WO2014002771A1 - Liquid spraying device - Google Patents

Liquid spraying device Download PDF

Info

Publication number
WO2014002771A1
WO2014002771A1 PCT/JP2013/066237 JP2013066237W WO2014002771A1 WO 2014002771 A1 WO2014002771 A1 WO 2014002771A1 JP 2013066237 W JP2013066237 W JP 2013066237W WO 2014002771 A1 WO2014002771 A1 WO 2014002771A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
spacer
mesh
space
mesh portion
Prior art date
Application number
PCT/JP2013/066237
Other languages
French (fr)
Japanese (ja)
Inventor
田畑 信
寺田 隆雄
朝井 慶
真郎 前田
Original Assignee
オムロンヘルスケア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロンヘルスケア株式会社 filed Critical オムロンヘルスケア株式会社
Publication of WO2014002771A1 publication Critical patent/WO2014002771A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/02Inhalators with activated or ionised fluids, e.g. electrohydrodynamic [EHD] or electrostatic devices; Ozone-inhalators with radioactive tagged particles
    • A61M15/025Bubble jet droplet ejection devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/005Sprayers or atomisers specially adapted for therapeutic purposes using ultrasonics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0623Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers coupled with a vibrating horn
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0638Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers spray being produced by discharging the liquid or other fluent material through a plate comprising a plurality of orifices

Definitions

  • the present invention relates to a liquid spraying device, and more particularly to a liquid spraying device for atomizing and ejecting a liquid.
  • the liquid spray device is used, for example, for the purpose of delivering a therapeutic agent for liquid respiratory diseases in the form of a mist and administering the therapeutic agent to the affected area by the patient inhaling the mist.
  • a liquid spraying device that atomizes and ejects a liquid such as a chemical solution is generally a liquid storage part that stores liquid, a mesh part that has a large number of micropores, and a vibration source that is disposed so as to contact the mesh part. And comprising.
  • a liquid is supplied from the liquid storage part between the mesh part and the vibration source.
  • the liquid supplied between the mesh part and the vibration source is sprayed outward through the fine holes as the vibration source vibrates.
  • Conventional liquid spray apparatuses are disclosed in, for example, Japanese Patent Application Laid-Open No. 2006-297226 (Patent Document 1) and Japanese Patent Application Laid-Open No. 7-256170 (Patent Document 2).
  • JP 2006-297226 A Japanese Patent Laid-Open No. 7-256170
  • the liquid spraying device in order to spray the liquid from the fine holes formed in the mesh part, a space for storing the liquid is required between the mesh part and the vibration source.
  • the mesh portion and the vibration source need to be easily separable due to the necessity of cleaning or the like, and the mesh portion cannot be directly fixed to the vibration source. Therefore, it is difficult to stably secure the distance between the vibration source and the mesh part.
  • the distance between the vibration source and the mesh part greatly affects the stability of the spray, and if the distance between the vibration source and the mesh part varies, the spray performance may fluctuate, making it difficult to stably spray the liquid. There was a problem.
  • the present invention has been made in view of the above problems, and a main object thereof is to provide a liquid spraying apparatus capable of spraying a liquid stably.
  • the liquid spraying apparatus is an apparatus that includes a thin plate-like mesh portion in which a through hole is formed, and atomizes and ejects liquid through the through hole.
  • the mesh portion has an inlet surface on the side where the liquid flows into the through hole and an outlet surface on the side where the liquid flows out of the through hole.
  • the liquid spraying device further includes a vibration source including a surface facing the inlet surface, and a spacer provided on the inlet surface side of the peripheral portion of the mesh portion and forming a space between the inlet surface and the surface. The spacer forms a passage through which liquid flows into the space. When the vibration source vibrates, the liquid supplied to the space passes through the through hole and is ejected in a mist form.
  • the spacer may be formed in an annular shape along the peripheral edge, and the passage may extend in a groove shape along the radial direction of the spacer.
  • the spacer may have a facing surface facing the surface of the vibration source, and a gap may be formed between at least a part of the facing surface and the surface.
  • the surface of the vibration source may be inclined relative to the entrance surface.
  • the vibration source and the spacer may be arranged so that a part of the space does not overlap the surface of the vibration source in the thickness direction of the mesh portion.
  • the maximum diameter of the inner peripheral surface of the space may be larger than the maximum diameter of the surface, and the center of the spacer may be shifted from the center of the surface.
  • the passage may communicate the outer peripheral side space of the vibration source with the space.
  • the mesh portion may be made of resin.
  • the distance between the mesh portion and the vibration source can be kept constant and the liquid can be sprayed stably.
  • FIG. 1 is a perspective view showing an external configuration of a liquid spray device in Embodiment 1.
  • FIG. 3 is a perspective view showing a bottle unit provided in the liquid spraying apparatus in Embodiment 1.
  • FIG. It is a 1st perspective view which shows the state which the bottle unit with which the liquid spray apparatus in Embodiment 1 is equipped decomposed
  • FIG. 3 is a cross-sectional view showing a disassembled state of a bottle unit provided in the liquid spray device in Embodiment 1.
  • FIG. 3 is a perspective view showing a cross section taken along the line VI-VI in FIG. 2.
  • FIG. 3 is a cross-sectional view showing a state during spraying of a bottle unit used in the liquid spraying apparatus in the first embodiment.
  • 3 is a cross-sectional view illustrating an outline of a configuration of a mesh portion according to Embodiment 1.
  • FIG. FIG. 3 is a perspective view illustrating an outline of a configuration of a spacer according to the first embodiment.
  • FIG. 6 is a cross-sectional view schematically illustrating a configuration of a mesh part according to a second embodiment.
  • FIG. 10 is a perspective view illustrating an outline of a configuration of a spacer according to a third embodiment. It is sectional drawing which shows the state at the time of spraying of the liquid spraying apparatus of Embodiment 3.
  • FIG. FIG. 6 is a cross-sectional view showing the arrangement of spacers and vibration sources in a fourth embodiment.
  • FIG. 10 is a plan view showing the arrangement of spacers and vibration sources according to the fifth embodiment.
  • FIG. 19 is a cross-sectional view of the spacer and the vibration source along the line XIX-XIX shown in FIG. FIG.
  • FIG. 19 is a cross-sectional view of the spacer and the vibration source along the line XX-XX shown in FIG.
  • FIG. 20 is a plan view showing the arrangement of spacers and vibration sources in the sixth embodiment.
  • FIG. 22 is a cross-sectional view of the spacer and the vibration source along the line XXII-XXII shown in FIG. 21.
  • FIG. 1 is a perspective view showing an external configuration of the liquid spraying apparatus 100.
  • the liquid spray apparatus 100 according to the present embodiment is a so-called mesh nebulizer used for administering a therapeutic agent for respiratory system diseases to a patient.
  • the liquid spraying apparatus 100 includes a main body unit 20 and a bottle unit 30.
  • the main body 20 has a power switch 21 on the surface.
  • a power source (not shown) and an electric circuit (not shown) for driving the liquid spray device 100 (vibrating a horn vibrator 40 described later) and the like are provided inside the main body 20.
  • the bottle unit 30 is detachably attached to the main body unit 20.
  • FIG. 2 is a perspective view showing the bottle unit 30.
  • FIG. 3 is a first perspective view showing the bottle unit 30 in an exploded state.
  • FIG. 4 is a second perspective view showing the bottle unit 30 in an exploded state.
  • FIG. 5 is a cross-sectional view showing the bottle unit 30 in an exploded state.
  • FIG. 6 is a perspective view of a cross section taken along the line VI-VI in FIG.
  • the mesh portion 1 see FIGS. 3 to 5 (details will be described later) is not shown.
  • the mesh portion 1, the support members 50 and 52, and the hermetic support packing 51 are not shown (the details thereof will be described later).
  • FIG. 7 is a cross-sectional view corresponding to FIG.
  • FIG. 8 is an enlarged sectional view showing the vicinity of the mesh portion 1 in FIG.
  • the bottle unit 30 includes a mesh unit 1 (see FIGS. 1 and 3 to 5), a bottle unit 31 as a liquid storage unit, and a horn vibrator 40 (as a vibration source). 3 to 5).
  • the mesh portion 1 (Mesh part 1) A large number of fine through holes are formed in the mesh portion 1. Although details will be described later, the mesh portion 1 (see FIGS. 1 and 3 to 5) is disposed so as to face the surface 42 of the tip portion 41 of the horn vibrator 40 and to contact the surface 42.
  • the mesh part 1 is made of resin.
  • the mesh part 1 may be a mold-molded product using a mold, for example, or may be formed by any other processing method.
  • the resin material forming the mesh portion 1 include polyamide resin, polyester, syndiopolystyrene, polysulfone, polyethersulfone, polyetheretherketone, polyetherimide, polyamideimide, PPS (polyphenylene sulfide), epoxy, and phenol. And polyimide. From the viewpoint of processability in resin molding, it is preferable to use, for example, polysulfone, polyetheretherketone, or PPS.
  • the mesh part 1 may be made of metal.
  • the mesh portion 1 may be formed of nickel alloy such as Ni—Pd (nickel-palladium) alloyed with a predetermined ratio, platinum, or the like.
  • the mesh part 1 may be made of ceramics.
  • the mesh part 1 may be formed of alumina, zirconia, silicon carbide, or the like.
  • the mesh portion 1 of the present embodiment is formed as an independent member, but is not limited to this configuration.
  • the mesh part 1 may be a thin plate-like part of an arbitrary member, for example, the support member 50 or the support member 52 described later and the mesh part 1 are integrally formed.
  • bottom surface of bottle portion 31 is formed to be inclined.
  • a liquid L such as a chemical solution (see FIG. 7) is stored inside the bottle portion 31.
  • the bottle portion 31 is provided with a liquid injection port 33 located on the opposite side of the horn vibrator 40 and a tip opening 32 that gradually becomes narrower as the horn vibrator 40 is approached.
  • a cap 35 is attached so as to close the liquid injection port 33.
  • the cap 35 is supported by the support portion 35T so as to be rotatable in the direction of the arrow AR35 (see FIG. 2).
  • the liquid injection port 33 of the bottle portion 31 is closed.
  • the state in which the cap 35 closes the liquid injection port 33 is held by a fixing portion 35 ⁇ / b> K provided on the top of the cap 35.
  • the front end opening 32 of the bottle portion 31 faces the front end portion 41 of the horn vibrator 40.
  • the liquid L stored in the bottle portion 31 is supplied to the surface 42 of the tip portion 41 from the outside of the tip portion 41 of the horn vibrator 40.
  • the bottle portion 31 has a large-capacity portion B and a small-capacity portion b that communicates with the large-capacity portion B through the tip opening 32 and faces the tip portion 41 of the horn vibrator 40.
  • the small capacity portion b is an annular space S (see FIG. 5) between the inner wall 62 (see FIG. 6) of the opening 60 of the bottle unit 30 that sprays the atomized chemical liquid and the tip 41 of the horn vibrator 40. Reference).
  • the horn vibrator 40 is disposed so as to face the tip opening 32 of the bottle portion 31.
  • the horn vibrator 40 is located below the opening 60 provided in the bottle unit 30.
  • an inner mesh cap 57 to be described later is detachably attached to the opening 60.
  • support member 50 and support member 52 can be fitted to each other in a state where mesh portion 1 is sandwiched between support member 50 and support member 52. Configured. The mesh portion 1 is sandwiched between the support member 50 and the support member 52 that are fitted to each other on the tip portion 41 of the horn vibrator 40. The support member 50 and the support member 52 fix the mesh portion 1 so that the mesh portion 1 is in close proximity to the surface 42 of the horn vibrator 40 while sandwiching the mesh portion 1.
  • the support member 50 and the support member 52 that are fitted to each other are attached to the inner peripheral portion of the hermetic support packing 51 formed in an annular shape.
  • the support member 50 and the support member 52 that are fitted to each other are attached to the inner mesh cap 57 by the hermetic support packing 51.
  • the outer peripheral portion of the hermetic support packing 51 is fitted into the inner mesh cap 57.
  • the space between the support members 50 and 52 and the inner mesh cap 57 is sealed by the hermetic support packing 51.
  • the inner mesh cap 57 is attached around the opening 60 so as to cover the opening 60 provided in the bottle unit 30.
  • the inner mesh cap 57 is pivotally supported by the support portion 38T provided on the bottle portion 31 side so that the support portion 57T of the inner mesh cap 57 is rotatable.
  • the air gap formed between the inner mesh cap 57 and the opening 60 is sealed by the sealing support packing 51.
  • the sealing By the sealing, the liquid L and the liquid LL stored in the bottle part 31 are kept from leaking from the bottle part 31 to the outside. Thereby, even if it is a case where the liquid spraying apparatus 100 is inclined, the liquid L and the liquid LL inside the bottle part 31 do not leak outside.
  • the support portion 57T of the inner mesh cap 57 is pivotally supported by the support portion 38T provided on the bottle portion 31 side.
  • the inner mesh cap 57 is detachable from the opening 60 in a state where the mesh portion 1, the support members 50 and 52, and the hermetic support packing 51 are integrally attached to the inner mesh cap 57. It is attached.
  • the mesh part 1 Since the mesh part 1 is attached to the inner mesh cap 57, the mesh part 1 can be easily washed by removing the inner mesh cap 57 from the opening 60 (rotating the inner mesh cap 57). It is possible.
  • FIG. 9 is a cross-sectional view showing a state when the bottle unit 30 is sprayed.
  • the bottle unit 30 is tilted as shown in FIG. 9, and the liquid L in the large-capacity portion B of the bottle portion 31 flows from the tip opening 32 into the small-capacity portion b. It flows into the space S.
  • the liquid LL in the space S reaches the vicinity of the contact portion between the surface 42 of the tip portion 41 and the mesh portion 1 from the outside of the tip portion 41 of the horn vibrator 40.
  • the liquid LL in the small-capacity portion b is, as described above, the tip portion 41 and the inner wall 62 (see FIG. 6), the surface tension rises to the vicinity of the atomizing portion, and can be further supplied to the mesh portion 1 by the vibration of the horn vibrator 40.
  • the mesh part 1 used for the liquid spraying apparatus 100 (refer FIG. 1) in this Embodiment is demonstrated in detail.
  • the mesh portion 1 of the present embodiment has a thin plate-like outer shape, and the planar shape is a circular shape.
  • the disc-shaped mesh portion 1 has a central portion 2 near the center of the circle and a peripheral portion 3 near the outer periphery of the circle.
  • FIG. 10 is a cross-sectional view illustrating an outline of the configuration of the mesh unit 1 according to the first embodiment.
  • FIG. 11 is a perspective view showing an outline of the configuration of the spacer 10 according to the first embodiment.
  • FIG. 12 is a cross-sectional view of the mesh portion 1 showing an enlarged view of the vicinity of the region XII in FIG.
  • a plurality of nozzle-like through holes 6 are formed in the mesh portion 1.
  • the mesh part 1 includes an inlet surface 1B which is a surface of the mesh part 1 on the side where the liquid LL passing through the through hole 6 flows into the through hole 6 and a surface of the mesh part 1 on the side where the liquid LL flows out of the through hole 6 And an exit surface 1A.
  • the through hole 6 is formed through the mesh portion 1 in the thickness direction from the inlet surface 1B of the mesh portion 1 to the outlet surface 1A.
  • the through hole 6 is formed over the entire central portion 2 of the mesh portion 1.
  • several thousands of through holes 6 are formed in one mesh part 1.
  • the cross-sectional shape of the through-hole 6 is greatly exaggerated with respect to the mesh portion 1 rather than the through-hole 6 formed in the actual mesh portion 1. Please note that.
  • the through hole 6 of the present embodiment is formed in a funnel shape.
  • the through-hole 6 has a maximum diameter on the entrance surface 1B, and the diameter gradually decreases toward the exit surface 1A.
  • the through-hole 6 becomes a straight tube in the vicinity of the exit surface 1A and opens to the exit surface 1A.
  • the through hole 6 is not limited to the shape shown in FIG. 12, but can be formed in an arbitrary shape.
  • the shape of the through hole 6 may be a cone or a pyramid, may be a folded cone or a pyramid, may be a combination of a cylinder and a cone, a prism and a pyramid.
  • the combination shape may be sufficient.
  • a spacer 10 is provided on the inlet surface 1B side of the mesh portion 1.
  • the spacer 10 is formed along the peripheral edge 3 on the entrance surface 1B of the mesh part 1.
  • the spacer 10 has a donut shape.
  • the outer peripheral surface and inner peripheral surface of the spacer 10 are formed in a cylindrical shape.
  • a hollow space 12 is formed between the inlet surface 1B of the mesh portion 1 and the surface 42 of the horn vibrator 40.
  • the space 12 is formed on the radial center side of the spacer 10, and is surrounded by the entrance surface 1 ⁇ / b> B, the surface 42, and the inner peripheral surface of the spacer 10 to define the shape thereof.
  • the spacer 10 is dimensioned so that a space 12 having a sufficiently large volume can be formed between the entrance surface 1 ⁇ / b> B and the surface 42.
  • the thickness t ⁇ b> 2 of the spacer 10 in the thickness direction of the mesh portion 1 shown in FIG. 12 is twice or more the thickness t ⁇ b> 1 of the mesh portion 1.
  • FIG. 11 is a perspective view of the spacer 10 in which the spacer 10 shown in FIG. 10 is seen from the lower side.
  • the spacer 10 has a ring shape along the peripheral edge portion 3 of the mesh portion 1.
  • Grooves 16 and 18 are formed in the spacer 10 on the surface on the side not facing the mesh portion 1.
  • the grooves 16 and 18 are formed in a straight line extending along the radial direction of the annular spacer 10.
  • the grooves 16 and 18 are formed so as to extend on the same straight line passing through the center of the annular spacer 10.
  • the grooves 16 and 18 communicate the space S on the outer peripheral side of the horn vibrator 40 with the space 12 inside the spacer 10.
  • the liquid LL flows from the space S to the space 12 via the groove 16 as shown by an arrow in FIG. 12 or from the space 12 to the space S via the groove 18.
  • the grooves 16 and 18 function as a passage 15 through which the liquid LL flows into the space 12.
  • the spacer 10 is provided only in the peripheral portion 3 of the mesh portion 1 and is not provided in the central portion 2 of the mesh portion 1.
  • the central part 2 of the mesh part 1 has a film-like structure with a small thickness. Therefore, the mesh part 1 can freely vibrate in the thickness direction in the central part 2.
  • the mesh part 1 is formed so that the thickness t1 (see FIG. 12) is 100 ⁇ m or less, preferably 25 ⁇ m, at least in the central part 2. Since the thickness t2 of the spacer 10 (see FIG. 12) is more than twice the thickness t1 of the mesh portion 1, for example, the spacer 10 is formed so that the thickness t2 is 200 ⁇ m or more, preferably 400 ⁇ m. .
  • FIG. 13 is a schematic cross-sectional view showing an operation of atomizing the liquid LL through the through-hole 6 of the mesh portion 1.
  • the horn vibrator 40 has a function as a vibration source and ultrasonically vibrates in the vertical direction in FIG.
  • the horn vibrator 40 has a function as a liquid supply part for supplying the liquid LL to the inside of the through hole 6 formed in the mesh part 1.
  • the liquid LL is supplied to the through hole 6.
  • the horn vibrator 40 moves in a direction approaching the mesh part 1 as indicated by an outline arrow in FIG. 13, it is supplied to the space 12 between the entrance surface 1B of the mesh part 1 and the surface 42 of the horn vibrator 40.
  • the liquid LL thus supplied is supplied to the through-hole 6 and further pushed out from the through-hole 6 to generate fine mist-like liquid particles LP.
  • the liquid particles LP ejected from the through hole 6 have a diameter larger than the diameter of the through hole 6 that opens to the exit surface 1A.
  • the spray particles ejected from the through hole 6 having an opening diameter of 3 ⁇ m on the exit surface 1A have a diameter of 5 ⁇ m. Note that the relationship between the diameter of the through hole 6 and the diameter of the spray particles is an example, and the spray particles may have a diameter smaller than the diameter of the through hole 6 under different conditions.
  • the central part 2 of the mesh part 1 vibrates in the vertical direction in FIG. 13 with the vibration of the horn vibrator 40 to atomize the liquid. Since the spacer 10 is not provided in the central portion 2, the vibration of the central portion 2 is not hindered by the spacer 10, and the central portion 2 can easily vibrate in the thickness direction. Therefore, when the horn vibrator 40 vibrates, the central portion 2 of the mesh portion 1 also vibrates, and the liquid LL is ejected from the through-hole 6 along with the vibration of the central portion 2, and the liquid LL is efficiently atomized.
  • the liquid L (liquid LL) is supplied from the bottle portion 31 toward the horn vibrator 40 side.
  • the liquid L (liquid LL) passes from the space S outside the tip portion 41 of the horn vibrator 40 via the groove 16 to the surface 42 of the tip portion 41 of the horn vibrator 40 and the inlet surface 1B of the mesh portion 1. Is supplied to the space 12 formed between the two.
  • the liquid L (liquid LL) reaches the inlet surface 1B of the mesh portion 1 while flowing from the space S on the outer peripheral side of the tip portion 41 into the space 12 between the surface 42 and the mesh portion 1. .
  • the liquid L (liquid LL) is stably supplied to the mesh part 1.
  • the horn vibrator 40 When the power switch 21 of the main body 20 (see FIG. 1) is pressed while the liquid L (liquid LL) is being stably supplied to the mesh unit 1, the horn vibrator 40 is ultrasonically vibrated. By the ultrasonic vibration between the mesh part 1 and the surface 42 of the tip part 41 of the horn vibrator 40, the liquid LL of the small volume part b is supplied to the mesh part 1, and the liquid LL is dropped from the through hole 6 of the mesh part 1. And is sprayed from the opening 60. Even during spraying, the liquid L (liquid LL) continues to flow into the space 12 between the surface 42 and the mesh part 1 via the groove 16, so that the liquid L (liquid LL) is reliably supplied to the mesh part 1. Is done. Since the liquid L (liquid LL) is stably supplied to the mesh unit 1 without interruption, according to the liquid spraying apparatus 100 in the present embodiment, the liquid L (liquid LL) can be stably sprayed. Can do.
  • a ring-shaped spacer 10 having a certain thickness t2 is formed on the peripheral edge 3 of the mesh portion 1, and when the horn vibrator 40 moves in a direction close to the mesh portion 1 when vibrating, the spacer 10 Contact.
  • the spacer 10 With this configuration, the distance between the surface 42 of the horn vibrator 40 and the mesh portion 1 can be stably secured.
  • the spacer 10 With a groove-like passage serving as a liquid introduction passage for supplying liquid from the peripheral side to the center side of the spacer 10, the liquid LL is stably provided in the space 12 between the mesh unit 1 and the horn vibrator 40. Can be supplied.
  • the spacer 10 is attached to the mesh portion 1 and the mesh portion 1 itself has a spacer 10 for keeping the distance from the horn vibrator 40 constant, the mesh portion 1 and the horn vibrator 40 are separated. Even after reassembly, the distance between the entrance surface 1B and the surface 42 can be secured stably.
  • the amount of spray of the mist-like liquid LL by the liquid spraying device 100 is considered that there is a correlation between the amount of spray of the mist-like liquid LL by the liquid spraying device 100 and the distance between the inlet surface 1B and the surface 42 along the thickness direction of the mesh portion 1. If the distance between the inlet surface 1B and the surface 42 can be maintained at the optimum distance for atomizing the liquid LL most efficiently, it is desirable that the amount of spray of the mist-like liquid LL can be increased.
  • the thickness t2 of the spacer 10 can be adjusted to adjust the distance between the entrance surface 1B and the surface 42. The interval can be optimized. Therefore, it becomes possible to always atomize the liquid LL stably. By optimally setting the relative position of the inlet surface 1B with respect to the surface 42, a larger amount of liquid LL can be efficiently atomized.
  • discharge resistance In order to reduce the resistance to discharge of the liquid LL passing through the through hole 6 (hereinafter referred to as discharge resistance), a measure to reduce the thickness of the mesh portion 1 is taken.
  • the mesh portion 1 having a small thickness tends to have insufficient rigidity. If the rigidity of the mesh portion 1 is insufficient, the mesh portion 1 itself is bent, and the mesh portion 1 itself vibrates at the same frequency as that of the horn vibrator 40 when the horn vibrator 40 vibrates. A sufficient pressure cannot be applied to the liquid LL between the surface 42 and the mesh part 1. As a result, the liquid LL cannot be ejected from the through hole 6 and the spray amount is reduced.
  • the resin mesh portion 1 that can be reduced in price is required to have a structure for securing the rigidity of the mesh portion 1 because the rigidity is low and sufficient strength cannot be obtained when the thickness is small.
  • the spacer 10 is joined to the inlet surface 1B side of the peripheral portion 3 of the mesh portion 1, so that the thickness of the peripheral portion 3 of the mesh portion 1 and the spacer 10.
  • the total thickness increases.
  • the peripheral part 3 of the mesh part 1 is reinforced.
  • the spacer 10 is formed so as to have a thickness t2 necessary for sufficiently improving the strength of the mesh portion 1.
  • the liquid spraying apparatus 100 of the present embodiment sufficient rigidity is ensured even when the mesh portion 1 is thinned by reinforcing the peripheral portion 3 of the mesh portion 1 with the spacer 10 to increase the rigidity. Can do. Thereby, it can avoid that the mesh part 1 itself vibrates with the same frequency as the horn vibrator
  • the liquid LL is a drug solution
  • the drug solution can stably reach an affected area such as a patient with a respiratory disease, and the therapeutic effect can be improved.
  • the inner peripheral edge of the spacer 10 is arranged closer to the center in the radial direction of the mesh portion 1 than the outer peripheral edge of the horn vibrator 40.
  • the inner peripheral edge of the projection of the spacer 10 partially overlaps with the outer peripheral edge of the surface 42 of the horn vibrator 40.
  • the mesh part 1 is formed with a through hole 6 only in the central part 2, and no through hole 6 is formed in the peripheral part 3.
  • the center part 2 shows the range in which the through-hole 6 is formed
  • the peripheral part 3 shows the range in which the through-hole 6 is not formed. All the through holes 6 are formed so as to face the hollow space 12 inside the donut-shaped spacer 10.
  • the horn vibrator 40 covers the entire through-hole 6 formed in the mesh part 1.
  • the liquid LL is supplied to the entire through-hole 6 as the horn vibrator 40 vibrates in the vertical direction. Therefore, the mist-like liquid LL can be generated from the whole mesh part 1, and the atomization of the liquid LL more efficiently becomes possible.
  • the peripheral portion 3 of the mesh portion 1 has a solid structure in which the through holes 6 are not formed, the rigidity of the peripheral portion 3 is relatively enhanced. Therefore, by providing the spacer 10 in the peripheral part 3, the rigidity of the peripheral part 3 can be improved more effectively and the required strength as the entire mesh part 1 can be ensured more reliably.
  • the mesh portion 1 of the present embodiment is manufactured by molding using a resin material as a raw material, the arrangement and shape of the through holes 6 can be managed with high accuracy. Since the resin mesh portion 1 can be manufactured as a molded product using a mold manufactured with high accuracy, the arrangement, shape, and diameter of the through holes 6 can be freely adjusted. Therefore, by preparing a mold having an appropriate shape and size, the mesh portion 1 of the present embodiment in which the through hole 6 having the optimal shape and diameter for atomizing the liquid LL is formed at the optimal position. Can be easily manufactured.
  • FIG. 14 is a perspective view illustrating an outline of the configuration of the mesh unit 1 according to the second embodiment.
  • the mesh portion 1 of the second embodiment is different from the first embodiment in that the spacer 10 is a resin molded product formed integrally with the mesh portion 1.
  • the mesh portion 1 and the spacer 10 may be manufactured by bonding separate members by bonding, for example.
  • the mesh part 1 and the spacer 10 may be formed integrally, and the spacer 10 which protrudes from the peripheral part 3 of the mesh part 1 may be formed.
  • the spacer 10 may be formed by any manufacturing method as long as the spacer 10 that can reliably secure the space 12 between the entrance surface 1B of the mesh portion 1 and the surface 42 of the horn vibrator 40 can be produced.
  • the spacer 10 may be formed by an optimum manufacturing method in consideration of the shape of the mesh portion 1 and the spacer 10.
  • the thickness t2 (see FIG. 12) of the spacer 10 is larger than the thickness t1 (see FIG. 12) of the mesh portion 1, for example, when the thickness t2 is ten times or more of the thickness t1, It is difficult to manufacture the mesh portion 1 with high accuracy. In such a case, it is desirable to manufacture the mesh portion 1 and the spacer 10 by the bonding described in the first embodiment from the viewpoint of ease of molding.
  • FIG. 15 is a perspective view schematically showing the configuration of the spacer 10 according to the third embodiment.
  • the groove 16 may be formed at one location of the spacer 10.
  • the groove 16 may be formed so as to extend along the gravity direction at a position on the upper side in the gravity direction in a state where the liquid spraying device 100 is inclined toward the horn vibrator 40. This is preferable because the liquid LL easily flows into the space 12 via the groove 16.
  • FIG. 16 is a cross-sectional view showing a state during spraying of the liquid spraying apparatus 100 of the third embodiment. Since only the groove 16 serving as a passage for the liquid LL to flow into the space 12 is formed in the spacer 10, the liquid LL supplied into the space 12 can be stored in the space 12. By storing the liquid LL in the space 12, the liquid LL can be supplied more stably to the mesh unit 1 without interruption. As a result, the liquid spraying apparatus 100 can stably spray the liquid LL.
  • the grooves formed in the spacer 10 may be formed in any number and shape as long as the liquid LL can be smoothly supplied to the space 12.
  • the spacer 10 may have three or more grooves.
  • the spacer 10 itself may have a C-shaped shape in which one portion is cut out, or may be formed in a shape in which a plurality of portions of the spacer 10 are cut out.
  • the shape of the spacer 10 itself is not limited to the ring shape along the peripheral edge portion 3 of the disk-shaped mesh portion 1, and may have an arbitrary shape.
  • the spacer 10 may have a hollow rectangular frame shape, or the outer peripheral edge in plan view may have an arbitrary shape such as a polygonal shape or an oval shape.
  • a plurality of protrusion shapes protruding from the peripheral edge portion 3 of the mesh portion 1 toward the horn vibrator 40 may be provided, and the spacer 10 may be configured by the plurality of protrusion shapes.
  • the shape of the spacer 10 can be determined so that the frequency of the vibration of the mesh portion 1 that vibrates with the vibration of the horn vibrator 40 can be optimally adjusted. If the frequency of the vibration of the mesh unit 1 is optimized, the liquid LL can be atomized more efficiently, so that a larger amount of mist-like liquid particles LP can be generated, and the liquid spray device 100 can be generated. Can enhance the ability.
  • FIG. 17 is a cross-sectional view showing the arrangement of the spacer 10 according to the fourth embodiment and the horn vibrator 40 as a vibration source.
  • the spacer 10 has a facing surface 14 that faces the surface 42 of the horn vibrator 40.
  • a gap 19 is formed between a part of the facing surface 14 of the spacer 10 and the surface 42 of the horn vibrator 40. More specifically, the surface 42 of the horn vibrator 40 is inclined relative to the entrance surface 1B of the mesh portion 1, and this inclination causes the facing surface 14 of the spacer 10 and the surface 42 of the horn vibrator 40. A gap 19 is formed between the two.
  • the liquid LL flows between the surface 42 of the horn vibrator 40 and the inlet surface 1B of the mesh portion 1 from the space S on the outer peripheral side of the horn vibrator 40 via the gap 19 as shown by the arrow in FIG. It flows to the space 12 formed between them and is supplied to the space 12.
  • the gap 19 functions as a passage 15 through which the liquid LL flows into the space 12.
  • the liquid LL also reaches the inlet surface 1B of the mesh part 1 from the space S while flowing into the space 12 between the surface 42 and the mesh part 1. Thereby, the liquid LL is stably supplied to the mesh unit 1.
  • the liquid LL Since the liquid LL continues to flow into the space 12 between the surface 42 and the mesh part 1 via the gap 19, the liquid LL is reliably supplied to the mesh part 1. Even during spraying, the liquid LL is stably supplied to the mesh portion 1 without interruption, so that the liquid LL can be sprayed stably.
  • a part of the facing surface 14 of the spacer 10 is in contact with the surface of the horn vibrator 40, so Can be secured.
  • a gap 19 is formed between the facing surface 14 of the spacer 10 and the surface 42 of the horn vibrator 40, and is continuously formed in the space 12. Therefore, the liquid LL can be stably sprayed.
  • the gap 19 may be formed between at least a part of the facing surface 14 of the spacer 10 and the surface 42 of the horn vibrator 40.
  • the configuration for doing this is not limited to the inclination shown in FIG.
  • a protrusion is formed in which a part of the facing surface 14 of the spacer 10 protrudes toward the horn vibrator 40, and a gap is formed between the spacer 10 and the surface 42 of the horn vibrator 40 at a position other than the protrusion. May be.
  • the opposing surface 14 of the spacer 10 is formed as a non-planar surface in this way, the surface 42 of the horn vibrator 40 is not inclined with respect to the mesh portion 1, and the entrance surface 1B and the surface 42 of the mesh portion 1 are parallel. However, a gap between the facing surface 14 and the surface 42 can be secured.
  • FIG. 18 is a plan view showing an arrangement of the spacer 10 according to the fifth embodiment and the horn vibrator 40 that is a vibration source.
  • FIG. 19 is a cross-sectional view of the spacer 10 and the horn vibrator 40 along the line XIX-XIX shown in FIG. 20 is a cross-sectional view of the spacer 10 and the horn vibrator 40 along the line XX-XX shown in FIG. 18 to 20, the mesh unit 1 is not shown.
  • the horn vibrator 40 and the spacer 10 are arranged so that a part of the space 12 does not overlap the surface 42 in the thickness direction of the mesh part 1.
  • the inner peripheral surface 13 of the space 12 formed inside the spacer 10 has an oval shape, and horn vibration.
  • the surface 42 of the child 40 has a circular shape.
  • the major axis of the ellipse formed by the inner peripheral surface 13 is larger than the diameter of the circle formed by the surface 42. That is, the maximum diameter of the inner peripheral surface 13 of the space 12 is larger than the maximum diameter of the surface 42.
  • the spacer 10 has a portion that overlaps the surface 42 of the horn vibrator 40 and rides on the surface 42, and a portion that does not overlap the surface 42 and does not ride on the surface 42. Is supplied with liquid LL.
  • the liquid LL flows from the space S on the outer peripheral side of the horn vibrator 40 to the space 12 via the passage 15 and is supplied to the space 12 as indicated by an arrow in FIG.
  • the liquid LL also reaches the inlet surface 1B of the mesh part 1 from the space S while flowing into the space 12 between the surface 42 and the mesh part 1. Thereby, the liquid LL is stably supplied to the mesh unit 1.
  • the liquid LL Since the liquid LL continues to flow into the space 12 between the surface 42 and the mesh part 1 via the passage 15, the liquid LL is reliably supplied to the mesh part 1. Even during spraying, the liquid LL is stably supplied to the mesh portion 1 without interruption, so that the liquid LL can be sprayed stably.
  • FIG. 21 is a plan view showing the arrangement of the spacer 10 according to the sixth embodiment and the horn vibrator 40 as a vibration source.
  • 22 is a cross-sectional view of the spacer 10 and the horn vibrator 40 along the line XXII-XXII shown in FIG. 21 and 22, the mesh unit 1 is not shown.
  • the horn vibrator 40 and the spacer 10 are arranged so that a part of the space 12 does not overlap the surface 42 in the thickness direction of the mesh portion 1.
  • the inner peripheral surface 13 of the space 12 formed inside the spacer 10 and the surface 42 of the horn vibrator 40 are , Both have a circular shape.
  • the spacer 10 and the horn vibrator 40 are arranged such that the center of the circle formed by the inner peripheral surface 13 and the center of the circle formed by the surface 42 are shifted. That is, the center of the annular spacer 10 is shifted from the center of the surface 42 of the horn vibrator 40.
  • the passage 15 is formed by the deviation of the center between the spacer 10 and the horn vibrator 40, and the liquid LL is supplied to the space 12 through the passage 15.
  • the liquid LL flows from the space S on the outer peripheral side of the horn vibrator 40 to the space 12 via the passage 15 and is supplied to the space 12 as indicated by an arrow in FIG. Since the liquid LL continues to flow into the space 12 between the surface 42 and the mesh part 1 via the passage 15, the liquid LL is reliably supplied to the mesh part 1. Even during spraying, the liquid LL is stably supplied to the mesh portion 1 without interruption, so that the liquid LL can be sprayed stably.
  • liquid spray particles are generated by ultrasonic vibration of the horn vibrator 40
  • a SAW vibrator may be used instead of the horn vibrator.
  • an arbitrary vibrator may be brought into contact with the entrance surface or the exit surface of the mesh portion to generate the spray particles of the liquid.
  • the liquid spray device of the present invention is particularly advantageously applied to a liquid spray device that allows a patient to inhale a therapeutic drug for a nebulized respiratory disease and simultaneously reach the different sites in the patient's body. obtain.

Abstract

Provided is a liquid spraying device that can spray a liquid stably. This liquid spraying device is a device that comprises a thin-plate-shaped mesh part (1) having through holes formed therein, and that atomizes and jets the liquid by making same pass through the through holes. The mesh part (1) has an entrance surface (1B) on the side where the liquid flows into the through holes, and an exit surface (1A) on the side where the liquid flows out from the through holes. The liquid spraying device further comprises: a horn vibrator (40) including a surface (42) that opposes the entrance surface (1B); and a spacer (10) that is provided on the peripheral edge part (3) of the mesh part (1) on the side of the entrance surface (1B) and that forms a space (12) between the entrance surface (1B) and said surface (42). The spacer (10) forms a passage where the liquid flows into said space. By the vibration of the horn vibrator (40), the liquid supplied to the space (12) passes through the through holes and is jetted in an atomized manner.

Description

液体噴霧装置Liquid spray device
 本発明は、液体噴霧装置に関し、特に、液体を霧化して噴出するための液体噴霧装置に関する。 The present invention relates to a liquid spraying device, and more particularly to a liquid spraying device for atomizing and ejecting a liquid.
 液体噴霧装置はたとえば、液体状の呼吸器系疾患の治療薬を霧状にして送り出し、患者がその霧を吸込むことによって患部に治療薬を投与する用途などに使用される。薬液などの液体を霧化して噴出する液体噴霧装置は、一般的に、液体を貯留する貯液部と、多数の微細孔を有するメッシュ部と、メッシュ部に当接するように配置される振動源と、を備える。メッシュ部と振動源との間に、貯液部から液体が供給される。メッシュ部と振動源との間に供給された液体は、振動源が振動することによって、微細孔を通して外部に向けて噴霧される。従来の液体噴霧装置は、たとえば、特開2006-297226号公報(特許文献1)および特開平7-256170号公報(特許文献2)に開示されている。 The liquid spray device is used, for example, for the purpose of delivering a therapeutic agent for liquid respiratory diseases in the form of a mist and administering the therapeutic agent to the affected area by the patient inhaling the mist. A liquid spraying device that atomizes and ejects a liquid such as a chemical solution is generally a liquid storage part that stores liquid, a mesh part that has a large number of micropores, and a vibration source that is disposed so as to contact the mesh part. And comprising. A liquid is supplied from the liquid storage part between the mesh part and the vibration source. The liquid supplied between the mesh part and the vibration source is sprayed outward through the fine holes as the vibration source vibrates. Conventional liquid spray apparatuses are disclosed in, for example, Japanese Patent Application Laid-Open No. 2006-297226 (Patent Document 1) and Japanese Patent Application Laid-Open No. 7-256170 (Patent Document 2).
特開2006-297226号公報JP 2006-297226 A 特開平7-256170号公報Japanese Patent Laid-Open No. 7-256170
 液体噴霧装置において、メッシュ部に形成された微細孔から液体を噴霧するために、メッシュ部と振動源との間に液体を貯留するためのスペースが必要になる。メッシュ部と振動源とは、洗浄などの必要性から、簡単に分離できる必要があり、振動源に直接メッシュ部を固定することはできない。そのため、振動源とメッシュ部との距離を安定して確保することは困難である。振動源とメッシュ部との距離は噴霧の安定に大きく影響しており、振動源とメッシュ部との距離がばらつくと、噴霧性能が変動する原因となり、液体を安定して噴霧することが困難になる問題があった。 In the liquid spraying device, in order to spray the liquid from the fine holes formed in the mesh part, a space for storing the liquid is required between the mesh part and the vibration source. The mesh portion and the vibration source need to be easily separable due to the necessity of cleaning or the like, and the mesh portion cannot be directly fixed to the vibration source. Therefore, it is difficult to stably secure the distance between the vibration source and the mesh part. The distance between the vibration source and the mesh part greatly affects the stability of the spray, and if the distance between the vibration source and the mesh part varies, the spray performance may fluctuate, making it difficult to stably spray the liquid. There was a problem.
 本発明は上記の課題に鑑みてなされたものであり、その主たる目的は、液体を安定して噴霧することが可能な液体噴霧装置を提供することである。 The present invention has been made in view of the above problems, and a main object thereof is to provide a liquid spraying apparatus capable of spraying a liquid stably.
 本発明に係る液体噴霧装置は、貫通孔の形成された薄板状のメッシュ部を備え、貫通孔を通過させて液体を霧化し噴出する装置である。メッシュ部は、液体が貫通孔へ流入する側の入口面と、液体が貫通孔から流出する側の出口面とを有する。液体噴霧装置は、入口面に対向する表面を含む振動源と、メッシュ部の周縁部の入口面側に設けられ、入口面と表面との間に空間を形成するスペーサと、をさらに備える。スペーサは、液体が空間に流入する通路を形成する。振動源が振動することによって、空間に供給された液体が貫通孔を通過して霧状に噴出する。 The liquid spraying apparatus according to the present invention is an apparatus that includes a thin plate-like mesh portion in which a through hole is formed, and atomizes and ejects liquid through the through hole. The mesh portion has an inlet surface on the side where the liquid flows into the through hole and an outlet surface on the side where the liquid flows out of the through hole. The liquid spraying device further includes a vibration source including a surface facing the inlet surface, and a spacer provided on the inlet surface side of the peripheral portion of the mesh portion and forming a space between the inlet surface and the surface. The spacer forms a passage through which liquid flows into the space. When the vibration source vibrates, the liquid supplied to the space passes through the through hole and is ejected in a mist form.
 上記液体噴霧装置において、スペーサは、周縁部に沿う環状に形成され、通路は、スペーサの径方向に沿って溝状に延びてもよい。 In the liquid spraying device, the spacer may be formed in an annular shape along the peripheral edge, and the passage may extend in a groove shape along the radial direction of the spacer.
 上記液体噴霧装置において、スペーサは、振動源の表面に対向する対向面を有し、対向面の少なくとも一部と表面との間に隙間が形成されてもよい。振動源の表面は、入口面に対して相対的に傾斜していてもよい。 In the liquid spraying apparatus, the spacer may have a facing surface facing the surface of the vibration source, and a gap may be formed between at least a part of the facing surface and the surface. The surface of the vibration source may be inclined relative to the entrance surface.
 上記液体噴霧装置において、メッシュ部の厚み方向において空間の一部が振動源の表面に重ならないように、振動源とスペーサとは配置されていてもよい。空間の内周面の最大径が表面の最大径よりも大きくてもよく、スペーサの中心が表面の中心に対しずれていてもよい。 In the liquid spraying apparatus, the vibration source and the spacer may be arranged so that a part of the space does not overlap the surface of the vibration source in the thickness direction of the mesh portion. The maximum diameter of the inner peripheral surface of the space may be larger than the maximum diameter of the surface, and the center of the spacer may be shifted from the center of the surface.
 上記液体噴霧装置において、通路は、振動源の外周側空間と空間とを連通してもよい。
 上記液体噴霧装置において、メッシュ部は樹脂製であってもよい。
In the liquid spraying device, the passage may communicate the outer peripheral side space of the vibration source with the space.
In the liquid spraying device, the mesh portion may be made of resin.
 本発明の液体噴霧装置によると、メッシュ部と振動源とが分離できる構造において、メッシュ部と振動源との距離を一定に保ち、液体を安定して噴霧することができる。 According to the liquid spraying apparatus of the present invention, in a structure in which the mesh portion and the vibration source can be separated, the distance between the mesh portion and the vibration source can be kept constant and the liquid can be sprayed stably.
実施の形態1における液体噴霧装置の外観構成を示す斜視図である。1 is a perspective view showing an external configuration of a liquid spray device in Embodiment 1. FIG. 実施の形態1における液体噴霧装置に備えられるボトルユニットを示す斜視図である。3 is a perspective view showing a bottle unit provided in the liquid spraying apparatus in Embodiment 1. FIG. 実施の形態1における液体噴霧装置に備えられるボトルユニットの分解した状態を示す第1斜視図である。It is a 1st perspective view which shows the state which the bottle unit with which the liquid spray apparatus in Embodiment 1 is equipped decomposed | disassembled. 実施の形態1における液体噴霧装置に備えられるボトルユニットの分解した状態を示す第2斜視図である。It is a 2nd perspective view which shows the state which the bottle unit with which the liquid spraying apparatus in Embodiment 1 is equipped decomposed | disassembled. 実施の形態1における液体噴霧装置に備えられるボトルユニットの分解した状態を示す断面図である。FIG. 3 is a cross-sectional view showing a disassembled state of a bottle unit provided in the liquid spray device in Embodiment 1. 図2中のVI-VI線に沿った矢視断面を示す斜視図である。FIG. 3 is a perspective view showing a cross section taken along the line VI-VI in FIG. 2. 図6に対応する断面図である。It is sectional drawing corresponding to FIG. 図7中におけるメッシュ部の近傍を拡大して示す断面図である。It is sectional drawing which expands and shows the vicinity of the mesh part in FIG. 実施の形態1における液体噴霧装置に用いられるボトルユニットの噴霧時の状態を示す断面図である。FIG. 3 is a cross-sectional view showing a state during spraying of a bottle unit used in the liquid spraying apparatus in the first embodiment. 実施の形態1のメッシュ部の構成の概略を示す断面図である。3 is a cross-sectional view illustrating an outline of a configuration of a mesh portion according to Embodiment 1. FIG. 実施の形態1のスペーサの構成の概略を示す斜視図である。FIG. 3 is a perspective view illustrating an outline of a configuration of a spacer according to the first embodiment. 図10中の領域XII付近を拡大して示すメッシュ部の断面図である。It is sectional drawing of the mesh part which expands and shows the area | region XII vicinity in FIG. メッシュ部の貫通孔を通過させて液体を霧化する動作を示す断面模式図である。It is a cross-sectional schematic diagram which shows the operation | movement which passes the through-hole of a mesh part and atomizes a liquid. 実施の形態2のメッシュ部の構成の概略を示す断面図である。FIG. 6 is a cross-sectional view schematically illustrating a configuration of a mesh part according to a second embodiment. 実施の形態3のスペーサの構成の概略を示す斜視図である。FIG. 10 is a perspective view illustrating an outline of a configuration of a spacer according to a third embodiment. 実施の形態3の液体噴霧装置の、噴霧時の状態を示す断面図である。It is sectional drawing which shows the state at the time of spraying of the liquid spraying apparatus of Embodiment 3. FIG. 実施の形態4のスペーサと振動源との配置を示す断面図である。FIG. 6 is a cross-sectional view showing the arrangement of spacers and vibration sources in a fourth embodiment. 実施の形態5のスペーサと振動源との配置を示す平面図である。FIG. 10 is a plan view showing the arrangement of spacers and vibration sources according to the fifth embodiment. 図18中に示すXIX-XIX線に沿うスペーサと振動源との断面図である。FIG. 19 is a cross-sectional view of the spacer and the vibration source along the line XIX-XIX shown in FIG. 図18中に示すXX-XX線に沿うスペーサと振動源との断面図である。FIG. 19 is a cross-sectional view of the spacer and the vibration source along the line XX-XX shown in FIG. 実施の形態6のスペーサと振動源との配置を示す平面図である。FIG. 20 is a plan view showing the arrangement of spacers and vibration sources in the sixth embodiment. 図21中に示すXXII-XXII線に沿うスペーサと振動源との断面図である。FIG. 22 is a cross-sectional view of the spacer and the vibration source along the line XXII-XXII shown in FIG. 21.
 本発明に基づいた各実施の形態について、以下、図面を参照しながら説明する。各実施の形態の説明において、個数、量などに言及する場合、特に記載がある場合を除き、本発明の範囲は必ずしもその個数、量などに限定されない。各実施の形態の説明において、同一の部品、相当部品に対しては、同一の参照番号を付し、重複する説明は繰り返さない場合がある。特に制限が無い限り、各実施の形態に示す構成を適宜組み合わせて用いることは、当初から予定されていることである。 Embodiments according to the present invention will be described below with reference to the drawings. In the description of each embodiment, when referring to the number, amount, or the like, the scope of the present invention is not necessarily limited to the number, amount, or the like unless otherwise specified. In the description of each embodiment, the same parts and corresponding parts are denoted by the same reference numerals, and redundant description may not be repeated. Unless there is a restriction | limiting in particular, it is planned from the beginning to use suitably combining the structure shown in each embodiment.
 [実施の形態1]
 (液体噴霧装置100)
 図1を参照して、本実施の形態における液体噴霧装置100について説明する。図1は、液体噴霧装置100の外観構成を示す斜視図である。本実施の形態の液体噴霧装置100は、呼吸器系疾患の治療薬を患者に投与するために使用される、いわゆるメッシュ式のネブライザである。液体噴霧装置100は、本体部20およびボトルユニット30を備える。
[Embodiment 1]
(Liquid spraying device 100)
With reference to FIG. 1, the liquid spraying apparatus 100 in this Embodiment is demonstrated. FIG. 1 is a perspective view showing an external configuration of the liquid spraying apparatus 100. The liquid spray apparatus 100 according to the present embodiment is a so-called mesh nebulizer used for administering a therapeutic agent for respiratory system diseases to a patient. The liquid spraying apparatus 100 includes a main body unit 20 and a bottle unit 30.
 (本体部20)
 本体部20は、表面に電源スイッチ21を有する。本体部20の内部には、液体噴霧装置100を駆動する(後述するホーン振動子40を振動させる)ための電源(図示せず)および電気回路(図示せず)などが設けられる。ボトルユニット30は、本体部20に対して着脱可能に取り付けられる。
(Main body 20)
The main body 20 has a power switch 21 on the surface. A power source (not shown) and an electric circuit (not shown) for driving the liquid spray device 100 (vibrating a horn vibrator 40 described later) and the like are provided inside the main body 20. The bottle unit 30 is detachably attached to the main body unit 20.
 (ボトルユニット30)
 以下、ボトルユニット30の詳細について、図2~図8を参照して説明する。図2は、ボトルユニット30を示す斜視図である。図3は、ボトルユニット30の分解した状態を示す第1斜視図である。図4は、ボトルユニット30の分解した状態を示す第2斜視図である。図5は、ボトルユニット30の分解した状態を示す断面図である。
(Bottle unit 30)
The details of the bottle unit 30 will be described below with reference to FIGS. FIG. 2 is a perspective view showing the bottle unit 30. FIG. 3 is a first perspective view showing the bottle unit 30 in an exploded state. FIG. 4 is a second perspective view showing the bottle unit 30 in an exploded state. FIG. 5 is a cross-sectional view showing the bottle unit 30 in an exploded state.
 図6は、図2中のVI-VI線に沿った矢視断面の斜視図である。図6においては、図示上の便宜のため、メッシュ部1(図3~図5参照)(詳細は後述する)は図示されていない。図6においては、同様に、メッシュ部1、支持部材50,52、および密閉支持パッキン51についても図示されていない(これらについても詳細は後述する)。図7は、図6に対応する断面図である。図8は、図7中におけるメッシュ部1の付近を拡大して示す断面図である。 FIG. 6 is a perspective view of a cross section taken along the line VI-VI in FIG. In FIG. 6, for convenience of illustration, the mesh portion 1 (see FIGS. 3 to 5) (details will be described later) is not shown. In FIG. 6, similarly, the mesh portion 1, the support members 50 and 52, and the hermetic support packing 51 are not shown (the details thereof will be described later). FIG. 7 is a cross-sectional view corresponding to FIG. FIG. 8 is an enlarged sectional view showing the vicinity of the mesh portion 1 in FIG.
 図2~図5に示すように、ボトルユニット30は、メッシュ部1(図1,図3~図5参照)、貯液部としてのボトル部31、および、振動源としてのホーン振動子40(図3~図5参照)を備える。 2 to 5, the bottle unit 30 includes a mesh unit 1 (see FIGS. 1 and 3 to 5), a bottle unit 31 as a liquid storage unit, and a horn vibrator 40 (as a vibration source). 3 to 5).
 (メッシュ部1)
 メッシュ部1には、多数の微細な貫通孔が形成されている。詳細は後述されるが、メッシュ部1(図1,図3~図5参照)は、ホーン振動子40の先端部41の表面42に対向し、表面42に当接するように配置される。メッシュ部1は、樹脂製である。メッシュ部1は、たとえば金型を使用した金型成形品であってもよく、または他の任意の加工方法によって形成されてもよい。メッシュ部1を形成する樹脂材料としては、たとえばポリアミド系樹脂、ポリエステル、シンジオ型ポリスチレン、ポリサルフォン、ポリエーテルサルフォン、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリアミドイミド、PPS(polyphenylene sulfide)、エポキシ、フェノール、ポリイミドなどが挙げられる。樹脂成形における加工性の観点から、たとえばポリサルフォン、ポリエーテルエーテルケトン、PPSを材料とすることが好ましい。
(Mesh part 1)
A large number of fine through holes are formed in the mesh portion 1. Although details will be described later, the mesh portion 1 (see FIGS. 1 and 3 to 5) is disposed so as to face the surface 42 of the tip portion 41 of the horn vibrator 40 and to contact the surface 42. The mesh part 1 is made of resin. The mesh part 1 may be a mold-molded product using a mold, for example, or may be formed by any other processing method. Examples of the resin material forming the mesh portion 1 include polyamide resin, polyester, syndiopolystyrene, polysulfone, polyethersulfone, polyetheretherketone, polyetherimide, polyamideimide, PPS (polyphenylene sulfide), epoxy, and phenol. And polyimide. From the viewpoint of processability in resin molding, it is preferable to use, for example, polysulfone, polyetheretherketone, or PPS.
 メッシュ部1は、金属製であってもよい。たとえばメッシュ部1は、所定の比率で合金されたNi-Pd(ニッケル-パラジウム)などのニッケル合金もしくは白金などで形成されてもよい。または、メッシュ部1はセラミックス製であってもよい。たとえばメッシュ部1は、アルミナ、ジルコニアもしくは炭化ケイ素などで形成されてもよい。 The mesh part 1 may be made of metal. For example, the mesh portion 1 may be formed of nickel alloy such as Ni—Pd (nickel-palladium) alloyed with a predetermined ratio, platinum, or the like. Alternatively, the mesh part 1 may be made of ceramics. For example, the mesh part 1 may be formed of alumina, zirconia, silicon carbide, or the like.
 本実施の形態のメッシュ部1は、独立した一つの部材として形成されているが、この構成に限られるものではない。たとえば後述する支持部材50または支持部材52とメッシュ部1とが一体に成形されるなど、メッシュ部1は任意の部材の薄板状の一部分であってもよい。 The mesh portion 1 of the present embodiment is formed as an independent member, but is not limited to this configuration. For example, the mesh part 1 may be a thin plate-like part of an arbitrary member, for example, the support member 50 or the support member 52 described later and the mesh part 1 are integrally formed.
 (ボトル部31)
 図5~図8を参照して、ボトル部31の底面は、傾斜するように形成される。ボトル部31の内部には、薬液などの液体L(図7参照)が貯留される。
(Bottle part 31)
5 to 8, the bottom surface of bottle portion 31 is formed to be inclined. A liquid L such as a chemical solution (see FIG. 7) is stored inside the bottle portion 31.
 ボトル部31には、ホーン振動子40とは反対側に位置する注液口33と、ホーン振動子40に近づくにつれ徐々に細くなる先端開口32とが設けられる。注液口33を閉塞するように、キャップ35が取り付けられる。キャップ35は、支持部35Tによって矢印AR35方向(図2参照)に回動可能に支持される。 The bottle portion 31 is provided with a liquid injection port 33 located on the opposite side of the horn vibrator 40 and a tip opening 32 that gradually becomes narrower as the horn vibrator 40 is approached. A cap 35 is attached so as to close the liquid injection port 33. The cap 35 is supported by the support portion 35T so as to be rotatable in the direction of the arrow AR35 (see FIG. 2).
 キャップ35がボトル部31に取り付けられることによって、ボトル部31の注液口33は閉塞される。キャップ35が注液口33を閉塞した状態は、キャップ35の上部に設けられた固定部35Kによって保持される。 When the cap 35 is attached to the bottle portion 31, the liquid injection port 33 of the bottle portion 31 is closed. The state in which the cap 35 closes the liquid injection port 33 is held by a fixing portion 35 </ b> K provided on the top of the cap 35.
 ボトル部31の先端開口32は、ホーン振動子40の先端部41に対向している。詳細は後述されるが、ボトル部31内に貯留された液体Lは、ホーン振動子40の先端部41の外側から、先端部41の表面42に供給される。 The front end opening 32 of the bottle portion 31 faces the front end portion 41 of the horn vibrator 40. Although details will be described later, the liquid L stored in the bottle portion 31 is supplied to the surface 42 of the tip portion 41 from the outside of the tip portion 41 of the horn vibrator 40.
 ボトル部31は、大容量部分Bと、この大容量部分Bに先端開口32を通じて連通し、ホーン振動子40の先端部41に対向する小容量部分bとを有する。小容量部分bは、霧化された薬液を噴霧するボトルユニット30の開口部60の内壁62(図6参照)とホーン振動子40の先端部41との間において、環状の空間S(図5参照)を形成する。 The bottle portion 31 has a large-capacity portion B and a small-capacity portion b that communicates with the large-capacity portion B through the tip opening 32 and faces the tip portion 41 of the horn vibrator 40. The small capacity portion b is an annular space S (see FIG. 5) between the inner wall 62 (see FIG. 6) of the opening 60 of the bottle unit 30 that sprays the atomized chemical liquid and the tip 41 of the horn vibrator 40. Reference).
 (ホーン振動子40)
 図5および図6を参照して、上述のとおり、ホーン振動子40は、ボトル部31の先端開口32に対向するように配置される。ホーン振動子40は、ボトルユニット30に設けられた開口部60の下側に位置する。ホーン振動子40の上側において、開口部60に対して後述する内側メッシュキャップ57が着脱可能に取り付けられる。
(Horn vibrator 40)
With reference to FIG. 5 and FIG. 6, as described above, the horn vibrator 40 is disposed so as to face the tip opening 32 of the bottle portion 31. The horn vibrator 40 is located below the opening 60 provided in the bottle unit 30. On the upper side of the horn vibrator 40, an inner mesh cap 57 to be described later is detachably attached to the opening 60.
 (支持部材50・支持部材52)
 図7および図8(ならびに図3~図5)を参照して、支持部材50および支持部材52は、メッシュ部1を支持部材50および支持部材52の間に挟んだ状態で、互いに嵌合可能に構成される。メッシュ部1は、ホーン振動子40の先端部41上において、互いに嵌合する支持部材50および支持部材52によって挟持される。支持部材50および支持部材52は、メッシュ部1を挟持しつつ、メッシュ部1がホーン振動子40の表面42に対して近接対向するようにメッシュ部1を固定する。
(Support member 50 / support member 52)
Referring to FIGS. 7 and 8 (and FIGS. 3 to 5), support member 50 and support member 52 can be fitted to each other in a state where mesh portion 1 is sandwiched between support member 50 and support member 52. Configured. The mesh portion 1 is sandwiched between the support member 50 and the support member 52 that are fitted to each other on the tip portion 41 of the horn vibrator 40. The support member 50 and the support member 52 fix the mesh portion 1 so that the mesh portion 1 is in close proximity to the surface 42 of the horn vibrator 40 while sandwiching the mesh portion 1.
 (密閉支持パッキン51・内側メッシュキャップ57)
 互いに嵌合する支持部材50および支持部材52は、環状に形成される密閉支持パッキン51の内周部に取り付けられる。互いに嵌合する支持部材50および支持部材52は、密閉支持パッキン51によって、内側メッシュキャップ57に取り付けられる。密閉支持パッキン51の外周部が、内側メッシュキャップ57に嵌合する。密閉支持パッキン51によって、支持部材50,52と内側メッシュキャップ57との間の空隙が密閉される。
(Sealing support packing 51, inner mesh cap 57)
The support member 50 and the support member 52 that are fitted to each other are attached to the inner peripheral portion of the hermetic support packing 51 formed in an annular shape. The support member 50 and the support member 52 that are fitted to each other are attached to the inner mesh cap 57 by the hermetic support packing 51. The outer peripheral portion of the hermetic support packing 51 is fitted into the inner mesh cap 57. The space between the support members 50 and 52 and the inner mesh cap 57 is sealed by the hermetic support packing 51.
 内側メッシュキャップ57は、ボトルユニット30に設けられた開口部60を覆うように、開口部60の周りに取り付けられる。内側メッシュキャップ57は、内側メッシュキャップ57の支持部57Tが、ボトル部31側に設けられた支持部38Tによって回動可能に軸支される。 The inner mesh cap 57 is attached around the opening 60 so as to cover the opening 60 provided in the bottle unit 30. The inner mesh cap 57 is pivotally supported by the support portion 38T provided on the bottle portion 31 side so that the support portion 57T of the inner mesh cap 57 is rotatable.
 内側メッシュキャップ57が開口部60の周りに取り付けられた状態においては、密閉支持パッキン51によって、内側メッシュキャップ57と開口部60との間に形成される空隙が密閉される。当該密閉によって、ボトル部31内に貯留された液体Lおよび液体LLは、ボトル部31から外部に漏れないように保たれる。これにより、液体噴霧装置100を傾けた場合であっても、ボトル部31の内部の液体Lおよび液体LLが外部に漏れることはない。 In the state where the inner mesh cap 57 is attached around the opening 60, the air gap formed between the inner mesh cap 57 and the opening 60 is sealed by the sealing support packing 51. By the sealing, the liquid L and the liquid LL stored in the bottle part 31 are kept from leaking from the bottle part 31 to the outside. Thereby, even if it is a case where the liquid spraying apparatus 100 is inclined, the liquid L and the liquid LL inside the bottle part 31 do not leak outside.
 上述のとおり、内側メッシュキャップ57の支持部57Tが、ボトル部31側に設けられた支持部38Tによって回動可能に軸支される。当該構成によって、内側メッシュキャップ57は、内側メッシュキャップ57の内側にメッシュ部1、支持部材50,52、および密閉支持パッキン51を一体的に取り付けた状態で、開口部60に対して着脱自在に取り付けられる。 As described above, the support portion 57T of the inner mesh cap 57 is pivotally supported by the support portion 38T provided on the bottle portion 31 side. With this configuration, the inner mesh cap 57 is detachable from the opening 60 in a state where the mesh portion 1, the support members 50 and 52, and the hermetic support packing 51 are integrally attached to the inner mesh cap 57. It is attached.
 内側メッシュキャップ57にメッシュ部1が取り付けられているため、内側メッシュキャップ57を開口部60に対して取り外す(内側メッシュキャップ57を回動させる)ことで、メッシュ部1を容易に洗浄することが可能となっている。 Since the mesh part 1 is attached to the inner mesh cap 57, the mesh part 1 can be easily washed by removing the inner mesh cap 57 from the opening 60 (rotating the inner mesh cap 57). It is possible.
 (液体噴霧装置100の動作)
 ボトルユニット30を本体部20(図1参照)に取り付けた液体噴霧装置100を机上などに置いた状態では、図7のようにボトルユニット30は水平になり、ボトル部31内の液体Lはボトル部31の底部に溜まっている。
(Operation of Liquid Spraying Device 100)
In a state where the liquid spraying apparatus 100 with the bottle unit 30 attached to the main body 20 (see FIG. 1) is placed on a desk or the like, the bottle unit 30 is horizontal as shown in FIG. Collected at the bottom of the portion 31.
 図9は、ボトルユニット30の噴霧時の状態を示す断面図である。液体噴霧装置100を手で持ってホーン振動子40側に傾けると、図9のようにボトルユニット30が傾き、ボトル部31の大容量部分Bの液体Lが先端開口32から小容量部分bの空間S内に流入する。空間S内の液体LLは、ホーン振動子40の先端部41の外側から、先端部41の表面42とメッシュ部1との接触部近傍に到達する。 FIG. 9 is a cross-sectional view showing a state when the bottle unit 30 is sprayed. When the liquid sprayer 100 is held by hand and tilted toward the horn vibrator 40 side, the bottle unit 30 is tilted as shown in FIG. 9, and the liquid L in the large-capacity portion B of the bottle portion 31 flows from the tip opening 32 into the small-capacity portion b. It flows into the space S. The liquid LL in the space S reaches the vicinity of the contact portion between the surface 42 of the tip portion 41 and the mesh portion 1 from the outside of the tip portion 41 of the horn vibrator 40.
 この状態で、本体部20の電源スイッチ21(図1参照)を押せば、ホーン振動子40が超音波振動し、メッシュ部1とホーン振動子40の先端部41の表面42との超音波振動により、液体LLがメッシュ部1の微細孔を通して噴出され、開口部60(図3~図5参照)から霧状の液体LLが噴霧される。 In this state, when the power switch 21 (see FIG. 1) of the main body 20 is pressed, the horn vibrator 40 vibrates ultrasonically, and ultrasonic vibration between the mesh portion 1 and the surface 42 of the tip 41 of the horn vibrator 40 occurs. As a result, the liquid LL is ejected through the fine holes of the mesh portion 1, and the mist-like liquid LL is sprayed from the opening 60 (see FIGS. 3 to 5).
 ボトル部31の大容量部分Bの液体Lが微少量になっても(図9参照)、小容量部分bの液体LLは、上記したようにホーン振動子40の先端部41と内壁62(図6参照)との表面張力により、霧化部近傍まで上昇し、さらにホーン振動子40の振動によりメッシュ部1まで供給されることができる。 Even if the liquid L in the large-capacity portion B of the bottle portion 31 becomes a very small amount (see FIG. 9), the liquid LL in the small-capacity portion b is, as described above, the tip portion 41 and the inner wall 62 (see FIG. 6), the surface tension rises to the vicinity of the atomizing portion, and can be further supplied to the mesh portion 1 by the vibration of the horn vibrator 40.
 (メッシュ部1の詳細)
 以下、本実施の形態における液体噴霧装置100(図1参照)に用いられるメッシュ部1について詳細に説明する。図3および図4に示すように、本実施の形態のメッシュ部1は、薄板状の外形を有しており、平面形状が円形状である。円板形状のメッシュ部1は、円の中心付近の中央部2と、円の外周付近の周縁部3とを有する。
(Details of mesh part 1)
Hereinafter, the mesh part 1 used for the liquid spraying apparatus 100 (refer FIG. 1) in this Embodiment is demonstrated in detail. As shown in FIG. 3 and FIG. 4, the mesh portion 1 of the present embodiment has a thin plate-like outer shape, and the planar shape is a circular shape. The disc-shaped mesh portion 1 has a central portion 2 near the center of the circle and a peripheral portion 3 near the outer periphery of the circle.
 図10は、実施の形態1のメッシュ部1の構成の概略を示す断面図である。図11は、実施の形態1のスペーサ10の構成の概略を示す斜視図である。図12は、図10中の領域XII付近を拡大して示すメッシュ部1の断面図である。メッシュ部1には、複数のノズル状の貫通孔6が形成されている。メッシュ部1は、貫通孔6を通過する液体LLが貫通孔6へ流入する側のメッシュ部1の表面である入口面1Bと、液体LLが貫通孔6から流出する側のメッシュ部1の表面である出口面1Aとを有する。 FIG. 10 is a cross-sectional view illustrating an outline of the configuration of the mesh unit 1 according to the first embodiment. FIG. 11 is a perspective view showing an outline of the configuration of the spacer 10 according to the first embodiment. FIG. 12 is a cross-sectional view of the mesh portion 1 showing an enlarged view of the vicinity of the region XII in FIG. A plurality of nozzle-like through holes 6 are formed in the mesh portion 1. The mesh part 1 includes an inlet surface 1B which is a surface of the mesh part 1 on the side where the liquid LL passing through the through hole 6 flows into the through hole 6 and a surface of the mesh part 1 on the side where the liquid LL flows out of the through hole 6 And an exit surface 1A.
 図12に示すように、貫通孔6は、メッシュ部1の入口面1Bから出口面1Aに至るまで、メッシュ部1を厚み方向に貫通して形成されている。貫通孔6はメッシュ部1の中央部2の全体に亘って形成されている。典型的には、一枚のメッシュ部1には、数千個の貫通孔6が形成されている。なお、以下の図面では、理解を容易にするために、実際のメッシュ部1に形成される貫通孔6よりも、メッシュ部1に対し貫通孔6の断面形状を大きく誇張して図示していることに留意されたい。 As shown in FIG. 12, the through hole 6 is formed through the mesh portion 1 in the thickness direction from the inlet surface 1B of the mesh portion 1 to the outlet surface 1A. The through hole 6 is formed over the entire central portion 2 of the mesh portion 1. Typically, several thousands of through holes 6 are formed in one mesh part 1. In the following drawings, for easy understanding, the cross-sectional shape of the through-hole 6 is greatly exaggerated with respect to the mesh portion 1 rather than the through-hole 6 formed in the actual mesh portion 1. Please note that.
 本実施の形態の貫通孔6は、漏斗状の形状に形成されている。貫通孔6は、入口面1Bにおいて最大の径を有し、出口面1Aに向かって径が漸次縮小し、出口面1Aの近傍では直管状となり、出口面1Aに開口する。貫通孔6は、図12に示す形状に限られず、任意の形状に形成することが可能である。たとえば、貫通孔6の形状は、円錐状または角錐状であってもよく、中折れした円錐状または角錐状であってもよく、円柱と円錐との組み合わせ形状であってもよく、角柱と角錐との組み合わせ形状であってもよい。 The through hole 6 of the present embodiment is formed in a funnel shape. The through-hole 6 has a maximum diameter on the entrance surface 1B, and the diameter gradually decreases toward the exit surface 1A. The through-hole 6 becomes a straight tube in the vicinity of the exit surface 1A and opens to the exit surface 1A. The through hole 6 is not limited to the shape shown in FIG. 12, but can be formed in an arbitrary shape. For example, the shape of the through hole 6 may be a cone or a pyramid, may be a folded cone or a pyramid, may be a combination of a cylinder and a cone, a prism and a pyramid. The combination shape may be sufficient.
 メッシュ部1の入口面1B側には、スペーサ10が設けられている。スペーサ10は、メッシュ部1の入口面1Bにおいて周縁部3に沿って形成されている。スペーサ10は、ドーナツ状の形状を有する。スペーサ10の外周面と内周面とは、円筒状に形成されている。メッシュ部1の入口面1B側に環状のスペーサ10が配置されることにより、メッシュ部1の入口面1Bとホーン振動子40の表面42との間に、中空の空間12が形成される。空間12は、スペーサ10の径方向の中心側に形成され、入口面1Bと表面42とスペーサ10の内周面とによって取り囲まれて、その形状を規定される。スペーサ10は、入口面1Bと表面42との間に容積の十分大きい空間12を形成できるように、寸法を決定されている。典型的には、図12に示すメッシュ部1の厚み方向におけるスペーサ10の厚みt2は、メッシュ部1の厚みt1の二倍以上である。 A spacer 10 is provided on the inlet surface 1B side of the mesh portion 1. The spacer 10 is formed along the peripheral edge 3 on the entrance surface 1B of the mesh part 1. The spacer 10 has a donut shape. The outer peripheral surface and inner peripheral surface of the spacer 10 are formed in a cylindrical shape. By arranging the annular spacer 10 on the inlet surface 1B side of the mesh portion 1, a hollow space 12 is formed between the inlet surface 1B of the mesh portion 1 and the surface 42 of the horn vibrator 40. The space 12 is formed on the radial center side of the spacer 10, and is surrounded by the entrance surface 1 </ b> B, the surface 42, and the inner peripheral surface of the spacer 10 to define the shape thereof. The spacer 10 is dimensioned so that a space 12 having a sufficiently large volume can be formed between the entrance surface 1 </ b> B and the surface 42. Typically, the thickness t <b> 2 of the spacer 10 in the thickness direction of the mesh portion 1 shown in FIG. 12 is twice or more the thickness t <b> 1 of the mesh portion 1.
 図11に示すスペーサ10の斜視図には、図10に示すスペーサ10を下方側から斜視したスペーサ10が図示されている。スペーサ10は、メッシュ部1の周縁部3に沿うリング状の形状を有する。スペーサ10には、メッシュ部1に対向しない側の表面に、溝16,18が形成されている。溝16,18は、円環状のスペーサ10の径方向に沿って延びる、直線状に形成されている。典型的には、溝16,18は、円環状のスペーサ10の中心を通る同一直線上に延びるように形成されている。溝16,18は、ホーン振動子40の外周側の空間Sと、スペーサ10の内側の空間12とを連通する。液体LLは、図12中の矢印に示すように空間Sから溝16を経由して空間12へ流れ、または空間12から溝18を経由して空間Sへ流れる。溝16,18は、液体LLが空間12に流通する通路15として機能する。 11 is a perspective view of the spacer 10 in which the spacer 10 shown in FIG. 10 is seen from the lower side. The spacer 10 has a ring shape along the peripheral edge portion 3 of the mesh portion 1. Grooves 16 and 18 are formed in the spacer 10 on the surface on the side not facing the mesh portion 1. The grooves 16 and 18 are formed in a straight line extending along the radial direction of the annular spacer 10. Typically, the grooves 16 and 18 are formed so as to extend on the same straight line passing through the center of the annular spacer 10. The grooves 16 and 18 communicate the space S on the outer peripheral side of the horn vibrator 40 with the space 12 inside the spacer 10. The liquid LL flows from the space S to the space 12 via the groove 16 as shown by an arrow in FIG. 12 or from the space 12 to the space S via the groove 18. The grooves 16 and 18 function as a passage 15 through which the liquid LL flows into the space 12.
 スペーサ10は、メッシュ部1の周縁部3にのみ設けられており、メッシュ部1の中央部2には設けられていない。メッシュ部1の中央部2は、厚みが小さいフィルム状の構造であり、そのため、中央部2においてメッシュ部1は自在に厚み方向に振動可能である。たとえばメッシュ部1は、少なくとも中央部2において、厚みt1(図12参照)が、100μm以下、好ましくは25μmであるように、形成されている。なお、スペーサ10の厚みt2(図12参照)はメッシュ部1の厚みt1の二倍以上であるので、たとえばスペーサ10は、厚みt2が200μm以上、好ましくは400μmであるように、形成されている。 The spacer 10 is provided only in the peripheral portion 3 of the mesh portion 1 and is not provided in the central portion 2 of the mesh portion 1. The central part 2 of the mesh part 1 has a film-like structure with a small thickness. Therefore, the mesh part 1 can freely vibrate in the thickness direction in the central part 2. For example, the mesh part 1 is formed so that the thickness t1 (see FIG. 12) is 100 μm or less, preferably 25 μm, at least in the central part 2. Since the thickness t2 of the spacer 10 (see FIG. 12) is more than twice the thickness t1 of the mesh portion 1, for example, the spacer 10 is formed so that the thickness t2 is 200 μm or more, preferably 400 μm. .
 図13は、メッシュ部1の貫通孔6を通過させて液体LLを霧化する動作を示す断面模式図である。貫通孔6を通して液体LLを霧状に噴出する動作において、ホーン振動子40は、振動源としての機能を有し、図13中の上下方向に超音波振動する。ホーン振動子40は、メッシュ部1に形成された貫通孔6の内部に液体LLを供給するための給液部としての機能を有する。 FIG. 13 is a schematic cross-sectional view showing an operation of atomizing the liquid LL through the through-hole 6 of the mesh portion 1. In the operation of ejecting the liquid LL in a mist form through the through-hole 6, the horn vibrator 40 has a function as a vibration source and ultrasonically vibrates in the vertical direction in FIG. The horn vibrator 40 has a function as a liquid supply part for supplying the liquid LL to the inside of the through hole 6 formed in the mesh part 1.
 ホーン振動子40が振動することによって、貫通孔6に液体LLが供給される。図13中に白抜き矢印で示す、ホーン振動子40がメッシュ部1に近接する方向に移動するとき、メッシュ部1の入口面1Bとホーン振動子40の表面42との間の空間12に供給された液体LLが貫通孔6に供給され、さらに貫通孔6から押し出され、微細な霧状の液体粒子LPが発生する。貫通孔6から噴出する液体粒子LPは、出口面1Aに開口する貫通孔6の径よりも大きい直径を有する。たとえば、出口面1Aにおける開口の直径が3μmの貫通孔6から噴出される噴霧粒子は、5μmの直径を有する。なお、このような貫通孔6の径と噴霧粒子の直径との関係は一例であり、異なる条件下においては噴霧粒子が貫通孔6の径よりも小さい直径を有する場合もある。 When the horn vibrator 40 vibrates, the liquid LL is supplied to the through hole 6. When the horn vibrator 40 moves in a direction approaching the mesh part 1 as indicated by an outline arrow in FIG. 13, it is supplied to the space 12 between the entrance surface 1B of the mesh part 1 and the surface 42 of the horn vibrator 40. The liquid LL thus supplied is supplied to the through-hole 6 and further pushed out from the through-hole 6 to generate fine mist-like liquid particles LP. The liquid particles LP ejected from the through hole 6 have a diameter larger than the diameter of the through hole 6 that opens to the exit surface 1A. For example, the spray particles ejected from the through hole 6 having an opening diameter of 3 μm on the exit surface 1A have a diameter of 5 μm. Note that the relationship between the diameter of the through hole 6 and the diameter of the spray particles is an example, and the spray particles may have a diameter smaller than the diameter of the through hole 6 under different conditions.
 メッシュ部1の中央部2は、ホーン振動子40の振動に伴って、図13中の上下方向に振動して、液体を霧化する。中央部2にはスペーサ10が設けられていないので、スペーサ10により中央部2の振動が妨げられることはなく、中央部2はその厚み方向に容易に振動可能である。そのため、ホーン振動子40が振動すると、メッシュ部1の中央部2も振動し、この中央部2の振動に伴って貫通孔6から液体LLが噴出し、液体LLは効率よく霧化される。 The central part 2 of the mesh part 1 vibrates in the vertical direction in FIG. 13 with the vibration of the horn vibrator 40 to atomize the liquid. Since the spacer 10 is not provided in the central portion 2, the vibration of the central portion 2 is not hindered by the spacer 10, and the central portion 2 can easily vibrate in the thickness direction. Therefore, when the horn vibrator 40 vibrates, the central portion 2 of the mesh portion 1 also vibrates, and the liquid LL is ejected from the through-hole 6 along with the vibration of the central portion 2, and the liquid LL is efficiently atomized.
 上述のとおり、ボトル部31からホーン振動子40側に向かって液体L(液体LL)が供給される。液体L(液体LL)は、ホーン振動子40の先端部41の外側の空間Sから、溝16を経由して、ホーン振動子40における先端部41の表面42とメッシュ部1の入口面1Bとの間に形成された空間12に供給される。この際、液体L(液体LL)は、先端部41の外周側の空間Sから、表面42とメッシュ部1との間の空間12内に流れつつ、メッシュ部1の入口面1Bにも到達する。これにより、メッシュ部1には、安定して液体L(液体LL)が供給される。 As described above, the liquid L (liquid LL) is supplied from the bottle portion 31 toward the horn vibrator 40 side. The liquid L (liquid LL) passes from the space S outside the tip portion 41 of the horn vibrator 40 via the groove 16 to the surface 42 of the tip portion 41 of the horn vibrator 40 and the inlet surface 1B of the mesh portion 1. Is supplied to the space 12 formed between the two. At this time, the liquid L (liquid LL) reaches the inlet surface 1B of the mesh portion 1 while flowing from the space S on the outer peripheral side of the tip portion 41 into the space 12 between the surface 42 and the mesh portion 1. . Thereby, the liquid L (liquid LL) is stably supplied to the mesh part 1.
 メッシュ部1に安定して液体L(液体LL)が供給されている状態で、本体部20(図1参照)の電源スイッチ21が押されると、ホーン振動子40が超音波振動する。メッシュ部1とホーン振動子40の先端部41の表面42との超音波振動により、小容量部分bの液体LLがメッシュ部1まで供給され、液体LLがメッシュ部1の貫通孔6から液滴として放出され、開口部60から噴霧される。噴霧中においても、溝16を経由して液体L(液体LL)が表面42とメッシュ部1との間の空間12に流入し続けるので、液体L(液体LL)はメッシュ部1まで確実に供給される。メッシュ部1に対して液体L(液体LL)が途切れることなく安定して供給されるので、本実施の形態における液体噴霧装置100によれば、液体L(液体LL)を安定して噴霧することができる。 When the power switch 21 of the main body 20 (see FIG. 1) is pressed while the liquid L (liquid LL) is being stably supplied to the mesh unit 1, the horn vibrator 40 is ultrasonically vibrated. By the ultrasonic vibration between the mesh part 1 and the surface 42 of the tip part 41 of the horn vibrator 40, the liquid LL of the small volume part b is supplied to the mesh part 1, and the liquid LL is dropped from the through hole 6 of the mesh part 1. And is sprayed from the opening 60. Even during spraying, the liquid L (liquid LL) continues to flow into the space 12 between the surface 42 and the mesh part 1 via the groove 16, so that the liquid L (liquid LL) is reliably supplied to the mesh part 1. Is done. Since the liquid L (liquid LL) is stably supplied to the mesh unit 1 without interruption, according to the liquid spraying apparatus 100 in the present embodiment, the liquid L (liquid LL) can be stably sprayed. Can do.
 メッシュ部1の周縁部3に、ある一定の厚みt2を持ったリング状のスペーサ10を形成し、ホーン振動子40は、振動する際に、メッシュ部1に近接する方向に移動するとスペーサ10に接触する。この構成により、ホーン振動子40の表面42とメッシュ部1との距離を安定して確保することが可能となる。スペーサ10に、スペーサ10の周囲側から中央側へ給液する導液路となる溝状の通路を設けることで、メッシュ部1とホーン振動子40との間の空間12に安定して液体LLを供給することができる。スペーサ10はメッシュ部1に取り付けられており、メッシュ部1自身がホーン振動子40との距離を一定に保つためのスペーサ10を有する構成であるので、メッシュ部1とホーン振動子40とを分離して再組立した後にも、入口面1Bと表面42との距離を安定して確保することができる。 A ring-shaped spacer 10 having a certain thickness t2 is formed on the peripheral edge 3 of the mesh portion 1, and when the horn vibrator 40 moves in a direction close to the mesh portion 1 when vibrating, the spacer 10 Contact. With this configuration, the distance between the surface 42 of the horn vibrator 40 and the mesh portion 1 can be stably secured. By providing the spacer 10 with a groove-like passage serving as a liquid introduction passage for supplying liquid from the peripheral side to the center side of the spacer 10, the liquid LL is stably provided in the space 12 between the mesh unit 1 and the horn vibrator 40. Can be supplied. Since the spacer 10 is attached to the mesh portion 1 and the mesh portion 1 itself has a spacer 10 for keeping the distance from the horn vibrator 40 constant, the mesh portion 1 and the horn vibrator 40 are separated. Even after reassembly, the distance between the entrance surface 1B and the surface 42 can be secured stably.
 液体噴霧装置100による霧状の液体LLの噴出量と、メッシュ部1の厚み方向に沿う入口面1Bと表面42との間隔と、の間には、相関関係があると考えられる。入口面1Bと表面42との間隔を、液体LLを最も効率的に霧化するための最適な間隔に維持できれば、霧状の液体LLの噴出量をより増加させることができるので望ましい。本実施の形態では、スペーサ10を介在させて入口面1Bと表面42との間に一定の隙間を形成することができるので、スペーサ10の厚みt2の調整により、入口面1Bと表面42との間隔を最適にすることができる。したがって、液体LLを常に安定して霧化することが可能になる。表面42に対する入口面1Bの相対位置を最適に設定することで、より多量の液体LLを効率よく霧化することができる。 It is considered that there is a correlation between the amount of spray of the mist-like liquid LL by the liquid spraying device 100 and the distance between the inlet surface 1B and the surface 42 along the thickness direction of the mesh portion 1. If the distance between the inlet surface 1B and the surface 42 can be maintained at the optimum distance for atomizing the liquid LL most efficiently, it is desirable that the amount of spray of the mist-like liquid LL can be increased. In the present embodiment, since a certain gap can be formed between the entrance surface 1B and the surface 42 with the spacer 10 interposed, the thickness t2 of the spacer 10 can be adjusted to adjust the distance between the entrance surface 1B and the surface 42. The interval can be optimized. Therefore, it becomes possible to always atomize the liquid LL stably. By optimally setting the relative position of the inlet surface 1B with respect to the surface 42, a larger amount of liquid LL can be efficiently atomized.
 貫通孔6を通過する液体LLの吐出に対する抵抗(以下、吐出抵抗という)を小さくするためには、メッシュ部1の厚さを小さくする対策が採られる。しかし、厚さの小さいメッシュ部1は剛性が不十分となりやすい。メッシュ部1の剛性が不足すると、メッシュ部1そのものがたわんでしまい、またホーン振動子40の振動時にメッシュ部1自身がホーン振動子40と同一の周波数で振動してしまうため、ホーン振動子40の表面42とメッシュ部1との間の液体LLに十分な圧力をかけることができない。その結果、貫通孔6から液体LLを噴出させることができず、噴霧量が低下してしまう。特に、低価格化が可能な樹脂製のメッシュ部1は、厚みが小さいと剛性が低くなり十分な強度が得られないため、メッシュ部1の剛性を確保するための構造が必要となる。 In order to reduce the resistance to discharge of the liquid LL passing through the through hole 6 (hereinafter referred to as discharge resistance), a measure to reduce the thickness of the mesh portion 1 is taken. However, the mesh portion 1 having a small thickness tends to have insufficient rigidity. If the rigidity of the mesh portion 1 is insufficient, the mesh portion 1 itself is bent, and the mesh portion 1 itself vibrates at the same frequency as that of the horn vibrator 40 when the horn vibrator 40 vibrates. A sufficient pressure cannot be applied to the liquid LL between the surface 42 and the mesh part 1. As a result, the liquid LL cannot be ejected from the through hole 6 and the spray amount is reduced. In particular, the resin mesh portion 1 that can be reduced in price is required to have a structure for securing the rigidity of the mesh portion 1 because the rigidity is low and sufficient strength cannot be obtained when the thickness is small.
 この問題に対し、本実施の形態のメッシュ部1では、メッシュ部1の周縁部3の入口面1B側にスペーサ10が接合されることにより、メッシュ部1の周縁部3の厚みとスペーサ10の厚みとを合計した厚みが増大している。これにより、メッシュ部1の周縁部3が補強される。スペーサ10は、メッシュ部1の強度を十分に向上するために必要な厚みt2を有するように、形成されている。メッシュ部1の周縁部3にのみスペーサ10を付加することで、メッシュ部1自身の厚みを増加させることなく、メッシュ部1の剛性を向上している。メッシュ部1自体の厚み、特に中央部2における厚みを小さくした場合でも、スペーサ10により周縁部3の剛性が向上するため、メッシュ部1全体としての十分な強度を得ることができる。 With respect to this problem, in the mesh portion 1 of the present embodiment, the spacer 10 is joined to the inlet surface 1B side of the peripheral portion 3 of the mesh portion 1, so that the thickness of the peripheral portion 3 of the mesh portion 1 and the spacer 10. The total thickness increases. Thereby, the peripheral part 3 of the mesh part 1 is reinforced. The spacer 10 is formed so as to have a thickness t2 necessary for sufficiently improving the strength of the mesh portion 1. By adding the spacer 10 only to the peripheral part 3 of the mesh part 1, the rigidity of the mesh part 1 is improved without increasing the thickness of the mesh part 1 itself. Even when the thickness of the mesh part 1 itself, particularly the thickness in the central part 2 is reduced, the rigidity of the peripheral edge part 3 is improved by the spacer 10, so that sufficient strength as the entire mesh part 1 can be obtained.
 したがって、本実施の形態の液体噴霧装置100によれば、メッシュ部1の周縁部3をスペーサ10で補強して剛性を高めることにより、メッシュ部1を薄くした場合でも十分な剛性を確保することができる。これにより、メッシュ部1自身がホーン振動子40と同一の周波数で振動することを回避でき、液体LLに十分な圧力をかけることができるので、霧状の液体LLの噴霧量を増加することができる。液体LLが薬液の場合、呼吸器系疾患の患者などの患部に薬液を安定して到達させることが可能となり、治療効果を向上させることができる。 Therefore, according to the liquid spraying apparatus 100 of the present embodiment, sufficient rigidity is ensured even when the mesh portion 1 is thinned by reinforcing the peripheral portion 3 of the mesh portion 1 with the spacer 10 to increase the rigidity. Can do. Thereby, it can avoid that the mesh part 1 itself vibrates with the same frequency as the horn vibrator | oscillator 40, and since sufficient pressure can be applied to the liquid LL, it can increase the spray amount of the mist-like liquid LL. it can. When the liquid LL is a drug solution, the drug solution can stably reach an affected area such as a patient with a respiratory disease, and the therapeutic effect can be improved.
 図12に示すように、スペーサ10の内周縁は、ホーン振動子40の外周縁よりも、メッシュ部1の径方向における中心に近接する側に配置される。スペーサ10をメッシュ部1の厚み方向に投影すると、スペーサ10の投影の内周縁は、ホーン振動子40の表面42の外周縁と一部重なる。メッシュ部1には、中央部2においてのみ貫通孔6が形成されており、周縁部3には貫通孔6は形成されていない。図12に示すメッシュ部1では、中央部2は貫通孔6が形成されている範囲を示し、周縁部3は貫通孔6が形成されていない範囲を示す。全ての貫通孔6は、ドーナツ状のスペーサ10の内側の中空の空間12に面して形成されている。 As shown in FIG. 12, the inner peripheral edge of the spacer 10 is arranged closer to the center in the radial direction of the mesh portion 1 than the outer peripheral edge of the horn vibrator 40. When the spacer 10 is projected in the thickness direction of the mesh portion 1, the inner peripheral edge of the projection of the spacer 10 partially overlaps with the outer peripheral edge of the surface 42 of the horn vibrator 40. The mesh part 1 is formed with a through hole 6 only in the central part 2, and no through hole 6 is formed in the peripheral part 3. In the mesh part 1 shown in FIG. 12, the center part 2 shows the range in which the through-hole 6 is formed, and the peripheral part 3 shows the range in which the through-hole 6 is not formed. All the through holes 6 are formed so as to face the hollow space 12 inside the donut-shaped spacer 10.
 図12に示すメッシュ部1およびホーン振動子40を下方から見た場合、ホーン振動子40は、メッシュ部1に形成された貫通孔6の全体を覆う。このようにメッシュ部1とホーン振動子40との配置が設定されることにより、ホーン振動子40の上下方向の振動に伴って、貫通孔6の全部に液体LLが供給される。そのため、メッシュ部1の全体から霧状の液体LLを発生させることができ、より効率よい液体LLの霧化が可能になる。 When the mesh part 1 and the horn vibrator 40 shown in FIG. 12 are viewed from below, the horn vibrator 40 covers the entire through-hole 6 formed in the mesh part 1. By setting the mesh portion 1 and the horn vibrator 40 in this way, the liquid LL is supplied to the entire through-hole 6 as the horn vibrator 40 vibrates in the vertical direction. Therefore, the mist-like liquid LL can be generated from the whole mesh part 1, and the atomization of the liquid LL more efficiently becomes possible.
 また、メッシュ部1の周縁部3が、貫通孔6の形成されていない中実の構造であるので、周縁部3の剛性が相対的に高められている。したがって、スペーサ10を周縁部3に設けることで、周縁部3の剛性をより効果的に向上させ、メッシュ部1全体として必要な強度をより確実に確保することができる。 Moreover, since the peripheral portion 3 of the mesh portion 1 has a solid structure in which the through holes 6 are not formed, the rigidity of the peripheral portion 3 is relatively enhanced. Therefore, by providing the spacer 10 in the peripheral part 3, the rigidity of the peripheral part 3 can be improved more effectively and the required strength as the entire mesh part 1 can be ensured more reliably.
 本実施の形態のメッシュ部1は、樹脂材料を原料として金型成形により製造されるので、貫通孔6の配置および形状を高精度に管理することが可能である。樹脂製のメッシュ部1は、高精度に製造された金型を使用した成形品として作製することができるので、貫通孔6の配置、形状および径を自在に調整することができる。したがって、適切な形状および寸法の金型を準備することで、液体LLの霧化のために最適な形状および径を有する貫通孔6が最適な位置に形成された本実施の形態のメッシュ部1を、容易に製造することが可能である。 Since the mesh portion 1 of the present embodiment is manufactured by molding using a resin material as a raw material, the arrangement and shape of the through holes 6 can be managed with high accuracy. Since the resin mesh portion 1 can be manufactured as a molded product using a mold manufactured with high accuracy, the arrangement, shape, and diameter of the through holes 6 can be freely adjusted. Therefore, by preparing a mold having an appropriate shape and size, the mesh portion 1 of the present embodiment in which the through hole 6 having the optimal shape and diameter for atomizing the liquid LL is formed at the optimal position. Can be easily manufactured.
 [実施の形態2]
 図14は、実施の形態2のメッシュ部1の構成の概略を示す斜視図である。実施の形態2のメッシュ部1は、スペーサ10がメッシュ部1と一体に成形された樹脂成形品である点で、実施の形態1と異なっている。メッシュ部1とスペーサ10とは、実施の形態1で説明したように、別個の部材がたとえば貼り合わせなどにより接合されて作製されてもよい。または、図14に示すように、メッシュ部1とスペーサ10とを一体で形成し、メッシュ部1の周縁部3から突起するスペーサ10を形成してもよい。メッシュ部1の入口面1Bとホーン振動子40の表面42との間の空間12を確実に確保できるスペーサ10を作製できるのであれば、スペーサ10は、任意の製造方法で形成されてもよい。
[Embodiment 2]
FIG. 14 is a perspective view illustrating an outline of the configuration of the mesh unit 1 according to the second embodiment. The mesh portion 1 of the second embodiment is different from the first embodiment in that the spacer 10 is a resin molded product formed integrally with the mesh portion 1. As described in the first embodiment, the mesh portion 1 and the spacer 10 may be manufactured by bonding separate members by bonding, for example. Or as shown in FIG. 14, the mesh part 1 and the spacer 10 may be formed integrally, and the spacer 10 which protrudes from the peripheral part 3 of the mesh part 1 may be formed. The spacer 10 may be formed by any manufacturing method as long as the spacer 10 that can reliably secure the space 12 between the entrance surface 1B of the mesh portion 1 and the surface 42 of the horn vibrator 40 can be produced.
 スペーサ10は、メッシュ部1とスペーサ10との形状を考慮して、最適な製造方法で形成されればよい。メッシュ部1の厚みt1(図12参照)と比較してスペーサ10の厚みt2(図12参照)が大きい場合、たとえば厚みt2が厚みt1の十倍以上である場合には、スペーサ10と一体のメッシュ部1を精度よく作製するのは困難である。このような場合には、成形の容易さの観点から、実施の形態1で説明した貼り合わせによってメッシュ部1とスペーサ10とを製造するのが望ましい。 The spacer 10 may be formed by an optimum manufacturing method in consideration of the shape of the mesh portion 1 and the spacer 10. When the thickness t2 (see FIG. 12) of the spacer 10 is larger than the thickness t1 (see FIG. 12) of the mesh portion 1, for example, when the thickness t2 is ten times or more of the thickness t1, It is difficult to manufacture the mesh portion 1 with high accuracy. In such a case, it is desirable to manufacture the mesh portion 1 and the spacer 10 by the bonding described in the first embodiment from the viewpoint of ease of molding.
 [実施の形態3]
 図15は、実施の形態3のスペーサ10の構成の概略を示す斜視図である。実施の形態1では、スペーサ10に二箇所の溝16,18が形成された例について説明したが、この構成に限られるものではない。たとえば図15に示すように、スペーサ10の一箇所に溝16が形成される構成であってもよい。この場合、溝16は、液体噴霧装置100をホーン振動子40側に傾けた状態において重力方向上側の位置に、重力方向に沿って延びるように形成されるとよい。このようにすれば、溝16を経由して空間12内に液体LLが流入し易くなるので好ましい。
[Embodiment 3]
FIG. 15 is a perspective view schematically showing the configuration of the spacer 10 according to the third embodiment. In the first embodiment, the example in which the two grooves 16 and 18 are formed in the spacer 10 has been described. However, the present invention is not limited to this configuration. For example, as shown in FIG. 15, the groove 16 may be formed at one location of the spacer 10. In this case, the groove 16 may be formed so as to extend along the gravity direction at a position on the upper side in the gravity direction in a state where the liquid spraying device 100 is inclined toward the horn vibrator 40. This is preferable because the liquid LL easily flows into the space 12 via the groove 16.
 図16は、実施の形態3の液体噴霧装置100の、噴霧時の状態を示す断面図である。スペーサ10に、液体LLが空間12へ流入するための通路となる溝16のみが形成されていることにより、空間12内へ供給された液体LLは、空間12内において貯留されることができる。空間12内に液体LLが貯留されることにより、液体LLをメッシュ部1に対して途切れることなく一層安定して供給することができる。結果として、液体噴霧装置100は、液体LLを安定して噴霧することが可能になる。 FIG. 16 is a cross-sectional view showing a state during spraying of the liquid spraying apparatus 100 of the third embodiment. Since only the groove 16 serving as a passage for the liquid LL to flow into the space 12 is formed in the spacer 10, the liquid LL supplied into the space 12 can be stored in the space 12. By storing the liquid LL in the space 12, the liquid LL can be supplied more stably to the mesh unit 1 without interruption. As a result, the liquid spraying apparatus 100 can stably spray the liquid LL.
 スペーサ10に形成される溝は、空間12への液体LLの供給を円滑にできるのであれば、任意の数および形状に形成されてもよい。たとえばスペーサ10には、三箇所以上の溝が形成されてもよい。また、スペーサ10の一部に溝を形成する構成のほか、スペーサ10自身の一箇所を切欠いたC字状の形状としてもよく、スペーサ10の複数箇所を切欠いた形状に形成してもよい。 The grooves formed in the spacer 10 may be formed in any number and shape as long as the liquid LL can be smoothly supplied to the space 12. For example, the spacer 10 may have three or more grooves. In addition to the configuration in which a groove is formed in a part of the spacer 10, the spacer 10 itself may have a C-shaped shape in which one portion is cut out, or may be formed in a shape in which a plurality of portions of the spacer 10 are cut out.
 スペーサ10自身の形状もまた、円板状のメッシュ部1の周縁部3に沿うリング状に限られず、任意の形状を有してもよい。たとえばスペーサ10は、中空の矩形枠状であってもよく、または、平面視した外周縁が多角形状もしくは長円状などの任意の形状であってもよい。さらに、メッシュ部1の周縁部3からホーン振動子40側に突起する複数の突起形状を設け、これら複数の突起形状によりスペーサ10を構成してもよい。スペーサ10の形状は、ホーン振動子40の振動に伴って振動するメッシュ部1の振動の周波数を最適に調整できるように、決定することができる。メッシュ部1の振動の周波数を最適にすれば、より効率的に液体LLを霧化することができるので、より多量の霧状の液体粒子LPを発生させることが可能になり、液体噴霧装置100の能力を高めることができる。 The shape of the spacer 10 itself is not limited to the ring shape along the peripheral edge portion 3 of the disk-shaped mesh portion 1, and may have an arbitrary shape. For example, the spacer 10 may have a hollow rectangular frame shape, or the outer peripheral edge in plan view may have an arbitrary shape such as a polygonal shape or an oval shape. Further, a plurality of protrusion shapes protruding from the peripheral edge portion 3 of the mesh portion 1 toward the horn vibrator 40 may be provided, and the spacer 10 may be configured by the plurality of protrusion shapes. The shape of the spacer 10 can be determined so that the frequency of the vibration of the mesh portion 1 that vibrates with the vibration of the horn vibrator 40 can be optimally adjusted. If the frequency of the vibration of the mesh unit 1 is optimized, the liquid LL can be atomized more efficiently, so that a larger amount of mist-like liquid particles LP can be generated, and the liquid spray device 100 can be generated. Can enhance the ability.
 [実施の形態4]
 図17は、実施の形態4のスペーサ10と振動源であるホーン振動子40との配置を示す断面図である。図17に示すように、スペーサ10は、ホーン振動子40の表面42に対向する対向面14を有する。実施の形態4の液体噴霧装置100では、スペーサ10の対向面14の一部とホーン振動子40表面42との間に隙間19が形成される。より具体的には、ホーン振動子40の表面42はメッシュ部1の入口面1Bに対して相対的に傾斜しており、この傾斜によって、スペーサ10の対向面14とホーン振動子40の表面42との間に隙間19が形成される。
[Embodiment 4]
FIG. 17 is a cross-sectional view showing the arrangement of the spacer 10 according to the fourth embodiment and the horn vibrator 40 as a vibration source. As shown in FIG. 17, the spacer 10 has a facing surface 14 that faces the surface 42 of the horn vibrator 40. In the liquid spray apparatus 100 according to the fourth embodiment, a gap 19 is formed between a part of the facing surface 14 of the spacer 10 and the surface 42 of the horn vibrator 40. More specifically, the surface 42 of the horn vibrator 40 is inclined relative to the entrance surface 1B of the mesh portion 1, and this inclination causes the facing surface 14 of the spacer 10 and the surface 42 of the horn vibrator 40. A gap 19 is formed between the two.
 液体LLは、図17中の矢印に示すように、ホーン振動子40の外周側の空間Sから、隙間19を経由して、ホーン振動子40の表面42とメッシュ部1の入口面1Bとの間に形成された空間12へ流れ、空間12に供給される。隙間19は、液体LLが空間12に流通する通路15として機能する。液体LLは、空間Sから、表面42とメッシュ部1との間の空間12内に流れつつ、メッシュ部1の入口面1Bにも到達する。これにより、メッシュ部1には、安定して液体LLが供給される。 The liquid LL flows between the surface 42 of the horn vibrator 40 and the inlet surface 1B of the mesh portion 1 from the space S on the outer peripheral side of the horn vibrator 40 via the gap 19 as shown by the arrow in FIG. It flows to the space 12 formed between them and is supplied to the space 12. The gap 19 functions as a passage 15 through which the liquid LL flows into the space 12. The liquid LL also reaches the inlet surface 1B of the mesh part 1 from the space S while flowing into the space 12 between the surface 42 and the mesh part 1. Thereby, the liquid LL is stably supplied to the mesh unit 1.
 隙間19を経由して液体LLが表面42とメッシュ部1との間の空間12に流入し続けるので、液体LLはメッシュ部1まで確実に供給される。噴霧中においてもメッシュ部1に対して液体LLが途切れることなく安定して供給されるので、液体LLを安定して噴霧することができる。 Since the liquid LL continues to flow into the space 12 between the surface 42 and the mesh part 1 via the gap 19, the liquid LL is reliably supplied to the mesh part 1. Even during spraying, the liquid LL is stably supplied to the mesh portion 1 without interruption, so that the liquid LL can be sprayed stably.
 図17に示す実施の形態4の液体噴霧装置100によれば、スペーサ10の対向面14の一部がホーン振動子40の表面に接触することで、メッシュ部1とホーン振動子40との間の距離を確保できる。かつ、メッシュ部1に対してホーン振動子40の表面42を傾けることで、スペーサ10の対向面14とホーン振動子40の表面42との間に隙間19を形成して、空間12に連続的に給液できるので、液体LLを安定して噴霧することができる。 According to the liquid spraying apparatus 100 of the fourth embodiment shown in FIG. 17, a part of the facing surface 14 of the spacer 10 is in contact with the surface of the horn vibrator 40, so Can be secured. In addition, by inclining the surface 42 of the horn vibrator 40 with respect to the mesh portion 1, a gap 19 is formed between the facing surface 14 of the spacer 10 and the surface 42 of the horn vibrator 40, and is continuously formed in the space 12. Therefore, the liquid LL can be stably sprayed.
 空間12へ液体LLを連続的に供給するためには、スペーサ10の対向面14の少なくとも一部とホーン振動子40の表面42との間に隙間19が形成されればよく、隙間19を形成するための構成は図17に示す傾斜に限られない。たとえば、スペーサ10の対向面14の一部がホーン振動子40側に突起した突起部が形成され、当該突起部以外の位置においてスペーサ10とホーン振動子40の表面42との間に隙間を形成してもよい。このようにスペーサ10の対向面14を非平面として形成すれば、メッシュ部1に対してホーン振動子40の表面42が傾斜せず、メッシュ部1の入口面1Bと表面42とが平行であっても、対向面14と表面42との間の隙間を確保することができる。 In order to continuously supply the liquid LL to the space 12, the gap 19 may be formed between at least a part of the facing surface 14 of the spacer 10 and the surface 42 of the horn vibrator 40. The configuration for doing this is not limited to the inclination shown in FIG. For example, a protrusion is formed in which a part of the facing surface 14 of the spacer 10 protrudes toward the horn vibrator 40, and a gap is formed between the spacer 10 and the surface 42 of the horn vibrator 40 at a position other than the protrusion. May be. When the opposing surface 14 of the spacer 10 is formed as a non-planar surface in this way, the surface 42 of the horn vibrator 40 is not inclined with respect to the mesh portion 1, and the entrance surface 1B and the surface 42 of the mesh portion 1 are parallel. However, a gap between the facing surface 14 and the surface 42 can be secured.
 [実施の形態5]
 図18は、実施の形態5のスペーサ10と振動源であるホーン振動子40との配置を示す平面図である。図19は、図18中に示すXIX-XIX線に沿うスペーサ10とホーン振動子40との断面図である。図20は、図18中に示すXX-XX線に沿うスペーサ10とホーン振動子40との断面図である。図18~20では、メッシュ部1は図示を省略されている。
[Embodiment 5]
FIG. 18 is a plan view showing an arrangement of the spacer 10 according to the fifth embodiment and the horn vibrator 40 that is a vibration source. FIG. 19 is a cross-sectional view of the spacer 10 and the horn vibrator 40 along the line XIX-XIX shown in FIG. 20 is a cross-sectional view of the spacer 10 and the horn vibrator 40 along the line XX-XX shown in FIG. 18 to 20, the mesh unit 1 is not shown.
 実施の形態5の液体噴霧装置100では、メッシュ部1の厚み方向において空間12の一部が表面42に重ならないように、ホーン振動子40とスペーサ10とは配置されている。図18に示すメッシュ部1の厚み方向にスペーサ10とホーン振動子40とを見た場合、スペーサ10の内側に形成される空間12の内周面13は長円形の形状を有し、ホーン振動子40の表面42は円形の形状を有する。内周面13の形成する長円の長径は、表面42の形成する円の径よりも大きい。すなわち、空間12の内周面13の最大径が表面42の最大径よりも大きい。 In the liquid spraying apparatus 100 of the fifth embodiment, the horn vibrator 40 and the spacer 10 are arranged so that a part of the space 12 does not overlap the surface 42 in the thickness direction of the mesh part 1. When the spacer 10 and the horn vibrator 40 are viewed in the thickness direction of the mesh portion 1 shown in FIG. 18, the inner peripheral surface 13 of the space 12 formed inside the spacer 10 has an oval shape, and horn vibration. The surface 42 of the child 40 has a circular shape. The major axis of the ellipse formed by the inner peripheral surface 13 is larger than the diameter of the circle formed by the surface 42. That is, the maximum diameter of the inner peripheral surface 13 of the space 12 is larger than the maximum diameter of the surface 42.
 スペーサ10は、ホーン振動子40の表面42に重なり表面42に乗る部分と、表面42と重ならず表面42に乗らない部分とを有し、当該乗らない部分が通路15として機能し、空間12に液体LLが供給される。液体LLは、図19中の矢印に示すように、ホーン振動子40の外周側の空間Sから、通路15を経由して空間12へ流れ、空間12に供給される。液体LLは、空間Sから、表面42とメッシュ部1との間の空間12内に流れつつ、メッシュ部1の入口面1Bにも到達する。これにより、メッシュ部1には、安定して液体LLが供給される。 The spacer 10 has a portion that overlaps the surface 42 of the horn vibrator 40 and rides on the surface 42, and a portion that does not overlap the surface 42 and does not ride on the surface 42. Is supplied with liquid LL. The liquid LL flows from the space S on the outer peripheral side of the horn vibrator 40 to the space 12 via the passage 15 and is supplied to the space 12 as indicated by an arrow in FIG. The liquid LL also reaches the inlet surface 1B of the mesh part 1 from the space S while flowing into the space 12 between the surface 42 and the mesh part 1. Thereby, the liquid LL is stably supplied to the mesh unit 1.
 通路15を経由して液体LLが表面42とメッシュ部1との間の空間12に流入し続けるので、液体LLはメッシュ部1まで確実に供給される。噴霧中においてもメッシュ部1に対して液体LLが途切れることなく安定して供給されるので、液体LLを安定して噴霧することができる。 Since the liquid LL continues to flow into the space 12 between the surface 42 and the mesh part 1 via the passage 15, the liquid LL is reliably supplied to the mesh part 1. Even during spraying, the liquid LL is stably supplied to the mesh portion 1 without interruption, so that the liquid LL can be sprayed stably.
 [実施の形態6]
 図21は、実施の形態6のスペーサ10と振動源であるホーン振動子40との配置を示す平面図である。図22は、図21中に示すXXII-XXII線に沿うスペーサ10とホーン振動子40との断面図である。図21,22では、メッシュ部1は図示を省略されている。
[Embodiment 6]
FIG. 21 is a plan view showing the arrangement of the spacer 10 according to the sixth embodiment and the horn vibrator 40 as a vibration source. 22 is a cross-sectional view of the spacer 10 and the horn vibrator 40 along the line XXII-XXII shown in FIG. 21 and 22, the mesh unit 1 is not shown.
 実施の形態5と同様に、実施の形態6の液体噴霧装置100では、メッシュ部1の厚み方向において空間12の一部が表面42に重ならないように、ホーン振動子40とスペーサ10とは配置されている。図21に示すメッシュ部1の厚み方向にスペーサ10とホーン振動子40とを見た場合、スペーサ10の内側に形成される空間12の内周面13と、ホーン振動子40の表面42とは、共に円形の形状を有する。内周面13の形成する円の中心と、表面42の形成する円の中心とをずらして、スペーサ10とホーン振動子40とは配置されている。すなわち、円環状のスペーサ10の中心が、ホーン振動子40の表面42の中心に対しずれている。 Similarly to the fifth embodiment, in the liquid spraying apparatus 100 according to the sixth embodiment, the horn vibrator 40 and the spacer 10 are arranged so that a part of the space 12 does not overlap the surface 42 in the thickness direction of the mesh portion 1. Has been. When the spacer 10 and the horn vibrator 40 are viewed in the thickness direction of the mesh portion 1 shown in FIG. 21, the inner peripheral surface 13 of the space 12 formed inside the spacer 10 and the surface 42 of the horn vibrator 40 are , Both have a circular shape. The spacer 10 and the horn vibrator 40 are arranged such that the center of the circle formed by the inner peripheral surface 13 and the center of the circle formed by the surface 42 are shifted. That is, the center of the annular spacer 10 is shifted from the center of the surface 42 of the horn vibrator 40.
 このスペーサ10とホーン振動子40との中心のずれによって通路15が形成され、通路15を経由して空間12に液体LLが供給される。液体LLは、図22中の矢印に示すように、ホーン振動子40の外周側の空間Sから、通路15を経由して空間12へ流れ、空間12に供給される。通路15を経由して液体LLが表面42とメッシュ部1との間の空間12に流入し続けるので、液体LLはメッシュ部1まで確実に供給される。噴霧中においてもメッシュ部1に対して液体LLが途切れることなく安定して供給されるので、液体LLを安定して噴霧することができる。 The passage 15 is formed by the deviation of the center between the spacer 10 and the horn vibrator 40, and the liquid LL is supplied to the space 12 through the passage 15. The liquid LL flows from the space S on the outer peripheral side of the horn vibrator 40 to the space 12 via the passage 15 and is supplied to the space 12 as indicated by an arrow in FIG. Since the liquid LL continues to flow into the space 12 between the surface 42 and the mesh part 1 via the passage 15, the liquid LL is reliably supplied to the mesh part 1. Even during spraying, the liquid LL is stably supplied to the mesh portion 1 without interruption, so that the liquid LL can be sprayed stably.
 なお、これまでの説明においては、ホーン振動子40の超音波振動によって液体の噴霧粒子を発生させる例について説明したが、ホーン振動子に替えてSAW振動子が用いられてもよい。または、メッシュ部の入口面もしくは出口面に任意の振動子を接触させて、液体の噴霧粒子を発生させてもよい。 In the above description, an example in which liquid spray particles are generated by ultrasonic vibration of the horn vibrator 40 has been described, but a SAW vibrator may be used instead of the horn vibrator. Alternatively, an arbitrary vibrator may be brought into contact with the entrance surface or the exit surface of the mesh portion to generate the spray particles of the liquid.
 以上のように本発明の実施の形態について説明を行なったが、今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。この発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。 As described above, the embodiment of the present invention has been described. However, it should be considered that the embodiment disclosed this time is illustrative and not restrictive in all respects. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 本発明の液体噴霧装置は、霧状の呼吸器系疾患の治療薬を患者に吸入させ、患者の体内の異なった部位に治療薬を同時に到達させるための液体噴霧装置に、特に有利に適用され得る。 The liquid spray device of the present invention is particularly advantageously applied to a liquid spray device that allows a patient to inhale a therapeutic drug for a nebulized respiratory disease and simultaneously reach the different sites in the patient's body. obtain.
 1 メッシュ部、1A 出口面、1B 入口面、2 中央部、3 周縁部、6 貫通孔、10 スペーサ、12 空間、13 内周面、14 対向面、15 通路、16,18 溝、19 隙間、30 ボトルユニット、40 ホーン振動子、41 先端部、42 表面、100 液体噴霧装置、LL 液体、LP 液体粒子、S 空間。 1 mesh part, 1A outlet face, 1B inlet face, 2 central part, 3 peripheral edge, 6 through hole, 10 spacer, 12 space, 13 inner peripheral face, 14 facing face, 15 passage, 16, 18 groove, 19 gap, 30 bottle units, 40 horn vibrators, 41 tips, 42 surfaces, 100 liquid sprayer, LL liquid, LP liquid particles, S space.

Claims (9)

  1.  貫通孔の形成された薄板状のメッシュ部を備え、前記貫通孔を通過させて液体を霧化し噴出する、液体噴霧装置であって、
     前記メッシュ部は、前記液体が前記貫通孔へ流入する側の入口面と、前記液体が前記貫通孔から流出する側の出口面とを有し、
     前記入口面に対向する表面を含む振動源と、
     前記メッシュ部の周縁部の前記入口面側に設けられ、前記入口面と前記表面との間に空間を形成するスペーサと、をさらに備え、
     前記スペーサは、前記液体が前記空間に流入する通路を形成し、
     前記振動源が振動することによって、前記空間に供給された前記液体が前記貫通孔を通過して霧状に噴出する、液体噴霧装置。
    A liquid spraying device comprising a thin plate-like mesh portion formed with a through-hole, passing through the through-hole and atomizing and ejecting liquid,
    The mesh portion has an inlet surface on the side where the liquid flows into the through-hole, and an outlet surface on the side where the liquid flows out of the through-hole,
    A vibration source including a surface facing the entrance surface;
    A spacer provided on the entrance surface side of the peripheral portion of the mesh portion, and forming a space between the entrance surface and the surface;
    The spacer forms a passage through which the liquid flows into the space;
    The liquid spraying apparatus in which the liquid supplied to the space is ejected in a mist form through the through-hole when the vibration source vibrates.
  2.  前記スペーサは、前記周縁部に沿う環状に形成され、
     前記通路は、前記スペーサの径方向に沿って溝状に延びる、請求項1に記載の液体噴霧装置。
    The spacer is formed in an annular shape along the peripheral edge,
    The liquid spraying device according to claim 1, wherein the passage extends in a groove shape along a radial direction of the spacer.
  3.  前記スペーサは、前記表面に対向する対向面を有し、
     前記対向面の少なくとも一部と前記表面との間に隙間が形成される、請求項1に記載の液体噴霧装置。
    The spacer has a facing surface facing the surface,
    The liquid spraying device according to claim 1, wherein a gap is formed between at least a part of the facing surface and the surface.
  4.  前記表面は前記入口面に対して相対的に傾斜している、請求項3に記載の液体噴霧装置。 The liquid spraying device according to claim 3, wherein the surface is inclined relative to the inlet surface.
  5.  前記メッシュ部の厚み方向において前記空間の一部が前記表面に重ならないように、前記振動源と前記スペーサとは配置されている、請求項1に記載の液体噴霧装置。 The liquid spraying device according to claim 1, wherein the vibration source and the spacer are arranged so that a part of the space does not overlap the surface in the thickness direction of the mesh portion.
  6.  前記空間の内周面の最大径が前記表面の最大径よりも大きい、請求項5に記載の液体噴霧装置。 The liquid spraying device according to claim 5, wherein a maximum diameter of an inner peripheral surface of the space is larger than a maximum diameter of the surface.
  7.  前記スペーサの中心が前記表面の中心に対しずれている、請求項5に記載の液体噴霧装置。 The liquid spraying device according to claim 5, wherein the center of the spacer is deviated from the center of the surface.
  8.  前記通路は、前記振動源の外周側空間と前記空間とを連通する、請求項1から請求項7のいずれかに記載の液体噴霧装置。 The liquid spray device according to any one of claims 1 to 7, wherein the passage communicates the outer circumferential side space of the vibration source and the space.
  9.  前記メッシュ部は樹脂製である、請求項1から請求項8のいずれかに記載の液体噴霧装置。 The liquid spraying device according to any one of claims 1 to 8, wherein the mesh portion is made of resin.
PCT/JP2013/066237 2012-06-26 2013-06-12 Liquid spraying device WO2014002771A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012142944A JP2014004211A (en) 2012-06-26 2012-06-26 Liquid spray apparatus
JP2012-142944 2012-06-26

Publications (1)

Publication Number Publication Date
WO2014002771A1 true WO2014002771A1 (en) 2014-01-03

Family

ID=49782933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066237 WO2014002771A1 (en) 2012-06-26 2013-06-12 Liquid spraying device

Country Status (2)

Country Link
JP (1) JP2014004211A (en)
WO (1) WO2014002771A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109689138A (en) * 2016-09-20 2019-04-26 欧姆龙健康医疗事业株式会社 Mesh type sprayer and medical fluid packet

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI548461B (en) * 2014-02-21 2016-09-11 Double chamber full cover sealed piezoelectric atomization module
JP6733442B2 (en) 2016-09-08 2020-07-29 オムロンヘルスケア株式会社 Mesh nebulizer
JP6711225B2 (en) * 2016-09-27 2020-06-17 オムロンヘルスケア株式会社 Ultrasonic transducer drive and mesh nebulizer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533861U (en) * 1991-10-14 1993-05-07 テイーデイーケイ株式会社 Ultrasonic atomizer
JP2000233158A (en) * 1999-02-12 2000-08-29 Omron Corp Spraying device
JP2006297226A (en) * 2005-04-18 2006-11-02 Sumitomo Electric Ind Ltd Mesh nozzle for atomizer and atomizer
JP2007531577A (en) * 2004-04-02 2007-11-08 アメリカ合衆国 Aerosol delivery systems and methods
JP2011140008A (en) * 2010-01-08 2011-07-21 Omron Healthcare Co Ltd Sheet member washing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533861U (en) * 1991-10-14 1993-05-07 テイーデイーケイ株式会社 Ultrasonic atomizer
JP2000233158A (en) * 1999-02-12 2000-08-29 Omron Corp Spraying device
JP2007531577A (en) * 2004-04-02 2007-11-08 アメリカ合衆国 Aerosol delivery systems and methods
JP2006297226A (en) * 2005-04-18 2006-11-02 Sumitomo Electric Ind Ltd Mesh nozzle for atomizer and atomizer
JP2011140008A (en) * 2010-01-08 2011-07-21 Omron Healthcare Co Ltd Sheet member washing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109689138A (en) * 2016-09-20 2019-04-26 欧姆龙健康医疗事业株式会社 Mesh type sprayer and medical fluid packet
CN109689138B (en) * 2016-09-20 2021-07-06 欧姆龙健康医疗事业株式会社 Mesh type sprayer and liquid medicine bag

Also Published As

Publication number Publication date
JP2014004211A (en) 2014-01-16

Similar Documents

Publication Publication Date Title
KR101314052B1 (en) Vibration systems and methods
WO2014002769A1 (en) Liquid spraying device
JP4589862B2 (en) Nebulizer for inhalation
WO2014002771A1 (en) Liquid spraying device
US5758637A (en) Liquid dispensing apparatus and methods
US20100319685A1 (en) Medical liquid droplet apparatus
JP2013542798A (en) Droplet spray device
US20020162551A1 (en) Cymbal-shaped actuator for a nebulizing element
JP4119713B2 (en) Droplet spray device
US10864542B2 (en) Assembly for use in a liquid droplet apparatus
JPH04100557A (en) Sprayer
JP2018504962A (en) Aerosol generator with replaceable parts
WO2018047508A1 (en) Mesh nebulizer
CN104245150B (en) The method of atomizer and manufacture atomizer
JP2006297226A (en) Mesh nozzle for atomizer and atomizer
TWI532509B (en) Method and apparatus for driving a transducer of an inhalation device
JP2003102837A (en) Suction auxiliary implement for atomizer and atomizer having the same
JP2018038668A5 (en)
WO2014002768A1 (en) Liquid spraying device
US20210361889A1 (en) Aerosol delivery system with perforate membrane
WO2014002770A1 (en) Liquid spraying device
US20220031975A1 (en) Cartridge for an aerosol delivery system
CN109475710B (en) Nebulization device and nebulized drug delivery device
Mao et al. MEMS-based silicon ultrasonic twin-nozzle nebulizer for inhalation drug delivery
US20220062942A1 (en) Liquid droplet production apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13809158

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13809158

Country of ref document: EP

Kind code of ref document: A1