14.
  • a 4-stroke engine can be used as the engine.
  • the crankshaft when starting the engine, the crankshaft is alternately rotated in the normal rotation direction and the reverse rotation direction in the range of the crank angle (for example, the exhaust stroke) at which the intake valve is closed, and the pressure fluctuation generated in the crankcase is It acts on the diaphragm pump provided in the carburetor. Then, the reciprocating rotation of the crankshaft is continued by changing the reach range of the piston, and after the air-fuel mixture is supplied into the cylinder via the intake port, the crankshaft is reversely rotated to a predetermined position before the compression top dead center. Turn on and ignite.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Means For Warming Up And Starting Carburetors (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

The present invention is configured from: a fuel tank (98); a carburetor (60) provided with a diaphragm pump which drives by receiving the pressure fluctuation that occurs within a crank case (16); an electric motor (40) connected to a crank shaft (12); and a start-up fuel supply device which creates a pressure fluctuation within the crank case (16) by alternately rotating the crank shaft (12) in the normal rotational direction and the reverse rotational direction by means of the electric motor (40) when the engine is start up and which supplies the fuel stored in the fuel tank (98) to the engine (10) via the carburetor (60). As a consequence, the present invention provides a fuel supply device for an engine wherein it is possible to adequately supply fuel used in starting an engine provided with a diaphragm pump-type carburetor to the engine without causing variations.

Description

エンジンの燃料供給装置及び携帯作業機Engine fuel supply device and portable work machine
 本発明は、エンジンの燃料供給装置に関し、特にダイヤフラムポンプ式のキャブレタを備えるエンジンにおいて、その始動に用いる燃料を供給するための技術、及びその燃料供給装置を備えるエンジンを駆動源とする携帯作業機に関する。 TECHNICAL FIELD The present invention relates to an engine fuel supply device, and more particularly to an engine equipped with a diaphragm pump type carburetor, a technique for supplying fuel used for starting the engine, and a portable work machine using the engine equipped with the fuel supply device as a drive source. About.
 ダイヤフラムポンプ式のキャブレタを備えるエンジンの始動に関し、下記特許文献1は、次のような燃料供給装置を開示している。キャブレタの燃料貯留部とクランクケース内とを、ピストンの上下方向位置によらず、始動用燃料供給流路を介して常に連通させるようにしたものである。具体的には、キャブレタのダイヤフラムポンプにクランクケース内の圧力変動を作用させるための脈動伝達通路を形成するとともに、この脈動伝達通路から分岐して燃料貯留部に通じる始動用燃料供給流路を形成し、シリンダの内周壁に、脈動伝達通路のクランクケース側の開口部とクランクケース内とを連通させる溝を形成する。ここで、上記脈動伝達通路の開口部は、始動用燃料供給流路のクランクケース側の開口部を兼ねる。 Regarding the starting of an engine equipped with a diaphragm pump type carburetor, the following Patent Document 1 discloses the following fuel supply device. The fuel storage part of the carburetor and the inside of the crankcase are always communicated via the starting fuel supply flow path regardless of the vertical position of the piston. Specifically, a pulsation transmission passage is formed to cause pressure fluctuations in the crankcase to act on the diaphragm pump of the carburetor, and a start-up fuel supply passage that branches from the pulsation transmission passage and leads to the fuel storage section is formed. Then, a groove is formed in the inner peripheral wall of the cylinder for communicating the opening on the crankcase side of the pulsation transmission passage with the inside of the crankcase. Here, the opening of the pulsation transmission passage also serves as an opening on the crankcase side of the starting fuel supply passage.
特開2007-239545号公報(段落番号0027)JP 2007-239545 A (paragraph number 0027)
 前掲特許文献1の燃料供給装置によれば、脈動伝達通路から分岐する始動用燃料供給流路を形成するとともに、シリンダの内周壁に、脈動伝達通路の開口部とクランクケース内とを連通させる溝を形成したことで、エンジンの始動に際してピストンが下死点又はその付近にあり、脈動伝達通路の開口部(始動用燃料供給流路の開口部を兼ねる)がピストンの周側面によって塞がれているとしても、キャブレタの燃料貯留部とクランクケース内とが溝及び始動用燃料供給流路を介して連通するので、ピストンが上昇して吸気ポートが開放されるのを待たず、クランキングの開始直後から始動用燃料供給流路を通じてエンジンに燃料を供給することが可能となる。しかし、キャブレタの燃料貯留部に充分な量の燃料が貯えられていることが前提となるので、燃料貯留部や燃料タンクとキャブレタとの間の燃料配管等における燃料の残留状況に応じて実際にエンジンに供給される燃料の量にばらつきが生じ得る、という問題がある。 According to the fuel supply device of the above-mentioned Patent Document 1, a starting fuel supply flow path that branches from the pulsation transmission passage is formed, and a groove that communicates the opening of the pulsation transmission passage and the inside of the crankcase with the inner peripheral wall of the cylinder. When the engine is started, the piston is at or near the bottom dead center, and the opening of the pulsation transmission passage (also serving as the opening of the starting fuel supply passage) is blocked by the peripheral side surface of the piston. Even if it is, the fuel storage part of the carburetor and the inside of the crankcase communicate with each other via the groove and the starting fuel supply flow path, so that cranking starts without waiting for the piston to rise and the intake port to be opened. Immediately after that, fuel can be supplied to the engine through the starting fuel supply passage. However, since it is assumed that a sufficient amount of fuel is stored in the fuel storage part of the carburetor, the fuel storage part and the fuel piping between the fuel tank and the carburetor etc. There is a problem that the amount of fuel supplied to the engine may vary.
 そこで、本発明は、ダイヤフラムポンプ式のキャブレタを備えるエンジンにおいて、その始動に用いる燃料を、ばらつきを伴わずに的確に供給することのできるエンジンの燃料供給装置及びその燃料供給装置を備えるエンジンを駆動源とする携帯作業機を提供することを目的とする。 Therefore, the present invention drives an engine fuel supply device capable of accurately supplying the fuel used for starting the engine with a diaphragm pump type carburetor without variation, and the engine equipped with the fuel supply device. An object is to provide a portable work machine as a source.
 本発明の一形態では、燃料タンクと、エンジンのクランクケース内に生じる圧力変動を受けて駆動するダイヤフラムポンプを備えるキャブレタと、エンジンのクランクシャフトに連結した電動モータと、エンジンの始動に際し、前記電動モータによって前記クランクシャフトを正転及び逆転方向に交互に回転させて前記クランクケース内の圧力変動を生じさせ、前記燃料タンクに貯えられた燃料を、前記キャブレタを介してエンジンに供給する始動燃料供給装置と、を含んでエンジンの燃料供給装置を構成する。 In one aspect of the present invention, a fuel tank, a carburetor including a diaphragm pump that is driven by pressure fluctuation generated in an engine crankcase, an electric motor connected to an engine crankshaft, A starting fuel supply that rotates the crankshaft alternately in the forward and reverse directions by a motor to cause pressure fluctuations in the crankcase, and supplies the fuel stored in the fuel tank to the engine via the carburetor A fuel supply device for the engine.
 本発明の他の形態では、前記燃料供給装置を備えるエンジンを含んで成り、前記エンジンを駆動源とする携帯作業機を構成する。 In another embodiment of the present invention, a portable work machine including an engine including the fuel supply device and using the engine as a drive source is configured.
 本発明の一形態の燃料供給装置によれば、電動モータによってクランクシャフトを正転及び逆転方向に交互に回転させることで、クランクケース内に圧力変動を生じさせる。これにより、エンジンの始動に際し、キャブレタに備わるダイヤフラムポンプをこの圧力変動によって作動させ、燃料タンクからキャブレタに燃料を供給することが可能となる。従って、充分な量の燃料をキャブレタに確保し、エンジンに対して的確に燃料を供給することができる。 According to the fuel supply device of one aspect of the present invention, the crankshaft is alternately rotated in the normal rotation direction and the reverse rotation direction by the electric motor, thereby causing pressure fluctuation in the crankcase. Thus, when starting the engine, the diaphragm pump provided in the carburetor is operated by this pressure fluctuation, and fuel can be supplied from the fuel tank to the carburetor. Therefore, a sufficient amount of fuel can be secured in the carburetor, and the fuel can be accurately supplied to the engine.
 本発明の他の形態の携帯作業機によれば、前記燃料供給装置を備えるエンジンを含んで成り、前記エンジンを駆動源として備えることが可能である。 According to a portable work machine of another aspect of the present invention, the portable work machine includes an engine including the fuel supply device, and the engine can be provided as a drive source.
本発明の一実施形態に係る燃料供給装置を備えるエンジンの構成を示す断面図である。It is sectional drawing which shows the structure of an engine provided with the fuel supply apparatus which concerns on one Embodiment of this invention. 同上エンジンに備わるキャブレタの概略的な構成を示す断面図である。It is sectional drawing which shows schematic structure of the carburetor with which an engine same as the above is equipped. 同上エンジンの通常運転時における動作(上昇行程初期)を示す説明図である。It is explanatory drawing which shows the operation | movement (up stroke initial stage) at the time of normal driving | operation of an engine same as the above. 同上エンジンの通常運転時における動作(上昇行程中期)を示す説明図である。It is explanatory drawing which shows the operation | movement (up stroke middle period) at the time of normal driving | operating of an engine same as the above. 同上エンジンの通常運転時における動作(下降行程中期)を示す説明図である。It is explanatory drawing which shows the operation | movement at the time of a normal driving | operation of an engine same as the above (lower stroke middle stage). 同上エンジンの通常運転時における動作(下降行程終期)を示す説明図である。It is explanatory drawing which shows the operation | movement (down stroke end stage) at the time of normal driving | operation of an engine same as the above. 同上エンジンの始動時における動作(燃料充填時)を示す説明図である。It is explanatory drawing which shows the operation | movement (at the time of fuel filling) at the time of engine start same as the above. 同上エンジンの始動時における動作(第1の位置)を示す説明図である。It is explanatory drawing which shows the operation | movement (1st position) at the time of engine start same as the above. 同上エンジンの始動時における動作(第2の位置)を示す説明図である。It is explanatory drawing which shows the operation | movement (2nd position) at the time of engine start same as the above. 同上エンジンの始動時における動作(第3の位置)を示す説明図である。It is explanatory drawing which shows the operation | movement (3rd position) at the time of engine start same as the above. 同上エンジンの始動時における動作(点火タイミング)を示す説明図である。It is explanatory drawing which shows the operation | movement (ignition timing) at the time of engine start same as the above. 本発明の他の実施形態に係る燃料供給装置に備わるキャブレタの構成を示す断面図である。It is sectional drawing which shows the structure of the carburetor with which the fuel supply apparatus which concerns on other embodiment of this invention is equipped.
 10…内燃機関(エンジン)、 12…クランクシャフト、 14…シリンダ、 16…クランクケース、 22…ピストン、 40…電動モータ、 42…回転軸、 44…電磁コイル、 46…永久磁石、 48…回転子、 60…キャブレタ、 68…ダイヤフラム、 90…プライミングポンプ、 98…燃料タンク、 150…コントロールユニット、 152…点火回路、 154…モータ制御回路、 P1…吸気ポート、 P22…掃気ポート、 P3…排気ポート、 v1,v2…逆止弁。 DESCRIPTION OF SYMBOLS 10 ... Internal combustion engine (engine), 12 ... Crankshaft, 14 ... Cylinder, 16 ... Crankcase, 22 ... Piston, 40 ... Electric motor, 42 ... Rotary shaft, 44 ... Electromagnetic coil, 46 ... Permanent magnet, 48 ... Rotor 60 ... carburetor, 68 ... diaphragm, 90 ... priming pump, 98 ... fuel tank, 150 ... control unit, 152 ... ignition circuit, 154 ... motor control circuit, P1 ... intake port, P22 ... scavenging port, P3 ... exhaust port, v1, v2 ... check valves.
 図1は、本発明の一実施形態に係る内燃機関(エンジン)10の構成を、クランクシャフト12の中心軸Ctrに平行な縦方向断面によって示している。
 本実施形態に係るエンジン(以下、単に「エンジン」という)10は、園芸用の携帯作業機、例えば、刈払機に備わり、その駆動源を構成する。エンジン10の出力が刈払機の駆動軸を介してその回転刃に伝達され、これを回転させる。しかし、刈払機に限らず、草刈機、チェーンソー、サーキュラーカッター(カットオフソー)、噴霧機、散布機、送風機(ブロワ)及び集塵機等のあらゆる携帯作業機において、その駆動源として備えることが可能である。
FIG. 1 shows a configuration of an internal combustion engine (engine) 10 according to an embodiment of the present invention by a longitudinal section parallel to a central axis Ctr of a crankshaft 12.
An engine (hereinafter simply referred to as “engine”) 10 according to the present embodiment is provided in a horticultural portable work machine, such as a brush cutter, and constitutes a drive source thereof. The output of the engine 10 is transmitted to the rotary blade via the drive shaft of the brush cutter and rotates it. However, it is not limited to brush cutters, but can be provided as a drive source for any portable work machine such as mowers, chainsaws, circular cutters (cut-off saws), sprayers, spreaders, blowers (blowers), and dust collectors. is there.
 エンジン10は、電動モータ40を備え、エンジン10のクランクシャフト12と電動モータ40の回転軸42とが直結され、電動モータ40の出力トルクを、クランクシャフト12を介して刈払機の駆動軸(図示せず)に伝達するとともに、エンジン10の出力トルクを電動モータ40の回転軸42に伝達することもできるように構成されている。電動モータ40は、クランクシャフト12に対し、これと同軸上に回転軸42を連結するだけでなく、歯車又はチェーン機構等の動力伝達媒体を介して接続してもよく、クラッチを介して断続可能に接続してもよい。 The engine 10 includes an electric motor 40, and the crankshaft 12 of the engine 10 and the rotating shaft 42 of the electric motor 40 are directly connected, and the output torque of the electric motor 40 is transmitted via the crankshaft 12 to a drive shaft (see FIG. (Not shown), and the output torque of the engine 10 can be transmitted to the rotating shaft 42 of the electric motor 40. The electric motor 40 is not only connected to the crankshaft 12 coaxially with the rotary shaft 42 but also connected via a power transmission medium such as a gear or a chain mechanism, and can be interrupted via a clutch. You may connect to.
 エンジン10は、2ストロークエンジンであり、本実施形態では、単気筒の小型2ストロークエンジンを採用している。
 エンジン10は、大きく分けてシリンダ14とクランクケース16とに分割形成され、クランクシャフト12は、クランクケース16に対してベアリング18によって軸支されている。ベアリング18の内側には、オイルシール20が設置されている。ピストン22は、シリンダ14にその内部を上下移動自在に挿入され、コンロッド24を介してクランクシャフト12に連結されている。
The engine 10 is a two-stroke engine. In this embodiment, a single-cylinder small two-stroke engine is adopted.
The engine 10 is roughly divided into a cylinder 14 and a crankcase 16, and the crankshaft 12 is pivotally supported by a bearing 18 with respect to the crankcase 16. An oil seal 20 is installed inside the bearing 18. The piston 22 is inserted into the cylinder 14 so as to be movable up and down, and is connected to the crankshaft 12 via a connecting rod 24.
 具体的には、ピストン22は、ピストンピン26によってコンロッド24の一端部に接続され、コンロッド24は、他端部がクランクピン28に接続され、クランクピン28を保持するクランクアーム30を介してクランクシャフト12に接続されている。クランクアーム30は、クランクピン28の保持部とは反対側にカウンタウェイト32を備える。 Specifically, the piston 22 is connected to one end portion of a connecting rod 24 by a piston pin 26, and the connecting rod 24 is connected to a crank pin 28 at the other end portion and cranked via a crank arm 30 that holds the crank pin 28. Connected to the shaft 12. The crank arm 30 includes a counterweight 32 on the side opposite to the holding portion of the crankpin 28.
 シリンダ14には、ピストン22上方の部位に燃焼室Cが形成されており、燃焼室Cに臨ませるように点火プラグ34が設置されている。点火プラグ34は、コントロールユニット150からの指令信号に応じて作動し、燃焼室Cに形成された圧縮混合気に点火する。シリンダ14には、その外側面に複数の放熱フィン36が突出形成されている。 In the cylinder 14, a combustion chamber C is formed above the piston 22, and an ignition plug 34 is installed so as to face the combustion chamber C. The spark plug 34 operates in response to a command signal from the control unit 150 and ignites the compressed mixture formed in the combustion chamber C. The cylinder 14 has a plurality of heat radiating fins 36 protruding from the outer surface thereof.
 電動モータ40は、三相誘導型の電動モータ(ブラシレスモータ)であり、発動機(モータ)として機能するほか、発電機(ジェネレータ)として機能することもできる。本実施形態では、電磁コイル44を静止側に、永久磁石46を可動側に置き、永久磁石46を保持する回転子(ロータ)48を電磁コイル44の外側に配置している。電磁コイル44は、クランクケース16に対して固定されている。本実施形態において、永久磁石46は、有底円筒状に形成された回転子48の内周部に固定されており、回転子48は、クランクケース16外に延びるクランクシャフト12の延設部に、クランクシャフト12と同軸上で回転可能に取り付けられている。換言すれば、本実施形態において、クランクシャフト12の延設部は、電動モータ40の回転軸42の機能を兼ねる。回転子48の外周面には、冷却ファン50が形成されている。 The electric motor 40 is a three-phase induction type electric motor (brushless motor), and can function not only as a motor (motor) but also as a generator (generator). In this embodiment, the electromagnetic coil 44 is placed on the stationary side, the permanent magnet 46 is placed on the movable side, and the rotor (rotor) 48 that holds the permanent magnet 46 is placed outside the electromagnetic coil 44. The electromagnetic coil 44 is fixed to the crankcase 16. In the present embodiment, the permanent magnet 46 is fixed to an inner peripheral portion of a rotor 48 formed in a bottomed cylindrical shape, and the rotor 48 is extended to an extended portion of the crankshaft 12 extending outside the crankcase 16. The crankshaft 12 is rotatably mounted on the same axis. In other words, in this embodiment, the extending portion of the crankshaft 12 also functions as the rotating shaft 42 of the electric motor 40. A cooling fan 50 is formed on the outer peripheral surface of the rotor 48.
 コントロールユニット150は、点火回路152及びモータ制御回路154を備えるほか、エンジン10の運転状態を検出する構成として、図示省略の点火タイミング検出回路、スロットル開度検出回路及びロータ位置検出回路を備えている。 The control unit 150 includes an ignition circuit 152 and a motor control circuit 154, and also includes an ignition timing detection circuit, a throttle opening detection circuit, and a rotor position detection circuit (not shown) as a configuration for detecting the operating state of the engine 10. .
 点火回路152は、エンジン10の運転条件に応じた点火タイミングTigを算出し、これに応じた指令信号を点火プラグ34に出力する。
 モータ制御回路154は、電動モータ40の作動条件を算出し、これに応じた指令信号を電動モータ40に出力する。具体的には、エンジン10の通常運転時において、エンジン10の出力トルクに要求トルクに対する不足がある場合に、電動モータ40を発動機として動作させる指令信号を出力する一方、エンジン10の出力トルクに要求トルクに対する余裕がある場合に、これを発電機として動作させる指令信号を出力する。これに加え、本実施形態では、エンジン10の始動時において、後に述べる燃料供給制御を実行する。
The ignition circuit 152 calculates an ignition timing Tig corresponding to the operating condition of the engine 10 and outputs a command signal corresponding to the ignition timing Tig to the ignition plug 34.
The motor control circuit 154 calculates an operating condition of the electric motor 40 and outputs a command signal corresponding to the operating condition to the electric motor 40. Specifically, during normal operation of the engine 10, when the output torque of the engine 10 is insufficient with respect to the required torque, a command signal for operating the electric motor 40 as a motor is output, while the output torque of the engine 10 is When there is a margin for the required torque, a command signal for operating this as a generator is output. In addition to this, in the present embodiment, when the engine 10 is started, fuel supply control described later is executed.
 モータ制御回路154は、電動モータ40を発動機として動作させる場合に、蓄電装置(例えば、バッテリ又はキャパシタ)160からの直流電流を三相の交流電流に変換し、各相の電流成分を対応する電磁コイル44に供給する。一方で、発電機として動作させる場合は、電磁コイル44が発生した三相の交流電流を直流電流に変換し、蓄電装置160に供給する。 When operating the electric motor 40 as a motor, the motor control circuit 154 converts a direct current from the power storage device (for example, a battery or a capacitor) 160 into a three-phase alternating current, and corresponds a current component of each phase. The electromagnetic coil 44 is supplied. On the other hand, when operating as a generator, the three-phase alternating current generated by the electromagnetic coil 44 is converted into a direct current and supplied to the power storage device 160.
 図2は、エンジン10に備わるキャブレタ60の概略的な構成を、吸気通路の中心軸に平行な縦方向断面によって示している。
 図3は、エンジン10の概略的な構成を、クランクシャフト12の中心軸Ctrに対して垂直な縦方向断面によって示している。
FIG. 2 shows a schematic configuration of the carburetor 60 provided in the engine 10 by a longitudinal section parallel to the central axis of the intake passage.
FIG. 3 shows a schematic configuration of the engine 10 by a longitudinal section perpendicular to the central axis Ctr of the crankshaft 12.
 図3を参照してエンジン10の構成について更に説明し、その後、図2を参照してキャブレタ60の構成について説明する。
 図3において、エンジン10には、給気通路102、掃気通路104及び排気通路106が形成されている。本実施形態において、これらの通路102~106は、いずれも一端がシリンダ14の内部に連通しており、ピストン22の往復移動に応じてその周側面によって開閉される。
The configuration of the engine 10 will be further described with reference to FIG. 3, and then the configuration of the carburetor 60 will be described with reference to FIG.
In FIG. 3, an air supply passage 102, a scavenging passage 104, and an exhaust passage 106 are formed in the engine 10. In the present embodiment, one end of each of these passages 102 to 106 communicates with the inside of the cylinder 14 and is opened and closed by the circumferential side surface according to the reciprocating movement of the piston 22.
 給気通路102は、吸気ポートP1においてシリンダ14内に連通しており、吸気ポートP1は、その上縁が下死点にあるピストン22の上面よりも下方に位置し、下縁が上死点にあるピストン22の下面よりも下方に位置するように設定されている。これにより、給気通路102は、ピストン22が下死点にあるときにピストン22の周側面によって閉塞される一方、ピストン22の上昇行程中期から下降行程中期に移行する過程でピストン22の下方で開口し、クランクケース16の内部に生じた負圧を導入して、クランクケース16内に空気と燃料との混合気を吸入させる。この燃料は、次に述べるキャブレタ60によって大気中から取り込まれた空気に添加される。ここで、上昇行程は、ピストン22が燃焼室Cから最も離れる下死点から、逆に最も近付く上死点に向けて移動する行程をいい、下降行程は、ピストン22が上死点から下死点に向けて移動する行程をいう。 The air supply passage 102 communicates with the cylinder 14 at the intake port P1, and the intake port P1 is positioned below the upper surface of the piston 22 whose upper edge is at the bottom dead center, and the lower edge is at the top dead center. It is set so that it may be located below the lower surface of the piston 22 in the above. As a result, the air supply passage 102 is blocked by the peripheral side surface of the piston 22 when the piston 22 is at the bottom dead center, while the supply passage 102 is below the piston 22 in the process of transition from the middle stroke of the piston 22 to the middle stroke of the lower stroke. Opened, the negative pressure generated in the crankcase 16 is introduced, and the air-fuel mixture is sucked into the crankcase 16. This fuel is added to the air taken in from the atmosphere by the carburetor 60 described below. Here, the upward stroke refers to a stroke in which the piston 22 moves from the bottom dead center farthest away from the combustion chamber C to the top dead center closest to the piston 22, and the downward stroke refers to a stroke in which the piston 22 is bottom dead from the top dead center. The process of moving toward a point.
 掃気通路104は、一端の掃気流入口P21においてクランクケース16内に連通する一方、他端の掃気ポートP22においてシリンダ14内に連通し、クランクケース16内とシリンダ14内とを空間的に接続している。掃気ポートP22は、その上縁が下死点にあるピストン22の上面よりも上方に位置し、下縁が上死点にあるピストン22の下面よりも上方に位置するように設定されている。これにより、掃気通路104は、掃気ポートP22がピストン22の下降行程終期にピストン22の上方で開口することで、クランクケース16内とシリンダ14内とを連通させ、クランクケース16内の混合気をシリンダ14内に供給するための通路を形成する。 The scavenging passage 104 communicates with the crankcase 16 at the scavenging air inlet P21 at one end, and communicates with the cylinder 14 at the scavenging port P22 at the other end to spatially connect the crankcase 16 and the cylinder 14 with each other. ing. The scavenging port P22 is set such that its upper edge is located above the upper surface of the piston 22 at the bottom dead center and its lower edge is located above the lower surface of the piston 22 at the top dead center. As a result, the scavenging passage 104 allows the scavenging port P22 to open above the piston 22 at the end of the downward stroke of the piston 22 so that the crankcase 16 and the cylinder 14 communicate with each other. A passage for feeding into the cylinder 14 is formed.
 排気通路106は、排気ポートP3においてシリンダ14内に連通しており、排気ポートP3は、その上縁が下死点にあるピストン22の上面よりも上方に位置し、下縁が上死点にあるピストン22の下面よりも上方に位置するように設定されている。これにより、排気通路106は、ピストン22が上死点にあるときにピストン22の周側面によって閉塞される一方、ピストン22の下降行程中期以降の期間において掃気ポートP22よりも先にシリンダ14内に開口し、排ガスを導出して、シリンダ14内の圧力を低下させる。 The exhaust passage 106 communicates with the inside of the cylinder 14 at the exhaust port P3. The exhaust port P3 is located above the upper surface of the piston 22 whose upper edge is at the bottom dead center, and the lower edge is at the top dead center. It is set to be located above the lower surface of a certain piston 22. As a result, the exhaust passage 106 is closed by the peripheral side surface of the piston 22 when the piston 22 is at the top dead center, while in the cylinder 14 before the scavenging port P22 in the period after the middle of the downward stroke of the piston 22. Opening and exhausting the exhaust gas to lower the pressure in the cylinder 14.
 クランクケース16には、クランクケース16内に生じた圧力変動を次に述べるキャブレタ60のポンプ駆動圧力室72に導入するための圧力伝達通路16aが形成されている。本実施形態において、圧力伝達通路16aは、クランクケース16をクランクシャフト12の中心軸Ctrに対して垂直な方向に貫通して形成され、クランクケース16内とポンプ駆動圧力室72とは、この圧力伝達通路16aを介して連通している。 The crankcase 16 is formed with a pressure transmission passage 16a for introducing the pressure fluctuation generated in the crankcase 16 into the pump drive pressure chamber 72 of the carburetor 60 described below. In the present embodiment, the pressure transmission passage 16a is formed so as to penetrate the crankcase 16 in a direction perpendicular to the central axis Ctr of the crankshaft 12, and the inside of the crankcase 16 and the pump drive pressure chamber 72 are connected to this pressure. It communicates via the transmission path 16a.
 図2において、キャブレタ60には、ベンチュリ部62が形成され、キャブレタ60に対し、ベンチュリ部62の下流側にエンジン10のシリンダ14が接続されている。ベンチュリ部62の上流側には、図示しない空気清浄器が取り付けられている。キャブレタ60の本体内部には、ベンチュリ部62の上流側にチョーク弁64が、下流側に空気調量弁66が回動自在に配設されている。 2, the carburetor 60 is formed with a venturi section 62, and the cylinder 14 of the engine 10 is connected to the carburetor 60 on the downstream side of the venturi section 62. An air cleaner (not shown) is attached on the upstream side of the venturi 62. Inside the main body of the carburetor 60, a choke valve 64 is disposed upstream of the venturi section 62, and an air metering valve 66 is rotatably disposed downstream.
 本実施形態において、ベンチュリ部62上側の本体壁部には、ダイヤフラム68によって画成されたポンプ室70及びポンプ駆動圧力室72が形成されている。ベンチュリ部62下側の本体壁部には、ダイヤフラム74によって画成された燃料貯留室76及び大気室78が形成されており、ポンプ室70は、逆止弁v1が介装された入口通路60aを介して燃料タンク98の内部に連通する一方、逆止弁v2が介装された中間通路60bを介して燃料貯留室76に連通している。ポンプ駆動圧力室72は、圧力導入通路60dを介してクランクケース16の圧力伝達通路16aと接続され、クランクケース16内に連通している。大気室78は、大気に開放されている。 In this embodiment, a pump chamber 70 and a pump drive pressure chamber 72 defined by a diaphragm 68 are formed in the main body wall portion above the venturi portion 62. A fuel storage chamber 76 and an atmospheric chamber 78 defined by a diaphragm 74 are formed in the main body wall portion below the venturi 62, and the pump chamber 70 has an inlet passage 60a in which a check valve v1 is interposed. And communicates with the fuel storage chamber 76 via an intermediate passage 60b in which a check valve v2 is interposed. The pump drive pressure chamber 72 is connected to the pressure transmission passage 16 a of the crankcase 16 through the pressure introduction passage 60 d and communicates with the crankcase 16. The atmospheric chamber 78 is open to the atmosphere.
 ポンプ室70と燃料貯留室76との間の中間通路60bには、流入規制弁80が介装されている。流入規制弁80は、キャブレタ60の本体に対して軸82aを中心として回動可能に支持されたレバー部材82の一側部に結合されている。キャブレタ60の本体とレバー部材82との間には、スプリング84が圧縮状態で介装されており、レバー部材82は、流入規制弁80によって中間通路60bを閉塞させるように付勢されている。レバー部材82の他側部は、ダイヤフラム74の中央部に結合されている。 An inflow restricting valve 80 is interposed in the intermediate passage 60b between the pump chamber 70 and the fuel storage chamber 76. The inflow regulating valve 80 is coupled to one side of a lever member 82 that is supported so as to be rotatable about a shaft 82 a with respect to the main body of the carburetor 60. A spring 84 is interposed between the main body of the carburetor 60 and the lever member 82 in a compressed state, and the lever member 82 is biased by the inflow regulating valve 80 so as to close the intermediate passage 60b. The other side of the lever member 82 is coupled to the central portion of the diaphragm 74.
 燃料貯留室76は、出口通路60cを介してベンチュリ部62に連通しており、出口通路60cの入口部には、この通路60cを流れる燃料の最大流量を規制する調量孔h1が形成され、出口部には、噴出孔h2が形成されている。出口通路60cの中間部には、燃料調節弁86が設置されている。燃料調節弁86は、作業者によって手動操作され、キャブレタ60によってエンジン10に供給する燃料量を調節する。 The fuel storage chamber 76 communicates with the venturi portion 62 via the outlet passage 60c, and a metering hole h1 for regulating the maximum flow rate of the fuel flowing through the passage 60c is formed at the inlet portion of the outlet passage 60c. A jet hole h2 is formed at the outlet. A fuel control valve 86 is installed in the middle of the outlet passage 60c. The fuel adjustment valve 86 is manually operated by an operator and adjusts the amount of fuel supplied to the engine 10 by the carburetor 60.
 クランクケース16内の圧力変動が圧力通路16a,60dを通じてポンプ駆動圧力室72に導入されると、この圧力変動によってダイヤフラム68が動作して、燃料タンク98からポンプ室70に燃料が吸入される。燃料貯留室76の燃料は、ベンチュリ部62に生じた負圧によって燃料貯留室76から吸い出され、出口通路60cを通じてベンチュリ部62に供給され、空気清浄器を通過した空気に添加される。ここで、燃料調節弁86によって空気に添加される燃料量が調節されるとともに、その最大流量が調量孔h1によって規制される。燃料貯留室76に貯えられている燃料が減少すると、これに応じてダイヤフラム74が上昇し、レバー部材82を介して流入規制弁80を下降させる。これにより、中間通路60bが開放され、ポンプ室70から燃料貯留室76に燃料が供給される。 When the pressure fluctuation in the crankcase 16 is introduced into the pump drive pressure chamber 72 through the pressure passages 16a and 60d, the diaphragm 68 is operated by this pressure fluctuation, and the fuel is sucked into the pump chamber 70 from the fuel tank 98. The fuel in the fuel storage chamber 76 is sucked out of the fuel storage chamber 76 by the negative pressure generated in the venturi section 62, supplied to the venturi section 62 through the outlet passage 60c, and added to the air that has passed through the air cleaner. Here, the amount of fuel added to the air is adjusted by the fuel adjustment valve 86, and the maximum flow rate is regulated by the metering hole h1. When the fuel stored in the fuel storage chamber 76 decreases, the diaphragm 74 rises accordingly, and the inflow regulating valve 80 is lowered via the lever member 82. As a result, the intermediate passage 60 b is opened, and fuel is supplied from the pump chamber 70 to the fuel storage chamber 76.
 本実施形態において、キャブレタ60の「ダイヤフラムポンプ」は、ポンプ室70、ポンプ駆動圧力室72、入口通路60a、中間通路60b及び圧力導入通路60dを形成するキャブレタ60の本体上側壁部と、ダイヤフラム68と、逆止弁v1及びv2と、によって構成される。 In the present embodiment, the “diaphragm pump” of the carburetor 60 includes a main body upper side wall portion of the carburetor 60 that forms the pump chamber 70, the pump drive pressure chamber 72, the inlet passage 60a, the intermediate passage 60b, and the pressure introduction passage 60d, and the diaphragm 68. And check valves v1 and v2.
 ここで、エンジン10の動作について簡単に説明する。
 図3~6は、エンジン10の通常運転時における動作を時系列順に示している。
 ピストン22が下死点を通過し、上死点に向けて移動を開始した後(図3)、ピストン22の周側面によって掃気ポートP22が閉塞されると、クランクケース16内が外部に対して密閉された状態となり、クランクケース16内に負圧が発達する。
Here, the operation of the engine 10 will be briefly described.
3 to 6 show the operation of the engine 10 during normal operation in time series.
After the piston 22 passes through the bottom dead center and starts moving toward the top dead center (FIG. 3), when the scavenging port P22 is closed by the peripheral side surface of the piston 22, the inside of the crankcase 16 is exposed to the outside. It becomes a sealed state, and a negative pressure develops in the crankcase 16.
 上昇行程中期に至ると(図4)、ピストン22の下方で吸気ポートP1が開放され、クランクケース16内の負圧が給気通路102に波及する。これにより、エンジン10外の空気がキャブレタ60に取り込まれ、キャブレタ60によって添加された燃料と空気との混合気が給気通路102を通じてクランクケース16内に導入される。 When the middle of the ascending stroke is reached (FIG. 4), the intake port P1 is opened below the piston 22, and the negative pressure in the crankcase 16 is applied to the supply passage 102. As a result, air outside the engine 10 is taken into the carburetor 60, and a mixture of fuel and air added by the carburetor 60 is introduced into the crankcase 16 through the air supply passage 102.
 上昇行程終期に至ると、上死点近傍で点火プラグ34が作動して、燃焼室Cの圧縮混合気が点火される。上死点を通過して下降行程に移ると、ピストン22は、燃料の体積膨張によって押し下げられ、コンロッド24を介してクランクシャフト12を回転させる。クランクシャフト12の回転運動は、携帯作業機の駆動軸に伝達され、刈り刃を回転させる。 When reaching the end of the ascending stroke, the spark plug 34 operates near the top dead center, and the compressed air-fuel mixture in the combustion chamber C is ignited. When passing through the top dead center and proceeding to the lowering stroke, the piston 22 is pushed down by the volume expansion of the fuel and rotates the crankshaft 12 via the connecting rod 24. The rotational movement of the crankshaft 12 is transmitted to the drive shaft of the portable work machine, and rotates the cutting blade.
 下降行程中期に至ると(図5)、ピストン22の上方で排気ポートP3が開放され、燃焼後の排ガスが排気通路106に導出される。これにより、シリンダ14内の圧力が急激に減少する。導出された排ガスは、図示しないマフラを通過し、大気中へ放出される。一方で、クランクケース16内では、ピストン22の下降によって混合気が圧縮され、圧力が上昇する。 When the middle of the lowering stroke is reached (FIG. 5), the exhaust port P3 is opened above the piston 22, and the exhaust gas after combustion is led to the exhaust passage 106. Thereby, the pressure in the cylinder 14 decreases rapidly. The derived exhaust gas passes through a muffler (not shown) and is released into the atmosphere. On the other hand, in the crankcase 16, the air-fuel mixture is compressed by the lowering of the piston 22, and the pressure rises.
 下降行程終期に至ると(図6)、ピストン22の上方で掃気ポートP22が開放され、クランクケース16内の混合気が掃気通路104を通じてシリンダ14内に流出し、これにより、シリンダ14内に残存する排ガスが掃気される。 When the end of the lowering stroke is reached (FIG. 6), the scavenging port P22 is opened above the piston 22, and the air-fuel mixture in the crankcase 16 flows out into the cylinder 14 through the scavenging passage 104, thereby remaining in the cylinder 14. The exhaust gas is scavenged.
 本実施形態に係る燃料供給制御について、以下に説明する。
 図7~11は、エンジン10の始動時における動作を示している。図7及び8は、燃料タンク98からキャブレタ60に燃料を供給する制御(以下「燃料充填制御」という)を、図9及び10は、キャブレタ60からエンジン10に燃料を供給し、混合気を形成する制御(以下「始動燃料供給制御」という)を、図11は、混合気に点火し、エンジン10を始動させる制御(以下「点火始動制御」という)を、夫々示している。図7~11に示す一連の制御は、作業者が行う携帯作業機の始動操作に応じてコントロールユニット150によって実行される。従って、本実施形態において、「始動燃料供給装置」は、コントロールユニット150によって構成される。
The fuel supply control according to this embodiment will be described below.
7 to 11 show the operation when the engine 10 is started. 7 and 8 show the control for supplying fuel from the fuel tank 98 to the carburetor 60 (hereinafter referred to as “fuel filling control”), and FIGS. 9 and 10 show the fuel supply from the carburetor 60 to the engine 10 to form an air-fuel mixture. FIG. 11 shows the control (hereinafter referred to as “starting fuel supply control”) and the control for igniting the air-fuel mixture and starting the engine 10 (hereinafter referred to as “ignition start control”). A series of controls shown in FIGS. 7 to 11 are executed by the control unit 150 in accordance with the start operation of the portable work machine performed by the worker. Therefore, in this embodiment, the “starting fuel supply device” is configured by the control unit 150.
 図7及び8に示す燃料充填制御において、コントロールユニット150からの指令信号を受けた電動モータ40は、クランクシャフト12を正転及び逆転方向に交互に回転させて、クランクケース16内に圧力変動を生じさせ、この圧力変動をキャブレタ60のポンプ駆動圧力室72に波及させて、ダイヤフラム68を動作させる。これにより、燃料タンク98から燃料が吸い出され、ポンプ室70に供給される。 In the fuel filling control shown in FIGS. 7 and 8, the electric motor 40 that receives the command signal from the control unit 150 rotates the crankshaft 12 alternately in the normal rotation direction and the reverse rotation direction, thereby causing pressure fluctuation in the crankcase 16. The pressure fluctuation is propagated to the pump drive pressure chamber 72 of the carburetor 60, and the diaphragm 68 is operated. As a result, fuel is sucked out of the fuel tank 98 and supplied to the pump chamber 70.
 具体的には、クランクシャフト12を、掃気ポートP22がピストン22の周側面によって閉塞されるクランク角Cr1~Cr2の範囲で正転及び逆転方向に回転させる。本実施形態では、ピストン22を上死点に近付けるクランク角Cr1の位置と、ピストン22を上死点から遠ざけるクランク角Cr2の位置(「第1の位置」に相当する)と、の間を往復させる。ここで、クランク角Cr2では、ピストン22の冠面が掃気ポートP22の上縁よりも上死点側に位置し、クランク角Cr1では、ピストン22の下面が吸気ポートP1の下縁よりも上死点側に位置している。 Specifically, the crankshaft 12 is rotated in the forward and reverse directions in the range of crank angles Cr1 to Cr2 in which the scavenging port P22 is closed by the peripheral side surface of the piston 22. In the present embodiment, reciprocation is made between the position of the crank angle Cr1 that brings the piston 22 close to top dead center and the position of the crank angle Cr2 that moves the piston 22 away from top dead center (corresponding to the “first position”). Let Here, at the crank angle Cr2, the crown surface of the piston 22 is located on the top dead center side with respect to the upper edge of the scavenging port P22, and at the crank angle Cr1, the lower surface of the piston 22 is dead with respect to the lower edge of the intake port P1. Located on the point side.
 このように、掃気ポートP22を閉塞させるクランク角Cr1~Cr2の範囲で、クランクシャフト12を正転及び逆転交互に回転させることで、クランクケース16内の圧力変動によってキャブレタ60のダイヤフラム68を動作させ、かつ、ベンチュリ部62に空気の流れを発生させることで、噴出孔h2・出口通路60c・調量孔h1を介し燃料貯留室76に負圧を加え、流入規制弁80を開弁することで、燃料タンク98からキャブレタ60に燃料を供給することができる。供給された燃料は、燃料貯留室76に対し、燃料の残留状況に応じて供給される。 Thus, the diaphragm 68 of the carburetor 60 is operated by the pressure fluctuation in the crankcase 16 by rotating the crankshaft 12 alternately in the forward and reverse directions within the range of the crank angle Cr1 to Cr2 that closes the scavenging port P22. In addition, by generating an air flow in the venturi 62, a negative pressure is applied to the fuel storage chamber 76 through the ejection hole h2, the outlet passage 60c, and the metering hole h1, and the inflow regulating valve 80 is opened. The fuel can be supplied from the fuel tank 98 to the carburetor 60. The supplied fuel is supplied to the fuel storage chamber 76 according to the remaining state of the fuel.
 ここで、掃気ポートP22の閉塞が維持されることから、燃料充填制御の間にキャブレタ60からエンジン10の燃焼室内に燃料が供給されることはなく、エンジン10に対する燃料の過剰供給を回避し、失火を防止することができる。 Here, since the closing of the scavenging port P22 is maintained, fuel is not supplied from the carburetor 60 into the combustion chamber of the engine 10 during the fuel filling control, and an excessive supply of fuel to the engine 10 is avoided. Misfire can be prevented.
 燃料充填制御におけるクランクシャフト12の往復回数は、キャブレタ60における燃料の残留状況に応じて適宜設定することが可能である。例えば、キャブレタ60の内部(例えば、燃料貯留室76)及び燃料タンク98からキャブレタ60までの燃料配管等における燃料の残存量が最も少ない条件に適合させる。 The number of reciprocations of the crankshaft 12 in the fuel filling control can be appropriately set according to the residual state of fuel in the carburetor 60. For example, it is adapted to the condition in which the remaining amount of fuel is the smallest in the interior of the carburetor 60 (for example, the fuel storage chamber 76) and the fuel piping from the fuel tank 98 to the carburetor 60.
 本実施形態では、クランクシャフト12をクランク角Cr1からCr2の位置に回転させる際に、ピストン22の冠面が排気ポートP3の上縁よりも下方に位置するまで回転させ、排気ポートP3の一部を開放させている。これにより、ピストン22の往復移動距離を拡大させ、クランクケース16内により大きな圧力変動を生じさせつつ、シリンダ14内での圧縮による反力作用を軽減し、電動モータ40に対する負荷を低減することが可能となる。しかし、これに限らず、ピストン22の冠面が排気ポートP3の上縁よりも上方に位置するクランク角Cr2’までの範囲でクランクシャフト12を回転させるようにしてもよい。図8は、クランクシャフト12がクランク角Cr2’の位置にあるときのピストン22を、二点鎖線によって示している。 In the present embodiment, when the crankshaft 12 is rotated from the crank angle Cr1 to the position of Cr2, it is rotated until the crown surface of the piston 22 is positioned below the upper edge of the exhaust port P3, and a part of the exhaust port P3 is rotated. Is open. As a result, the reciprocating distance of the piston 22 is increased, a large pressure fluctuation is generated in the crankcase 16, the reaction force action due to compression in the cylinder 14 is reduced, and the load on the electric motor 40 can be reduced. It becomes possible. However, the present invention is not limited to this, and the crankshaft 12 may be rotated in a range up to the crank angle Cr2 'where the crown surface of the piston 22 is located above the upper edge of the exhaust port P3. FIG. 8 shows the piston 22 by a two-dot chain line when the crankshaft 12 is at the crank angle Cr2 '.
 図9及び10に示す始動燃料供給制御において、電動モータ40は、クランクシャフト12を前述のクランク角Cr1~Cr2よりも広いクランク角Cr3~Cr4の範囲に亘って正転及び逆転方向に交互に回転させ、クランクケース16内に生じた圧力変動をキャブレタ60のポンプ駆動圧力室72に波及させるとともに、これを吸気通路102にも波及させる。これにより、キャブレタ60を通過した空気と燃料との混合気がクランクケース16内に供給される。 In the starting fuel supply control shown in FIGS. 9 and 10, the electric motor 40 rotates the crankshaft 12 alternately in the forward and reverse directions over the range of the crank angles Cr3 to Cr4 wider than the crank angles Cr1 to Cr2. Then, the pressure fluctuation generated in the crankcase 16 is propagated to the pump drive pressure chamber 72 of the carburetor 60 and is also propagated to the intake passage 102. As a result, the air-fuel mixture that has passed through the carburetor 60 is supplied into the crankcase 16.
 具体的には、クランクシャフト12を、ピストン22の下面が吸気ポートP1の下縁よりも上方に位置し、吸気ポートP1の一部がクランクケース16内に開口するクランク角Cr3の位置まで逆転方向に回転させるとともに、これに続いて正転に転じさせ、ピストン22の冠面が掃気ポートP22の上縁よりも下方に位置し、掃気ポートP22の一部がシリンダ14内に開口するクランク角Cr4の位置まで正転方向に回転させる。このクランク角Cr3及びCr4の間での往復回転は、シリンダ14内に点火可能な混合気が形成されるまで繰り返される。本実施形態において、掃気ポートP22を開口させるクランク角Cr4の位置は、「第3の位置」に相当し、クランク角Cr2(第1の位置)におけるよりもピストン22を下死点に近付ける。一方で、吸気ポートP1を開口させるクランク角Cr3の位置は、「第2の位置」に相当し、クランク角Cr1におけるよりもピストン22を上死点に近付ける。 Specifically, the crankshaft 12 is rotated in the reverse direction to the crank angle Cr3 where the lower surface of the piston 22 is positioned above the lower edge of the intake port P1 and a part of the intake port P1 opens into the crankcase 16. And a forward rotation, and the crown surface of the piston 22 is located below the upper edge of the scavenging port P22, and a crank angle Cr4 at which a part of the scavenging port P22 opens into the cylinder 14 is provided. Rotate in the forward direction to the position. The reciprocating rotation between the crank angles Cr3 and Cr4 is repeated until an ignitable air-fuel mixture is formed in the cylinder 14. In the present embodiment, the position of the crank angle Cr4 that opens the scavenging port P22 corresponds to the “third position”, and brings the piston 22 closer to the bottom dead center than at the crank angle Cr2 (first position). On the other hand, the position of the crank angle Cr3 that opens the intake port P1 corresponds to a “second position”, and brings the piston 22 closer to the top dead center than at the crank angle Cr1.
 このように、クランクシャフト12を吸気ポートP1が開口するまで一方向に回転させた後、これとは逆方向に掃気ポートP22が開口するまで回転させることで、クランクケース16内に混合気を吸入し、クランクケース16内から掃気通路104を通じてシリンダ14内に混合気を供給することができる。 As described above, the crankshaft 12 is rotated in one direction until the intake port P1 is opened, and then rotated in the opposite direction until the scavenging port P22 is opened, whereby the air-fuel mixture is sucked into the crankcase 16. In addition, the air-fuel mixture can be supplied from the crankcase 16 into the cylinder 14 through the scavenging passage 104.
 ここで、先の燃料充填制御によってキャブレタ60に充分な量の燃料が確保されていることから、始動燃料供給制御におけるクランクシャフト12の往復回数を一定に設定したとしても、次の点火に際して燃焼室Cに形成される圧縮混合気の濃度にばらつきが生じるのを抑制し、失火を防止し、エンジン10を確実に始動させることができる。換言すれば、エンジン10の始動に必要な量の燃料を供給するのに要する往復回数にばらつきが生じるのを抑制することができる。 Here, since a sufficient amount of fuel is secured in the carburetor 60 by the previous fuel filling control, even if the number of reciprocations of the crankshaft 12 in the starting fuel supply control is set to be constant, Variation in the concentration of the compressed air-fuel mixture formed in C can be suppressed, misfire can be prevented, and the engine 10 can be started reliably. In other words, it is possible to suppress variation in the number of reciprocations required to supply an amount of fuel necessary for starting the engine 10.
 図11において、電動モータ40は、クランクシャフト12を、ピストン22が上死点前の所定の位置に到達するクランク角Cr5の位置まで逆転方向に回転させる。クランクシャフト12がクランク角Cr5の位置に至る過程で、掃気ポートP22及び排気ポートP3がピストン22の周側面によって閉塞され、燃焼室Cに圧縮混合気が形成される。 In FIG. 11, the electric motor 40 rotates the crankshaft 12 in the reverse direction to the position of the crank angle Cr5 at which the piston 22 reaches a predetermined position before the top dead center. In the process in which the crankshaft 12 reaches the crank angle Cr5, the scavenging port P22 and the exhaust port P3 are closed by the peripheral side surface of the piston 22, and a compressed mixture is formed in the combustion chamber C.
 本実施形態において、クランク角Cr5は、エンジン10の始動時における点火タイミングを定める角度に設定されており、クランクシャフト12がクランク角Cr5の位置に到達した時点で点火プラグ34が作動し、燃焼室Cの圧縮混合気に対する点火が実行される。電動モータ40は、点火に同期してクランクシャフト12の回転駆動を停止する。これにより、ピストン22は、燃料の体積膨張によって上記所定の位置から押し下げられ、クランクシャフト12は、クランク角Cr5の位置から正転に転じ、正転方向の回転を開始する。 In the present embodiment, the crank angle Cr5 is set to an angle that determines the ignition timing at the start of the engine 10, and when the crankshaft 12 reaches the position of the crank angle Cr5, the spark plug 34 is activated, and the combustion chamber Ignition of the C compressed mixture is performed. The electric motor 40 stops the rotational drive of the crankshaft 12 in synchronization with the ignition. As a result, the piston 22 is pushed down from the predetermined position by the volume expansion of the fuel, and the crankshaft 12 starts to rotate forward from the position of the crank angle Cr5 and starts rotating in the forward rotation direction.
 回転変動が大きく、点火後最初の上死点を良好に通過することができない場合は、上死点前に電動モータ40を再度駆動し、クランクシャフト12に対して正転方向のアシストトルクを生じさせるようにしてもよい。これにより、フライホイルの機能を電動モータ40によって兼ねることができる。 If the rotational fluctuation is large and the first top dead center after ignition cannot be satisfactorily passed, the electric motor 40 is driven again before the top dead center, and assist torque in the forward direction is generated with respect to the crankshaft 12. You may make it make it. Thereby, the function of the flywheel can be shared by the electric motor 40.
 本実施形態では、クランクシャフト12を到達させる上死点前の位置Cr5を点火タイミングに対応させて設定し、点火に同期させて電動モータ40の回転駆動を停止するようにしたが、これに限らず、クランクシャフト12の実際の回転速度を検出する構成(例えば、ロータ位置検出回路)を備える場合は、点火に際してクランクシャフト12を回転させる位置を予め設定しておき、電動モータ40によってクランクシャフト12をこの所定の位置まで回転させた後、クランクシャフト12の回転停止に同期して点火プラグ34を作動させるようにしてもよい。 In the present embodiment, the position Cr5 before the top dead center at which the crankshaft 12 is reached is set in correspondence with the ignition timing, and the rotational drive of the electric motor 40 is stopped in synchronization with the ignition. First, when a configuration (for example, a rotor position detection circuit) for detecting the actual rotational speed of the crankshaft 12 is provided, a position for rotating the crankshaft 12 at the time of ignition is set in advance, and the electric motor 40 causes the crankshaft 12 to rotate. Then, the spark plug 34 may be operated in synchronization with the rotation of the crankshaft 12 being stopped.
 このように、本実施形態によれば、電動モータ40によってクランクシャフト12を正転及び逆転方向に交互に回転させることで、クランクケース16内に圧力変動を生じさせ、この圧力変動をキャブレタ60のポンプ駆動圧力室72に波及させることで、ダイヤフラム68を動作させ、燃料タンク98からキャブレタ60に燃料を供給することが可能となる。従って、エンジン10の始動に際して充分な量の燃料をキャブレタ60に確保することができる。 Thus, according to the present embodiment, the crankshaft 12 is alternately rotated in the forward and reverse directions by the electric motor 40 to cause pressure fluctuation in the crankcase 16, and this pressure fluctuation is applied to the carburetor 60. By spilling over the pump drive pressure chamber 72, the diaphragm 68 can be operated, and fuel can be supplied from the fuel tank 98 to the carburetor 60. Therefore, a sufficient amount of fuel can be secured in the carburetor 60 when the engine 10 is started.
 キャブレタ60に燃料を供給した後、吸気ポートP1と掃気ポートP22とが交互に開口するようにクランクシャフト12を前後交互に回転させることで、キャブレタ60を介してクランクケース16内に混合気を供給し、更にこの混合気を、掃気通路104を通じてシリンダ14内に供給することができる。 After the fuel is supplied to the carburetor 60, the air-fuel mixture is supplied into the crankcase 16 through the carburetor 60 by rotating the crankshaft 12 back and forth alternately so that the intake ports P1 and the scavenging ports P22 open alternately. Further, this air-fuel mixture can be supplied into the cylinder 14 through the scavenging passage 104.
 そして、クランクシャフト12を逆転方向に回転させて、シリンダ14内の混合気を圧縮し、クランクシャフト12が上死点前の位置に到達した時点で点火することで、エンジン10の始動に燃料の体積膨張力を利用することが可能となる。従って、エンジン10を確実に始動させるとともに、これまで始動モータ等によって行っていたクランキングを不要として、電動モータ40の小型省力化が可能となる。 Then, the crankshaft 12 is rotated in the reverse direction to compress the air-fuel mixture in the cylinder 14 and ignited when the crankshaft 12 reaches a position before the top dead center. It becomes possible to utilize the volume expansion force. Therefore, the engine 10 can be reliably started, and the cranking that has been performed by the starter motor or the like is unnecessary, so that the electric motor 40 can be reduced in size and labor can be saved.
 本実施形態では、エンジン10の始動に際して行われる上記一連の制御において、ピストン22に上死点を通過させる必要がないので、より小型省力型の電動モータ40を採用することができる。 In the present embodiment, since it is not necessary to pass the top dead center through the piston 22 in the above-described series of controls performed when the engine 10 is started, a smaller and labor-saving electric motor 40 can be employed.
 図12は、本発明の他の実施形態に係る燃料供給装置を構成するキャブレタ60の概略的な構成を、図2と同様な縦方向断面によって示している。
 先の実施形態では、燃料タンク98からキャブレタ60への燃料の供給(充填)をクランクシャフト12の往復回転によって実現したが、本実施形態では、プライミングポンプ90によってこれを実現している。プライミングポンプ90及びその周辺以外の構成は、先の実施形態におけると同様である。
FIG. 12 shows a schematic configuration of a carburetor 60 that constitutes a fuel supply device according to another embodiment of the present invention, in the same longitudinal section as that of FIG.
In the previous embodiment, the supply (filling) of fuel from the fuel tank 98 to the carburetor 60 is realized by the reciprocating rotation of the crankshaft 12, but in the present embodiment, this is realized by the priming pump 90. The configuration other than the priming pump 90 and its periphery is the same as in the previous embodiment.
 エンジン10の始動に際して作業者がプライミングポンプ90のスポイド92を押し潰し、更にこれを復元させると、傘型弁94の傘部94aによって具現される逆止弁がスポイド容積の増大に伴って吸入通路90aを開放し、燃料貯留室76の燃料蒸気及び空気を、この吸入通路90aを通じてスポイド92内に流入させる。そして、作業者が次にスポイド92を押し潰すことで、傘型弁94の軸部94bによって具現される逆止弁が吐出通路90bを開放し、スポイド92内の燃料蒸気等を燃料タンク98に還流させる。このような動作を繰り返すことで、燃料貯留室76に負圧が発達し、流入規制弁80が開弁して、燃料タンク98からキャブレタ60(燃料貯留室76)に燃料が供給される。 When the operator crushes the spoid 92 of the priming pump 90 at the time of starting the engine 10 and further restores it, the check valve embodied by the umbrella portion 94a of the umbrella-type valve 94 is inhaled as the volume of the spoid increases. 90a is opened, and the fuel vapor and air in the fuel storage chamber 76 are caused to flow into the spoid 92 through the suction passage 90a. Then, when the operator next crushes the spoid 92, the check valve embodied by the shaft portion 94b of the umbrella valve 94 opens the discharge passage 90b, and the fuel vapor or the like in the spoid 92 is transferred to the fuel tank 98. Reflux. By repeating such an operation, a negative pressure develops in the fuel storage chamber 76, the inflow regulating valve 80 is opened, and fuel is supplied from the fuel tank 98 to the carburetor 60 (fuel storage chamber 76).
 キャブレタ60に燃料を充填した後の制御は、先の実施形態におけると同様(始動燃料供給制御、点火始動制御)であってよい。具体的には、クランクシャフト12をクランク角Cr3の位置とクランク角Cr4の位置との間で往復させて、シリンダ14内に混合気を供給した後、クランクシャフト12を上死点前の位置Cr5まで逆転方向に回転させ、燃焼室Cの圧縮混合気に点火する。 The control after filling the carburetor 60 with fuel may be the same as in the previous embodiment (starting fuel supply control, ignition starting control). Specifically, after the crankshaft 12 is reciprocated between the crank angle Cr3 position and the crank angle Cr4 position to supply the air-fuel mixture into the cylinder 14, the crankshaft 12 is moved to a position Cr5 before top dead center. Until the compression mixture in the combustion chamber C is ignited.
 本実施形態によれば、エンジン10の始動に際してシリンダ14内に混合気を予め形成し、燃料の体積膨張力を利用して始動させることが可能となるので、これまで始動モータ等によって行っていたクランキングが不要となり、電動モータ40の小型省力化が可能となる。 According to the present embodiment, when the engine 10 is started, an air-fuel mixture is formed in advance in the cylinder 14 and can be started using the volume expansion force of the fuel. Cranking is not necessary, and the electric motor 40 can be reduced in size and labor.
 本実施形態では、キャブレタ60の本体上側壁部と、ダイヤフラム68と、逆止弁v1及びv2と、によってキャブレタ60の「ダイヤフラムポンプ」が構成され、コントロールユニット150及びプライミングポンプ90によって「始動燃料供給装置」が構成される。 In the present embodiment, a “diaphragm pump” of the carburetor 60 is configured by the main body upper side wall portion of the carburetor 60, the diaphragm 68, and the check valves v 1 and v 2, and “starting fuel supply” is performed by the control unit 150 and the priming pump 90. Device "is configured.
 以上の説明では、ピストン22を上死点に近付ける場合のクランクシャフト12の回転方向を逆転方向とし、逆に遠ざける場合の回転方向を正転方向とした。このような設定によれば、点火に際してクランクシャフト12を上死点前の位置に到達させる際の回転角度が小さくて済むので、エンジン10の始動に要する時間を短縮することが可能である。しかし、回転方向の正逆は、ピストン22を上死点に近付ける場合を正転方向とし、遠ざける場合を逆転方向としてもよい。この場合は、例えば、図7に示す例に対し、クランクシャフト12が、シリンダ14の中心軸を基準とした鏡面対称の位置を往復することになる。 In the above description, the rotation direction of the crankshaft 12 when the piston 22 is brought close to top dead center is defined as the reverse rotation direction, and the rotation direction when the piston 22 is moved away from it is defined as the normal rotation direction. According to such setting, since the rotation angle when the crankshaft 12 reaches the position before the top dead center at the time of ignition is small, the time required for starting the engine 10 can be shortened. However, the forward / reverse rotation direction may be the forward rotation direction when the piston 22 is brought close to the top dead center, and the reverse rotation direction when the piston 22 is moved away. In this case, for example, with respect to the example shown in FIG. 7, the crankshaft 12 reciprocates at a mirror-symmetrical position with respect to the central axis of the cylinder 14.
 エンジンには、4ストロークエンジンを採用することもできる。この場合は、エンジンの始動に際し、吸気弁が閉弁するクランク角の範囲(例えば、排気行程)でクランクシャフトを正転及び逆転方向に交互に回転させ、クランクケース内に生じた圧力変動を、キャブレタに備わるダイヤフラムポンプに作用させる。そして、クランクシャフトの往復回転を、ピストンの到達範囲を変更させて継続し、吸気ポートを介して混合気をシリンダ内に供給した後、クランクシャフトを圧縮上死点前の所定の位置まで逆転方向に回転させ、点火する。 ∙ A 4-stroke engine can be used as the engine. In this case, when starting the engine, the crankshaft is alternately rotated in the normal rotation direction and the reverse rotation direction in the range of the crank angle (for example, the exhaust stroke) at which the intake valve is closed, and the pressure fluctuation generated in the crankcase is It acts on the diaphragm pump provided in the carburetor. Then, the reciprocating rotation of the crankshaft is continued by changing the reach range of the piston, and after the air-fuel mixture is supplied into the cylinder via the intake port, the crankshaft is reversely rotated to a predetermined position before the compression top dead center. Turn on and ignite.

Claims (12)

  1.  燃料タンクと、
     エンジンのクランクケース内に生じる圧力変動を受けて駆動するダイヤフラムポンプを備えるキャブレタと、
     エンジンのクランクシャフトに連結した電動モータと、
     エンジンの始動に際し、前記電動モータによって前記クランクシャフトを正転及び逆転方向に交互に回転させて前記クランクケース内の圧力変動を生じさせ、前記燃料タンクに貯えられた燃料を、前記キャブレタを介してエンジンに供給する始動燃料供給装置と、
     を含んで構成されるエンジンの燃料供給装置。
    A fuel tank,
    A carburetor including a diaphragm pump that is driven in response to pressure fluctuations generated in an engine crankcase;
    An electric motor connected to the crankshaft of the engine;
    When starting the engine, the electric motor alternately rotates the crankshaft in the forward and reverse directions to cause pressure fluctuations in the crankcase, and the fuel stored in the fuel tank is passed through the carburetor. A starting fuel supply device for supplying the engine;
    An engine fuel supply device comprising:
  2.  前記エンジンが2ストロークエンジンであって、
     前記始動燃料供給装置は、ピストンの冠面が掃気ポートよりも上死点側にある第1の位置と、前記ピストンの下面が吸気ポートよりも上死点側にあり、前記ピストンの冠面が前記第1の位置におけるよりも上死点に近付く第2の位置と、の間で前記クランクシャフトを回転させることで燃料をエンジンに供給する、
     請求項1に記載のエンジンの燃料供給装置。
    The engine is a two-stroke engine;
    The starting fuel supply device includes a first position where a crown surface of the piston is on a top dead center side with respect to a scavenging port, a bottom surface of the piston is on a top dead center side with respect to an intake port, and the crown surface of the piston is Supplying fuel to the engine by rotating the crankshaft between a second position closer to top dead center than in the first position;
    The engine fuel supply device according to claim 1.
  3.  前記クランクシャフトが前記第1の位置にあるときに、排気ポートの少なくとも一部が開口する、請求項2に記載のエンジンの燃料供給装置。 The fuel supply device for an engine according to claim 2, wherein at least a part of the exhaust port is opened when the crankshaft is in the first position.
  4.  前記始動燃料供給装置は、前記第1及び第2の位置の間で前記クランクシャフトを回転させた後、前記第1の位置におけるよりも前記ピストンの冠面が下死点に近付き、前記掃気ポートの少なくとも一部が開口する第3の位置と、前記ピストンの冠面が前記掃気ポートよりも上死点側にあり、前記吸気ポートの少なくとも一部が開口する第2の位置と、の間で前記クランクシャフトを回転させることで燃料をエンジンに供給する、
     請求項2に記載のエンジンの燃料供給装置。
    The starter fuel supply device rotates the crankshaft between the first and second positions, and then the crown surface of the piston comes closer to bottom dead center than in the first position, and the scavenging port Between the third position where at least a part of the intake port is opened and the second position where the crown surface of the piston is on the top dead center side with respect to the scavenging port, and at least a part of the intake port is opened. Supplying fuel to the engine by rotating the crankshaft;
    The fuel supply device for an engine according to claim 2.
  5.  前記第3及び第4の位置の間で前記クランクシャフトを回転させた後、前記クランクシャフトを圧縮上死点前の所定の位置まで逆転方向に回転させる、請求項4に記載のエンジンの燃料供給装置。 The engine fuel supply according to claim 4, wherein the crankshaft is rotated between the third and fourth positions, and then the crankshaft is rotated in a reverse direction to a predetermined position before compression top dead center. apparatus.
  6.  前記所定の位置は、エンジンの始動時における点火タイミングに対応する、請求項5に記載のエンジンの燃料供給装置。 The engine fuel supply device according to claim 5, wherein the predetermined position corresponds to an ignition timing at the time of starting the engine.
  7.  前記クランクシャフトを前記所定の位置まで回転させた後、前記クランクシャフトの回転停止に同期して、供給された燃料の混合気に点火する、請求項5に記載のエンジンの燃料供給装置。 The engine fuel supply device according to claim 5, wherein after the crankshaft is rotated to the predetermined position, an air-fuel mixture of the supplied fuel is ignited in synchronization with the rotation stop of the crankshaft.
  8.  前記エンジンが2ストロークエンジンであって、
     前記始動燃料供給装置は、
     前記燃料タンクに貯えられた燃料を前記ダイヤフラムポンプによらずに前記キャブレタに供給するプライミングポンプを備え、
     ピストンの冠面が掃気ポートの上縁及び吸気ポートの上縁の間にあり、前記掃気ポートの少なくとも一部が開口する第3の位置と、前記ピストンの冠面が前記掃気ポートよりも上死点側にあり、前記吸気ポートの少なくとも一部が開口する第2の位置と、の間で前記クランクシャフトを回転させることで燃料をエンジンに供給する、
     請求項1に記載のエンジンの燃料供給装置。
    The engine is a two-stroke engine;
    The starting fuel supply device includes:
    A priming pump for supplying the fuel stored in the fuel tank to the carburetor without using the diaphragm pump;
    A crown position of the piston is between the upper edge of the scavenging port and an upper edge of the intake port; and a third position where at least a part of the scavenging port is open; and the crown face of the piston is dead from the scavenging port Fuel is supplied to the engine by rotating the crankshaft between a second position on the point side and at least a portion of the intake port opening;
    The engine fuel supply device according to claim 1.
  9.  前記第3及び第2の位置の間で前記クランクシャフトを回転させた後、前記クランクシャフトを圧縮上死点前の所定の位置まで逆転方向に回転させる、請求項8に記載のエンジンの燃料供給装置。 9. The fuel supply for an engine according to claim 8, wherein after the crankshaft is rotated between the third and second positions, the crankshaft is rotated in a reverse direction to a predetermined position before the compression top dead center. apparatus.
  10.  前記所定の位置は、エンジンの始動時における点火タイミングに対応する、請求項9に記載のエンジンの燃料供給装置。 10. The engine fuel supply apparatus according to claim 9, wherein the predetermined position corresponds to an ignition timing when the engine is started.
  11.  前記クランクシャフトを前記所定の位置まで回転させた後、前記クランクシャフトの回転停止に同期して、供給された燃料の混合気に点火する、請求項9に記載のエンジンの燃料供給装置。 The engine fuel supply device according to claim 9, wherein the fuel mixture of the supplied fuel is ignited in synchronization with the rotation of the crankshaft after the crankshaft is rotated to the predetermined position.
  12.  請求項1~11のいずれか1つに記載の燃料供給装置を備えるエンジンを含んで構成された、前記エンジンを駆動源とする携帯作業機。 A portable work machine including the engine including the fuel supply device according to any one of claims 1 to 11 and using the engine as a drive source.
PCT/JP2013/067264 2012-06-29 2013-06-24 Fuel supply device for engine, and portable working machine WO2014002957A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-147742 2012-06-29
JP2012147742A JP2015172330A (en) 2012-06-29 2012-06-29 Engine fuel supply device

Publications (1)

Publication Number Publication Date
WO2014002957A1 true WO2014002957A1 (en) 2014-01-03

Family

ID=49783103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067264 WO2014002957A1 (en) 2012-06-29 2013-06-24 Fuel supply device for engine, and portable working machine

Country Status (2)

Country Link
JP (1) JP2015172330A (en)
WO (1) WO2014002957A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02211364A (en) * 1989-02-08 1990-08-22 Walbro Far East Inc Starting fuel feeding device for carburetor
JP2005155392A (en) * 2003-11-25 2005-06-16 Zama Japan Co Ltd Start device for diaphragm type carburetor
JP2008019828A (en) * 2006-07-14 2008-01-31 Kokusan Denki Co Ltd Engine starting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02211364A (en) * 1989-02-08 1990-08-22 Walbro Far East Inc Starting fuel feeding device for carburetor
JP2005155392A (en) * 2003-11-25 2005-06-16 Zama Japan Co Ltd Start device for diaphragm type carburetor
JP2008019828A (en) * 2006-07-14 2008-01-31 Kokusan Denki Co Ltd Engine starting device

Also Published As

Publication number Publication date
JP2015172330A (en) 2015-10-01

Similar Documents

Publication Publication Date Title
US9534528B2 (en) Internal combustion engine with fuel system
JP2010180775A (en) Fuel supply system for engine
JP2001193610A (en) Mixture generator
US20150047593A1 (en) Method for starting a combustion engine having a starter apparatus
US7257993B2 (en) Method of operating a single cylinder two-stroke engine
WO2014002951A1 (en) Power device, and portable working machine provided therewith
WO2021177010A1 (en) Two-cycle internal combustion engine and engine work machine
US20140299098A1 (en) Method for operating an internal combustion engine
WO2014002957A1 (en) Fuel supply device for engine, and portable working machine
WO2021176813A1 (en) Two-cycle internal combustion engine and engine work machine
US6601550B2 (en) Method for operating a two-stroke engine
JP5934588B2 (en) Power unit for portable work machine
US10774765B2 (en) Method for starting a combustion engine having a starter apparatus
US11168593B2 (en) Four stroke engine, handheld work apparatus having a four stroke engine, and method for operating a four stroke engine
JP2012177336A (en) Engine, and engine working machine including the same
US11913371B2 (en) Air-leading type stratified scavenging two-stroke internal combustion engine, and engine working machine
JPS63248934A (en) Overspeed limiting device for internal combustion engine
JP2007315254A (en) Fuel-air mixture generating device
US6976458B2 (en) Two-stroke engine
JP2014020314A (en) Two-cycle engine and engine work machine including the same
JP2012077640A (en) Two-cycle engine, and portable working machine including the same
JP4594348B2 (en) Crank chamber pre-compression type 2-cycle gasoline engine controller
JPS63255532A (en) Overspeed preventive device for internal combustion engine
WO2024123225A1 (en) Method of restricting rotational speed of an engine of a handheld power tool, control arrangement, and handheld power tool
JPH0476025B2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13808701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13808701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP