WO2014002789A1 - Voltage equalizing device and voltage equalizing method - Google Patents

Voltage equalizing device and voltage equalizing method Download PDF

Info

Publication number
WO2014002789A1
WO2014002789A1 PCT/JP2013/066426 JP2013066426W WO2014002789A1 WO 2014002789 A1 WO2014002789 A1 WO 2014002789A1 JP 2013066426 W JP2013066426 W JP 2013066426W WO 2014002789 A1 WO2014002789 A1 WO 2014002789A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
cell balance
voltage
unit
battery block
Prior art date
Application number
PCT/JP2013/066426
Other languages
French (fr)
Japanese (ja)
Inventor
守 倉石
慎司 広瀬
正彰 鈴木
小林 貢
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2014002789A1 publication Critical patent/WO2014002789A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0018Circuits for equalisation of charge between batteries using separate charge circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a voltage equalizing device and a voltage equalizing method for equalizing voltages of a plurality of batteries.
  • a cell balance circuit which equalizes the voltages of a plurality of serially connected cells included in a battery pack.
  • a cell balance circuit for equalizing the voltage of a battery proposals have been made using a converter method, a transformer method, or the like. Also, a cell balance circuit combining a converter system and a transformer system has been proposed.
  • an inter-cell voltage balance correction circuit that divides a multi-series storage cell into a plurality of serial cell groups continuous in connection order, and performs voltage balance correction between adjacent cells in each cell group.
  • an inter-group voltage balance correction circuit is provided which performs balance correction on the series voltage of each cell group by AC coupling formed using a transformer and a switching circuit.
  • an apparatus which avoids wasteful consumption of charging energy, is compact and low in cost, and prevents overcharging as well as overdischarging of single cells.
  • the control circuit operates the switch circuit to transfer the charge from the highest charge level cell in each group battery to the lowest charge level cell via the capacitor to set a single charge in each group battery. Make the battery charge status uniform.
  • the switch circuit is operated to switch the highest charge level single battery in the highest charge level group battery through the capacitor to the lowest charge level single battery in the lowest charge level group battery at this time The charge is moved to equalize the state of charge among the group batteries.
  • JP, 2008-035680 A Japanese Patent Laid-Open No. 2000-270483
  • the present invention has been made in view of the above situation, and an object thereof is to provide a voltage equalizing device and a voltage equalizing method capable of reducing the size of the cell balance circuit and reducing the cost even when there are a plurality of batteries. I assume.
  • the voltage equalization apparatus which is one of the aspects of this invention has a 1st battery block, a 2nd battery block, a 1st cell balance part, a 2nd cell balance part, and a 3rd cell balance part.
  • the first battery block has a predetermined number of batteries connected in series.
  • the second battery block includes a different number of batteries than the batteries included in the first battery block.
  • the first cell balance unit equalizes the voltages of adjacent cells included in the first cell block.
  • the second cell balance unit equalizes the voltage of the battery included in the second battery block and the voltage of the battery included in the adjacent first battery block.
  • the third cell balance unit equalizes the voltages of the plurality of first battery blocks.
  • the control unit controls the first cell balance unit, the second cell balance unit, and the third cell balance unit.
  • the size of the cell balance circuit can be reduced.
  • FIG. 7 is a diagram showing an example of the operation of the voltage equalization apparatus.
  • FIG. 1 is a diagram showing an embodiment of a voltage equalization apparatus.
  • the voltage equalization apparatus shown in FIG. 1 includes a control unit 1, first battery blocks 2a to 2c, a second battery block 2d, a measurement unit 3, first cell balance units 4a to 4c, and a second cell balance unit 4d. , And the third cell balance unit 5.
  • the control unit 1 determines whether or not all voltage differences between adjacent batteries included in the first battery blocks 2a to 2c and the second battery block 2d are within the determined threshold range. In addition, when it is out of the threshold range, the first cell balance units 4a to 4c, the second cell balance unit 4d, and the third cell balance unit 5 start the cell balance processing. Then, when the voltage difference between the adjacent cells included in the first cell blocks 2a to 2c and the second cell block 2d falls within the determined threshold range, the first cell balance units 4a to 4c, the second cell The cell balance processing of each of the balancing unit 4 d and the third cell balancing unit 5 is stopped. The difference between the average voltage of all the batteries included in the first battery blocks 2a to 2c and the second battery block 2d and the voltage of each battery may be used.
  • the control unit 1 may use, for example, a central processing unit (CPU), a multi-core CPU, or a programmable device (field programmable gate array (FPGA), programmable logic device (PLD) or the like).
  • the control unit 1 may have a storage unit, or may be connected to a storage unit provided separately from the control unit 1.
  • a memory such as a read only memory (ROM) or a random access memory (RAM) or a hard disk may be considered.
  • data such as parameter values and variable values may be recorded in the storage unit, or may be used as a work area at the time of execution.
  • More than one battery is connected in series to the first battery blocks 2a to 2c and the second battery block 2d.
  • the batteries included in the first battery blocks 2a to 2c and the second battery block 2d are considered to use secondary batteries or the like.
  • a secondary battery a lithium ion secondary battery, a nickel hydrogen secondary battery, etc. are considered, for example.
  • the number (n) of the batteries included in each of the first battery blocks 2a to 2c is the same.
  • the number (m) of batteries included in the second battery block 2d is different from the number of batteries included in each of the first battery blocks 2a to 2c (n ⁇ m). In order to shorten the equalization time by the second cell balance unit, m ⁇ n is preferable.
  • the measuring unit 3 measures the voltage of each battery. For example, a voltmeter may be considered. Further, the data measured by the measuring unit 3 is output to the control unit 1.
  • the first cell balance units 4a to 4c are converter type cell balance circuits.
  • the first cell balance unit 4a is a circuit for equalizing the batteries of the first battery block 2a.
  • the first cell balance unit 4b is a circuit for equalizing the batteries of the first battery block 2b.
  • the first cell balance unit 4c is a circuit for equalizing the batteries of the first battery block 2c.
  • the second cell balance unit 4d is a converter type cell balance circuit.
  • the second cell balance unit 4d is a circuit for equalizing the batteries of the second battery block 2d.
  • the third cell balance unit 5 is a transformer type cell balance circuit. It is a circuit for equalizing the voltages of the battery blocks of the first battery blocks 2a to 2c.
  • FIG. 2 is a diagram showing an embodiment of the voltage equalization apparatus.
  • the voltages of the twelve batteries B1 to B12 are equalized using a transformer, and the voltages of the fourteen batteries B1 to B14 are equalized using a coil.
  • the terminals P1 and P2 at both ends of the battery pack in which the batteries B1 to B14 are connected in series are connected, for example, to the power of a motor or the like at the time of discharge, and connected to an external power supply or the like at the time of charge.
  • the first battery block 2a corresponds to the batteries B1 to B4
  • the first battery block 2b corresponds to the batteries B5 to B8
  • the first battery block 2c corresponds to the batteries B9 to B12.
  • the second battery block 2d corresponds to the batteries B13 to B14.
  • the measuring unit 3 is a voltmeter or the like connected in parallel to each of the batteries B1 to B14.
  • the first cell balance units 4a to 4c of the converter system in FIG. 2 will be described.
  • the first cell balance unit 4a includes batteries B1 to B4 (first battery block, first battery, second battery), switches SW1 to SW6 (first switch, second switch), and coils L1 to L4. It has L3 (1st coil).
  • the control terminal (gate) of each of the switches SW1 to SW6 is connected to the control unit 1, and each of the switches SW1 to SW6 is controlled by a control signal (CNT) output from the control unit 1.
  • the negative terminal of the battery B1 and the positive terminal of the battery B2 are connected to one terminal of the coil L1, and the other terminal of the coil L1 has one terminal (drain) of the switch SW1 and the other terminal (source) of the switch SW2. It is connected.
  • the other terminal (source) of the switch SW1 is connected to the positive electrode terminal of the battery B1.
  • One terminal (drain) of the switch SW2 is connected to the negative terminal of the battery B2.
  • the negative terminal of battery B2 and the positive terminal of battery B3 are connected to one terminal of coil L2, and the other terminal of coil L2 has one terminal (drain) of switch SW3 and the other terminal (source) of switch SW4. It is connected.
  • the other terminal (source) of the switch SW3 is connected to the positive electrode terminal of the battery B2.
  • One terminal (drain) of the switch SW4 is connected to the negative terminal of the battery B3.
  • the negative terminal of battery B3 and the positive terminal of battery B4 are connected to one terminal of coil L3, and the other terminal of coil L3 has one terminal (drain) of switch SW5 and the other terminal (source) of switch SW6. It is connected.
  • the other terminal (source) of the switch SW5 is connected to the positive electrode terminal of the battery B3.
  • One terminal (drain) of the switch SW6 is connected to the negative terminal of the battery B4.
  • the first cell balance unit 4b includes batteries B5 to B8 (first battery block, first battery, second battery), switches SW7 to SW12 (first switch, second switch), and coils L4 to L4. It has L6 (1st coil).
  • the control terminal (gate) of each of the switches SW7 to SW12 is connected to the control unit 1, and each of the switches SW7 to SW12 is controlled by a control signal (CNT) output from the control unit 1.
  • the negative terminal of the battery B5 and the positive terminal of the battery B6 are connected to one terminal of the coil L4, and the other terminal of the coil L4 has one terminal (drain) of the switch SW7 and the other terminal (source) of the switch SW8. It is connected.
  • the other terminal (source) of the switch SW7 is connected to the positive electrode terminal of the battery B5.
  • One terminal (drain) of the switch SW8 is connected to the negative terminal of the battery B6.
  • the negative terminal of the battery B6 and the positive terminal of the battery B7 are connected to one terminal of the coil L5, and the other terminal of the coil L5 has one terminal (drain) of the switch SW9 and the other terminal (source) of the switch SW10. It is connected.
  • the other terminal (source) of the switch SW9 is connected to the positive electrode terminal of the battery B6.
  • One terminal (drain) of the switch SW10 is connected to the negative terminal of the battery B7.
  • the negative terminal of the battery B7 and the positive terminal of the battery B8 are connected to one terminal of the coil L6, and the other terminal of the coil L6 has one terminal (drain) of the switch SW11 and the other terminal (source) of the switch SW12. It is connected.
  • the other terminal (source) of the switch SW11 is connected to the positive electrode terminal of the battery B7.
  • One terminal (drain) of the switch SW12 is connected to the negative terminal of the battery B8.
  • the first cell balance unit 4c includes batteries B9 to B12 (first battery block, first battery, second battery), switches SW13 to SW18 (first switch, second switch), and coils L7 to L18. It has L9 (1st coil).
  • the control terminal (gate) of each of the switches SW13 to SW18 is connected to the control unit 1, and each of the switches SW13 to SW18 is controlled by a control signal (CNT) output from the control unit 1.
  • the negative terminal of battery B9 and the positive terminal of battery B10 are connected to one terminal of coil L7.
  • the other terminal of coil L7 has one terminal (drain) of switch SW13 and the other terminal (source) of switch SW14. It is connected.
  • the other terminal (source) of the switch SW13 is connected to the positive electrode terminal of the battery B9.
  • One terminal (drain) of the switch SW14 is connected to the negative terminal of the battery B10.
  • the negative terminal of battery B10 and the positive terminal of battery B11 are connected to one terminal of coil L8.
  • the other terminal of coil L8 has one terminal (drain) of switch SW15 and the other terminal (source) of switch SW16. It is connected.
  • the other terminal (source) of the switch SW15 is connected to the positive electrode terminal of the battery B10.
  • One terminal (drain) of the switch SW16 is connected to the negative terminal of the battery B11.
  • the negative terminal of the battery B11 and the positive terminal of the battery B12 are connected to one terminal of the coil L9, and the other terminal of the coil L9 has one terminal (drain) of the switch SW17 and the other terminal (source) of the switch SW18. It is connected.
  • the other terminal (source) of the switch SW17 is connected to the positive electrode terminal of the battery B11.
  • One terminal (drain) of the switch SW18 is connected to the negative terminal of the battery B12.
  • the first cell balance unit provided in the voltage equalizing device is not limited to the case where four batteries are equalized, and a plurality of batteries other than four may be equalized. Also, the number of first cell balance units is not limited to three.
  • the second cell balance unit 4d of the converter system in FIG. 2 will be described.
  • the second cell balance unit 4d includes batteries B13 to B14 (second battery block), switches SW19 to SW22, and coils L10 to L11.
  • the control terminal (gate) of each of the switches SW19 to SW22 is connected to the control unit 1, and each of the switches SW19 to SW22 is controlled by a control signal (CNT) output from the control unit 1.
  • the negative terminal of the battery B13 and the positive terminal of the battery B14 are connected to one terminal of the coil L10, and the other terminal of the coil L10 has one terminal (drain) of the switch SW19 and the other terminal (source) of the switch SW20. It is connected.
  • the other terminal (source) of the switch SW19 is connected to the positive electrode terminal of the battery B13.
  • One terminal (drain) of the switch SW20 is connected to the negative terminal of the battery B14.
  • the negative terminal of the battery B14 (third battery) and the positive terminal of the battery B1 are connected to one terminal of the coil L11 (second coil), and the other terminal of the coil L11 is a switch SW21 (third switch)
  • One terminal (drain) of the switch SW22 is connected to the other terminal (source) of the switch SW22.
  • the other terminal (source) of the switch SW21 is connected to the positive electrode terminal of the battery B14.
  • One terminal (drain) of the switch SW22 is connected to the negative terminal of the battery B1.
  • the second cell balance unit provided in the voltage equalizing device is not limited to the case where two batteries are equalized, and a plurality of batteries other than one or two may be equalized. Also, the second cell balance unit is not limited to one.
  • the switches SW1 to SW23 are represented by N-channel MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) enhancement type, but are not limited.
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • another MOSFET may be used, or a relay may be used.
  • the first cell balance units 4a to 4c for equalizing the voltages between the batteries are cell balance circuits of an inductor coupling system configured using coils L1 to L9 and switches SW1 to SW18. By charging and discharging the inductor current between adjacent cells, voltages are equalized between the adjacent cells.
  • the control unit 1 alternately turns on / off the switches SW1 and SW2 by control terminals (gates) of PWM (Pulse Width Modulation) control signals by the control terminals (gates) of the switches SW1 and SW2.
  • PWM Pulse Width Modulation
  • the switch SW1 When the voltage of the battery B1 is higher than the voltage of the battery B2, when the switch SW1 is on, a current flows from the battery B1 to the coil L1, and the coil L1 is charged. At this time, the switch SW2 is off.
  • the switch SW2 is switched from off to on, the energy charged in the coil L1 is charged in the battery B2.
  • the voltages of the battery B1 and the battery B2 become equal. That is, if there is a voltage difference between two adjacent batteries B1 and B2, energy is transferred via the coil L1 from the higher voltage side to the lower voltage side, so that the voltages of the batteries B1 and B2 become equal.
  • the converter cell balance is performed in the same manner in other adjacent batteries.
  • the combination of the battery B2 and the battery B3, the combination of the battery B3 and the battery B4,... And the combination of the battery B11 and the battery B12 are performed.
  • the cell balance of the converter system is performed independently in each of the first cell balance units 4a to 4c.
  • the second cell balance unit 4d for equalizing the voltage between the batteries is a cell balance circuit of an inductor coupling type configured using the coils L10 to L11 and the switches SW19 to SW22. By charging and discharging the inductor current between adjacent cells, voltages are equalized between the adjacent cells.
  • the voltage of the battery B14 and the battery B1 included in the first cell balance unit 4a (the battery included in the first battery block adjacent to the battery included in the second battery block), the voltage of the battery B14 and the battery Make the voltage of B1 even.
  • the energy is transferred from the second cell balance unit 4 d to the first cell balance unit 4 a without using a third cell balance unit 5 of a transformer type described later.
  • the energy stored in the coil L11 is moved, whereby the voltages of the batteries B14 and B1 can be equalized.
  • the number of windings of the primary coil of the transformer corresponding to the second cell balance unit 4d can be reduced, and the number of secondary coils can be reduced.
  • the third cell balance unit 5 will be described.
  • the third cell balance unit 5 further includes, in addition to the voltage equalization by the first cell balance units 4a to 4c and the second cell balance unit 4d, the respective first battery blocks 2a (battery B1 to B4), The voltages of 2b (battery B5 to B8) and 2c (battery B9 to B12) are equalized.
  • the third cell balance unit 5 shown in FIG. 2 equalizes the voltages of the first battery blocks 2a to 2c using the transformer T1 and the switch SW23 (fourth switch).
  • the transformer T1 has a primary coil TL0 and secondary coils TL1, TL2, and TL3 and is AC-coupled to each other at a transformation ratio of 1: 1.
  • the secondary coils TL1, TL2, and TL3 of the transformer T1 are connected in series. In the example of FIG. 2, the ratio of the windings of TL0 to the windings of the secondary coils TL1, TL2, and TL3 is 3: 1.
  • One terminal of primary coil TL0 is connected to the negative terminal of battery B14, the other terminal of primary coil TL0 is connected to one terminal (source) of switch SW23, and the other terminal (drain) of switch SW23 is terminal P2 Connected to
  • one diode is connected in series to each of the secondary coils TL1, TL2, and TL3 so that no current flows from the battery side to the secondary coils TL1, TL2, and TL3. It is desirable to do.
  • the switch SW23 is turned on / off in phase with a control signal (CNT) output from the control unit 1.
  • the on / off operation is performed by the pulse signal output from the control unit 1.
  • the third cell balance unit 5 is operated at the same time as the first cell balance units 4a to 4c and the second cell balance unit 4d, and the cell balance processing is performed until the voltage difference of all the batteries is within the threshold range A. You may
  • all the third cell balance units 5 are used to perform all the cell balance processing.
  • Cell balance processing may be performed until the battery voltage difference falls within the threshold range A.
  • the present invention is not limited to the case where the first cell balance units 4a to 4c and the second cell balance unit 4d perform the cell balance processing for each battery block for a predetermined time, for example, the voltage difference between the battery blocks is Cell balance processing may be performed until it falls within the determined threshold range B.
  • the relationship between the threshold range A and the threshold range B is
  • the number of turns of the primary coil of the transformer corresponding to the second cell balance unit 4d can be reduced and the number of secondary coils can be reduced as compared to the conventional case. That is, although four secondary coils of the transformer T1 corresponding to the first cell balance units 4a to 4c and the second cell balance unit 4d are conventionally required, in the present embodiment, the first cell balance unit It can be reduced to three corresponding to 4a to 4c. As a result, while reducing the calorific value of a transformer, the mounting density of a battery can be raised.
  • the wiring connecting between the secondary coil of the transformer and the battery block can be reduced as compared with the prior art.
  • the wiring can be reduced.
  • the workability such as assembly and replacement of the voltage equalizing device can be improved.
  • the voltage can be equalized even when the number of all batteries is not a common multiple of the number (n) of batteries included in each of the first battery blocks.
  • the control unit will be described.
  • FIG. 3 is a diagram showing an embodiment of the control unit.
  • the control unit 1 includes, for example, a battery voltage determination unit 301, a first cell balance control unit 302, a second cell balance control unit 303, and a third cell balance control unit 304.
  • the battery voltage determination unit 301 determines whether all the voltage differences between adjacent batteries included in the first battery blocks 2a to 2c and the second battery block 2d are within a predetermined threshold range. Then, when it is not within the threshold range, the first cell balance control unit 302, the second cell balance control unit 303, and the third cell balance control unit 304 are instructed to start the cell balance.
  • battery voltage determination unit 301 determines the first cell balance and the second cell. Stop the balance and the third cell balance.
  • the first cell balance control unit 302 When the first cell balance control unit 302, the second cell balance control unit 303, and the third cell balance control unit 304 are not within the threshold range, the first cell balance unit, the second cell balance unit, and the third cell balance unit Perform cell balance in the cell balance unit of
  • FIG. 4 is a diagram showing an example of the operation of the voltage equalization apparatus.
  • step S401 the control unit 1 acquires the voltage of each battery.
  • the battery voltages of the batteries B1 to B14 are acquired.
  • step S402 the control unit 1 obtains a voltage difference between two adjacent cells for all the cells.
  • voltage difference ⁇ V1
  • voltage difference ⁇ V2
  • voltage difference ⁇ V3
  • Voltage difference ⁇ V13
  • voltage difference ⁇ V14
  • step S403 the control unit 1 determines whether all the voltage differences are within the threshold range. For example, it is determined whether all the voltage differences ⁇ V1 to ⁇ V14 obtained in step S402 are within the threshold range. If all the voltage differences are within the threshold range (Yes), the process proceeds to step S407 to complete the cell balance processing, and if any one of the voltage differences is outside the threshold range (No), the process proceeds to step S404. Transition.
  • step S404 the control unit 1 starts cell balance processing using the first and second cell balance units.
  • step S405 cell balance processing of the battery block is started using the third cell balance unit.
  • the order of step S404 and step S405 is not limited.
  • step S406 the control unit 1 determines whether or not the voltage difference between the adjacent batteries included in all the battery blocks is within the threshold range, and if the voltage difference between all the adjacent batteries is within the threshold range (Yes) The process proceeds to step S407, and if it is out of the threshold range (No), the process proceeds to step S406.
  • step S407 the control unit 1 stops the cell balance processing of each of the first cell balance unit, the second cell balance unit, and the third cell balance unit.
  • step S404 ' the first cell balance units 4a to 4c and the second cell balance unit 4d perform cell balance processing on each battery block. Then, at the determined time, the control unit 1 stops each of the cell balance processing corresponding to the first cell balance units 4a to 4c and the second cell balance unit 4d.
  • step S405 ' cell balance processing is performed using the third cell balance unit 5 until the voltage differences of all the batteries fall within the threshold range A.
  • step S406 ' control unit 1 determines whether or not the voltage difference between adjacent cells included in all the battery blocks is within threshold range A, and all the voltage differences between adjacent cells are within threshold range A. If it is (Yes), the process proceeds to step S407 ′. If it is out of the threshold range A (No), the process proceeds to step S404 ′. In step S ⁇ b> 407 ′, the control unit 1 stops the cell balance processing of the third cell balance unit 5.
  • step S404 ' cell balance processing is performed until the first cell balance units 4a to 4c and the second cell balance unit 4d are within the threshold range B in which the voltage difference between the battery blocks is determined for each battery block. You may When the voltage difference of the battery block falls within the threshold range B, the control unit 1 stops each of the cell balance processing corresponding to the first cell balance units 4a to 4c and the second cell balance unit 4d.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Provided are a voltage equalizing device and a voltage equalizing method that make it possible to reduce the scale of a cell balancing circuit and reduce costs even in the case of a plurality of batteries. The voltage equalizing device comprises: a first battery block that is connected in series to a predetermined number of batteries; a second battery block that includes a number of batteries that differs from the number of batteries included in the first battery block; a first cell balancing unit that equalizes the voltage of adjacent batteries included in the first battery block; a second cell balancing unit that equalizes the voltage of adjacent batteries included in the second battery block, and the voltage of batteries included in the first and second battery blocks that are adjacent to one another; a third cell balancing unit that equalizes the voltage of a plurality of the first battery blocks; and a control unit that controls the first cell balancing unit, the second cell balancing unit, and the third cell balancing unit.

Description

電圧均等化装置および電圧均等化方法Voltage equalization apparatus and voltage equalization method
 本発明は、複数の電池の電圧を均等にする電圧均等化装置および電圧均等化方法に関する。 The present invention relates to a voltage equalizing device and a voltage equalizing method for equalizing voltages of a plurality of batteries.
 組電池に含まれる直列に接続される複数の電池の電圧を均等にするセルバランス回路が知られている。電池の電圧を均等にするセルバランス回路として、コンバータ方式やトランス方式などを用いた提案がされている。また、コンバータ方式とトランス方式とを組み合わせたセルバランス回路も提案されている。 A cell balance circuit is known which equalizes the voltages of a plurality of serially connected cells included in a battery pack. As a cell balance circuit for equalizing the voltage of a battery, proposals have been made using a converter method, a transformer method, or the like. Also, a cell balance circuit combining a converter system and a transformer system has been proposed.
 関連する技術として、直列接続数の多い多直列蓄電セルにおいて、組立てや交換等の作業性を向上させながら、全セルの電圧バランス補正を迅速かつ円滑に行わせる技術が開示されている。この技術によれば、多直列蓄電セルを接続順で連続する複数の直列セルグループに分け、各セルグループ内にてそれぞれ隣接セル間での電圧バランス補正を行う、セル間電圧バランス補正回路を設ける。さらに、各セルグループの直列電圧をトランスとスイッチング回路を用いて形成される交流結合によってバランス補正させるグループ間電圧バランス補正回路を設ける。しかしながらこの関連する技術は、セルグループごとにトランスの2次コイルを設けなくてはならないため、トランスの規模が大きくなりコストが高くなる。 As a related technology, there is disclosed a technology for performing voltage balance correction of all cells quickly and smoothly while improving workability such as assembly and replacement in a multi-series storage cell having a large number of series connections. According to this technique, there is provided an inter-cell voltage balance correction circuit that divides a multi-series storage cell into a plurality of serial cell groups continuous in connection order, and performs voltage balance correction between adjacent cells in each cell group. . Furthermore, an inter-group voltage balance correction circuit is provided which performs balance correction on the series voltage of each cell group by AC coupling formed using a transformer and a switching circuit. However, in this related technology, since the secondary coil of the transformer must be provided for each cell group, the size of the transformer becomes large and the cost becomes high.
 また、他の関連する技術として、充電エネルギーの無駄な消費を避け、小型かつ低コストで、単電池の過充電のみならず過放電も防止する装置が開示されている。この装置は、制御回路がスイッチ回路を作動させて、コンデンサを介して各グループ電池中の最も充電レベルの高い単電池から充電レベルの最も低い単電池へ電荷を移動させて各グループ電池内の単電池の充電状態を均一化する。同時に、スイッチ回路を作動させて、コンデンサを介して最も充電レベルの高いグループ電池内の最も充電レベルの高い単電池からこの時点で最も充電レベルの低いグループ電池内の最も充電レベルの低い単電池へ電荷を移動させてグループ電池間の充電状態を均一化する。 Further, as another related technology, an apparatus is disclosed which avoids wasteful consumption of charging energy, is compact and low in cost, and prevents overcharging as well as overdischarging of single cells. In this device, the control circuit operates the switch circuit to transfer the charge from the highest charge level cell in each group battery to the lowest charge level cell via the capacitor to set a single charge in each group battery. Make the battery charge status uniform. At the same time, the switch circuit is operated to switch the highest charge level single battery in the highest charge level group battery through the capacitor to the lowest charge level single battery in the lowest charge level group battery at this time The charge is moved to equalize the state of charge among the group batteries.
特開2008-035680号公報JP, 2008-035680, A 特開2000-270483号公報Japanese Patent Laid-Open No. 2000-270483
 本発明は上記のような実情に鑑みてなされたものであり、電池が複数ある場合でもセルバランス回路の規模を縮小できコストを低減できる電圧均等化装置および電圧均等化方法を提供することを目的とする。 The present invention has been made in view of the above situation, and an object thereof is to provide a voltage equalizing device and a voltage equalizing method capable of reducing the size of the cell balance circuit and reducing the cost even when there are a plurality of batteries. I assume.
 本発明の態様のひとつである電圧均等化装置は、第1の電池ブロック、第2の電池ブロック、第1のセルバランス部、第2のセルバランス部、第3のセルバランス部を有する。 The voltage equalization apparatus which is one of the aspects of this invention has a 1st battery block, a 2nd battery block, a 1st cell balance part, a 2nd cell balance part, and a 3rd cell balance part.
 第1の電池ブロックは決められた数の電池が直列に接続される。第2の電池ブロックは第1の電池ブロックに含まれる電池と異なる数の電池を含む。 The first battery block has a predetermined number of batteries connected in series. The second battery block includes a different number of batteries than the batteries included in the first battery block.
 第1のセルバランス部は第1の電池ブロックに含まれる隣接する電池の電圧を均等にする。 The first cell balance unit equalizes the voltages of adjacent cells included in the first cell block.
 第2のセルバランス部は、第2の電池ブロックに含まれる電池と隣接する第1の電池ブロックに含まれる電池の電圧と、を均等にする。 The second cell balance unit equalizes the voltage of the battery included in the second battery block and the voltage of the battery included in the adjacent first battery block.
 第3のセルバランス部は複数の第1の電池ブロックの電圧を均等にする。 The third cell balance unit equalizes the voltages of the plurality of first battery blocks.
 制御部は、第1のセルバランス部と第2のセルバランス部と第3のセルバランス部とを制御する。 The control unit controls the first cell balance unit, the second cell balance unit, and the third cell balance unit.
 実施の態様によれば、電池が複数ある場合でもセルバランス回路の規模を縮小できの効果を奏する。 According to the embodiment, even when there are a plurality of batteries, the size of the cell balance circuit can be reduced.
電圧均等化装置の一実施例を示す図である。It is a figure which shows one Example of a voltage equalization apparatus. 電圧均等化装置の一実施例を示す図である。It is a figure which shows one Example of a voltage equalization apparatus. 制御部の一実施例を示す図である。It is a figure which shows one Example of a control part. 電圧均等化装置の動作の一実施例を示す図である。FIG. 7 is a diagram showing an example of the operation of the voltage equalization apparatus.
 以下図面に基づいて、実施形態について詳細を説明する。 Hereinafter, embodiments will be described in detail based on the drawings.
 図1は、電圧均等化装置の一実施例を示す図である。図1の電圧均等化装置は、制御部1、第1の電池ブロック2a~2c、第2の電池ブロック2d、計測部3、第1のセルバランス部4a~4c、第2のセルバランス部4d、第3のセルバランス部5を有している。 FIG. 1 is a diagram showing an embodiment of a voltage equalization apparatus. The voltage equalization apparatus shown in FIG. 1 includes a control unit 1, first battery blocks 2a to 2c, a second battery block 2d, a measurement unit 3, first cell balance units 4a to 4c, and a second cell balance unit 4d. , And the third cell balance unit 5.
 制御部1は、第1の電池ブロック2a~2cと第2の電池ブロック2dに含まれる隣接する電池の電圧差すべてが決められた閾値範囲内か否かを判定する。また、閾値範囲外である場合は、第1のセルバランス部4a~4c、第2のセルバランス部4d、前記第3のセルバランス部5にセルバランス処理を開始させる。そして、第1の電池ブロック2a~2cと第2の電池ブロック2dに含まれる隣接する電池の電圧差が決められた閾値範囲内になると、第1のセルバランス部4a~4c、第2のセルバランス部4d、第3のセルバランス部5のセルバランス処理各々を停止させる。なお、第1の電池ブロック2a~2cと第2の電池ブロック2dに含まれるすべての電池の平均電圧と各電池の電圧との差でもよい。 The control unit 1 determines whether or not all voltage differences between adjacent batteries included in the first battery blocks 2a to 2c and the second battery block 2d are within the determined threshold range. In addition, when it is out of the threshold range, the first cell balance units 4a to 4c, the second cell balance unit 4d, and the third cell balance unit 5 start the cell balance processing. Then, when the voltage difference between the adjacent cells included in the first cell blocks 2a to 2c and the second cell block 2d falls within the determined threshold range, the first cell balance units 4a to 4c, the second cell The cell balance processing of each of the balancing unit 4 d and the third cell balancing unit 5 is stopped. The difference between the average voltage of all the batteries included in the first battery blocks 2a to 2c and the second battery block 2d and the voltage of each battery may be used.
 制御部1は、例えば、Central Processing Unit(CPU)、マルチコアCPU、プログラマブルなデバイス(Field Programmable Gate Array(FPGA)、Programmable Logic Device(PLD)など)を用いることが考えられる。また、制御部1は記憶部を有してもよいし、制御部1とは別に設けた記憶部と接続してもよい。例えばRead Only Memory(ROM)、Random Access Memory(RAM)などのメモリやハードディスクなどが考えられる。なお、記憶部にはパラメータ値、変数値などのデータを記録してもよいし、実行時のワークエリアとして用いてもよい。 The control unit 1 may use, for example, a central processing unit (CPU), a multi-core CPU, or a programmable device (field programmable gate array (FPGA), programmable logic device (PLD) or the like). The control unit 1 may have a storage unit, or may be connected to a storage unit provided separately from the control unit 1. For example, a memory such as a read only memory (ROM) or a random access memory (RAM) or a hard disk may be considered. Note that data such as parameter values and variable values may be recorded in the storage unit, or may be used as a work area at the time of execution.
 第1の電池ブロック2a~2cと第2の電池ブロック2dには、1つより多い電池が直列に接続されている。第1の電池ブロック2a~2cと第2の電池ブロック2dに含まれる電池は二次電池などを用いることが考えられる。二次電池として、例えば、リチウムイオン二次電池、ニッケル水素二次電池などが考えられる。なお、本例において第1の電池ブロック2a~2c各々に含まれる電池の数量(n)は同じものとする。また、第2の電池ブロック2dに含まれる電池の数量(m)は、第1の電池ブロック2a~2c各々に含まれる電池の数量と異なる(n≠m)。なお、第2のセルバランス部による均等化時間を短くするためにm<nが好ましい。 More than one battery is connected in series to the first battery blocks 2a to 2c and the second battery block 2d. The batteries included in the first battery blocks 2a to 2c and the second battery block 2d are considered to use secondary batteries or the like. As a secondary battery, a lithium ion secondary battery, a nickel hydrogen secondary battery, etc. are considered, for example. In the present example, the number (n) of the batteries included in each of the first battery blocks 2a to 2c is the same. Further, the number (m) of batteries included in the second battery block 2d is different from the number of batteries included in each of the first battery blocks 2a to 2c (n ≠ m). In order to shorten the equalization time by the second cell balance unit, m <n is preferable.
 計測部3は電池各々の電圧を計測する。例えば、電圧計などが考えられる。また、計測部3が計測したデータは制御部1に出力される。 The measuring unit 3 measures the voltage of each battery. For example, a voltmeter may be considered. Further, the data measured by the measuring unit 3 is output to the control unit 1.
 第1のセルバランス部4a~4cはコンバータ方式のセルバランス回路である。第1のセルバランス部4aは第1の電池ブロック2aの電池を均等にする回路である。第1のセルバランス部4bは第1の電池ブロック2bの電池を均等にする回路である。第1のセルバランス部4cは第1の電池ブロック2cの電池を均等にする回路である。 The first cell balance units 4a to 4c are converter type cell balance circuits. The first cell balance unit 4a is a circuit for equalizing the batteries of the first battery block 2a. The first cell balance unit 4b is a circuit for equalizing the batteries of the first battery block 2b. The first cell balance unit 4c is a circuit for equalizing the batteries of the first battery block 2c.
 第2のセルバランス部4dはコンバータ方式のセルバランス回路である。第2のセルバランス部4dは第2の電池ブロック2dの電池を均等にする回路である。 The second cell balance unit 4d is a converter type cell balance circuit. The second cell balance unit 4d is a circuit for equalizing the batteries of the second battery block 2d.
 第3のセルバランス部5は、トランス方式のセルバランス回路である。第1の電池ブロック2a~2cの電池ブロックの電圧を均等にする回路である。 The third cell balance unit 5 is a transformer type cell balance circuit. It is a circuit for equalizing the voltages of the battery blocks of the first battery blocks 2a to 2c.
 図2は、電圧均等化装置の一実施例を示す図である。図2の電圧均等化装置では12個分の電池B1~B12の電圧を、トランスを用いて均等にし、14個分の電池B1~B14の電圧を、コイルを用いて均等にする。 FIG. 2 is a diagram showing an embodiment of the voltage equalization apparatus. In the voltage equalization apparatus of FIG. 2, the voltages of the twelve batteries B1 to B12 are equalized using a transformer, and the voltages of the fourteen batteries B1 to B14 are equalized using a coil.
 電池B1~B14が直列に接続された組電池の両端の端子P1、P2は、例えば、放電時はモータなどの動力に接続され、充電時は外部電源などに接続される。第1の電池ブロック2aは電池B1~B4に相当し、第1の電池ブロック2bは電池B5~B8に相当し、第1の電池ブロック2cは電池B9~B12に相当する。第2の電池ブロック2dは電池B13~B14に相当する。 The terminals P1 and P2 at both ends of the battery pack in which the batteries B1 to B14 are connected in series are connected, for example, to the power of a motor or the like at the time of discharge, and connected to an external power supply or the like at the time of charge. The first battery block 2a corresponds to the batteries B1 to B4, the first battery block 2b corresponds to the batteries B5 to B8, and the first battery block 2c corresponds to the batteries B9 to B12. The second battery block 2d corresponds to the batteries B13 to B14.
 計測部3は図2には示されていないが、各電池B1~B14に並列に接続される電圧計などである。 Although not shown in FIG. 2, the measuring unit 3 is a voltmeter or the like connected in parallel to each of the batteries B1 to B14.
 図2におけるコンバータ方式の第1のセルバランス部4a~4cについて説明する。 The first cell balance units 4a to 4c of the converter system in FIG. 2 will be described.
 第1のセルバランス部4aは、電池B1~B4(第1の電池ブロック、第1の電池、第2の電池)、スイッチSW1~SW6(第1のスイッチ、第2のスイッチ)、コイルL1~L3(第1のコイル)を有している。スイッチSW1~SW6各々の制御端子(ゲート)は制御部1に接続され、スイッチSW1~SW6各々は制御部1から出力される制御信号(CNT)により制御される。 The first cell balance unit 4a includes batteries B1 to B4 (first battery block, first battery, second battery), switches SW1 to SW6 (first switch, second switch), and coils L1 to L4. It has L3 (1st coil). The control terminal (gate) of each of the switches SW1 to SW6 is connected to the control unit 1, and each of the switches SW1 to SW6 is controlled by a control signal (CNT) output from the control unit 1.
 電池B1の負極端子と電池B2の正極端子はコイルL1の一方の端子に接続され、コイルL1の他方の端子にはスイッチSW1の一方の端子(ドレイン)とスイッチSW2の他方の端子(ソース)が接続されている。スイッチSW1の他方の端子(ソース)は電池B1の正極端子に接続されている。スイッチSW2の一方の端子(ドレイン)は電池B2の負極端子に接続されている。 The negative terminal of the battery B1 and the positive terminal of the battery B2 are connected to one terminal of the coil L1, and the other terminal of the coil L1 has one terminal (drain) of the switch SW1 and the other terminal (source) of the switch SW2. It is connected. The other terminal (source) of the switch SW1 is connected to the positive electrode terminal of the battery B1. One terminal (drain) of the switch SW2 is connected to the negative terminal of the battery B2.
 電池B2の負極端子と電池B3の正極端子はコイルL2の一方の端子に接続され、コイルL2の他方の端子にはスイッチSW3の一方の端子(ドレイン)とスイッチSW4の他方の端子(ソース)が接続されている。スイッチSW3の他方の端子(ソース)は電池B2の正極端子に接続されている。スイッチSW4の一方の端子(ドレイン)は電池B3の負極端子に接続されている。 The negative terminal of battery B2 and the positive terminal of battery B3 are connected to one terminal of coil L2, and the other terminal of coil L2 has one terminal (drain) of switch SW3 and the other terminal (source) of switch SW4. It is connected. The other terminal (source) of the switch SW3 is connected to the positive electrode terminal of the battery B2. One terminal (drain) of the switch SW4 is connected to the negative terminal of the battery B3.
 電池B3の負極端子と電池B4の正極端子はコイルL3の一方の端子に接続され、コイルL3の他方の端子にはスイッチSW5の一方の端子(ドレイン)とスイッチSW6の他方の端子(ソース)が接続されている。スイッチSW5の他方の端子(ソース)は電池B3の正極端子に接続されている。スイッチSW6の一方の端子(ドレイン)は電池B4の負極端子に接続されている。 The negative terminal of battery B3 and the positive terminal of battery B4 are connected to one terminal of coil L3, and the other terminal of coil L3 has one terminal (drain) of switch SW5 and the other terminal (source) of switch SW6. It is connected. The other terminal (source) of the switch SW5 is connected to the positive electrode terminal of the battery B3. One terminal (drain) of the switch SW6 is connected to the negative terminal of the battery B4.
 第1のセルバランス部4bは、電池B5~B8(第1の電池ブロック、第1の電池、第2の電池)、スイッチSW7~SW12(第1のスイッチ、第2のスイッチ)、コイルL4~L6(第1のコイル)を有している。スイッチSW7~SW12各々の制御端子(ゲート)は制御部1に接続され、スイッチSW7~SW12各々は制御部1から出力される制御信号(CNT)により制御される。 The first cell balance unit 4b includes batteries B5 to B8 (first battery block, first battery, second battery), switches SW7 to SW12 (first switch, second switch), and coils L4 to L4. It has L6 (1st coil). The control terminal (gate) of each of the switches SW7 to SW12 is connected to the control unit 1, and each of the switches SW7 to SW12 is controlled by a control signal (CNT) output from the control unit 1.
 電池B5の負極端子と電池B6の正極端子はコイルL4の一方の端子に接続され、コイルL4の他方の端子にはスイッチSW7の一方の端子(ドレイン)とスイッチSW8の他方の端子(ソース)が接続されている。スイッチSW7の他方の端子(ソース)は電池B5の正極端子に接続されている。スイッチSW8の一方の端子(ドレイン)は電池B6の負極端子に接続されている。 The negative terminal of the battery B5 and the positive terminal of the battery B6 are connected to one terminal of the coil L4, and the other terminal of the coil L4 has one terminal (drain) of the switch SW7 and the other terminal (source) of the switch SW8. It is connected. The other terminal (source) of the switch SW7 is connected to the positive electrode terminal of the battery B5. One terminal (drain) of the switch SW8 is connected to the negative terminal of the battery B6.
 電池B6の負極端子と電池B7の正極端子はコイルL5の一方の端子に接続され、コイルL5の他方の端子にはスイッチSW9の一方の端子(ドレイン)とスイッチSW10の他方の端子(ソース)が接続されている。スイッチSW9の他方の端子(ソース)は電池B6の正極端子に接続されている。スイッチSW10の一方の端子(ドレイン)は電池B7の負極端子に接続されている。 The negative terminal of the battery B6 and the positive terminal of the battery B7 are connected to one terminal of the coil L5, and the other terminal of the coil L5 has one terminal (drain) of the switch SW9 and the other terminal (source) of the switch SW10. It is connected. The other terminal (source) of the switch SW9 is connected to the positive electrode terminal of the battery B6. One terminal (drain) of the switch SW10 is connected to the negative terminal of the battery B7.
 電池B7の負極端子と電池B8の正極端子はコイルL6の一方の端子に接続され、コイルL6の他方の端子にはスイッチSW11の一方の端子(ドレイン)とスイッチSW12の他方の端子(ソース)が接続されている。スイッチSW11の他方の端子(ソース)は電池B7の正極端子に接続されている。スイッチSW12の一方の端子(ドレイン)は電池B8の負極端子に接続されている。 The negative terminal of the battery B7 and the positive terminal of the battery B8 are connected to one terminal of the coil L6, and the other terminal of the coil L6 has one terminal (drain) of the switch SW11 and the other terminal (source) of the switch SW12. It is connected. The other terminal (source) of the switch SW11 is connected to the positive electrode terminal of the battery B7. One terminal (drain) of the switch SW12 is connected to the negative terminal of the battery B8.
 第1のセルバランス部4cは、電池B9~B12(第1の電池ブロック、第1の電池、第2の電池)、スイッチSW13~SW18(第1のスイッチ、第2のスイッチ)、コイルL7~L9(第1のコイル)を有している。スイッチSW13~SW18各々の制御端子(ゲート)は制御部1に接続され、スイッチSW13~SW18各々は制御部1から出力される制御信号(CNT)により制御される。 The first cell balance unit 4c includes batteries B9 to B12 (first battery block, first battery, second battery), switches SW13 to SW18 (first switch, second switch), and coils L7 to L18. It has L9 (1st coil). The control terminal (gate) of each of the switches SW13 to SW18 is connected to the control unit 1, and each of the switches SW13 to SW18 is controlled by a control signal (CNT) output from the control unit 1.
 電池B9の負極端子と電池B10の正極端子はコイルL7の一方の端子に接続され、コイルL7の他方の端子にはスイッチSW13の一方の端子(ドレイン)とスイッチSW14の他方の端子(ソース)が接続されている。スイッチSW13の他方の端子(ソース)は電池B9の正極端子に接続されている。スイッチSW14の一方の端子(ドレイン)は電池B10の負極端子に接続されている。 The negative terminal of battery B9 and the positive terminal of battery B10 are connected to one terminal of coil L7. The other terminal of coil L7 has one terminal (drain) of switch SW13 and the other terminal (source) of switch SW14. It is connected. The other terminal (source) of the switch SW13 is connected to the positive electrode terminal of the battery B9. One terminal (drain) of the switch SW14 is connected to the negative terminal of the battery B10.
 電池B10の負極端子と電池B11の正極端子はコイルL8の一方の端子に接続され、コイルL8の他方の端子にはスイッチSW15の一方の端子(ドレイン)とスイッチSW16の他方の端子(ソース)が接続されている。スイッチSW15の他方の端子(ソース)は電池B10の正極端子に接続されている。スイッチSW16の一方の端子(ドレイン)は電池B11の負極端子に接続されている。 The negative terminal of battery B10 and the positive terminal of battery B11 are connected to one terminal of coil L8. The other terminal of coil L8 has one terminal (drain) of switch SW15 and the other terminal (source) of switch SW16. It is connected. The other terminal (source) of the switch SW15 is connected to the positive electrode terminal of the battery B10. One terminal (drain) of the switch SW16 is connected to the negative terminal of the battery B11.
 電池B11の負極端子と電池B12の正極端子はコイルL9の一方の端子に接続され、コイルL9の他方の端子にはスイッチSW17の一方の端子(ドレイン)とスイッチSW18の他方の端子(ソース)が接続されている。スイッチSW17の他方の端子(ソース)は電池B11の正極端子に接続されている。スイッチSW18の一方の端子(ドレイン)は電池B12の負極端子に接続されている。 The negative terminal of the battery B11 and the positive terminal of the battery B12 are connected to one terminal of the coil L9, and the other terminal of the coil L9 has one terminal (drain) of the switch SW17 and the other terminal (source) of the switch SW18. It is connected. The other terminal (source) of the switch SW17 is connected to the positive electrode terminal of the battery B11. One terminal (drain) of the switch SW18 is connected to the negative terminal of the battery B12.
 ただし、電圧均等化装置に設ける第1のセルバランス部は電池4個を均等にする場合に限定されるものではなく、4個以外の複数の電池を均等にしてもよい。また、第1のセルバランス部は3個に限定されるものではない。 However, the first cell balance unit provided in the voltage equalizing device is not limited to the case where four batteries are equalized, and a plurality of batteries other than four may be equalized. Also, the number of first cell balance units is not limited to three.
 図2におけるコンバータ方式の第2のセルバランス部4dについて説明する。 The second cell balance unit 4d of the converter system in FIG. 2 will be described.
 第2のセルバランス部4dは、電池B13~B14(第2の電池ブロック)、スイッチSW19~SW22、コイルL10~L11を有している。スイッチSW19~SW22各々の制御端子(ゲート)は制御部1に接続され、スイッチSW19~SW22各々は制御部1から出力される制御信号(CNT)により制御される。 The second cell balance unit 4d includes batteries B13 to B14 (second battery block), switches SW19 to SW22, and coils L10 to L11. The control terminal (gate) of each of the switches SW19 to SW22 is connected to the control unit 1, and each of the switches SW19 to SW22 is controlled by a control signal (CNT) output from the control unit 1.
 電池B13の負極端子と電池B14の正極端子はコイルL10の一方の端子に接続され、コイルL10の他方の端子にはスイッチSW19の一方の端子(ドレイン)とスイッチSW20の他方の端子(ソース)が接続されている。スイッチSW19の他方の端子(ソース)は電池B13の正極端子に接続されている。スイッチSW20の一方の端子(ドレイン)は電池B14の負極端子に接続されている。 The negative terminal of the battery B13 and the positive terminal of the battery B14 are connected to one terminal of the coil L10, and the other terminal of the coil L10 has one terminal (drain) of the switch SW19 and the other terminal (source) of the switch SW20. It is connected. The other terminal (source) of the switch SW19 is connected to the positive electrode terminal of the battery B13. One terminal (drain) of the switch SW20 is connected to the negative terminal of the battery B14.
 電池B14(第3の電池)の負極端子と電池B1の正極端子はコイルL11(第2のコイル)の一方の端子に接続され、コイルL11の他方の端子にはスイッチSW21(第3のスイッチ)の一方の端子(ドレイン)とスイッチSW22の他方の端子(ソース)が接続されている。スイッチSW21の他方の端子(ソース)は電池B14の正極端子に接続されている。スイッチSW22の一方の端子(ドレイン)は電池B1の負極端子に接続されている。 The negative terminal of the battery B14 (third battery) and the positive terminal of the battery B1 are connected to one terminal of the coil L11 (second coil), and the other terminal of the coil L11 is a switch SW21 (third switch) One terminal (drain) of the switch SW22 is connected to the other terminal (source) of the switch SW22. The other terminal (source) of the switch SW21 is connected to the positive electrode terminal of the battery B14. One terminal (drain) of the switch SW22 is connected to the negative terminal of the battery B1.
 ただし、電圧均等化装置に設ける第2のセルバランス部は電池2個を均等にする場合に限定されるものではなく、1個または2個以外の複数の電池を均等にしてもよい。また、第2のセルバランス部は1個に限定されるものではない。 However, the second cell balance unit provided in the voltage equalizing device is not limited to the case where two batteries are equalized, and a plurality of batteries other than one or two may be equalized. Also, the second cell balance unit is not limited to one.
 なお、図2ではスイッチSW1~SW23はNチャネルMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)エンハンスメント型で表されているが限定されるものではない。例えば、他のMOSFETなどを用いてもよいし、リレーを用いてもよい。 In FIG. 2, the switches SW1 to SW23 are represented by N-channel MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) enhancement type, but are not limited. For example, another MOSFET may be used, or a relay may be used.
 コンバータ方式の第1のセルバランス部4a~4cの動作について説明する。 The operation of the converter type first cell balance units 4a to 4c will be described.
 電池間の電圧を均等にする第1のセルバランス部4a~4cは、コイルL1~L9とスイッチSW1~SW18を用いて構成されるインダクタ結合方式のセルバランス回路である。隣接する電池間でインダクタ電流の充電と放電を行わせることにより、隣接する電池間で電圧を均等にする。 The first cell balance units 4a to 4c for equalizing the voltages between the batteries are cell balance circuits of an inductor coupling system configured using coils L1 to L9 and switches SW1 to SW18. By charging and discharging the inductor current between adjacent cells, voltages are equalized between the adjacent cells.
 図2の電池B1と電池B2の電圧を均等にする場合について説明する。制御部1からPWM(Pulse Width Modulation)制御信号をスイッチSW1とSW2の制御端子(ゲート)により、交互にスイッチSW1、SW2をオン/オフさせる。電池B1の電圧が電池B2の電圧より高い場合、スイッチSW1がオンのときは、電池B1からコイルL1に電流が流れてコイルL1は充電される。このとき、スイッチSW2はオフされている。スイッチSW2がオフからオンに切り換えられると、コイルL1に充電されたエネルギーが電池B2に充電される。その結果、電池B1と電池B2の電圧が均等になる。すなわち、隣接する2つの電池B1、B2間に電圧差があると電圧が高い方から低い方にコイルL1を介してエネルギーが移動されることにより、電池B1、B2の電圧が均等になる。 A case where the voltages of the battery B1 and the battery B2 in FIG. 2 are equal will be described. The control unit 1 alternately turns on / off the switches SW1 and SW2 by control terminals (gates) of PWM (Pulse Width Modulation) control signals by the control terminals (gates) of the switches SW1 and SW2. When the voltage of the battery B1 is higher than the voltage of the battery B2, when the switch SW1 is on, a current flows from the battery B1 to the coil L1, and the coil L1 is charged. At this time, the switch SW2 is off. When the switch SW2 is switched from off to on, the energy charged in the coil L1 is charged in the battery B2. As a result, the voltages of the battery B1 and the battery B2 become equal. That is, if there is a voltage difference between two adjacent batteries B1 and B2, energy is transferred via the coil L1 from the higher voltage side to the lower voltage side, so that the voltages of the batteries B1 and B2 become equal.
 他の隣接する電池においても同じようにコンバータ方式のセルバランスを実行する。図2の例では電池B2と電池B3の組、電池B3と電池B4の組・・・電池B11と電池B12の組について行う。なお、コンバータ方式のセルバランスは、各第1のセルバランス部4a~4c各々において独立して行われる。 The converter cell balance is performed in the same manner in other adjacent batteries. In the example of FIG. 2, the combination of the battery B2 and the battery B3, the combination of the battery B3 and the battery B4,... And the combination of the battery B11 and the battery B12 are performed. The cell balance of the converter system is performed independently in each of the first cell balance units 4a to 4c.
 コンバータ方式の第2のセルバランス部4dの動作について説明する。 The operation of the converter-type second cell balance unit 4d will be described.
 電池間の電圧を均等にする第2のセルバランス部4dは、コイルL10~L11とスイッチSW19~SW22を用いて構成されるインダクタ結合方式のセルバランス回路である。隣接する電池間でインダクタ電流の充電と放電を行わせることにより、隣接する電池間で電圧を均等にする。 The second cell balance unit 4d for equalizing the voltage between the batteries is a cell balance circuit of an inductor coupling type configured using the coils L10 to L11 and the switches SW19 to SW22. By charging and discharging the inductor current between adjacent cells, voltages are equalized between the adjacent cells.
 図2の電池B13、B14の組と、電池B14、B1の組の電圧を均等にする場合について説明する。電池B13、B14の組の電池B13の電圧と電池B14の電圧を均等にするにはコンバータ方式の第1のセルバランス部と同じように、コイルL10に充電されたエネルギーを移動されることにより、電池B13、B14の電圧を均等にする。 The case where the voltages of the pair of batteries B13 and B14 of FIG. 2 and the pair of batteries B14 and B1 are equal will be described. In order to equalize the voltage of the battery B13 of the battery B13 and the battery B14 and the voltage of the battery B14, the energy charged in the coil L10 is moved as in the first cell balance unit of the converter system, The voltages of the batteries B13 and B14 are equalized.
 また、電池B14と第1のセルバランス部4aに含まれる電池B1(第2の電池ブロックに含まれる電池と隣接する第1の電池ブロックに含まれる電池)の組において、電池B14の電圧と電池B1の電圧を均等にする。第2のセルバランス部4dから第1のセルバランス部4aに後述するトランス方式の第3のセルバランス部5を用いずにエネルギーを移動させる。その結果、コンバータ方式の第1のセルバランス部と同じように、コイルL11に充電されたエネルギーを移動されることにより、電池B14、B1の電圧を均等にできる。また、第2のセルバランス部4dに対応するトランスの一次コイルの巻線の削減と、二次コイルの数を削減ができる。なお、第2の電池ブロック2dに含まれる電池が1つの場合、第2の電池ブロックに含まれる電池と、電池B1の電圧のみ均等化する。 In the battery B14 and the battery B1 included in the first cell balance unit 4a (the battery included in the first battery block adjacent to the battery included in the second battery block), the voltage of the battery B14 and the battery Make the voltage of B1 even. The energy is transferred from the second cell balance unit 4 d to the first cell balance unit 4 a without using a third cell balance unit 5 of a transformer type described later. As a result, as in the first cell balance unit of the converter system, the energy stored in the coil L11 is moved, whereby the voltages of the batteries B14 and B1 can be equalized. Further, the number of windings of the primary coil of the transformer corresponding to the second cell balance unit 4d can be reduced, and the number of secondary coils can be reduced. When one battery is included in the second battery block 2d, only the voltage of the battery included in the second battery block and the voltage of the battery B1 are equalized.
 第3のセルバランス部5について説明する。 The third cell balance unit 5 will be described.
 第3のセルバランス部5は、第1のセルバランス部4a~4c、第2のセルバランス部4dによる電圧の均等化に加えて、さらに各第1の電池ブロック2a(電池B1~B4)、2b(電池B5~B8)、2c(電池B9~B12)の電圧を均等にする。図2に示す第3のセルバランス部5は、トランスT1とスイッチSW23(第4のスイッチ)を用いて各第1の電池ブロック2a~2cの電圧を均等にする。 The third cell balance unit 5 further includes, in addition to the voltage equalization by the first cell balance units 4a to 4c and the second cell balance unit 4d, the respective first battery blocks 2a (battery B1 to B4), The voltages of 2b (battery B5 to B8) and 2c (battery B9 to B12) are equalized. The third cell balance unit 5 shown in FIG. 2 equalizes the voltages of the first battery blocks 2a to 2c using the transformer T1 and the switch SW23 (fourth switch).
 トランスT1は、一次コイルTL0と二次コイルTL1、TL2、TL3を有し、互いに1対1の変圧比で交流結合される。トランスT1の二次コイルTL1、TL2、TL3直列に接続されている。図2の例ではTL0の巻線と二次コイルTL1、TL2、TL3の巻線の比は3:1である。 The transformer T1 has a primary coil TL0 and secondary coils TL1, TL2, and TL3 and is AC-coupled to each other at a transformation ratio of 1: 1. The secondary coils TL1, TL2, and TL3 of the transformer T1 are connected in series. In the example of FIG. 2, the ratio of the windings of TL0 to the windings of the secondary coils TL1, TL2, and TL3 is 3: 1.
 一次コイルTL0の一方の端子は電池B14の負極端子に接続され、一次コイルTL0の他方の端子はスイッチSW23の一方の端子(ソース)と接続され、スイッチSW23の他方の端子(ドレイン)は端子P2に接続される。 One terminal of primary coil TL0 is connected to the negative terminal of battery B14, the other terminal of primary coil TL0 is connected to one terminal (source) of switch SW23, and the other terminal (drain) of switch SW23 is terminal P2 Connected to
 なお、図2の回路において図示していないが、二次コイルTL1、TL2、TL3に電池側から電流が流れないように、二次コイルTL1、TL2、TL3それぞれに一つずつダイオードを直列に接続することが望ましい。 Although not shown in the circuit of FIG. 2, one diode is connected in series to each of the secondary coils TL1, TL2, and TL3 so that no current flows from the battery side to the secondary coils TL1, TL2, and TL3. It is desirable to do.
 スイッチSW23は、制御部1から出力される制御信号(CNT)により同相でオン/オフ動作させる。なお、制御部1から出力されるパルス信号によりオン/オフ動作される。 The switch SW23 is turned on / off in phase with a control signal (CNT) output from the control unit 1. The on / off operation is performed by the pulse signal output from the control unit 1.
 また、第1のセルバランス部4a~4c、第2のセルバランス部4dと同時に第3のセルバランス部5を動作させて、全ての電池の電圧差が閾値範囲A内になるまでセルバランス処理をしてもよい。 In addition, the third cell balance unit 5 is operated at the same time as the first cell balance units 4a to 4c and the second cell balance unit 4d, and the cell balance processing is performed until the voltage difference of all the batteries is within the threshold range A. You may
 また、第1のセルバランス部4a~4c、第2のセルバランス部4dが各電池ブロックに対して決められた時間だけセルバランス処理をした後に、第3のセルバランス部5を用いて全ての電池の電圧差が閾値範囲A内になるまでセルバランス処理をしてもよい。 In addition, after the first cell balance units 4a to 4c and the second cell balance unit 4d perform cell balance processing for each battery block for a predetermined time, all the third cell balance units 5 are used to perform all the cell balance processing. Cell balance processing may be performed until the battery voltage difference falls within the threshold range A.
 なお、第1のセルバランス部4a~4c、第2のセルバランス部4dが各電池ブロックに対して決められた時間だけセルバランス処理をする場合に限定せず、例えば、電池ブロックの電圧差が決められた閾値範囲B内になるまでセルバランス処理をしてもよい。 The present invention is not limited to the case where the first cell balance units 4a to 4c and the second cell balance unit 4d perform the cell balance processing for each battery block for a predetermined time, for example, the voltage difference between the battery blocks is Cell balance processing may be performed until it falls within the determined threshold range B.
 ここで、閾値範囲Aと閾値範囲Bの関係は閾値範囲Aの|上限値-下限値|≦閾値範囲Bの|上限値-下限値|である。 Here, the relationship between the threshold range A and the threshold range B is | upper limit value-lower limit value of the threshold range A | ≦ upper limit value−lower limit value | of the threshold range B.
 本実施形態によれば、従来に比べて第2のセルバランス部4dに対応するトランスの一次コイルの巻線数の削減と、二次コイルの数を削減ができる。すなわち、従来においてトランスT1の二次コイルは、第1のセルバランス部4a~4c、第2のセルバランス部4dに対応する4個が必要としているが、本実施形態では第1のセルバランス部4a~4cに対応する3個に削減ができる。その結果、トランスの発熱量を低減させるとともに、電池の実装密度を高めることができる。 According to this embodiment, the number of turns of the primary coil of the transformer corresponding to the second cell balance unit 4d can be reduced and the number of secondary coils can be reduced as compared to the conventional case. That is, although four secondary coils of the transformer T1 corresponding to the first cell balance units 4a to 4c and the second cell balance unit 4d are conventionally required, in the present embodiment, the first cell balance unit It can be reduced to three corresponding to 4a to 4c. As a result, while reducing the calorific value of a transformer, the mounting density of a battery can be raised.
 また、トランスの二次コイルと電池ブロックとの間を接続する配線を従来に比べて削減することができる。本例の場合、第2の電池ブロック2dに対応するトランスT1の二次コイルが削減できるため配線を削減することができる。さらに、電圧均等化装置の組立てや交換などの作業性を向上させることができる。また、すべての電池の数量が第1の電池ブロック各々に含まれる電池の数量(n)の公倍数でない場合でも電圧を均等化できる。 Further, the wiring connecting between the secondary coil of the transformer and the battery block can be reduced as compared with the prior art. In the case of this example, since the secondary coil of the transformer T1 corresponding to the second battery block 2d can be reduced, the wiring can be reduced. Furthermore, the workability such as assembly and replacement of the voltage equalizing device can be improved. In addition, the voltage can be equalized even when the number of all batteries is not a common multiple of the number (n) of batteries included in each of the first battery blocks.
 制御部について説明する。 The control unit will be described.
 図3は、制御部の一実施例を示す図である。制御部1は、例えば、電池電圧判定部301、第1のセルバランス制御部302、第2のセルバランス制御部303、第3のセルバランス制御部304を有する。 FIG. 3 is a diagram showing an embodiment of the control unit. The control unit 1 includes, for example, a battery voltage determination unit 301, a first cell balance control unit 302, a second cell balance control unit 303, and a third cell balance control unit 304.
 電池電圧判定部301は、第1の電池ブロック2a~2cと第2の電池ブロック2dに含まれる隣接する電池の電圧差すべてが決められた閾値範囲内か否かを判定する。そして、閾値範囲内でない場合は第1のセルバランス制御部302、第2のセルバランス制御部303、第3のセルバランス制御部304にセルバランスを開始させる指示を出力する。 The battery voltage determination unit 301 determines whether all the voltage differences between adjacent batteries included in the first battery blocks 2a to 2c and the second battery block 2d are within a predetermined threshold range. Then, when it is not within the threshold range, the first cell balance control unit 302, the second cell balance control unit 303, and the third cell balance control unit 304 are instructed to start the cell balance.
 また、電池電圧判定部301は、第1の電池ブロックと第2の電池ブロックに含まれる隣接する電池の電圧差がすべて決められた閾値範囲内になると、第1のセルバランスと第2のセルバランスと第3のセルバランスを停止させる。 In addition, when the voltage difference between adjacent batteries included in the first battery block and the second battery block is all within the determined threshold range, battery voltage determination unit 301 determines the first cell balance and the second cell. Stop the balance and the third cell balance.
 第1のセルバランス制御部302、第2のセルバランス制御部303、第3のセルバランス制御部304は閾値範囲内でない場合は、第1のセルバランス部と第2のセルバランス部と第3のセルバランス部にセルバランスを実行させる。 When the first cell balance control unit 302, the second cell balance control unit 303, and the third cell balance control unit 304 are not within the threshold range, the first cell balance unit, the second cell balance unit, and the third cell balance unit Perform cell balance in the cell balance unit of
 図4は、電圧均等化装置の動作の一実施例を示す図である。 FIG. 4 is a diagram showing an example of the operation of the voltage equalization apparatus.
 ステップS401では制御部1が各電池の電圧を取得する。図2の例では、電池B1~B14の電池電圧を取得する。 In step S401, the control unit 1 acquires the voltage of each battery. In the example of FIG. 2, the battery voltages of the batteries B1 to B14 are acquired.
 ステップS402では、制御部1が全ての電池を対象に隣り合う2つの電池の電圧差を求める。例えば、電圧差ΔV1=|電池B1の電圧-電池B2の電圧|、電圧差ΔV2=|電池B2の電圧-電池B3の電圧|、電圧差ΔV3=|電池B3の電圧-電池B4の電圧|・・・電圧差ΔV13=|電池B13の電圧-電池B14の電圧|、電圧差ΔV14=|電池B14の電圧-電池B1の電圧|を求める。 In step S402, the control unit 1 obtains a voltage difference between two adjacent cells for all the cells. For example, voltage difference ΔV1 = | voltage of battery B1−voltage of battery B2 |, voltage difference ΔV2 = | voltage of battery B2−voltage of battery B3 |, voltage difference ΔV3 = | voltage of battery B3−voltage of battery B4 | Voltage difference ΔV13 = | voltage of battery B13−voltage of battery B14 |, voltage difference ΔV14 = | voltage of battery B14−voltage of battery B1 |
 ステップS403は、制御部1が全ての電圧差が閾値範囲内か否かを判定する。例えば、ステップS402で求めた電圧差ΔV1~ΔV14が全て閾値範囲内かを判定する。全ての電圧差が閾値範囲内の場合(Yes)にはセルバランス処理を終了するためにステップS407に移行し、電圧差の何れか1つでも閾値範囲外の場合(No)にはステップS404に移行する。 In step S403, the control unit 1 determines whether all the voltage differences are within the threshold range. For example, it is determined whether all the voltage differences ΔV1 to ΔV14 obtained in step S402 are within the threshold range. If all the voltage differences are within the threshold range (Yes), the process proceeds to step S407 to complete the cell balance processing, and if any one of the voltage differences is outside the threshold range (No), the process proceeds to step S404. Transition.
 ステップS404では制御部1が第1、第2のセルバランス部を用いてセルバランス処理を開始する。また、ステップS405では第3のセルバランス部を用いて電池ブロックのセルバランス処理を開始する。ステップS404とステップS405の順番は限定されるものではない。 In step S404, the control unit 1 starts cell balance processing using the first and second cell balance units. In step S405, cell balance processing of the battery block is started using the third cell balance unit. The order of step S404 and step S405 is not limited.
 ステップS406では、全ての電池ブロックに含まれる隣接する電池の電圧差が閾値範囲内か否かを制御部1が判定し、隣接する電池の全ての電圧差が閾値範囲内の場合(Yes)はステップS407に移行し、閾値範囲外の場合(No)はステップS406に移行する。 In step S406, the control unit 1 determines whether or not the voltage difference between the adjacent batteries included in all the battery blocks is within the threshold range, and if the voltage difference between all the adjacent batteries is within the threshold range (Yes) The process proceeds to step S407, and if it is out of the threshold range (No), the process proceeds to step S406.
 ステップS407では、制御部1が第1のセルバランス部と第2のセルバランス部と第3のセルバランス部のセルバランス処理各々を停止させる。 In step S407, the control unit 1 stops the cell balance processing of each of the first cell balance unit, the second cell balance unit, and the third cell balance unit.
 変形例について説明する。 A modified example will be described.
 図4のステップS404~S407のセルバランス処理の変形例を示す。ステップS404’として第1のセルバランス部4a~4c、第2のセルバランス部4dが各電池ブロックに対してセルバランス処理をする。そして、決められた時間になると、制御部1が第1のセルバランス部4a~4c、第2のセルバランス部4dに対応するセルバランス処理各々を停止させる。 The modification of the cell balance process of step S404-S407 of FIG. 4 is shown. In step S404 ', the first cell balance units 4a to 4c and the second cell balance unit 4d perform cell balance processing on each battery block. Then, at the determined time, the control unit 1 stops each of the cell balance processing corresponding to the first cell balance units 4a to 4c and the second cell balance unit 4d.
 続いて、ステップS405’として第3のセルバランス部5を用いて全ての電池の電圧差が閾値範囲A内になるまでセルバランス処理をする。 Subsequently, in step S405 ', cell balance processing is performed using the third cell balance unit 5 until the voltage differences of all the batteries fall within the threshold range A.
 ステップS406’では、全ての電池ブロックに含まれる隣接する電池の電圧差が閾値範囲A内であるか否かを制御部1が判定し、隣接する電池の全ての電圧差が閾値範囲A内の場合(Yes)はステップS407’に移行し、閾値範囲A外の場合(No)はステップS404’に移行する。ステップS407’では、制御部1が第3のセルバランス部5のセルバランス処理を停止させる。 In step S406 ', control unit 1 determines whether or not the voltage difference between adjacent cells included in all the battery blocks is within threshold range A, and all the voltage differences between adjacent cells are within threshold range A. If it is (Yes), the process proceeds to step S407 ′. If it is out of the threshold range A (No), the process proceeds to step S404 ′. In step S <b> 407 ′, the control unit 1 stops the cell balance processing of the third cell balance unit 5.
 また、ステップS404’において第1のセルバランス部4a~4c、第2のセルバランス部4dが各電池ブロックに対して、電池ブロックの電圧差が決められた閾値範囲B内になるまでセルバランス処理をしてもよい。そして、電池ブロックの電圧差が閾値範囲B内になると、制御部1が第1のセルバランス部4a~4c、第2のセルバランス部4dに対応するセルバランス処理各々を停止させる。 Also, in step S404 ', cell balance processing is performed until the first cell balance units 4a to 4c and the second cell balance unit 4d are within the threshold range B in which the voltage difference between the battery blocks is determined for each battery block. You may When the voltage difference of the battery block falls within the threshold range B, the control unit 1 stops each of the cell balance processing corresponding to the first cell balance units 4a to 4c and the second cell balance unit 4d.
 以上、本発明をその代表的な実施形態に基づいて説明したが、本発明は上記実施形態に限定されるものでなく、本発明の要旨を逸脱しない範囲内で種々の改良、変更が可能である。
 
Although the present invention has been described above based on its representative embodiments, the present invention is not limited to the above embodiments, and various improvements and modifications can be made without departing from the scope of the present invention. is there.

Claims (6)

  1.  決められた数の電池が直列に接続される第1の電池ブロックと、
     前記第1の電池ブロックに含まれる電池の数と異なる数の電池を含む第2の電池ブロックと、
     前記第1の電池ブロックに含まれる隣接する電池の電圧を均等にする第1のセルバランス部と、
     前記第2の電池ブロックに含まれる電池と、隣接する前記第1の電池ブロックに含まれる電池の電圧と、を均等にする第2のセルバランス部と、
     複数の前記第1の電池ブロックの電圧を均等にする第3のセルバランス部と、
     前記第1のセルバランス部と前記第2のセルバランス部と前記第3のセルバランス部とを制御する制御部と、
     を備えることを特徴とする電圧均等化装置。
    A first battery block in which a determined number of batteries are connected in series;
    A second battery block including a number of batteries different from the number of batteries included in the first battery block;
    A first cell balance unit that equalizes voltages of adjacent batteries included in the first battery block;
    A second cell balance unit for equalizing a battery included in the second battery block and a voltage of a battery included in the adjacent first battery block;
    A third cell balance unit for equalizing voltages of the plurality of first battery blocks;
    A control unit that controls the first cell balance unit, the second cell balance unit, and the third cell balance unit;
    A voltage equalization apparatus comprising:
  2.  前記第1のセルバランス部は、
     前記第1の電池ブロックに含まれる第1の電池に並列に接続される第1のスイッチと、
     前記第1の電池と隣接する第2の電池に並列に接続される第2のスイッチと、
     前記第1の電池の負極端子と前記第2の電池の正極端子に一方の端子が接続され、前記第1のスイッチと前記第2のスイッチが接続される端子に他方の端子が接続される第1のコイルと、を有する回路を、隣り合う電池ごとに備え、
     前記第2のセルバランス部は、
     前記第2の電池ブロックに含まれる第3の電池に並列に接続される第3のスイッチと、
     前記第3の電池の負極端子と前記第1の電池の正極端子に一方の端子が接続され、前記第3のスイッチと前記第1のスイッチが接続される端子に他方の端子が接続される第2のコイルと、を有する回路を備え、
     前記第3のセルバランス部は、
     複数の前記第1の電池ブロックごとに同じ巻線比の複数の二次コイルと、前記二次コイルにエネルギーを供給する一次コイルと、を有するトランスと、前記二次コイルそれぞれは複数の前記第1の電池ブロックに並列に接続され、前記一次コイルに直列に接続される第4のスイッチを備え、
     前記制御部は、
     前記第1のセルバランス部ごとに設けられる前記第1のスイッチ、前記第2のスイッチ、前記第3のスイッチにパルス幅変調信号を出力して隣接する電池を均等にし、
     前記第4のスイッチにパルス幅変調信号を出力して前記第1の電池ブロックの電圧を均等にする、
     ことを特徴とする請求項1に記載の電圧均等化装置。
    The first cell balance unit
    A first switch connected in parallel to a first battery included in the first battery block;
    A second switch connected in parallel to a second battery adjacent to the first battery;
    One terminal is connected to the negative electrode terminal of the first battery and the positive electrode terminal of the second battery, and the other terminal is connected to the terminal to which the first switch and the second switch are connected A circuit having one coil for each adjacent battery,
    The second cell balance unit
    A third switch connected in parallel to a third battery included in the second battery block;
    One terminal is connected to the negative electrode terminal of the third battery and the positive electrode terminal of the first battery, and the other terminal is connected to the terminal to which the third switch and the first switch are connected A circuit having two coils,
    The third cell balance unit
    A transformer having a plurality of secondary coils having the same winding ratio for each of the plurality of first battery blocks, and a primary coil for supplying energy to the secondary coils; A fourth switch connected in parallel to one battery block and connected in series to the primary coil;
    The control unit
    Outputting a pulse width modulation signal to the first switch, the second switch, and the third switch provided for each of the first cell balance units to equalize adjacent cells;
    Outputting a pulse width modulation signal to the fourth switch to equalize the voltage of the first battery block;
    The voltage equalization apparatus according to claim 1,
  3.  前記第2の電池ブロックに含まれる電池の数は前記第1の電池ブロックに含まれる電池の数より少ないことを特徴とする請求項1または2に記載の電圧均等化装置。 The voltage equalizing device according to claim 1 or 2, wherein the number of batteries included in the second battery block is smaller than the number of batteries included in the first battery block.
  4.  前記制御部は、
     前記第1の電池ブロックと前記第2の電池ブロックに含まれる隣接する電池の電圧差すべてが決められた閾値範囲内か否かを判定する電池電圧判定部を備え、
     前記閾値外である場合は、前記第1のセルバランス部にセルバランスを実行させる制御する第1のセルバランス制御部と、前記第2のセルバランス部にセルバランスを実行させる第2のセルバランス制御部と、前記第3のセルバランス部にセルバランスを実行させる第3のセルバランス制御部と、にセルバランスを開始させ、
     前記電池電圧判定部は、前記第1の電池ブロックと前記第2の電池ブロックに含まれる隣接する電池の電圧差が決められた前記閾値範囲内になると、前記第1のセルバランスと前記第2のセルバランスと前記第3のセルバランスを停止させる、
     ことを特徴とする請求項1に記載の電圧均等化装置。
    The control unit
    A battery voltage determination unit that determines whether all voltage differences between adjacent batteries included in the first battery block and the second battery block fall within a predetermined threshold range;
    If it is out of the threshold value, a first cell balance control unit that causes the first cell balance unit to execute cell balance and a second cell balance that causes the second cell balance unit to perform cell balance Causing the control unit and a third cell balance control unit that causes the third cell balance unit to execute cell balance, to start cell balance;
    When the voltage difference between adjacent batteries included in the first battery block and the second battery block falls within the determined threshold range, the battery voltage determination unit determines the first cell balance and the second cell balance. Stopping the third cell balance and the third cell balance,
    The voltage equalization apparatus according to claim 1,
  5.  前記制御部は、
     前記第1の電池ブロックと前記第2の電池ブロックに含まれる隣接する電池の電圧差すべてが決められた閾値範囲内か否かを判定する電池電圧判定部を備え、
     前記閾値外である場合は、前記第1のセルバランス部にセルバランスを実行させる制御する第1のセルバランス制御部と、前記第2のセルバランス部にセルバランスを実行させる第2のセルバランス制御部と、にセルバランスを開始させ、決められた時間になると、前記第1のセルバランスと前記第2のセルバランスを停止させ、
     その後、前記第3のセルバランス部にセルバランスを実行させる第3のセルバランス制御部にセルバランスを開始させ、
     前記電池電圧判定部は、前記第1の電池ブロックと前記第2の電池ブロックに含まれる隣接する電池の電圧差が決められた前記閾値範囲内になると、前記第3のセルバランスを停止させる、
     ことを特徴とする請求項1に記載の電圧均等化装置。
    The control unit
    A battery voltage determination unit that determines whether all voltage differences between adjacent batteries included in the first battery block and the second battery block fall within a predetermined threshold range;
    If it is out of the threshold value, a first cell balance control unit that causes the first cell balance unit to execute cell balance and a second cell balance that causes the second cell balance unit to perform cell balance And causing the control unit to start cell balance, and stopping the first cell balance and the second cell balance at a predetermined time.
    Thereafter, the third cell balance control unit which causes the third cell balance unit to execute the cell balance starts the cell balance.
    The battery voltage determination unit stops the third cell balance when a voltage difference between adjacent batteries included in the first battery block and the second battery block falls within the determined threshold range.
    The voltage equalization apparatus according to claim 1,
  6.  決められた数の電池が直列に接続される第1の電池ブロックと、前記電池ブロックに含まれる電池の数と異なる数の電池を含む第2の電池ブロックと、を有する電圧均等化装置の前記電池の電圧を均等にする電圧均等化方法であって、
     前記第1の電池ブロックと前記第2の電池ブロックに含まれる隣接する電池の電圧差すべてが決められた閾値範囲内か否かを判定し、
     前記閾値外である場合は、前記第1の電池ブロックに含まれる隣接する電池の電圧を均等にする第1のセルバランスと、前記第2の電池ブロックに含まれる電池と、隣接する前記第1の電池ブロックに含まれる電池の電圧と、を均等にする第2のセルバランスと、複数の前記第1の電池ブロックの電圧を均等にする第3のセルバランスと、を開始し、
     前記第1の電池ブロックと第2の電池ブロックとに含まれる隣接する電池の電圧差が決められた閾値範囲内になると、前記第1のセルバランスと前記第2のセルバランスと前記第3のセルバランスを停止する、
     ことを特徴とする電圧均等化方法。
    Said of the voltage equalizing device comprising a first battery block in which a determined number of batteries are connected in series, and a second battery block comprising a different number of batteries than the number of batteries contained in said battery block A voltage equalization method for equalizing battery voltages, comprising:
    It is determined whether all voltage differences between adjacent batteries included in the first battery block and the second battery block are within a predetermined threshold range,
    When it is out of the threshold value, a first cell balance for equalizing the voltages of adjacent cells included in the first cell block, a cell included in the second cell block, and the adjacent first cell A second cell balance for equalizing the voltages of the batteries included in the first battery block, and a third cell balance for equalizing the voltages of the plurality of first battery blocks,
    When the voltage difference between the adjacent batteries included in the first battery block and the second battery block falls within a predetermined threshold range, the first cell balance, the second cell balance, and the third cell balance Stop cell balance,
    A voltage equalization method characterized in that.
PCT/JP2013/066426 2012-06-29 2013-06-14 Voltage equalizing device and voltage equalizing method WO2014002789A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-146725 2012-06-29
JP2012146725 2012-06-29

Publications (1)

Publication Number Publication Date
WO2014002789A1 true WO2014002789A1 (en) 2014-01-03

Family

ID=49782951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066426 WO2014002789A1 (en) 2012-06-29 2013-06-14 Voltage equalizing device and voltage equalizing method

Country Status (1)

Country Link
WO (1) WO2014002789A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110808622A (en) * 2019-11-11 2020-02-18 上海科技大学 Battery equalization circuit and method based on LCC resonant converter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000270483A (en) * 1999-03-17 2000-09-29 Toyota Central Res & Dev Lab Inc Charging condition controller of battery set
JP2007252078A (en) * 2006-03-15 2007-09-27 Japan Radio Co Ltd Equal electricity accumulation/discharge circuit
JP2011223722A (en) * 2010-04-08 2011-11-04 Denso Corp Battery voltage monitoring apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000270483A (en) * 1999-03-17 2000-09-29 Toyota Central Res & Dev Lab Inc Charging condition controller of battery set
JP2007252078A (en) * 2006-03-15 2007-09-27 Japan Radio Co Ltd Equal electricity accumulation/discharge circuit
JP2011223722A (en) * 2010-04-08 2011-11-04 Denso Corp Battery voltage monitoring apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110808622A (en) * 2019-11-11 2020-02-18 上海科技大学 Battery equalization circuit and method based on LCC resonant converter
CN110808622B (en) * 2019-11-11 2023-09-26 上海科技大学 Battery equalization circuit and method based on LCC resonant converter

Similar Documents

Publication Publication Date Title
JP6033337B2 (en) Battery equalization device
JP5454632B2 (en) Charge / discharge control device
US20190013681A1 (en) Device and method for the reconfiguration of a rechargeable energy storage device into separate battery connection strings
US9053869B2 (en) Energy storage apparatus
DE102017003719A1 (en) Device and method for charging the multi-cell battery with direct charge compensation
WO2014157449A1 (en) Charging/discharging device, charging/discharging control method, and program
CN103081288A (en) Battery module charging system
US20140167684A1 (en) Shunt circuit, charging system and integrated circuit
WO2019125916A1 (en) Cell balancing in batteries
CN105703434A (en) Battery management system with active equalization function
KR20210111060A (en) Battery management system for recycling waste battery
CN109802454B (en) Battery pack balance control method and device
JP7015569B2 (en) Improved circuit for bidirectional lossless equilibrium of series battery pack based on inductive energy storage
WO2014002789A1 (en) Voltage equalizing device and voltage equalizing method
KR20110110989A (en) Removable battery module, charge equalization method and apparatus for battery string using the same
CN106786865B (en) Capacitive energy storage-based serial battery pack bidirectional lossless equalization circuit
JP6065821B2 (en) Cell charge / discharge power / current limiting device, battery charge / discharge power / current limiting device, and battery pack
KR101567423B1 (en) Active balancing controller of baterry management system for electronic storage system utilizing small multi winding transformer
WO2012169315A1 (en) Secondary battery charging device
RU176470U1 (en) Control and balancing device for lithium-ion battery
KR20160087813A (en) Balancing of a battery having two branches, with bridging of differential numbers of storage elements
WO2023026716A1 (en) Active balancer
JP2014155405A (en) Voltage equalization device and voltage equalization method
CN211830301U (en) Series lithium battery charging balance circuit
EP4270726A1 (en) Power supply including modular charging modules

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13809190

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13809190

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP