WO2014002799A1 - Solid oxide fuel cell system - Google Patents

Solid oxide fuel cell system Download PDF

Info

Publication number
WO2014002799A1
WO2014002799A1 PCT/JP2013/066488 JP2013066488W WO2014002799A1 WO 2014002799 A1 WO2014002799 A1 WO 2014002799A1 JP 2013066488 W JP2013066488 W JP 2013066488W WO 2014002799 A1 WO2014002799 A1 WO 2014002799A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
fuel cell
power supply
load
self
Prior art date
Application number
PCT/JP2013/066488
Other languages
French (fr)
Japanese (ja)
Inventor
拓雄 西山
和博 井上
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Priority to JP2014522544A priority Critical patent/JP6208660B2/en
Publication of WO2014002799A1 publication Critical patent/WO2014002799A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • H01M8/04679Failure or abnormal function of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04619Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/0494Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • H02J3/144Demand-response operation of the power transmission or distribution network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04589Current of fuel cell stacks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/58The condition being electrical
    • H02J2310/60Limiting power consumption in the network or in one section of the network, e.g. load shedding or peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/248UPS systems or standby or emergency generators

Definitions

  • the present invention relates to a solid oxide fuel cell system including a solid oxide fuel cell (SOFC) that uses a solid oxide as an electrolyte and can generate power efficiently at high temperatures, and more particularly, a system connected to a system power source.
  • SOFC solid oxide fuel cell
  • the present invention relates to a solid oxide fuel cell system capable of interconnected operation and independent operation separated from a system power source.
  • Patent Document 1 discloses an emergency response type fuel cell system. This can be used by connecting a power source by distributed generation close to the power demand location to the commercial power source, and can be operated independently or activated even when disconnected from the commercial power source. Therefore, it is possible to avoid a short circuit accident such as a disaster and to supply power to the home, and to appropriately consume surplus power due to fluctuations in the power consumption of the home and perform safe driving.
  • the present invention takes into account not only the simple size of the load but also the time factor, so that the optimum overload It is an object of the present invention to provide a solid oxide fuel cell system that can be controlled.
  • a solid oxide fuel cell system includes a solid oxide fuel cell that generates electricity by an electrochemical reaction between a fuel and an oxidant, a power conditioner provided on the output side of the fuel cell, the fuel cell, And a control device that controls the power conditioner and can switch between a grid interconnection operation by interconnection with a grid power supply and a self-sustained operation disconnected from the grid power supply.
  • control device detects an overload state based on the magnitude and duration of the load during the independent operation, and an overload control unit that stops power supply to the external load in the overload state. It was set as the structure provided.
  • the overload control unit includes a load power detection unit that detects load power during a self-sustained operation, and a state in which the load power during the self-sustained operation exceeds a predetermined power threshold for a first predetermined time or longer. And a first power supply stop unit that stops power supply to the external load.
  • a plurality of the power threshold values may be set in stages, and the first predetermined time may be set to be shorter as the power threshold value is larger corresponding to each of the plurality of power threshold values. .
  • the overload control unit includes a current detection unit that detects an input current to the power conditioner during a self-sustained operation, and a state in which the input current exceeds a predetermined current threshold. And a second power supply stop unit that stops the power supply to the external load when it continues for a predetermined time or more.
  • a plurality of the current threshold values are also set in stages, and the second predetermined time is set to be shorter as the current threshold value is larger corresponding to each of the plurality of current threshold values. Good.
  • the overload control unit includes a voltage detection unit that detects a boosted voltage in the power conditioner during the independent operation, and a state in which the boosted voltage is lower than a predetermined voltage threshold. And a third power supply stop unit that stops the power supply to the external load when it continues for a predetermined time or more.
  • a plurality of voltage thresholds are also set in stages, and the third predetermined time is set to be shorter as the voltage threshold is smaller corresponding to each of the plurality of voltage thresholds. Good.
  • the power conditioner includes a self-supporting output line that supplies power to an external load from the output side of the inverter that converts direct current power to alternating current power, and a self-supporting output relay that conducts and shuts off the self-supporting output line.
  • the overload control unit (its power supply stop unit) stops the operation of the inverter simultaneously with or prior to the off command to the self-sustained output relay when stopping the power supply to the external load. The operation of the inverter is resumed after the self-sustained output relay is turned off.
  • an overload state is detected based on the magnitude and duration of the load during autonomous operation, and more specifically, when the load is overloaded, the load power during autonomous operation is a predetermined power.
  • the state in which the threshold value is exceeded continues for a predetermined time or longer, the power supply to the external load is stopped, so that not only the size of the load but also the time factor can be considered. If it is due to an inrush current at a level that does not cause a problem, it is possible to widen the range of use of the electric product without overload determination.
  • the power supply to the external load is stopped, and the input current is monitored to It can respond quickly to the load.
  • the power supply to the external load is stopped, and the boosted voltage is monitored to It can respond quickly to the load.
  • FIG. 1 is a configuration diagram of a solid oxide fuel cell system showing an embodiment of the present invention.
  • Flow chart of mode switching control Flow chart of independent operation mode Diagram showing Control Example 1 Diagram showing control example 2 Flow chart of self-sustained operation mode shown as another embodiment (part 1) Same flowchart (2)
  • FIG. 1 is a configuration diagram of a solid oxide fuel cell system showing an embodiment of the present invention.
  • the home (stationary) fuel cell system includes a hot water storage unit in addition to a power generation unit as a cogeneration system, but only the power generation unit is shown in the figure.
  • the solid oxide fuel cell system (power generation unit) of this embodiment includes a solid oxide fuel cell (SOFC) 1, a power conditioner (PCS) 2, and a control device 100.
  • SOFC solid oxide fuel cell
  • PCS power conditioner
  • the solid oxide fuel cell (SOFC) 1 is an assembly (cell stack) of a plurality of solid oxide fuel cells. Each fuel cell has a fuel electrode (anode), an oxidant electrode (cathode), and an electrolyte layer disposed therebetween. A hydrogen-containing fuel is supplied to the fuel electrode, and air (including oxygen) is supplied to the oxidant electrode as an oxidant.
  • the electrolyte layer is formed of a solid oxide such as zirconia ceramics.
  • a solid oxide fuel cell (SOFC) 1 in which an electrolyte layer is formed of a solid oxide can generate electric power at high temperature with high efficiency, and is based on continuous operation.
  • a hydrocarbon-based fuel for example, city gas, LPG, kerosene, methanol, biofuel, etc.
  • a hydrocarbon-based fuel for example, city gas, LPG, kerosene, methanol, biofuel, etc.
  • a fuel reformer that generates a hydrogen-rich reformed gas by reforming by a quality reaction, a partial oxidation reaction, an autothermal reforming reaction, or the like is used, but the illustration is omitted.
  • a fuel that does not require reforming treatment for example, pure hydrogen gas, hydrogen-enriched gas, hydrogen storage agent, etc.
  • the fuel reformer itself can be omitted.
  • the power conditioner 2 extracts DC power generated in the fuel cell 1, and converts DC power into AC power. Accordingly, the power conditioner 2 includes a DC / DC converter 3 that extracts and boosts the DC power generated in the fuel cell 1, and a DC / AC inverter 4 that converts the DC power into AC power at the subsequent stage. .
  • the output side of the power conditioner 2 (the output side of the DC / AC inverter 4) is connected to the system power source 6 and the home load 7 via the system connection relay 5 via the system connection line L1. Therefore, at the time of grid connection (when the grid connection relay 5 is turned on), the generated power of the fuel cell 1 is supplied to the home load 7 via the DC / DC converter 3 and the DC / AC inverter 4, and the fuel cell.
  • the generated power of 1 is less than the demand power of the household load 7, the grid power from the grid power supply 6 is supplied to the household load 7 as a shortage.
  • auxiliary machine 8 includes equipment on the power generation unit side (pump, heater, etc.) and equipment on the hot water storage unit side.
  • the power conditioner 2 is also connected with a surplus power heater 9 as a load device for surplus power consumption.
  • the surplus power heater 9 may be either a DC heater or an AC heater, an AC heater is illustrated here.
  • the surplus power heater (AC heater) 9 is connected to the output side of the DC / AC inverter 4 via a solid state relay (SSR) 10. This surplus power heater 9 is provided for consuming surplus power to prevent reverse power flow when the generated power of the fuel cell 1 exceeds the demand power of the household load 7 during grid connection.
  • the surplus power heater 9 is used to convert surplus power into heat and warm water (hot water) in a hot water storage unit (not shown). However, heat utilization is not limited to this.
  • the control device 100 is constituted by a microcomputer and includes a CPU, a ROM, a RAM, an input / output interface, and the like. This control device 100 controls the generated power of the fuel cell 1 according to the demand power of the household load 7 during grid connection, and the power conditioner 2 (DC / DC converter 3, DC / AC inverter) in accordance with this. 4. Solid state relay 10 etc.) are controlled. Data can be transmitted to and received from the power conditioner 2.
  • the power meter (current transformer) 11 for measuring the power supplied from the system power supply 6 to the home load 7 and the power conditioner 2 is supplied to the home load 7.
  • a power meter 12 that measures the power to be used is used.
  • Control of generated power by the control device 100 is performed by controlling the amount of fuel and air supplied to the fuel cell 1. In many cases, since a fuel reformer is provided, the control of the fuel supply amount controls the amount of fuel supplied to the fuel reformer.
  • control device 100 controls the supply amounts of fuel and air according to the generated power target value of the fuel cell 1 set according to the demand power of the household load 7 (so as to obtain the generated power target value). Thus, the generated power of the fuel cell 1 is controlled.
  • the control device 100 also controls the power conditioner 2 in parallel with the control of the power generated by the fuel cell 1. Specifically, based on the generated power target value of the fuel cell 1, the current taken out from the fuel cell 1 is set and controlled. More specifically, the target value of power generated by the fuel cell 1 is divided by the output voltage of the fuel cell 1, a current target value is set, and the current (sweep current) taken out from the fuel cell 1 is controlled according to this current target value. .
  • the solid oxide fuel cell system of the present embodiment is capable of system interconnection operation by interconnection with the system power supply 6 and independent operation (system disconnection operation) separated from the system power supply 6.
  • an external power supply 13 can be connected to the power conditioner 2.
  • the external power source 13 for example, a car battery (DC12V) is assumed. Therefore, a dedicated DC / DC converter 14 is provided in parallel with the DC / DC converter 3 on the input side of the DC / AC inverter 4 in the power conditioner 2, and an appropriate connector is provided on the input side of the DC / DC converter 14.
  • the external power supply 13 can be connected.
  • the power conditioner 2 also has an independent output from the DC / AC inverter 4 to the independent outlet 17 via the independent start relay 15 and the independent output relay 16 separately from the grid connection line L1 as an output line during the independent operation.
  • a line L2 is provided.
  • a branch line is provided from the connection point between the self-sustained start relay 15 and the self-sustained output relay 16, and power is supplied to the various auxiliary devices 8 of the fuel cell system through the switching relay 18 during the self-sustained operation. Yes.
  • the control device 100 receives a signal from the operation mode changeover switch 20.
  • the operation mode changeover switch 20 can be instructed by a user operation to shift from grid-connected operation to independent operation during a power failure or the like, and can also switch from autonomous operation to grid-connected operation during power recovery. Can be directed. Therefore, the control device 100 can switch between a grid interconnection operation by interconnection with the grid power supply 6 and a self-sustained operation disconnected from the grid power supply 6 according to a command from the operation mode changeover switch 20. In other words, the mode switching between the grid interconnection operation and the independent operation is not automatically performed, and the operation mode switch 20 must be operated by the user.
  • a power measuring instrument 12, an ammeter 21 and a voltmeter 22 provided in the power conditioner 2 are used for the control during the autonomous operation.
  • the power meter 12 is provided on the output side (immediately after) of the DC / AC inverter 4, and is used for load power during the self-sustaining operation (power supplied to the external load via the self-supporting dedicated outlet 17, consumed by the auxiliary machine 8. Power and power consumed by the surplus power heater 9).
  • the ammeter 21 measures the input current of the DC / DC converter 3.
  • the voltmeter 22 measures the output voltage (boost voltage) of the DC / DC converter 3. Information obtained by these is transmitted to the control device 100.
  • the external power supply 13 is connected if necessary, and the operation mode changeover switch 20 is operated to the independent operation mode side (for example, ON operation).
  • control device 100 turns off the grid interconnection relay 5 and disconnects from the grid power supply 6, while turning on the independent start relay 15 and the independent output relay 16 to switch to the independent operation. Further, the power supply line to the auxiliary machine 8 is also switched by the switching relay 18.
  • the power generated by the fuel cell 1 can be supplied to the self-supporting dedicated outlet 17 and various external loads (not shown) connected thereto can be operated.
  • the fuel cell system is configured to enter a standby state for a certain period of time (for example, 15 minutes) when a power failure is detected during operation with the system power supply 6. Smooth transition is possible.
  • the self-sustaining start relay 15 is turned on (the self-supporting output relay 16 is off), and the fuel cell 1 is started while driving the auxiliary machine 8 by the external power source 13. Then, after starting, the self-sustained output relay 16 is turned on to supply the power generated by the fuel cell 1 to the self-supporting dedicated outlet 17.
  • the control device 100 controls the generated power of the fuel cell 1 to a predetermined constant power, for example, 500 W (for a rated output of 700 W). Therefore, if the fuel cell 1 is in operation at the time of transition, the generated power is converged to 500W. At this time, when the power is lowered from 500 W to 500 W, power supply to the independent dedicated outlet 17 is started after the power is lowered to 500 W. When raising from 500 W to 500 W, power supply to the self-supporting dedicated outlet 17 is started from about 250 W. If the fuel cell 1 is stopped at the time of transition, it is activated and started up to 500W. In this case, the power supply to the self-supporting dedicated outlet 17 is started when the power is increased to about 250 W after the start of activation.
  • a predetermined constant power for example, 500 W (for a rated output of 700 W). Therefore, if the fuel cell 1 is in operation at the time of transition, the generated power is converged to 500W. At this time, when the power is lowered from 500 W to 500
  • the self-sustained operation mode when the load power exceeds a certain generated power, that is, in the case of an overload, in principle, the power supply to the external load is stopped. That is, the self-sustained output relay 16 is turned off, and the power supply to the self-supporting dedicated outlet 17 is stopped. At this time as well, power generation with a constant power (500 W) continues, and all surplus power is consumed by the surplus power heater 9.
  • the overload determination at this time is performed in consideration of the duration, and power supply is stopped in the following cases (1) to (5).
  • the power supply When the state where the output voltage (boost voltage) of the DC / DC converter 3 is lower than 300 V is continued for several ms, the power supply is stopped.
  • the self-sustained output relay 16 When the power supply to the external load is stopped, the self-sustained output relay 16 is turned off. However, since there is a delay time (several tens of ms) from the turn-off command to the self-supporting output relay 16 until the power is actually turned off, the speed is increased. If required, power supply is stopped as follows.
  • DC Stop the DC / AC inverter 4 (gate off). Thereby, power supply can be stopped immediately. However, when the DC / AC inverter 4 is stopped, power supply to the surplus power heater 9 is stopped, power generation in the fuel cell 1 is stopped, and hydrogen remains. Therefore, the DC / AC inverter 4 is stopped simultaneously with or prior to the turn-off command to the self-sustained output relay 16, and the DC / AC inverter 4 is operated after the self-sustained output relay 16 is turned off (after the delay time has elapsed). Gate on). Thereby, the power supply to the surplus power heater 9 is restarted, and the consumption of hydrogen is promoted.
  • an effective power supply stopping method for preventing an inrush current instantaneously is a procedure of gate off + relay off command ⁇ disconnection (relay off) ⁇ gate on ⁇ surplus power heater supply. It should be noted that this power supply stop method is preferably employed in the above-described power supply stop scenes (1) to (5), particularly in the scenes (4) and (5).
  • the self-sustained output relay 16 is turned on again after a predetermined time (for example, 30 seconds), and the power supply to the self-supporting dedicated outlet 17 is resumed. Then, after restarting the power supply, the load state is checked again. If the load is appropriate, the power supply is continued. If the load is overloaded, the power supply is stopped again for a certain time (30 seconds). This fixed time (30 seconds) is a waiting time in which the user expects to reduce the load.
  • the control device 100 includes a self-generated power control unit that controls the generated power of the fuel cell 1 to a predetermined constant power (500 W) during the self-sustaining operation, and surplus power that exceeds the load power during the self-sustaining operation. ) To detect the overload condition based on the surplus power consumption part consumed by the power supply and the load size and duration during independent operation, and to stop the power supply to the external load in the overload condition A section.
  • the overload control unit includes a load power detection unit that detects load power during independent operation, and an external load when a state where the load power during the autonomous operation exceeds a predetermined power threshold continues for a predetermined time or more. And a first power supply stop unit that stops power supply to the power supply.
  • a plurality of the power threshold values are set stepwise, and the predetermined time is set to be shorter as the power threshold value is larger, corresponding to each of the plurality of power threshold values.
  • the overload control unit is configured to detect a current detection unit that detects an input current to the power conditioner 2 during a self-sustaining operation, and when the input current exceeds a predetermined current threshold for a predetermined time or longer.
  • a second power supply stop unit that stops power supply to the external load.
  • the overload control unit also includes a voltage detection unit that detects a boosted voltage in the power conditioner 2 during self-sustained operation, and a state where the boosted voltage is lower than a predetermined voltage threshold for a predetermined time or longer. And a third power supply stop unit that stops power supply to the external load.
  • the overload control unit (its power supply stop unit) stops the operation of the DC / AC inverter 4 at the same time as or prior to the turn-off command to the independent output relay 16 when stopping the power supply to the external load. Then, after the independent output relay 16 is turned off, the operation of the DC / AC inverter 4 is resumed.
  • the overload control unit is also configured to include a generated power consumption unit that consumes the generated power of the fuel cell 1 by the load device (surplus power heater 9) when power supply to the external load is stopped.
  • the overload control unit stops power supply to the external load for a predetermined time (30 seconds), and resumes power supply after the predetermined time has elapsed.
  • FIG. 2 is a flowchart of the mode switching control executed by the control device 100. It is assumed that the initial state is the grid connection operation mode.
  • S1 it is determined whether or not the operation mode changeover switch 20 has been turned on due to a power failure or the like. If the operation mode switch 20 has been turned on, the process proceeds to S2.
  • S6 it is determined whether or not the operation mode changeover switch 20 has been turned off by power recovery or the like, and the self-sustaining operation mode in S5 is continued until the operation is turned off. If it is turned off, the process proceeds to S7. In S7, grid interconnection is executed. And it returns to the grid connection operation mode of S8.
  • FIG. 3 is a flowchart of the self-sustained operation mode executed by the control device 100.
  • the generated power is fixed to a predetermined constant power, for example, 500 W, the power is supplied to the external load, and the surplus power is set to be consumed by the surplus power heater 9.
  • the load power is measured by the power meter 12
  • the input current of the DC / DC converter 3 is detected by the ammeter 21
  • the output voltage (boost voltage) of the DC / DC converter 3 is measured by the voltmeter 22.
  • S13 it is determined whether or not the output voltage (boost voltage) of the DC / DC converter 3 has decreased below 300V. If it has decreased, the process proceeds to S14, and it is determined whether or not the decreased state has continued for several ms. . As a result of these determinations, when the state of lower than 300 V continues for several ms, the process proceeds to S23 in order to stop the power supply due to overload. If the determination in S13 or S14 is NO, the process proceeds to S15.
  • boost voltage boost voltage
  • S15 it is determined whether or not the input current of the DC / DC converter 3 has exceeded 50 A. If it has exceeded, the process proceeds to S16, and it is determined whether or not the exceeded state has continued for several ms. As a result of these determinations, when the state exceeding 50 A continues for several ms, the process proceeds to S23 to stop the power supply due to overload. If the determination in S15 or S16 is NO, the process proceeds to S17.
  • the control flow is such that each value is determined in the order of the output voltage and the input current of the DC / DC converter 3, and this reason is determined in consideration of the following.
  • the load current fluctuates in the generated power
  • the output voltage fluctuates at the same time.
  • the power corresponding to the fluctuation is temporarily supplied from a bypass capacitor provided in the secondary bus portion of the DC / DC converter 3. Therefore, the DC / DC converter 3 that has detected the voltage fluctuation temporarily generated in the bus unit works to keep the voltage of the bus unit constant by controlling the supply current of the generated power by feedback control. From the above, by first measuring the voltage at the subsequent stage of the DC / DC converter 3 and determining the value thereof, it can be a material for determining whether or not stable power is being supplied.
  • S17 it is determined whether or not the load power exceeds 700 W (200 W exceeding the generated power), and if it exceeds, the process proceeds to S18, and it is determined whether or not the exceeded state has continued for several ms. As a result of these determinations, when the state exceeding 700 W continues for several ms, the process proceeds to S23 in order to stop power supply due to overload. If the determination in S17 or S18 is NO, the process proceeds to S19.
  • S19 it is determined whether or not the load power exceeds 600W (exceeds 100W from the generated power), and if it exceeds, the process proceeds to S20, and it is determined whether or not the exceeded state continues for 100 ms. As a result of these determinations, when the state exceeding 600 W continues for 100 ms, the process proceeds to S23 in order to stop power supply due to overload. If the determination in S19 or S20 is NO, the process proceeds to S21.
  • S21 it is determined whether or not the load power has exceeded 500 W, which is the generated power. If it has exceeded, the process proceeds to S22, and it is determined whether or not the exceeded state has continued for 500 ms. As a result of these determinations, when the state exceeding 500 W continues for 500 ms, the process proceeds to S23 in order to stop power supply due to overload. If the determination in S21 or S22 is NO, the process returns to S12.
  • next S24 it is determined whether or not a predetermined time, for example, 30 seconds has elapsed since the power supply stop in S23, and when 30 seconds have elapsed, the process proceeds to S25 and the power supply is resumed.
  • the generated power is fixed to 500 W
  • the power is supplied to the external load
  • the surplus power is set to be consumed by the surplus power heater 9.
  • the portion S11 corresponds to the self-generated power control unit and the surplus power consumption unit
  • the portions S12 to S25 correspond to the overload control unit.
  • the part of S12 corresponds to the load power detection unit, the current detection unit and the voltage detection unit
  • the parts of S17, S18, S19, S20, S21, S22 and S23 are the first.
  • the parts S15, S16 and S23 correspond to the second power supply stop part
  • the parts S13, S14 and S23 correspond to the third power supply stop part.
  • the part of S23 also serves as a generated power consumption part.
  • the power supply 4 is an example in which a load is applied at the timing t1 and the external load power temporarily exceeds 700 W due to an inrush current.
  • the power supply since the power supply is set to be stopped for a duration of several ms, the power supply to the external load is actually stopped, and the generated power (500 W) is consumed by the surplus power heater correspondingly. The Then, the stop of the power supply continues for 30 seconds, and the power supply is restarted when 30 seconds have elapsed, but it is again determined as an overload and the power supply is stopped.
  • the generated power is fixed to a predetermined constant power, for example, 500 W, the power is supplied to the external load, and the surplus power is set to be consumed by the surplus power heater 9.
  • the load power is measured by the power meter 12
  • the input current of the DC / DC converter 3 is detected by the ammeter 21
  • the output voltage (boost voltage) of the DC / DC converter 3 is measured by the voltmeter 22. Then, the process proceeds to S30.
  • S13 it is determined whether or not the output voltage (boost voltage) of the DC / DC converter 3 has decreased below 300V. If it has decreased, the process proceeds to S14, and it is determined whether or not the decreased state has continued for several ms. . As a result of these determinations, when the state of lower than 300 V continues for several ms, the process proceeds to S23 (FIG. 7) in order to stop the power supply due to overload. If the determination in S13 or S14 is NO, the process proceeds to S31.
  • S31 it is determined whether or not the output voltage (boost voltage) of the DC / DC converter 3 has decreased below 350V. If it has decreased, the process proceeds to S32, and it is determined whether or not the decreased state has continued for several tens of milliseconds. . As a result of these determinations, when the state of lower than 350 V continues for several tens of ms, the process proceeds to S23 in order to stop power supply due to overload. If the determination in S31 or S32 is NO, the process proceeds to S15.
  • S15 it is determined whether or not the input current of the DC / DC converter 3 has exceeded 50 A. If it has exceeded, the process proceeds to S16, and it is determined whether or not the exceeded state has continued for several ms. As a result of these determinations, when the state exceeding 50 A continues for several ms, the process proceeds to S23 to stop the power supply due to overload. If the determination in S15 or S16 is NO, the process proceeds to S33.
  • S33 it is determined whether or not the input current of the DC / DC converter 3 has exceeded 40A. If it has exceeded, the process proceeds to S34, and it is determined whether or not the exceeded state has continued for several tens of ms. As a result of these determinations, when the state exceeding 40 A continues for several tens of ms, the process proceeds to S23 in order to stop the power supply due to overload. If the determination in S33 or S34 is NO, the process proceeds to S17.
  • S17 it is determined whether or not the load power exceeds 700 W (200 W exceeding the generated power), and if it exceeds, the process proceeds to S18, and it is determined whether or not the exceeded state has continued for several ms. As a result of these determinations, when the state exceeding 700 W continues for several ms, the process proceeds to S23 in order to stop power supply due to overload. If the determination in S17 or S18 is NO, the process proceeds to S19.
  • S19 it is determined whether or not the load power exceeds 600W (exceeds 100W from the generated power), and if it exceeds, the process proceeds to S20, and it is determined whether or not the exceeded state continues for 100 ms. As a result of these determinations, when the state exceeding 600 W continues for 100 ms, the process proceeds to S23 in order to stop power supply due to overload. If the determination in S19 or S20 is NO, the process proceeds to S21.
  • S21 it is determined whether or not the load power has exceeded 500 W, which is the generated power. If it has exceeded, the process proceeds to S22, and it is determined whether or not the exceeded state has continued for 500 ms. As a result of these determinations, when the state exceeding 500 W continues for 500 ms, the process proceeds to S23 in order to stop power supply due to overload. If the determination in S21 or S22 is NO, the process returns to S12.
  • the process proceeds to the determination of the duration of S14, S32, S16, S34, S18, S20, and S22.
  • the duration of S14 in the case of YES in the determination, it is determined whether or not the duration of the state of less than 300 V at that time has reached a predetermined time (several ms), and if not yet, immediately
  • the process proceeds to the next determination of S31. Therefore, each determination of S13, S31, S15, S33, S17, S19, and S21 is made with almost no time delay, and is substantially parallel processing.
  • the power supply stop processing in S23 and the subsequent power supply restart processing in S24 and S25 are as described in the flow of FIG. 3, and description thereof is omitted here.
  • a plurality of current thresholds for the input current and voltage thresholds for the boost voltage are set in a stepwise manner.
  • the duration time By setting the duration time according to the threshold value, more appropriate overload determination can be performed.
  • each determination is made by parallel processing with substantially no time delay, and an overload state can be seen from various viewpoints and can be dealt with promptly.
  • control device 100 is provided independently of the power conditioner 2, but a part of the control function is shared by the controller in the power conditioner 2 to control the operation in cooperation. Also good. Alternatively, the control device 100 itself may be accommodated in the casing of the power conditioner 2.
  • generated power, various threshold values, durations, and the like have been described with numerical values, but this is for ease of understanding and is not intended to limit the numerical values.
  • Solid oxide fuel cell (SOFC) 2 Power conditioner 3 DC / DC converter 4 DC / AC inverter 5 System interconnection relay 6 System power supply 7 Domestic load 8 Auxiliary machine 9 Surplus power heater (AC heater) DESCRIPTION OF SYMBOLS 10 Solid state relay 11 Electric power measuring device 12 Electric power measuring device 13 External power supply 14 DC / DC converter 15 for external power supplies Self-supporting start relay 16 Self-supporting output relay 17 Self-supporting exclusive outlet 18 Switching relay 20 Operation mode switch 21 Ammeter 22 Voltmeter

Abstract

In this system provided with a solid oxide fuel cell (1), appropriate overload control is provided when having paralleled off from a grid power source (6) and switched to autonomous operation. Load power is detected during autonomous operation by a power meter (12). When the state of the load power exceeding a predetermined power threshold value has continued for at least a predetermined time, power supply to an external load connected to an autonomous dedicated power outlet (17) is halted. A plurality of power thresholds are set in a stepwise manner, and the predetermined time is set corresponding to each of the plurality of power thresholds in a manner so as to be shorter the larger the power threshold. Power supply to the external load is also halted when the state of the input current of a power conditioner (2) exceeding a predetermined current threshold or the state of a rising voltage being below a predetermined voltage threshold has continued for at least a predetermined time.

Description

固体酸化物形燃料電池システムSolid oxide fuel cell system
 本発明は、電解質として固体酸化物を用い、高温で高効率に発電可能な、固体酸化物形燃料電池(SOFC)を備える固体酸化物形燃料電池システムに関し、特に系統電源との連系による系統連系運転と系統電源から解列しての自立運転とが可能な固体酸化物形燃料電池システムに関する。 The present invention relates to a solid oxide fuel cell system including a solid oxide fuel cell (SOFC) that uses a solid oxide as an electrolyte and can generate power efficiently at high temperatures, and more particularly, a system connected to a system power source. The present invention relates to a solid oxide fuel cell system capable of interconnected operation and independent operation separated from a system power source.
 特許文献1には、非常時対応型燃料電池システムが開示されている。
 これは、電力需要場所に近接した分散型発電による電源を商用電源と接続して使用することができ、商用電源と切断されても、自立運転や、自立起動が可能である。よって、災害時などの短絡事故を回避して、家庭への電力を供給することができ、家庭の消費電力の変動による余剰電力を適切に消費して安全運転ができるよう構成されている。
Patent Document 1 discloses an emergency response type fuel cell system.
This can be used by connecting a power source by distributed generation close to the power demand location to the commercial power source, and can be operated independently or activated even when disconnected from the commercial power source. Therefore, it is possible to avoid a short circuit accident such as a disaster and to supply power to the home, and to appropriately consume surplus power due to fluctuations in the power consumption of the home and perform safe driving.
 この特許文献1では、自立運転中、外部負荷電力に応じて任意に変動させて、家庭への電力供給を行っている。この場合、家庭の消費電力の変動に対応して発電することは困難なため、家庭の消費電力より過剰の発電を行い、余剰の電力は負荷装置で適切に消費するようにしている。 In this patent document 1, during self-sustained operation, power is supplied to the home by arbitrarily changing it according to the external load power. In this case, since it is difficult to generate power in response to fluctuations in household power consumption, power generation is performed in excess of household power consumption, and surplus power is appropriately consumed by the load device.
日本国公開特許公報:特開2007-179886号Japanese Patent Publication: JP 2007-179886 A
 しかし、現実的には、燃料電池で常時、外部負荷電力より多く発電することは困難で、この点で改善の余地があった。 However, in reality, it is difficult to always generate more power than external load power with a fuel cell, and there is room for improvement in this respect.
 この状況を踏まえ、現状に適した仕様としては、自立運転時に、発電電力に比べて負荷電力が大きい場合、すなわち過負荷の場合は、外部負荷への電力供給を停止するようにすることが望ましい。 Based on this situation, as a specification suitable for the current situation, it is desirable to stop the power supply to the external load when the load power is large compared to the generated power, that is, in the case of overload, during independent operation. .
 一方、通常の電気製品は、電力供給の開始時に瞬間的に大電流(突入電流)が発生する。この突入電流が発生すると、負荷電力も急激に増加し、突入電流の大きさにもよるが、負荷電力がしきい値を超えて、電力供給が停止されてしまう。従って、単純に負荷電力がしきい値を超えたときに電力供給を停止する方式では、電気製品の通常の使用電力で見ると、使用可能であっても、突入電流の存在により電気製品が使用できなくなる可能性がある。 On the other hand, ordinary electric products generate a large current (inrush current) instantaneously at the start of power supply. When this inrush current occurs, the load power also increases abruptly. Depending on the magnitude of the inrush current, the load power exceeds the threshold value and the power supply is stopped. Therefore, in the method of simply stopping the power supply when the load power exceeds the threshold value, the electrical product is used due to the presence of an inrush current even when it can be used when viewed from the normal power consumption of the electrical product. It may not be possible.
 本発明は、ある程度の突入電流を許容すれば、より多くの電気製品を使用可能になるという事実に鑑み、負荷の単純な大きさだけでなく、時間要素を考慮して、最適な過負荷時制御を行うことができる、固体酸化物形燃料電池システムを提供することを課題とする。 In view of the fact that more electrical products can be used if a certain amount of inrush current is allowed, the present invention takes into account not only the simple size of the load but also the time factor, so that the optimum overload It is an object of the present invention to provide a solid oxide fuel cell system that can be controlled.
 本発明に係る固体酸化物形燃料電池システムは、燃料と酸化剤との電気化学反応により発電する固体酸化物形燃料電池と、この燃料電池の出力側に設けられるパワーコンディショナーと、前記燃料電池及び前記パワーコンディショナーを制御し、系統電源との連系による系統連系運転と系統電源から解列しての自立運転とを切換可能な制御装置と、を備える。 A solid oxide fuel cell system according to the present invention includes a solid oxide fuel cell that generates electricity by an electrochemical reaction between a fuel and an oxidant, a power conditioner provided on the output side of the fuel cell, the fuel cell, And a control device that controls the power conditioner and can switch between a grid interconnection operation by interconnection with a grid power supply and a self-sustained operation disconnected from the grid power supply.
 ここにおいて、前記制御装置は、自立運転時に負荷の大きさと継続時間とに基づいて過負荷状態を検出し、過負荷状態のときに、外部負荷への電力供給を停止する過負荷時制御部を備える構成とした。 Here, the control device detects an overload state based on the magnitude and duration of the load during the independent operation, and an overload control unit that stops power supply to the external load in the overload state. It was set as the structure provided.
 前記過負荷時制御部は、自立運転時に負荷電力を検出する負荷電力検出部と、自立運転時の負荷電力が所定の電力しきい値を超えた状態が第1の所定時間以上継続したときに、外部負荷への電力供給を停止する第1の電力供給停止部と、を含んで構成されるとよい。 The overload control unit includes a load power detection unit that detects load power during a self-sustained operation, and a state in which the load power during the self-sustained operation exceeds a predetermined power threshold for a first predetermined time or longer. And a first power supply stop unit that stops power supply to the external load.
 前記電力しきい値は、段階的に複数設定され、前記第1の所定時間は、前記複数の電力しきい値のそれぞれに対応させて、前記電力しきい値が大きいほど短く設定されるとよい。 A plurality of the power threshold values may be set in stages, and the first predetermined time may be set to be shorter as the power threshold value is larger corresponding to each of the plurality of power threshold values. .
 追加又は別の態様として、前記過負荷時制御部は、自立運転時に前記パワーコンディショナーへの入力電流を検出する電流検出部と、前記入力電流が所定の電流しきい値を超えた状態が第2の所定時間以上継続したときに、外部負荷への電力供給を停止する第2の電力供給停止部と、を含んで構成されるとよい。 In addition or as another aspect, the overload control unit includes a current detection unit that detects an input current to the power conditioner during a self-sustained operation, and a state in which the input current exceeds a predetermined current threshold. And a second power supply stop unit that stops the power supply to the external load when it continues for a predetermined time or more.
 前記電流しきい値についても、段階的に複数設定され、前記第2の所定時間は、前記複数の電流しきい値のそれぞれに対応させて、前記電流しきい値が大きいほど短く設定されるとよい。 A plurality of the current threshold values are also set in stages, and the second predetermined time is set to be shorter as the current threshold value is larger corresponding to each of the plurality of current threshold values. Good.
 追加又は別の態様として、前記過負荷時制御部は、自立運転時に前記パワーコンディショナーでの昇圧電圧を検出する電圧検出部と、前記昇圧電圧が所定の電圧しきい値より低下した状態が第3の所定時間以上継続したときに、外部負荷への電力供給を停止する第3の電力供給停止部と、を含んで構成されるとよい。 In addition or as another aspect, the overload control unit includes a voltage detection unit that detects a boosted voltage in the power conditioner during the independent operation, and a state in which the boosted voltage is lower than a predetermined voltage threshold. And a third power supply stop unit that stops the power supply to the external load when it continues for a predetermined time or more.
 前記電圧しきい値についても、段階的に複数設定され、前記第3の所定時間は、前記複数の電圧しきい値のそれぞれに対応させて、前記電圧しきい値が小さいほど短く設定されるとよい。 A plurality of voltage thresholds are also set in stages, and the third predetermined time is set to be shorter as the voltage threshold is smaller corresponding to each of the plurality of voltage thresholds. Good.
 更に、次のような電力供給停止方法も提供される。前提として、前記パワーコンディショナーは、直流電力を交流電力に変換するインバータの出力側から自立運転時に外部負荷へ電力を供給する自立出力ラインと、該自立出力ラインを導通・遮断する自立出力リレーとを有する。ここにおいて、前記過負荷時制御部(その電力供給停止部)は、外部負荷への電力供給を停止するに際し、前記自立出力リレーへのオフ指令と同時又はこれに先立って前記インバータの作動を停止し、前記自立出力リレーのオフ後に前記インバータの作動を再開させる構成とする。 Furthermore, the following power supply stop method is also provided. As a premise, the power conditioner includes a self-supporting output line that supplies power to an external load from the output side of the inverter that converts direct current power to alternating current power, and a self-supporting output relay that conducts and shuts off the self-supporting output line. Have. In this case, the overload control unit (its power supply stop unit) stops the operation of the inverter simultaneously with or prior to the off command to the self-sustained output relay when stopping the power supply to the external load. The operation of the inverter is resumed after the self-sustained output relay is turned off.
 本発明によれば、自立運転時の負荷の大きさと継続時間とに基づいて過負荷状態を検出し、過負荷状態のときに、より具体的には、自立運転時の負荷電力が所定の電力しきい値を超える状態が所定時間以上継続したときに、外部負荷への電力供給を停止する構成とすることにより、負荷の大きさだけでなく、時間要素を考慮することができ、電気的に問題とならないレベルの突入電流によるものであれば、過負荷判定をしないようにして、電気製品の使用範囲を広げることができる。 According to the present invention, an overload state is detected based on the magnitude and duration of the load during autonomous operation, and more specifically, when the load is overloaded, the load power during autonomous operation is a predetermined power. When the state in which the threshold value is exceeded continues for a predetermined time or longer, the power supply to the external load is stopped, so that not only the size of the load but also the time factor can be considered. If it is due to an inrush current at a level that does not cause a problem, it is possible to widen the range of use of the electric product without overload determination.
 また、負荷電力に対する電力しきい値は、段階的に複数設定し、対応する継続時間は、電力しきい値が大きいほど短く設定することによって、より適切な過負荷判定が可能となる。 In addition, by setting a plurality of power threshold values for the load power in stages and setting the corresponding duration time to be shorter as the power threshold value is larger, more appropriate overload determination can be performed.
 また、パワーコンディショナーへの入力電流が所定の電流しきい値を超えた状態が所定時間以上継続したときに、外部負荷への電力供給を停止するように構成し、入力電流を監視して、過負荷に素早く対応することができる。 In addition, when the state where the input current to the power conditioner exceeds the predetermined current threshold continues for a predetermined time or longer, the power supply to the external load is stopped, and the input current is monitored to It can respond quickly to the load.
 また、入力電流に対する電流しきい値は、段階的に複数設定し、対応する継続時間は、電流しきい値が大きいほど短く設定することによって、より適切な過負荷判定が可能となる。 Also, by setting a plurality of current threshold values for the input current in stages and setting the corresponding duration time to be shorter as the current threshold value is larger, more appropriate overload determination can be performed.
 また、パワーコンディショナーでの昇圧電圧が所定の電圧しきい値より低下した状態が所定時間以上継続したときに、外部負荷への電力供給を停止するように構成し、昇圧電圧を監視して、過負荷に素早く対応することができる。 In addition, when the state where the boosted voltage at the power conditioner falls below a predetermined voltage threshold continues for a predetermined time or longer, the power supply to the external load is stopped, and the boosted voltage is monitored to It can respond quickly to the load.
 また、昇圧電圧に対する電圧しきい値は、段階的に複数設定し、対応する継続時間は、電圧しきい値が小さいほど短く設定することによって、より適切な過負荷判定が可能となる。 In addition, by setting a plurality of voltage thresholds for the boosted voltage in stages and setting the corresponding duration as shorter as the voltage threshold is smaller, more appropriate overload determination can be performed.
 また、外部負荷への電力供給を停止するに際し、自立出力リレーをオフするには時間遅れを有することから、緊急を要する場合は、インバータの作動を停止させることで、電力供給を瞬時に停止させることができる。そして、自立出力リレーのオフ後にインバータの作動を再開させることで、発電をほとんど停止させることなく(インバータを停止させている極短い時間だけ停止させるだけで)、電力供給を速やかに停止することができる。 In addition, when stopping the power supply to the external load, there is a time delay to turn off the self-sustained output relay. Therefore, if an emergency is required, the operation of the inverter is stopped to stop the power supply instantaneously. be able to. And by restarting the operation of the inverter after the self-sustained output relay is turned off, the power supply can be stopped quickly without almost stopping the power generation (by just stopping the inverter for a very short time). it can.
本発明の一実施形態を示す固体酸化物形燃料電池システムの構成図1 is a configuration diagram of a solid oxide fuel cell system showing an embodiment of the present invention. モード切換制御のフローチャートFlow chart of mode switching control 自立運転モードのフローチャートFlow chart of independent operation mode 制御例1を示す図Diagram showing Control Example 1 制御例2を示す図Diagram showing control example 2 他の実施形態として示す自立運転モードのフローチャート(その1)Flow chart of self-sustained operation mode shown as another embodiment (part 1) 同上のフローチャート(その2)Same flowchart (2)
 以下、本発明の実施の形態について、詳細に説明する。
 図1は本発明の一実施形態を示す固体酸化物形燃料電池システムの構成図である。家庭用(定置式)の燃料電池システムは、コージェネレーションシステムとして、発電ユニットの他、貯湯ユニットを備えるが、図には発電ユニットのみを示している。
Hereinafter, embodiments of the present invention will be described in detail.
FIG. 1 is a configuration diagram of a solid oxide fuel cell system showing an embodiment of the present invention. The home (stationary) fuel cell system includes a hot water storage unit in addition to a power generation unit as a cogeneration system, but only the power generation unit is shown in the figure.
 本実施形態の固体酸化物形燃料電池システム(発電ユニット)は、固体酸化物形燃料電池(SOFC)1と、パワーコンディショナー(PCS)2と、制御装置100とを含んで構成される。 The solid oxide fuel cell system (power generation unit) of this embodiment includes a solid oxide fuel cell (SOFC) 1, a power conditioner (PCS) 2, and a control device 100.
 固体酸化物形燃料電池(SOFC)1は、複数の固体酸化物形燃料電池セルの組立体(セルスタック)である。各燃料電池セルは、燃料極(アノード)と、酸化剤極(カソード)と、これらの間に配置された電解質層とを有している。燃料極には、水素含有燃料が供給され、酸化剤極には、酸化剤として空気(酸素を含む)が供給される。電解質層は、ジルコニア系セラミックスなどの固体酸化物により形成される。 The solid oxide fuel cell (SOFC) 1 is an assembly (cell stack) of a plurality of solid oxide fuel cells. Each fuel cell has a fuel electrode (anode), an oxidant electrode (cathode), and an electrolyte layer disposed therebetween. A hydrogen-containing fuel is supplied to the fuel electrode, and air (including oxygen) is supplied to the oxidant electrode as an oxidant. The electrolyte layer is formed of a solid oxide such as zirconia ceramics.
 従って、固体酸化物形燃料電池(SOFC)1は、電解質層の一端側の燃料極に水素が供給され、電解質層の他端側の酸化剤極に酸素が供給されることで、水素と酸素との電気化学反応により、発電(直流電力を発生)する。電解質層が固体酸化物により形成された固体酸化物形燃料電池(SOFC)1は、高温で高効率に発電可能であり、連続運転を基本としている。 Therefore, in the solid oxide fuel cell (SOFC) 1, hydrogen is supplied to the fuel electrode on one end side of the electrolyte layer, and oxygen is supplied to the oxidant electrode on the other end side of the electrolyte layer. It generates electric power (generates DC power) by the electrochemical reaction. A solid oxide fuel cell (SOFC) 1 in which an electrolyte layer is formed of a solid oxide can generate electric power at high temperature with high efficiency, and is based on continuous operation.
 尚、燃料極への水素含有燃料の供給のため、一般的には、炭化水素系の燃料(例えば都市ガス、LPG、灯油、メタノール、バイオ燃料など)を、改質触媒を用いて、水蒸気改質反応、部分酸化反応、自己熱改質反応などにより改質し、水素リッチな改質ガスを生成する燃料改質装置が用いられるが、図示は省略した。尚、燃料として改質処理を必要としない燃料(例えば、純水素ガス、水素富化ガス、水素吸蔵剤など)を用いる場合は、燃料改質装置自体を省略することができる。 In order to supply a hydrogen-containing fuel to the fuel electrode, generally, a hydrocarbon-based fuel (for example, city gas, LPG, kerosene, methanol, biofuel, etc.) is steam-modified using a reforming catalyst. A fuel reformer that generates a hydrogen-rich reformed gas by reforming by a quality reaction, a partial oxidation reaction, an autothermal reforming reaction, or the like is used, but the illustration is omitted. When a fuel that does not require reforming treatment (for example, pure hydrogen gas, hydrogen-enriched gas, hydrogen storage agent, etc.) is used as the fuel, the fuel reformer itself can be omitted.
 パワーコンディショナー2は、燃料電池1で発生した直流電力を取り出すものであり、また、直流電力を交流電力に変換する。従って、パワーコンディショナー2は、燃料電池1で発生した直流電力を取り出して昇圧するDC/DCコンバータ3と、その後段で直流電力を交流電力に変換するDC/ACインバータ4とを含んで構成される。 The power conditioner 2 extracts DC power generated in the fuel cell 1, and converts DC power into AC power. Accordingly, the power conditioner 2 includes a DC / DC converter 3 that extracts and boosts the DC power generated in the fuel cell 1, and a DC / AC inverter 4 that converts the DC power into AC power at the subsequent stage. .
 パワーコンディショナー2の出力側(DC/ACインバータ4の出力側)は、系統連系リレー5を介して、系統連系ラインL1により、系統電源6と家庭内負荷7とに接続されている。
 従って、系統連系時(系統連系リレー5のオン時)には、燃料電池1の発電電力がDC/DCコンバータ3及びDC/ACインバータ4を介して家庭内負荷7に供給され、燃料電池1の発電電力が家庭内負荷7の需要電力に満たない場合は、不足分として、系統電源6からの系統電力が家庭内負荷7に供給される。
The output side of the power conditioner 2 (the output side of the DC / AC inverter 4) is connected to the system power source 6 and the home load 7 via the system connection relay 5 via the system connection line L1.
Therefore, at the time of grid connection (when the grid connection relay 5 is turned on), the generated power of the fuel cell 1 is supplied to the home load 7 via the DC / DC converter 3 and the DC / AC inverter 4, and the fuel cell. When the generated power of 1 is less than the demand power of the household load 7, the grid power from the grid power supply 6 is supplied to the household load 7 as a shortage.
 また、系統連系リレー5の出力側から分岐ラインが設けられ、後述する切換リレー18を介して、系統連系時に燃料電池システムの各種補機8に電力が供給されるようになっている。補機8には、発電ユニット側の機器(ポンプ、ヒータ等)の他、貯湯ユニット側の機器も含まれる。 In addition, a branch line is provided from the output side of the grid interconnection relay 5, and power is supplied to various auxiliary machines 8 of the fuel cell system via the switching relay 18 described later during grid interconnection. The auxiliary machine 8 includes equipment on the power generation unit side (pump, heater, etc.) and equipment on the hot water storage unit side.
 パワーコンディショナー2にはまた、余剰電力消費用の負荷装置として、余剰電力ヒータ9が接続される。余剰電力ヒータ9としては、DCヒータ又はACヒータのいずれでもよいが、ここではACヒータを例示している。余剰電力ヒータ(ACヒータ)9は、DC/ACインバータ4の出力側にソリッドステートリレー(SSR)10を介して接続される。この余剰電力ヒータ9は、系統連系時において、燃料電池1の発電電力が家庭内負荷7の需要電力を上回った場合に、逆潮流を防止すべく余剰電力を消費するために設けられる。また、余剰電力ヒータ9は、余剰電力を熱に変換し、図外の貯湯ユニット内の水(湯)を温めるのに利用される。但し、熱利用についてはこれに限定されるものではない。 The power conditioner 2 is also connected with a surplus power heater 9 as a load device for surplus power consumption. Although the surplus power heater 9 may be either a DC heater or an AC heater, an AC heater is illustrated here. The surplus power heater (AC heater) 9 is connected to the output side of the DC / AC inverter 4 via a solid state relay (SSR) 10. This surplus power heater 9 is provided for consuming surplus power to prevent reverse power flow when the generated power of the fuel cell 1 exceeds the demand power of the household load 7 during grid connection. The surplus power heater 9 is used to convert surplus power into heat and warm water (hot water) in a hot water storage unit (not shown). However, heat utilization is not limited to this.
 制御装置100は、マイクロコンピュータにより構成され、CPU、ROM、RAM及び入出力インターフェイスなどを備えている。この制御装置100は、系統連系時には、家庭内負荷7の需要電力に応じて、燃料電池1の発電電力を制御し、これに合わせてパワーコンディショナー2(DC/DCコンバータ3、DC/ACインバータ4、ソリッドステートリレー10等)を制御する。尚、パワーコンディショナー2との間ではデータの送受信が可能である。 The control device 100 is constituted by a microcomputer and includes a CPU, a ROM, a RAM, an input / output interface, and the like. This control device 100 controls the generated power of the fuel cell 1 according to the demand power of the household load 7 during grid connection, and the power conditioner 2 (DC / DC converter 3, DC / AC inverter) in accordance with this. 4. Solid state relay 10 etc.) are controlled. Data can be transmitted to and received from the power conditioner 2.
 家庭内負荷7の需要電力の検知には、系統電源6から家庭内負荷7に供給される電力を計測する電力計測器(変流器)11と、パワーコンディショナー2から家庭内負荷7に供給される電力を計測する電力計測器12とが用いられる。 For detecting the demand power of the home load 7, the power meter (current transformer) 11 for measuring the power supplied from the system power supply 6 to the home load 7 and the power conditioner 2 is supplied to the home load 7. A power meter 12 that measures the power to be used is used.
 制御装置100による発電電力の制御は、燃料電池1への燃料及び空気の供給量を制御することによって行う。多くの場合は燃料改質装置を備えるので、燃料供給量の制御は燃料改質装置へ供給する燃料量を制御することになる。 Control of generated power by the control device 100 is performed by controlling the amount of fuel and air supplied to the fuel cell 1. In many cases, since a fuel reformer is provided, the control of the fuel supply amount controls the amount of fuel supplied to the fuel reformer.
 従って、制御装置100は、家庭内負荷7の需要電力に応じて設定される燃料電池1の発電電力目標値に従って(発電電力目標値を得るように)、燃料及び空気の供給量を制御することにより、燃料電池1の発電電力を制御する。 Therefore, the control device 100 controls the supply amounts of fuel and air according to the generated power target value of the fuel cell 1 set according to the demand power of the household load 7 (so as to obtain the generated power target value). Thus, the generated power of the fuel cell 1 is controlled.
 制御装置100はまた、燃料電池1の発電電力の制御と並行し、パワーコンディショナー2を制御する。具体的には、燃料電池1の発電電力目標値に基づいて、燃料電池1から取り出す電流を設定・制御する。より詳しくは、燃料電池1の発電電力目標値を燃料電池1の出力電圧で除算して、電流目標値を設定し、この電流目標値に従って、燃料電池1から取り出す電流(掃引電流)を制御する。 The control device 100 also controls the power conditioner 2 in parallel with the control of the power generated by the fuel cell 1. Specifically, based on the generated power target value of the fuel cell 1, the current taken out from the fuel cell 1 is set and controlled. More specifically, the target value of power generated by the fuel cell 1 is divided by the output voltage of the fuel cell 1, a current target value is set, and the current (sweep current) taken out from the fuel cell 1 is controlled according to this current target value. .
 本実施形態の固体酸化物形燃料電池システムは、系統電源6との連系による系統連系運転と、系統電源6から解列しての自立運転(系統解列運転)とが可能である。 The solid oxide fuel cell system of the present embodiment is capable of system interconnection operation by interconnection with the system power supply 6 and independent operation (system disconnection operation) separated from the system power supply 6.
 自立運転を可能にするため、パワーコンディショナー2には、外部電源13を接続可能である。外部電源13としては、例えば自動車のバッテリ(DC12V)を想定している。このため、パワーコンディショナー2内のDC/ACインバータ4の入力側にDC/DCコンバータ3と並列に専用のDC/DCコンバータ14を設け、このDC/DCコンバータ14の入力側に適宜のコネクタを介して外部電源13を接続可能としてある。このように外部電源13を接続可能とすることで、燃料電池1の発電停止中に停電した場合など、自立運転のために燃料電池1の起動が必要な場合に対処可能となる。 In order to enable independent operation, an external power supply 13 can be connected to the power conditioner 2. As the external power source 13, for example, a car battery (DC12V) is assumed. Therefore, a dedicated DC / DC converter 14 is provided in parallel with the DC / DC converter 3 on the input side of the DC / AC inverter 4 in the power conditioner 2, and an appropriate connector is provided on the input side of the DC / DC converter 14. The external power supply 13 can be connected. By making the external power supply 13 connectable in this way, it becomes possible to cope with the case where the fuel cell 1 needs to be started for a self-sustaining operation, such as when a power failure occurs while the fuel cell 1 stops generating power.
 パワーコンディショナー2にはまた、自立運転時の出力ラインとして、系統連系ラインL1とは別に、DC/ACインバータ4から自立起動リレー15及び自立出力リレー16を介して自立専用コンセント17へ至る自立出力ラインL2が設けられる。 The power conditioner 2 also has an independent output from the DC / AC inverter 4 to the independent outlet 17 via the independent start relay 15 and the independent output relay 16 separately from the grid connection line L1 as an output line during the independent operation. A line L2 is provided.
 また、自立起動リレー15と自立出力リレー16との接続点から分岐ラインが設けられ、切換リレー18を介して、自立運転時に燃料電池システムの各種補機8に電力が供給されるようになっている。 Further, a branch line is provided from the connection point between the self-sustained start relay 15 and the self-sustained output relay 16, and power is supplied to the various auxiliary devices 8 of the fuel cell system through the switching relay 18 during the self-sustained operation. Yes.
 制御装置100には、運転モード切換スイッチ20からの信号が入力される。運転モード切換スイッチ20は、ユーザーの操作により、停電時などに系統連系運転から自立運転への移行を指示することができ、また復電時などに自立運転から系統連系運転への移行を指示することができる。従って、制御装置100は、運転モード切換スイッチ20による指令に応じて、系統電源6との連系による系統連系運転と、系統電源6から解列しての自立運転とを切換可能である。言い換えれば、系統連系運転と自立運転とのモード切換えは自動では行われず、ユーザーにより運転モード切換スイッチ20が操作されなければならない。 The control device 100 receives a signal from the operation mode changeover switch 20. The operation mode changeover switch 20 can be instructed by a user operation to shift from grid-connected operation to independent operation during a power failure or the like, and can also switch from autonomous operation to grid-connected operation during power recovery. Can be directed. Therefore, the control device 100 can switch between a grid interconnection operation by interconnection with the grid power supply 6 and a self-sustained operation disconnected from the grid power supply 6 according to a command from the operation mode changeover switch 20. In other words, the mode switching between the grid interconnection operation and the independent operation is not automatically performed, and the operation mode switch 20 must be operated by the user.
 自立運転中の制御のため、パワーコンディショナー2内に設けられている電力計測器12と電流計21と電圧計22とが用いられる。電力計測器12は、DC/ACインバータ4の出力側(直後)に設けられ、自立運転中の負荷電力(自立専用コンセント17を介して外部負荷に供給される電力、補機8に消費される電力、及び、余剰電力ヒータ9に消費される電力)を計測する。電流計21は、DC/DCコンバータ3の入力電流を計測する。電圧計22は、DC/DCコンバータ3の出力電圧(昇圧電圧)を計測する。これらにより得た情報は制御装置100に送信される。 A power measuring instrument 12, an ammeter 21 and a voltmeter 22 provided in the power conditioner 2 are used for the control during the autonomous operation. The power meter 12 is provided on the output side (immediately after) of the DC / AC inverter 4, and is used for load power during the self-sustaining operation (power supplied to the external load via the self-supporting dedicated outlet 17, consumed by the auxiliary machine 8. Power and power consumed by the surplus power heater 9). The ammeter 21 measures the input current of the DC / DC converter 3. The voltmeter 22 measures the output voltage (boost voltage) of the DC / DC converter 3. Information obtained by these is transmitted to the control device 100.
 停電時などに系統連系運転モードから自立運転モードへ切換える場合は、必要により外部電源13を接続し、運転モード切換スイッチ20を自立運転モード側へ操作(例えばオン操作)する。 When switching from the grid interconnection operation mode to the independent operation mode at the time of a power failure or the like, the external power supply 13 is connected if necessary, and the operation mode changeover switch 20 is operated to the independent operation mode side (for example, ON operation).
 これにより、制御装置100は、系統連系リレー5をオフにして、系統電源6から解列する一方、自立起動リレー15及び自立出力リレー16をオンにして、自立運転に切換える。また、切換リレー18によって補機8への電力供給ラインも切換える。 Thereby, the control device 100 turns off the grid interconnection relay 5 and disconnects from the grid power supply 6, while turning on the independent start relay 15 and the independent output relay 16 to switch to the independent operation. Further, the power supply line to the auxiliary machine 8 is also switched by the switching relay 18.
 自立運転への切換えにより、燃料電池1の発電電力を自立専用コンセント17に供給し、これに接続された各種外部負荷(図示せず)を作動させることができる。 By switching to the self-sustaining operation, the power generated by the fuel cell 1 can be supplied to the self-supporting dedicated outlet 17 and various external loads (not shown) connected thereto can be operated.
 尚、燃料電池システムは、系統電源6での運転中に停電を検知すると、一定時間(例えば15分間)、待機状態に入るように構成されており、この待機時間内であれば、自立運転へのスムーズな移行が可能である。 The fuel cell system is configured to enter a standby state for a certain period of time (for example, 15 minutes) when a power failure is detected during operation with the system power supply 6. Smooth transition is possible.
 自立運転への移行時に、燃料電池1が停止していた場合は、燃料電池1を起動する必要がある。この場合は、自立起動リレー15のみオンにして(自立出力リレー16はオフ)、外部電源13により補機8を駆動しつつ、燃料電池1を起動する。そして、起動後に自立出力リレー16をオンにして、燃料電池1の発電電力を自立専用コンセント17に供給する。 If the fuel cell 1 is stopped at the time of shifting to the independent operation, it is necessary to start the fuel cell 1. In this case, only the self-sustaining start relay 15 is turned on (the self-supporting output relay 16 is off), and the fuel cell 1 is started while driving the auxiliary machine 8 by the external power source 13. Then, after starting, the self-sustained output relay 16 is turned on to supply the power generated by the fuel cell 1 to the self-supporting dedicated outlet 17.
 自立運転モードでは、制御装置100は燃料電池1の発電電力を予め定めた一定電力、例えば(定格出力700Wに対し)500Wに制御する。従って、移行時に燃料電池1が運転中であったならば、発電電力を500Wに収束させる。このとき500Wより高い状態から500Wに低下させる場合は、500Wに低下してから、自立専用コンセント17への電力供給を開始する。500Wより低い状態から500Wに上昇させる場合は、250W程度から自立専用コンセント17への電力供給を開始する。移行時に燃料電池1が停止中であったならば、起動して500Wまで立上げる。この場合、起動開始後250W程度まで上昇した時点で、自立専用コンセント17への電力供給を開始する。 In the self-sustained operation mode, the control device 100 controls the generated power of the fuel cell 1 to a predetermined constant power, for example, 500 W (for a rated output of 700 W). Therefore, if the fuel cell 1 is in operation at the time of transition, the generated power is converged to 500W. At this time, when the power is lowered from 500 W to 500 W, power supply to the independent dedicated outlet 17 is started after the power is lowered to 500 W. When raising from 500 W to 500 W, power supply to the self-supporting dedicated outlet 17 is started from about 250 W. If the fuel cell 1 is stopped at the time of transition, it is activated and started up to 500W. In this case, the power supply to the self-supporting dedicated outlet 17 is started when the power is increased to about 250 W after the start of activation.
 自立運転モードでは、一定電力(500W)の発電中、負荷電力を超える余剰電力(=一定発電電力-外部負荷電力-補機負荷電力)は、負荷装置としての余剰電力ヒータ9により消費する。 In the self-sustaining operation mode, during the generation of constant power (500 W), surplus power exceeding the load power (= constant generation power-external load power-auxiliary load power) is consumed by the surplus power heater 9 as a load device.
 自立運転モードでは、負荷電力が一定発電電力を超える場合、すなわち、過負荷の場合は、原則的に、外部負荷への電力供給を停止する。すなわち、自立出力リレー16をオフにして、自立専用コンセント17への電力供給を停止する。このときも一定電力(500W)の発電は継続し、余剰分は、全て、余剰電力ヒータ9で消費する。 In the self-sustained operation mode, when the load power exceeds a certain generated power, that is, in the case of an overload, in principle, the power supply to the external load is stopped. That is, the self-sustained output relay 16 is turned off, and the power supply to the self-supporting dedicated outlet 17 is stopped. At this time as well, power generation with a constant power (500 W) continues, and all surplus power is consumed by the surplus power heater 9.
 このときの過負荷判定は、継続時間を考慮して行い、次の(1)~(5)の場合に電力供給を停止する。
(1)負荷電力が500Wを超えた状態を500ms継続した場合に、電力供給を停止する。
(2)負荷電力が600W(500W+100W)を超えた状態を100ms継続した場合に、電力供給を停止する。
(3)負荷電力が700W(500W+200W)を超えた状態を数ms継続した場合に、電力供給を停止する。
(4)DC/DCコンバータ3の入力電流が50Aを超えた状態を数ms継続した場合に、電力供給を停止する。
(5)DC/DCコンバータ3の出力電圧(昇圧電圧)が300Vより低下した状態を数ms継続した場合に、電力供給を停止する。
The overload determination at this time is performed in consideration of the duration, and power supply is stopped in the following cases (1) to (5).
(1) When the load power exceeds 500 W for 500 ms, the power supply is stopped.
(2) The power supply is stopped when the load power exceeds 600 W (500 W + 100 W) for 100 ms.
(3) The power supply is stopped when the load power exceeds 700 W (500 W + 200 W) for several ms.
(4) When the state where the input current of the DC / DC converter 3 exceeds 50 A is continued for several ms, the power supply is stopped.
(5) When the state where the output voltage (boost voltage) of the DC / DC converter 3 is lower than 300 V is continued for several ms, the power supply is stopped.
 外部負荷への電力供給を停止する際は、自立出力リレー16をオフにするが、自立出力リレー16へのオフ指令から実際にオフするまでには遅れ時間(数10ms)があるため、スピードが求められる場合は、次のようにして電力供給を停止する。 When the power supply to the external load is stopped, the self-sustained output relay 16 is turned off. However, since there is a delay time (several tens of ms) from the turn-off command to the self-supporting output relay 16 until the power is actually turned off, the speed is increased. If required, power supply is stopped as follows.
 DC/ACインバータ4を停止(ゲートオフ)させる。これにより電力供給を直ちに停止することができる。しかし、DC/ACインバータ4を停止させると、余剰電力ヒータ9への電力供給が止まり、燃料電池1での発電が停止されて、水素が余る状態となる。そこで、自立出力リレー16へのオフ指令と同時又はこれに先立ってDC/ACインバータ4を停止させ、自立出力リレー16のオフ後(遅れ時間の経過後)に、DC/ACインバータ4を稼動(ゲートオン)する。これにより、余剰電力ヒータ9への電力供給が再開され、水素消費が促される。よって、突入電流を瞬時に防止するために効果的な電力供給停止方法は、ゲートオフ+リレーオフ指令→解列(リレーオフ)→ゲートオン→余剰電力ヒータ供給の手順である。尚、この電力供給停止方法は、前述の(1)~(5)の電力供給停止シーンの中では、特に(4)及び(5)のシーンで、採用するのが望ましい。 DC Stop the DC / AC inverter 4 (gate off). Thereby, power supply can be stopped immediately. However, when the DC / AC inverter 4 is stopped, power supply to the surplus power heater 9 is stopped, power generation in the fuel cell 1 is stopped, and hydrogen remains. Therefore, the DC / AC inverter 4 is stopped simultaneously with or prior to the turn-off command to the self-sustained output relay 16, and the DC / AC inverter 4 is operated after the self-sustained output relay 16 is turned off (after the delay time has elapsed). Gate on). Thereby, the power supply to the surplus power heater 9 is restarted, and the consumption of hydrogen is promoted. Therefore, an effective power supply stopping method for preventing an inrush current instantaneously is a procedure of gate off + relay off command → disconnection (relay off) → gate on → surplus power heater supply. It should be noted that this power supply stop method is preferably employed in the above-described power supply stop scenes (1) to (5), particularly in the scenes (4) and (5).
 電力供給停止後は、予め定めた一定時間(例えば30秒)後に、再度、自立出力リレー16をオンにして、自立専用コンセント17への電力供給を再開する。
 そして、電力供給再開後に負荷状態を再度チェックし、適正な負荷であれば、電力供給を継続するが、過負荷であれば、電力供給を再び一定時間(30秒)停止する。この一定時間(30秒)は、ユーザーが負荷を減少させることを期待しての待ち時間である。
After the power supply is stopped, the self-sustained output relay 16 is turned on again after a predetermined time (for example, 30 seconds), and the power supply to the self-supporting dedicated outlet 17 is resumed.
Then, after restarting the power supply, the load state is checked again. If the load is appropriate, the power supply is continued. If the load is overloaded, the power supply is stopped again for a certain time (30 seconds). This fixed time (30 seconds) is a waiting time in which the user expects to reduce the load.
 ここで、制御装置100の機能をまとめれば、次の通りである。
 制御装置100は、自立運転時に燃料電池1の発電電力を予め定めた一定電力(500W)に制御する自立発電電力制御部と、自立運転時に負荷電力を超える余剰電力を負荷装置(余剰電力ヒータ9)により消費する余剰電力消費部と、自立運転時に負荷の大きさと継続時間とに基づいて過負荷状態を検出し、過負荷状態のときに、外部負荷への電力供給を停止する過負荷時制御部と、を備える。
Here, the functions of the control device 100 are summarized as follows.
The control device 100 includes a self-generated power control unit that controls the generated power of the fuel cell 1 to a predetermined constant power (500 W) during the self-sustaining operation, and surplus power that exceeds the load power during the self-sustaining operation. ) To detect the overload condition based on the surplus power consumption part consumed by the power supply and the load size and duration during independent operation, and to stop the power supply to the external load in the overload condition A section.
 前記過負荷時制御部は、自立運転時に負荷電力を検出する負荷電力検出部と、自立運転時の負荷電力が所定の電力しきい値を超えた状態が所定時間以上継続したときに、外部負荷への電力供給を停止する第1の電力供給停止部と、を含んで構成される。ここで、前記電力しきい値は、段階的に複数設定され、前記所定時間は、前記複数の電力しきい値のそれぞれに対応させて、前記電力しきい値が大きいほど短く設定される。 The overload control unit includes a load power detection unit that detects load power during independent operation, and an external load when a state where the load power during the autonomous operation exceeds a predetermined power threshold continues for a predetermined time or more. And a first power supply stop unit that stops power supply to the power supply. Here, a plurality of the power threshold values are set stepwise, and the predetermined time is set to be shorter as the power threshold value is larger, corresponding to each of the plurality of power threshold values.
 前記過負荷時制御部は、また、自立運転時にパワーコンディショナー2への入力電流を検出する電流検出部と、前記入力電流が所定の電流しきい値を超えた状態が所定時間以上継続したときに、外部負荷への電力供給を停止する第2の電力供給停止部と、を含んで構成される。 The overload control unit is configured to detect a current detection unit that detects an input current to the power conditioner 2 during a self-sustaining operation, and when the input current exceeds a predetermined current threshold for a predetermined time or longer. A second power supply stop unit that stops power supply to the external load.
 前記過負荷時制御部は、また、自立運転時にパワーコンディショナー2での昇圧電圧を検出する電圧検出部と、前記昇圧電圧が所定の電圧しきい値より低下した状態が所定時間以上継続したときに、外部負荷への電力供給を停止する第3の電力供給停止部と、を含んで構成される。 The overload control unit also includes a voltage detection unit that detects a boosted voltage in the power conditioner 2 during self-sustained operation, and a state where the boosted voltage is lower than a predetermined voltage threshold for a predetermined time or longer. And a third power supply stop unit that stops power supply to the external load.
 前記過負荷時制御部(その電力供給停止部)は、外部負荷への電力供給を停止するに際し、自立出力リレー16へのオフ指令と同時又はこれに先立ってDC/ACインバータ4の作動を停止し、自立出力リレー16のオフ後にDC/ACインバータ4の作動を再開させる。 The overload control unit (its power supply stop unit) stops the operation of the DC / AC inverter 4 at the same time as or prior to the turn-off command to the independent output relay 16 when stopping the power supply to the external load. Then, after the independent output relay 16 is turned off, the operation of the DC / AC inverter 4 is resumed.
 前記過負荷時制御部は、また、外部負荷への電力供給停止時に、燃料電池1の発電電力を負荷装置(余剰電力ヒータ9)により消費する発電電力消費部を含んで構成される。
 前記過負荷時制御部は、外部負荷への電力供給を予め定めた一定時間(30秒)停止し、一定時間経過後に電力供給を再開する。
The overload control unit is also configured to include a generated power consumption unit that consumes the generated power of the fuel cell 1 by the load device (surplus power heater 9) when power supply to the external load is stopped.
The overload control unit stops power supply to the external load for a predetermined time (30 seconds), and resumes power supply after the predetermined time has elapsed.
 次に図2及び図3により制御の流れをフローチャートにより説明する。
 図2は制御装置100により実行されるモード切換制御のフローチャートである。尚、初期状態は系統連系運転モードであるとする。
Next, the flow of control will be described with reference to flowcharts with reference to FIGS.
FIG. 2 is a flowchart of the mode switching control executed by the control device 100. It is assumed that the initial state is the grid connection operation mode.
 S1では、停電などにより運転モード切換スイッチ20がオン操作されたか否かを判定し、オン操作された場合に、S2へ進む。 In S1, it is determined whether or not the operation mode changeover switch 20 has been turned on due to a power failure or the like. If the operation mode switch 20 has been turned on, the process proceeds to S2.
 S2では、系統解列を実行する。次のS3では、燃料電池(FC)1が停止中か否かを判定し、停止中であれば、S4へ進んで、燃料電池1を起動する。燃料電池1が運転中の場合、又は、燃料電池1の起動が完了した場合は、S5の自立運転モードへ移行する。 In S2, system disconnection is executed. In next S3, it is determined whether or not the fuel cell (FC) 1 is stopped. If it is stopped, the process proceeds to S4 to start the fuel cell 1. When the fuel cell 1 is in operation or when startup of the fuel cell 1 is completed, the process proceeds to the self-sustaining operation mode of S5.
 その後は、S6で復電などにより運転モード切換スイッチ20がオフ操作されたか否かを判定し、オフ操作されるまで、S5の自立運転モードを継続する。オフ操作された場合は、S7へ進む。
 S7では、系統連系を実行する。そして、S8の系統連系運転モードへ戻る。
Thereafter, in S6, it is determined whether or not the operation mode changeover switch 20 has been turned off by power recovery or the like, and the self-sustaining operation mode in S5 is continued until the operation is turned off. If it is turned off, the process proceeds to S7.
In S7, grid interconnection is executed. And it returns to the grid connection operation mode of S8.
 図3は制御装置100により実行される自立運転モードのフローチャートである。
 S11では、発電電力を予め定めた一定電力、例えば500Wに固定して、外部負荷に電力を供給し、余剰電力は余剰電力ヒータ9により消費する設定とする。
FIG. 3 is a flowchart of the self-sustained operation mode executed by the control device 100.
In S 11, the generated power is fixed to a predetermined constant power, for example, 500 W, the power is supplied to the external load, and the surplus power is set to be consumed by the surplus power heater 9.
 S12では、電力計測器12により負荷電力を計測し、電流計21によりDC/DCコンバータ3の入力電流を検出し、電圧計22によりDC/DCコンバータ3の出力電圧(昇圧電圧)を計測する。 In S12, the load power is measured by the power meter 12, the input current of the DC / DC converter 3 is detected by the ammeter 21, and the output voltage (boost voltage) of the DC / DC converter 3 is measured by the voltmeter 22.
 S13では、DC/DCコンバータ3の出力電圧(昇圧電圧)が300Vより低下したか否かを判定し、低下した場合は、S14へ進み、低下した状態が数ms継続したか否かを判定する。これらの判定の結果、300Vより低下した状態が数ms継続したときは、過負荷ゆえ電力供給を停止すべく、S23へ進む。S13又はS14での判定でNOの場合は、S15へ進む。 In S13, it is determined whether or not the output voltage (boost voltage) of the DC / DC converter 3 has decreased below 300V. If it has decreased, the process proceeds to S14, and it is determined whether or not the decreased state has continued for several ms. . As a result of these determinations, when the state of lower than 300 V continues for several ms, the process proceeds to S23 in order to stop the power supply due to overload. If the determination in S13 or S14 is NO, the process proceeds to S15.
 S15では、DC/DCコンバータ3の入力電流が50Aを超えたか否かを判定し、超えた場合は、S16へ進み、超えた状態が数ms継続したか否かを判定する。これらの判定の結果、50Aを超えた状態が数ms継続したときは、過負荷ゆえ電力供給を停止すべく、S23へ進む。S15又はS16での判定でNOの場合は、S17へ進む。 In S15, it is determined whether or not the input current of the DC / DC converter 3 has exceeded 50 A. If it has exceeded, the process proceeds to S16, and it is determined whether or not the exceeded state has continued for several ms. As a result of these determinations, when the state exceeding 50 A continues for several ms, the process proceeds to S23 to stop the power supply due to overload. If the determination in S15 or S16 is NO, the process proceeds to S17.
 本実施形態のフローにおいては、DC/DCコンバータ3の出力電圧、入力電流の順に各値を判定する制御フローになっているが、この理由としては以下の事を考慮して決定している。
 発電電力において、負荷電流の変動が生じると、その出力電圧も同時に変動する。その変動分の電力は、一時的にDC/DCコンバータ3の2次側のバス部に設けられたバイパスコンデンサから供給される。よって、一時的にバス部に生じた電圧の変動を検出したDC/DCコンバータ3は、帰還制御により発電電力の供給電流を制御することでバス部の電圧を一定に保つように働く。上記の事から、最初にDC/DCコンバータ3の後段の電圧を計測してその値を判定することで、安定した電力が供給されているかどうかの判定材料に成り得る。
In the flow of the present embodiment, the control flow is such that each value is determined in the order of the output voltage and the input current of the DC / DC converter 3, and this reason is determined in consideration of the following.
When the load current fluctuates in the generated power, the output voltage fluctuates at the same time. The power corresponding to the fluctuation is temporarily supplied from a bypass capacitor provided in the secondary bus portion of the DC / DC converter 3. Therefore, the DC / DC converter 3 that has detected the voltage fluctuation temporarily generated in the bus unit works to keep the voltage of the bus unit constant by controlling the supply current of the generated power by feedback control. From the above, by first measuring the voltage at the subsequent stage of the DC / DC converter 3 and determining the value thereof, it can be a material for determining whether or not stable power is being supplied.
 S17では、負荷電力が700Wを超えた(発電電力より200W超過)か否かを判定し、超えた場合は、S18へ進み、超えた状態が数ms継続したか否かを判定する。これらの判定の結果、700Wを超えた状態が数ms継続したときは、過負荷ゆえ電力供給を停止すべく、S23へ進む。S17又はS18での判定でNOの場合は、S19へ進む。 In S17, it is determined whether or not the load power exceeds 700 W (200 W exceeding the generated power), and if it exceeds, the process proceeds to S18, and it is determined whether or not the exceeded state has continued for several ms. As a result of these determinations, when the state exceeding 700 W continues for several ms, the process proceeds to S23 in order to stop power supply due to overload. If the determination in S17 or S18 is NO, the process proceeds to S19.
 S19では、負荷電力が600Wを超えた(発電電力より100W超過)か否かを判定し、超えた場合は、S20へ進み、超えた状態が100ms継続したか否かを判定する。これらの判定の結果、600Wを超えた状態が100ms継続したときは、過負荷ゆえ電力供給を停止すべく、S23へ進む。S19又はS20での判定でNOの場合は、S21へ進む。 In S19, it is determined whether or not the load power exceeds 600W (exceeds 100W from the generated power), and if it exceeds, the process proceeds to S20, and it is determined whether or not the exceeded state continues for 100 ms. As a result of these determinations, when the state exceeding 600 W continues for 100 ms, the process proceeds to S23 in order to stop power supply due to overload. If the determination in S19 or S20 is NO, the process proceeds to S21.
 S21では、負荷電力が発電電力である500Wを超えたか否かを判定し、超えた場合は、S22へ進み、超えた状態が500ms継続したか否かを判定する。これらの判定の結果、500Wを超えた状態が500ms継続したときは、過負荷ゆえ電力供給を停止すべく、S23へ進む。S21又はS22での判定でNOの場合は、S12へ戻る。 In S21, it is determined whether or not the load power has exceeded 500 W, which is the generated power. If it has exceeded, the process proceeds to S22, and it is determined whether or not the exceeded state has continued for 500 ms. As a result of these determinations, when the state exceeding 500 W continues for 500 ms, the process proceeds to S23 in order to stop power supply due to overload. If the determination in S21 or S22 is NO, the process returns to S12.
 S23では、過負荷との判定に基づいて、自立出力リレー16をオフにして、自立専用コンセント17への電力供給を停止する。このとき500W一定の発電は継続するので当然に大きな余剰電力を生じるが、余剰電力は全て余剰電力ヒータ9に供給して消費し、適宜熱利用する。 In S23, based on the determination of overload, the independent output relay 16 is turned off, and the power supply to the independent dedicated outlet 17 is stopped. At this time, since the constant power generation of 500 W is continued, naturally a large surplus power is generated. However, all surplus power is supplied to the surplus power heater 9 and consumed, and heat is appropriately used.
 自立出力リレー16をオフにすることで電力供給を停止する場合、リレーの動作には時間遅れがあるので、瞬時に電力供給を停止することは困難である。従って、瞬時に電力供給を停止することが求められる場合は、次のような手順で電力供給を停止する。
(1)DC/ACインバータ4を停止する。
(2)ほぼ同時に自立出力リレー16をオフにする。
(3)自立出力リレー16がオフとなるタイミングでDC/ACインバータ4を再稼動する。
(4)余剰電力ヒータ9に余剰電力を供給する。
When power supply is stopped by turning off the independent output relay 16, it is difficult to stop power supply instantaneously because there is a time delay in the operation of the relay. Therefore, when it is required to stop the power supply instantaneously, the power supply is stopped in the following procedure.
(1) The DC / AC inverter 4 is stopped.
(2) The self-supporting output relay 16 is turned off almost simultaneously.
(3) The DC / AC inverter 4 is restarted at the timing when the independent output relay 16 is turned off.
(4) Surplus power is supplied to the surplus power heater 9.
 次のS24では、S23での電力供給停止から予め定めた一定時間、例えば30秒経過したか否かを判定し、30秒経過した時点で、S25へ進んで電力供給を再開する。このときも発電電力は500Wに固定して、外部負荷に電力を供給し、余剰電力は余剰電力ヒータ9により消費する設定とする。 In the next S24, it is determined whether or not a predetermined time, for example, 30 seconds has elapsed since the power supply stop in S23, and when 30 seconds have elapsed, the process proceeds to S25 and the power supply is resumed. At this time, the generated power is fixed to 500 W, the power is supplied to the external load, and the surplus power is set to be consumed by the surplus power heater 9.
 尚、図3のフローチャートにおいては、S11の部分が自立発電電力制御部及び余剰電力消費部に相当し、S12~S25の部分が過負荷時制御部に相当する。
 S12~S25の過負荷時制御部に関しては、S12の部分が負荷電力検出部、電流検出部及び電圧検出部に相当し、S17、S18、S19、S20、S21、S22及びS23の部分が第1の電力供給停止部に相当し、S15、S16及びS23の部分が第2の電力供給停止部に相当し、S13、S14及びS23の部分が第3の電力供給停止部に相当する。また、S23の部分は発電電力消費部を兼ねる。
In the flowchart of FIG. 3, the portion S11 corresponds to the self-generated power control unit and the surplus power consumption unit, and the portions S12 to S25 correspond to the overload control unit.
Regarding the overload control unit of S12 to S25, the part of S12 corresponds to the load power detection unit, the current detection unit and the voltage detection unit, and the parts of S17, S18, S19, S20, S21, S22 and S23 are the first. The parts S15, S16 and S23 correspond to the second power supply stop part, and the parts S13, S14 and S23 correspond to the third power supply stop part. Moreover, the part of S23 also serves as a generated power consumption part.
 図4及び図5は制御例を示している。ここでは、補機負荷電力を無視し、外部負荷電力と余剰ヒータ電力との総和が発電電力の500Wになるように制御しているものとする。 4 and 5 show control examples. Here, it is assumed that auxiliary load power is ignored and control is performed such that the sum of external load power and surplus heater power is 500 W of generated power.
 図4の制御例1では、t1のタイミングで負荷が投入され、突入電流により、外部負荷電力が一時的に700Wを超えた例である。この場合には、数msの継続時間で電力供給が停止される設定のため、実際に外部負荷への電力供給が停止され、これに対応して発電電力(500W)が余剰電力ヒータにより消費される。そして、電力供給の停止は30秒間続き、30秒経過時点で電力供給が再開されるも、再び過負荷と判定されて電力供給が停止されている。 4 is an example in which a load is applied at the timing t1 and the external load power temporarily exceeds 700 W due to an inrush current. In this case, since the power supply is set to be stopped for a duration of several ms, the power supply to the external load is actually stopped, and the generated power (500 W) is consumed by the surplus power heater correspondingly. The Then, the stop of the power supply continues for 30 seconds, and the power supply is restarted when 30 seconds have elapsed, but it is again determined as an overload and the power supply is stopped.
 これに対し、図5の制御例では、t1のタイミングで負荷が投入され、突入電流により、外部負荷電力が一時的に500Wを超えた例である。この場合には、比較的長い500msの継続時間で電力供給が停止される設定のため、外部負荷への電力供給は停止されず、余剰分のみが余剰電力ヒータにて消費されている。これにより、自立運転時に作動させることができる電気製品を増やすことができる。 On the other hand, in the control example of FIG. 5, a load is applied at the timing t1, and the external load power temporarily exceeds 500 W due to the inrush current. In this case, since the power supply is set to be stopped for a relatively long duration of 500 ms, the power supply to the external load is not stopped, and only the surplus power is consumed by the surplus power heater. Thereby, the electrical products which can be operated at the time of a self-supporting operation can be increased.
 次に本発明の他の実施形態として図6及び図7の自立運転モードのフローチャートについて説明する。尚、図6及び図7のフローは、図3のフローのS12の直後にS30の判定を追加し、S13、S14の直後にS31、S32の判定を追加し、S15、S16の直後にS33、S34の判定を追加したものである。従って、図6及び図7のフローにおいて、図3のフローと同内容のステップには同一符号を付してある。 Next, a flowchart of the self-sustaining operation mode of FIGS. 6 and 7 will be described as another embodiment of the present invention. 6 and 7, the determination of S30 is added immediately after S12 of the flow of FIG. 3, the determinations of S31 and S32 are added immediately after S13 and S14, and S33, immediately after S15 and S16. The determination of S34 is added. Therefore, in the flow of FIG. 6 and FIG. 7, steps having the same contents as those of the flow of FIG.
 S11では、発電電力を予め定めた一定電力、例えば500Wに固定して、外部負荷に電力を供給し、余剰電力は余剰電力ヒータ9により消費する設定とする。 In S 11, the generated power is fixed to a predetermined constant power, for example, 500 W, the power is supplied to the external load, and the surplus power is set to be consumed by the surplus power heater 9.
 S12では、電力計測器12により負荷電力を計測し、電流計21によりDC/DCコンバータ3の入力電流を検出し、電圧計22によりDC/DCコンバータ3の出力電圧(昇圧電圧)を計測する。そして、S30へ進む。 In S12, the load power is measured by the power meter 12, the input current of the DC / DC converter 3 is detected by the ammeter 21, and the output voltage (boost voltage) of the DC / DC converter 3 is measured by the voltmeter 22. Then, the process proceeds to S30.
 S30では、負荷電力が発電電力である500Wを超えたか否かを判定する。500Wを超えていない場合は、電力供給を停止する必要はないと判断し、S12の負荷計測を繰り返す。
 500Wを超えた場合は、電力供給を停止するか否かについてのより詳細な判定のため、S13へ進む。
In S30, it is determined whether or not the load power exceeds 500 W that is the generated power. If 500 W is not exceeded, it is determined that it is not necessary to stop the power supply, and the load measurement in S12 is repeated.
If it exceeds 500 W, the process proceeds to S13 for more detailed determination as to whether or not to stop power supply.
 S13では、DC/DCコンバータ3の出力電圧(昇圧電圧)が300Vより低下したか否かを判定し、低下した場合は、S14へ進み、低下した状態が数ms継続したか否かを判定する。これらの判定の結果、300Vより低下した状態が数ms継続したときは、過負荷ゆえ電力供給を停止すべく、S23(図7)へ進む。S13又はS14での判定でNOの場合は、S31へ進む。 In S13, it is determined whether or not the output voltage (boost voltage) of the DC / DC converter 3 has decreased below 300V. If it has decreased, the process proceeds to S14, and it is determined whether or not the decreased state has continued for several ms. . As a result of these determinations, when the state of lower than 300 V continues for several ms, the process proceeds to S23 (FIG. 7) in order to stop the power supply due to overload. If the determination in S13 or S14 is NO, the process proceeds to S31.
 S31では、DC/DCコンバータ3の出力電圧(昇圧電圧)が350Vより低下したか否かを判定し、低下した場合は、S32へ進み、低下した状態が数10ms継続したか否かを判定する。これらの判定の結果、350Vより低下した状態が数10ms継続したときは、過負荷ゆえ電力供給を停止すべく、S23へ進む。S31又はS32での判定でNOの場合は、S15へ進む。 In S31, it is determined whether or not the output voltage (boost voltage) of the DC / DC converter 3 has decreased below 350V. If it has decreased, the process proceeds to S32, and it is determined whether or not the decreased state has continued for several tens of milliseconds. . As a result of these determinations, when the state of lower than 350 V continues for several tens of ms, the process proceeds to S23 in order to stop power supply due to overload. If the determination in S31 or S32 is NO, the process proceeds to S15.
 S15では、DC/DCコンバータ3の入力電流が50Aを超えたか否かを判定し、超えた場合は、S16へ進み、超えた状態が数ms継続したか否かを判定する。これらの判定の結果、50Aを超えた状態が数ms継続したときは、過負荷ゆえ電力供給を停止すべく、S23へ進む。S15又はS16での判定でNOの場合は、S33へ進む。 In S15, it is determined whether or not the input current of the DC / DC converter 3 has exceeded 50 A. If it has exceeded, the process proceeds to S16, and it is determined whether or not the exceeded state has continued for several ms. As a result of these determinations, when the state exceeding 50 A continues for several ms, the process proceeds to S23 to stop the power supply due to overload. If the determination in S15 or S16 is NO, the process proceeds to S33.
 S33では、DC/DCコンバータ3の入力電流が40Aを超えたか否かを判定し、超えた場合は、S34へ進み、超えた状態が数10ms継続したか否かを判定する。これらの判定の結果、40Aを超えた状態が数10ms継続したときは、過負荷ゆえ電力供給を停止すべく、S23へ進む。S33又はS34での判定でNOの場合は、S17へ進む。 In S33, it is determined whether or not the input current of the DC / DC converter 3 has exceeded 40A. If it has exceeded, the process proceeds to S34, and it is determined whether or not the exceeded state has continued for several tens of ms. As a result of these determinations, when the state exceeding 40 A continues for several tens of ms, the process proceeds to S23 in order to stop the power supply due to overload. If the determination in S33 or S34 is NO, the process proceeds to S17.
 S17では、負荷電力が700Wを超えた(発電電力より200W超過)か否かを判定し、超えた場合は、S18へ進み、超えた状態が数ms継続したか否かを判定する。これらの判定の結果、700Wを超えた状態が数ms継続したときは、過負荷ゆえ電力供給を停止すべく、S23へ進む。S17又はS18での判定でNOの場合は、S19へ進む。 In S17, it is determined whether or not the load power exceeds 700 W (200 W exceeding the generated power), and if it exceeds, the process proceeds to S18, and it is determined whether or not the exceeded state has continued for several ms. As a result of these determinations, when the state exceeding 700 W continues for several ms, the process proceeds to S23 in order to stop power supply due to overload. If the determination in S17 or S18 is NO, the process proceeds to S19.
 S19では、負荷電力が600Wを超えた(発電電力より100W超過)か否かを判定し、超えた場合は、S20へ進み、超えた状態が100ms継続したか否かを判定する。これらの判定の結果、600Wを超えた状態が100ms継続したときは、過負荷ゆえ電力供給を停止すべく、S23へ進む。S19又はS20での判定でNOの場合は、S21へ進む。 In S19, it is determined whether or not the load power exceeds 600W (exceeds 100W from the generated power), and if it exceeds, the process proceeds to S20, and it is determined whether or not the exceeded state continues for 100 ms. As a result of these determinations, when the state exceeding 600 W continues for 100 ms, the process proceeds to S23 in order to stop power supply due to overload. If the determination in S19 or S20 is NO, the process proceeds to S21.
 S21では、負荷電力が発電電力である500Wを超えたか否かを判定し、超えた場合は、S22へ進み、超えた状態が500ms継続したか否かを判定する。これらの判定の結果、500Wを超えた状態が500ms継続したときは、過負荷ゆえ電力供給を停止すべく、S23へ進む。S21又はS22での判定でNOの場合は、S12へ戻る。 In S21, it is determined whether or not the load power has exceeded 500 W, which is the generated power. If it has exceeded, the process proceeds to S22, and it is determined whether or not the exceeded state has continued for 500 ms. As a result of these determinations, when the state exceeding 500 W continues for 500 ms, the process proceeds to S23 in order to stop power supply due to overload. If the determination in S21 or S22 is NO, the process returns to S12.
 尚、S13、S31、S15、S33、S17、S19、S21の各判定でYESの場合、それぞれ、S14、S32、S16、S34、S18、S20、S22の継続時間の判定へ進むが、例えばS13の判定でYESの場合のS14の継続時間の判定では、その時点での300V未満の状態の継続時間が所定時間(数ms)に達しているか否かを判定し、未だ達していない場合は、すぐさま次のS31の判定へ進む。従って、S13、S31、S15、S33、S17、S19、S21の各判定は、ほとんど時間遅れなくなされ、実質的には並列処理となる。そして、S12からの本ルーチンが繰り返されている間に、例えば300V未満の状態が所定時間(数ms)継続すると、S14での継続時間の判定でYESとなり、過負荷ゆえ電力供給を停止すべく、S23へ進む。 If the determinations at S13, S31, S15, S33, S17, S19, and S21 are YES, the process proceeds to the determination of the duration of S14, S32, S16, S34, S18, S20, and S22. In the determination of the duration of S14 in the case of YES in the determination, it is determined whether or not the duration of the state of less than 300 V at that time has reached a predetermined time (several ms), and if not yet, immediately The process proceeds to the next determination of S31. Therefore, each determination of S13, S31, S15, S33, S17, S19, and S21 is made with almost no time delay, and is substantially parallel processing. If, for example, a state of less than 300 V continues for a predetermined time (several ms) while this routine from S12 is repeated, the determination of the duration in S14 is YES, and the power supply should be stopped due to overload. The process proceeds to S23.
 S23での電力供給停止の処理、その後のS24、S25での電力供給再開の処理については、図3のフローにて説明した通りであり、ここでの説明は省略する。 The power supply stop processing in S23 and the subsequent power supply restart processing in S24 and S25 are as described in the flow of FIG. 3, and description thereof is omitted here.
 図6及び図7のフローのように、負荷電力に対する電力しきい値に加え、入力電流に対する電流しきい値、及び、昇圧電圧に対する電圧しきい値についても、段階的に複数設定し、対応する継続時間は、しきい値に応じて設定することによって、より適切な過負荷判定が可能となる。
 また、各判定は実質的に時間遅れなく並列処理でなされ、過負荷状態を様々な視点からとらえて、速やかに対応することができる。
6 and 7, in addition to the power threshold for the load power, a plurality of current thresholds for the input current and voltage thresholds for the boost voltage are set in a stepwise manner. By setting the duration time according to the threshold value, more appropriate overload determination can be performed.
In addition, each determination is made by parallel processing with substantially no time delay, and an overload state can be seen from various viewpoints and can be dealt with promptly.
 尚、上記の説明では、制御装置100は、パワーコンディショナー2から独立して設けられているが、制御機能の一部をパワーコンディショナー2内のコントローラに分担させて、協働で運転を制御してもよい。あるいは、制御装置100自体をパワーコンディショナー2の筐体内に収納配置するようにしてもよい。
 また、上記の説明では、発電電力や、各種のしきい値、継続時間等について、数値を示して説明したが、これは理解を容易にするためであり、数値限定する趣旨ではない。
In the above description, the control device 100 is provided independently of the power conditioner 2, but a part of the control function is shared by the controller in the power conditioner 2 to control the operation in cooperation. Also good. Alternatively, the control device 100 itself may be accommodated in the casing of the power conditioner 2.
In the above description, the generated power, various threshold values, durations, and the like have been described with numerical values, but this is for ease of understanding and is not intended to limit the numerical values.
 また、図示の実施形態はあくまで本発明を例示するものであり、本発明は、説明した実施形態により直接的に示されるものに加え、請求の範囲内で当業者によりなされる各種の改良・変更を包含するものであることは言うまでもない。 The illustrated embodiments are merely examples of the present invention, and the present invention includes various improvements and modifications made by those skilled in the art within the scope of the claims in addition to those directly shown by the described embodiments. Needless to say, it is included.
 1 固体酸化物形燃料電池(SOFC)
 2 パワーコンディショナー
 3 DC/DCコンバータ
 4 DC/ACインバータ
 5 系統連系リレー
 6 系統電源
 7 家庭内負荷
 8 補機
 9 余剰電力ヒータ(ACヒータ)
10 ソリッドステートリレー
11 電力計測器
12 電力計測器
13 外部電源
14 外部電源用DC/DCコンバータ
15 自立起動リレー
16 自立出力リレー
17 自立専用コンセント
18 切換リレー
20 運転モード切換スイッチ
21 電流計
22 電圧計
1 Solid oxide fuel cell (SOFC)
2 Power conditioner 3 DC / DC converter 4 DC / AC inverter 5 System interconnection relay 6 System power supply 7 Domestic load 8 Auxiliary machine 9 Surplus power heater (AC heater)
DESCRIPTION OF SYMBOLS 10 Solid state relay 11 Electric power measuring device 12 Electric power measuring device 13 External power supply 14 DC / DC converter 15 for external power supplies Self-supporting start relay 16 Self-supporting output relay 17 Self-supporting exclusive outlet 18 Switching relay 20 Operation mode switch 21 Ammeter 22 Voltmeter

Claims (12)

  1.  燃料と酸化剤との電気化学反応により発電する固体酸化物形燃料電池と、この燃料電池の出力側に設けられるパワーコンディショナーと、前記燃料電池及び前記パワーコンディショナーを制御し、系統電源との連系による系統連系運転と系統電源から解列しての自立運転とを切換可能な制御装置と、を備える、固体酸化物形燃料電池システムであって、
     前記制御装置は、自立運転時に負荷の大きさと継続時間とに基づいて過負荷状態を検出し、過負荷状態のときに、外部負荷への電力供給を停止する過負荷時制御部を備えることを特徴とする、固体酸化物形燃料電池システム。
    Solid oxide fuel cell that generates electric power by electrochemical reaction between fuel and oxidant, power conditioner provided on the output side of the fuel cell, control of the fuel cell and the power conditioner, and interconnection with a system power source A solid oxide fuel cell system, comprising: a control device capable of switching between grid interconnection operation and independent operation separated from the grid power source,
    The control device includes an overload control unit that detects an overload state based on a load size and a duration during independent operation, and stops power supply to an external load in the overload state. A feature of a solid oxide fuel cell system.
  2.  前記過負荷時制御部は、
     自立運転時に負荷電力を検出する負荷電力検出部と、
     自立運転時の負荷電力が所定の電力しきい値を超えた状態が第1の所定時間以上継続したときに、外部負荷への電力供給を停止する第1の電力供給停止部と、
    を含んで構成されることを特徴とする、請求項1記載の固体酸化物形燃料電池システム。
    The overload controller is
    A load power detection unit that detects load power during independent operation;
    A first power supply stop unit that stops power supply to the external load when the state in which the load power during the self-sustained operation exceeds a predetermined power threshold continues for a first predetermined time;
    The solid oxide fuel cell system according to claim 1, comprising:
  3.  前記電力しきい値は、段階的に複数設定され、
     前記第1の所定時間は、前記複数の電力しきい値のそれぞれに対応させて、前記電力しきい値が大きいほど短く設定されることを特徴とする、請求項2記載の固体酸化物形燃料電池システム。
    A plurality of the power thresholds are set in stages,
    3. The solid oxide fuel according to claim 2, wherein the first predetermined time is set to be shorter as the power threshold is larger corresponding to each of the plurality of power thresholds. 4. Battery system.
  4.  前記過負荷時制御部は、
     自立運転時に前記パワーコンディショナーへの入力電流を検出する電流検出部と、
     前記入力電流が所定の電流しきい値を超えた状態が第2の所定時間以上継続したときに、外部負荷への電力供給を停止する第2の電力供給停止部と、
    を含んで構成されることを特徴とする、請求項1記載の固体酸化物形燃料電池システム。
    The overload controller is
    A current detection unit for detecting an input current to the power conditioner during the independent operation;
    A second power supply stop unit that stops power supply to an external load when the state where the input current exceeds a predetermined current threshold continues for a second predetermined time or more;
    The solid oxide fuel cell system according to claim 1, comprising:
  5.  前記電流しきい値は、段階的に複数設定され、
     前記第2の所定時間は、前記複数の電流しきい値のそれぞれに対応させて、前記電流しきい値が大きいほど短く設定されることを特徴とする、請求項4記載の固体酸化物形燃料電池システム。
    A plurality of the current threshold values are set in stages,
    5. The solid oxide fuel according to claim 4, wherein the second predetermined time is set to be shorter as the current threshold value is larger corresponding to each of the plurality of current threshold values. 6. Battery system.
  6.  前記過負荷時制御部は、
     自立運転時に前記パワーコンディショナーでの昇圧電圧を検出する電圧検出部と、
     前記昇圧電圧が所定の電圧しきい値より低下した状態が第3の所定時間以上継続したときに、外部負荷への電力供給を停止する第3の電力供給停止部と、
    を含んで構成されることを特徴とする、請求項1記載の固体酸化物形燃料電池システム。
    The overload controller is
    A voltage detection unit for detecting a boosted voltage in the power conditioner during the independent operation;
    A third power supply stop unit that stops power supply to an external load when the boosted voltage is lower than a predetermined voltage threshold for a third predetermined time or more;
    The solid oxide fuel cell system according to claim 1, comprising:
  7.  前記電圧しきい値は、段階的に複数設定され、
     前記第3の所定時間は、前記複数の電圧しきい値のそれぞれに対応させて、前記電圧しきい値が小さいほど短く設定されることを特徴とする、請求項6記載の固体酸化物形燃料電池システム。
    A plurality of the voltage thresholds are set in stages,
    7. The solid oxide fuel according to claim 6, wherein the third predetermined time is set to be shorter as the voltage threshold is smaller corresponding to each of the plurality of voltage thresholds. Battery system.
  8.  前記パワーコンディショナーは、直流電力を交流電力に変換するインバータの出力側から自立運転時に外部負荷へ電力を供給する自立出力ラインと、該自立出力ラインを導通・遮断する自立出力リレーとを有し、
     前記過負荷時制御部は、外部負荷への電力供給を停止するに際し、前記自立出力リレーへのオフ指令と同時又はこれに先立って前記インバータの作動を停止し、前記自立出力リレーのオフ後に前記インバータの作動を再開させることを特徴とする、請求項1記載の固体酸化物形燃料電池システム。
    The power conditioner has a self-sustained output line that supplies power to an external load at the time of self-sustained operation from the output side of the inverter that converts DC power to AC power, and a self-sustained output relay that conducts and shuts off the self-sustained output line,
    When the power supply to the external load is stopped, the overload control unit stops the operation of the inverter simultaneously with or prior to the off command to the self-sustained output relay, and after the self-sustained output relay is turned off, 2. The solid oxide fuel cell system according to claim 1, wherein the operation of the inverter is resumed.
  9.  前記過負荷時制御部は、外部負荷への電力供給停止時に、前記燃料電池の発電電力を負荷装置により消費する発電電力消費部を含んで構成されることを特徴とする、請求項1記載の固体酸化物形燃料電池システム。 The said overload control part is comprised including the generated electric power consumption part which consumes the electric power generated by the said fuel cell by a load apparatus at the time of the electric power supply to an external load being stopped. Solid oxide fuel cell system.
  10.  前記過負荷時制御部は、外部負荷への電力供給を予め定めた一定時間停止し、一定時間経過後に電力供給を再開することを特徴とする、請求項1記載の固体酸化物形燃料電池システム。 2. The solid oxide fuel cell system according to claim 1, wherein the overload control unit stops the power supply to the external load for a predetermined time and restarts the power supply after a predetermined time elapses. .
  11.  前記制御装置は、
     自立運転時に前記燃料電池の発電電力を予め定めた一定電力に制御する自立発電電力制御部と、
     自立運転時に負荷電力を超える余剰電力を負荷装置により消費する余剰電力消費部と、
    を備えることを特徴とする、請求項1記載の固体酸化物形燃料電池システム。
    The control device includes:
    A self-generated power control unit for controlling the generated power of the fuel cell to a predetermined constant power during the self-sustaining operation;
    A surplus power consumption unit that consumes surplus power exceeding the load power during the self-sustained operation by the load device;
    The solid oxide fuel cell system according to claim 1, comprising:
  12.  自立運転時の外部負荷への電力供給は、自立専用コンセントを介して行われることを特徴とする、請求項1記載の固体酸化物形燃料電池システム。 2. The solid oxide fuel cell system according to claim 1, wherein power supply to the external load during the self-sustaining operation is performed through a self-supporting outlet.
PCT/JP2013/066488 2012-06-29 2013-06-14 Solid oxide fuel cell system WO2014002799A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014522544A JP6208660B2 (en) 2012-06-29 2013-06-14 Solid oxide fuel cell system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-147589 2012-06-29
JP2012147589 2012-06-29

Publications (1)

Publication Number Publication Date
WO2014002799A1 true WO2014002799A1 (en) 2014-01-03

Family

ID=49782961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066488 WO2014002799A1 (en) 2012-06-29 2013-06-14 Solid oxide fuel cell system

Country Status (2)

Country Link
JP (1) JP6208660B2 (en)
WO (1) WO2014002799A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016013010A (en) * 2014-06-30 2016-01-21 三菱電機株式会社 Power conditioner
JP2016100162A (en) * 2014-11-20 2016-05-30 Jxエネルギー株式会社 Fuel battery system and control method for fuel battery system
JP2016146686A (en) * 2015-02-06 2016-08-12 アイシン精機株式会社 Distributed power supply
JP2017098153A (en) * 2015-11-26 2017-06-01 京セラ株式会社 Fuel cell device and control method of the same
JP2021002932A (en) * 2019-06-21 2021-01-07 新電元工業株式会社 Power generating system, power conditioner and inverse load flow prevention method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07336894A (en) * 1994-06-02 1995-12-22 Sanyo Electric Co Ltd Uniterruptible power supply
JP2000036312A (en) * 1998-07-16 2000-02-02 Fuji Electric Co Ltd Direct current output fuel cell power generation set
JP2002186172A (en) * 2000-12-14 2002-06-28 Kokusan Denki Co Ltd Inverter power generator and control method in overloaded condition
WO2005008817A1 (en) * 2003-07-18 2005-01-27 Gs Yuasa Corporation Fuel cell system and method for detecting running out of fuel in fuel cell
JP2007294443A (en) * 2006-03-31 2007-11-08 Osaka Gas Co Ltd Solid oxide fuel cell system
JP2010108807A (en) * 2008-10-31 2010-05-13 Toshiba Fuel Cell Power Systems Corp Fuel cell power generation system and operation method of the same
JP2010130758A (en) * 2008-11-26 2010-06-10 Toyota Industries Corp Power conversion apparatus
JP2011119046A (en) * 2009-12-01 2011-06-16 Panasonic Corp Fuel cell generator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07336894A (en) * 1994-06-02 1995-12-22 Sanyo Electric Co Ltd Uniterruptible power supply
JP2000036312A (en) * 1998-07-16 2000-02-02 Fuji Electric Co Ltd Direct current output fuel cell power generation set
JP2002186172A (en) * 2000-12-14 2002-06-28 Kokusan Denki Co Ltd Inverter power generator and control method in overloaded condition
WO2005008817A1 (en) * 2003-07-18 2005-01-27 Gs Yuasa Corporation Fuel cell system and method for detecting running out of fuel in fuel cell
JP2007294443A (en) * 2006-03-31 2007-11-08 Osaka Gas Co Ltd Solid oxide fuel cell system
JP2010108807A (en) * 2008-10-31 2010-05-13 Toshiba Fuel Cell Power Systems Corp Fuel cell power generation system and operation method of the same
JP2010130758A (en) * 2008-11-26 2010-06-10 Toyota Industries Corp Power conversion apparatus
JP2011119046A (en) * 2009-12-01 2011-06-16 Panasonic Corp Fuel cell generator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016013010A (en) * 2014-06-30 2016-01-21 三菱電機株式会社 Power conditioner
JP2016100162A (en) * 2014-11-20 2016-05-30 Jxエネルギー株式会社 Fuel battery system and control method for fuel battery system
JP2016146686A (en) * 2015-02-06 2016-08-12 アイシン精機株式会社 Distributed power supply
JP2017098153A (en) * 2015-11-26 2017-06-01 京セラ株式会社 Fuel cell device and control method of the same
JP2021002932A (en) * 2019-06-21 2021-01-07 新電元工業株式会社 Power generating system, power conditioner and inverse load flow prevention method thereof
JP7385382B2 (en) 2019-06-21 2023-11-22 新電元工業株式会社 Power generation system, power conditioner and its reverse power flow prevention method

Also Published As

Publication number Publication date
JP6208660B2 (en) 2017-10-04
JPWO2014002799A1 (en) 2016-05-30

Similar Documents

Publication Publication Date Title
WO2014002798A1 (en) Solid polymer fuel cell system
JP5253967B2 (en) Fuel cell power generation system
EP2738902B1 (en) Power supply system, distribution device, and power control device
JP6208660B2 (en) Solid oxide fuel cell system
JP6574696B2 (en) Power control apparatus, power control method, and fuel cell system
JP2002063927A (en) Control method of fuel cell system and its device
JP2015065009A (en) Cogeneration apparatus
JP2015186408A (en) Operation method for fuel cell system, and fuel cell system
JP6174578B2 (en) Solid oxide fuel cell system
KR100641127B1 (en) Output power control apparatus for fuel cell system
JP2011050191A (en) Power generation system
JP2008092767A (en) Power plant
JP5573154B2 (en) Power conditioner and power generation system equipped with the same
JP2017118598A (en) Power supply system
JP5809844B2 (en) FUEL CELL POWER GENERATION SYSTEM AND METHOD FOR POWERING UP ELECTRIC HEATER IN FUEL CELL POWER GENERATION SYSTEM
JP2016046982A (en) Power generation device
JP6475945B2 (en) Power supply device, power supply method, and power supply system
JP2013143212A (en) Fuel cell power generation system and operation method thereof
JP5521439B2 (en) Power generation system
JP2013078183A (en) Power generation system
JP5895073B2 (en) FUEL CELL POWER GENERATION SYSTEM AND METHOD FOR POWERING UP ELECTRIC HEATER IN FUEL CELL POWER GENERATION SYSTEM
JP2006147588A (en) Fuel cell system
WO2014002800A1 (en) Solid polymer fuel cell system
JP7113693B2 (en) power supply system
JP2004335368A (en) Fuel cell system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13808772

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014522544

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13808772

Country of ref document: EP

Kind code of ref document: A1